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ABSTRACT 

Geostatistical methodology has been employed in the modelling of spatiotemporal data from 

various scientific fields by viewing the data as realisations of space-time random functions. 

Traditional geostatistics aims to model the spatial variability of a process so, in order to 

incorporate a time dimension into a geostatistical model, the fundamental differences between 

the space and time dimensions must be acknowledged and addressed. The main conceptual 

viewpoint of geostatistical spatiotemporal modelling identified within the literature views the 

process as a single random function model utilising a joint space-time covariance function to 

model the spatiotemporal continuity. Geostatistical space-time modelling has been primarily 

data driven, resulting in models that are suited to the data under investigation, usually survey 

data involving fixed locations. 

Space-time geostatistical modelling of fish stocks within the fishing season is limited as 

the collection of fishery-independent survey data for the spatiotemporal sampling design is often 

costly or impractical. However, fishery-dependent commercial catch and effort data, throughout 

each season, are available for many fisheries as part of the ongoing monitoring program to 

support their stock assessment and fishery management. An example of such data is prawn 

catch and effort data from the Shark Bay managed prawn fishery in Western Australia. The data 

are densely informed in both the spatial and temporal dimensions and cover a range of locations 

at each time instant. Both catch and effort variables display an obvious spatiotemporal 

continuity across the fishing region and throughout the season. There is detailed spatial and 

temporal resolution as skippers record their daily fishing shots with associated latitudinal and 

longitudinal positions. In order to facilitate the ongoing management of the fishery, an 

understanding of the spatiotemporal dynamics of various prawn species within season is 

necessary. A suitable spatiotemporal model is required in order to effectively capture the joint 

space-time dependence of the prawn data.  

An exhaustive literature search suggests that this is the first application of geostatistical 

space-time modelling to commercial fishery data, with the development and evaluation of an 

integrated space-time geostatistical model that caters for the commercial logbook prawn catch 

and effort data for the Shark Bay fishery. The model developed in this study utilises the global 

temporal trend observed in the data to standardise the catch rates. Geostatistical spatiotemporal 
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variogram modelling was shown to accurately represent the spatiotemporal continuity of the 

catch data, and was used to predict and simulate catch rates at unsampled locations and future 

time instants in a season. In addition, fishery-independent survey data were used to help 

improve the performance of catch rate estimates. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND AND SIGNIFICANCE 

Geostatistics is a class of techniques traditionally used to analyse and predict values of a 

spatially distributed variable, which are implicitly assumed to be spatially correlated. The prefix 

geo- comes from geology, since geostatistics has its origins in mining (Matheron, 1971; Journel 

& Huigbregts, 1978). Several books have been written on the subject of geostatistics, ranging 

from those which mainly focus on the applications of geostatistics (Isaaks & Srivastava, 1989; 

Goovaerts, 1997; Deutsch & Journel, 1998) to ones that treat geostatistics from a more 

mathematical and statistical point of view (Cressie, 1993; Chiles & Delfiner, 1999; Stein, 1999). 

With its roots in mining, the focus of geostatistics was with static spatial variables, as the target 

variables are often constant for time periods much smaller than the geologic time scale. Over the 

past few decades, the usefulness of geostatistics has been extended from mining to a wider class 

of environments including the land, atmosphere and ocean. Many of these fields involve 

variables that exhibit not only spatial correlation but temporal correlation. Consequently, 

geostatistics has been extended to include spatiotemporal modelling to address variables that 

change in space and time. The joint analysis of space and time is based on the same philosophy 

as the spatial analyses. 

The extension of geostatistical techniques into the space-time domain is not 

straightforward. From a mathematical perspective, the domain of a spatiotemporal process may 

appear to have simply incorporated one more dimension, but this does not recognise that space 

and time are completely different physical notions. For example, characteristics of the temporal 

processes that cause temporal variation, such as periodicity associated with daily or seasonal 

patterns, are often known to some degree, Such periodic variation is less common in space. 

Therefore, a realistic statistical model characterising the spatiotemporal behaviour of a variable 

has to take into account the differences between variation in space and in time. Although the 

inference and prediction techniques remain the same, the main difference relates to the 

modelling of the second-order characteristics of the process. The fundamental difference 

between space and time must be acknowledged through the covariance function (Gneiting, 

2002). 
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Geostatistical spatiotemporal models provide a probabilistic framework for data 

analysis and predictions that builds on the joint spatial and temporal dependence between the 

observations (Kyriakidis & Journel, 1999a). Although deterministic models involving the 

appropriate governing equations can more readily account for the physical processes of the 

phenomenon under study, these models are typically not easily known. Moreover, these models 

typically require a large number of input parameters which are difficult to determine 

(Armstrong, 1998). Stochastic models are usually based on a small number of parameters that 

can be modelled and are aimed at building a process that mimics some of the behaviour of the 

observed spatiotemporal process without knowing the underlying governing equations. The 

stochastic model can be regarded as an alternative approach when a more elaborate, physically-

based model is unavailable. Geostatistics focuses on making a description of what has been 

observed by capturing the main structural features from the data. The randomness of the 

stochastic process is a measure of the uncertainty of the process. Space-time geostatistical 

modelling is an empirical approach where the model is specified and its parameters estimated 

from observed data. Knowledge of the subject matter is integrated in the modelling process. A 

stochastic model of the space-time variable of interest is postulated, from which the space-time 

covariance can be derived. Although not physically based, this model must appreciate the 

fundamental differences between spatial and temporal variation and must include these 

differences in its structure and parameterisation (Kyriakidis & Journel, 1999a; Heuvelink & 

Griffith, 2010) 

Geostatistical spatiotemporal modelling considers the data as realisations of space-time 

random functions. A review article (Kyriakidis & Journel, 1999a), concerning the geostatistical 

space-time models that had been used or suggested in the literature until that time, identified 

two conceptual viewpoints. These two approaches still dominate the field of geostatistical 

spatiotemporal modelling. The first involves a single spatiotemporal random function model 

based on a joint space-time covariance function to model the spatiotemporal continuity. This is 

the most favoured approach for current studies (Gething et al., 2008; Denham & Mueller, 2009; 

Garcia-Cabrejo et al., 2009; Russo et al., 2009; De Iaco, 2010; Heuvelink & Griffith, 2010). The 

second approach views the spatiotemporal process as either a set of temporally correlated 

random functions (Egbert & Lettenmaier, 1986; Goovaerts & Sonnet, 1993; Papritz & Flühler, 

1994; Bogaert & Christakos, 1997) or a set of spatially correlated time series (Solow & 
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Gorelick, 1986; Rouhani & Wackernagel, 1990; Rouhani et al., 1992). The spatiotemporally 

continuity of either of these multiple models is modelled via a linear model of coregionalisation. 

Whilst estimation or simulation within a spatiotemporal geostatistical framework 

proceeds in much the same way as it does in a purely spatial setting, the greatest challenge lies 

in the definition of a realistic stochastic model that is deemed to imitate the behaviour of the 

given data and in characterising and estimating the space-time correlation of that model. The 

stochastic model defines the given data as a particular (partial) realisation of a random function. 

Statistical analysis is based on this single realisation which may appear contradictory to the 

classical approach of statistics. This situation complicates the inferential process but is 

reasonable with the use of some assumptions for the model. 

Stationarity is one of the simplifying assumptions of the process under study in spatial 

geostatistics in order to estimate the spatial covariance. Similarly, it is used in spatiotemporal 

geostatistics to estimate the spatiotemporal covariance function (Gneiting et al., 2007; Bruno et 

al., 2009). Strict stationarity assumes that the statistical properties of the space-time process do 

not change over time or between locations. This means that any pair of spatiotemporal random 

variables has the same multivariate cumulative density function, whatever the translated vector 

between them. Spatiotemporal stationarity implies both spatial and temporal stationarity. It is a 

very restrictive property and one that is difficult to test. A less restrictive property called 

second-order stationarity is introduced that only considers the first two moments of the 

spatiotemporal random function. A random function is said to be second-order stationary if its 

expected value (mean) is constant over the area and its space-time covariance function depends 

only on the spatial and temporal separation of points. The absolute spatiotemporal coordinate 

does not affect the covariance as it only depends on the spatiotemporal separation. A milder 

hypothesis is to assume that for every translation vector the increment is second order 

stationary. This form of stationarity is known as intrinsic stationarity, and requires only that the 

expectation and variance of the increments should exist and, again, that they should depend only 

on the spatiotemporal separation, not on the locations themselves. 

If none of the stationarity assumptions hold then we have the more general case of a 

non-stationary random function. Non-stationarity is a common feature of many spatiotemporal 

processes, in particular those observed in the earth sciences (Schabenberger & Gotway, 2005). 

Sources of non-stationarity may be either a non-constant mean, non-constant variance or 

spatially and/or temporally varying covariance function. Changes in the mean function can be 
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accommodated in spatiotemporal models by expressing the mean function in terms of the 

spatiotemporal coordinates or other related variables, whilst the variance can be stabilised by 

transformation of the response variable. By removing these sources of non-stationarity, the 

resulting variable can often be analysed via a (second-order) stationary spatiotemporal random 

function model. When the covariance function varies over space and/or time, the ability to 

inspect the second-order structure by considering only the distances between the various 

spatiotemporal locations is no longer possible and requires advanced techniques to reduce it to a 

model that employs a stationary covariance structure (Haslett & Raftery, 1989; Sampson & 

Guttorp, 1992; Elmatzoglou, 2006). 

For either of the two spatiotemporal geostatistical approaches outlined previously the 

model can be decomposed into the sum of a trend and residual component. Some aspects of 

spatial and/or temporal non-stationarity of the mean function can be included within the trend 

component. The remaining (residual) component is assumed to be stationary and its variability 

is modelled by a stationary covariance/semivariogram function. The trend component can be 

viewed as deterministic or stochastic. A deterministic trend function of the spatiotemporal 

coordinates is adopted in many studies (Armstrong et al., 1993; Heuvelink et al., 1997; De 

Cesare et al., 2001a; De Iaco et al., 2001). Alternatively, a stochastic mean models the space-

time distribution of the mean process as a non-stationary spatiotemporal random function 

(Kyriakidis & Journel, 1999a). The spatiotemporal deterministic or stochastic mean can also be 

decomposed into spatial and/or temporal components. These components can be considered to 

be additive or multiplicative and in some instances the trend component may be considered to 

be purely spatial or purely temporal. 

The next issue in the single spatiotemporal random function model approach is how to 

specify and model the space-time covariance structure. The fitting of a space-time covariance 

model with simple or closed-form expression is essential. One approach to covariance 

modelling, known as the metric model, is to simply consider time as another dimension which 

requires an appropriate metric in space-time (Dimitrakopoulos & Luo, 1994). This has been 

used in several studies (Bilonick, 1985; Figueira et al., 1999; Snepvangers et al., 2003; Jost et 

al., 2005) and typically involves a mixture of geometric and zonal anisotropies. Geometric/zonal 

anisotropy involves varying ranges/sills in the directions of maximum and minimum continuity. 

However, the modelling of two spatial dimensions and one temporal dimension is not analogous 

to that involving three spatial dimensions as there are fundamental differences between the 
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spatial and temporal dimensions. Space and time have different scales and distance units that are 

physically incomparable and in contrast to the temporal domain there is no clear ordering of 

data in the spatial domain. A joint space-time metric does not account for these differences so 

other ways were considered to model the spatiotemporal covariance.  

Separable models for the covariance function aim to decompose the spatiotemporal 

covariance into a suitable combination of a purely spatial covariance and a purely temporal 

covariance. The linear model involves a sum of spatial and temporal covariances (Rouhani & 

Hall, 1989) which correspond to a zonal anisotropy model as outlined previously. The product 

model is an alternative separable model involving the product of a spatial covariance and a 

temporal covariance (Haas, 1995; De Cesare et al., 1997; Lophaven et al., 2006). The use of 

separable spatiotemporal covariance models greatly reduces the number of parameters that need 

to be estimated and thus makes estimation easier. This structure is often assumed more for 

practical than for substantive reasons and implies that the spatial structure is the same at all time 

points and the temporal structure is the same at all locations (Cressie & Huang, 1999). The 

separable covariance models considered by these researchers are limited in that the variability in 

space and time do not interact. Such models correspond to the assumption of two separate 

processes (one temporal and one spatial) acting independently from each other. They 

correspond to a simplistic random function that will often fail to model a physical process 

adequately. 

Non-separable spatiotemporal stationary covariance models aim to capture the joint 

space-time variability of spatiotemporal data. The product-sum model is a non-separable 

covariance model that combines sums and products of the spatial and temporal covariance 

models (De Cesare et al., 2001b). Other classes of valid space-time covariance structures,which 

employ advanced methods, have been proposed (Jones & Zhang, 1997; Cressie & Huang, 1999; 

De Iaco et al., 2001; Gneiting, 2002; Ma, 2002, 2003; Kolovos et al., 2004; Stein, 2005; Ma, 

2008; Mateu et al., 2008). There has also been some development of non-separable 

spatiotemporal models which are not limited to stationary data (Christakos & Hristopulos, 1998; 

Christakos, 2000; Fernandez-Casal et al., 2003) but there are few examples of the practical 

implementation of these non-stationary covariance models. 

The approach of temporally correlated random functions or spatially correlated time 

series to geostatistical spatiotemporal modelling arose as there often exists an imbalance 

between the quantities of temporal and spatial data. A data set where the sampling is denser in 
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space than in time can be viewed as a realisation of a set of temporally correlated (spatial) 

random functions (Goovaerts & Sonnet, 1993). A linear model of coregionalisation is then fitted 

to the simple and cross covariances of the (spatial) random functions associated with each time 

instant, which does not require stationarity in time. No temporal interpolation or extrapolation is 

possible. The computation and modelling of the associated covariances become rather 

cumbersome as the number of (spatial) random functions increases. Spatial non-stationarity can 

be handled by decomposing the (spatial) random functions into a non-stationary deterministic or 

stochastic trend component and a stationary residual component. A linear model of 

coregionalisation is fitted to the stationary residual random functions. 

In a similar manner, a data set that is more densely sampled in time than in space can be 

modelled via a set of spatially correlated time series (Rouhani & Hall, 1989). This requires fixed 

spatial locations at each time instant. The analysis proceeds as outlined for a set of temporally 

correlated random functions. As before, the computation and modelling of the associated 

covariances become cumbersome as the number of time series increases. The time series at each 

location can be decomposed into a non-stationary deterministic or stochastic trend component 

and a stationary residual component to address temporal non-stationarity. The residual time 

series is fitted with a linear model of coregionalisation. In the basic form of this approach, no 

spatial interpolation or extrapolation is possible. However, it is possible to extend this approach 

to a continuous spatial domain by determining temporal covariance models or time series 

independently at each fixed location and then regionalising these location-specific parameters in 

space (Kyriakidis & Journel, 1999b, 2001b, 2001a). This allows temporal covariance models or 

time series to be determined at unsampled locations and alleviates the computational effort 

associated with the number of (temporal) covariances. This time series technique may also be 

employed to model the trend component of a single spatiotemporal random function model (De 

Cesare et al., 1997; Heuvelink et al., 1997). 

An example of spatiotemporal data arises in the Shark Bay prawn fishery, which is 

located within the waters of Shark Bay off the mid west coast of Western Australia. Commercial 

fishing logbook data for various prawn species are available detailing the series of trawl shots 

for each vessel with the starting location for each trawl shot along with the relevant catch and 

effort information. Western king prawns (Penaeus latisulcatus) are the dominant species, 

comprising about 70% of the catch, with brown tiger prawns (Penaeus esculentus) chiefly 

making up the remaining 30%.  
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Tiger prawns can live for over two years and king prawns can live for up to four years, 

although animals greater than two years are rarely caught under current harvesting practices. 

King prawns have the ability to spawn numerous times throughout the year producing 

approximately 100000 to 700000 eggs per spawning. Tiger prawn spawning levels are lower at 

approximately 50000 to 400000 eggs per spawning. Prawns mature at about 10-12 months of 

age and spawning occurs in offshore waters. The larvae drift shoreward to shallow water where 

they remain in the nursery grounds for three to six months while maturing. At this point they 

migrate offshore and enter the trawl fishing grounds. This migration takes place in the summer 

and autumn of each year and is termed recruitment to the fishery. King and tiger prawns 

generally live in coastal waters down to a maximum depth of about 80m and are usually caught 

by trawlers over hard, sand sediment substrates. (Kangas et al., 2006) 

The Shark Bay prawn fishery is the largest prawn fishery in Western Australia. It is an 

otter-trawl fishery that began in 1962. The fishery is “input controlled” with a complex series of 

management restrictions, including limited entry, boat size and gear controls, and spatial and 

temporal closures. The opening/closing dates vary each year depending on environmental 

conditions, moon phase and the results of recruitment surveys. Large areas of the fishery, 

particularly inshore, are closed to trawling to protect sensitive habitats and juvenile prawns. 

Intra-seasonal closures are implemented in the fishery to reflect the recruitment pattern of 

prawns in Shark Bay. In addition, the Department of Fisheries will open up additional areas 

throughout the season, which allows the fishing effort to be spread over a wider area as well as 

between species. (Kangas et al., 2006) 

Management controls for this fishery are based on the commercial catch and effort data 

(Sporer & Kangas, 2004). Traditionally, modelling of Shark Bay prawn logbook data has been 

in the form of time series analyses involving aggregated daily, monthly or annual catches over 

the whole fishery or (relatively large) fishing areas (Penn & Caputi, 1985; Penn et al., 1995; 

Hall & Watson, 2000; Harman, 2001) without taking detailed spatial variation into account. 

These are not simply empirical descriptions of the time series of data but attempt to capture 

aspects of the relevant biology and fishery processes. When the catch and effort data of a fishery 

are summarised over large areas and times, the spatial and temporal resolution that can be useful 

for understanding patterns and formulating management decisions in fisheries is removed 

(Telfer, 2010). The majority of traditional fisheries research focuses on the temporal variability 

of the fishery population. However, an understanding of the spatial variability in fisheries can 
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also provide important information to management when assessing the fish population and the 

resources upon which it is based. By incorporating both temporal and spatial information, a 

spatiotemporal model for the king and tiger prawn distribution in the Shark Bay prawn fishery 

could be a useful addition to the set of assessment tools used for the ongoing management of the 

fishery. 

Geostatistics was first applied for fisheries management by estimating the spatial 

distribution of shellfish stocks (Conan 1985) and is a useful step in fisheries science to address 

the need to investigate spatial patterns in abundance and provide fishery managers with another 

tool for exploring the distribution of a fish population. Several studies have used spatial 

geostatistics to study the distribution of aquatic stocks using survey data in order to characterise 

the spatial continuity of a measure of an aquatic species (Fletcher & Sumner, 1999; Kleisner et 

al., 2010b), to estimate catches and their variances (Fernandes & Rivoirard, 1999), to optimise 

sampling strategies (Petitgas, 1996) and to map the estimated spatial distribution of a population 

(Maravelias et al., 1996; Castrejón et al., 2005; Rufino et al., 2005; Adams et al., 2008; Addis et 

al., 2009; Murenu et al., 2010) by taking into account the spatial structure of the population. 

These studies use fishery-independent survey data obtained primarily for the research or as part 

of an ongoing monitoring program for the fishery. Analysis is limited to the spatial aspect by 

considering data for a given fishing period or season where the temporal component can be 

ignored, or by comparing independent spatial analyses for various fishing periods or seasons 

(Faraj & Bez, 2007; Colloca et al., 2009; Kleisner et al., 2010a). 

Fishery management is based on the estimation of the abundance and sustainability 

status of fish stocks, which requires characterisation of the population of the target species. The 

stock assessment of a fish stock provides decision makers with much of the information 

necessary to make reasoned choices. It describes the past and current status of a fish stock and 

also attempts to make predictions about how the stock will respond to current and future 

management options. The Shark Bay fishery is required to report annually to the government 

and community on the status of the fishery, given that it is utilising a community resource. The 

management aims of the Shark Bay fishery are related to the protection and management of the 

fishery and include sustaining prawn stocks and maintaining economic viability. The primary 

operational objective is to maintain the spawning stock of each prawn species at or above a level 

that minimises the risk of recruitment overfishing (Kangas et al., 2006). 
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The assessment of the status of a fish stock often includes the analysis of fishing logs 

acquired through a logbook program. Data from these programs provide a history of relative 

catch and effort trends for a number of areas within the fishery and provide a record of marked 

change in those trends, should one occur. All vessels participating in the Shark Bay managed 

prawn fishery complete detailed logbooks providing information on the daily catch (kg) and 

amount of effort (hours trawled) expended in each of a number of fishing areas, which have 

been specified by the fishery scientists responsible for assessing the status of the fishery. Each 

boat provides the trawl duration and catch of every shot, i.e. haul of the trawl nets. King and 

tiger prawn stocks in the Shark Bay managed prawn fishery are monitored using the fishery-

dependent catch and effort information from the log books (throughout the year), in conjunction 

with recruit surveys (March and April) and spawning stock surveys (June and July) for tiger 

prawns (Sporer et al., 2010). Recruit surveys are designed to assess the abundance of the young 

prawns that, through growth, will become available to the fishery later that year, whilst 

spawning stock surveys assess the abundance of mature female prawns that are able to 

reproduce. The recruitment surveys for tiger prawns also catch king prawns and thus contain 

information relevant to the stock status of the latter species. From these data, the catch per unit 

of effort (CPUE) can be determined for each fishing area. The king and tiger prawn stocks in the 

Shark Bay managed prawn fishery are believed to be fully exploited (Sporer & Kangas, 2004).  

The standardised CPUE data from the fishery, also referred to as catch rates, are 

assumed to be an index of the abundance of the prawns that are vulnerable to the trawlers within 

that area. They are used as a means of tracking the performance of the fishery over successive 

seasons by monitoring changes in stock levels from year to year. Focusing on the main target 

species of the Shark Bay managed prawn fishery, this project aims to model the western king 

prawn catch rate distribution using a geostatistical spatiotemporal model, allowing for both 

spatial and temporal discrimination rather than the whole or part of region time series approach. 

The addition of spatial resolution to the analysis of CPUE in the prawn fishery would enable a 

better understanding of CPUE including a more realistic understanding of uncertainty, 

identification of areas of unprecedented or extended periods of localised depletion, and the 

ability to improve the timing of spatial openings and closures to maintain stocks or improve 

profitability. 

Traditionally, geostatistics aims to use a sample data set of the spatial/spatiotemporal 

variable to model the spatial/spatiotemporal distribution of the variable and estimate or simulate 
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at unsampled spatial/spatiotemporal locations. Sample data for geostatistical analysis are often 

provided by surveys conducted for the purpose of the study. However, detailed survey data are 

not always available. This is particularly true for fisheries where obtaining fishery-independent 

survey data is costly. However, many fisheries have detailed fishery-dependent catch and effort 

data. As mentioned previously, the Shark Bay managed prawn fishery has detailed logbook 

catch and effort data provided by the various skippers of the fishing vessels in Shark Bay. In the 

absence of fishery-independent survey data throughout the season and across the entire spatial 

range of the Shark Bay managed prawn fishery, the fishery-dependent catch and effort data are 

utilised in this study. 

Whilst logbook data are recorded in situ on the fishing vessel, time constraints of the 

fishing day and personal preferences may result in differences in the way the data are recorded 

by skippers on the various vessels. The prawn logbook data involve catch and effort data which, 

if considering a single fisherman, may typically be regarded as a non-random sample of the 

underlying prawn distribution as a fisherman targets known or preferred fishing areas. As such, 

the behaviour of the sample data of an individual fisherman may not completely represent, or 

may be a biased representation of, the behaviour over the study region. However, by 

considering the catch and effort of multiple fishermen in the same study, there is an element of 

randomness as their beliefs quite clearly do not coincide, otherwise they would all be fishing at 

the same location at a given time. This assumption validates the use of the random function 

model for the prawn catch rate data. 

A pilot study involving king and tiger prawn catch data for the 2000 Shark Bay prawn 

fishing season showed the spatial aspect of the data was amenable to geostatistical methods 

(Mueller et al., 2004). A subsequent Fisheries Research and Development Corporation study 

(FRDC Project No. 2005/038) investigated the use of geostatistics to model the spatial 

distribution of Shark Bay prawn catch data (Mueller et al., 2008). The results of the study 

indicate that geostatistical techniques are suitable for analysing the prawn catch data. The FRDC 

project implemented the preliminary spatiotemporal modelling technique developed in this 

thesis to produce smoothed maps of king and tiger prawn catch rate distribution for a lunar 

month. The pictorial representations improved the understanding of the short-term and annual 

spatial variation in king prawn catch rate distribution and were seen as a useful tool in 

discussions with stakeholders on closure options (Mueller et al., 2008). The geostatistical 

spatiotemporal model for the prawn catch data is further developed in this thesis, including the 
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investigation of data aggregation by vessel and grid, the use of fishery-independent survey data 

to supplement the catch rate input data for estimation in a region as it is opened to fishing, and 

the addition of spatiotemporal simulation to capture the local uncertainty of the estimates. 

The prawn catch data set is densely sampled in both the spatial and temporal 

dimensions and locations at successive time instants are not fixed. A suitable geostatistical 

spatiotemporal model must account for these properties. A spatially correlated time series 

approach is not directly applicable to these data due to the varying locations. Whilst the 

approach of temporally correlated (spatial) random functions is potentially valid, the vast 

number of time instants and varying spatial locations at each time instant is problematic. The 

single spatiotemporal random function model appears valid for analysing the prawn data by 

extracting the trend component from the prawn data and to analyse the resulting (stationary) 

spatiotemporal residuals. The presence and nature of temporal trends of the prawn catch data 

have been identified previously (Harman, 2001). Building on the previous spatial geostatistical 

analysis of king prawn catch rates, this study will assess the ability of a spatiotemporal model, 

by including the temporal dimension, to predict catch rates into the future, and provide a 

measure of the uncertainty associated with the estimates. An additional challenge faced with the 

prawn data is the spatiotemporal opening and closure lines implemented as part of the 

management regime in the fishery. Forecasting into a region just opened to fishing with no input 

data from previous weeks is problematic, as the catch rates peak in these new fishing regions. A 

region is typically targeted by fishers as it opens to take advantage of the increased number of 

prawns available. Catch rates from recruitment surveys are exploited in this study to condition 

the prediction of catch rates in these areas.  

A geostatistical spatiotemporal model, based on the single spatiotemporal random 

function model, is implemented in this study with the king prawn catch and effort data from the 

Shark Bay managed prawn fishery to facilitate estimation and simulation of catch rates into the 

future. This model is data-driven and suited to the characteristics of the prawn catch rate data. 

The spatiotemporal analysis will provide insight into the spatiotemporal modelling ability of 

geostatistical methods to fishery-dependent catch and effort data allowing for the integration of 

limited fishery-independent survey data. This aims to reduce some of the knowledge gap that 

currently exists with regards to detailed spatiotemporal information about the king prawn 

distribution of Shark Bay. In doing so, this modelling technique may provide fishery managers 

with another tool for making better informed decisions. 
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1.2 OBJECTIVES 

There are three aims of this study: 

1. To develop a geostatistical spatiotemporal modelling framework for the Shark 

Bay western king prawn catch rate data based on the single spatiotemporal 

random function model.  

This approach will model and allow future predictions of the catch rate along 

with estimates of uncertainty. 

2. To apply the developed geostatistical space-time model to the Shark Bay 

western king prawn catch rate data.  

Data from the 2001 to 2003 seasons will be used to compute estimates and 

simulated realisations for the 2004 season and then compared with the actual 

2004 catch rate values. 

3. To integrate fishery-independent survey data to improve the performance of 

estimates obtained for the Shark Bay western king prawn catch data from the 

developed geostatistical space-time model.  

Recruitment survey data will be used as supplementary information to improve 

catch rate estimates in a region as it is first opened to fishing in the 2004 

season. 

1.3 THESIS OUTLINE 

This thesis is organised in four parts. In the first part, after a general introduction (Chapter 1), 

spatiotemporal geostatistical background theory is presented along with the methods of global 

trend modelling used in this study (Chapter 2). In Chapter 3 the king prawn catch rate data sets 

from the Shark Bay managed prawn fishery, which are used in the subsequent analysis, are 

presented. Then the methodology for space-time modelling of the king prawn data set is 

presented in Chapter 4, outlining the various components of the modelling process. 

The second part of this thesis presents the global trend modelling process applied to the 

king prawn catch rate data (Chapter 5). This involves modelling the global multiplicative 

temporal trend of the averaged weekly catch rate by time series decomposition, involving a 

trend and cyclical component. The catch rate data are then transformed by dividing by the large-

scale multiplicative temporal trend. The spatial correlation and continuity over time of the 

standardised king prawn catch rate data are presented in Chapter 6. In Chapter 7, the 
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spatiotemporal continuity of the standardised king prawn catch rate data is analysed and 

modelled via variography for use in the subsequent estimation and simulation methods. 

The third part of this thesis presents the spatiotemporal geostatistical estimation 

(Chapter 8) and simulation (Chapter 9) results of the 2004 king prawn catch rate data. These 

analyses are conducted using the 2001 to 2003 data as input data. The standardised catch rate 

data are estimated via a space-time kriging procedure and are then back transformed to catch 

rate values by incorporating the large-scale multiplicative temporal trend. Estimates in a region 

as its opened to fishing are improved using survey data as conditioning data in addition to the 

catch rate input data. Simulation is performed to characterise the local uncertainty of the catch 

rate estimates. 

The final part of this thesis (Chapter 10) presents a summary of this study along with 

possible research avenues for the continued, and improved, spatiotemporal geostatistical 

modelling of the king prawn distribution, along with the potential modelling of the distributions 

of other prawn species. 
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CHAPTER 2 

THEORETICAL FRAMEWORK 

2.1 INTRODUCTION 

The main focus of this research is the development of a spatiotemporal geostatistical modelling 

approach for the Shark Bay king prawn catch rate data. This chapter outlines the geostatistical 

modelling framework for spatiotemporal data, including the data framework, modelling of 

spatiotemporal continuity along with possible estimation and simulation methods. Geostatistical 

models of spatiotemporal variability assume stationarity throughout the domain, so that 

variables require global detrending before analysis. The methods of global trend modelling used 

in this study (time series and median polish) are also presented in this chapter. 

2.2 SPATIOTEMPORAL GEOSTATISTICS 

Geostatistics utilises the theory of random functions to model regionalised variables. A variable 

is said to be regionalised when it is distributed in space and/or time. The regionalised variable 

(abbreviated to ReV) is usually a characteristic of a certain phenomenon which we call the 

regionalisation. In most cases, a characteristic behaviour or structure of the spatiotemporal 

variability of the ReV under study can be detected behind a locally erratic aspect. Thus, a ReV 

possesses two apparently contradictory characteristics, 

1. A local, random, erratic aspect. 

2. A general structured aspect which requires a functional representation. 

Geostatistics is a set of techniques that use a probabilistic interpretation to take into account 

both aspects of randomness and structure of ReVs. The mathematical construct that is used to 

model the ReV is a random function (abbreviated to RF). In geostatistics we act as though the 

ReV under study is a realisation of a parent RF. Geostatistics can thus be defined as the 

application of the probabilistic theory of RFs to ReVs. Traditionally geostatistics has been 

concerned with spatially varying variables, but has been extended to involve variables varying 

in both space and time (Kyriakidis & Journel, 1999a). The philosophy is, where data are 

collected in positions and at varying times within a region, these locations and time instants may 

help to explain their variability. We will refer to the traditional methods of geostatistics as 

spatial geostatistics and use the more general term geostatistics to refer to spatiotemporal 

geostatistics, which is the focus of this thesis. 
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2.2.1 THE JOINT SPACE-TIME FRAMEWORK 

In order to analyse observations of a ReV, varying in both space and time, we place them into a 

spatiotemporal framework generalised from the spatial framework of Goovaerts (1997). The 

combined space-time domain is denoted TD  where D is a finite domain in space with 

dD  and T is a finite domain in time with T , and often T . The coordinates of a 

spatiotemporal location are denoted by ),( tu  where Du  and Tt  , and the value of the 

attribute at that spatiotemporal location is denoted by ),( tz u . Note that the spatial locations are 

continuous whereas the time instants may be continuous or discrete, and therefore the number of 

spatiotemporal locations is infinite. The number of these spatiotemporal locations at which the 

attribute value is known is finite and denoted by n . These are called sampled spatiotemporal 

locations. 

2.2.2 SINGLE SPATIOTEMPORAL RANDOM FUNCTION MODEL 

We can consider the data value ),( tz u  as a realisation of a random variable ),( tZ u  at the 

spatiotemporal location ),( tu . A random variable (abbreviated to RV) is discrete if it has a 

range with only a finite or countably infinite number of values or continuous if it has a range 

with an uncountably infinite number or values on the real line. As we will be concerned with 

continuous RVs in our study let us use the term RV to describe a continuous RV. The behaviour 

of a RV is characterised by its probability distribution. 

Definition 2.1: Cumulative Distribution Function 

The cumulative distribution function (cdf) of a RV is given by 

 ztZztF  ),(Pr);,( uu  (2.1) 

for all z.  

The cdf is the probability that the value of ),( tZ u  is less than or equal to a specific 

value z and models the uncertainty of the value ),( tz u . We can assign a RV ),( tZ u  to each 

location in the study area A. The set of all these RVs is known as a random function 

(abbreviated to RF). For short the RF is also denoted by ),( tZ u  like the RV but it is typically 

easy to distinguish which one is being used. 

In geostatistics it is assumed that the ReV   ttz ,);,( uu  under study is a realisation 

of a parent RF   ttZ ,);,( uu , which is a collection of realisations of its components RVs. 

The RF is denoted by ),( tuZ . For every set of k points in , there corresponds a k-component 
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vectorial RV       ktZtZtZ ),(,...,),(,),( 21 uuu . This vectorial RV is characterised by the k-

variable joint distribution function.  

Definition 2.2: Joint Cumulative Distribution Function 

The joint cdf of a RF is given by 

   kkkk ztZztZztZzzztttF  ),(,...,),(,),(Pr,...,,;),(,...,),(,),( 22112121 uuuuuu  (2.2) 

where kt),(u  for all possible choices of k. This joint cdf characterises the joint uncertainty 

about the k actual values. The set of all these distribution functions, for all positive integers k 

and for every possible choice of support points in , constitutes the spatiotemporal law of the 

RF.  

In practice, we limit ourselves to cdfs involving no more than two locations at a time 

which are outlined as follows. The univariate (one-point) cdf is given by 

   );,(),(Pr);,( ztIEztZztF uuu   (2.3) 

and the bivariate (two-point) cdf is given by 

    
  ';)',();,(

')',(,),(Pr',;)',(),,(

ztIztIE

ztZztZzzttF

uu

uuuu




 
(2.4) 

where for all z and all ),( tu , );,( ztI u  denotes the binary random variable 
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u

 
(2.5) 

The one-point and two-point terminology indicates that the two random variables relate to the 

same attribute z at two different locations and not to two different variables. To infer behaviour 

of the RV ),( tZ u  we also consider the first and second order moments of the RV.  

Definition 2.3: Moment of a Random Function 

The joint cdf of a RF,given by the kth order moment of the RV ),( tZ u at any location ),( tu , is 

defined as 

  );,(),( xtdFxtZE kk uu   (2.6) 

provided this integral exists where E[.] denotes the expected value of the random variable. 
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The expected value of a random variable is defined to be its first order moment: 

 ),(),( tZEtm uu   (2.7) 

The expected value in general is allowed to depend on the spatiotemporal location ),( tu . In 

geostatistics we often refer to the expectation as the trend which represents the large-scale 

changes of ),( tZ u . The variance of a RF ),( tZ u  is defined as the second-order moment about 

the expectation ),( tm u :  

   2),(),(),( tmtZEtZVar uuu   (2.8) 

for any location ),( tu . As for the trend, the variance is generally dependent on the location 

),( tu .  

An important variant of the second-order moment, the (two-point) covariance is defined 

as 

         )',(),()',(),()',(),,( tZEtZEtZtZEttC uuuuuu   (2.9) 

for any locations ),( tu  and )',( tu . When )',(),( tt uu   the covariance equals the variance of 

),( tu . The covariance structure of the RV ),( tZ u  represents its variability due to small and 

microscale stochastic sources. The (two-point) correlogram is the standardised form of 

covariance given by 

   
   )',(,)',(),(),,(

)',(),,(
)',(),,(

ttCttC

ttC
tt

uuuu

uu
uu




 
(2.10) 

The (semi)variogram is an alternative way of describing the second order properties of a 

RV. In traditional statistics, the dependency between RVs is expressed in terns of covariances 

whilst in geostatistics it is more common to work with (semi)variograms. The variogram is the 

variance of the difference of the two RVs defined by the locations ),( tu  and )',( tu  given by 

    )',(),()',(),,(2 tZtZVartt uuuu   (2.11) 

The variogram describes how this variance changes with changes in the separation distance 

between the two locations.  

The semivariogram  )',(),,( tt uu , is perhaps the simplest way to relate uncertainty 

with distance and/or time from an observation and is the most traditional and commonly used 

inferential tool of spatial/spatiotemporal geostatistics for specifying the spatial/spatiotemporal 
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structure. The semivariogram estimator calculates the dissimilarity of a data pair as half the 

squared difference between the observed values. The average of the pairwise dissimilarities over 

a set of lags results in the experimental semivariogram. For a stationary process, the mean and 

variance of the observed phenomenon is identical for any subregion of the domain, and the 

semivariogram can be used as a valid description of the spatiotemporal continuity of the 

variable. This means that the difference between any pair of data points at arbitrary 

(spatiotemporal) separation is purely a function of their (spatiotemporal) separation vector. 

A measure of dependence between ),( tZ u  and )',( tZ u  is the centred two-point cdf, 

defined as  

     ';)',();,(',;)',(),,( ztFztFzzttF uuuu   (2.12) 

The two RVs are independent if expression (2.12) equals zero. Using (2.5) we can rewrite this 

dependence relation as 

         ',;)',(),,(';)',();,(';)',();,( zzttCztIEztIEztIztIE I uuuuuu   (2.13) 

The set of all indicator cross covariances  ',;)',(),,( zzttCI uu  for all thresholds provides a 

measure of dependence between the two RVs ),( tZ u  and )',( tZ u . The Z-covariance (2.9) is a 

measure only of linear correlation between the two RVs. The Z-covariance and all indicator 

cross covariances vanish when the two RVs are independent. However the condition 

  0)',(),,( ttC uu  does not necessarily imply (2.12) equals zero. Two linearly uncorrelated 

RVs may still be dependent, in which case the dependence relation is non-linear (Goovaerts, 

1997). 

2.2.3 STATIONARITY 

Inference of the spatiotemporal law requires repeated realisations of the component RVs at each 

space-time location ),( tu , which are never available in practice. Even if a very large of 

number of realisations were available, the combinatorial possibilities are such that we could 

only calculate multidimensional distributions only for the simplest k-tuples. In our instance we 

only have a single (partial) realisation of the RF and therefore cannot infer the entire 

spatiotemporal law of (2.2) (Kyriakidis & Journel, 1999a). Even the more practical inference of 

the cdf and moment relations of (2.3) - (2.11) requires multiple realisations at each location u. 

For example, inference of the Z-covariance  )',(),,( ttC uu  defined in (2.9) between the two 

RVs ),( tZ u and  )',( tZ u separated by the vector )',(),(),( tthts uuhh   requires a set of 

repeated measurements 
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  Lltztz ll ,,1;)',(),,( )()( uu  (2.14) 

that are never available in practice. Simplification is needed and it is provided by the 

assumption of stationarity. Stationarity allows us to replace the unavailable repetition with 

repetition associated with pairs of locations. It must be noted that stationarity is a property of the 

RF model. It is not a characteristic of the phenomenon under study but rather a decision made 

by the user. 

Under the assumption of stationarity, pairs of values separated by the space-time vector 

h  within the study area  are used as a set of repeated measurements 

  ntztz ,,1;),(,),(   huu  (2.15) 

The implicit assumption is that the corresponding pairs of RVs 

  ntZtZ ,,1;),(,),(   huu  (2.16) 

originate from the same two-point distribution. This provides the many realisations of the RF 

),( tuZ  necessary to make statistical inference. Such pooling of data pairs regardless of their 

locations calls for the phenomenon under study to be homogeneous within the study area. In 

probabilistic terms, the RF model must be chosen to be stationary within . Strict stationarity 

requires the spatiotemporal law of the spatiotemporal variable ),( tuZ  to be invariant under 

translation. 

In practice, we only need to justify that the variable is stationary up to a given distance 

and within a given time frame. If a variable is deemed locally stationary within a spatial region 

such that the fluctuations of the variable dominate any trend then we can justify the use of 

spatial geostatistical tools within this neighbourhood (Armstrong, 1998). We can extend this 

principle to apply spatiotemporal geostatistical tools to a spatiotemporal variable deemed 

stationary within a spatial region and a particular time frame. 

Definition 2.4: Strictly Stationary Random Function 

The RF ),( tuZ  is said to be strictly stationary within  if the multivariate cdf is invariant 

under translation, given by 

  
 huu

huhuhuuuu
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(2.17) 
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Invariance of the multivariate cdf entails invariance of any lower order cdf, including 

the univariate and bivariate cdfs, and invariance of all their moments including covariances. 

This property is usually difficult to test and cannot be verified from the limited sample data as it 

needs to be demonstrated by considering the family of finite-dimensional distribution functions 

of the process (Bruno & Cocchi, 2004). Furthermore, it is often an unreasonable assumption for 

the data at hand. For this reason, weaker forms of stationarity may be sufficient to provide a 

foundation for modelling analysis. The assumption of strict stationarity can be loosened by 

limiting the decision of stationarity to the one-point and two-point cdfs and the first two 

moments of the RF (Goovaerts, 1999; Kyriakidis, 1999). 

This less strict definition of stationarity is known as second-order stationarity. For a 

second-order stationary RF, the reference to a particular spatiotemporal location ),( tu  can be 

dropped from the expressions of (2.3) - (2.11). The one-point and two-point cdfs and 

corresponding moments now depend only on the separation vector ),( ts hhh   between the 

locations ),( tu  and )',( tu : 

 Univariate (one-point) cdf 

 ztZztFzF  ),(Pr);,()( uu  (2.18) 

 Bivariate (two-point) cdf 

}'),(,),(Pr{)',;( zhtZztZzzF ts  huuh  (2.19) 

 Z-expected value 

 ),( tZEm u  (2.20) 

 Z-covariance (two-point) 

     ),(),(),(),()( tsts htZEtZEhtZtZEC  huuhuuh  (2.21) 

 Z-correlogram (two-point) 
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(2.22) 

 Z-variogram 

    2),()(),()()(2 tsts htZZEhtZZVar  huuhuuh  (2.23) 
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The separation vector ),( ts hhh   accounts for both distance h  and direction. )(hC  and 

)(2 h  are said to be anisotropic if they depend on both distance and direction. They are 

isotropic if they depend only on the modulus of h. A second-order stationary RF is defined by 

its expectation and covariance: 

Definition 2.5: Second Order Stationary Random Function 

The RF )(uZ  is said to be second-order stationary within  if the first moment of the vector of 

random variables exists and is constant and the covariance of all pairs of RVs exists and 

depends only on the separation vector 

mtZE )},({ u  (2.24) 

)(]}),(][),({[ hhuu CmhtZmtZE ts   (2.25) 

Strict stationarity implies second-order stationarity, assuming that the first two moments 

exist, whereas second-order stationarity does not imply strict stationarity. In a Gaussian 

spatiotemporal process, the second order stationarity and strict stationarity coincide, as a 

Gaussian process is completely specified by its mean and variance (Bruno & Cocchi, 2004). 

In many cases the assumption of second-order stationarity may not be met. A weaker 

assumption of intrinsic stationarity assumes that the increments ),(),( ts htZtZ  huu  

themselves are second-order stationary (Journel & Huigbregts, 1978; Goovaerts, 1997). Intrinsic 

stationarity is a sufficient condition to define the semivariogram. 

Definition 2.6: Intrinsically Stationary Random Function 

The RF ),( tZ u  is said to be intrinsically stationary within  if the mean and variance of the 

increments ),(),( ts htZtZ  huu  exist and are translation invariant.  

0)},(),({  ts htZtZE huu  (2.26) 

   )(2),(),()},(),({ 2 hhuuhuu  tsts htZtZEhtZtZVar  (2.27) 

There is a relationship between the covariance, correlogram and SV of a stationary RF. 

),()0,(),( tsts hCCh h0h   (2.28) 
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As the separation distance sh  or separation time th
 

increases, the correlation 

between any two RVs ),( tZ u and ),( ts htZ  hu  generally tends to zero. 

 tsts hhC orfor0),( hh
 (2.30) 

The sill value of a bounded SV tends toward the a priori variance )(0C . 

 tsts hCh orfor)0,(),( h0h
 (2.31) 

2.2.4 NON-STATIONARITY 

The stationarity decision allows pooling data over areas that are deemed homogeneous. In 

practice, many data sets do not satisfy the assumption of second order or intrinsic stationarity. 

Furthermore, the departure from stationarity is often linked to the presence of a trend and 

therefore it is necessary to remove the trend from the observation via some model. These trends 

can either be removed from the data and added back to the interpolated estimates of the 

residuals, or incorporated directly into the interpolation scheme. Once the global deterministic 

trend is removed, uncertainties in the detrending procedure are not taken into account in further 

analysis (Snepvangers et al., 2003). 

The possible sources of non-stationarity that exist within a data set are a non-constant 

mean, a non-constant variance or a spatiotemporally varying covariance function (Elmatzoglou, 

2006). All sources of non-stationarity must be resolved in order to model the spatiotemporal 

variability via a (second-order) stationary spatiotemporal random function model. A non-

constant mean can be accommodated by expressing the mean function in terms of the 

spatiotemporal coordinates or other related variables. A non-constant variance can be stabilised 

by transformation of the response variable. A spatially and/or temporally varying covariance 

function cannot easily be dealt with, and is not examined in this study. 

In some cases, even if data are non-stationary, they may be considered locally stationary 

(that is, to exhibit no definable trend) over a shorter distance, called the limit of quasi-

stationarity (Armstrong, 1998). Subsequent modelling (and estimation or simulation) can be 

performed over this limit, rather than relying on a trend function. This is achievable in all 

kriging methods using an appropriate search neighbourhood. 

Exploratory data analysis may suggest the existence of several populations with 

significantly different statistics. In this case, the region should be subdivided into more 

homogeneous zones with each being modelled with a different RF (Goovaerts, 1999). This 
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subdivision is dependent on the availability of enough data to infer the parameters of each 

separate RF and the ability to delineate the different populations for both data and unsampled 

locations. 

2.2.5 SEMIVARIOGRAM AND COVARIANCE INFERENCE 

Once a random function model has been chosen, the next step is to infer its parameters from the 

available information (sample data). The inference process aims at estimating the parameters of 

the RF model from the sample information available over the study area. Inference of the first 

two moments (mean, covariance) of the RF ),( tZ u  is typically the focus of geostatistical 

modelling as they are required by subsequent estimation or simulation algorithms. For 

convenience, we often work with semivariograms rather than covariances. Theoretical models 

of the spatiotemporal continuity of an attribute are required in order to derive values of the 

semivariogram for any separation vector h.  

In traditional (spatial) geostatistics, the experimental spatial semivariogram )(ˆ ss h is 

the primary tool of inference. Similarly, the experimental spatiotemporal semivariogram 

),(ˆ tsst hh  is the primary tool for inference in spatiotemporal geostatistics and is defined as 
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(2.32) 

where ),( ts hN h  is the number of pairs of sample locations separated by the vector ,),( ts hhh  

sh  is the space lag, th  is the time lag and ),( tz u  is the value of the variable at the 

spatiotemporal location ),( tu . 

The experimental spatiotemporal covariance )(ˆ hstC  is defined as 
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with  
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(2.34) 

where hm̂ is the mean of the tail values and hm̂  is the mean of the head values. 

For a finite number of separation distances Jjj ,,1, h  (in various directions if 

necessary), a set of experimental values )( jh  is obtained from the sample data and these 

values are plotted against h
.. Sample variograms do not provide all of the separation distances 
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and the corresponding semivariances needed by the kriging system. It is necessary to have a 

model that enables computing a variogram value for any possible separation distance, so 

continuous functions must be fitted to the experimental values. A theoretical model that best 

captures the overall features of the experimental semivariogram is then chosen. Only certain 

functions, or combination of functions, may be used to model the theoretical covariance or 

semivariogram. 

2.2.6 PERMISSIBLE MODELS 

A finite linear combination Y of n random variables is a random variable whose variance must 

be nonnegative. The variance of this linear combination may be expressed as a linear 

combination of covariances 
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1 11
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(2.35) 

for any set of n locations ),( tu  and any weights  . To ensure that this variance is non-

negative, the covariance model ),( ts hC h  must be positive definite. Accounting for the relation 

(2.28), the variance (2.35) is rewritten in terms of the semivariogram model ),( th . The 

semivariogram model must then be conditionally negative definite to ensure the non-negativity 

of the variance, with the condition being that the sum of the weights   is zero. 
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(2.36) 

2.2.7 SPATIAL AND TEMPORAL COVARIANCE/SEMIVARIOGRAM 
MODELS 

Many of the spatiotemporal covariance/semivariogram models require the specification of the 

associated marginal spatial and temporal covariance/semivariogram models or use permissible 

spatial covariance/semivariogram models incorporating an additional dimension for time. As the 

conditions of positive/negative definiteness are not easy to check, in practice, we choose from a 

number of parametric models that are known to satisfy these principles. There are a number of 

basic models that are known to be permissible for either the spatial and/or temporal domain 

(Goovaerts, 1997; Deutsch & Journel, 1998). A few of the possible models are expressed here in 

their isotropic form as a function of the scalar hh  where h  is the spatial or temporal 

separation vector and with graphical comparison. These are the models employed in this study, 

so this list is by no means exhaustive. 
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 Nugget Effect model 
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 Spherical Model with range a 
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 Exponential Model with practical range a 
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Features of the semivariogram model can be used to interpret the behaviour of the 

spatial continuity of the variable under study. The relative nugget is the ratio of the nugget to the 

total sill of the variogram and defines the proportion of randomness in the spatial continuity of 

the variable, represented by a discontinuity in the semivariogram at the origin (Isaaks & 

Srivastava, 1989). A variable with a weaker spatial structure will exhibit a higher relative 

nugget, whilst a lower relative nugget indicates a stronger spatial structure. The relative nugget 

tends to increase with the lag tolerance and with data sparsity. The relative nugget typically 

decreases with the use of more data or data of an increased quality. Where data are clustered and 

there is a proportional effect, the relative nugget effect is better inferred from relative 

semivariograms. (Goovaerts, 1997) 

The distance where the model flattens out is known as the range. Locations separated by 

distances closer than the range are spatially autocorrelated, whereas locations farther apart than 

the range are not. The value that the semivariogram model attains at the range is called the sill. 

The partial sill is the sill minus the nugget. 

2.2.7.1 ANISOTROPIC MODELS 

A phenomenon is said to be anisotropic when its pattern of spatial continuity changes with 

direction. It makes no sense to speak of anisotropy in time as there is only one temporal 

dimension. Modelling anisotropy calls for functions that depend on the vector h  rather than on 

the distance hh  only. There are two types of anisotropy; geometric anisotropy and zonal 

anisotropy. Geometric anisotropy occurs when the directional semivariograms (covariances) 
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have the same shape and sill but different range values. Zonal anisotropy involves sill values 

varying with direction.  

2.2.7.2 LINEAR MODEL OF REGIONALISATION 

In most situations, two or more basic models must be combined to fit the shape of the 

experimental semivariogram or covariance function. However not all combinations of 

permissible semivariogram or covariance models result in a permissible semivariogram or 

covariance model. Sufficient conditions for a linear covariance model to be a permissible model 

of regionalisation are that each of the basic functions is a permissible covariance model and that 

the sill of each basic covariance model is positive. 

2.2.7.3 WEIGHTED LEAST-SQUARES CRITERIA 

The semivariogram modelling process is not just an exercise in curve fitting as there is always 

uncertainty attached to the parameters of the semivariogram model. As many models can appear 

to match equally well the sample information, there is some argument over the best way to 

proceed (Goovaerts, 1997). The first one is manual fitting, in which a theoretical semivariogram 

model is selected based on visual inspection of the empirical semivariogram. The user will 

decide whether to fit an isotropic or anisotropic model, which number and type of basic 

semivariogram models, along with the parameters of each basic semivariogram model to use. 

The second approach is to perform model fitting in an automated manner using methods such as 

least squares, maximum likelihood, and robust methods (Cressie, 1993). In this study we favour 

manual fitting. However, statistical criteria can be used to help justify the choice of a particular 

model and its set of parameters. A commonly used criterion used is the weighted least squares 

given by 
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where )(h  is the weight given to each lag h , )(ˆ h is the semivariogram estimate calculated 

from sample data using (2.32) and );(  h  is the semivariogram model value for the associated 

set of parameters  . The weight )(h  is often taken proportional to the number of data pairs 

)(hN  that contribute to the estimate )(ˆ h  (Goovaerts, 1997; De Iaco, 2010). Automatic fitting 
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procedures using least squares select the most appropriate model to minimise the weighted sum 

of squares. In this study we favour manual fitting due to the erratic semivariograms. However, 

the weighted sum of squares can be used to compare the fits of various models for a particular 

season and to compare the fits of various seasons. Statistical criteria help justify the choice of a 

particular model and its set of parameters. 

2.2.8 SPATIOTEMPORAL COVARIANCE/SEMIVARIOGRAM MODELS 

Estimating and modelling the correlation of a space-time process is fundamental to geostatistical 

analysis, since only if the correlation model is appropriate for the variable under study can the 

subsequent estimation and/or simulation results be relied on (De Iaco, 2010). The 

semivariogram can be modelled with any conditionally negative definite function. Whilst it is 

possible to propose a model and test its permissibility, in practice it is customary to use one of a 

set of basic models that are known to be permissible. This is a relatively straightforward practice 

in modelling spatial (or temporal) variograms as there are many such models in common use 

and these models may be combined linearly to form complex models. However, the use of 

spatiotemporal covariance/semivariogram models is less common, although it has become an 

active area or research in the past decade or so. Different authors have suggested a large number 

of spatiotemporal covariance/semivariogram models (Dimitrakopoulos & Luo, 1994; Cressie & 

Huang, 1999; Kyriakidis & Journel, 1999a; De Iaco et al., 2001; De Iaco et al., 2002a; Gneiting, 

2002; Ma, 2003, 2005; Stein, 2005). A comparative review of the characteristics, benefits and 

shortcomings of many of these currently accepted and implemented models has recently been 

undertaken (De Iaco, 2010). 

One of the main distinctions made between spatiotemporal covariance/semivariogram 

models is based on the notion of separability. A separable space–time covariance function 

considers the spatiotemporal process as the joint process of two independent processes, one that 

occurs in space and another that occurs in time, resulting in a purely spatial component and a 

purely temporal component. However, we do not observe realisations of the two separate 

processes, only the joint process. This formulation allows for computationally efficient 

estimation and inference, which has led to separable covariance models being used even in 

situations in which they are not physically justifiable (Cressie & Huang, 1999; Bruno, 2004). 

Separability is restrictive and often requires unrealistic assumptions. Studies have suggested 

ways of testing for separability (Mitchell et al., 2005; Fuentes, 2006; Bevilacqua et al., 2010). 
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2.2.8.1 METRIC MODEL 

The metric space-time covariance model (Dimitrakopoulos & Luo, 1994; Soares & Pereira, 

2007) is given by 

 2
2

2
1)( tstsst haaC,hC  hh  

(2.42) 

where the coefficients 21,aa  enable the comparison between space and time. Introducing 

a norm or metric in space-time to compare distance in space with distance in time has been 

criticised because it ignores the fundamental difference between space and time (Myers, 2002). 

The use of parameters 1a  and 2a  is analogous to the use of geometric anisotropy in spatial 

geostatistics, where time is considered as another dimension to the 2 or 3 spatial dimensions. 

Variograms are computed for the spatial dimension by considering spatial lag pairs for zero 

temporal separation. Similarly, the temporal variogram is computed for zero spatial separation, 

which is possible for fixed spatial locations. If locations vary over time, then the temporal 

variogram may need to be computed for a pseudo zero lag spacing using a very small separation 

tolerance. 

In the metric model, the same type of model is assumed for the spatial and temporal 

covariances, with possible changes in the range (Figure 2.1). A pure metric model is restrictive 

as only the range parameter changes while both marginal covariances must be of the same type 

and have the same sill (if the model is bounded). As this model can be realised as a spatial 

covariance model with an extra dimension (and anisotropy ratio) to consider the temporal 

dimension, a number of permissible models already known for spatial covariance models are 

available for use (Section 2.2.7). 

 
Figure 2.1: Example of metric model, semivariograms in (omnidirectional) spatial and temporal 
directions (left) and spatiotemporal semivariogram (right). 
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2.2.8.2 LINEAR MODEL 

One type of separability involves adding spatial and temporal covariances (Rouhani & Hall, 

1989). This is sometimes referred to as the zonal model due to the analogy with zonal 

anisotropy and is of the form 

)()()( ttsstsst hCC,hC  hh  (2.43) 

Using the relationship between ),( ts hh , )0,(0C  and ),( ts hC h  outlined previously in (2.28), this 

model can be written in terms of the semivariogram 

)()()( ttsstsst h,h   hh  (2.44) 

Admissible spatial and temporal covariance models are readily available (outlined later 

in Section 2.2.7) and are combined to give spatiotemporal models (Figure 2.2). For this model, 

covariance matrices of certain configurations of spatiotemporal data are singular (Myers & 

Journel, 1990; Rouhani & Myers, 1990). This means this covariance function is only positive 

semi-definite and is unsatisfactory for optimal prediction. 

 
Figure 2.2: Example of linear model, semivariograms in (omnidirectional) spatial and temporal directions 
(left) and spatiotemporal semivariogram (right). 

2.2.8.3 PRODUCT MODEL 

The product space-time covariance model (Rodríguez-Iturbe & Mejía, 1974; Posa, 1993; De 

Cesare et al., 1997) is given by 

)()()( ttsstsst hCCk,hC  hh  (2.45) 

where k . This model still separates the spatial dependence from the temporal one. The 

product covariance model can be rewritten in terms of the spatiotemporal semivariogram: 

 )()(-)()0()()0()( ttssttsssttsst hCCk,h  hhhh   (2.46) 

The parameter k is determined using (2.45) by setting both sh  and th  equal to zero. 
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It can be shown that this model requires the spatial and temporal sills to be equal to the global 

sill )0( ,C st 0  : 
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(2.49) 

Even though this model has the advantage that it is completely determined by the 

corresponding marginal temporal semivariogram and marginal spatial semivariogram, only one 

global sill (equal to both the spatial and temporal sill) is possible (Myers, 2004). Whilst this was 

also the case for the metric model, the product model allows for different types of spatial and 

covariance models (Figure 2.3). As for the linear and metric models, many spatial and temporal 

covariance/semivariogram models are readily available. This class of models is severely limited 

since for any pair of time points, the cross covariance of the two spatial processes always has 

the same shape (2.50), and similarly for any pair of spatial locations and the cross covariance of 

the two time series (2.51). (De Cesare et al., 2001a) 

  and  lags spatial fixedfor ),()( 2121 hhhh tsttst ,hC,hC   (2.50) 

  and  lags  temporalfixedfor ),()( 2121 hh,hC,hC sstsst hh   (2.51) 

 
Figure 2.3: Example of product model, marginal (omnidirectional) spatial and temporal semivariograms 
(left) and spatiotemporal semivariogram (right). 

2.2.8.4 PRODUCT-SUM MODEL 

The product model can easily be extended to include an additional component involving the 

product of the spatial and temporal covariance models as follows 
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)()()()()( 321 ttssttsstsst hCkCkhCCk,hC  hhh  (2.52) 

and can be rewritten in terms of the spatiotemporal semivariogram.  

    )()()()()()0()( 13121 ttssttsssttsst h-khkCkkCk,h  h0hh   (2.53) 

The coefficients 2k  and 3k  must be non negative and 1k  must be strictly positive to be an 

allowable model. From (2.53) we can obtain 

  )()()0()0( 21 ssssstsst kkCk, hhh    (2.54) 

  )()()()( 31 tttttstst hkhkCk,h   00  (2.55) 

where sk  and tk  can be viewed as coefficients of proportionality between the space-time 

variograms )0( ,sst h  and )( tst ,h0  and the spatial and temporal variograms )( ss h  and 

)( tt h  respectively. Setting sh  and th  to zero in (2.52) we have 

)0()()0()()0( 321 tstsst CkCkCCk,C  000  (2.56) 

and from (2.54) and (2.55) we obtain  

21 )0( kCkk ts  ,   31 )0( kCkk st   (2.57) 

Then we can solve for the coefficients 1k , 2k  and 3k  in terms of the sill values )(0sC , )0(tC , 

)0( ,C st 0  and the parameters sk  and tk  to obtain 
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  (2.58) 

and in terms of the semivariogram 

)()0()()0()( ttsststssttsst ,h,k,h,,h 0h0hh    (2.59) 
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Like the product model, the product-sum model has the advantage that it is determined 

by the corresponding marginal temporal semivariogram and marginal spatial semivariogram, 

along with the global sill. By estimating and modelling the marginal semivariograms, the spatial 

and temporal sills )(0ssCk  and )0(ttCk are also obtained. The global sill can be estimated from 
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the experimental spatiotemporal semivariogram and used, along with the spatial and temporal 

sills, to calculate k. In modelling the separate spatial and temporal semivariograms it is 

necessary to ensure that the sills are chosen so that the numerators in (2.58) remain positive. A 

sufficient condition to ensure this is given by (De Iaco et al., 2001) 

 )),0(());0,((max

1
0

tstsst hsillhsill
k


  (2.61) 

This requires that the global sill is greater than the individual spatial and temporal sills, but less 

than their combined value. The product-sum model allows for the specification of different 

types of covariance/semivariogram models for the spatial and temporal directions (Figure 2.4). 

It also provides a mechanism for the interaction of space and time, thereby offering more 

flexibility than the metric, linear and product models. 

 
Figure 2.4: Example of product-sum model, marginal (omnidirectional) spatial and temporal 
semivariograms (left) and spatiotemporal semivariogram (right). 

The spatial and temporal marginal structures of the linear, product and product-sum 

models can be modelled with their own nugget effects. Alternatively, a global nugget effect can 

be added to all four models presented (De Iaco, 2010).  

As for the spatial and temporal semivariogram models, spatiotemporal semivariogram 

models can be fitted manually or automatically. Statistical criteria, such as weighted least-

squares outlined previously (Section 2.2.7.3) can be used to help justify the choice of a 

particular model and its set of parameters. 

There are a number of other spatiotemporal covariance models that will not be 

considered in the scope of this study. These include, but are not limited to, the Cressie-Huang 

model (Cressie & Huang, 1999), the Gneiting models (Gneiting, 2002), the integrated product 

model and mixture models (De Iaco et al., 2002a), the integrated product-sum model (De Iaco et 
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al., 2002b) and other non-separable spatiotemporal covariance models (Kolovos et al., 2004; 

Stein, 2005; Porcu et al., 2008; Rodrigues & Diggle, 2010). 

2.2.9 SPATIOTEMPORAL ESTIMATION  

Once we have a (semivariogram or covariance) model of spatiotemporal dependence we can 

estimate the attribute value at an unsampled location ),( tu . This section presents a family of 

estimation algorithms called kriging. Kriging is a generic name used for a family of generalised 

least-squares regression algorithms (Isaaks & Srivastava, 1989; Goovaerts, 1997). All kriging 

algorithms produce estimates though weighted linear combinations of a subset of the data 

},...,1),,({ nitz u , or more specifically, a subset of the residuals )},(),({ tmtz uu  , which are 

dependent on the specification of the mean function. Data are selected on the basis of spatial 

and temporal distance from the estimation datum, and weighted by taking into account the 

proximity of each observation to the prediction location. These spatiotemporal effects are 

included through reference to the spatiotemporal continuity of the data set modelled by the 

semivariogram.  

Kriging is a best linear unbiased estimator (BLUE) method. It is "linear" since the 

estimated values are weighted linear combinations of the available data, "unbiased" because the 

mean of the errors is zero, and "best" since it aims at minimizing the variance of the errors. All 

kriging estimators are variants of the basic linear regression estimator ),(* tZ u  defined as 
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where ),( tu  is the weight assigned to the datum ),( tz u  interpreted as a realisation of the 

RV ),( tZ u  and ),( tm u  and ),( tm u  are the expected values of the RVs ),( tZ u  and ),( tZ u  

respectively. The number of data involved in the estimation, along with the weights assigned to 

each datum, may change from one location to another. In practice, the number of data, ),( tn u , 

closest to the location ),( tm u  being estimated are used in the estimation at that location. We 

call this neighbourhood or window ),( tW u  centred on ),( tu . It is up to the practitioner to 

decide the meaning of closest in terms of spatial and temporal distance. 

We can define the estimation error as a RV ),(),(* tZtZ uu  . The objective of all 

kriging estimators is to minimise the estimation or error variance ),(2 tE u  of the estimation 

error RV under the constraint of the unbiasedness of the estimator. The variance is given by 

)],(),([),( *2 tZtZVartE uuu   (2.63) 
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which is minimised under the constraint that 

0)],(),([ *  tZtZE uu  (2.64) 

The kriging estimator varies depending on the model adopted for the RF ),( tuZ  itself. 

The RF ),( tuZ  is typically decomposed into a residual component ),( tR u  and a trend 

component ),( tum  

),(),(),( ttt uRumuZ   (2.65) 

The residual component is modelled as a stationary RF with zero mean and covariance 

),( tsR hC h . The expected value of the RV ),( tuZ  at location ),( tu  is the value of the trend 

component at that location 

  ),(),( ttE umuZ   (2.66) 

In simple kriging (SK) we consider the mean ),( tum  to be known and constant 

throughout the study area , whilst in ordinary kriging (OK) we account for local fluctuations 

of the mean by considering the mean to be constant but unknown in the local neighbourhood.  

2.2.9.1 SIMPLE KRIGING 

The modelling of the trend component ),( tum  as a known stationary mean m allows us to 

write the linear estimator (2.62) as a linear combination of the ),( tn u  RVs ),( tZ u  and the 

mean value m 
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(2.67) 

SK does not adapt to local trends; rather it relies on a constant, global mean. The mean is 

subtracted from the observations prior to estimation, and the residual values are used to correct 

the estimation surface. The ),( tn u  weights ),( tSK u  are determined such as to minimise the 

error variance (2.63) under the unbiasedness constraint (2.64) using a system of equations called 

the SK system given by  
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The weights are determined from the covariance between observations   ttC  ,uu  and 

the covariance between observations and the prediction location  ttC   ,uu . The 

minimum error variance is called the SK estimation variance and is given by  
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(2.69) 

2.2.9.2 ORDINARY KRIGING 

Ordinary kriging takes account of local variation of the mean by limiting the domain of 

stationarity of the mean to the local neighbourhood ),( tW u . The use of a local mean in OK 

amounts to re-estimating the mean at each grid node from the data within the search 

neighborhood. The unknown mean is estimated simultaneously with the residual component. 

This moving window approach allows some degree of robustness to the assumption of 

stationarity. The linear estimator (2.62) is then a linear combination of the ),( tn u  RVs ),( tZ u  

plus the constant local mean value ),( tm u   
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(2.70) 

The unknown local mean ),( tm u  is filtered from the estimator by forcing the kriging weights to 

sum to 1. The OK estimator is then written as a combination of the ),( tn u  RVs ),( tZ u  
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(2.71) 

As for SK, the ),( tn u  weights ),( tOK u  are determined such as to minimise the error variance 

(2.63) checking for the unbiasedness constraint (2.64) using a system of equations called the OK 

system given by  
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 (2.72) 

where ),( tOK u  is a Lagrange parameter that accounts for the constraint on the weights. The 

minimum error variance is called the OK estimation variance and is given by  
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   (2.73) 

Although the mean is assumed stationary only within the local neighbourhood, in 

practice the residual covariance is assimilated to the global z-covariance inferred from all data 

available ),(),( tCtCR uu  . As for the SK system, weights are calculated using the covariance 

between observations   ttC  ,uu  and the covariance between observations and the 

prediction location  ttC   ,uu . The main difference between SK and OK is in the system 

of equations governing the calculation of the weights. The SK system is modified to obtain the 

OK system by the addition of a Lagrange multiplier to satisfy the unbiasedness constraint that 

the weights sum to one. 

2.2.10 CROSS VALIDATION 

The ultimate objective of the kriging (estimation) methods outlined thus far is typically to 

estimate the variable at unsampled spatiotemporal locations. It is good practice to validate the 

entire geostatistical model and kriging plan prior to its implementation to unsampled locations. 

Cross validation allows us to assess the impact of a semivariogram model and kriging process 

on interpolation results. It is a measure of the performance of the kriging procedure within the 

estimation region of the data set. Whilst cross-validation can detect what might go wrong, it 

does not necessarily ensure that the procedure will be successful. The idea is to remove one 

datum at a time from the data set and re-estimate this value from the remaining data using the 

semivariogram model and the kriging procedure outlined in Section 2.2.9.  

Interpolated and actual values can be compared to assess the performance of the model 

by computing the associated errors of the predicted values *
iii ZZe  . The distribution of the 

errors should be symmetric, centred on a zero mean, with a minimum spread. A plot of the 

errors versus the estimated values should be centred around the zero error line and should have 

an equal spread. The errors should not show any trend in space or time. 

Averaging the quality of the predictions across the validation sets yields an overall 

measure of prediction accuracy. Typical measures of comparison include: 

1. Root Mean Square Error (RMSE)  
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2. Mean error (ME) 
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 (2.75) 

3. Mean absolute error (MAE)  
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 (2.76) 

4. Mean percentage error (MPE)  







n

i i

ii

Z

ZZ

n
MPE

1

*1
 (2.77) 

5. Mean absolute percentage error (MAPE)  
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6. Correlation coefficient (r) 
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 (2.79) 

where n is the number of data in the cross-validation set, Z  is the sample mean of the data, 
*Z  

is the sample mean of the estimates, Zs  is the sample standard deviation of the data and *Z
s  is 

the sample standard deviation of the estimates. 

RMSE, MAE and MAPE measure the accuracy of the models so the model that yields 

smaller values for these statistics is assumed to perform better. The ME and MPE measure the 

bias of the model and should be as close as possible to zero. The correlation coefficient r should 

be as close as possible to 1. 

Cross validation has a number of restrictions. Total sills cannot be cross validated from 

re-estimation scores as rescaling of the semivariogram model does not influence kriging 

weights, although it does change the kriging variance. The relative nugget effect and 

semivariogram behaviour at the origin cannot be cross validated as actual values of the 

semivariogram for lags smaller than the shortest sampling interval are not possible. If the 

sample data are not representative of the study area, then the model that produces the best cross-

validated results may not yield the best predictions at unsampled locations. As many 
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implementation parameters involving the search strategy and interpolation algorithm can affect 

re-estimation values, it may be unclear which parameter/s should be changed if the model is 

inadequate. 

2.2.11 JACKNIFE ESTIMATION 

In practice, it is possible to reserve a portion of the data set that will not be used in the 

(semivariogram) modelling process but instead can be used for comparison with estimated 

values. This is referred to as the validation, or jacknife, data set and can be used to assess the 

predictive ability of the model in the validation region, which is typically outside the spatial or 

temporal bounds of the estimation region of the data set. Estimates are made for each element of 

the validation set and their errors are analysed by techniques outlined previously for the analysis 

of the cross-validation estimates. 

2.2.12 SPATIOTEMPORAL SEQUENTIAL SIMULATION 

Whilst geostatistical estimation (kriging) methods focus on deriving an optimal estimate and the 

associated error variance, geostatistical simulation attempts to model the local uncertainty. From 

this model, we can derive estimates optimal for different criteria. Different simulation 

algorithms impart different global statistics and spatiotemporal features on each realisation. No 

single simulation algorithm is flexible enough to allow the reproduction of the wide variety of 

features and statistics encountered in practice (Deutsch & Journel, 1998). The sequential 

simulation algorithm presented here makes use of the kriging estimate and estimation variance 

obtained at location ),( tu  as the parameters of the local distribution. 

The objective of simulation is to randomly select a set of L equally probable realisations 

},,1,,...1;),({ )( LlNjtz j
l u  from the infinite set of all possible realisations of the RF 

),( tuZ . A simulation is said to be conditional if the realisations are generated such that the 

value of the realisation is equal to the sample value for every sample location. This sequential 

simulation algorithm is conditional by construction. 

The conditional cumulative distribution function (ccdf) of the joint distribution of the 

set of RVs, from which an N-variate sample can be drawn, may be expressed as 
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 (2.80) 

Sequential simulation algorithms trade the sampling of the multipoint ccdf for the sequential 

sampling of multiple one-point ccdfs which are easier to infer. Therefore the random drawing 



 

40 

from the N-variate ccdf in (2.80) can be carried out by sequential drawing from N univariate 

ccdfs with increasing conditioning (Goovaerts, 1997) 
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(2.81) 

N successive steps are taken to generate a realisation, with each step requiring the derivation of 

the univariate ccdf at each location with an increasing level of conditioning to both sample data 

and previously simulated values. 

All variants of sequential simulation follow the same general procedure with the 

difference in the algorithms occurring in the step that determines the parameters of the local 

ccdf. The generalised sequential approach proceeds as follows. 

1. Determine a random path that visits each of the N nodes only once. 

2. Perform the simulation: 

a. At each location estimate (via kriging) the parameters of the local cdf 

conditional to the sample data and previously simulated values. 

b. Draw the value from the ccdf and add it to the conditioning data. 

c. Proceed to the next node and repeat a) and b). Continue in this manner 

until all N locations have been visited and allocated a simulated value. 

Subsequent realisations can be generated by repeating steps 1 and 2. In practice the 

conditioning data retained in order to determine the ccdf are limited to the sample data and 

previously simulated values closest to the location being simulated. The statistical properties of 

the simulation are independent of the visiting sequence of the nodes hence the ordering of the 

sequence is not important. However in practice it is recommended that each realisation be 

generated using a random sequence in order to avoid any artefacts which may result from the 

use of only the closest conditioning data (Chiles & Delfiner, 1999). 

2.2.12.1 SEQUENTIAL GAUSSIAN SIMULATION 

Realisations of a multivariate Gaussian field can be generated by the sequential algorithm 

outlined previously. Each variable is simulated sequentially according to its normal ccdf fully 

characterised through a SK system of type (2.68). If the variable to be simulated is not 

Gaussian, then the attribute data are transformed using the normal score transform and the 



 

41 

resulting normal score variable is checked for validity of the multiGaussian assumption. In 

practice, only the biGaussian assumption is checked for normality of the two-point distribution. 

The sequential Gaussian simulation then proceeds with the generic sequential simulation 

algorithm steps outlined previously, with the parameters (mean and variance) of the Gaussian 

ccdf determined at each node using SK with the normal score semivariogram model. The final 

step is to transform the simulated normal scores into simulated values for the original variable 

by applying the inverse of the normal score transform. Multiple realisations can be obtained by 

repeating the entire sequential process with different random paths. 

2.2.12.2 POST-PROCESSING OF SIMULATION RESULTS 

Simulation output can be interpreted via post-processing of the set of simulated realisations. 

Kriging gives a smoothed estimate and associated kriging variance at the location being 

estimated. Using the set of simulated realisations at a particular location (or set of locations), 

simulation can provide a mean value of the conditional distribution similar to the kriging 

estimate. In addition, simulation can also provide measures of local variability such as the 

variance of the conditional distribution, the probability of exceeding a fixed threshold, the value 

where a particular probability of exceeding that value is reached and measures of the local 

distribution such as the local histogram. 

2.3 GLOBAL TREND MODELLING 

Many spatiotemporal data sets have a large-scale (global) trend that cannot be dealt with by the 

trend component within the geostatistical decomposition into trend and residual component. 

Large scale trends in the data may cause a problem in estimating the model for the residuals 

causing statistics such as the semivariogram to become unstable. It is conceptually useful to 

partition data variation between known measured trends and dependences, and a structured 

stochastic residual component. This residual component reflects the unknown, unmeasured or 

simply too complex variables. In such instances, it is customary to remove the global trend 

before geostatistical analysis, analogous to a data transformation, to reveal the underlying 

spatiotemporal structure. Large-scale trends can be effectively modelled through process-based 

knowledge of the variable of interest, or empirically through methods such as trend surface 

estimation or median polish. 

Modelling of the global trend is data-driven. As the data used in this thesis is known 

historically to display an annual temporal trend, Time Series Modelling of the global trend will 
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be outlined. Another method incorporating temporal and spatial trend modelling, known as 

Median Polish Trend Modelling, is also presented. 

2.3.1 TIME SERIES MODELLING 

Time-series models are based on the analysis of a chronological sequence of observations on a 

particular variable. The observations may be made yearly, quarterly, monthly, weekly, daily, 

hourly and so on. Time-series data usually consist of a combination of one or more of the 

following components 

1. Trend is the long-term change in the mean level. It many appear in linear or 

 curvilinear form. If there is no trend, we say that the data are stationary. 

2. Seasonal effects are variations whose period is weekly, monthly, annual or 

 related to some other seasonal length. 

3. Cyclic changes are variations that occur at a fixed period, typically longer than 

 a year, due to some physical cause other than seasonal effects. 

4. Residual or error fluctuations are the erratic movements in a time series that 

 have no set or definable time series pattern. 

Various time-series methods are available. In this research we focus on time-series 

decomposition which assumes that the data can be broken down into the various components 

and a forecast obtained for each component. This technique is particularly useful to detrend 

and/or deseasonalise data before they are used in other types of estimation methods. This is the 

primary focus of time series analysis here. 

Time-series decomposition models can be classified into two groups: additive models 

and multiplicative models. For an additive model, we assume that the data are the sum of their 

components  

)()()()()( tRtStCtTtY   (2.82) 

If the data do not contain one of components, the value for that component is set to zero. In a 

multiplicative model, the data is the product of the various components 

)()()()()( tRtStCtTtY   (2.83) 
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and if any of the trend, seasonal variation or cyclic components are missing, then their value is 

assumed to be one. In this thesis we will be considering the multiplicative time series 

decomposition model. 

Data that are reported daily, weekly, quarterly, monthly, etc and that demonstrate a 

periodic pattern are said to contain a seasonal component. A seasonal series may or may not be 

trended and may or may not possess a cyclic component. In most cases seasonality is easier to 

model than trend or cycle because it has a clearly repeated pattern. Trend may be linear or 

curvilinear, cycles can be any length and may repeat at irregular intervals, but seasonality is 

well defined (Gaynor & Kirkpatrick, 1994). Therefore the seasonal component is the first 

component of the time series that is modelled in the decomposition method. Due to the 

somewhat irregular nature of a cycle and the amount of data it takes to establish a good pattern, 

the cyclical component is typically the hardest to model. In many cases the cyclical component 

is considered as part of the irregular fluctuations in the trend or the time series is assumed to 

have no cyclical component. As the time series considered in this study are annual, no cyclical 

component is included in the modelling process, the value of )(tC is assumed to be one, and the 

model can be written as  

)()()()( tRtStTtY   (2.84) 

2.3.1.1 SPECTRAL ANALYSIS 

Spectral analysis is a tool used to detect the presence of a trend or seasonal component in a time 

series. Any stationary time series can be thought of as the sum of uncorrelated components, 

each associated with a particular frequency, and the importance of any group of components 

with frequencies falling into some narrow band is measured by their composite variance. A non-

stationary time series )(tY  involving a trend and/or seasonal component is a filtered version of 

the zero-mean stationary time series )(tX . The spectral density function (often shortened to 

spectrum) of the non-stationary time series )(Ys  is related to the spectrum of the stationary 

time series )(Xs  by 

)()()(
2

 
X

i
Y secs 

 (2.85) 

where 
2

)( iec  is called the filter function. 

The shape of the spectrum of certain models are known and can help us identify the 

presence of a seasonal or trend components (Granger & Newbold, 1977): 
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1. A white noise series has a flat spectrum over the whole range  0 . 

2. Theoretically a series with a cyclical component of frequency s  has a 

 spectrum with an infinitely tall, infinitely narrow, peak having finite area at that 

 frequency. In practice there is a tall, narrow peak at the principle seasonal 

 frequency s and smaller peaks at the secondary seasonal frequencies 

 ,...3,2, jj s . 

3. A series with an important trend component will have a strong peak at the very 

 low frequencies as trend has an infinite period. 

2.3.1.2 DECOMPOSITION METHOD 

With data consisting of a trend component, a single seasonal component of length L and an 

irregular component as shown in (2.84), we can use the following decomposition procedure to 

model the individual components of a multiplicative time series model. 

1. Compute a centred moving average )(tCMAL  of length L.  

 For L odd, 
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 For L even, 
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(2.87) 

2. Using the )(tCMAL  as an initial estimate of the trend component, divide it into 

 the data to obtain the seasonal component. 
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(2.88) 

3. Assign an index number },...,1);({ Liti   to each time instant to indicate the 

 associated season. We choose to arbitrarily assign the index 1 to the season 

 associated with the first time instant. 
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4. Remove the irregular component from )()( tRtS  by computing the average 

 )(is  for each of the L seasons, Li ,...,1 . Normalise these to add up to L 

 (number of seasons in a year). 

,...2,1,0,,)()()(  kkLittRtSis ,   
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(2.90) 

5. Deseasonalise the data by dividing by the associated seasonal estimates.  
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(2.91) 

6. Perform regression analysis on the deseasonalised data to obtain the appropriate 

 trend model (linear, quadratic, exponential, etc).  

)]([)(ˆ tdftT   (2.92) 

An estimate for the classical decomposition model at any time instant is then given by 

)(ˆ)(ˆ)(ˆ tStTtY   (2.93) 

using the seasonal and trend estimates from (2.90) and (2.92) respectively. 

2.3.2 MEDIAN POLISH TREND MODELLING 

Many data sets can be interpreted as a response variable measured at varying levels of a number 

of factors. Median polish is a robust data analysis technique (Tukey, 1977; Hoaglin et al., 1983, 

1985, 1986) that uncovers structure in data by examining the impact of its factors to the general 

statistical model  

     nnn fffRfffgfffY ,...,,,...,,,...,, 212121   (2.94) 

where  nfffg ,...,, 21  is some function of the levels of the n factors. The median polish method 

uses an iterative procedure to obtain a function of the levels of the various factors associated at 

which the data were recorded and the corresponding residuals 

   NjigNjiY ,...,,ˆ,...,,ˆ   (2.95) 

where Nji ,...,,  are the levels of the corresponding n factors nfff ,...,, 21 . The trend is not 

explained externally through exploratory variables but rather by variation of the data itself. This 

is done via a main effect and several row and column effects.  
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The use of medians results in a resistant technique where isolated large disturbances in a 

small number of cells will not affect the common value. Each of the n factors has a certain 

number of values it can have. These are referred to as the levels of a factor. The number of 

levels does not have to be the same for each factor. Each factor and level combination is 

represented by a cell in an n-way table (the number of cells is the product of the number of 

levels in each factor).  

2.3.2.1 ADDITIVE MODEL 

The response variable Y  of an n-factor model can be modelled by a simple additive model as  

         NjiRNjiNjiY n ,...,,...,...,, 21    (2.96) 

where   is a common mean term, the main effects of the factors nfff ,...,, 21  are denoted by 

     Nji n ,...,, 21  and vary separately from each other, and R is a fluctuation, or residual, 

term. This simple additive model is also known as the main-effects model and it has a simple 

interpretation because the separate contributions of the factors are added together.  

Median polish trend modelling obtains a fit  

     NajaiamNjiY n ...),...,,(ˆ
21  (2.97) 

for the model of (2.96) and the corresponding residuals can be calculated as 

),...,,(ˆ),...,,(),...,,( NjiYNjiYNjir   (2.98) 

An n-way table is constructed for the residuals by assigning initial values equal to the original 

data  NjiY ...,, . 

    NjiNjiYNjir ,...,, allfor ,...,,,...,,)0(   (2.99) 

The main effects of each factor are assigned initial values of zero. 

      NjiNajaia n ,...,, allfor 0... )0()0(
2

)0(
1   (2.100)

After assigning initial values, the steps for the iterative procedure of median polish are as 

follows.  

1. Calculate medians for each level of each factor. 



 

47 

    
      

        iAjANjirmedNA

iANjirmedjA

NjirmediA

ppp

Nl

p
n

pp

jl

p

p

il

p

)(
1

)(
2

)1()(

)(
1

)1()(
2

)1()(
1

...,...,,

,...,,

,...,,





















 

(2.101)

2. Subtract medians from the residuals. 

         NAjAiANjirNjir p
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 (2.102)

3. Calculate adjustments of effects of this iteration. 
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(2.103)

4. Calculate main effect estimates for this iteration. 
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(2.104)

5. Calculate estimate of common term for this iteration. 

     NBjBiBm t
n

ttp )()(
2

)(
1

)( ...   (2.105)

Repeat the iterative procedure until adjustments of each level      iBiBiB p
n

pp )()(
2

)(
1 ,...,,  

are (approximately) equal to zero. The errors  Njir ,...,,  are available at each stage of the 

iterative procedure or can be calculated for each data point by subtracting the main effect and 

corresponding row and column effects. 

The final estimates given by (2.104) and (2.105) depend somewhat on the order in 

which the factors are considered. However, this is typically not enough to be of practical 

importance. If possible, it is useful to check whether a different order of factors results in 

significantly different results. The iterative procedure typically takes 2 or 3 iterations but can 

take many more. Sometimes the median polish procedure does not converge as the table has 

reached a position where no further improvement can be made. In cases where the median 
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polish procedure does give a result, the fit can be close to being optimal in the least-absolute-

residuals sense. However, this is not guaranteed.(Hoaglin et al., 1983) 

The median polish method works with both balanced and unbalanced designs. Balanced 

designs are those in which each cell has the same number of observations and unbalanced 

designs are those in which the number of observations can vary between cells. This is important 

as many data sets do not have a value for every factor and level combination, especially for 

models involving many factors. 

2.3.2.2 MULTIPLICATIVE MODEL 

The median polish procedure can also be used to model a multiplicative model 

         nnnn fffRffffffY ,...,,...,...,, 21221121    (2.106)

by the fit  

     nnn fafafamfffY  ...),...,,(ˆ
221121  (2.107)

A simple multiplicative model requires the use of a logarithmic transformation to enable 

the use of the method described in 2.3.2.1. The procedure involves taking natural logs of the 

data and fitting an additive mod el (2.97) to the logarithmic data, which can then be transformed 

back to the original scale of measurement. This simple approach is applicable when the data 

involve no zero or negative values (Hoaglin et al., 1985). The parameters of the multiplicative 

model (2.107) are then obtained by taking exponential functions of the parameters of the 

additive model (2.97) for  ),(ln crY : 

     YYY bbaamm lnlnln exp,exp,exp   (2.108)

Residuals for the multiplicative model are calculated using 

),...,,(ˆ
),...,,(

),...,,(
NjiY

NjiY
NjiR 

 
(2.109)

More complex models include interaction terms, combining additive and multiplicative 

models, can also be implemented but will not be used in this study. 

2.3.2.3 CHOICE OF FACTORS FOR SPATIOTEMPORAL TREND MODEL 

The median polish method can be used to extract the spatiotemporal trend of a data set by using 

the temporal and spatial coordinates as factors. Temporal factors are similar to those involved 

with a time series analysis. Factors involving the time instants at which the data are recorded 
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may include year, month, week, day factors. Temporal factors may also include any known 

seasonal periods such as climate season (i.e. summer, winter) or lunar phase (i.e. full moon, new 

moon). Spatial components will typically involve the Cartesian coordinates of the data. As 

mentioned previously, the order in which the iterative algorithm proceeds should be investigated 

to obtain the most consistent results. 

2.3.3 MODEL VERIFICATION AND SELECTION 

In the construction of a time series or median polish model to determine the trend of the data, 

the model must be verified to find out whether the model assumptions are satisfied and if the 

specified model with its estimated parameters is adequate. Diagnostic verification relies on the 

analysis of residuals resulting from the identified model. The residual ie  for the ith observation 

in a data set is iii YYe ˆ  where iY  is the ith data value and iŶ  is the corresponding model 

estimate. The fit describes the data, but incompletely.  

Interpolated and actual values can be compared to assess the performance of the model 

in a similar manner as outlined previously for cross-validation and jacknife estimation. The 

associated errors of the predicted values are calculated as *
iii ZZe   in the case of an additive 

model or */ iii ZZe   for a multiplicative model. The distribution of the errors should be 

symmetric, centred on a zero mean for an additive model (or unity mean for a multiplicative 

model), with a minimum spread. There should be no obvious pattern in the errors or their 

variance in space or time.  

If two or models pass the diagnostic checking steps then model selection criteria must 

be employed to select the model which will perform the best. The resulting residuals of different 

models can be compared using the measures described previously for comparing semivariogram 

models and kriging algorithms (2.74)-(2.79) to determine which model performs better. 
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CHAPTER 3 

STUDY SITE AND DATA DESCRIPTION 

3.1 INTRODUCTION 

The space-time data to be modelled are commercial king prawn catch and effort data from the 

Shark Bay managed prawn fishery in Western Australia. The data were provided by the WA 

Department of Fisheries and come from voluntary daily logbook information provided by the 

skippers of the fishing vessels. All fishing boat skippers fill out daily logbooks providing catch 

(kilograms) by species by grade category and effort (minutes trawled) information for each 

trawl shot. The start latitude and longitude for each shot are also recorded. The purpose of 

modelling these data was to produce a model that provided a reliable representation of observed 

data, thereby providing a greater understanding of the underlying trends in catch rate and its 

distribution within the fishery in individual annual fishing seasons and between successive 

annual fishing seasons. In addition, modelling would allow the calculation of reliable estimates 

of unobserved potential catch rates through extrapolation and prediction, with investigation into 

how far forecasting was possible. 

3.2 SHARK BAY PRAWN MANAGED FISHERY 

The Shark Bay Prawn Managed Fishery is located within the waters of Shark Bay off the mid 

west coast of Western Australia (Figure 3.1). The physical area of the fishery is described as 

“the waters of the Indian Ocean between latitudes 23°34´ S and 26°30´ S and adjacent to 

Western Australia on the landward side of the 200 m isobath” (Sporer & Kangas, 2005). The 

fishery targets western king prawns (Penaeus latisulcatus) and brown tiger prawns (Penaeus 

esculentus) and also takes a variety of smaller prawn species including coral prawns and 

endeavour prawns. King prawns are the dominant species, comprising about 70% of the catch 

with tiger prawns making up most of the remaining 30%. This study focuses on the king 

prawns. 

Management of the fishery is based on limited entry, crew limitations, gear controls, 

season and area openings and closures, moon phase closures and daily fishing time controls. 

These input controls are designed to keep effort at levels that will maintain sufficient spawning 

stocks and aim towards optimal yields for economic return to industry. Twenty seven boats 
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were licensed for prawn trawling in the fishery from 2001 to 2004, which is the timeframe 

focused on in this project. Fishing is undertaken using otter trawls. (Sporer & Kangas, 2005) 

 
Figure 3.1: Shark Bay Managed Prawn Fishery.  

Table 3.1: Prawn season dates, 2001-2004. 

 2001 2002 2003 2004 

Opening date 14 March 6 March 6 March 16 March 

Closing date 28 October 21 October 1 November 25 October 

 

The timing of the opening of the season (Table 3.1) allows the harvest of large residual 

prawns not caught in the previous year’s season. There are a number of permanently closed 

areas in the fishery including two Permanent Nursery Areas (pink regions, Figure 3.1) to 

prevent the fishing of small prawns and provide habitat preservation and a Fish Habitat area 

(purple region) to protect fish species. A Research/Industry Closure Line (yellow region) 

present in the southern part of Denham Sound in seasons 2001 to 2003 was replaced in the 2004 

season by a similar Snapper/Trawl Closure Line (dashed red line). Within the season, there are 

additional temporary openings and closures including the Carnarvon-Peron Line, Extended 

Nursery Area (ENA), Tiger Prawn Spawning Area (TPSA), Torbay Line, Denham Line and 41 

Minute Line. The opening and closing dates of these lines vary for each season (APPENDIX B). 
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As the moon phase affects the behaviour of the prawn stocks, there is a three to ten day closure 

around the full moon phase in each month of the fishing season. Moon phase affects the 

vulnerability of the prawns at different depths, and through this affects the distribution of 

fishing (Kangas et al., 2006). These closures aim to increase economic efficiency by shifting 

fishing effort away from times of reduced catch rate, and reduce the overall level of exploitation 

on the prawns, thereby assisting to maintain the biomass of females that survive to spawn. 

This fishery has two distinct fishing regions, Shark Bay North (blue region, Figure 3.1) 

and Denham Sound (green region). Shark Bay North involves the fishing region north of the 

Denham Line whilst Denham Sound includes the Denham Line and the fishing region south of 

that line. As outlined later, this study focuses on the Shark Bay North fishing region due to the 

continuity of fishing in that region throughout each season. In contrast, fishing occurs in the 

Denham Sound region for a period at the beginning and each season, with an extensive period 

of no fishing in the middle of the season. The periods associated with the two fishing regions are 

a result of the various closure lines in operation in the fishery throughout the annual season.  

3.2.1 FISHING PERIODS 

The various closure lines evident in the fishery were implemented at different times in each 

season creating different fishing periods during each season. The 2001 and 2004 seasons show 

eight distinct periods whilst those of 2002 and 2003 show six periods. Broadly speaking each of 

the four fishing seasons (2001 to 2004) can be separated into five similar fishing periods (Figure 

3.2) based on the closures line that apply during each period.  

 
Figure 3.2: Fishing periods evident in the Shark Bay Managed Prawn Fishery, 2001 to 2005. The axes 
were converted to latitude and longitude in nautical miles (nmil: 1 nmil=1852m) relative to a local 
coordinate system with origin at latitude -24º and longitude 113º. 

The first period of each season beginning in early to mid-March has the Carnarvon-

Peron Line and ENA closed and the Denham Line open. The next period begins in mid-April 

when the Carnarvon-Peron Line opens with the ENA still closed and the Denham Line still 
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open. The third period marks the closure of the Denham Line in early May with the ENA still 

closed and the fourth period begins soon after in mid-May when the ENA opens. This period is 

quite lengthy and includes the closure of the TPSA somewhere from late May to mid-July. The 

fifth and final period of each season begins in early August when the Denham Line re-opens and 

the ENA closes. The TPSA is still closed. Each season shows small deviations from these five 

general fishing periods. 

Time series of the weekly average king prawn catch rate in these two areas confirms the 

discontinuity of fishing in the Denham Sound region during the middle of each season whilst 

fishing in the Shark Bay North region occurs throughout the season (Figure 3.3). Catch rates are 

broadly similar in the two fishing regions when they are both open, particularly at the end of the 

seasons. There are a small number of weeks with no data in either region due to the full moon 

closures which vary from 3 to 7 days. 

 
Figure 3.3: Time series of the weekly average king prawn catch rate for the Shark Bay North and Denham 
Sound fishing regions of the 2001-2004 seasons. 

Shark Bay North accounts for approximately 80% of the number of shots and total king 

prawn catch with Denham Sound making up the remaining 20% (Table 3.2). Due to its 

continuity within each season and its majority hold of the fishery’s catch it was decided to focus 

this study on the king prawn catch per unit effort (CPUE) in the Shark Bay North region of the 

Shark Bay fishery. 
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Table 3.2: Number of records and catch within fishery, 2001-2004. 

 2001 2002 2003 2004 

Number of shot records 24757 20100 17956 19431 

       Shark Bay North 20101 (81.2%) 16145 (80.3%) 15223 (84.7%) 15520 (79.9%)

       Denham Sound 4656 (18.8%) 3955 (19.7%) 2745 (15.3%) 3911 (20.1%)

Catch (kg) 1233258 1467446 1109114 1079912 

       Shark Bay North 974337 (79.0%) 1173511 (80.0%) 942054 (84.9%) 867094 (80.3%)

       Denham Sound 258921 (21.0%) 293936 (20.0%) 167060 (15.1%) 212819 (19.7%)

Effort (hours) 46494 45691 41891 41341 

       Shark Bay North 34628 (74.5%) 35430 (77.5%) 33713 (80.5%) 31567 (76.4%)

       Denham Sound 11865 (25.5%) 10261 (22.5%) 8178 (19.5%) 9774 (23.6%)

Catch rate (kg/hour) 26.53 32.12 26.48 26.12 

       Shark Bay North 28.14 33.12 27.94 27.47 

       Denham Sound 21.82 28.65 20.43 21.77 

 

3.3 SHARK BAY NORTH FISHING REGION 

The fishing locations associated with king prawn catch in the Shark Bay North region for 

seasons 2001 to 2004 are similar between the years (Figure 3.4). The locations do not extend to 

the boundaries of the fishing region due to fishermen’s habits and physical limitations such as 

seaweed beds. In addition to the logbook catch and effort data for the fishing seasons, 

recruitment surveys are carried out around the last quarter moon phase in March and April of 

each season within the Extended Nursery Area and the closed area east of the Carnarvon/Peron 

line in order to determine the timing and extent of this area to be opened. There are 17 survey 

sites (Figure 3.5) with catch and effort data for the months of March and April in seasons 2001 

to 2004. 

 
Figure 3.4. Fishing locations in Shark Bay North for seasons 2001 to 2004. 
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Figure 3.5. Survey site locations in Shark Bay North for seasons 2001 to 2004. 

3.4 DATA DESCRIPTION 

The data considered for this study are king prawn logbook data recorded by the Shark Bay 

prawn fishing fleet in the years 2001 to 2004. It is worth noting here that the data preparation 

was conducted not only for this study but also for a related study concerning the spatial and 

temporal distribution of king prawns and tiger prawns (Mueller et al., 2008). The data include 

catch records for the entire prawn fishing seasons for each year (Table 3.1). The original prawn 

catch data files, obtained from the WA Fisheries and Marine Research Laboratories of the WA 

Department of Fisheries, included records of the catch, in kilograms, for each species of prawns 

and for scallops. The file also contained the boat identifier, the data, the shot number of the day, 

the number of shots made, the latitude and longitude of the start point of each recorded shot and 

the duration, in minutes, spent fishing. 

The data were screened and any records that were missing values for shot location or 

shot duration were removed from the file. Several records in each year had a missing value in 

the number of shots column. Rather than removing these records, these values were inferred 

from the rest of the data, usually as a 1. Records that contained zero tiger or king prawn catch 

but had a positive catch for either scallops or other prawn species were also removed as it is 

assumed that neither king nor tiger prawns were being targeted in these shots. This data 

preparation meant that the data sets for the study contained 24757, 20100, 17956 and 19431 

shot records for the years 2001, 2002, 2003 and 2004 respectively (Table 3.3). 
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Table 3.3: Data preparation, 2001-2004. 

 2001 2002 2003 2004 

Raw data 26809 20716 19636 21636 

Missing Coords/Duration 1529 426 1490 2015 

Other species only 523 190 190 190 

Shot Data 24757 20101 17956 19431 

          Shark Bay North 20101 16145 15223 15520 

          Denham Sound 4656 3955 2745 3911 

 

Shot locations were converted to latitude (xloc) and longitude (yloc) in nautical miles 

relative to a local coordinate system with origin at latitude -24º and longitude 113º  

) (latitude/) - (longitude xloc 180cos11360  (3.1) 

)   (latitudeyloc 2460   (3.2) 

3.4.1 WEEK CLASSIFICATION BY LUNAR PHASE 

As will be discussed later, the lunar phase is an important indicator of the prawn behaviour and 

so the data were grouped by the lunar week in which the date of each aggregated record fell. 

The lunar weeks were calculated by centring each on a phase of the moon. Each observation 

was designated as occurring during the new moon week (denoted by N), the first quarter week 

(Q), the full moon week (F) or the last quarter moon week (L) of a particular month of the 

fishing season. Dates for the moon phases of the 2001-2004 fishing seasons are given in 

APPENDIX C with the beginning and end dates of each lunar week presented in APPENDIX D. 

As explained later, data for the full moon weeks was absorbed into the neighbouring first 

quarter and last quarter weeks. 

The order of the weeks within each calendar month with respect to the moon phase is 

year dependent. For example, the 2001 and 2004 lunar weeks for May ran in the order MayF, 

MayL, MayN and MayQ. In 2002 the May lunar weeks ran in the order MayL, MayN, MayQ 

and MayF. In 2003 May ran in the order MayN, MayQ, MayF and MayL.  

Since the lunar weeks vary across the seasons it was necessary to choose a method of 

aligning weeks across successive seasons to enable comparison. It was decided that the optimal 

alignment would involve the alignment of the 4 moon phases and the approximate alignment of 

each calendar month across years. Weeks were assigned a number to facilitate modelling. The 

alignment of weeks for seasons 2001 to 2004, along with their associated week numbers, are 

shown in APPENDIX E.  
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As there were three to ten day closures during the full moon weeks, it became apparent 

that most of the full moon weeks comprised data from the end of the previous week (First 

Quarter) and data from the beginning of the following week (Last Quarter). Therefore, it was 

decided to absorb the data for the full moon weeks into the preceding First Quarter week and the 

following Last Quarter week. This resulted in data sets with data associated with only three of 

the four moon phases. The week numbers with data and their associated lunar month and phase 

are shown in Table 3.4. The Last Quarter moon weeks of 2003 are associated with the previous 

month than those of the other seasons. 

Table 3.4: Week numbers and associated lunar month and phase, 2001-2004. 

 2001, 2002, 2004 2003 
Week Month Phase Month Phase 

1 Mar L   
2 Mar N Mar N 

3 Mar Q Mar Q 

5 Apr L Mar L 

6 Apr N Apr N 

7 Apr Q Apr Q 

9 May L Apr L 

10 May N May N 

11 May Q May Q 

13 Jun L May L 

14 Jun N Jun N 

15 Jun Q Jun Q 

17 Jul L Jun L 

18 Jul N Jul N 

19 Jul Q Jul Q 

21 Aug L Jul L 

22 Aug N Aug N 

23 Aug Q Aug Q 

25 Sep L Aug L 

26 Sep N Sep N 

27 Sep Q Sep Q 

29 Oct L Sep L 

30 Oct N Oct N 

31 Oct Q Oct Q 

 

Due to the various closure lines operating in the fishery, the data were screened to 

remove those data at locations that were in closed areas. To do this, each season was split into 

periods of fishing according to the closure lines and their dates.  
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3.4.2 DATA AGGREGATION 

In many cases catches were recorded in aggregated form over several shots rather than by 

individual trawl shot. These aggregated records account for a large proportion of the total king 

prawn catch for each season in Shark Bay North, and the entire fishery, from 41.2% in 2001 to 

59.5% in 2002 (Figure 3.6). It was decided to use data aggregated by vessel for analysis by 

aggregating the individual shots of each vessel on each day for direct use with the (already) 

aggregated data. A second form of aggregation where data were aggregated by grid location was 

also considered, resulting in a second data set for analysis. It is noted that this method combines 

individual shot data and aggregated shot data. 

 
Figure 3.6: Proportion of aggregated king prawn catch by weight for the 2001-2004 seasons.  

3.4.2.1 AGGREGATION BY VESSEL 

Centroidal locations were calculated for a particular vessel v on a particular day t by weighting 

the coordinates of each shot of the day by its duration, 
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(3.3) 

where )(tnv  denotes the number of shots for that vessel on day t, )(tdi
v  the duration of the ith 

shot for that vessel and )(txloci
v  and )(tyloci

v  the corresponding latitude and longitude of each 

shot in nautical miles. Aggregate catch and effort values were calculated for the new centroidal 

locations by combining the catch and effort values respectively for all shots of that vessel on the 

given day t. The catch (kg) and effort (mins) for a particular vessel v on a particular day t are 

defined as 
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(3.4) 

where )(tci
v  denotes the catch associated with the ith shot of that vessel on day t. The vd in the 

variable names indicates that the data are aggregated by vessel on a daily basis. 

As the kriging and simulation procedures to be used later do not allow more than one 

observation to be given at a particular location it was necessary to screen the data to ensure that 

no two or more records had identical spatial locations on the same day. This screening process 

was performed for locations during the same week for consistency with an associated study 

(Mueller et al., 2008). Records with identical locations and lunar weeks had their longitudinal 

location altered by at most ± 0.01 nautical miles to enable their use in the analysis. 

3.4.2.2 AGGREGATION BY GRID LOCATION 

The chosen grid size for aggregating the shot data was one nautical mile. The origin of the grid 

was (10,-90) for the local coordinate system, specified previously in Equations (3.1)-(3.2), with 

31 nodes in the x-direction and 61 nodes in the y-direction. Aggregate catch and effort values 

were then calculated at each grid node for each day of the season for the 1 nmil square specified 

by a set of four grid nodes. The catch (kg) and effort (mins) for a grid node g centred on 

),( gg yx  on a particular day are defined as 
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(3.5) 

where  tng  denotes the number of shots in grid g on day t, and  tci
g  and  tdi

g  are the catch 

and duration associated with the ith shot in the grid g on that day. The gd in the variable names 

indicates that the data are aggregated daily by grid location. 

3.4.2.3 AGGREGATION BY LUNAR WEEK 

Weekly catch and effort variables aggregated over the entire study region were also produced 

for use in time series analysis by aggregating catch and effort values respectively for all shots 

from all vessels in a lunar week.  
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where )(wnt  is the number of days in the lunar week w and )(tn  is the number of individual 

shots on day t. The catch and effort of the jth shot of the ith day in lunar week w are denoted by 



 

60 

)(ic j
w and )(id j

w  respectively. Each day was assigned to a lunar week as outlined previously 

(Section 3.4.1). 

3.4.3 CATCH PER UNIT EFFORT 

As sampling effort may differ from area to area, month to month, or year to year; the number of 

fish captured must be analysed in such a way as to standardise the effort that was exerted. Catch 

per unit effort (CPUE), or catch rate as mentioned previously, standardises catch data based on 

the amount of the effort (total time or area sampled) exerted. It is often used as a means of 

tracking the performance of a fishery over successive seasons. In some fisheries CPUE is used 

as a measure of relative abundance, however there are many problems in using them as such, 

particularly as a measure of local abundance (Harley et al., 2001; Walters, 2003; Maunder et al., 

2006). The relationship between catch rates and stock abundance is given by 

qCPUE   (3.7) 

where β is the biomass of the population and q is a fixed constant of proportionality known as 

the catchability coefficient (Hilborn & Walters, 1992). 

Raw CPUE is seldom proportional to abundance over a whole exploitation history and 

an entire geographic range, because numerous factors affect catch rates. One of the most 

commonly applied fisheries analyses is standardisation of CPUE data to remove the effect of 

factors that bias CPUE as an index of abundance (Campbell, 2004). CPUE can also be adjusted 

for relative efficiency, which changes over time, by calculating and applying relative fishing 

powers. In this study, we assume that all vessels have the same efficiency and that this has not 

changed over the four years of study. Even if CPUE is standardised appropriately, the resulting 

index of relative abundance can be problematic as an indicator of abundance (Bishop et al., 

2008). Therefore, CPUE-based analyses are not an alternative to integrated stock assessments, 

but they provide a component of information for an integrated model. Annual CPUE indices are 

used as conditioning data in an integrated model, and when used as such, they typically drive 

the model. In addition, CPUE indices for a fishery, or region within a fishery, provide useful 

information about fisheries changes, aspects for discussion and indicate areas of future research. 

In this way, CPUE trends are one of the indicators of the general ‘health’ of the fishery. CPUE 

is a fishery-dependent indicator, meaning that the data used to calculate the metric are taken 

directly from the fishing industry. 
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CPUE is defined as the total catch divided by the total amount of effort used to harvest 

the catch. As each shot record of the prawn data has an associated catch (kg) and effort (mins) 

values, the CPUE (kg/h) can be calculated.  

60/effort

catch
CPUE 

 
(3.8) 

Note the division of effort by 60 as effort is recorded in minutes whilst CPUE is specified per 

hour. Catch rate variables were calculated for each of the aggregated data sets outlined 

previously; aggregation daily by vessel, aggregation daily by grid and aggregation by lunar 

week over entire fishing region. 

 CPUEvd: Daily aggregation by vessel 
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 CPUEgd: Daily aggregation by grid 
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 CPUEw: Aggregation by lunar week over entire fishing region 
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(3.11) 

3.4.4 STATISTICAL ANALYSIS 

The spatiotemporal catch rate variables CPUEvd and CPUEgd are the main focus of this 

investigation, with the CPUEw variable to be used for temporal trend analysis. There are 

approximately double the number of CPUEgd records as CPUEvd records for each season with 

about 6000-8000 aggregated by 1 nmil grid location (CPUEgd) records in the Shark Bay North 

fishing region for all four seasons but only 3000 aggregated by vessel (CPUEvd) records for 

each of the seasons (Table 3.5). This 2:1 ratio between the CPUEvd and CPUEgd data is also 

evident in the individual bins of the histogram (Figure 3.7). All seasons show similar means and 
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medians with the CPUEgd variables showing slightly higher means and medians than the 

corresponding CPUEvd variables. Both methods of aggregation display similar central 

measures. 

Table 3.5. Summary statistics of daily king prawn CPUE (kg/h) aggregated by vessel or grid location. 

 2001 2002 2003 2004 
 vd gd vd gd vd gd vd gd 

Mean 27.97 30.61 34.04 36.44 28.00 29.61 27.34 29.94 

Median 23.68 25.62 26.65 28.94 21.60 23.03 22.06 24.27 

Variance 298.21 411.90 589.72 719.47 533.15 582.21 407.69 509.98 

Skewness 1.72 1.77 1.92 2.17 2.80 2.85 1.78 2.32 

Min 1.07 1.28 0.92 1.57 1.08 1.08 0.95 0.72 

Max 146.07 184.00 210.90 376.70 212.94 330.71 157.21 265.29 

Count 3344 7981 3274 7205 3169 6422 2928 6116 

 

 
Figure 3.7: Histograms of daily king prawn CPUE (kg/h) aggregated by vessel or grid location for 0-125 
kg/h (top) and 125-550 kg/h (bottom). 

The minima of all data sets are close to zero with the CPUEgd data showing slighter 

higher minima than the corresponding CPUEvd data. The maxima of the CPUEgd data (265-

526) are considerably higher than the corresponding CPUEvd data (146-213). The higher 

maxima for the CPUEgd data are visible in the histograms for the CPUE data. It is noted that 

there are only two CPUEvd values above 200kg/h (210.90 in 2002, 212.94 in 2003) whilst there 

are 17 CPUEgd values above that value ranging from 204.61 to 376.70 (Table 3.5). These 

outliers have been checked and whilst their values are suspect, they cannot be justified as 

erroneous. However, it is possible that these extreme values in the CPUEgd data may be a result 

of fishers incorrectly recording catch or effort to a particular shot and therefore possibly 

erroneous. It was decided to leave these values in the analysis. 
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All seasons display high variances with the 2002 season showing the highest variances 

for both types of catch rate data. The variances of the CPUEgd variables are higher than the 

corresponding CPUEvd variables. All four seasons of data for both methods of aggregation are 

positively skewed (Figure 3.7). The CPUEgd data sets show slightly higher values of skewness 

than the corresponding CPUEvd data sets due to the higher maxima outlined previously.  

Weekly catch rate values (CPUEw) will be used to model temporal trends for the 

individual seasons (Figure 3.8). As outlined previously the data are grouped into lunar weeks 

based on the moon phase, with data in weeks corresponding to the Full Moon reallocated to the 

neighbouring Last Quarter and First Quarter weeks.  

 

 
Figure 3.8: Weekly king prawn CPUE (kg/h) aggregated over Shark Bay North region. 

The CPUEw data show similar means across all seasons with medians slightly lower 

than the corresponding mean (Table 3.6). The means and medians of the weekly data are 

slightly lower than the daily catch rate data, aggregated by vessel or grid, of the corresponding 

season. The CPUEw are also positively skewed but show slightly lower values of skewness than 

the corresponding CPUEvd and CPUEgd data. The minima/ maxima of the weekly catch rate 

data sets are much higher/lower than the corresponding daily data sets with minimum values 

ranging from 9.31 to 15.01, and maximum values between 49.19 and 71.32. 

Table 3.6. Summary statistics of weekly king prawn catch rate (kg/h). 

 2001 2002 2003 2004 

Mean 25.30 28.99 23.34 23.23 

Median 22.86 23.97 20.19 18.02 

Variance 103.38 206.60 192.64 177.76 

Skewness 0.86 1.34 2.15 2.14 

Min 12.85 15.01 9.31 11.64 

Max 49.19 65.78 71.32 69.67 

Count 24 24 23 24 
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3.4.5 OVERVIEW OF SPATIAL DISTRIBUTION 

The daily king prawn CPUE aggregated by vessel and grid demonstrate similar spatial 

behaviour across the season, which is driven mainly by the closure lines and by the main 

migration pattern of prawns and the way they move from the south eastern parts of the bay in a 

north, north westerly direction. The lunar month of May (Figure 3.9, aggregated by vessel, and 

Figure 3.10, aggregated by grid) is chosen for illustrative purposes throughout this thesis as it 

highlights the opening of a fishing region (ENA) resulting in high catch rates concentrated just 

south of the closure boundary. Similarly there are high catch rates to the east of the Carnarvon-

Peron line as it opens to fishing in April. The catch rates remain at a reasonable level up until 

June in Shark Bay North, but are at relatively low levels across the fishery by the end of each 

season. The lunar month of July (Figure 3.9, aggregated by vessel, and Figure 3.10, aggregated 

by grid) is also chosen for illustrative purposes throughout this thesis as it is indicative of catch 

rates in the second half of the season. Regional trends of all four seasons show similarities of 

high and low catch rate areas throughout the year (APPENDIX F). There is an obvious decline 

in catch rates seen during each season.  

 

 
Figure 3.9: Weekly king prawn CPUE (kg/h), May (top) and July (bottom) 2001, aggregated by vessel. 
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Figure 3.10: Weekly king prawn CPUE (kg/h), May (top) and July (bottom) 2001, aggregated by grid. 

3.4.6 SURVEY DATA 

As outlined in Section 3.3, there were seventeen fishery-independent recruitment survey 

locations across the study region sampled around the last quarter moon phase in the months of 

March and April of seasons 2001 to 2004. These seventeen locations are situated within the 

Extended Nursery Area and the closed area east of the Carnarvon/Peron line (Figure 3.11, 

right). The information from the recruitment surveys was used to determine the timing and 

extent of areas to be opened. The catch rates at a given survey location are quite similar for the 

March and April surveys (Figure 3.11, left). The northern survey locations (Sites 27-29,1) have 

the lowest catch rates with higher catch rates observed at the central sites in the survey region 

(Sites 4-9, 30). Survey sites in the Extended Nursery Area (Sites 11, 12, 14, 15, 17 and 18) 

show the greatest variability.  
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Figure 3.11. Recruitment survey catch rates in March (top left) and April (bottom left) and survey 
locations (right) in seasons 2001-2004. 

3.4.7 PRELIMINARY INVESTIGATION OF SUITABLE SPATIOTEMPORAL 
GEOSTATISTICAL MODEL  

Preliminary investigation of a suitable geostatistical spatiotemporal model for the king prawn 

catch rates considered a spatially correlated time series framework. Annual time series of daily 

catch rates for grids of varying mesh size defined over the study region were constructed. 

However, there were a large number of blocks with missing values for many days over each 

season. Subsequently, daily data were aggregated to weekly data in an attempt to minimise the 

number of blocks with missing values but this was unsuccessful.  

An alternative model of temporally correlated random functions was also investigated 

to build a linear model of coregionalisation using weekly catch rate data to limit the number of 

time instants. The catch rate data were aggregated by grid to ensure data locations were 

collocated at various weeks. Cross-variography of subsequent weeks did not reveal sufficient 

evidence of structure for semivariogram modelling.  

Spatial variography of (lunar) weekly sets of the daily king prawn catch rates had 

previously shown that the catch rates displayed spatial continuity (Mueller et al., 2008). 

Semivariograms of the king prawn CPUE were modelled with spatial variograms involving a 

nugget effect and one or two spherical structures. The behaviour of the range and nugget 

parameters over a season and between seasons were considered in an effort to expose a pattern 

of semivariogram model parameters that could be used to infer parameters for a future season. 

The spatial variogram parameters did show some similarities across weeks of a season but no 

evidence of temporal pattern was observed. 
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After consideration of the geostatistical spatiotemporal models outlined above, it was 

decided to proceed with the single spatiotemporal random function model with the prawn catch 

and effort data. This model allowed the spatial continuity of the catch rates modelled previously 

to be extended to include a temporal dimension. By using input data within the temporal range 

of the model, estimates of catch rates in future weeks was possible. 
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CHAPTER 4 

METHODOLOGY OF THIS STUDY 

4.1 INTRODUCTION 

Spatiotemporal models are usually data driven and typically constructed by several components. 

Data preparation has provided two alternative catch rate variables for use: CPUEvd is the catch 

rate per day for a particular vessel (27 vessels) and CPUEgd is the catch rate per day on a grid 

over the study region. In this chapter an outline of the modelling framework for this study is 

provided including the modelling of the global trend, the modelling of spatiotemporal 

semivariograms, the framework for forward estimation and simulation of catch rates, and the 

software used to conduct these analyses. 

4.2 GLOBAL TREND MODELLING 

As outlined previously, the use of the random function model requires spatiotemporal (intrinsic) 

stationarity which is not a property of the variable itself, and cannot be proven or refuted by 

data. It is the modeller’s decision of the random function model and cannot be statistically tested 

or objectively rejected or accepted. Analysis of the catch rate data showed the presence of a 

large scale temporal trend (Figure 3.3). Geostatistical models aim to include the trend as part of 

the modelling process. However, large-scale trends are best often removed before modelling of 

the spatiotemporal continuity by geostatistical methods. The trend is not a smoothly varying 

function of the spatiotemporal coordinates ),,( tyx  for use in a Universal Kriging model 

(Goovaerts, 1997) nor is it a linear function of an external variable for use in a Kriging with an 

External Drift model (Goovaerts, 1997). Furthermore, the trend model of the catch rates was 

identified as multiplicative whilst the random function model assumes an additive trend.  

Therefore, it was decided to utilise a global trend model to detrend and deseasonalise 

the catch rate data in order to obtain the CPUEs (standardised catch rate) variable. By 

identifying and removing the large-scale multiplicative temporal trend, the resulting CPUEs 

variable would be seen as small-scale variation involving autocorrelated departures from the 

local mean. Decomposition of the data into a large-scale deterministic trend component and 

residual small-scale component of variation allows the assumption of stationarity to be satisfied. 

This supports the use of the random function model and modelling by geostatistical methods.  
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4.2.1 TEMPORAL TREND MODELLING 

Temporal trends of prawn catch rates in the Shark Bay managed prawn fishery had been 

previously analysed by time series analysis using classical decomposition (Harman, 2001). 

Harman modelled daily king prawn and tiger prawn catch rate values with a multiplicative 

classical decomposition model with lunar phase identified as the seasonal factor. The centred 

moving average was used as an estimation of the trend component in conjunction with seasonal 

indices calculated on a 29 day cycle.  

As individual fishing days cannot be compared across seasons, this study considered 

(lunar) weekly data to enable comparison. Annual king prawn catch rate time series of weekly 

data (CPUEw) were modelled via a multiplicative classical decomposition model using the 

lunar phases as seasons. Temporal trends of smaller blocks within the Shark Bay North region 

were also investigated but revealed that modelling the temporal trend on a smaller spatial scale 

was not feasible. As temporal trend models across the individual seasons showed great 

similarities, it was also possible to create a model involved combined consecutive seasons to use 

in estimating the trend model for a future season. Consecutive seasons of data could be 

combined for analysis by aligning the lunar weeks of the seasons. Temporal trend models for 

the six combined seasons (involving consecutive seasons) 2001-2002, 2001-2003, 2001-2004, 

2002-2003, 2002-2004 and 2003-2004 were considered. 

4.2.2 MEDIAN POLISH TREND MODELLING 

Median polish trend modelling has been used for estimation of a space-time trend in a 

geostatistical modelling framework (Bruno, 2004). A multiplicative median polish 

spatiotemporal model was considered for the king prawn catch rate data with two temporal 

effects (lunar month and phase) and two spatial effects (longitude and latitude converted to x 

and y coordinates in nautical miles). The median polish model confirmed the temporal trend 

seen in the classical decomposition model but showed no significant difference in the resulting 

standardised catch rate variable over the temporal trend model. 

4.2.3 STANDARDISED CATCH RATE 

The objective of the methods of global trend modelling (time series and median polish) is to 

obtain a good fit for the trend of the catch rate data which can be assessed by analysing the 

residuals from the fitted model. These methods are used to identify the global trend of the 

spatiotemporal data, which can then be used to transform (detrend and deseasonalise) the data to 

obtain the standardised catch per unit effort (CPUEs) for use in the subsequent geostatistical 
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model. Both the CPUEvd and CPUEgd variables were transformed to the corresponding 

CPUEsvd and CPUEsgd variables to examine their use in a spatiotemporal geostatistical model. 

4.3 GEOSTATISTICAL MODELLING 

The standardised catch rate variables (CPUEsvd and CPUEsgd) obtained from the original catch 

and effort data by aggregation and global detrending methods (Figure 4.1) were used to develop 

a modelling framework to implement geostatistical prediction of the king prawn catch rate for a 

future season.  

 
Figure 4.1. Flow chart for temporal trend modelling and spatiotemporal variography. 

4.3.1 SPATIAL VARIOGRAPHY 

Spatial variography of weekly data sets of king prawn catch rate values was undertaken in a 

previous study (Mueller et al., 2008). This was repeated for the CPUEsvd and CPUEsgd and 

their normal scores (CPUEsNvd and CPUEsNgd) in this study and confirms the use of 

geostatistical methods with the standardised prawn catch rate values. 

Preliminary analysis considered the approach of temporally correlated (spatial) random 

functions. Whilst the number of days in each season was too large to implement this method, it 

was hoped that it was possible by considering weekly aggregated data. However, spatial random 

functions of weekly data revealed cross variography that proved problematic due to poor 

correlation. 
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4.3.2 SINGLE SPATIOTEMPORAL RANDOM FUNCTION MODEL 

The single spatiotemporal random function model was chosen to analyse the standardised king 

prawn catch rate data. With the objective of estimation for a future season and four seasons of 

data available (2001-2004), it was decided to use the first three seasons (2001-2003) to provide 

a model that could be used for prediction in the fourth season (2004). In reality, spatiotemporal 

behaviour of the following season is unknown and the use of a model for a future season based 

on the behaviour of preceding seasons is justified by the persistence of behaviour over the 

preceding seasons and a reasonable assumption that those patterns should continue into the next 

season. Although not undertaken for this study, the environmental (climate and oceanographic) 

data in 2004 could be examined to confirm that they were consistent with those of 2001-2003. 

Whilst the 2004 season was to be forecast, the analysis of its spatiotemporal behaviour is also 

presented along with the 2001-2003 seasons to enable comparison. 

Temporal trend analysis of the 2001-2003 data was used to predict the temporal trend 

model, which was then used to transform the 2001-2003 CPUE data to CPUEs data. 

Spatiotemporal variography of the 2001-2003 CPUEs data was used to construct a 

spatiotemporal semivariogram model that was used in a kriging procedure (ST-OK) to estimate 

the CPUEs variable in the future season 2004. The estimated CPUEs values were transformed 

to CPUE values using the temporal trend model defined previously. 

As the catch rates exhibited a trend over space and time, a variant of kriging known as 

Universal Kriging (UK), also referred to as kriging with a trend (KT), was considered that 

allows the modelling of a non-constant trend within the kriging process. This kriging variant 

may be used when it is inappropriate to consider the local mean as constant even within small 

neighbourhoods. However, implementation of UK using a global search neighbourhood was 

unrealistic for the prawn catch rates due to the large number of data. Consideration of the UK 

trend as a smoothly varying function of the coordinates within the local neighbourhood was also 

problematic as the prediction surface of the trend is not continuous. Ordinary kriging with a 

local neighbourhood was seen as the preferred alternative to universal kriging with a global 

neighbourhood as the mean was allowed to vary smoothly at the larger scale, and was estimated 

locally at each spatiotemporal location from the data lying in the neighbourhood. 

As there was a 4 to 5 month separation between consecutive seasons and a temporal 

range of continuity of less than one month, estimation of catch rates for a particular month of 

the 2004 season were produced using data up to but not including the month being estimated. 
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The 2004 catch rate values used as input data were first transformed to CPUEs values using the 

temporal trend model derived from the 2001-2003 data, and then used in a ST-OK estimation 

procedure with the spatiotemporal variogram derived for the 2001-2003 season. Estimation was 

conducted for all lunar months of 2004 except the first lunar month of the fishing season, i.e. 

April through October.  

In order to investigate the uncertainty of the catch rate values, a simulation study was 

also conducted to simulate catch rate values for the 2004 season using the 2001-2003 data to 

construct the model. The temporal trend model defined previously was used to transform the 

data. As the simulation procedure used (ST-SGS) required Gaussian data, the spatiotemporal 

semivariogram model used in the simulation procedure was constructed from the normal scores 

(CPUEsN) of the standardised CPUEs data. As for the estimation procedure, a ST-SGS 

simulation procedure was conducted for all lunar months of 2004 except the first month, as the 

first month’s data of 2004 (transformed to CPUEsN variables) was required as input. 

4.3.3 SPATIOTEMPORAL VARIOGRAPHY 

Spatiotemporal semivariograms of the standardised king prawn catch rate of the individual 

seasons 2001 to 2004 were first modelled. The semivariogram models showed many similarities 

across the individual seasons, which supported the modelling of spatiotemporal semivariograms 

of combined consecutive seasons. It was initially hoped to compare the prediction of CPUE 

values for season 2004 using the semivariogram model of the individual season 2003 with the 

prediction attained using the model for the combined season 2001-2003. However, as the 

temporal trend model and spatiotemporal semivariogram model of the individual season of 2003 

showed some inconsistencies with the other seasons, only the model of the combined season 

2001-2003 was used as an estimate for the semivariogram of the standardised catch rate for the 

2004 season. 

The single spatiotemporal random function model used spatiotemporal variograms 

computed and modelled via an appropriate joint space-time variogram/covariance model. 

Spatiotemporal semivariograms and their models were investigated for the CPUEs variables of 

both methods of aggregation, by vessel and by grid. Spatiotemporal variography was conducted 

for the CPUEsvd and CPUEsgd variables of the three individual seasons 2001 to 2003 along 

with the three combined seasons 2001-2002, 2001-2003 and 2002-2003. It is noted that 

although the 2004 season was to be used as a forecast season, spatiotemporal variography of the 

2004 season was still conducted for comparison with the other seasons. Similarly, the combined 
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(consecutive) seasons 2001-2004, 2002-2004 and 2003-2004 involving the forecast season 2004 

were also investigated. 

4.3.4 CROSS VALIDATION 

Cross validation of the semivariogram model was undertaken to assess how well the 

semivariogram model of the 2001-2003 combined season captured the spatiotemporal variation 

of the CPUEs data. The cross validation procedure was outlined previously and involves 

estimating at a spatiotemporal sample point after excluding the sample value at that 

spatiotemporal location. As the model was to be used for estimating into the 2004 season, cross-

validation was conducted for all lunar weeks of the 2004 season to be used as input data for 

space-time estimation of the subsequent month.  

4.3.5 SPATIOTEMPORAL ESTIMATION AND SIMULATION 

The selected semivariogram model (combined season 2001 to 2003) was considered in an ST-

OK procedure and ST-SGS procedure to predict 2004 values. Spatiotemporal estimation and 

simulation of the ith month uses estimation year data up to, but not including, the ith month and 

the relevant semivariogram model. Estimation (Chapter 8) and simulation (Chapter 9) are 

conducted for all months except the first month of the fishing season, ie. April through October. 

A re-estimation process was conducted for the May lunar month of 2004 using survey data to 

provide relevant input data in order to estimate into a previously unopened fishing area (ENA). 

A flow chart showing the detrending, variography, estimation and simulation processes (Figure 

4.2) denotes the modelling framework presented in this study. 
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Figure 4.2. Flow chart for spatiotemporal estimation and simulation of ith month. *Survey data only used 
as additional data to estimate for lunar month of May 2004. 

4.4 SOFTWARE 

MATLAB and EXCEL were the main software packages used in this study in order to conduct 

exploratory data analysis and to produce plots for the thesis. The geostatistical algorithms used 

in this research were implemented using the GSLIB package of geostatistical routines. Various 

routines were used from the GSLIB package including gamv and nscore. Modified gamv and 

kt3d routines (De Cesare et al., 2002) were used to compute space-time semivariograms and to 

conduct space-time estimation and a modified version of sgsim was developed in order to 

implement spatiotemporal Gaussian simulation. MATLAB and EXCEL were used to conduct 

post-processing of outputs from the GSLIB geostatistical routines. 
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PART II. 

 

GLOBAL TREND MODELLING AND 

SPATIOTEMPORAL CONTINUITY
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CHAPTER 5 

CATCH RATE STANDARDISATION 

5.1 INTRODUCTION 

Catch rates of aquatic populations, based on analyses of information on catch and effort within a 

fishery are an important indicator variable for use in a fishery (Walters, 2003). The utility of 

indices based on catch and effort data is improved by standardising them to remove the impact 

of factors such as changes over time in the composition (and hence efficiency) of the fleet. By 

removing as much of the variability due to vessel differences, seasonal and time effects as 

possible, catch and effort data from different vessels can be compared.  

The standardisation procedure is utilised in this study to remove a source of 

spatiotemporal non-stationarity (non-constant temporal mean and temporally-varying variance). 

After removing the large-scale temporal variability, catch rates from across the season can be 

considered relative to each other. The local behaviour in catch rates can then be investigated via 

the spatiotemporal structure of the residuals. In particular, catch rates will be standardised by 

lunar month and phase so that they can be used in a geostatistical spatiotemporal model. 

A previous study involving the king prawn catch rate data in Shark Bay indicated that 

the annual time series could be modelled via a multiplicative classical decomposition model 

(Harman, 2001). The study involved annual series of daily catch rate values from six non-

consecutive years from 1972 to 1987 and showed that the king prawn catch rate data had a 

seasonal factor associated with the lunar phase. The detrended daily data had a 29-day cycle that 

corresponded to the lunar index cycle. The catch was at a low at the full moon and at a high at 

the new moon. 

Median polish trend modelling is also used to investigate the inclusion of a spatial 

component, in addition to the temporal component, in the global trend model. This trend 

modelling process has been used in another geostatistical space-time trend analysis (Bruno, 

2004). 

As outlined in the methodology, the modelling framework of this study aims to develop 

a model from the 2001-2003 seasons that can be used to predict catch rates of the 2004 season. 

Temporal trend models are presented in this chapter for the 2001-2004 seasons, but it must be 
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noted that the temporal trend used in the predictive model for 2004 will be based only on the 

2001-2003 seasons. The temporal trends of 2004 and the associated combined seasons are 

shown for comparison, whilst in reality when predicting a future season such comparisons 

would not be possible. 

5.2 TEMPORAL TREND ANALYSIS 

Weekly averaged king prawn catch rate data (CPUEw) of seasons 2001 to 2004 were used to 

allow comparison of temporal models across the seasons. Temporal trends on a 10 nmil by 10 

nmil grid within the study region were also investigated but did not provide any more useful 

information than trends calculated over the entire study region.  

The temporal trends of combined seasons of data were also investigated by combining 

data for each lunar week over successive seasons. This was possible as the weeks of each season 

were numbered so they were aligned by moon phase and the approximate alignment of calendar 

months (Section 3.4.1). The investigation of combined seasons clarified the persistence of 

temporal trends of individual seasons and enabled the construction of a trend model for a future 

season based on the combination of the preceding seasons The following six combined sets of 

consecutive seasons were considered: 2001 to 2002, 2001 to 2003, 2001 to 2004, 2002 to 2003, 

2002 to 2004 and 2003 to 2004. The persistence of a trend across a number of seasons justifies 

its use in prediction of a future season. This meant that a trend model obtained for the 2001-

2003 seasons could be used to model the 2004 season. 

5.2.1 SPECTRAL ANALYSIS 

The weekly king prawn catch rate data of this study were analysed using spectral analysis via 

the ASTSA program to check if the cyclic behaviour of the king prawn CPUE noted previously 

(Harman, 2001) is present in these data. Spectral analysis requires complete series whilst the 

annual series of 2001 to 2004 contain a number of missing values (Figure 3.3). These values 

were estimated by using the centred moving average value for that week. 

The spectra of the amended king prawn CPUE for the individual seasons (Figure 5.1, 

left) all have a strong peak at a low frequency (0.0625) and another peak at the 0.25 frequency. 

A frequency of 0.0625 corresponds to a period of 16 while the length of the data set is only 30 

in 2003, and 31 in the other seasons. A peak at such a relatively low frequency typically 

indicates the presence of an important trend component (Chatfield, 2004). The other peak 

indicates the presence of a cyclical component. By estimating the trend using a 4 point centred 
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moving average corresponding to the 4 week lunar cycle and assuming a multiplicative trend, 

the centred moving average is divided into the CPUE data to obtain a detrended data set.  

Spectra of the detrended king prawn CPUE (Figure 5.1, right) no longer show a peak at 

low frequency supporting the presence of a trend estimated by the centred moving average. All 

individual seasons still display a strong peak at the 0.25 frequency corresponding to a cyclical 

component with a 4 week period. Therefore, the assumption of a 4 week lunar cycle is justified. 

 
Figure 5.1. Spectrums of original (left) and detrended (right) king prawn CPUE for individual seasons, 
2001-2004. 

Spectra for the combined seasons (Figure 5.2, left) also display a strong peak at a low 

frequency (0.0625) indicating the presence of a trend and another peak at the 0.25 frequency 

corresponding to a cyclical component with a 4 week period. After detrending, (Figure 5.2, 

right) only a strong peak at the 0.25 frequency is evident and therefore, as for the individual 

seasons, the assumption of a 4 week lunar cycle is justified. 

 
Figure 5.2. Spectrums of original (left) and detrended (right) CPUE for combined seasons, 2001-2004. 

5.2.2 CENTRED MOVING AVERAGES 

The 4-point centred moving averages of the weekly averaged king prawn CPUE series for the 

four consecutive seasons 2001-2004 show a peak in the first half of the season and a levelling 
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off at much lower values by the end of the season (Figure 5.3). Centred moving averages of the 

weekly averaged king prawn CPUE series for the six combined seasons show a similar pattern 

(Figure 5.4). All four individual seasons and six combined seasons show seasonal fluctuations 

about their centred moving average with differences in the variability of their values. A 

multiplicative model appears reasonable as the seasonal pattern is proportional to the data. 

 
Figure 5.3. Weekly averaged king prawn CPUE with 4 point centred moving average, 2001-2004. 

A comparative chart of the centred moving averages for each year (Figure 5.5, left) 

shows that 2002 and 2004 have a similar peak around week 9, in line with the opening of the 

Carnarvon-Peron line. As the prawns are typically more vulnerable for a short time after re-

opening an area that has been left unfished for a period, it is expected that there will be a short 

period of greater CPUE. However, the main reason for the increase in CPUE is the fact that new 

recruits have entered the fishery. The line is opened when the newly-recruiting prawns are of a 

sufficient size, timing of which varies slightly with fishing season. In season 2003 there is a 

peak in week 13, again in line with the opening of the Carnarvon-Peron line, a few weeks after 

the peak of 2002 and 2004. Season 2001 does not have a significant peak. For seasons 2001 and 

2002 the starting values are higher than in the other seasons and these two years show generally 

higher values than the other years. 
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The combined seasons show a similar shape to the individual seasons with a peak of 

lower magnitude in the first half of the season (Figure 5.4). The starting values are higher for 

those combined seasons involving 2001 and 2002 and lower for those involving 2003 and 2004 

(Figure 5.5, right). 

 
Figure 5.4. Centred moving average, combined seasons, 2001-2004. 

 
Figure 5.5. King prawn CPUE 4 point centred moving averages, individual (left) and combined (right) 
seasons, 2001-2004. 
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5.2.3 CLASSICAL DECOMPOSITION MODEL 

We assume a multiplicative classical decomposition model for each season as the seasonal 

factor was proportional to the trend in all seasons (Figure 5.3). The model for each year consists 

of a trend component, a single seasonal component of length 4 weeks and a (multiplicative) 

residual component.  

)()()()( tRtStTtY   (5.1) 

No cyclical component is considered as the series is annual. 

5.2.3.1 SEASONAL INDEX 

The four “seasons” correspond to the four lunar phases: New Moon (N), First Quarter (Q), Full 

Moon (F) and Last Quarter (L). By assigning an index number to each lunar phase (Table 5.1) 

we can assign a season number 4321i ,,,  to each time instant using 
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This assigns the numbers 1 to 4 (Table 5.1) to each of the weeks associated with a lunar phase. 

As there are four seasons evident in each annual time series, the 4 point centred moving average 

calculated previously is used as an initial estimate of the trend component for each season. This 

centred moving average is divided into the data to obtain the seasonal irregular component. The 

average seasonal index is then calculated and normalised for each of the four seasons 

4321i ,,,  in each season. Note that there are no data for those weeks corresponding to the full 

moon weeks. The data from these weeks have been absorbed into the adjacent weeks due to the 

full moon closures. 

Table 5.1. Seasonal index numbers for lunar phases. 

Phase L N Q F 

Index 1 2 3 4 

 

The classical decomposition seasonal indices for the king prawn CPUE of each season 

show strong similarities in the factors between years (Figure 5.6, left). All seasons showed the 

lowest annual factors for the first quarter moon week. Seasons 2001 and 2002 had the largest 

annual factor for the new moon week and the second largest factor for the last quarter week. For 

2003 and 2004 these positions were reversed. The magnitudes of the annual factors for each 

lunar phase are quite similar across the seasons. The magnitude of the last quarter moon week is 
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approximately 0.75 while those of the last quarter moon and new moon weeks vary between 

1.00 and 1.25. 

All combined seasons showed the lowest annual factors for the first quarter moon week 

(Figure 5.6, right). With the exception of the combined season 2001-2002, all combined seasons 

showed the largest annual factor for the last quarter moon week and the second largest factor for 

the new moon week. This may be due to the influence of the relatively high/low values for the 

last quarter/new moon weeks respectively of season 2003, as season 2003 is present in all 

combined seasons except 2001-2002. The magnitudes of the annual factors for each lunar phase 

are quite similar across the seasons. Similar to the case for the individual seasons, the magnitude 

of the last quarter moon week is approximately 0.75 while those of the last quarter moon and 

new moon weeks vary between 1.00 and 1.25 (Table 5.2). 

 
Figure 5.6. King prawn CPUE seasonal indices, individual (left) and combined (right) seasons, 2001-
2004. 

Table 5.2. Seasonal index values for individual and combined seasons. 

Season Last Quarter (L) New Moon (N) First Quarter (Q) 

2001 1.114 1.139 0.747 
2002 1.063 1.127 0.810 

2003 1.244 1.007 0.750 

2004 1.172 1.061 0.767 

C12 1.087 1.141 0.772 

C23 1.158 1.042 0.802 

C123 1.158 1.058 0.784 

C34 1.217 1.018 0.766 

C234 1.157 1.040 0.804 

C1234 1.159 1.052 0.789 

5.2.3.2 DESEASONALISED TREND 

The deseasonalised data for the individual and combined seasons of 2001 to 2004 were obtained 

by dividing the original data by the relevant seasonal factor, which was then fitted with a 

polynomial trend line (Figure 5.7) using the method of least squares. For all individual and 

combined seasons a cubic function was considered to be appropriate for modelling the trend 
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(Table 5.3). It was noted that the cubic function indicated an increase at the end of the season. 

This may be explained by temperature beginning to increase at this time which would make 

prawns more active and therefore more vulnerable. In addition, there would also be a tendency 

for prawns to aggregate in spawning areas, also making them more vulnerable. The 

deseasonalised trends for seasons 2001 to 2004 show similar shapes for all four seasons (Figure 

5.9, left). In general there is a decrease in CPUE towards the second half of the year. The 

deseasonalised trends compare favourably to the centred moving averages of the data (Figure 

5.5). Peaks of the deseasonalised trends were less pronounced for seasons 2002 to 2004 and the 

centred moving averages were much flatter in shape for the second half of the season. 

 
Figure 5.7. Deseasonalised king prawn CPUE with fitted polynomial trend, 2001-2004. 

Table 5.3. Fitted cubic deseasonalised trend models for individual and combined seasons. 

Season Deseasonalised Trend R2 

2001 0.00521 x3-0.236 x2 +2.072 x + 30.309 0.776 
2002 0.00699 x3-0.337 x2 +3.360 x + 33.231 0.649 

2003 0.00887 x3-0.473 x2 +6.366 x + 10.352 0.563 

2004 0.00783 x3-0.388 x2 +4.450 x + 20.460 0.800 

C12 0.00636 x3-0.298 x2 +2.844 x + 31.618 0.792 

C23 0.00700 x3-0.345 x2 +3.693 x + 28.266 0.689 

C123 0.00702 x3-0.337 x2 +3.519 x + 27.781 0.781 

C34 0.00767 x3-0.390 x2 +4.657 x + 19.584 0.681 

C234 0.00760 x3-0.374 x2 +4.091 x + 25.507 0.703 

C1234 0.00737 x3-0.356 x2 +3.796 x + 25.974 0.773 
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The shapes of the fitted deseasonalised trends for the combined seasons (Figure 5.8) are 

similar to those of the individual seasons (Figure 5.7). The variability of the catch rate data from 

the individual season trend models is greatest at the beginning of the season and decreases over 

the season. The trends of the combined seasons show much less variability than the individual 

seasons (Figure 5.9). The combined seasons involving the latter seasons (2003 and 2004) 

display a lower trend across the year than those involving the earlier seasons (2001 and 2002). 

 
Figure 5.8. Deseasonalised king prawn CPUE with fitted polynomial trend, 2001-2004. 
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Figure 5.9. King prawn CPUE deseasonalised trend models, 2001-2004. 

5.2.3.3 MODEL FIT AND ERROR ANALYSIS 

Classical decomposition models are obtained by multiplying the deseasonalised trend by the 

seasonal factor for the relevant individual and combined season. The classical decomposition 

models for the individual seasons 2001 to 2004 (Figure 5.10) show that the largest errors 

correspond to the main peaks observed in the original data (Figure 5.3). Further inspection 

reveals that each of these peaks corresponds to the opening of either the Carnarvon-Peron Line 

or the Extended Nursery Area (Table 5.4). Both these areas protect emerging young prawns 

from being caught too early and therefore explain the peaks evident as the fishermen target 

these areas as they are opened. 

 
Figure 5.10. King prawn CPUE classical decomposition model, 2001-2004. 
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Table 5.4. Peaks of weekly averaged king prawn CPUE and corresponding line openings. 

Season Main peak of season Line opening 

2001 Week 5 CP 
2002 Week 9 ENA 

2003 Week 13 ENA 

2004 Week 9 CP(lower) & ENA 

 

Classical decomposition models for the combined seasons (Figure 5.11) show similarity 

with the individual seasons. The largest errors coincide with the peaks in weeks 9 and 13 

corresponding to the opening of the Carnarvon-Peron Line and ENA evident in the individual 

seasons. As expected, the models for the combined seasons show less variability between 

seasons than the individual seasons (Figure 5.12). 

 
Figure 5.11. King prawn CPUE classical decomposition model, combined seasons, 2001-2004. 
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Figure 5.12. King prawn CPUE classical decomposition model, combined seasons, 2001-2004. 

Errors for the classical decomposition models (Figure 5.13) show that the 2001 season 

has the smallest mean error (0.02) and smallest mean percentage error (2.57%) in absolute 

terms. The 2004 season has the largest mean error (0.18) whilst the model for the 2003 season 

has the largest mean percentage error (6.10%). The percentage errors are negative for all five 

seasons reflecting the underestimation of the CPUE by the models. The models for seasons 

2002 to 2004 have similar mean absolute deviations varying from 5.11 to 5.70 whilst that of 

2001 is significantly lower (3.24). The coefficient of determination is smallest for season 2003 

(0.61) and greatest for season 2001 (0.83). The values indicate strong correlation between the 

model and the CPUE for all seasons. 

The mean square errors, mean absolute deviations, mean percentage errors and mean 

absolute percentage errors of the combined seasons are smaller than those of the individual 

seasons, with the exception of the 2001 season. The R-squared values of the combined seasons 

are higher than those of the 2002, 2003 and 2004 individual seasons. Only one of the combined 

seasons (2001-2002) shows a higher R-squared value than the 2001 season. 
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Figure 5.13. Measures of error for the classical decomposition models, 2001-2004. 

5.2.4 COMPARISON OF INDIVIDUAL AND COMBINED SEASONS 

Fitted deseasonalised trend models for the individual seasons of 2001 and 2004 are very similar 

to that of the combined seasons involving the relevant individual season (Figure 5.14). In 

particular, combined season trends for the 2002 season underestimate the individual trend for 

the first half of the season and those of season 2003 overestimate the individual trend at the 

beginning of the season. Similar behaviour can be seen for the classical decomposition models 

of the individual seasons and associated combined seasons (Figure 5.15). The models for the 

individual seasons 2001 and 2004 are well represented by the models for the combined seasons 

involving those seasons. As for the deseasonalised trend models, the models of the combined 

seasons involving season 2002 underestimate the individual model for the first two lunar 

months of the season. The combined season models involving 2003 overestimate the individual 

model for the first two lunar months of the season. 



 

89 

 
Figure 5.14. Deseasonalised trend models for individual and combined seasons, 2001-2004. 

 
Figure 5.15. Classical decomposition models for individual and combined seasons, 2001-2004. 
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5.3 SPATIOTEMPORAL TREND ANALYSIS BY MEDIAN POLISH 

A median polish spatiotemporal trend model was investigated to consider a spatial component 

as well as a temporal component in the trend model. The median polish trend modelling 

procedure can be used for spatiotemporal trend models involving either additive or 

multiplicative spatial and temporal components along with a main effect. The multiplicative 

model was chosen over the additive model after an analysis of the errors from both models. This 

decision was also supported by the multiplicative trend model used in the classical 

decomposition model. Using information from the classical decomposition temporal trend 

modelling process, it was decided to include two temporal components: lunar month and lunar 

phase. There were 8 lunar months with 3 lunar phases in each (no full moon weeks). Two 

spatial components were considered incorporating a longitude and a latitude effect. Three grid 

sizes were considered for the spatial grid, 1 by 1 nmil, 5 by 5 nmil and 10 by 10 nmil by 

aggregating the CPUE shot data by the appropriate grid size. Results indicated that the 5 by 5 

nmil grid gave the model of best fit without oversmoothing.  

5.3.1 MULTIPLICATIVE MEDIAN POLISH MODEL 

A median polish trend model (Figure 5.16) considering only the month and phase temporal 

effects was first considered to compare directly with the classical decomposition trend model. 

The main effect is higher in seasons 2001 and 2002 and lower in seasons 2003 and 2004. The 

month effect showed a peak in the first half of the season and a levelling off at a much lower 

level by the end of the season. This was similar to the shape of the centred moving averages and 

deseasonalised trend model seen previously in the classical decomposition model. The peak 

occurred in the third month for all seasons, and was highest for season 2004. The phase effect 

was highest for the last quarter moon phase for all seasons except 2002 when the maximum 

occurs during the new moon phase. The index for the last quarter moon phase was lowest for all 

season.  

 
Figure 5.16. Multiplicative median polish spatiotemporal trend effects for individual seasons, 2001-2004. 
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A comparison of the temporal trend obtained for the median polish model with the 

classical decomposition model shows that the models perform quite similarly across all four 

individual seasons (Figure 5.17). There are some notable differences in behaviour of the two 

models in a few weeks of all seasons such as the third month of season 2002 where the median 

polish model has higher values than the classical decomposition model. The obvious similarities 

in the two models confirm the suitability of a multiplicative temporal trend of the catch rates. 

The multiplicative median polish model was then extended for the individual seasons to 

include also the spatial effects (longitude and latitude) with spatial grid size 5 by 5 nautical 

miles (Figure 5.18). Once again, many similarities were evident across the seasons. The main 

effect, or mean level of the model, was around 20 for all seasons. Whilst the month effect still 

levelled off at a lower level for the second half of the season, the peak seen previously in the 

third month was replaced by a continuously decreasing effect from the start of the season.  

 

 
Figure 5.17. Multiplicative median polish spatiotemporal trend effects for individual seasons, 2001-2004. 
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Figure 5.18. Multiplicative median polish spatiotemporal trend effects for individual seasons, 2001-2004. 

All seasons showed the lowest annual factors for the first quarter moon week. Seasons 

2001 and 2002 had the largest annual factor for the new moon week and the second largest 

factor for the last quarter week. For 2003 and 2004 these positions were reversed. The 

magnitudes of the annual factors for each lunar phase are quite similar across the seasons and 

similar to those seen in the classical decomposition model. The magnitude of the last quarter 

moon week is approximately 0.8 indicating that the catch rates of these weeks are lower than 

average. The catch rates of the last quarter moon and new moon weeks are above average with 

their effects varying between 1.0 and 1.2. 

Table 5.5. Seasonal index values for individual and combined seasons. 

 Last Quarter (L) New Moon (N) First Quarter (Q) 

Season CD Model MP Model CD Model MP Model CD Model MP Model 
2001 1.114 1.094 1.139 1.106 0.747 0.826 

2002 1.063 1.089 1.127 1.101 0.810 0.834 

2003 1.244 1.231 1.006 1.065 0.750 0.762 

2004 1.172 1.167 1.061 1.039 0.767 0.825 

C12 1.087 1.088 1.141 1.098 0.771 0.837 

C23 1.157 1.134 1.042 1.103 0.802 0.800 

C123 1.158 1.108 1.058 1.104 0.784 0.817 

C34 1.217 1.183 1.018 1.068 0.766 0.791 

C234 1.157 1.148 1.040 1.084 0.803 0.804 

C1234 1.159 1.121 1.052 1.095 0.789 0.815 
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The longitude effect showed a steady increase with increasing longitude for seasons 

2001 to 2003. For 2004, the longitude effect showed a rapid decrease on the eastern side of the 

region. The latitude effect showed a steady decrease with increasing latitude for all individual 

seasons. The combined spatial effect (including latitude and longitude effects) for all four 

individual seasons show the spatial trend is generally lower in the north-western corner and 

increases to the south-eastern corner of the region. 

The longitude effect of seasons 2001 to 2003 only differed significantly from one at the 

edges of the region whilst in the central region it was relatively constant. The longitude effect of 

season 2004 was well above one in the central region, though this was most likely an artefact of 

the small effect values on the eastern edge. Therefore, it was decided to remove the longitude 

effect and only consider the spatial effect due to latitude. The resulting multiplicative median 

polish model involving main, month, phase and latitude effects (Figure 5.20) had values for 

each of the effects as seen previously. This confirmed the exclusion of the longitude effect. 

Median polish model effects were also computed for the combined seasons. They 

displayed similarities across all six combined seasons and their features were similar to those 

seen for the median polish model effects of the individual seasons. 

 
Figure 5.19. Combined spatial effect (latitude and longitude) for individual seasons, 2001-2004. 



 

94 

 
Figure 5.20. Multiplicative median polish spatiotemporal trend effects for individual seasons, 2001-2004. 

5.4 COMPARISON OF TREND MODELS 

For all individual and combined seasons, the temporal effects (lunar month and phase) of the 

median polish model are very similar to the temporal trend seen in the classical decomposition 

model. The latitude effects of the median polish model are quite similar across the seasons 

suggesting an increase in value for decreasing latitude. To compare the models, the standardised 

catch rate variable resulting from the classical decomposition temporal trend model and median 

polish spatiotemporal trend model were compared. 

5.5 STANDARDISED CATCH RATE VARIABLE 

The classical decomposition temporal trend model and median polish spatiotemporal  trend 

model obtained for the individual and combined seasons can be used to standardise (detrend and 

deseasonalise) the CPUEvd and CPUEgd variables by dividing the CPUE values by the relevant 

model. We call this new variable the standardised CPUE and denote it by CPUEs.  

Summary statistics of the CPUEsvd (Table 5.6) and CPUEsgd (Table 5.7) variables for 

both standardising methods (classical decomposition and median polish) show that both CPUEs 

variables have a mean of approximately one for all individual seasons. A unity mean was 

expected from the fitting of multiplicative models. The means of the data sets detrended by 

classical decomposition are less variable across seasons (vd: 0.97-0.99, gd: 1.04-1.05) whilst 

those detrended by median polish are more variable across seasons (vd: 0.75-1.02, gd: 0.80-

1.06). The medians are slightly lower than their associated means, reflecting the positive 
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skewness of each data set. The variances of the data sets detrended by median polish are lower 

than the corresponding data set detrended by classical decomposition. The maxima of CPUEs 

data sets aggregated by vessel (2.97-5.24) are much lower than those aggregated by grid (6.08-

11.12). The minima of all data sets are close to zero.  

There is no obvious pattern of skewness for individual seasons or detrending methods. 

However, the skewness of data sets aggregated by vessel (0.91-2.17) is slightly lower than those 

aggregated by grid with values varying from (1.71-2.96). Kurtosis values, measuring the 

peakedness of the distribution are also higher for data sets aggregated by grid. 

Table 5.6. Summary statistics of daily CPUEsvd, CD and MP models. 

 2001 2002 2003 2004 
 CD MP CD MP CD MP CD MP 

Mean 0.98 0.93 0.99 0.75 0.99 1.02 0.97 0.78 
Median 0.91 0.88 0.89 0.69 0.83 0.91 0.91 0.73 

Variance 0.20 0.14 0.30 0.11 0.40 0.28 0.30 0.12 

Cv 0.46 0.40 0.55 0.45 0.63 0.52 0.56 0.44 

Skewness 1.07 1.05 1.45 2.17 2.04 1.67 1.08 0.91 

Kurtosis 2.04 2.53 3.95 15.29 6.16 4.93 1.83 2.75 

Min 0.03 0.03 0.03 0.08 0.05 0.08 0.03 0.02 

Max 3.70 2.97 4.81 5.41 5.24 4.75 3.85 3.38 

Count 3344 3344 3274 3274 3169 3169 2928 2928 

 
Table 5.7. Summary statistics of daily CPUEsgd, CD and MP models.  

 2001 2002 2003 2004 
 CD MP CD MP CD MP CD MP 

Mean 1.05 0.98 1.05 0.80 1.04 1.06 1.04 0.85 
Median 0.94 0.89 0.92 0.73 0.87 0.95 0.93 0.78 

Variance 0.36 0.28 0.42 0.20 0.48 0.39 0.41 0.20 

Cv 0.57 0.54 0.62 0.55 0.67 0.59 0.61 0.53 

Skewness 1.82 2.55 2.24 2.96 2.28 2.35 1.98 1.71 

Kurtosis 7.69 23.78 13.17 27.96 9.80 15.53 9.70 7.86 

Min 0.04 0.03 0.05 0.04 0.05 0.05 0.03 0.02 

Max 8.18 11.12 9.42 9.13 8.14 10.68 8.68 6.08 

Count 7981 7981 7205 7205 6422 6422 6116 6116 

 

The aim of standardisation is to produce a data set that enables the comparison of catch 

rates across the season to be used in a space-time geostatistical model. Standardisation removes 

the large-scale variability which may involve a mean and variance that varies spatially, 

temporally or both. It appears that the classical decomposition detrending process has resulted in 

a standardised variable that is more consistent across seasons. That is, variables from one season 

can be compared with another season. It is also necessary to consider how the standardised 

catch rate variable varies across space and time within each season.  
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5.5.1 VARIATION WITHIN SEASON 

The CPUE values displayed a temporal trend across each season, involving a peak at the 

beginning of the season and a levelling off at a much lower level by the end of the season 

(Figure 5.21, top row). The variability of the catch rate values are higher in the first few months 

and significantly lower on the second half of the season. Standardising by classical 

decomposition results in a variable with a mean that varies about one across each season (centre 

row). The variability of the catch rate standardised by classical decomposition is more even 

across the weeks of the season. Spatiotemporal median polish produces a standardised catch rate 

with mean below one for most weeks of the four individual seasons, with seasons 2002 and 

2004 showing slightly lower means than the other seasons. The variability of the median polish 

standardised variable is lower across the season than the variable standardised by classical 

decomposition. 

  
Figure 5.21. Mean and standard deviation of CPUE (top row), CPUEs(CD) (centre row) and CPUEs(MP) 
(bottom row) values, 2001-2004. 

5.5.2 VARIATION ACROSS STUDY REGION 

The CPUE values showed a decrease in average value and variability for increasing latitude and 

increasing longitude (Figure 5.22, top row) for each individual season. Standardising by 
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classical decomposition does not change these relationships, except that the mean and 

variability for each season now varies around one and there is reduced variability between the 

four individual seasons. Standardising by median polish results in a variable whose mean is 

equal to or less than one, and almost constant for varying latitude within each season. However 

each season is constant at a different level. For varying longitudes, the catch rate standardised 

by median polish show greatest variability for the eastern longitude. 

 

 
Figure 5.22. Mean and standard deviation of CPUEs by latitude and longitude, 2001-2004. 

5.6 CHOICE OF STANDARDISATION METHOD 

The classical decomposition detrending method produced a standardised catch rate varying 

about a mean level of one with variability across the season and spatial region varying between 

zero and one. Means and variances for the individual seasons were quite similar. In contrast, the 

standardised variable obtained via spatiotemporal median polish detrending showed less 

variability across the season and region with a mean below one. Whilst the individual seasons 

showed similarities in mean values and variability across each season, they also displayed 
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significant differences in their mean values at varying latitudes. Therefore, it was decided to 

utilise the standardised catch rate obtained via classical decomposition. 

The standardisation of the catch rates for a combined season was also investigated by 

alternative methods which produced almost identical results. The catch rates of an individual 

season could be standardised by the trend model for the individual season and then combined 

with the standardised catch rates of other individually standardised seasons to produce a single 

combined season data set. Alternatively, the parameters of these individual season trend models 

could be averaged to produce an ‘average’ model for the combined season, which was then used 

to detrend all data within the combined season data set. Finally the combined data for all 

relevant seasons could be used to determine the trend model, which was then used to detrend all 

records within that data set. In this study, the combined season was detrended by this final 

method, although the other ways are just as valid. 

The aim in standardising catch rates was to produce a model of spatiotemporal 

continuity of the catch rates which could then be utilised, if appropriate, to forecast the catch 

rate of a subsequent season. This would produce estimates of the standardised catch rate for the 

subsequent season, which would then be transformed to catch rate estimates via the global 

(classical decomposition) trend. As the trend model for a future season is unknown, it was 

decided to use the trend model obtained for a relevant combined season. The global trend model 

for the combined season 2001-2003 was chosen as a (estimated) measure of the trend model of 

the 2004 season based on its similarities with all three individual seasons involved. Moreover 

these three seasons occur directly before 2004 and with no obvious changes in management for 

the 2004 season there is no reason to expect a significant change in the trend of the catch rates. 

The trend model would be used to multiply estimates or simulations of standardised catch rates 

obtained via geostatistical methods for the 2004 season to produce catch rate values. 

Furthermore, as the geostatistical estimation and simulation processes to be utilised required 

conditioning or initialising data from the 2004 season, these conditioning data could be 

transformed to standardised catch rates using the global trend model of the 2001-2003 combined 

season as an estimate of the unknown 2004 trend. 

5.7 NORMAL SCORES TRANSFORMATION OF ADJ VARIABLE 

As the geostatistical simulation procedure SGS-ST to be used requires data to be 

(approximately) normally distributed, the normal scores transformation method was employed 
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to yield CPUEsNvd and CPUEsNgd values from the CPUEsvd and CPUEsgd values that follow 

a standard normal distribution. 

5.8 CHAPTER SUMMARY 

Temporal trend models obtained by classical decomposition of the weekly CPUE data show 

great similarity among the individual and combined (consecutive) seasons of 2001 to 2004. A 

median polish spatiotemporal trend model confirmed the temporal trend of the classical 

decomposition model. The classical decomposition temporal trend model was used to detrend 

and deseasonalise the catch rate variable to obtain a standardised catch rate variable with unity 

mean. This method of standardisation has not previously been applied to the prawn catch rates 

and makes use of the temporal trend evident in the catch rates over the season. The modelling 

framework of this study to predict catch rates for the 2004 season will use the temporal trend 

model of the 2001-2003 seasons as an estimate of the temporal trend for the 2004 season. This 

is justified by the persistence of temporal trends across the 2001-2003 seasons and the 

expectation of a similar trend in the 2004 season with no major changes in management.  
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CHAPTER 6 

SPATIAL CORRELATION OVER TIME 

6.1 INTRODUCTION 

The global trend of the catch rate data has been modelled and used to produce a standardised 

catch rate to investigate the spatiotemporal continuity of the catch rates across the season. 

Removal of the global trend allows the spatiotemporal continuity of the catch rate to be 

modelled without the dominance of the global trend. 

Since the goal of spatiotemporal geostatistical analysis is to predict values where no 

data have been collected, the tools and models will only work on spatiotemporally dependent 

data. If data are spatiotemporally independent, there is no possibility to predict values at 

unsampled locations or times. Therefore, before considering the (standardised) catch rates in a 

spatiotemporal model, it is useful to consider the spatial correlation of the (standardised) catch 

rates over time to see if there is temporal persistence of the spatial behaviour of the catch rates. 

6.2 SPATIAL CONTINUITY OF CATCH RATES WITHIN SEASON 

Spatial variography of (lunar) weekly sets of the daily king prawn catch rates (aggregated by 

vessel) had previously been undertaken and showed that the catch rates displayed spatial 

continuity (Mueller et al., 2008). Semivariograms of the king prawn CPUE were modelled with 

spatial variograms involving a nugget effect and one spherical structure. The variograms of 

individual seasons 2001 to 2004 showed high relative nuggets in the weeks corresponding to the 

new moon lunar week. These weeks also displayed the shortest range. 

Standardised catch rate data aggregated daily by either vessel or 1 by 1 nmil grid were 

grouped by lunar week in order to conduct spatial variogram analysis of the associated CPUEs 

variables. There were 24 weeks with data over 8 lunar months as there were no data in the full 

moon weeks. The adjusted variables were positively skewed so variograms of their normal 

scores were also investigated as some geostatistical methods require normally distributed data. 

Omnidirectional semivariograms of CPUEsvd, CPUEsgd, CPUEsNvd and CPUEsNgd were 

computed using the GSLIB routine gamv, with an example of the parameter file shown in 

APPENDIX G.1. No anisotropy was considered due to the shape of the study region. 

The standardised experimental semivariograms (semivariogram divided by the 

variance) for the CPUEsvd and CPUEsgd catch rate variables of the 2004 season are shown for 
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comparison (Figure 6.1). There is clear evidence of spatial dependence of the standardised catch 

rate from their semivariograms. The first five lunar months (March-July) show the clearest 

evidence of spatial autocorrelation with most of the weeks in the last three lunar months of the 

season showing much more variability in their spatial structure. The other seasons (2001 to 

2003) also show similar evidence of spatial autocorrelation (APPENDIX H.1).  

Experimental semivariograms of the CPUEsvd and CPUEsgd variables for each lunar 

week show similarities across most of the lunar weeks. This behaviour is also seen in other 

seasons (APPENDIX H.1). There is a steady increase in variogram value for increasing lag 

spacing, with the CPUEsgd data showing higher variogram values for almost all lag spacings 

and most weeks. A levelling off of both CPUEsvd and CPUEsgd variograms is evident between 

the 10 nmil and 20 nmil lag spacing. The pattern of a steady increase in variogram value for 

increasing lag spacing combined with a levelling out of the variogram at large lag spacings is 

indicative of the spatial continuity of the variable. The shape of the semivariograms of the 

CPUEsvd and CPUEsgd variables across the 24 weeks of each season are similar suggesting the 

spatial continuity of the catch rate is both constant and persistent across a season.  

The semivariogram values of the CPUEsgd variable are larger at lower lag spacings 

than those for the corresponding CPUEsvd variable for all lunar weeks of the individual seasons 

2001-2004, . The CPUEsgd semivariograms are also much smoother than the corresponding 

CPUEsvd semivariograms. These characteristics can be attributed to the aggregation by grid for 

the CPUEsgd data where the averaging process has inflated the small-scale variability of the 

data. Overall the semivariograms for the gridded data are less variable than the data aggregated 

by vessel. The spatial autocorrelation of the data aggregated by vessel is more apparent with 

more variability evident for increasing spatial separation.  
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Figure 6.1. Standardised spatial experimental semivariograms of CPUEsvd (blue) and CPUEsgd (red) for 
the lunar weeks of 2004. 
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Consecutive weeks of the standardised catch rates were investigated to examine the 

persistence of spatial continuity over time. In order to compute spatial correlations of catch rates 

at various times, the original catch rate values were averaged over a 5 by 5 nmil grid for each 

(lunar) week, resulting in 48 spatial grid locations. This grid size was used to enable the 

comparison for pairs of consecutive weeks in a given season as well as for comparative weeks 

of the four individual seasons. 

Tjøstheim’s index is a numerical measure to compare if the location of the standardised 

catch rate ranked i in one week is the same as, or close to, the location ranked i for the 

subsequent week (Tjøstheim, 1978). Positive spatial association of the standardised catch rates 

is seen for many pairs of consecutive weeks in the first half of the four individual seasons 

(Figure 6.2, top row). However, not all of these quotients are statistically significant at the 5% 

confidence level. Season 2002 shows the most number of consecutive weeks with significant 

spatial association. There are few pairs of significant positive correlation for the second half of 

all seasons. 

Spearman’s rank correlation was also considered for pairs of consecutive weeks in each 

season as a measure of the correspondence between the rankings of the spatial location for each 

week. The rank correlation does not require the dependence between variables to be represented 

by a linear relationship. The linear correlation coefficient, which is sensitive only to a linear 

relationship between two variables, is also computed to assess the linear dependence of the 

catch rates of consecutive weeks. Most of the pairs of consecutive weeks in seasons 2002, 2003 

and 2004 showed positive rank and linear correlation (Figure 6.2, middle and bottom rows). 

Season 2001 showed positive correlations in the first half of the season but mainly negative 

correlations (rank and linear) in the second half of the season. 
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Figure 6.2. Tjostheim’s Index of Spatial Correlation (top row), Spearman’s Rank Correlation (middle 
row) and Linear Correlation Coefficient Coefficient (bottom row) of standardised catch rates of adjacent 
weeks, 2001-2004. Significant Tjostheim’s indices shown in bold. 

6.3 SPATIAL CONTINUITY OF CATCH RATES ACROSS 
SEASONS 

The spatial structure evident in the semivariograms of the catch rates standardised by vessel 

(CPUEsvd) and grid (CPUEsgd) was compared across the individual seasons 2001 to 2004 for 

each of the lunar weeks. For CPUEsvd across the four individual seasons (Figure 6.4) the weeks 

of the New Moon and First Quarter show great similarity for the four seasons. The Last Quarter 

weeks (left column) of the first four months shows the greatest variation between seasons as one 

or more seasons in each of these weeks displays significantly higher variogram values for all lag 

spacings. This is attributed to the number of high catch rate values evident in these weeks as the 

Carnarvon-Peron Line and Extended Nursery Area are opened to fishing. As noted previously, 

the variograms of the last three lunar months show little structure for all seasons. This is most 
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likely due to the small number of data available for each of these weeks. In a similar manner, 

the spatial structure of the lunar weekly semivariograms of CPUEsgd from corresponding 

weeks of each season showed consistent behaviour across the four individual seasons (Figure 

6.5). 

An analysis of Pearson’s, rank and spatial correlation was undertaken to assess the 

relationship of catch rates of comparative weeks between seasons (Figure 6.3). As this required 

similar spatial locations over the various weeks, catch rate data aggregated on a 5 nmil by 5 

nmil grid were used. Many positive correlations were seen in the weeks of the first half of each 

season. Correlations for the second half of each pair of seasons were more variable, with both 

positive and negative correlations observed. This was partially due to the lack of data in many 

of the spatial grid locations considered. 

 

  
Figure 6.3. Tjostheim’s Index of Spatial Correlation (A), Spearman’s Rank Correlation (rS)and Pearson’s 
Correlation Coefficient Coefficient (r) of standardised catch rates aggregated by 5 nmil block for 
comparative weeks in seasons 2001-2004. Significant Tjostheim’s indices shown in bold. 
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Figure 6.4. Standardised spatial experimental semivariograms of CPUEsvd for the lunar weeks of the 
individual seasons 2001-2004. 
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Figure 6.5. Standardised spatial experimental semivariograms of CPUEsgd for the lunar weeks of the 
individual seasons 2001-2004. 
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6.4 SPATIAL VARIOGRAM MODELLING 

For the weeks displaying evidence of spatial autocorrelation, the experimental semivariogram 

was modelled by a semivariogram typically involving a nugget and one spherical structure. A 

few weeks also required a second spherical structure. The semivariogram model parameters 

fitted to the experimental semivariograms of the CPUEsvd and CPUEsgd variables are shown in 

APPENDIX H.2. 

The relative nugget of the models of the CPUEsvd data sets are smaller in the first few 

months of the season with many models increasing to almost pure nugget in the final weeks of 

the season (Figure 6.6, left). The CPUEsgd data sets also show an increase in relative nugget 

across the season (Figure 6.6, right). The relative nuggets of the CPUEsvd data sets are 

generally smaller at the beginning of the season than those of the CPUEsgd data sets.  

 

 
Figure 6.6. Relative nugget of fitted spatial semivariogram models of CPUEsvd (left) and CPUEsgd 
(right) for the lunar weeks of the individual seasons 2001-2004. 

The range of the semivariogram is the distance in which the difference of the variogram 

from the sill becomes negligible. The ranges seen in the semivariogram models for both the 

CPUEsvd and CPUEsgd variables vary across the season from 2 to 30 nmil (Figure 6.7). 

 

 
Figure 6.7. Range of fitted spatial semivariogram models of CPUEsvd (left) and CPUEsgd (right) for the 
lunar weeks of the individual seasons 2001-2004. 

The relative nuggets of the CPUEsvd and CPUEsgd variables for a given season vary 

across the season (Figure 6.8). The catch rates aggregated by vessel consistently show smaller 

relative nuggets than those aggregated by grid for the same week. This was observed in the 

experimental semivariograms (Figure 6.1) and can be attributed to the support effect due to 
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aggregation over a 1 nmil by 1 nmil grid, which removes the small-scale spatial variability of 

the data. Comparing ranges for the two methods of catch rate aggregation (Figure 6.9) shows 

similarities between the two with no method demonstrating an obvious pattern of smaller or 

greater ranges. 

 

 
Figure 6.8. Relative nugget of fitted semivariogram models of CPUEsvd (black) and CPUEsgd (grey) for 
the lunar weeks of the individual seasons 2001-2004. 

 

 
Figure 6.9. Range of fitted semivariogram models of CPUEsvd (black) and CPUEsgd (grey) for the lunar 
weeks of the individual seasons 2001-2004. 
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aggregated by vessel. The spatial structure of CPUEsvdN and CPUEsgdN across the four 

individual seasons is similar to that seen for the standardised catch rates (APPENDIX H.3).  

 
Figure 6.10. Standardised spatial semivariograms of CPUEsvdN (blue) and CPUEsgdN (red), lunar weeks 
of 2004. 
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6.6 CHAPTER SUMMARY 

Moderate positive spatial correlation is evident between the standardised catch rates (aggregated 

by vessel or grid) in adjacent weeks of all four individual seasons 2001-2004. Weak to moderate 

positive spatial correlation is also seen between comparable weeks in different seasons. Spatial 

continuity of standardised catch rates is evident in most lunar weeks of each season. Moreover, 

the pattern of spatial continuity, as measured by semivariogram, is similar throughout each 

season and across the various seasons. Semivariograms of standardised catch rates aggregated 

by vessel show a smaller discontinuity due to randomness at the origin than the catch rates 

aggregated by grid. For the data aggregated by grid the larger semivariogram values for 

separation distances of up to 10 nmil are attributed to the support effect resulting from the 

aggregation process. The temporal persistence of spatial continuity within each season and 

across the seasons is indicative of spatiotemporal autocorrelation of the standardised catch rates 

and supports the analysis via spatiotemporal geostatistical methods. 
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CHAPTER 7 

SPATIOTEMPORAL VARIOGRAPHY 

7.1 INTRODUCTION 

The spatial continuity of weekly data sets and the temporal persistence of their behaviour, seen 

in the previous chapter, supports the use of spatiotemporal geostatistical methods to analyse the 

spatiotemporal continuity of the king prawn catch rate data. Modelling of the spatiotemporal 

continuity of the standardised catch rate is presented in this chapter by computing and modelling 

spatiotemporal semivariograms. As outlined previously, the modelling framework of this study 

requires a model of spatiotemporal continuity for the 2004 season based on the 2001-2003 

seasons. This model of spatiotemporal continuity can then be used to facilitate geostatistical 

spatiotemporal estimation and simulation of the king prawn catch rate data. The spatiotemporal 

variography of the 2004 season is shown in this chapter for comparison and completeness but 

will not be used in the subsequent estimation and simulation processes. 

7.2 SPATIOTEMPORAL VARIOGRAPHY OF INDIVIDUAL 
SEASONS 

Spatiotemporal semivariograms were computed to characterise the spatiotemporal continuity of 

the standardised catch rate variable as a measure of the dissimilarity of data pairs as the (spatial 

and/or temporal) separation between them increases. Experimental semivariograms were 

calculated for each individual season (2001-2004) using a temporal lag spacing of 1 day and a 

spatial lag spacing of 0.5 nmil after investigating various temporal and spatial lags. The number 

of lags was chosen to allow a maximum temporal lag of up to 30 days and a maximum spatial 

lag up to 30 nmil. Directional and omnidirectional semivariograms were considered for the 

spatial plane. The standardised catch rate values, and their normal scores, of both daily 

aggregation methods were considered for spatiotemporal variography. The experimental 

semivariograms were computed using the GSLIB gamvmod.exe program, with parameter file as 

shown in APPENDIX G.2, and post-processing in MATLAB. 

7.2.1 EXPERIMENTAL SPATIOTEMPORAL VARIOGRAMS 

Experimental spatiotemporal semivariograms for the CPUEsvd data of the individual seasons 

(Figure 7.1) demonstrate the presence of spatiotemporal continuity. In the absence of 

spatiotemporal autocorrelation, the mathematical expectation of the semivariogram is the 
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sample variance and the variogram would appear flat. Omnidirectional semivariograms were 

first considered for the spatial direction. The individual seasons show great similarity, with less 

evidence of spatial structure in season 2003. There is a relatively stable increase in value with 

increasing temporal lag and increasing spatial lag suggesting spatiotemporal autocorrelation that 

is higher for short spatial distances and small temporal separations, and decreases as the 

distance and time between data points increases. The maximum value of the colour scale is set 

to the variance of each data set to enable comparison of spatiotemporal continuity between 

seasons. It must be remembered that their variances of the CPUEsvd data vary between 0.200 

and 0.395 (Table 7.1). 

 
Figure 7.1. Experimental spatiotemporal semivariograms of CPUEsvd for individual seasons 2001-2004. 

Table 7.1. Standardised catch rate variance for individual seasons, 2001-2004 

Season 2001 2002 2003 2004 

CPUEsvd 0.200 0.297 0.395 0.296 

CPUEsgd 0.423 0.453 0.587 0.414 

 

The range of the semivariogram is interpreted as the distance beyond which pairs are no 

longer spatially or temporally correlated. At this distance, the variogram plateaus at a value 

known as the sill. The temporal range of the four individual seasons is between 10 to 15 days, 

and the spatial range is between 10 and 20 nmil. Investigation of the spatiotemporal 
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semivariograms in all seasons beyond these ranges show a levelling off in the temporal 

direction. However, in the spatial direction, the semivariogram values increase and fluctuate 

quite dramatically. The semivariogram eventually returns to the sill level around 40 nmil 

separation (not shown), which is almost the maximum spatial separation distance for the data. A 

possible explanation for this peak in variability, between 20 and 40 nmil separation, before 

returning to the sill is the use of data pairs from two distinct fishing areas in the north and south 

of the region. Whilst these regions may exhibit similar spatiotemporal continuity within their 

own region, the use of data pairs from the two ends of the fishery may not be a reasonable 

assumption of stationarity. This amounts to a decision of quasi-stationarity for spatial separation 

less than 20 nmil (Armstrong, 1998). 

The experimental semivariograms of the four seasons show a discontinuity at the origin, 

referred to as the nugget component of the variance, which represents the measurement error or 

microscale variability of the variable at distances shorter than the smallest distance among 

samples. All nugget effects are less than 0.1. The nugget accounts for approximately 25-30% of 

the total variability given by the overall sill. This variability at small spatial and temporal 

separations indicates that the fine-scale variability of the catch rates is not fully explained by the 

semivariogram models. This variability can be partially attributed to the aggregation of catch 

rates. 

Semivariograms of the CPUEsgd data (Figure 7.2) also show increasing value with 

increasing temporal and spatial lags, with more erratic structure in season 2003. The variances 

of the data aggregated by grid are higher than those aggregated by vessel (Table 7.1) reflecting 

the higher values evident in their experimental spatiotemporal semivariograms. The CPUEsgd 

semivariograms show much higher relative nugget effects and are smoother than those of the 

CPUEsvd data. This is attributed to the smoothing process of aggregating catch and effort data 

over a 1 by 1 nmil grid. When data are averaged over space and/or time there is a smoothing of 

the regionalised variable as the space or time window becomes larger (Chiles & Delfiner, 1999). 
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Figure 7.2. Experimental spatiotemporal semivariograms of CPUEsgd for individual seasons 2001-2004. 

7.2.1.1 DIRECTIONAL SEMIVARIOGRAMS 

Directional spatial semivariograms were considered to investigate the possibility of anisotropy. 

A variable is said to be spatially anisotropic when its pattern of spatial variability changes with 

direction (Goovaerts, 1997). Two directions were considered, the first was the North-South 

(NS) direction and the second was the East-West (EW) direction, including a 45 angular 

tolerance on each side of the specified direction. These directions were chosen due to the span 

of the fishing region covered by the catch rate data. There exists a relatively small range of 

separation distances in the East-West direction with a maximum separation distance of around 

20 nmil. In contrast, in the North-South direction, the span of the fishing region resulted in 

separation distances up to 60 nmil, although the level of spatial correlation had reached its 

plateau at these larger separation distances between catch rates at the northern and southern 

extremes of the fishery.  

The semivariogram for the NS direction of the CPUEsvd data set (Figure 7.3) showed a 

similar pattern of spatiotemporal behaviour to that exhibited by the region as a whole (Figure 

7.1). However, the EW direction revealed a more erratic pattern of variability (Figure 7.4). 

Comparison of the omnidirectional semivariogram with those of the two directions considered 

shows that all three semivariograms are similar for spatial separation distances less than 15 nmil 

and temporal separations less than 15 days. The largest observable differences occur for spatial 

separations greater than 15 nmil, regardless of temporal separation. This spatial separation 
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occurs when one of the data pairs is within, and the other is outside, the ENA. Higher catch 

rates typically occur within the ENA resulting in an increased measure of dissimilarity with data 

located outside the ENA. This results in higher semivariogram values for these data pairs, and 

explains the semivariogram seen for the EW direction. These directional semivariograms 

support the use of the omnidirectional semivariogram as a measure of spatiotemporal continuity 

of the catch rates, and the assumption of quasi-stationarity for spatial separation distances less 

than 15 nmil. 

 

 
Figure 7.3. NS Directional spatiotemporal semivariograms of CPUEsvd for individual seasons 2001-
2004. 
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Figure 7.4. EW Directional spatiotemporal semivariograms of CPUEsvd for individual seasons 2001-
2004. 

7.2.1.2 RELATIVE SEMIVARIOGRAMS 

Heteroscedasticity is a change in the local variability of data over the study area. The 

proportional effect is a particular form of heteroscedasticity where the local variance of data is 

related to the local mean. For positively skewed data sets, such as the king prawn catch rates, 

the local variance increases with the local mean. When combined with preferential sampling of 

high-valued areas, due to targeted fishing, a proportional effect may make the sample 

semivariogram erratic as the clustering of high values means that the data pairs that contribute 

to small lags come mainly from high-valued areas. The corresponding lag mean is large and the 

lag variance is also large. As the separation distance increases, the data that contribute to the lag 

become more representative of the entire area. This trend in lag variance results in 

overestimating the semivariogram value at short lags and hence also its relative nugget effect.  

The general relative semivariogram scales each semivariogram value by a function of 

the lag mean, typically the squared lag mean is used for positively skewed distributions. The 

pairwise relative semivariogram scales each lag increment by the squared average of the head 

and tail values, which reduces the influence of each large value. Relative semivariograms are 

not substitutes for the traditional semivariogram but they can provide a clearer picture of the 

spatiotemporal continuity, such as the relative nugget effect and the range. In a spatial-only 

setting they have shown to reveal spatial structure (correlation) better when data are sparse, 
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skewed or clustered (Deutsch & Journel, 1998). Due to the denominators applied in each case, 

relative semivariograms are limited to use with strictly positive variables. 

The general relative semivariogram of the standardised catch rate aggregated by vessel 

(Figure 7.5) is almost identical to its traditional semivariogram (Figure 7.1) whilst its pairwise 

relative semivariogram reveals a much smoother pattern of spatiotemporal continuity (Figure 

7.6). Similarly, the relative semivariogram of the gd data (Figure 7.7) reveals a much clearer 

picture of the spatiotemporal continuity than its traditional semivariogram (Figure 7.2). The 

pairwise relative semivariogram of the gd data has removed much of the variability evident in 

the traditional semivariogram (Figure 7.8) indicating little evidence of spatiotemporal 

continuity. The general relative or pairwise relative semivariograms of the CPUEsgd and 

CPUEsvd data sets can be used to help infer the semivariogram model parameters including 

nugget effect, range and type of structure (eg, spherical or exponential). 

 

 
Figure 7.5. General relative semivariograms of CPUEsvd for individual seasons 2001-2004. 
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Figure 7.6. Pairwise relative semivariograms of CPUEsvd for individual seasons 2001-2004. 

 

 
Figure 7.7. General relative semivariograms of CPUEsgd for individual seasons 2001-2004. 
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Figure 7.8. Pairwise relative semivariograms of CPUEsgd for individual seasons 2001-2004. 

7.2.1.3 SEMIVARIOGRAM OF THE LOGARITHMS 

The semivariogram of logarithms is the traditional semivariogram computed on the natural 

logarithms of the original variables. It requires that the original values are strictly positive. 

Logarithmic semivariograms are considered for use in a lognormal kriging process. This is a 

nonlinear kriging algorithm which amounts to applying a linear kriging process (SK or OK) to 

the nonlinear log transform of the data.  

The logarithmic semivariogram of the vd data is similar to its traditional variogram, 

with the most noticeable difference in season 2003. The appearance of the logarithmic 

semivariogram did not show any significant improvement over the traditional semivariogram 

and therefore was not considered further for modelling of the spatiotemporal continuity of the 

catch rates. Although it will not be considered further in this study, it is recognised that data are 

often log-transformed in fisheries modelling, and therefore it is recommended that the use of 

log-transformed catch rate data is considered in future research of this method. 
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Figure 7.9. Experimental semivariograms of logarithms of CPUEsvd for individual seasons 2001-2004. 

7.2.2 MODELLING OF SPACE-TIME CONTINUITY 

Having established the pattern of spatiotemporal continuity by calculation of the experimental 

semivariogram, modelling of the semivariogram (in continuous terms) is necessary for 

geostatistical estimation and simulation so that any spatiotemporal lag can be considered. A 

model also allows inference to be drawn on various properties of the modelled relationship, 

such as its (effective) range and asymptotic variance (sill). The semivariogram can be modelled 

with any conditionally negative definite function. Whilst it is possible to propose a model and 

test its permissibility, in practice it is customary to use one of a set of basic models that are 

known to be permissible. This is a relatively straightforward practice in modelling spatial 

variograms as there are many such models in common use and these models may be combined 

linearly to form complex models. However, the use of spatiotemporal semivariogram models is 

less common, although it has become an active area or research in the past decade (Cressie & 

Huang, 1999; De Iaco et al., 2001; Gneiting, 2002; De Iaco, 2010). Tools for fitting the space-

time variogram to experimental variograms remain poorly developed (Heuvelink & Griffith, 

2010).  

Whilst automatic fitting procedures can be used to achieve an optimal set of parameters, 

the choice of model to be fitted and the constraints of their parameters make this procedure 

difficult. Visual inspection of the experimental spatiotemporal semivariogram and its associated 
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marginal spatial and temporal variograms can reveal the most suitable model to be used and the 

basic structures to be included. For the catch rate data, the level of noise evident in the 

experimental semivariograms made automatic fitting problematic. Therefore, the choice of 

model and parameters was undertaken though a manual fitting process to ensure the salient 

features of the experimental semivariograms were captured by the semivariogram models. The 

relative semivariograms were used to help infer the model parameters.  

The metric, linear, product and product-sum models were considered as semivariogram 

models. The metric and product model required a global sill equal to the maximum of the spatial 

and temporal sills. In addition the metric model assumes the same structure in all directions. The 

linear and product-sum models allowed different forms and sill in the temporal and spatial 

directions. The global sill of the linear model is determined by the spatial and temporal sills 

whilst the product-sum model has more flexibility for the overall sill. All four models require 

investigation of the marginal spatial and temporal semivariograms. 

7.2.3 MARGINAL SEMIVARIOGRAMS 

Marginal semivariograms can be extracted from the relevant experimental spatiotemporal 

semivariogram. The marginal spatial semivariogram is the semivariogram obtained for zero 

temporal lag spacing. Similarly, the marginal temporal semivariogram is the semivariogram 

obtained for zero spatial lag spacing. In practice an almost zero (<0.5 nmil) spatial lag spacing 

is used if the data are not gridded, as is the case for the vd data. 

Marginal semivariograms for the standardised data aggregated by vessel (Figure 7.10, 

top) show similar structure between the four individual seasons, although season 2003 shows 

much more variability in its temporal semivariogram. The marginal spatial semivariograms 

show a nugget effect of around 0.1 and then a gradual increase in values until they level out at a 

range of about 20 nmil. The nugget effect for the temporal semivariograms is around 0.1 and a 

range of around 10 days is evident. 

For the data aggregated by grid (Figure 7.10, bottom) the spatial variograms show very 

similar structure across the seasons for each year. The relative nugget of both spatial and 

temporal variograms appears higher than for the data aggregated by vessel. Whilst the range of 

the temporal variograms appears similar, the range of the spatial variograms is shorter than for 

the data aggregated by vessel. 
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Figure 7.10. Marginal spatial and temporal semivariograms of CPUEsvd and CPUEsgd for the individual 
seasons 2001-2004. 

The number of pairs for the marginal spatial semivariograms (Figure 7.11) is similar for 

all seasons of the vd data with a peak at the 2 nmil lag spacing. For the gd data, the peak occurs 

at the 4 nmil lag spacing. Similarly the number of pairs for the marginal temporal 

semivariograms has a peak at the 1 day lag spacing for both methods of aggregation. After these 

peaks occur there is steady decline in the number of pairs associated with each lag spacing. The 

peaks of the number of pairs are higher for the gd data than the vd data.  
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Figure 7.11. Number of pairs for marginal semivariograms of CPUEsvd and CPUEsgd for individual 
seasons 2001-2004. 

Variogram models were fitted to the marginal spatial and temporal (traditional) 

variograms of the vd and gd catch rate data (Table 7.2). The models were fitted manually to 

reduce the effect the outliers and to take into account the pattern of continuity seen previously in 

the experimental semivariograms. For instance, in the 2003 marginal spatial variogram of the vd 

data, the nugget effect appeared quite high but at subsequent temporal lags it was lower.  

Although the marginal semivariogram model parameters were fitted manually to the 

experimental semivariograms, it is appropriate to consider statistical criteria to justify the choice 

of a particular model. Nugget effects were included in all models. Exponential and spherical 

structures were compared by the weighted sum of squares (Table 7.3). In some cases two 

spherical structures were required. Temporal lags up to 15 days and spatial lags (0.5 nmil 

interval) up to 15 nmil were used in the calculations of the weighted sum of squares. Weights 

used were the number of pairs for the lag standardised by the total number of pairs to enable 

comparison between the models for the vd and gd catch rate data. The variogram models for 

season 2003 showed the poorest fits. The similarities between each season confirm the 

persistence of spatial and temporal continuity in the catch rates. 
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Table 7.2. Marginal spatial and temporal semivariogram model parameters of CPUEsvd and CPUEsgd 
for individual seasons 2001-2004. 

Season 2001 

vd 

2001 

gd 

2002 

vd

2002 

gd

2003 

vd

2003 

gd

2004 

vd 

2004 

gd
Spatial model         

Nugget 0.04 0.17 0.06 0.18 0.07 0.18 0.06 0.15 

1st structure         

Type sph exp sph exp sph exp sph exp 

Range 1 18 2 15 20 13 10 15 

Sill 0.025 0.12 0.03 0.09 0.1 0.09 0.05 0.16 

2nd structure         

Type sph  sph    sph  

Range 15  20    20  

Sill 0.03  0.03    0.1  

Temporal model         

Nugget 0.04 0.17 0.06 0.18 0.12 0.18 0.07 0.15 

1st structure         

Type exp sph exp sph exp sph sph sph 

Range 5 15 8 8 10 6 10 12 

Sill 0.09 0.12 0.16 0.15 0.17 0.15 0.1 0.19 

 

Table 7.3. Weighted sum of squares (Equation 2.41) of marginal spatial and temporal semivariogram 
models of CPUEsvd and CPUEsgd for individual seasons 2001-2004. Minimum value for fit of each 
variogram is underlined. 

 Marginal spatial model Marginal temporal model 

 CPUEsvd CPUEsgd CPUEsvd CPUEsgd 

Season sph exp sph exp sph exp sph exp 

2001 0.009 0.014 0.007 0.002 0.079 0.054 0.012 0.016 

2002 0.043 0.044 0.012 0.006 0.147 0.084 0.013 0.031 

2003 0.083 0.112 0.002 0.004 0.413 0.356 0.016 0.031 

2004 0.007 0.036 0.025 0.017 0.032 0.039 0.020 0.027 

 

After consideration of the weighted sum of squares and visual inspection of the model 

fits, marginal spatial semivariograms of the CPUEsvd data were fitted with models involving a 

nugget and two spherical structures (Figure 7.12), whilst those of the CPUEsgd data only 

involved a single spherical structure in conjunction with the nugget effect (Figure 7.13). The 

CPUEsgd temporal models involved a nugget and one spherical structure (Figure 7.14) whilst 

the CPUEsvd temporal models involved a nugget and one exponential structure, except for the 

spherical structure of season 2004 (Figure 7.15). General relative and pairwise relative 

semivariograms were used to help infer the relative nugget and range of the semivariogram. The 

models of spatial and temporal continuity are based on a view of the overall continuity evident 

in each season. 
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Figure 7.12. Marginal spatial semivariograms (blue) and fitted semivariogram models (red) of CPUEsvd 
for individual seasons 2001-2004. Pairwise relative semivariogram shown by dotted blue line. Variance 
of data set shown by solid black line. 

 

 
Figure 7.13. Marginal spatial semivariograms (blue) and fitted semivariogram models (red) of CPUEsgd 
for individual seasons 2001-2004. General relative semivariogram shown by dotted blue line. Variance of 
data set shown by solid black line. 
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Figure 7.14. Marginal temporal semivariograms (blue) and fitted semivariogram models (red) of 
CPUEsvd for individual seasons 2001-2004. Pairwise relative semivariogram shown by dotted blue line. 
Variance of data set shown by solid black line. 

 

 
Figure 7.15. Marginal temporal semivariograms (blue) and fitted semivariogram models (red) of 
CPUEsgd for individual seasons 2001-2004. General relative semivariogram shown by dotted blue line. 
Variance of data set shown by solid black line. 
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Comparative plots of the fitted semivariogram models (Figure 7.16) for the marginal 

spatial and temporal semivariograms shows that the CPUEsvd marginal semivariograms have 

lower sills than those of the CPUEsgd data. This is to be expected as the vd data sets have 

comparatively lower variances. The shape of the marginal spatial variograms for the CPUEsvd 

data is somewhat similar for all seasons for the first 5 nmil but then the seasons show varying 

sills at which the variogram flattens out. The marginal temporal variogram models show similar 

ranges for the four seasons but varying sills. Season 2001 shows the lowest sill for both its 

marginal spatial and temporal semivariogram which is to be expected as it has the lowest data 

variance. The marginal variograms of the CPUEsgd data show even greater similarities across 

the four seasons, with similar short and long ranges for both spatial and temporal marginal 

variograms. 

 

 
Figure 7.16. Marginal spatial and temporal semivariogram models of CPUEsvd and CPUEsgd for the 
individual seasons 2001-2004. 

7.2.4 SPATIOTEMPORAL SEMIVARIOGRAM MODELLING 

The product-sum semivariogram model was chosen to model the standardised catch rate 

semivariograms as it offered a flexible range of models that combined space-time variability, 

allowed varying ranges and sills in the spatial and temporal dimensions, as well as the overall 

sill. The product-sum model requires the modelling of the associated marginal spatial and 

temporal semivariograms, along with the global sill of the spatiotemporal variogram.  
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The marginal temporal and spatial experimental semivariograms seen in the previous 

section have high nuggets. Fitting a product-sum model with a high nugget effect for both the 

spatial and temporal marginal semivariogram models resulted in a spatiotemporal nugget effect 

that was considerably higher than the individual spatial and temporal nuggets leading to a poor 

fit of the overall model. Since the temporal and spatial nuggets of a given season are similar this 

can be interpreted as a global nugget. As the catch rate data involved spatially aggregated catch 

and effort values for each day (by vessel or grid) then the nugget effect could be considered 

primarily as a spatial nugget effect. In other words, the temporal nugget observed also included 

the effect of small spatial separations. This was particularly obvious for the vd data as their 

locations were not defined on a grid so the computation of the experimental marginal temporal 

semivariogram required the inclusion of a spatial separation at a small tolerance (less than 0.5 

nmil) rather than the theoretical zero lag spacing in the spatial sense. In order to assure a good 

fit the marginal temporal variogram nugget and sill parameters were corrected to account for 

this deviation. 

7.2.5 MODIFICATION OF MARGINAL TEMPORAL SEMIVARIOGRAM 
MODEL 

If tnug, tsill, snug, ssill and gsill denote the parameters for the marginal semivariograms and the 

global sill respectively then the corrected marginal temporal variogram parameters, tnug* and 

tsill* are defined as 

1
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 (7.1) 

These modified parameters define the marginal temporal semivariogram model that 

produces a product-sum model, as defined by (2.59) and (2.60), which satisfies 

tsill,htsst  )a5.0( th  (7.2) 

tnug,htsst  )05.0(h . (7.3) 

This ensures that the fitted product-sum model matches the experimental spatiotemporal 

semivariogram well at zero spatial separation (as fitted by the marginal temporal semivariogram 

model). 
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The corrected temporal nuggets for the CPUEsvd and CPUEsgd variables of the 

individual seasons of 2001 to 2004 are equal to, or close to, zero (Table 7.4). This modification 

can be regarded as an alternative method for implementing a global nugget effect by a single 

product-sum model. In the product-sum semivariogram model, the marginal spatial 

semivariogram model, and hence the spatial nugget effect, takes effect for all non-zero temporal 

lag spacings. This is the model assumed for the semivariograms of the prawn catch rates, with 

the marginal spatial semivariogram model containing the global nugget and the marginal 

temporal semivariogram modified to remove the effect of this global nugget. 

Table 7.4. Modified marginal temporal semivariogram models of CPUEsvd and CPUEsgd for individual 
seasons 2001-2004. 

Season 2001 

vd 

2001 

gd 

2002 

vd

2002 

gd

2003 

vd

2003 

gd

2004 

vd 

2004 

gd
Nugget 0.00 0.00 0.00 0.00 0.06 0.00 0.01 0.00 

1st structure         

Type exp sph exp sph exp sph sph sph 

Range 5 15 8 8 10 6 10 12 

Sill 0.09 0.13 0.20 0.19 0.19 0.17 0.13 0.28 

 

7.2.6 PRODUCT-SUM SEMIVARIOGRAM MODELS 

Product-sum models were constructed using the marginal spatial and (modified) temporal 

semivariogram models. Having described the spatial and temporal behaviour separately, the 

values of the semivariogram beyond the spatial and temporal ranges were examined to infer the 

global sill. The variance of the associated season was used as an indicator of the global sill but it 

is unreliable practice to force the global sill to equal the sample variance as they typically differ 

(Journel & Huigbregts, 1978; Goovaerts, 1997). The validity of the fitted product-sum models 

were checked for the values of the temporal, spatial and global sills using the diagnostic 

outlined in Section 2.2.8.4 to ensure the resulting space-time semivariogram function was 

negative definite. The product-sum models fitted using these corrected temporal variogram 

parameters supports the correction and facilitates the implementation of the product-sum model 

in the subsequent GSLIB kriging and simulation routines. A further modification of the GSLIB 

routines to allow for a distinct global nugget in combination with a product-sum model (or other 

spatiotemporal semivariogram models) is recommended for future work. 

Product-sum semivariogram models (Figure 7.17) were fitted to the experimental 

semivariograms of CPUEsvd (Figure 7.1) using the marginal spatial and (modified) temporal 

semivariogram models (Table 7.5). The seasons 2001, 2002 and 2004 show great similarity in 
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their shape with slightly differing global sills. Season 2001 displays the smallest sill and season 

2003 has the highest. The model for season 2003 displays different behaviour to the other 

seasons. For small spatial lags, the global sill is attained much quicker in the temporal direction. 

Comparison with the experimental semivariograms of Figure 7.1 indicates a good fit. The 

experimental semivariograms of CPUEsgd (Figure 7.2) were also fitted with product-sum 

semivariogram models (Figure 7.18). There is even more similarity across the seasons than for 

the CPUEsvd semivariogram models, with season 2003 displaying a slightly higher global sill. 

Comparison with the experimental semivariograms of Figure 7.2 indicates a good fit for the 

shape of the semivariograms. The allowable range of k to ensure permissibility of the models, 

given by (2.61), is satisfied for the CPUEsvd and CPUEsgd variables for all individual seasons 

(Table 7.5). 

Table 7.5. Product-sum model parameters semivariograms of CPUEsvd and CPUEsgd for individual 
seasons 2001-2004. 

Season 2001 

vd 

2001 

gd 

2002 

vd

2002 

gd

2003 

vd

2003 

gd

2004 

vd 

2004 

gd
Spatial model         

Nugget 0.04 0.18 0.06 0.18 0.07 0.18 0.06 0.15 

1st structure         

Type sph exp sph exp sph exp sph exp 

Range 1 15 2 15 20 13 10 15 

Sill 0.025 0.12 0.03 0.09 0.1 0.09 0.05 0.16 

2nd structure         

Type sph  sph    sph  

Range 15  20    20  

Sill 0.03  0.03    0.10  

Temporal model         

Nugget 0.00 0.00 0.00 0.00 0.06 0.00 0.01 0.00 

1st structure         

Type exp sph exp sph exp sph sph sph 

Range 5 15 8 8 10 6 10 12 

Sill 0.09 0.13 0.20 0.19 0.19 0.17 0.13 0.28 

Global sill 0.18 0.4 0.24 0.4 0.35 0.41 0.25 0.4 

k 0.97 0.62 3.33 1.17 1.61 0.65 3.38 2.20 

k range (0,10.5] (0,3.4] (0,5.0] (0,3.7] (0,4.0] (0,3.7] (0,4.8] (0,3.2] 
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Figure 7.17. Product-sum semivariogram models for CPUEsvd of individual seasons 2001-2004 using 
semivariogram model parameters outlined in Table 7.5. 

 

 
Figure 7.18. Product-sum semivariogram models for CPUEsgd of individual seasons 2001-2004 using 
semivariogram model parameters outlined in Table 7.5. 
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Although the product-sum model parameters were fitted manually to the experimental 

semivariograms, weighted sum of squares were considered for the fitted models. As for the 

marginal semivariogram models, temporal lags up to 15 days and spatial lags (0.5 nmil interval) 

up to 15 nmil were used in the calculations, and were weighted by the standardised number of 

pairs for each lag. Season 2001 and 2002 are the best performers for the vd and gd data 

respectively, with season 2003 showing the poorest fit for both. These varied results confirm the 

manual fitting of the semivariogram models. The objective of the semivariogram model is to 

capture the major spatiotemporal features of the catch rates, not just fit a model that is the 

closest possible to experimental values (Goovaerts, 1997). The models of spatiotemporal 

continuity are based on a view of the overall continuity evident in each season and the obvious 

similarities between each season confirming the presence of spatial and temporal continuity in 

the catch rate data. 

Table 7.6. Weighted sum of squares (Equation 2.41) of product-sum semivariogram models of CPUEsvd 
and CPUEsgd for individual seasons 2001-2004.  

Season CPUEsvd CPUEsgd 

2001 0.105 0.047 

2002 0.021 0.007 

2003 0.144 0.017 

2004 0.049 0.016 

 

7.3 SPATIOTEMPORAL VARIOGRAPHY FOR COMBINED 
SEASONS  

As the spatiotemporal semivariogram models for the individual seasons of 2001 through 2004 

showed similarities, modelling was also undertaken for the combined seasons. As for the 

individual seasons, standardised catch rate data was obtained for the combined seasons by 

removing the temporal trend obtained by classical decomposition. The motivation in 

considering combined seasons was to produce a model of spatiotemporal continuity for the 

combined season 2001-2003 that could be used to model the spatiotemporal continuity of 

season 2004. This would allow estimation and simulation of the 2004 catch rates from the 2001-

2003 catch rate data. The combined seasons considered included three seasons, 2001-2002, 

2002-2003 and 2001-2003, not involving the 2004 season to be estimated. Additionally, three 

seasons involving 2004 were also considered: 2003-2004, 2002-2004 and 2002-2004. In reality, 

these seasons would not be available for a future season, but are considered here for 

investigative purposes. Spatiotemporal semivariograms were calculated using the GSLIB 
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gamvmod.exe program with only 1 directional (omnidirectional) semivariogram considered for 

the spatial plane. Directional semivariograms were not considered for the combined seasons as 

the individual seasons showed no evidence of anisotropy. Moreover, the directional and 

omnidirectional semivariograms were similar for spatial separation distances less than 15 nmil 

and temporal separations less than 15 days.  

7.3.1 EXPERIMENTAL SPATIOTEMPORAL SEMIVARIOGRAMS 

The experimental spatiotemporal semivariogram for the 2001-2003 combined season showed 

similar behaviour to those of the individual seasons with increasing value for increasing 

temporal and spatial lag spacings (Figure 7.19). The experimental spatiotemporal 

semivariograms for the other combined seasons considered also showed similar behaviour to 

those of the individual seasons, with the combined season 2003-2004 having less structure than 

the other combined seasons (APPENDIX I). The variances of the combined data sets (Table 7.7) 

are in a similar range to those of the individual seasons (0.202 to 0.362) suggesting the sills 

reached by the variograms will be similar.  

 
Figure 7.19. Experimental spatiotemporal semivariograms of CPUEsvd and CPUEsgd for combined 
season 2001-2003. 

Table 7.7. CPUEsvd and CPUEsgd data variance for combined seasons of 2001-2004. 

Combined Season Variance CPUEsvd Variance CPUEsgd 

C12 0.257 0.437 
C23 0.352 0.516 

C123 0.306 0.482 

C34 0.356 0.503 

C234 0.355 0.485 

C1234 0.316 0.467 

 

7.3.2 PRODUCT-SUM SEMIVARIOGRAM MODELS 

The marginal spatial and temporal variograms (APPENDIX I) were similar across the six 

combined seasons and showed similar structure to that seen in the marginal semivariograms of 
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the individual seasons. The spatial and temporal ranges of the combined seasons are comparable 

to those seen in the variograms of the individual seasons, with spatial continuity levelling off 

around 20 nmil and temporal correlation diminishing around 10 days.  

The number of pairs associated with the marginal spatial and temporal variograms 

showed peaks in the early lag spacings as seen for the individual seasons (APPENDIX I).With 

increased number of pairs at all temporal and lag spacings, the marginal semivariograms 

showed smoother patterns of continuity than seen for the individual seasons. The similarity of 

the continuity measures across the combined seasons for both the vd and gd data was supportive 

of the use of a model of spatiotemporal continuity for the (standardised) catch rates.  

Semivariogram models, for the combined season 2001-2003, fitted to the marginal 

spatial variograms and temporal variograms (Figure 7.20) of the combined seasons used similar 

models to the associated individual seasons (Figure 7.16). The other combined seasons showed 

similar model fits for their marginal semivar iograms (APPENDIX I). The CPUESvd 

variograms involved a nugget and two spherical structures and the CPUEsgd variograms 

involved a nugget and two exponential structures (Table 7.8) which are similar to those of the 

individual seasons (Table 7.2). 

 

 
Figure 7.20. Marginal spatial (left) and temporal (right) semivariograms (blue) and fitted semivariogram 
models (red) of CPUEsvd (top row) and CPUEsgd (bottom row) for combined season 2001-2003. 
Variance of data set shown by solid black line. 
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Table 7.8. Marginal spatial and temporal semivariogram model parameters of CPUEsvd and CPUEsgd 
for combined seasons of 2001-2004. 

Season C12 C23 C123 C34 C234 C1234
 vd gd vd gd vd gd vd gd vd gd vd gd

Spatial model             
Nugget 0.05 0.22 0.08 0.22 0.07 0.23 0.11 0.22 0.08 0.21 0.07 0.22 

1st structure             

Type sph sph sph sph sph exp sph exp sph exp sph exp 

Range 2 12 1 12 1 16 20 20 1 20 1 16 

Sill 0.03 0.15 0.03 0.15 0.03 0.15 0.09 0.15 0.02 0.16 0.03 0.15 

2nd structure             

Type sph  sph  sph    sph  sph  

Range 20  20  20    20  20  

Sill 0.05  0.05  0.05    0.07  0.06  

Temporal model             

Nugget 0.05 0.22 0.08 0.22 0.07 0.25 0.11 0.3 0.08 0.25 0.08 0.24 

1st structure             

Type exp sph exp sph exp exp exp exp exp exp exp exp 

Range 12 10 15 10 12 10 15 10 14 10 15 10 

Sill 0.14 0.12 0.2 0.12 0.15 0.12 0.17 0.1 0.18 0.12 0.17 0.11 

 

As for the individual seasons, the combined seasons showed high spatial and temporal 

nuggets, and therefore the marginal temporal semivariogram model parameters were adjusted to 

ensure a good fit for the product-sum models to the experimental spatiotemporal 

semivariograms. Product-sum semivariogram models computed for the combined seasons using 

the parameters of the marginal spatial and (modified) temporal semivariogram models are very 

similar across the combined seasons (APPENDIX I.5). The global sill of each model was fitted 

just under the variance of the associated (combined) season. The model for the 2001-2003 

combined season (Figure 7.21) is similar to the product-sum models seen previously for the 

individual seasons 2001 to 2004 (Figure 7.17 and Figure 7.18).  

 
Figure 7.21. Product-sum semivariogram models, combined seasons, 2001-2003. 
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Table 7.9. Product-sum model parameters semivariograms of CPUEsvd and CPUEsgd for combined 
seasons.*Minimum k is 0. 

Season C12 C23 C123 C34 C234 C1234
 vd gd vd gd vd gd vd gd vd gd vd gd

Spatial model             
Nugget 0.05 0.22 0.08 0.22 0.07 0.23 0.11 0.22 0.08 0.21 0.07 0.22 

1st structure             

Type sph sph sph sph sph exp sph exp sph exp sph exp 

Range 2 12 1 12 1 16 20 20 1 20 1 16 

Sill 0.03 0.15 0.03 0.15 0.03 0.15 0.09 0.15 0.02 0.16 0.03 0.15 

2nd structure             

Type sph  sph  sph    sph  sph  

Range 20  20  20    20  20  

Sill 0.05  0.05  0.05    0.07  0.06  

Temporal model             

Nugget 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.13 0.00 0.06 0.01 0.03 

1st structure             

Type exp sph exp sph exp exp exp exp exp exp exp exp 

Range 12 10 15 10 12 10 15 10 14 10 15 10 

Sill 0.15 0.22 0.21 0.13 0.15 0.20 0.19 0.16 0.19 0.17 0.20 0.16 

Global sill 0.25 0.42 0.35 0.48 0.30 0.46 0.35 0.48 0.34 0.48 0.3 0.46 

k 1.64 2.10 0.60 0.50 0.08 1.72 1.14 1.65 0.59 1.39 2.11 1.41 

k max* 6.56 2.70 4.76 2.70 6.63 2.63 5.00 2.70 5.29 2.70 4.74 2.70 

 

7.4 SPATIOTEMPORAL VARIOGRAPHY OF NORMAL SCORES 

Semivariogram models were also required for the normal scores of the standardised catch rate 

for use in a Gaussian simulation process. Once normal scores were obtained (CPUEsN), the 

semivariogram estimation and modelling process was conducted as for the CPUEs data using 

the GSLIB gamvmod.exe program. Experimental semivariograms for the four individual seasons 

were computed (Figure 7.22 and Figure 7.23).  

Marginal spatial and temporal variograms for the normal scores of the vd and gd 

standardised catch rates were computed and modelled (Figure 7.24-Figure 7.27). The marginal 

semivariogram models showed more consistency across seasons for the data aggregated by grid, 

and considerably higher relative nuggets as seen for the standardised catch rates.  
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Figure 7.22. Experimental spatiotemporal semivariograms of CPUEsNvd for seasons 2001-2004. 

 

 
Figure 7.23. Experimental spatiotemporal semivariograms of CPUEsNgd for seasons 2001-2004. 
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Figure 7.24. Marginal spatial semivariograms (blue) and fitted semivariogram models (red) of CPUEsNvd 
for individual seasons 2001-2004. 

 

 
Figure 7.25. Marginal spatial semivariograms (blue) and fitted semivariogram models (red) of 
CPUEsNgd for individual seasons 2001-2004. 



 

140 

 
Figure 7.26. Marginal temporal semivariograms (blue) and fitted semivariogram models (red of 
CPUEsNvd for individual seasons 2001-2004. 

 

Figure 7.27. Marginal temporal semivariograms (blue) and fitted semivariogram models (red) of 
CPUEsNgd for individual seasons 2001-2004. 

As for the standardised catch rates, the marginal temporal semivariogram model 

parameters were adjusted to account for the global nugget effect, and were then used, along with 

the marginal spatial semivariogram models and global sill, to construct product-sum 
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semivariogram models (Table 7.10, Figure 7.28 and Figure 7.29) to describe the spatiotemporal 

continuity.  

Table 7.10. Product-sum model parameters semivariograms of CPUEsNvd and CPUEsNgd for individual 
seasons 2001-2004. 

Season 2001 

vd 

2001 

gd 

2002 

vd

2002 

gd

2003 

vd

2003 

gd

2004 

vd 

2004 

gd
Spatial model         

Nugget 0.2 0.5 0.2 0.35 0.25 0.37 0.18 0.4 

1st structure         

Type sph exp sph exp sph exp sph exp 

Range 2 20 4 20 4 20 4 20 

Sill 0.1 0.4 0.07 0.4 0.03 0.42 0.05 0.5 

2nd structure         

Type sph  sph  sph  sph  

Range 20  15  15  20  

Sill 0.3  0.3  0.23  0.6  

Temporal model         

Nugget 0.00 0.10 0.00 0.07 0.00 0.05 0.00 0.03 

1st structure         

Type exp sph exp sph exp sph sph sph 

Range 5 15 8 8 10 6 10 12 

Sill 0.55 0.68 0.46 0.56 0.51 0.77 0.43 0.59 

Global sill 1 1 1 1 1 1 1 1 

k 0.45 0.97 0.12 0.80 0.08 0.94 0.72 0.93 

k range (0,1.7] (0,1.1] (0,1.8] (0,1.3] (0,2] (0,1.2] (0,1.2] (0,1.1] 

 

 
Figure 7.28. Product-sum semivariogram models of CPUEsNvd for individual seasons 2001-2004. 
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Figure 7.29. Product-sum semivariogram models of CPUEsNgd for individual seasons 2001-2004. 

The semivariograms, and their fitted models, of the normal scores of the individual 

seasons 2001-2003 showed strong similarities. The evidence of similarity within these seasons 

supported the development of a model of spatiotemporal continuity for the combined seasons 

2001-2003 to estimate the spatiotemporal continuity of season 2004, as conducted in the 

modelling process of the standardised catch rates. This model would facilitate the geostatistical 

simulation of the catch rates of a subsequent (lunar) month of 2004. Recall that the simulation 

process required normally distributed data, and therefore a model of spatiotemporal continuity 

for the normal scores of the standardised catch rates. The product-sum semivariogram model 

obtained for the combined seasons 2001-2003 (Table 7.11, Figure 7.30 and Figure 7.31) 

displayed similar behaviour to those of the individual seasons 2001-2003. 

Table 7.11. Product-sum semivariogram model parameters of CPUEsNvd for combined season 2001-
2003. 

Marginal Spatial Model Marginal Temporal model 

Nugget  0.20 Nugget  0.00 
1st structure Type spherical 1st structure Type exponential 

 Range 3  Range 10 

 Sill 0.04  Sill 0.52 

2nd structure Type spherical    

 Range 15  Global Sill 1.00 

 Sill 0.3  k (max k) 0.22(1.9) 
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Figure 7.30. Experimental semivariogram (top left), product-sum model (top right), marginal spatial 
semivariogram (bottom left) and (unmodified) marginal temporal semivariogram (bottom right) of 
CPUEsvdN for combined season 2001-2003. 

 

 

 
Figure 7.31. Experimental semivariogram (top left), product-sum model (top right), marginal spatial 
semivariogram (bottom left) and (unmodified) marginal temporal semivariogram (bottom right) of 
CPUEsgdN for combined season 2001-2003. 
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7.5 SELECTION OF SEMIVARIOGRAM MODEL 

In order to estimate or simulate CPUE values for the April to October lunar months of season 

2004, the spatiotemporal models of continuity obtained from the standardised catch rate data 

and normal scores of the seasons 2001 to 2003 was required to estimate the spatiotemporal 

model of continuity for the 2004 season. Ordinary spatiotemporal kriging of each lunar month 

of the 2004 standardised catch rate data can be conducted using the GSLIB program 

kt3dnew.exe along with the product-sum semivariogram model of combined seasons 2001 to 

2003 and the data of the previous lunar month of 2004. In a similar manner, sequential Gaussian 

simulation of the catch rate normal scores can be conducted using the semivariogram model of 

the 2001-2003 normal scores. The CPUEs estimates or simulations are then multiplied by the 

classical decomposition trend model of the combined season 2001-2003 to obtain estimates or 

simulations of the catch rates. The actual CPUE data of each lunar month of season 2004 will be 

used in this study to evaluate the model. In reality, the locations to be estimated/simulated in a 

future season are unknown, so estimates are made on a grid over the entire region in order to 

highlight areas of high of low catch rates, along with their uncertainty. 

Thus far, the spatiotemporal continuity of two catch rate variables (CPUEsvd and 

CPUEsgd) has been modelled. Since the models of spatiotemporal continuity of the two 

variables showed many similarities, it was decided to only proceed with estimation using one 

model. As outlined previously, the model for the combined season 2001-2003 was chosen as a 

(estimated) measure of the spatiotemporal continuity of the 2004 season based on its similarities 

with all three individual seasons involved. Moreover these three seasons occur directly before 

2004 and with no obvious changes in management for the 2004 season there is no reason to 

expect a significant change in the continuity of the catch rates. The question then arose whether 

to use the product-sum variogram model of the CPUEsvd or CPUEsgd of the combined season 

2001-2003 (Figure 7.21). The CPUEsvd model was chosen as the variograms of the CPUEsvd 

data for all seasons show longer ranges and lower nugget effects in both the spatial and temporal 

direction for all individual and combined seasons, indicative of a stronger measure of 

spatiotemporal continuity. This was supported by the associated use of the vd data obtained by 

aggregating by vessel and removed the problems inherent in the data aggregated by grid, which 

combined data aggregation methods when shot data was considered for aggregation by grid with 

data already aggregated by vessel.  
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Figure 7.32. Experimental semivariogram (left) and product-sum models (right) of CPUEsvd (top row) 
and CPUEsNvd (bottom row) for combined season 2001-2003. 

7.6 CHAPTER SUMMARY 

The spatiotemporal continuity of the standardised catch rate variable was modelled by 

considering the spatiotemporal semivariograms of the CPUEsvd and CPUEsgd variables. Both 

variables showed evidence of spatial and temporal continuity for the individual and combined 

seasons. This pattern of continuity was modelled by a product-sum semivariogram model, 

which was constructed from the marginal spatial and temporal variograms along with the global 

sill exhibited by the experimental semivariogram. Relative semivariograms were used to infer 

the parameters of each model.  

A modification of the marginal temporal variogram parameters (nugget and sill) was 

developed to ensure a good fit to the experimental spatiotemporal semivariograms. This 

modification presents an alternative method for the implementation of a global nugget effect in 

a spatiotemporal semivariogram model within a single product-sum model. 

The individual seasons of 2001-2003 showed similar patterns of spatiotemporal 

continuity so it was reasonable to assume that the 2004 season would display a similar pattern. 

This meant that a model of the spatiotemporal continuity for season 2004 could be estimated 

from the behaviour of the seasons 2001-2003. Rather than using a model of a single season or 

averaging the parameters of the three individual models, a model of spatiotemporal continuity 
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was derived for the combined season 2001-2003. This allowed the pooling of data over the three 

individual seasons. The model for the combined season of 2001-2003 showed similar patterns of 

continuity to those seen in the models for the individual seasons. This was deemed the more 

appropriate model to use as an estimate of the spatiotemporal continuity for the individual 

season 2004 that could be used to allow geostatistical estimation and simulation of the 2004 

catch rate values. The semivariogram models for the standardised catch rates of the vd data and 

the associated normal scores were selected for use in a subsequent estimation and simulation 

process for the 2004 catch rates as they displayed the strongest measure of spatiotemporal 

continuity. 
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PART III. 

 

GEOSTATISTICAL SPATIOTEMPORAL 

ESTIMATION AND SIMULATION



 

148 

CHAPTER 8 

SPATIOTEMPORAL ESTIMATION 

8.1 INTRODUCTION 

In this chapter we consider estimation of the king prawn catch rate for season 2004 using the 

product-sum semivariogram model obtained in Chapter 7 for the standardised king prawn catch 

rate of the combined season 2001-2003. The model aimed to predict the catch rates of each 

month of the 2004 catch rates using the previous month’s data as conditioning data. With the 

electronic collection of data to become more prevalent in Western Australia fisheries, faster data 

validation and processing will be possible. Therefore, this forecasting method could be a viable 

tool to assist fishery scientists in the monitoring of their fishery. 

The suitability of the model was first assessed for the conditioning data of 2004. The 

cross-validation procedure was used to assess the suitability and predictive ability of the model 

of spatiotemporal continuity for estimation of the standardised catch rates of season 2004. If the 

model could capture the spatiotemporal variation of the catch rates in a lunar month of 2004, 

then it would be reasonable to use that semivariogram model to predict catch rates for the next 

lunar month. The catch rate data of 2004 were transformed to standardised catch rates using the 

global trend model of the combined season 2001-2003 and the cross validation process 

conducted on the lunar monthly standardised catch rate data sets. Cross validation estimates of 

the 2004 standardised catch rates were back-transformed to catch rate values using the trend 

model.  

Estimates of standardised catch rates were then made at the spatiotemporal locations 

(day and spatial location) of the 2004 data using only the 2004 data up to but not including the 

prediction month to assess the forecasting ability of the model. As for the cross-validation 

procedure, estimates were transformed to catch rate values using the global trend model. A 

similar forecasting process was used to compute grid estimates of the catch rates across the 

fishing region for the 2004 season. Daily estimates were obtained over the grid and used to 

create (lunar) weekly averages. Estimates at the data locations and grid estimates compared 

favourably with the actual data values (Denham & Mueller, 2009). This paper was presented at 

the Geostats2008 conference (APPENDIX A). Forecasts were also made incorporating 

additional survey data to help infer catch rate estimates in locations just opened for fishing 
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(Denham & Mueller, 2010) with results presented at the GeoENV VII conference (APPENDIX 

A). 

8.2 KRIGING PROCESS 

The existence of a model of spatiotemporal dependence makes it possible to estimate the values 

of a variable at unsampled locations. Kriging algorithms are a method for deriving least-squares 

linear regression estimates by using the information of nearby data related to the variable being 

estimated. The weight assigned to each datum in the estimation process depends on the kriging 

model chosen, which in turn relates to the model for the local mean. In this study we use 

ordinary kriging (OK) that considers the local mean to be unknown but stationary. 

Spatiotemporal effects are included via reference to the autocorrelation structure of the data set, 

as summarized by the fitted covariance model.  

The kriging process can be used to conduct cross-validation of the estimation process 

with a particular spatiotemporal model of continuity. Cross-validation is the process of 

removing one datum at a time from the data set and re-estimating this value from the remaining 

data using the semivariogram model. It can be repeated to compare different semivariogram 

models or different search parameters. Interpolated and actual values are compared, and the 

model/search parameters that yield the most accurate predictions is retained. If the cross-

validation process validates the use of a kriging process with its associated semivariogram 

model and search parameters then subsequent estimation can be performed at unsampled 

locations. 

8.3 CROSS VALIDATION OF THE SPATIOTEMPORAL 
SEMIVARIOGRAM MODEL 

Cross-validation was performed to assess how well the semivariogram model of the combined 

season 2001-2003 captured the spatiotemporal variation of the 2004 standardised king prawn 

catch rate data. Cross validation was conducted independently on each monthly data set of the 

2004 season by estimating the standardised king prawn catch rate at each spatiotemporal sample 

point of that month in turn after excluding the sample value at that spatiotemporal location. The 

modified GSLIB program kt3dnew.exe (De Cesare et al., 2002) was used along with the 

associated parameter file (APPENDIX G.3).  

Kriging was performed using the standardised king prawn catch rate data for the month 

of 2004 being estimated and the spatiotemporal semivariogram model for the combined 2001-

2003 season (Figure 8.1). After several trials of various values, a minimum of 4 sample data and 
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a maximum of 20 were required to enable estimation. This ensured a relatively consistent 

number of points used for estimation across the region and did not demand excessive 

computation time. Eight lunar months (March-October) of 2004 involving three weeks (L,N,Q) 

in each were estimated via a cross-validation process. Estimates are not made for the week 

surrounding the full moon in all months as the fishing region is typically closed during these 

periods. 

Table 8.1. Product-sum semivariogram model parameters of CPUEsvd for combined season 2001-2003. 

Marginal Spatial Model Marginal Temporal model 

Nugget 0.07 Nugget 0.00 
1st structure   Type spherical 1st structure   Type exponential 

Range 1 Range 12 

Sill 0.03 Sill 0.15 

2nd structure  Type spherical   

Range 20 Global Sill 0.30 

Sill 0.05   

 

 
Figure 8.1. Product-sum model of CPUEsvd for the combined season 2001-2003. 

Identification of the closest 20 data in the search procedure of the GSLIB kt3dnew 

program required the definition of a space–time distance metric by converting absolute 

measures of spatial and temporal separation (i.e. nmil and days, respectively) into relative 

measures based on their proportion of the maximum spatial and temporal search radii. The 

search radii have a dual purpose as they also determine the maximum spatial and temporal 

separation of points to be used in the estimation process. Cross-validation of each month was 

conducted using four search radii combinations to assess their impact (Table 8.2). Moreover, the 

impact of estimating using spatial-only or spatial and temporal information could also be 

assessed. The first search neighbourhood involved only the spatially closest 20 points from the 

same day as the point being estimated, but limited to a 5 nmil radius. A long range (20 nmil) 
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spatial neighbourhood was also used to enable the closest points up to 20 nmil away, which 

effectively meant 20 points would always be used. Two spatiotemporal neighbourhoods were 

considered to weight the relative importance of spatial and temporal information. The first 

neighbourhood allowed both spatial and temporal information whilst the second ensured a 

significant amount of temporal information was included as a temporal separation of 20 days 

was considered “as close” as a spatial separation of 5 nmil. 

Table 8.2. Spatial and temporal search neighbourhoods. 

 Spatial Search Radius Temporal Search Radius 

Spatial only – short range 5 nmil 0 days 

Spatial only – long range 20 nmil 0 days 

Spatial and temporal (1) 20 nmil 20 days 

Spatial and temporal (2) 5 nmil 20 days 

 

Using spatial-only information (spatial radius 5 nmil, temporal radius 0 days) to 

produce cross-validation estimates for a given month allowed only data located on the same day 

to be used to produce the weighted estimate at each location. The estimates produced showed 

relatively small and consistent mean errors, along with reasonable correlations with the actual 

2004 data across the first five months (Figure 8.2). For the last three months the errors and 

correlations, were more variable which was partially due to the reduced number of estimates 

made. Increasing the spatial search radii to 20 nmil enabled more estimates to be made but this 

was achieved at the expense of greater errors and lower correlations with the actual values. 

Cross-validation estimates computed using the spatiotemporal search neighbourhoods 

included the addition of data separated temporally (and spatially) from the location being 

estimated, along with the spatially (but not temporally) separated information. The best results 

were obtained using 20 nmil and 20 days respectively. The spatial radius of 20 nmil was set 

large to give the desired ratio for temporal information. In weeks where the spatial-only 

estimates produced reasonable estimates (small errors/good correlation with actual values), the 

additional temporal information allowed more estimates with slightly smaller errors (Figure 8.2) 

and slightly increased correlation with true values (Figure 8.3). In some cases, the effect was 

negligible. However, in weeks where the spatial-only estimates were unsatisfactory, the 

inclusion of temporal information improved the performance of the estimation with larger 

proportion of estimated locations (Figure 8.3, top row), smaller errors (Figure 8.2) and increased 

correlation with true values (Figure 8.3, bottom row),. It appears that in the absence of closely 
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related spatial information, relevant temporal information can improve the performance of the 

cross-validation estimates.  

The inclusion of temporal information affects the number of spatial-only data included 

as the overall amount of data included does not change (unless specified). An alternative search 

neighbourhood has been implemented in another program (Spadavecchia, 2008) to allow for the 

specification of exact number of data included from each temporal separation rather than 

utilising a pseudo-distance metric. This is recommended for future work. 

 
Figure 8.2. Mean error (top) and mean squared error (bottom) of cross validation results for the lunar 
weeks of 2004 using the four search neighbourhoods outlined in Table 8.2. 

 
Figure 8.3. Percentage of locations estimated (top) and correlation of estimates with actual catch rate 
values (bottom) of cross validation results for the lunar weeks of 2004 using the four search 
neighbourhoods outlined in Table 8.2. 
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Although eight (lunar) months were estimated, results will be shown in this section for 

the months of May and July, with the results for all other months contained in APPENDIX J. 

The weeks of May were chosen as one example as the ENA opens at the beginning of the month 

resulting in relatively high catch rates. The weeks of July were chosen as a second example as 

they are indicative of the second half of the fishing season. 

The standardised king prawn CPUE values have been reproduced over the months of 

May and July (Figure 8.4 and Figure 8.5). This is indicative of the estimates across the 2004 

season (APPENDIX J). Across the month of May, there are regions of high and low values 

which have been reproduced well by the estimates, as have the mainly low values evident in 

July. All sample spatiotemporal locations in May and July have been estimated by the cross 

validation process (Table 8.3). 

Across the season of 2004 only two sample locations did not produce cross validation 

estimates, one in March and one in October (APPENDIX J). The mean and median of the cross 

validation estimates are similar to those of the actual standardised catch rate values whilst the 

variance of the estimates is lower than that of the corresponding sample values for all weeks. 

The smoothing inherent in the kriging process results in the minimum/maximum of the 

estimates being higher/lower than the corresponding sample values. 

Table 8.3. Summary statistics of CPUEs cross validation estimates for the lunar weeks of May and July 
2004. 

 MayL MayN MayQ JulL JulN JulQ 

 Sample CV Est Sample CV Est Sample CV Est Sample CV Est Sample CV Est Sample CV Est

Mean 1.652 1.627 1.228 1.265 0.917 0.911 0.694 0.704 0.700 0.707 0.659 0.654

Med 1.745 1.746 1.213 1.232 0.844 0.810 0.677 0.723 0.684 0.721 0.564 0.573

Var 0.455 0.221 0.152 0.065 0.382 0.219 0.091 0.055 0.086 0.060 0.136 0.068

Skew -0.006 -0.477 0.112 -0.086 1.285 0.927 0.043 -0.385 0.316 0.045 0.818 0.562

Min 0.207 0.577 0.188 0.390 0.036 0.222 0.038 0.164 0.150 0.244 0.063 0.237

Max 3.527 2.557 2.357 1.796 3.271 2.243 1.459 1.095 1.495 1.248 1.668 1.321

N 196 196 203 203 165 165 197 197 202 202 166 166 
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Figure 8.4. CPUEsvd values (top row) and cross validation estimates (bottom row) for lunar weeks of 
May 2004. 

 
Figure 8.5. CPUEsvd values (top row) and cross validation estimates (bottom row) for lunar weeks of 
July 2004. 

The range of cross-validation error values of May and July (top row, Figure 8.6 and 

Figure 8.7) are spread across the Shark Bay region with no obvious pattern of high or low error 

values. Scatterplots of the sample values against the estimated values (second row) show clouds 

close to the first bisector with correlation coefficients varying between 0.6 and 0.8 for May and 
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July indicating strong positive correlation between the estimates and sample values. Histograms 

of the standardised estimation errors (third row) indicate an approximately normal distribution. 

Scatterplots of the estimates against their standardised estimation errors (bottom row) show 

clouds close centred about the zero error line and display no obvious structural bias. The July 

clouds show less spread than those of May. The correlation coefficients vary between -0.09 and 

0.07 for May and July indicating little or no correlation between the estimates and their errors. 

There a few outliers in May but none in July, with outliers being defined as those outside the 

99% confidence limit of a normal distribution. Cross validation estimates for the other months 

of 2004 show similar behaviour (APPENDIX J). 

 
Figure 8.6. CPUEsvd values (top row), scatterplot of actual vs estimated values (second row), histogram 
of standard errors (third row) and standard errors vs estimates (bottom row), May 2004. 
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Figure 8.7. CPUEsvd values (top row), scatterplot of actual vs estimated values (second row), histogram 
of standard errors (third row) and standard errors vs estimates (bottom row), July 2004. 

The strong positive correlation between the estimates and sample values seen in May 

and July is evident in many of the other weeks of the 2004 season (Figure 8.3, second row). 

However, there are also some weeks that show weak positive correlation and one that shows 

little correlation (AugN). The low correlation seen in AugN is most likely due to the small 

number of data points in that week. 

The mean errors of the 2004 season are quite small in magnitude and centred around the 

zero line with the largest magnitudes seen in August to October (Figure 8.2, top row). The mean 

squared errors are also quite small varying between 0 and 0.25 across the season. The errors 

appear quite randomly distributed from March to August however there is some evidence of a 
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pattern in the months of September and October which may be attributed to the classical 

decomposition temporal trend model used to calculate the standardised catch rate values. 

The mean squared deviation ratio (Figure 8.8) corresponds to the ratio between the 

experimental and theoretical variances and shows that the cross validation estimates of the lunar 

weeks for the 2004 season typically underestimate the theoretical variance, as expected using an 

ordinary kriging process. There was no pattern across the season for these mean squared 

deviation ratios. The cross validation results indicate that the spatiotemporal model of Figure 

8.1 is adequate for spatiotemporal modelling of the standardised king prawn catch rate in the 

2004 season. 

 
Figure 8.8. Mean squared deviation ratio, cross validation estimates 2004. 

8.3.1 KING PRAWN CATCH RATE CROSS VALIDATION 

The classical decomposition temporal trend model is combined with the (kriging) estimates of 

the standardised king prawn catch rate to obtain estimates of the king prawn catch rate. The 

temporal trend model calculated for the combined 2001-2003 season is given by 
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2003 season. Post plots of the cross validation estimates of the king prawn catch rates for May 

and July (Figure 8.9 and Figure 8.10) show that the sample values have been reproduced. The 

mean and median of each weekly estimation set is similar to the corresponding value of the 

weekly sample data set (Table 8.4). The variance of each weekly estimation set is considerably 

smaller than the associated weekly sample data set. The minimum/maximum of each weekly 

estimation set is higher/lower than the minimum/maximum value of the corresponding weekly 

sample data set. This behaviour is similar for the remainder of season 2004 (APPENDIX J). 

 

 
Figure 8.9. CPUEvd values (top row) and cross validation estimates (bottom row) for lunar weeks of May 
2004. 
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Figure 8.10. CPUEvd values (top row) and cross validation estimates (bottom row) for lunar weeks of 
July 2004. 

Table 8.4. Summary statistics of CPUEvd cross validation estimates, May & July 2004. 

 MayL MayN MayQ JulL JulN JulQ 

 Sample CV Est Sample CV Est Sample CV Est Sample CV Est Sample CV Est Sample CV Est

Mean 69.57 68.64 46.31 47.69 25.66 25.49 21.16 21.47 17.15 17.33 11.45 11.36

Med 71.62 74.93 45.75 46.46 23.60 22.66 20.63 22.04 16.78 17.66 9.80 9.96 

Var 928.13 527.65 216.23 92.85 298.63 171.57 84.96 50.84 51.65 36.20 41.12 20.40

Skew 0.12 -0.17 0.11 -0.09 1.29 0.93 0.04 -0.39 0.32 0.05 0.82 0.56 

Min 9.25 25.72 7.11 14.71 1.00 6.21 1.17 5.00 3.68 5.98 1.10 4.12 

Max 157.21 113.98 88.86 67.73 91.50 62.74 44.49 33.38 36.64 30.59 28.97 22.95

N 196 196 203 203 165 165 197 197 202 202 166 166 

 

The mean errors of the cross validation estimates were encouraging, ranging between -

0.94 and 1.61. However, the mean squared errors ranged from 13.81 to 365.30 with the first half 

of the 2004 season showing most of the higher values. As the king prawn CPUE estimate is 

simply a multiple of the standardised estimate, the mean square deviation ratio for the May and 

July king prawn CPUE cross validation estimates (Figure 8.11) are equal to those of the 

standardised king prawn catch rate cross validation estimates (Figure 8.8). 
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Figure 8.11. Error statistics for CPUEvd cross validation estimates for lunar weeks of 2004. 

The cross validation process has confirmed that the spatiotemporal model combined 

with the classical decomposition trend model is adequate for estimation of the king prawn catch 

rate in the 2004 season. Summary statistics of the sample values are adequately replicated and 

error statistics are acceptable. 

8.4 CATCH RATE ESTIMATION BY FORWARD PREDICTION 

In this section we use the spatiotemporal model in an extrapolation mode to predict catch rates 

for future weeks of the 2004 season. Ordinary spatiotemporal kriging is conducted using the 

spatiotemporal model of continuity derived from the 2001-2003 data and the search 

neighbourhood found suitable by the previous cross validation. The input data are the 

standardised catch rates for the 2004 season up to but not including the lunar month to be 

estimated. Jacknife estimates were produced for all data locations along with grid estimates 

calculated on a 1 nmil by 1 nmil grid for all months of the 2004 season except March using the 

data from the previous month.  

Jacknife estimation refers to estimating a set of data values from another non-

overlapping data set. This can be implemented to compute estimates for the locations of the 

actual 2004 data for all months of the 2004 season except March using the data from the 

previous lunar month. As for the cross-validation estimates, the jacknife estimates can be 

compared with the actual 2004 data to assess their performance.  
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The kriging procedure was performed using the standardised king prawn CPUE data for 

the relevant 2004 month (standardised by the temporal trend model of the combined 2001-2003 

season ) and the spatiotemporal semivariogram model for the combined 2001-2003 season. The 

standardised estimates were multiplied by the classical decomposition temporal trend model to 

obtain jacknife and grid estimates of the king prawn CPUE. As each week involves several 

days, an average king prawn catch rate estimate was calculated for the 1 nmil by 1 nmil grid 

locations. Although eight (lunar) months were estimated, results will be shown in this section 

for the months of May and July, with the results for all other months contained in APPENDIX 

K. 

The temporal search radius suggested by cross validation was 20 days, equal to the 

temporal range of the spatiotemporal semivariogram, so the input data was limited to include 

only the standardised catch rate data of the lunar month preceding the lunar month being 

estimated. The temporal search radius was increased to 30 days for estimation in the second and 

third week of the lunar month to enable data from the previous lunar month to be used for 

estimation in that week. Due to the relatively short temporal range of the semivariogram model, 

the second and third weeks (new moon phase and first quarter moon phase) of each month were 

re-estimated using the first week of that month (last quarter moon phase) as an additional week 

of input data. 

8.4.1 JACKNIFE AND GRID ESTIMATES 

The jacknife estimates underestimate the high catch rates evident in the first two weeks of May 

and fail to estimate at all sample locations (Figure 8.12). The mean, median and variance of the 

estimated values are lower than those of the sample values (Table 8.5). The minimum/maximum 

of the estimated values is much higher/lower than the corresponding sample values. The number 

of locations at which estimates are made decreases as the distance in time between the available 

data and prediction location increases. A larger search radius could possibly address this issue 

but the additional data would be quite far removed and would potentially result in over 

smoothing. 

The mean grid estimates fail to capture the behaviour of the actual catch rates in the 

ENA during the weeks of May (Figure 8.12) due to the lack of  available data in that region in 

April. The grid estimates show a much lower mean, median and variance than the corresponding 

actual catch rates. 
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Figure 8.12. CPUEvd data (left), jacknife estimates (centre) and grid estimates (right) for last quarter (top 
row), new moon (middle row) and first quarter (bottom) lunar weeks of May 2004 using data from April 
2004. 

 

Table 8.5. Summary statistics of CPUEvd jacknife estimates for lunar weeks of May 2004. 

 MayL MayN MayQ 

 Sample Jack Est Sample Jack Est Jack Est   Sample Jack Est Jack Est   

Mean 69.573 45.992 46.312 42.422 68.571 25.659 22.653 38.962 
Med 71.616 47.785 45.752 43.027 70.592 23.600 20.868 44.141 

Var 928.133 102.907 216.229 28.217 75.156 298.634 116.795 215.026 

Skew 0.124 -0.786 0.112 -2.749 -2.966 1.285 0.299 -0.946 

Min 9.249 17.079 7.108 12.821 12.821 0.999 5.399 5.399 

Max 157.211 61.782 88.864 52.416 80.095 91.501 41.064 58.519 

N 196 161 203 135 203 165 63 159 
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Table 8.6. Summary statistics of CPUEvd grid estimates for lunar weeks of May 2004. 

 MayL MayN MayQ 

 Sample Grid Est Sample Grid Est 
Grid Est   

(inc MayL)
Sample Grid Est 

Grid Est   
(inc MayL)

Mean 69.573 34.479 46.312 28.923 38.505 25.659 19.657 33.805 

Med 71.616 29.286 45.752 24.36 32.902 23.600 17.021 37.959 

Var 928.133 240.219 216.229 185.075 412.962 298.634 97.211 214.504 

Skew 0.124 0.489 0.112 0.477 0.172 1.285 0.498 -0.365 

Min 9.249 8.648 7.108 6.901 6.901 0.999 4.979 4.979 

Max 157.211 80.103 88.864 71.007 79.379 91.501 45.232 60.924 

N 196 9392 203 7437 9018 165 2330 5522 
 

The MayN and MayQ jacknife estimates incorporating the additional MayL input data produced 

estimates at more sample locations than the previous estimates but cannot produce the sample 

statistics (Figure 8.13, Table 8.5). The mean and median of the revised estimates are much 

higher than the previous estimates and the sample values. The variances of the revised estimates 

are higher than the previous estimates but still lower than the sample values. The minimum 

values of the revised estimates are equal to those of the original estimates but the maximum 

values are considerably higher. The revised mean grid estimates for MayN and MayQ involving 

the additional week of input data overestimate the values of the actual catch rates in the ENA. 

The revised estimates show much a higher mean, median and variance than the previous grid 

estimates with similar minima and maxima. 

The jacknife estimates of July appear to quite accurately represent the actual catch rates 

evident in the three weeks of July (Figure 8.14). All sample locations are estimated in JulL and 

all but four locations are estimated in JulN. However in JulQ only 55 of 166 sample locations 

are estimated by the jacknife process. The mean, median, variance and minimum of the 

estimated values are slightly higher than those of the sample values (Table 8.7) while the 

maximum is slightly lower. 

The mean grid estimates for the three weeks of July appear to reproduce the areas of 

high and low catch rates evident in the actual July catch rates with the exception of an area of 

high values above the TPSA not visible in the sample values (Figure 8.15). The mean, median, 

minimum and maximum of the July grid estimates are indicative of the corresponding sample 

data (Table 8.8). 
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Figure 8.13. CPUEvd data (left), jacknife estimates (centre) and grid estimates (right) for new moon (top 
row) and first quarter (bottom) lunar weeks of May 2004 using data from April and last quarter lunar 
week of May 2004. 

Table 8.7. Summary statistics of CPUEvd jacknife estimates, July 2004. 

 JulL JulN JulQ 

 Sample Jack Est Sample Jack Est 
Jack Est   

(inc JulL)
Sample Jack Est 

Jack Est   
(inc JulL)

Mean 21.163 24.128 17.148 19.048 15.918 11.451 11.771 9.392 

Med 20.626 25.696 16.775 19.264 14.999 9.797 13.012 9.025 

Var 84.964 56.023 51.648 28.044 26.515 41.121 14.768 9.493 

Skew 0.043 -1.052 0.316 -0.015 0.287 0.818 -0.803 0.456 

Min 1.165 4.145 3.677 4.142 5.833 1.096 1.147 3.822 

Max 44.485 36.456 36.641 31.273 25.072 28.971 18.537 17.912 

N 197 197 202 198 202 166 55 164 
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Figure 8.14. CPUEvd data (left), jacknife estimates (centre) and grid estimates (right) for last quarter (top 
row), new moon (middle row) and first quarter (bottom) lunar weeks of July 2004 using data from July 
2004. 

Table 8.8. Summary statistics of CPUEvd grid estimates, July 2004. 

 JulL JulN JulQ 

 Sample Grid Est Sample Grid Est 
Grid Est  

(inc JulL)
Sample Grid Est 

Grid Est   
(inc JulL)

Mean 21.163 21.257 17.148 17.082 14.829 11.451 11.841 10.581 

Med 20.626 21.185 16.775 17.818 14.386 9.797 12.439 10.632 

Var 84.964 55.679 51.648 31.959 28.711 41.121 14.437 14.516 

Skew 0.043 0.109 0.316 -0.039 0.367 0.818 -0.093 0.339 

Min 1.165 3.383 3.677 2.353 5.416 1.096 1.164 3.805 

Max 44.485 43.893 36.641 35.292 25.685 28.971 23.071 18.276 

N 197 8450 202 6936 8180 166 1820 6370 
 

The JulN and JulQ estimates incorporating the additional JulL input data produced 

estimates at more sample locations than the previous estimates but offer little improvement to 

more accurately produce the sample statistics (Figure 8.15, Table 8.7). The revised estimates 
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have slightly lower means, medians, variances and maxima than the corresponding previous 

estimates as well as slightly higher minima. 

The use of the JulL data as input data appears to improve the revised mean grid 

estimates for JulN and JulQ by removing the area of high catch rates above the TPSA and just 

below the TPSA seen in the original mean grid estimates. The summary statistics of the revised 

grid estimates are quite similar to those of the original grid estimates (Table 8.8). 

 
Figure 8.15. CPUEvd data (left), jacknife estimates (centre) and grid estimates (right) for new moon (top 
row) and first quarter (bottom) lunar weeks of July 2004 using data from June and last quarter lunar week 
of July 2004. 

Accuracy measures for the jacknife estimates (Figure 8.16) show that the highest 

magnitude of mean errors and mean squared errors occur in the month of May, which is the 

month involving the highest actual catch rates. The mean errors in May are negative for the 

original estimates showing that the actual catch rates are underestimated. The revised estimates 

result in positive mean errors for May showing that the actual catch rates are overestimated. The 

mean standardised errors are also large in magnitude for the month of May, although the months 

of August through October also show large standardised errors. As for the mean errors, the 

mean standardised errors are negative for the original jacknife estimates and positive for the 

revised estimates. The MayL and MayQ weeks of the original estimates along with the MayN 
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and MayQ weeks of the revised estimates are the only weeks that show mean standard deviation 

ratios greater than one.  

 
Figure 8.16. Mean error (top row), mean square error (second row), mean standard error (third row) and 
mean standard deviation ratio (bottom row) for CPUEvd jacknife estimates of lunar weeks of 2004. 

Correlation values are shown in Figure 8.17 with significant correlations indicated by 

filled markers. The jacknife estimates show positive correlation with the sample values for most 

of the weeks estimated. Only AugQ, SepQ, OctL and OctN show little evidence of correlation. 

The revised estimates do not necessarily show better correlation with the actual catch rate 

values. The jacknife estimation errors show evidence of correlation with the estimates for MayQ 

and OctN of the original estimates and for MayQ and OctQ of the revised jacknife estimates. 
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Figure 8.17. Coefficient of determination (top row), correlation of true and estimated values (second row) 
and correlation of estimated values and errors (bottom row) for CPUEvd jacknife estimates of lunar 
weeks of 2004. 

8.5 ESTIMATION INCORPORATING SURVEY DATA 

We have shown that it is possible to predict the king prawn catch rate for all months of the 2004 

season using a spatiotemporal geostatistical model obtained from the data of seasons 2001 to 

2003, along with the logbook catch rate data of the previous months of 2004. However, this 

method does not adequately capture the relatively high catch rates in the first week of May as 

the ENA opens to trawling (Figure 8.12). The catch rates in the ENA are relatively high 

compared to those further away from the ENA and they are significantly higher than the 

estimate of the classical decomposition model. One possible solution to this problem is to utilise 

survey data available in the ENA region in the months before it is opened to trawling just before 

the last quarter moon phase (Denham & Mueller, 2010). 

Recall that the survey data consist of 17 locations across the study region (Figure 3.5), 

which were sampled around the last quarter moon phase in the months of March and April of 

each season. The March and April survey data for seasons 2001 to 2003 show similarities with 

the actual catch rates within the ENA in the first week it is open. It was decided that the average 



 

169 

of the two months survey data was the most reasonable indicator of the catch rate values in the 

ENA (Figure 8.18). And the use of the average survey data in the estimation process would help 

to reproduce the high catch rate behaviour in the ENA. 

 
Figure 8.18. Average survey catch rates (white squares), logbook catch rates at survey locations (black 
circles) and classical decomposition model fit (solid line) for week of last quarter moon phase in season 
2001-2003. 

As their values were considered indicative of the first week of fishing in May when the 

ENA opens, the survey data of season 2004 were detrended and deseasonalised using the trend 

and seasonal index for the last quarter moon phase of May. They were allocated a date from the 

preceding week to enable their use in the estimation process which was directly affected by the 

short temporal range of the semivariogram model. Estimates over the fishing region and 

jacknife estimates for the actual logbook catch rate data locations (Figure 8.19) demonstrate the 

ability to better capture the high catch rates in the ENA in MayL week. 

While inclusion of the survey data improved the estimation for the last quarter, this was 

not the case for the weeks of the new moon and first quarter moon phase of May 2004. The 

relatively high catch rates are much fewer in these weeks and the estimates involving the survey 

data are much higher than those evident in the actual catch rates. The estimates involving no 

survey data are more representative of the actual catch rates (Figure 8.12). 
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Figure 8.19. CPUE values (left), jacknife estimates (centre) and grid estimates (right) for lunar weeks of 
May 2004. Estimates made using survey data as additional input data. 

Accuracy measures for the jacknife estimates support the use of the survey data to 

estimate for the last quarter moon week (Figure 8.21). Estimation using the survey data 

decreases the magnitude of the errors for the week of the last quarter moon phase but increases 

the magnitude of the errors for the weeks of the new moon and first quarter moon phase. The R2 

value of the estimates using survey data increases for the last quarter moon phase week but 

decreases for the weeks of the new moon and first quarter moon phase (Figure 8.20). 



 

171 

 
Figure 8.20. Coefficient of determination (top row), correlation of true and estimated values (second row) 
and correlation of estimated values and errors (bottom row) for CPUEvd jacknife estimates of lunar 
weeks of 2004 using data from previous month (blue) along with additional data from last quarter lunar 
week of estimation month (red) or additional survey data (green). 
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Figure 8.21. Mean error (top row), mean square error (second row), mean standard error (third row) and 
mean standard deviation ratio (bottom row) for CPUEvd jacknife estimates of lunar weeks of 2004 using 
data from previous month (blue) along with additional data from last quarter lunar week of estimation 
month (red) or additional survey data (green). 

8.6 CHAPTER SUMMARY 

Cross validation verified the use of the spatiotemporal semivariogram model of the CPUEsvd 

data to predict catch rates at unsampled locations via a weighted estimation (kriging) procedure. 

The inclusion of temporal information was beneficial to the performance of kriging estimates 

for season 2004, particularly in the absence of closely related spatial information. Building on 

this, estimates of 2004 catch rates were determined using data from the previous month as 

conditioning data. This enabled estimates to be made successively up to two weeks in advance, 

unless the region involved the opening of a fishing region resulting in significantly different 

catch rates than seen in the conditioning data. Estimates for the third week of a lunar month 
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involved temporal separations too large to use the previous month’s data as meaningful 

conditioning. By including the first week’s data, estimates could be improved for this third week 

unless the first week of the month also involved the opening of a fishing region. 

Survey data obtained as part of the annual recruitment surveys were used as 

supplementary information when the region/period being estimated involved the opening of the 

ENA to fishing. The fishery-independent survey data served as more appropriate conditioning 

data for that region. However, their impact was seen to persist in the following weeks when in 

reality the impact of the opening subsided over time. Therefore, it may be appropriate to scale 

the influence of the survey data by a multiplicative factor in relation to the number of days from 

opening. 
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CHAPTER 9 

SPATIOTEMPORAL SIMULATION 

9.1 INTRODUCTION 

In the previous chapter, estimation of the king prawn catch rate, using data up to the previous 

lunar month, provided smoothed estimates over the region. There was good correlation in many 

lunar weeks between the estimates made for the 2004 season using the data, and associated 

models, from the previous three seasons with the actual catch data for the lunar weeks in 2004. 

To further develop the model of the catch rates, simulation was used to investigate and model 

the local variability of the catch rate estimates. Geostatistical simulation offers an advantage 

over kriging. As kriging is based on a local average of the data, it produces output more 

smoothed than the real phenomenon and only one value for every spatiotemporal location in the 

study area. The ability to make informed decisions on the catch rates over space and time is 

limited by this single smoothed estimation surface. Simulation is an alternative approach that 

produces potentially more realistic representations of the local variability than the (kriging) 

estimation process by adding local variability back into the realisations it generates that is lost in 

kriging. The variability that simulation realisations add to the predicted value at a particular 

location has a mean of zero, so that the average of many simulated realisations tends toward the 

kriging prediction. 

A geostatistical simulation process was used in this study to further refine areas of 

known high or low catch rates, along with other areas involving a higher degree of variability. 

As the simulation process to be used involves a Gaussian algorithm, normal scores of the 

standardised king prawn catch rate were used which can be back transformed to obtain 

simulated standardised catch rate values. This required the use of the spatiotemporal 

semivariogram of the normal scores (Section 7.4) which displayed similar ranges of spatial and 

temporal continuity to the semivariogram of the standardised catch rate used for estimation, 

allowing forward prediction of catch rates into the next lunar fishing month. As the collection of 

data moves to electronic means in Australian fisheries, leading to faster data entry and 

verification, the ability to forecast the level of uncertainty of catch rates for the next month of 

fishing gives scientists a useful tool for the management of their fishery. 
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9.2 SIMULATION PROCESS 

Stochastic simulation is the process of building alternative, equally probable, high-resolution 

models of a variable’s distribution. It is a different approach to the problem of estimating the 

value of a variable at a location than kriging. Kriging derives an estimate and then attaches to it 

a confidence interval (via the kriging variance). The simulation process first assesses the 

uncertainty about the variable at a location dependent on the information available. It then 

derives a possible realisation for that location based on the model of uncertainty at that location 

(local uncertainty). The problem of generating joint realisations at all locations in a 

spatiotemporal domain is made simpler by the sequential simulation process. A realisation is 

made at each location conditional to not only to the original sample data but also the previously 

simulated data. Multiple realisations can be produced for the same spatiotemporal domain, 

providing a visual and quantitative measure of the spatiotemporal uncertainty.  

Implementation of the sequential principle under the multiGaussian RF model is 

referred to as sequential Gaussian simulation (SGS). A random path is defined that visits each 

node of the grid to be estimated exactly once. At each node, a SK procedure is used to estimate 

the mean and variance of the Gaussian ccdf of the normal scores, using the spatiotemporal 

variogram model of the normal scores and a given search neighbourhood. Under the 

multiGaussian model, the mean and variance of the ccdf at a location are identical to the SK 

estimate and SK variance obtained from the conditioning data. The conditioning information 

consists of local normal score data and values simulated at previously visited nodes. A 

simulated value is calculated by drawing a random value from a normal distribution with a 

mean of zero and a variance equal to the local kriging variance. This value is added to the 

kriged estimate to produce a simulated value. This simulated value is added to the data set and 

the process repeated at the next node. Once all nodes are estimated, the simulated normal values 

are then back-transformed to the original variable. 

9.3 SIMULATION OF 2004 KING PRAWN CATCH RATE 

Simulation of the king prawn CPUE values was conducted for all months of the 2004 season 

except March using the data up to and including the previous month and the normal scores 

semivariogram model obtained from the data of seasons 2001 to 2003. In the previous chapter, 

estimation was performed on the CPUEs data, which was then combined with the temporal 

trend model to obtain estimates of the king prawn catch rate. In a similar manner, simulated 

king prawn catch rate values were obtained by first calculating simulated values of the 
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normalised standardised catch rate values (CPUEsN), which were back-transformed to 

standardised catch rates and then combined with the temporal trend model to produce simulated 

catch rate values. The classical decomposition temporal trend model used to transform the 

adjusted simulated values was outlined previously (8.2 - 8.5). 

Eight months (March-October) involving three weeks (L, N, Q) in each were simulated 

in 2004. As for the estimation process, simulations are not made for the weeks corresponding to 

the full moon as the fishing region is typically closed during these periods. For each lunar 

month, simulated catch rate values were calculated for each day of the lunar month on a 1 nmil 

by 1 nmil grid within the fishing region. Simulation at each grid node uses a combination of the 

closest data values along with previously simulated values. 

The spatiotemporal semivariogram model used in the simulation procedure is that of the 

normal scores of the standardised catch rate for the combined 2001-2003 season (Table 9.1, 

Figure 9.1). A modified GSLIB program sgsimtemp.exe was developed and used along with the 

associated parameter file (APPENDIX G.4). The search neighbourhood used in the simulation 

procedure was inferred from the previous estimation procedure. This involved a search window 

with a radius of 20 nmil and 30 days, along with a minimum of 4 sample data and a maximum 

of 20 required to enable estimation. The temporal search radius meant that only data from the 

previous month were used in the actual simulation process. The number of simulated nodes to 

use in any simulation was set to 6. This number was set relatively low to prevent over-

smoothing of the simulated values or screening of more relevant sample data.  

 
Figure 9.1. Product-sum semivariogram models of CPUEsNvd for combined season 2001-2003. 

 

 

 



 

177 

Table 9.1. Product-sum semivariogram model parameters of CPUEsNvd for combined season 2001-2003. 

Marginal Spatial Model Marginal Temporal model 

Nugget  0.20 Nugget  0.00 
1st structure Type spherical 1st structure Type exponential 

 Range 3  Range 10 

 Sill 0.04  Sill 0.52 

2nd structure Type spherical    

 Range 15  Global Sill 1.00 

 Sill 0.3    

 

Back-transformation of the normal score simulated values to standardised catch rate 

values was performed using linear interpolation to the lower limit zero, linear interpolation for 

the middle classes and hyperbolic model extrapolation with parameter 5.1  to the upper limit 

which varied according to the lunar week of simulation. This upper limit was set to the average 

maximum value of the standardised catch rate for the 2001 to 2003 seasons for the 

corresponding week (Table 9.2). For JunL, only the average of seasons 2001 and 2002 was 

used, as season 2003 had an exceptionally high maximum for this lunar week. 

Table 9.2. Hyperbolic parameter for upper limit of normal score back-transformation. 

Phase/Month April May June July August September October 

L 2.5 3.6 2.1 1.6 1.8 2.4 2.5 
N 2.2 3.2 1.8 1.7 2.4 2.9 1.7 

Q 2.5 2.6 2.0 2.2 2.8 2.8 2.0 

 

9.3.1 SIMULATION OF JULY 2004 CATCH RATE VALUES 

As estimates obtained via kriging in the previous chapter for the lunar month of July 2004 were 

shown to quite accurately reproduce the behaviour of the actual catch rates recorded in that 

month (Figure 8.13 and Figure 8.14), the results of the simulation process for the July lunar 

month are presented first rather than those for the month of May. The mean grid estimates for 

the three weeks of July reproduced the areas of high and low catch rates evident in the actual 

July catch rates with the exception of an area of high catch rates above the TPSA not present in 

the sample values. Simulated catch rate values were investigated to model the variability within 

the region for the July lunar month of fishing. Simulated values for a particular day, rather than 

an average over a lunar week, were the initial focus to investigate the variability presented by 

simulation. In particular, the results for the first day of each lunar week of Jul are presented. 

Comparison of the first simulation of the first day from the three weeks of July 2004 

(Figure 9.2, second row) shows the decrease in the amount of locations being simulated at in the 

successive weeks. They also indicate a general decrease in catch rate values from the first to the 
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third week in July, as seen in the sample values (first row). The first grid simulation (of 100 

simulations) of the first day of each lunar week of July shows much more variability than the 

corresponding estimated grid values (fourth row) obtained previously via kriging.  

 
Figure 9.2. CPUE values (top row), individual simulation of CPUE values (second row), mean of 100 
simulations of CPUE values (third row) and OK grid estimates of CPUE values for the first day of the 
three lunar weeks of July 2004: JulL (left), JulN (centre) and JulQ (right). 

As with kriging, a location estimation map can be obtained using simulation by adding 

every simulation together and dividing by the number of simulations. For sequential gaussian 

simulations, this average should tend towards the kriging mean over a large number of 

simulations. The E-type mean simulated values of the 100 simulations for the first day of JulL 
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(Figure 9.2, third row) display similar areas of high and low values as the kriging estimates. As 

for the estimates these mean simulations indicate that the catch rate values are higher in the 

southern region and lower in the northern region. However, the E-type means show even 

smoother values than the OK estimates. This means the area of high values seen to the right of 

the ENA in the estimates is also seen in the simulated values but the values are slightly lower. 

Similarly the area of low values visible in the northern region in the estimates corresponds to an 

area of slightly higher simulated values.  

Multiple realisations of catch rates over the fishing region were obtained by simulation 

for a particular day. The first eight realisations of simulated catch rate values for Day 1 of JulL 

2004 (Figure 9.3) produce realisations throughout the region covered by the sample data, 

although there are many locations that overestimate the catch rates evident in the catch data. 

Most of the realisations show various differing small regions of high values spread across the 

region. Such features that only occur on a few maps can be regarded as uncertain, but consistent 

with the model of spatiotemporal continuity used in the simulation.  

 
Figure 9.3. CPUE values of JulL 2004 (top left) and 8 simulations of CPUE values for Day 1 of JulL 
2004. 
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Whilst there are many differences between the separate realisations, a common feature 

of all realisations is a region of high values to the western side of the ENA. This region of high 

values is also evident in the actual data for all days of JulL (Figure 9.4) but with a lower 

maximum. A feature which occurs in a large proportion of the realisation sets has a higher 

certainty. So the simulated values have correctly identified the area of high values next to the 

ENA. High values in this region are expected as they are evident in the June data used as input 

in the simulation process (Figure 9.5). 

 
Figure 9.4. CPUE values of lunar weeks of July 2004 to be simulated. 

 
Figure 9.5. CPUE values of lunar weeks of previous month (June) 2004 used as conditioning data for 
simulation of CPUE values in July 2004. 

The realisations of simulated catch rate values for the JulN week (Figure 9.6) show that, 

as for JulL, the simulated catch rates overestimate the high catch rates next to the ENA region. 

Plots of the simulated catch rate values for JulQ (Figure 9.7) indicate few areas of high catch 

rate values in any of the simulated maps. The locations of these high catch rates also vary over 

the realisations, suggesting that high catch rate values are not likely during this week. This 

matches the actual catch rate data of the week of JulQ. 
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Figure 9.6. CPUE values of JulN 2004 (top left) and 8 simulations of CPUE values for Day 1 of JulN 
2004. 

 
Figure 9.7. CPUE values of JulQ 2004 (top left) and 8 simulations of CPUE values for Day 1 of JulQ 
2004. 
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9.3.2 SIMULATION OF MAY 2004 CATCH RATE VALUES 

The simulation process was also used to compute daily realisations of the catch rates on a 1 nmil 

by 1 nmil grid for the May lunar month using input data from April (Figure 9.8). It should be 

noted that the estimates for May failed to produce estimates as far into the ENA as evident in 

the actual May sample values as May marked the opening of that region for fishing. 

Furthermore, the estimates that were made in the ENA failed to capture the high values evident 

in the sample area. Additional (survey) data was used in the estimation process but was not used 

in the simulation process. 

As was the case for the July data the first simulation of the first day from the three 

weeks of May 2004 (Figure 9.9, second row) shows the decrease in the number of locations 

being simulated at in the successive weeks. Also similar to the July simulations, the mean 

simulation of the first day of each week (third row) across the region show even more smoothed 

maps than the corresponding kriging estimates (fourth row). These mean simulations associate 

low catch rates with the northern part of the region and a region of intermediate values on the 

western side of the ENA region, most notably in MayL. 

 

 
Figure 9.8. CPUE values of lunar weeks of previous month (April) 2004 used as conditioning data for 
simulation of CPUE values in May 2004. 
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Figure 9.9. CPUE values (top row), individual simulation of CPUE values (second row), mean of 100 
simulations of CPUE values (third row) and OK grid estimates of CPUE values for the first day of the 
three lunar weeks of May 2004: MayL (left), MayN (centre) and MayQ (right). 

Looking at multiple realisations for the first day of the MayL lunar week (Figure 9.10), 

the simulated values do not appear to have captured the high catch rates evident in the ENA 

where the fishers have focussed their efforts, indicated by black rectangle, as it is opened to 

fishing. This is as expected as there are no data for this area in the April input data (Figure 9.8). 

Most of the realisations show various small regions of high values spread across the region, 

which can be regarded as uncertain.  
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Figure 9.10. CPUE values of MayL 2004 (top left) and 8 simulations of CPUE values for Day 1 of MayL 
2004. 

The first eight realisations of simulated catch rate values for the first day of MayN 

(Figure 9.11) show that, as for MayL, the simulated catch rates do not extend as far into the 

ENA as the actual catch rate values and they do not capture the high catch rates evident there. 

The simulated values of the first day of MayQ reflect the mainly low values scattered around the 

region but little evidence of the few high catch rates evident in the sample data on the western 

edge of the ENA. 
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Figure 9.11. Simulated CPUE values, MayN 2004, Day 1, 8 simulations. 

 

 

Figure 9.12. Simulated CPUE values, MayQ 2004, Day 1, 8 simulations. 
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9.4 LOCAL VARIABILITY OF SIMULATIONS  

This section focuses on selected grid locations within the Shark Bay region to investigate the 

local variability at these locations via simulation. The 14 grid locations shown in Figure 9.13 

were chosen to cover the fishing region of 2004. Estimates made previously at these grid 

locations, along with the first individual simulation and the E-type mean simulation for the first 

day of each lunar week of July are shown in Figure 9.15. As noted previously, the E-type means 

of the 100 simulations (third row) identify the same areas of high and low values but produce a 

more smoothed map than that of the estimates (top row), whilst the individual simulations (by 

design) show much greater variability. Further investigation of this variability is seen in the 

individual simulations.  

 
Figure 9.13. Selected locations in fishing region chosen to investigate local variability of CPUE 
simulations over the fishing region 

 
Figure 9.14. CPUE values of the three lunar weeks of July 2004 to be simulated. 
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Figure 9.15. CPUE OK grid estimates (top row), individual CPUE simulation (middle row) and mean of 
100 CPUE simulations (bottom row) at selected locations, for the first day of each of the three lunar 
weeks of July 2004. 

Cumulative distribution function (cdf) curves were produced at each location for the 

100 simulation values at that location for the first day of each lunar week of July (Figure 9.16). 

The cdfs show the cumulative probability levels associated with varying catch rate values. It is 

possible to infer the probability level associated with a certain catch rate value or the catch rate 

associated with a certain cumulative probability level. There is more variability with the cdfs of 

Day 1 JulL than with those of JulN or JulQ. There is a general pattern of behaviour with the cdfs 

of the varying locations. In all 3 weeks, the cdfs associated with locations in the lower half of 

the region (red and yellow) lie to the right of the cdfs associated with locations in the upper half 

of the region (blue). The cdfs of the locations in the ENA (pink/purple) appear to lie in the 

middle.  This indicates overall higher values for the southern region and lower values for the 

northern region. From these observations we can conclude that the catch rates in the lower half 

of the region are associated with higher values than those in the upper region.  
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Figure 9.16. Cdf swarms of CPUE simulated values at selected locations for the first day of the three 
lunar weeks of July 2004. Selected locations indicated on map at right. 

Boxplots for the 100 simulations at each location (Figure 9.17) confirm these 

observations of higher and lower values. The boxplots indicate the spread of simulated values at 

each location. The interquartile range, or IQR, (indicated by the height of the box) shows that 

the spread of values is greater for the central locations in JulL (yellow) and lowest for all 

locations in JulQ. This suggests that the central region in July may be the area of most 

uncertainty in July. 

A comparison of the estimates obtained at each of the selected locations via kriging 

with the simulated values indicate that on day 1 of JulL, estimates for the locations just in or 

near the ENA (pink/red/orange) are near the upper quartile of the corresponding simulated 

values. The actual catch rate values near these locations tend towards the estimated value but do 

show a spread of values as indicated by the simulated values. Central locations (yellow) are near 

the median and locations in the north region (blue) show values near the lower quartile. There is 

only one data value near these locations so it is difficult to determine its accuracy. The estimates 

of JulN show similar behaviour to JunL with the actual 2004 catch rate data displaying similar 

values to those estimated. The range of values indicated by the simulations capture the actual 

catch rate data values. The estimates of JulQ all lie near the median of the simulated values with 

the actual catch rate values displaying a range of values across those indicated by simulation. 

So, the kriging estimates in the south in the lunar month of July are in the upper range indicated 

by simulation, which is reflected in the actual catch rates seen at these locations in July 2004. 

Estimates in the centre region are similar to the average simulation and also reflect the actual 

catch rate values. Estimates in the south are in the lower range of the simulations and are 

indicative of the catch rates at those locations in July 2004. 
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Figure 9.17. Boxplots of CPUE simulations with average simulation value (red line) and estimated value 
(coloured dot) at selected locations for first day of each of the three lunar weeks of July 2004. Black 
crosses indicate actual catch rate values from selected day of 2004 season within a 5 nmil radius of the 
location. Selected locations indicated on map at right. 

The same 14 locations (Figure 9.13) were used to investigate the local variability at 

these locations in the lunar month of May. Estimates made previously at these grid locations, 

along with the first individual simulation and the E-type mean simulation for the first day of 

each lunar week of May (Figure 9.18) show that the E-type means of the 100 simulations (third 

row) identify the same areas of high and low values but produce a more smoothed map than that 

of the estimates (top row). As expected, the individual simulation shows much greater 

variability.  
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Figure 9.18. CPUE OK grid estimates (top row), individual CPUE simulation (middle row) and mean of 
100 CPUE simulations (bottom row) at selected locations, for the first day of each of the three lunar 
weeks of May 2004. 

The cdf swarms for the first day of each lunar week of May at these locations (Figure 

9.19) show similarities across the weeks. The locations of the first week show more variability 

than the other two weeks, which was also seen in the July cdfs. Also similar to July, the cdfs 

associated with locations in the southern half of the region (red and yellow) lie to the right of the 

cdfs associated with locations in the upper half of the region (blue). This demonstrates that the 

catch rates in the southern half of the region are associated with higher values than those in the 

northern region. The shapes of the cdfs for May are quite different to those of July, as they show 

a much longer tail to their upper limit indicating a more strongly positively skewed distribution.  
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Figure 9.19. Cdf swarms of CPUE simulated values at selected locations for the first day of the three 
lunar weeks of May 2004. Selected locations indicated on map at right. 

Boxplots for the 100 simulations for the first day of each lunar week in May (Figure 

9.20) show a much greater variability in the spread of values at the various locations than seen 

in the July simulations. The locations in the centre and southern half of the region (red/yellow) 

have a greater spread in values than those in the northern part of the region (blue). This suggests 

that the lower values in the northern region during May are of more certainty. The central and 

southern regions hold much more uncertainty. The boxplots also confirm the regions of higher 

and lower values.  

Across all weeks of May, kriging estimates for the locations just in or near the ENA 

(pink/red/orange) are near the upper quartile of the corresponding simulated values and are 

reflected in the actual catch rates seen in 2004. Estimates at the central locations (yellow) are 

near the median and locations in the northern region (blue) show values near the lower quartile. 

There are few actual catch rates near these locations to verify these values, but of those within 5 

nmil of the estimated locations, they show values in the range indicated by the simulated values. 
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Figure 9.20. Boxplots of CPUE simulations with average simulation value (red line) and estimated value 
(coloured dot) at selected locations for lunar weeks of May 2004. Black crosses indicate actual catch rate 
values from selected day of 2004 season within a 5 nmil radius of the location. Selected locations 
indicated on map at right. 

9.5 PROPORTION OF VALUES ABOVE A THRESHOLD 

Using the 100 simulations at each grid location, maps of proportions of the simulated values 

above a given threshold can be produced for a given threshold. Figure 9.21 and Figure 9.22 

show the proportions for the first day of each week of July and May respectively where the 

catch rate is greater than the global trend model for that temporal period. This is equivalent to 

the probability that the standardised catch rate value is greater than one, and therefore indicates 

areas where the catch rate is higher than the average value. 

For the northern region in both May and July weeks, the probability that the simulated 

catch rate will be greater than the global trend is at most 0.5 in all weeks. Therefore the northern 

region will most likely involve catch rate values that are well below the temporal trend value for 

that week. There is an area on the western side of the ENA and another area above the ENA 

show proportions between 0.25 and 0.5 in both lunar months, confirming regions of low values 

(below the temporal trend) suggested by kriging estimates and seen in the actual data. In May 

there is a small region on the western side of the ENA showing proportions greater than 0.5, 

most notably in MayL. This confirms the areas of high catch rate values in this region. The 

region of high values evident in the actual catch rates in the ENA in MayL, and to a lesser 

extent, during MayN is not captured in the simulation proportion maps of May. 



 

193 

 
Figure 9.21. CPUE values (top row) and proportion of simulated values at each location whose value 
exceeds the temporal trend model (bottom row) for the lunar weeks of July 2004. 

 
Figure 9.22. CPUE values (top row) and proportion of simulated values at each location whose value 
exceeds the temporal trend model (bottom row) for the lunar weeks of July 2004. 

9.6 CHAPTER SUMMARY 

Simulation of the king prawn catch rates provided another way to not only deduce estimates 

over the spatiotemporal domain, but also to investigate the local variability of the values. In fact, 

the optimal estimate is derived from the model of local uncertainty. As for the estimation 
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process, the simulation process could produce alternative catch rate realisations for the 

subsequent lunar month of fishing. Simulated values identified areas of higher or lower 

uncertainty across the spatiotemporal domain, by suggesting greater or less variability at each 

location. However, average simulation values were smoother than the kriging estimates, which 

may be related to the search parameters of the kriging procedure or the cdf 

extrapolation/interpolation parameters. The ability of the simulation process to identify the 

probability of the variable being above or below a given threshold value could be utilised in the 

fishery to identify possible areas of concern that could be used to direct management decisions. 

It should be noted that the deterministic trend used to obtain the standardised catch rate reduced 

the space of uncertainty. The uncertainty measures in this chapter come only from the space-

time variability of the residuals and do not account for the variability of the temporal trend. 
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CHAPTER 10 

GENERAL CONCLUSIONS AND FURTHER RESEARCH 

10.1 INTRODUCTION 

This thesis had three main objectives: (i) To develop a geostatistical spatiotemporal modelling 

framework for the Shark Bay prawn catch rate data based on the single spatiotemporal random 

function model that will model and allow future predictions of the catch rate along with 

estimates of uncertainty; (ii) To apply the developed geostatistical space-time model to the 

Shark Bay prawn catch rate data using the data from the 2001 to 2003 seasons to compute 

estimates/simulations for the 2004 season which will then be compared with the actual 2004 

values; and (iii) To integrate fishery-independent survey data to improve the performance of 

estimates obtained for the Shark Bay prawn catch data from the developed geostatistical space-

time model. This chapter summarises the major outcomes of this thesis and their contribution to 

the accomplishment of these objectives. Recommendations for further research are also given. 

10.2 DISCUSSION 

Spatiotemporal geostatistical modelling is an empirical approach to the modelling of the space-

time distribution of a variable, with its parameters estimated from observed data. Although not 

physically based, a space-time geostatistical model must include the differences in its structure 

and parameterisation to address the fundamental differences between spatial and temporal 

variation (Kyriakidis & Journel, 1999a; Heuvelink & Griffith, 2010). Space represents a state of 

coexistence, in which there can be multiple dimensions (or directions), and interpolation is 

usually important. Conversely, time represents a state of successive existence, where a clear 

ordering is present that is non-reversible and in only one dimension. In temporal analysis, 

extrapolation is usually important. The origins of spatial and temporal variation in the variable 

of interest can be quite different (Snepvangers et al., 2003). 

Spatiotemporal geostatistical modelling has typically been divided into two main areas. 

One is focussed on models involving multiple, temporally correlated, spatial random functions 

(Egbert & Lettenmaier, 1986; Goovaerts & Sonnet, 1993; Papritz & Flühler, 1994; Bogaert & 

Christakos, 1997) or spatially correlated time series (Solow & Gorelick, 1986; Rouhani & 

Wackernagel, 1990; Rouhani et al., 1992). These methods resulted from the typical imbalance 

between the quantities of temporal and spatial information. The second, and by far the most 
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commonly implemented, method involves a single spatiotemporal random function model (De 

Iaco, 2002; Gneiting et al., 2005; Skoien & Bloschl, 2005; Ekstrom et al., 2007; Soares & 

Pereira, 2007; Gething et al., 2008; Denham & Mueller, 2010). This latter method forms the 

basis of the spatiotemporal model implemented in this thesis. 

Applications of space-time geostatistics, and in particular the single spatiotemporal 

random function modelling approach, have been growing over the past few decades, albeit 

restricted mainly to academic research. Practical implementations of the single space-time 

random function model are data-driven (like most geostatistical methods) and typically face the 

same dilemmas. The main obstacles are the choice of global trend modelling or transformation 

method to provide a stationary spatiotemporal variable and the choice of spatiotemporal 

covariance or semivariogram model that is used to model the spatiotemporal continuity of the 

stationary variable. 

The identification of spatiotemporal global trends is more complicated than for the 

individual spatial or temporal cases, due to the interaction of space and time. Typically spatial 

or temporal analysis of the variable has preceded the spatiotemporal analysis, and may have 

identified a dominant spatial or temporal trend. However, the interaction of space and time must 

be considered when detrending, and is typically realised by analysis of the residuals in space 

and time from the chosen global trend model. 

One of the main concerns with modelling spatiotemporal correlation structures, as with 

spatial correlation modelling, is to ensure a valid model. This must satisfy the negative semi-

definiteness condition for variogram models or positive-definiteness for covariance functions. A 

well-established set of models exists for spatial-only variograms (Goovaerts, 1997), while the 

list for spatiotemporal models is more diverse (De Iaco, 2010). These include, but are not 

limited to, the product model (Rodríguez-Iturbe & Mejía, 1974), the metric model 

(Dimitrakopoulos & Luo, 1994), the integrated product model (Cressie & Huang, 1999) and the 

product-sum model (De Cesare et al., 2001b). 

The choice of spatiotemporal covariance model is typically driven by the data, but is 

also constrained by the user’s knowledge of possible models and their implementation. Lists of 

the commonly used spatial covariance/semivariogram models and their visual representations 

are well-known and documented whilst those of the spatiotemporal models are not as well 

distinguished. There are numerous texts outlining the choice of spatial models (Isaaks & 

Srivastava, 1989; Goovaerts, 1997; Deutsch & Journel, 1998), but not for the spatiotemporal 
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case. A recent study (De Iaco, 2010) outlines the characteristic behaviours of the more 

commonly implemented spatiotemporal covariance models, and is a useful guide for anyone 

wishing to implement a geostatistical spatiotemporal covariance analysis. 

Spatiotemporal geostatistics offers various techniques to optimise use of sampled 

measurement information for interpolating or extrapolating variables at unsampled locations and 

times. Modelling of a variable from survey data forms the basis of most geostatistical studies. 

Data may be obtained from independent survey data or from monitoring programs already in 

place. Whilst survey data is usually obtained from a suitable sampling design for the study at 

hand, data from monitoring programs do not always satisfy the sampling requirements and must 

be validated for their use in a spatiotemporal geostatistical model. Using data already obtained 

to enable an increase of insight into the spatiotemporal distribution of a variable without 

increasing the measurement effort, is of considerable value as sampling and monitoring are 

often expensive in environmental studies. 

The outcomes of a geostatistical model are typically estimates or simulations of the 

variable of interest using the chosen kriging algorithm, which is a best linear unbiased estimator. 

Estimation at an unsampled location or time instant via the kriging process provides a least-

squares estimate of the attribute. Each estimate also comes with a precision measure in the form 

of the kriging variance, albeit a measure of the data configuration. Whilst point estimates are 

useful, it is also beneficial to obtain a measure of the distribution of the variable at that 

spatiotemporal location. It is possible to achieve estimates of uncertainty through 

implementation of a geostatistical simulation process (Goovaerts, 1997). 

Although there is a wealth of free and commercial software programs for implementing 

spatial geostatistical methods, the direct implementation of spatiotemporal methods is not 

possible in all of these software packages. A comprehensive list of geostatistical software and 

their functionality is available in Goovaerts (2010). GSLIB (Deutsch & Journel, 1998) is a 

commonly used suite of programs for spatial geostatistics. Modified versions of GSLIB Fortran 

routines are available for univariate and multivariate space-time semivariogram modelling 

(using the product or product-sum models) and for the implementation of kriging routines (De 

Cesare et al., 2002; De Iaco et al., 2010). As the GSLIB code is freely available, users proficient 

in programming can also modify the relevant code to address the needs of their individual study. 

A modified version of the GSLIB sgsim routine was produced in this study to enable space-time 

sequential Gaussian simulation. The constant need for modifying code to address the issue at 
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hand is possibly the biggest stumbling block in the implementation of space-time geostatistical 

models but necessary for continued development. This study highlights that the capacity of 

space-time geostatistical methods to become a useful tool for researchers is reliant on the 

development of more user-friendly software and documentation of a framework of 

implementation. 

The spatiotemporal continuity of the catch rate data used in this study exhibited a global 

nugget effect not evident in other studies using modified GSLIB routines. A solution was 

provided to simulate the global nugget effect by recalculating the marginal temporal 

semivariogram for use in a product-sum model, based on the spatial aggregation evident in the 

data. This study highlights the need for the inclusion of a global nugget effect in future 

modifications of GSLIB routines to allow greater flexibility in modelling spatiotemporal 

semivariograms. Similarly, these routines would benefit from the addition of alternative 

spatiotemporal semivariogram models. 

Although modified versions of GSLIB routines were used and developed in this study 

to implement spatiotemporal geostatistical modelling, it must be acknowledged that there are 

other software packages available for model implementation. However, like the GSLIB 

routines, not all spatiotemporal covariance structures or kriging variants are available in any one 

program. The R software suite is identified as one of the fastest growing and most 

comprehensive statistical computing tools, largely due to its being freeware, the increasing 

number of packages and its growing online communities (Hengl, 2007). The gstat and 

spacetime packages are two of the geostatistical packages offered in R, and allow space-time 

semivariogram computation and modelling (with limited choices), and their implementation in 

subsequent estimation and simulation routines (Pebesma & Wesseling, 1998; Bivand et al., 

2008). Further development of these packages to include various semivariogram models and 

kriging and simulation variants will be invaluable to the implementation of space-time models 

in the wider community. 

10.2.1 APPLICATION TO SHARK BAY PRAWN CATCH RATE DATA 

Analysis of fisheries stocks by spatial geostatistics has been implemented in a number of studies 

(Addis et al., 2009; Moura & Fernandes, 2009). These typically involve sample data obtained 

from a fishery-independent survey designed for the study. Whilst it is preferable to obtain data 

that are independent of a fishery, the implementation of a fishery-independent survey can be 

impractical and/or costly (Maunder et al., 2006). There is often a range of fishery-dependent 
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data available for many fisheries that form part of their ongoing monitoring programs. The use 

of an already existing data source alleviates the need for additional surveys. This study makes 

use of the fishery-dependent logbook commercial catch and effort data collected for the Shark 

Bay managed prawn fishery. 

Catch per unit effort (CPUE), also known as catch rate, is a widely used fishery-

dependent indicator variable, often as a measure of relative abundance, although this can be 

problematic (Walters, 2003). CPUE trends are an indicator of the general ‘health’ of the fishery 

providing useful insight into the changes within a fishery and highlighting areas of possible 

concern (Maunder et al., 2006). Annual CPUE values are already used in the Shark Bay 

managed prawn fishery to compare fishing seasons. As catch rate data are available across the 

spatial range of the fishery and throughout the fishing weeks of each season, it is logical to 

analyse spatiotemporal continuity within each season and across seasons. This thesis has studied 

the use of spatiotemporal geostatistical methods on king prawn catch rate data from the Shark 

Bay managed prawn fishery in Western Australia. A methodological framework for the 

estimation and simulation of catch rate values within the Shark Bay fishery at future time 

instants has been presented (Denham & Mueller, 2009, 2010). As CPUE values are computed 

from catch and effort data that are obtained from fishermen operating within a given fishery, the 

data does not necessarily conform to guidelines for a sampling variable originating from a 

specified survey design. However, considering the catch and effort of multiple fishermen by 

spatial location should remove the obvious biases that would be expected from the non-random 

search behaviour of fishers (Walters, 2003). 

Two methods of aggregation of the daily catch rate shot data were considered in this 

work. The first involved combining all shots for a given vessel on a given day into a single 

record by aggregating all catch and effort values at a centroidal location. This was driven by the 

awareness that a large proportion of the data was already aggregated by vessel due to the 

recording practices of many skippers. The second type of daily catch rate data was obtained by 

aggregating the shot data on a 1 by 1 nmil grid over the study region, to remove individual 

fisher bias. Data sets obtained by the two methods of aggregation for the 2001 to 2004 seasons 

displayed similar statistical measures. Whilst aggregating by grid may appear to preserve a finer 

spatial resolution for the data, the large proportion of data already aggregated by vessel for a 

day may have been the over-riding problem for this method.  
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The aggregated data, by vessel or grid, were considered as point data for the purposes of 

geostatistical variography, estimation and simulation. Whilst it is recognised that these data are 

not strictly “point” data as they have an associated spatial area, it is difficult to calculate the 

actual support size of the raw data.  

In a previous study (Mueller et al., 2008), the spatial aspect of the king prawn catch 

rates in Shark Bay showed an amenability to geostatistical methods. This thesis has investigated 

temporal trends of the king prawn catch rates modelled previously to obtain standardised catch 

rates that also display a pattern of spatial continuity. The cubic temporal trends seen in previous 

seasons of catch rate data (Harman, 2001) were also present in the 2001-2004 seasons. As the 

main objective of the modelling framework was to produce a model that allowed future 

estimates, the 2001-2003 seasons were used to produce a temporal trend model that could be 

utilised for the 2004 season. 

Standardisation is essential, in any observational data set, to allow undistorted 

comparisons of rates over time or over different areas (Bishop et al., 2008). By standardising the 

catch rates via a temporal trend, it was possible to compare daily and weekly catch rates within 

and across seasons in order to construct a spatiotemporal geostatistical model for king prawn 

catch rates. The persistence of spatial continuity between successive weeks of a season and 

comparable weeks between seasons justifies the modelling of the spatiotemporal continuity of 

the catch rate variable. 

10.2.1.1 SPATIOTEMPORAL CONTINUITY 

Spatiotemporal continuity was evident in the experimental spatiotemporal semivariograms of 

the standardised king prawn catch rates. As outlined previously, a critical stage in the process of 

geostatistical spatiotemporal modelling is the choice of model for the spatiotemporal variogram 

or covariance function and the estimation of the model parameters. The product-sum 

semivariogram model does not impose constraints of symmetry between spatial and temporal 

components. Furthermore, it does not require an arbitrary space-time metric, which is often 

unreasonable or difficult to formulate. It allows intuitive and simple construction of models for 

the spatiotemporal continuity, which can be fitted to data using relatively straightforward 

techniques that are similar to those established for spatial-only geostatistics. Finally, but perhaps 

most importantly, it captured the behaviour of spatiotemporal continuity evident in the catch 

rate data and therefore was adopted for use in this study with the king prawn catch rates. 
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Product-sum models were fitted to the experimental semivariograms of the standardised 

king prawn catch rate aggregated by vessel or grid. Individual seasons and combined successive 

seasons were analysed via semivariograms to establish a pattern of spatiotemporal continuity 

over the 2001-2003 seasons. The experimental semivariograms exhibited a global nugget, which 

was interpreted as mainly a spatial nugget due to the aggregation of catch and effort data by 

vessel or grid. The two methods of data aggregation resulted in different measures of 

spatiotemporal continuity, which displayed some similarities and differences between them. 

Whilst the model parameters varied over the seasons, there was strong evidence of continuity of 

the model’s behaviour to construct a single model for combined seasons. With the objective of 

modelling the catch rates of the 2004 season, a single model for the combined 2001-2003 

seasons was obtained. Ultimately only one method of aggregation (by vessel) was used to 

conduct estimation on the basis of the fit of a model for spatiotemporal continuity. The 

performance of the space-time semivariogram model was cross-validated via kriging for the 

2004 sample data, one week at a time. 

10.2.1.2 SPATIOTEMPORAL ESTIMATION 

It is important to be able to map and accurately forecast the location and the spatial 

characteristics of a fisheries resource for the purpose of stock conservation and profit 

optimisation (Maynou et al., 1998). The catch rate of the Shark Bay managed prawn fishery has 

been used for several years as a general indicator of the health of the fishery (Sporer et al., 

2010). The continuity described by the spatiotemporal semivariogram model of the standardised 

catch rate was used in a spatiotemporal geostatistical model to provide estimates at unsampled 

spatiotemporal locations. Estimates of the standardised catch rate were transformed to catch rate 

values using the temporal trend model initially used to standardise the catch rates.  

The model produced allowed geostatistical estimation of the catch rates in interpolation 

and extrapolation mode. The focus of this study was extrapolation mode by producing estimates 

for the fishery in future weeks of the 2004 season. In extrapolation mode, the model could 

predict the behaviour of the catch rates outside the temporal and spatial bounds of the given data 

(Denham & Mueller, 2009). The extrapolation process in this thesis was focussed on 

forecasting, where the catch rate was estimated into the future of the fishing season using data 

up to, but not including, the month being estimated. In practice, this meant that only data from 

up to 30 days before the day being estimated were actually used in the estimation process.  
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The model could reasonably predict approximately two weeks into the future of the 

2004 season as long as the input data covered the region to be estimated. This meant that the 

week corresponding to the first quarter moon phase of each lunar month could not be forecast 

accurately as it was the third week of the month being estimated. The inclusion of data from the 

first week of a lunar month increased the ability to make successful estimates of the catch rate in 

the third week. It also enabled slightly more locations to be estimated in the second week of the 

month and significantly more in the third week. Furthermore, the extra data provided a slight 

refinement of the areas of high values already estimated by the original input data. 

As new areas were opened to fishing (such as the ENA in the first lunar week of May), 

there were insufficient data to enable estimation in that region. To be more precise, some 

estimation was possible in that region, but only on the edge near the region already open. 

Inclusion of data from the first week of a lunar month proved useful again, not only to extend 

the temporal range of the estimation process but to provide data within the opening region that 

was not covered by the original input data used for estimation.  However, data in the first week 

of May of the ENA yielded values much higher than was evident in successive weeks so, whilst 

this allowed estimates to be made further into the ENA, the estimates for that region in 

successive weeks were overly biased by the high values evident in the first week as the region 

was opened to fishing. This was not of concern when using the additional first week of data for 

the month of July 2004 as there was no opening region or areas of significantly high or low 

catch rates. A possible solution for weeks/areas involving the opening of a fishing region is to 

limit the range of influence of high values in a new area as it is opened for fishing by scaling 

their values for use in estimating future weeks. 

In the case of May 2004 which involved an opening region (ENA) in the first week of 

fishing, survey data available in the ENA prior to fishing was used to increase the number of 

estimates within that region, and for them to be valid estimates. They provided the input data for 

that region to be estimated, as well the high values necessary to replicate the high values evident 

in the area (Denham & Mueller, 2010). The sample data were given an appropriate pseudo-date 

to ensure their inclusion in the estimation process. The survey data were not useful for 

estimating in the 2nd and 3rd weeks as they bias the values in that area. Alternatives may be to 

scale the survey data to reduce their impact in successive weeks, or to use catch rate data from 

the ENA in previous years to use as input data for a region as it opens. Either way, it is 
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necessary to use additional input data for use in weeks involving an opening region such as the 

ENA and for successive weeks until the impact of that opening region has stabilised.  

The use of additional data allows more estimates to be computed but must be 

representative of region. Using data from the first week of a lunar month to predict the 2nd and 

3rd weeks of a month will help in refining the estimates if the region has been consistently open 

(eg. July). However in the case of an opening region involving significant catch rates (eg May) 

the additional data may enable further estimates, but as they are heavily biased, it is not 

appropriate. Additional data for a week involving an opening region (MayL) must be 

representative data (eg. survey or previous year). In the case of survey data, it must be weighted 

for use in subsequent weeks. In the case of previous year data, only data from the appropriate 

weeks should be used. 

10.2.1.3 SPATIOTEMPORAL SIMULATION 

A spatiotemporal simulation process was also implemented with the catch rates as a tool to 

model the variability of estimates in the lunar months of May and July of 2004. Simulation was 

conducted using only the original input data so the simulated values within ENA in MayL 

cannot hope to capture the variability of the catch rates in that area. Only areas outside the ENA 

in MayL can be checked for variability with current estimates. As the catch rate behaviour is 

more consistent within the region leading into the month of July, all locations and days in July 

can be assessed for variability by the simulation process. The simulation process clarified areas 

of consistently low or consistently high values in these months and identified areas of high 

variability. 

Estimates obtained for the catch rates of the 2004 season via averaging multiple 

simulated realisations of the spatiotemporal random field provided even smoother results than 

the kriging estimates. This is not generally expected, and indicates the need to refine the 

simulation process used for the catch rates. This may involve changing the search parameters, 

cdf extrapolation parameters or possibly even the local model of variability assumed 

(multiGaussian). 

10.3 FUTURE RESEARCH DIRECTIONS 

The geostatistical spatiotemporal model presented in this thesis offers a method to model the 

spatiotemporal continuity of the king prawn catch rate in the Shark Bay managed prawn fishery. 

It can be used to compute estimates and simulated values of the catch rate within seasons and 

approximately two weeks into the future of a season. This development of ideas began with an 
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initial model for the spatiotemporal behaviour of the catch rate and then aimed to improve the 

modelling of the catch rates by the inclusion of relevant input data. There are more refinements 

possible for this model. 

Four seasons of king prawn catch rates were analysed in this study. Applying this model 

to additional seasons of king prawn catch rate data would help to refine and justify the 

parameters within the model. Although this model has been developed for use with the 

standardised king prawn catch rate variable, the flexibility of the modelling process means it can 

be applied to the king prawn catch variable or to the catch or catch rate of another species such 

as the tiger prawn within the Shark Bay fishing region. Other transformations of the catch rates 

could also be considered such as standardising by fitting generalised linear models, a method 

not yet implemented in the Shark Bay managed prawn fishery but a commonly used 

standardisation technique in many fisheries analysis (Punt et al., 2000; Battaile & Quinn Ii, 

2004; Maunder & Punt, 2004). The spatiotemporal continuity of the standardised catch rates 

obtained via a generalised linear model could be analysed in a similar manner as presented in 

this study and used to produce estimates or simulations of the catch rates. 

The neighbourhood used for the inclusion of relevant temporal and spatial information 

was based on a space-time metric as implemented by the modified kt3dnew.exe routine (De 

Cesare et al., 2002). This program could be further modified to allow direct control over the 

number of spatial neighbours used in the estimation process for each temporal separation. For 

example, allowing the 10 closest spatial neighbours for each temporal separation from 1 to 7 

days. The ability of the user to specify the number of spatial neighbours used for each temporal 

window would be a useful addition to this program. This feature has been implemented in the 

Edinburgh Space-Time Geostatistics Package (Spadavecchia, 2008) which offers a set of 

programs for implementing space-time estimation (OK, IK, UK) and sequential Gaussian 

simulation.  

The effect of environmental factors on the dynamic nature of the Shark Bay managed 

prawn fishery should be considered in further studies. Water temperature and rainfall are two 

possible factors for consideration. Geostatistical methods are well suited to the inclusion of 

secondary information, either through deterministic trend modelling of the original variable 

(Spadavecchia, 2008), modelling of trend within the kriging process as a function of the 

secondary variables via kriging with an external drift (KED) or simple kriging with a local mean 

(SKLM) (Goovaerts, 1997), or through modelling of the multivariate space-time covariance 
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structure (De Iaco et al., 2010). Integration of environmental variables is also possible in a 

simulation setting via simulation with local means or co-simulation (Goovaerts, 1997). The 

inclusion of environmental variables could provide more realistic scenarios and increase the 

performance of the model’s estimates or simulations. By achieving a more robust model, fishery 

scientists and industry members of the Shark Bay managed prawn fishery would be interested to 

gain information from forecasting catches in future months, particularly for contrasting 

environmental conditions (M. Kangas, Personal communication, October 2011). 

Additional input data could be used for estimating over the whole region or their use 

could be limited to within a specific region. Where an opening region is involved it may be best 

to use the additional data only for estimating within that region. For example, the actual data 

from MayL indicates that there is a distinct line of behaviour from outside to inside the ENA, so 

it is appropriate to limit the use of additional data (survey data or previous year’s data) to 

estimating within the ENA. This would mean estimates for MayL would be a combination of 

estimates using original data and survey data within ENA with the original estimates for the 

remainder of the region. Given that the behaviour in the opening region ENA is so vastly 

different to the areas near the region in previous weeks, it may be even better to estimate within 

the ENA using only input data from within the ENA (ie survey data or previous year/s data). 

Estimates outside the ENA would be made using only data outside the ENA, which essentially 

is just the original data used for estimation.  

The estimation and simulation procedures within this modelling framework utilised the 

linear methods of OK and SK. Whilst optimal for normally distributed data (Johnston et al., 

2001), these methods can also work with non-normally distributed data. The skewed nature of 

the catch rate data may also lend itself to the use of non-linear kriging algorithms, which are 

actually linear kriging (SK or OK) applied to specific non-linear transforms of the original data. 

Non-linear kriging methods, such as Lognormal Kriging (LK) and Indicator Kriging (IK), are 

used extensively in spatial geostatistics (Maravelias et al., 1996; Fernandes & Rivoirard, 1999; 

Kishné et al., 2003; Kleisner et al., 2010a).  

As catch rate data are often modelled by a lognormal distribution, LK is an obvious 

alternative to the ordinary kriging process employed in this study (Goovaerts, 1997), although 

studies are limited to spatial geostatistical methods. The experimental logarithmic 

semivariogram was investigated in this study but did not show improvement over the traditional 

semivariogram and therefore not considered further. However, an alternative standardisation 
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procedure may suggest a logarithmic distribution is appropriate. LK works on kriging the 

transformed data using the semivariogram of the transformed values and then back-transforming 

the estimates into the original scale of data. Back-transformation is achieved as the exponential 

of the kriging estimate plus a nonbias term. By taking the skewed distribution of the data into 

account, the transformation aims to reduce the data variance to improve the calculation of 

statistics and weighted averages such as kriging estimates than that which would have been 

obtained when it is ignored. However, the lognormal hypothesis is very strict so any departure 

results in a biased expected value of the estimate and the nonbias term is completely dependent 

on the semivariogram model. It has been suggested in a spatial study that the use of an 

appropriate factor to correct estimates in the logarithmic domain can eliminate the biasedness of 

the back-transformed LK estimates (Yamamoto, 2007).  

Although IK is another non-linear approach for skewed data, it is not recommended 

here for use with the prawn catch rates due to the series of threshold values or cut-offs required 

between the smallest and largest data values in the set. IK builds the cdf at each point based on 

the semivariogram/covariance structure of indicator transforms of the data. This requires the 

computation and modelling of semivariograms for each threshold which can be cumbersome 

and time-consuming. Simulation offers a more viable alternative to the modelling of the cdf. 

The simulation process employed in this thesis was based on a multiGaussian framework, where 

kriging was applied to the normal score transforms of the data. By refining the method of 

standardisation for the catch rates, the performance of this simulation method may be improved. 

Uncertainty measures were presented for the space-time variability of the standardised 

catch rates but underestimated the global uncertainty due to the choice of a deterministic 

temporal trend model. Future research could also include quantification of the variability of the 

data around the temporal trend model to provide a more accurate representation of the global 

uncertainty. 

A method of quality control for geostatistical simulations is computation of the 

spatiotemporal semivariograms of the simulated values. Such variograms can also serve as 

validation of the simulation model and are recommended for future presentation of this work. 

Whilst the model was used for forward prediction in this study, it can also be used in an 

interpolation mode which aims to describe the spatiotemporal behaviour of the catch rates 

within the spatial and temporal bounds of the data. Estimates produced for all spatial locations 

within the fishery for all days within a fishing season, can be used as an analysis tool for the 
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season that has passed to help refine management approaches. The inclusion of the temporal 

variable may be able to improve the accuracy of the spatial estimation maps obtained previously  

(Mueller et al., 2008). Spatial maps are seen as a useful tool for communication between 

scientific staff and the wider community, including stakeholders. 

This thesis has presented a geostatistical spatiotemporal modelling framework for the 

king prawn catch rates in the Shark Bay managed prawn fishery off Western Australia. Data 

from other fisheries could also be used in a similar modelling context. There is wide scope to 

refine and improve the model for use with the catch rates or another fishing variable. With 

increasing ability in the modern world to readily collect detailed spatial and temporal 

information of fishery-dependent variables, spatiotemporal modelling of fisheries data has a 

range of possibilities for implementation. A further challenge lies in the integration of the 

spatiotemporal modelling potential of the geostatistical framework into the fisheries 

management regime. It is only with the wider and more frequent use of models and simulations 

such as those presented in this thesis, that this will gradually be achieved through demonstrating 

the relevance of the outputs to assessing stock status and evaluating future harvest strategies.
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APPENDIX B: PRAWN FISHERY CLOSURE LINES 2001-2004 

Table B-1. Shark Bay prawn trawling closures, 2001-2004. 

Season Closure Line/Area Opens Closes Re-opens Re-closes 

2001 

Carnarvon-Peron Line 16/04    
Extended Nursery Area 16/04 01/08   

Extended Nursery Area below 25º18’S 16/04 20/04 15/05 01/08 

Extended Nursery Area below 25º20’24”S 15/05 01/08   

Torbay Line 01/08    

Denham Line 14/03 01/05 01/08  

Tiger Prawn Spawning Area 14/03 19/06   

Northern Tiger Prawn Spawning Area 14/03 24/07   

2002 

Carnarvon-Peron Line 11/04    
Extended Nursery Area 06/05 01/08   

Torbay Line 01/08    

Denham Line 06/03 01/05 01/08  

Tiger Prawn Spawning Area 06/03 23/06   

Northern Tiger Prawn Spawning Area 06/03    

2003 

Carnarvon-Peron Line 24/04    
Extended Nursery Area 21/05 01/08   

Torbay Line 01/08    

41 Minute Line 01/08    

Denham Line 01/04 01/05 01/08  

Tiger Prawn Spawning Area 06/03 21/05   

2004 

Carnarvon-Peron Line 24/04    
Carnarvon Peron below 25º13’S 01/05    

Extended Nursery Area 24/04 05/08   

ENA below 01/05    

41 Minute 08/08    

Denham 18/03 01/04 08/08  

Tiger Prawn Spawning Area 16/03 26/05   
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APPENDIX C: DATES OF MOON PHASES 2001-2004 

Table C-1. Dates of moon phases for seasons 2001-2004 (Phases: L=Last Quarter, N=New Moon, 
Q=First Quarter, F=Full Moon). 

Season 2001 Season 2002 Season 2003 Season 2004 
Date Phase Date Phase Date Phase Date Phase 

3/03 Q 6/03 L 3/03 N 7/03 F 
10/03 F 14/03 N 11/03 Q 14/03 L 

17/03 L 22/03 Q 18/03 F 21/03 N 

25/03 N 29/03 F 25/03 L 29/03 Q 

1/04 Q 4/04 L 2/04 N 5/04 F 

8/04 F 13/04 N 10/04 Q 12/04 L 

15/04 L 20/04 Q 17/04 F 19/04 N 

23/04 N 27/04 F 23/04 L 28/04 Q 

1/05 Q 4/05 L 1/05 N 5/05 F 

7/05 F 12/05 N 9/05 Q 11/05 L 

15/05 L 20/05 Q 16/05 F 19/05 N 

23/05 N 26/05 F 23/05 L 27/05 Q 

30/05 Q 3/06 L 31/05 N 3/06 F 

6/06 F 11/06 N 8/06 Q 10/06 L 

14/06 L 18/06 Q 14/06 F 18/06 N 

21/06 N 25/06 F 21/06 L 26/06 Q 

28/06 Q 3/07 L 30/06 N 2/07 F 

5/07 F 10/07 N 7/07 Q 9/07 L 

14/07 L 17/07 Q 14/07 F 17/07 N 

21/07 N 24/07 F 21/07 L 25/07 Q 

27/07 Q 1/08 L 29/07 N 1/08 F 

4/08 F 9/08 N 5/08 Q 8/08 L 

12/08 L 15/08 Q 12/08 F 16/08 N 

19/08 N 23/08 F 20/08 L 23/08 Q 

26/08 Q 31/08 L 28/08 N 30/08 F 

3/09 F 7/09 N 3/09 Q 6/09 L 

11/09 L 14/09 Q 10/09 F 14/09 N 

17/09 N 21/09 F 19/09 L 21/09 Q 

24/09 Q 30/09 L 26/09 N 28/09 F 

2/10 F 6/10 N 3/10 Q 6/10 L 

10/10 L 13/10 Q 10/10 F 14/10 N 

17/10 N 21/10 F 18/10 L 21/10 Q 

24/10 Q 29/10 L 25/10 N 28/10 F 
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APPENDIX D: LUNAR WEEKS OF 2001-2004 FISHING SEASONS 

Table D-1. Lunar weeks for the fishing months of seasons 2001-2004. Start and End represent day/month 
of respective year. Phase indicates the name of the lunar week denoting the associated month and phase 
i.e. MarF = Full moon week of March.  

Season 2001 Season 2002 Season 2003 Season 2004 
Start End Phase Start End Phase Start End Phase Start End Phase 

7/03 13/03 MarF 3/03 10/03 MarL 28/02 7/03 MarN 11/03 17/03 MarL 
14/03 21/03 MarL 11/03 18/03 MarN 8/03 14/03 MarQ 18/03 25/03 MarN 

22/03 28/03 MarN 19/03 25/03 MarQ 15/03 21/03 MarF 26/03 1/04 MarQ 

29/03 4/04 MarQ 26/03 1/04 MarF 22/03 29/03 MarL 2/04 8/04 AprF 

5/04 11/04 AprF 1/04 7/04 AprL 30/03 6/04 AprN 9/04 15/04 AprL 

12/04 19/04 AprL 10/04 16/04 AprN 7/04 13/04 AprQ 16/04 22/04 AprN 

20/04 27/04 AprN 17/04 23/04 AprQ 14/04 20/04 AprF 25/04 1/05 AprQ 

28/04 4/05 AprQ 24/04 30/04 AprF 20/04 27/04 AprL 2/05 8/05 MayF 

5/05 11/05 MayF 1/05 8/05 MayL 28/04 5/05 MayN 9/05 15/05 MayL 

12/05 19/05 MayL 10/05 16/05 MayN 7/05 12/05 MayQ 16/05 23/05 MayN 

20/05 26/05 MayN 17/05 23/05 MayQ 13/05 19/05 MayF 24/05 30/05 MayQ 

27/05 2/06 MayQ 23/05 30/05 MayF 20/05 27/05 MayL 31/05 6/06 JunF 

3/06 10/06 JunF 31/05 7/06 JunL 28/05 4/06 JunN 7/06 14/06 JunL 

11/06 17/06 JunL 8/06 14/06 JunN 5/06 11/06 JunQ 15/06 22/06 JunN 

18/06 24/06 JunN 15/06 21/06 JunQ 11/06 17/06 JunF 23/06 29/06 JunQ 

25/06 1/07 JunQ 22/06 29/06 JunF 18/06 24/06 JunL 30/06 5/07 JulF 

2/07 9/07 JulF 30/06 6/07 JulL 27/06 3/07 JulN 6/07 13/07 JulL 

10/07 17/07 JulL 7/07 14/07 JulN 4/07 11/07 JulQ 14/07 21/07 JulN 

18/07 24/07 JulN 13/07 20/07 JulQ 10/07 17/07 JulF 22/07 28/07 JulQ 

24/07 1/08 JulQ 21/07 28/07 JulF 18/07 25/07 JulL 29/07 4/08 AugF 

2/08 8/08 AugF 29/07 1/08 AugL 26/07 1/08 AugN 5/08 12/08 AugL 

9/08 15/08 AugL 2/08 12/08 AugN 2/08 8/08 AugQ 13/08 19/08 AugN 

16/08 22/08 AugN 12/08 19/08 AugQ 9/08 16/08 AugF 20/08 26/08 AugQ 

23/08 30/08 AugQ 20/08 27/08 AugF 17/08 24/08 AugL 27/08 2/09 SepF 

31/08 7/09 SepF 28/08 3/09 SepL 25/08 31/08 SepN 3/09 10/09 SepL 

8/09 14/09 SepL 4/09 10/09 SepN 31/08 6/09 SepQ 11/09 17/09 SepN 

15/09 21/09 SepN 11/09 17/09 SepQ 7/09 13/09 SepF 18/09 25/09 SepQ 

22/09 28/09 SepQ 19/09 25/09 SepF 17/09 23/09 SepL 26/09 2/10 OctF 

29/09 6/10 OctF 28/09 3/10 OctL 24/09 29/09 OctN 3/10 10/10 OctL 

7/10 13/10 OctL 3/10 9/10 OctN 30/09 6/10 OctQ 11/10 17/10 OctN 

14/10 20/10 OctN 10/10 17/10 OctQ 7/10 14/10 OctF 18/10 24/10 OctQ 

21/10 28/10 OctQ 18/10 25/10 OctF 15/10 21/10 OctL 25/10 1/11 NovF 
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APPENDIX E: ALIGNMENT OF LUNAR WEEKS OF 2001-2004 
FISHING SEASONS 

Table E-1. Week numbers for seasons 2001-2004 indicating the alignment of lunar weeks across seasons. 
This was achieved by the alignment of the four moon phases (Last Quarter, New Moon, First Quarter and 
New Moon) and the approximate alignment of each calendar month across years. 

Week Number 2001 2002 2003 2004 

1 MarL MarL  MarL 
2 MarN MarN MarN MarN 

3 MarQ MarQ MarQ MarQ 

4 AprF MarF MarF AprF 

5 AprL AprL MarL AprL 

6 AprN AprN AprN AprN 

7 AprQ AprQ AprQ AprQ 

8 MayF AprF AprF MayF 

9 MayL MayL AprL MayL 

10 MayN MayN MayN MayN 

11 MayQ MayQ MayQ MayQ 

12 JunF MayF MayF JunF 

13 JunL JunL MayL JunL 

14 JunN JunN JunN JunN 

15 JunQ JunQ JunQ JunQ 

16 JulF JunF JunF JulF 

17 JulL JulL JunL JulL 

18 JulN JulN JulN JulN 

19 JulQ JulQ JulQ JulQ 

20 AugF JulF JulF AugF 

21 AugL AugL JulL AugL 

22 AugN AugN AugN AugN 

23 AugQ AugQ AugQ AugQ 

24 SepF AugF AugF SepF 

25 SepL SepL AugL SepL 

26 SepN SepN SepN SepN 

27 SepQ SepQ SepQ SepQ 

28 OctF SepF SepF OctF 

29 OctL OctL SepL OctL 

30 OctN OctN OctN OctN 

31 OctQ OctQ OctQ OctQ 
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APPENDIX F: DAILY KING PRAWN CPUE  

F.1 Daily CPUE aggregated by vessel, 2001 

Figure F.1-1. CPUEvd, March-June 2001 
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Figure F.1-2. CPUEvd, July-October 2001 
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F.2 Daily CPUE aggregated by vessel, 2002 

Figure F.2-1. CPUEvd, March-June 2002 
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Figure F.2-2. CPUEvd, July-October 2002 
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F.3 Daily CPUE aggregated by vessel, 2003 

Figure F.3-1. CPUEvd, March-June 2003 
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Figure F.3-2. CPUEvd, July-October 2003 
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F.4 Daily CPUE aggregated by vessel, 2004 

Figure F.4-1. CPUEvd, March-June 2004 
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Figure F.4-2. CPUEvd, July-October 2004 
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F.5 Daily CPUE aggregated by grid, 2001 

Figure F.5-1. CPUEgd, March-June 2001 

 

 

  



 

231 

Figure F.5-2. CPUEvd, July-October 2001 
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F.6 Daily CPUE aggregated by grid, 2002 

Figure F.6-1. CPUEgd, March-June 2002 
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Figure F.6-2. CPUEgd, July-October 2002 
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F.7 Daily CPUE aggregated by grid, 2003 

Figure F.7-1. CPUEgd, March-June 2003 
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Figure F.7-2. CPUEgd, July-October 2003 
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F.8 Daily CPUE aggregated by grid, 2004 

Figure F.8-1. CPUEgd, March-June 2004 
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Figure F.8-2. CPUEgd, July-October 2004 
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APPENDIX G: PARAMETER FILES 

G.1 Example parameter file for gamv.exe 
                       Parameters for GAMV 
                       ********************* 
  
START OF PARAMETERS: 
DataGwW12001.dat                    \data file 
2   3   0                             \column for x,y,z coordinates 
3   11  15  16                        \nvar; column numbers... 
‐900.      1.0e21                     \tmin, tmax (trimming limits) 
EVGwW1_2001.var                     \output file for variograms 
40                                    \nlag ‐ number of spatial lags 
1                                     \lag ‐ separation distance 
0.5                                   \lag tolerance 
1                                     \ndir ‐ number of directions 
0.0  90.0 50.0   0.0  90.0  50.0    \azm,atol,bandh,dip,dtol,bandv 
0                                     \standardize sills?(0=no,1=yes) 
3                                     \number of variograms 
1   1   1                             \tail, head, variogram type 
2   2   1                             \tail, head, variogram type 
3   3   1                             \tail, head, variogram type 
 

G.2 Example parameter file for gamvmod.exe 
                       Parameters for GAMVMOD 
                       ********************* 
  
START OF PARAMETERS: 
Data2001.dat                         \data file 
2   3   4                             \column for x,y, t coordinates 
1   8                                 \nvar; column numbers... 
‐9000.      1.0e21                    \tmin, tmax (trimming limits) 
EV2001.var                            \output file for variograms 
80                                    \nlag ‐ the number of spatial lags 
0.5                                   \xlag ‐ unit separation distance 
0.25                                  \xltol‐ lag tolerance 
60                                    \ntlag ‐ the number of temporal lags 
1                                     \tlag ‐ unit separation distance 
3                                     \ndir ‐ number of directions 
    0.0  90.0 15000  0 0 0            \azm,atol,bandh,dip,dtol,bandv 
    0.0  22.5 15000  0 0 0            \azm,atol,bandh,dip,dtol,bandv 
  90.0  22.5 15000  0 0 0            \azm,atol,bandh,dip,dtol,bandv 
  0                                   \standardize sills? (0=no, 1=yes) 
1                                     \number of variograms 
1   1   1                             \tail, head, variogram type 
 

G.3 Example parameter file for kt3dnew.exe 
                       Parameters for KT3D 
                       ******************* 
 
START OF PARAMETERS: 
Data2004_Mar.dat                  \file with data 
2   3   4   20   0                  \   columns for X, Y, Z, var, sec var 
‐2000     1.0e21                    \   trimming limits 
1                                   \option: 0=grid, 1=cross, 2=jackknife 
Data2004_Mar.dat                  \file with jackknife data 
2   3   4   20   0                  \   columns for X,Y,Z,vr and sec var 
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1                                   \debugging level: 0,1,2,3 
2004Marc.dbg                       \file for debugging output 
2004Marc.dat                        \file for kriged output 
31     10    1                      \nx,xmn,xsiz 
61    ‐90    1                      \ny,ymn,ysiz 
5    1096    1                      \nz,zmn,zsiz 
1    1    1                         \x,y and z block discretization 
4   20                              \min, max data for kriging 
0                                   \max per octant (0‐> not used) 
20    20    30                      \maximum search radii 
0.0   0.0   0.0                     \   angles for search ellipsoid 
1    0                              \0=SK,1=OK,2=non‐st SK,3=exdrift 
0 0 0 0 0 0 0 0 0                   \drift: x,y,z,xx,yy,zz,xy,xz,zy 
0                                   \0, variable; 1, estimate trend 
nodata.dat                          \gridded file with drift/mean 
0                                    \  column number in gridded file 
3   0.07                            \nst, spatial nugget effect 
1   0.03  0.0   0.0   0.0           \it,cc,ang1,ang2,ang3 
          1     1     1            \a_hmax, a_hmin, a_vert 
1   0.05  0.0   0.0   0.0           \it,cc,ang1,ang2,ang3 
          20    20    20        \a_hmax, a_hmin, a_vert 
7   0.15  0.0   0.0   0.0           \it,cc,ang1,ang2,ang3 
          12    12    12            \a_hmax, a_hmin, a_vert 
0.00   0.299                        \temporal nugget, global sill 
1                                   \0 = product, 1 =sum‐product 
 

G.4 Example parameter file for sgsimtemp.exe 
                  Parameters for SGSIMTEMP 
                  ************************ 
 
START OF PARAMETERS: 
Data2004_MarJunn.dat    \file with data 
2   3   4   15   0   0     \   columns for X,Y,Z,vr,wt,sec.var 
‐1.0      1.0e21      \   trimming limits 
1                    \transform the data (0=no, 1=yes) 
sgsimMarJun.trn              \  file for output trans table 
0                                   \  consider ref. dist (0=no, 1=yes) 
nodata.out                          \  file with ref. dist distribution 
1  2                                \  columns for vr and wt 
0.0     2.0                         \  zmin,zmax(tail extrapolation) 
1       0.0                         \  lower tail option, parameter 
4       5.0                         \  upper tail option, parameter 
1                                   \debugging level: 0,1,2,3 
simJul.dbg                          \file for debugging output 
simJul.dat                          \file for simulation output 
100                                 \number of realizations to generate 
31     10    1                      \nx,xmn,xsiz 
61    ‐90    1                      \ny,ymn,ysiz 
8    1219    1                      \nz,zmn,zsiz 
69069                               \random number seed 
4     20                            \min and max original data for sim 
6                                   \number of simulated nodes to use 
0                                   \assign data to nodes (0=no, 1=yes) 
0     3                             \multiple grid search (0=no,1=yes),num 
0                                   \maximum data per octant (0=not used) 
20    20    30                      \maximum search radii (hmax,hmin,vert) 
0.0   0.0   0.0                     \   angles for search ellipsoid 
0     0.0   1.0                     \ktype: 0=SK,1=OK,2=LVM,3=EXDR,4=COLC 
nodata.dat                          \file with LVM,EXDR,or COLC variable 
1                                   \column for secondary variable 
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3   0.20                            \nst, spatial nugget effect 
1   0.04  0.0   0.0   0.0           \it,cc,ang1,ang2,ang3 
          3     3     3            \a_hmax, a_hmin, a_vert 
1   0.30  0.0   0.0   0.0           \it,cc,ang1,ang2,ang3 
          15    15    15        \a_hmax, a_hmin, a_vert 
7   0.52  0.0   0.0   0.0           \it,cc,ang1,ang2,ang3 
          10    10    10        \a_hmax, a_hmin, a_vert 
0.00   1.00                        \temporal nugget, global sill 
1                                   \0 = product, 1 =sum‐product 
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APPENDIX H: SPATIAL VARIOGRAPHY 

H.1 Spatial variography of weekly data sets of CPUEsvd and CPUEsgd 

Figure H.1-1. Experimental semivariograms of CPUEsvd and CPUEsgd for Season 2001 
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Figure H.1-2. Experimental semivariograms of CPUEsvd and CPUEsgd for Season 2002 
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Figure H.1-3. Experimental semivariograms of CPUEsvd and CPUEsgd for Season 2003 
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H.2 Spatial semivariogram models of CPUEs variables 

Table H.2-1. Spatial semivariogram model parameters of weekly CPUEsvd data sets. 

 2001 2002 2003 2004 

Wk Nugget Range Sill Nugget Range Sill Nugget Range Sill Nugget Range Sill 

1 0.07 16 0.08 0.08 8 0.07 0.00 10 0.08 0.10 15 0.09 

2 0.04 15 0.06 0.09 5 0.07 0.15 15 0.25 0.10 9 0.23 

3 0.08 15 0.14 0.12 5 0.07 0.30 15 0.34 0.03 20 0.14 

5 0.10 15 0.60 0.01 
5       
20 

0.01 
0.10 

0.03 14 0.04 0.01 
8       
20 

0.07 
0.10 

6 0.05 12 0.10 0.07 10 0.14 0.03 7 0.02 0.08 11 0.05 

7 0.07 15 0.11 0.07 10 0.15 0.05 11 0.05 0.08 22 0.23 

9 0.09 18 0.23 0.20 10 0.50 0.10 8 0.34 0.15 10 0.41 

10 0.04 12 0.08 0.19 
3       
20 

0.03 
0.1 

0.19 8 0.16 0.12 9 0.05 

11 0.11 20 0.09 0.10 
5       
25 

0.02 
0.20 

0.11 5 0.16 0.12 16 0.35 

13 0.04 13 0.04 0.03 
2       
20 

0.03 
0.04 

0.80 6 0.43 0.05 16 0.12 

14 0.02 2/15 
0.01 
0.01 

0.04 
5       
20 

0.01 
0.01 

0.06 15 0.04 0.03 15 0.13 

15 0.11 25 0.03 0.04 5 0.04 0.12 10 0.03 0.04 
2       
18 

0.03 
0.09 

17 0.02 15 0.01 0.03 7 0.03 0.05 5 0.01 0.04 20 0.08 

18 0.02 10 0.01 0.03 10 0.04 0.03 5 0.02 0.02 28 0.09 

19 0.09 10 0.00 0.07 10 0.05 0.07 20 0.04 0.04 
5       
20 

0.09 
0.07 

21 0.32 10 0.00 0.06 10 0.00 0.09 8 0.04 0.04 20 0.08 

22 0.02 5 0.11 2.00 5 0.00 0.07 15 0.09 0.31 1 0.00 

23 0.15 15 0.06 0.02 
1       
15 

0.20 
0.10 

0.09 2 0.28 0.05 
2       
20 

0.25 
0.07 

25 0.10 8 0.20 0.06 10 0.00 0.10 1 0.24 0.08 25 0.22 

26 0.11 10 0.00 0.06 4 0.03 0.40 20 0.80 0.10 20 0.12 

27 0.09 6 0.11 0.34 6 0.00 0.10 10 0.32 0.10 2 0.33 

29 0.10 1 0.00 0.14 
2       
10 

0.04 
0.01 

0.29 1 0.00 0.07 5 0.10 

30 0.06 10 0.00 0.09 10 0.00 0.10 2 0.14 0.06 20 0.06 

31 0.12 2 0.00 0.07 2 0.05 0.27 2 0.00 0.10 15 0.15 
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Table H.2-2. Spatial semivariogram model parameters of weekly CPUEsgd data sets. 

 2001 2002 2003 2004 

Wk Nugget Range Sill Nugget Range Sill Nugget Range Sill Nugget Range Sill 

1 0.07 16 0.08 0.08 8 0.07 0.00 10 0.08 0.10 15 0.09 

2 0.04 15 0.06 0.09 5 0.07 0.15 15 0.25 0.10 9 0.23 

3 0.08 15 0.14 0.12 5 0.07 0.30 15 0.34 0.03 20 0.14 

5 0.10 15 0.60 0.01 
5       
20 

0.01 
0.10 

0.03 14 0.04 0.01 
8       

20 
0.07 
0.10 

6 0.05 12 0.10 0.07 10 0.14 0.03 7 0.02 0.08 11 0.05 

7 0.07 15 0.11 0.07 10 0.15 0.05 11 0.05 0.08 22 0.23 

9 0.09 18 0.23 0.20 10 0.50 0.10 8 0.34 0.15 10 0.41 

10 0.04 12 0.08 0.19 
3       
20 

0.03 
0.1 

0.19 8 0.16 0.12 9 0.05 

11 0.11 20 0.09 0.10 
5       
25 

0.02 
0.20 

0.11 5 0.16 0.12 16 0.35 

13 0.04 13 0.04 0.03 
2       
20 

0.03 
0.04 

0.80 6 0.43 0.05 16 0.12 

14 0.02 2/15 
0.01 
0.01 

0.04 
5       
20 

0.01 
0.01 

0.06 15 0.04 0.03 15 0.13 

15 0.11 25 0.03 0.04 5 0.04 0.12 10 0.03 0.04 
2       

18 
0.03 
0.09 

17 0.02 15 0.01 0.03 7 0.03 0.05 5 0.01 0.04 20 0.08 

18 0.02 10 0.01 0.03 10 0.04 0.03 5 0.02 0.02 28 0.09 

19 0.09 10 0.00 0.07 10 0.05 0.07 20 0.04 0.04 
5       

20 
0.09 
0.07 

21 0.32 10 0.00 0.06 10 0.00 0.09 8 0.04 0.04 20 0.08 

22 0.02 5 0.11 2.00 5 0.00 0.07 15 0.09 0.31 1 0.00 

23 0.15 15 0.06 0.02 
1       
15 

0.20 
0.10 

0.09 2 0.28 0.05 
2       

20 
0.25 
0.07 

25 0.10 8 0.20 0.06 10 0.00 0.10 1 0.24 0.08 25 0.22 

26 0.11 10 0.00 0.06 4 0.03 0.40 20 0.80 0.10 20 0.12 

27 0.09 6 0.11 0.34 6 0.00 0.10 10 0.32 0.10 2 0.33 

29 0.10 1 0.00 0.14 
2       
10 

0.04 
0.01 

0.29 1 0.00 0.07 5 0.10 

30 0.06 10 0.00 0.09 10 0.00 0.10 2 0.14 0.06 20 0.06 

31 0.12 2 0.00 0.07 2 0.05 0.27 2 0.00 0.10 15 0.15 
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H.3 Spatial variography of weekly data sets of CPUEsNvd and CPUEsNgd 

Figure H.3-1. Experimental semivariograms of CPUEsNvd and CPUEsNgd for Season 2001 
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Figure H.3-2. Experimental semivariograms of CPUEsNvd and CPUEsNgd for Season 2002 
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Figure H.3-3. Experimental semivariograms of CPUEsNvd and CPUEsNgd for Season 2003 
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Figure H.3-4. Experimental semivariograms of CPUEsNvd, Seasons 2001-2004 
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Figure H.3-5. Experimental semivariograms of CPUEsNgd, Seasons 2001-2004 
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APPENDIX I: SPATIOTEMPORAL VARIOGRAPHY OF 
COMBINED SEASONS 

I.1 Spatiotemporal variography of combined seasons 

Figure I.1-1. Experimental marginal spatial and temporal semivariograms, combined seasons, 2001-2004. 

 

 

Figure I.1-2. Number of pairs for experimental marginal spatial and temporal semivariograms, combined 
seasons, 2001-2004. 
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Figure I.1-3. Marginal spatial and temporal semivariogram models, combined seasons, 2001-2004. 
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I.2 Experimental spatiotemporal semivariograms of combined seasons 

Figure I.2-1. Experimental semivariograms, combined seasons, 2001-2004. 
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I.3 Marginal spatial semivariograms of combined seasons 

Figure I.3-1. Marginal spatial semivariograms, combined seasons, 2001-2004. 
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I.4 Marginal temporal semivariograms of combined seasons 

Figure I.4-1. Marginal temporal semivariograms, combined seasons, 2001-2004. 
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I.5 Product-sum semivariogram models of combined seasons 

Figure I.5-1. Product-sum semivariogram models, combined seasons, 2001-2004. 
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APPENDIX J: CROSS VALIDATION  

J.1 Standardised catch rate data of 2004 

Figure J.1-1. Standardised CPUE, March-June 2004 
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Figure J.1-2. Standardised CPUE, July-October 2004 
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J.2 Standardised CPUE Cross Validation Estimates 2004 

Figure J.2-1. Cross validation estimates of CPUEs, March-June 2004. 
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Figure J.2-2. Cross validation estimates of CPUEs, July-October 2004. 
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J.3 Summary statistics of standardised CPUE 2004 

Table J.3-1. Summary statistics for standardised CPUE, 2004. 

Week Mean Med Var Skew Min Max N 

MarL 1.026 1.034 0.130 0.645 0.348 2.222 52 

MarN 0.942 0.815 0.267 1.512 0.063 3.223 112 

MarQ 0.672 0.563 0.129 1.086 0.072 1.744 140 

AprL 0.650 0.557 0.144 0.759 0.072 1.823 200 

AprN 0.852 0.836 0.114 0.257 0.187 1.854 202 

AprQ 0.840 0.752 0.255 0.913 0.087 2.373 178 

MayL 1.652 1.745 0.455 -0.006 0.207 3.527 196 

MayN 1.228 1.213 0.152 0.112 0.188 2.357 203 

MayQ 0.917 0.844 0.382 1.285 0.036 3.271 165 

JunL 0.824 0.838 0.138 -0.060 0.055 1.763 198 

JunN 0.726 0.725 0.139 0.659 0.030 2.611 195 

JunQ 0.729 0.729 0.121 0.394 0.047 1.892 143 

JulL 0.694 0.677 0.091 0.043 0.038 1.459 197 

JulN 0.700 0.684 0.086 0.316 0.150 1.495 202 

JulQ 0.659 0.564 0.136 0.818 0.063 1.668 166 

AugL 0.656 0.700 0.075 0.535 0.066 1.543 69 

AugN 1.014 1.039 0.207 0.756 0.281 2.122 14 

AugQ 1.000 0.920 0.215 0.706 0.330 2.213 48 

SepL 0.797 0.844 0.191 0.093 0.100 1.701 74 

SepN 0.852 0.836 0.134 0.103 0.065 1.788 45 

SepQ 1.062 1.056 0.240 0.359 0.193 2.271 43 

OctL 0.883 0.874 0.108 0.225 0.249 1.650 42 

OctN 0.689 0.665 0.090 0.469 0.257 1.322 19 

OctQ 0.745 0.547 0.183 0.690 0.225 1.636 25 
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J.4 Standardised CPUE cross validation summary statistics 2004 

Table J.4-1. Summary statistics for standardised CPUE cross validation estimates, 2004. 

Week Mean Med Var Skew Min Max N 

MarL 1.030 0.977 0.037 3.042 0.839 1.836 51 

MarN 0.964 0.782 0.182 1.266 0.415 2.252 112 

MarQ 0.678 0.585 0.092 1.272 0.255 1.520 140 

AprL 0.650 0.627 0.096 0.304 0.203 1.382 200 

AprN 0.852 0.888 0.052 0.014 0.361 1.563 202 

AprQ 0.821 0.709 0.169 0.623 0.219 1.789 178 

MayL 1.627 1.746 0.221 -0.477 0.577 2.557 196 

MayN 1.265 1.232 0.065 -0.086 0.390 1.796 203 

MayQ 0.911 0.810 0.219 0.927 0.222 2.243 165 

JunL 0.833 0.911 0.081 -0.574 0.130 1.433 198 

JunN 0.724 0.749 0.088 0.049 0.072 1.635 195 

JunQ 0.710 0.773 0.064 -0.288 0.099 1.241 143 

JulL 0.704 0.723 0.055 -0.385 0.164 1.095 197 

JulN 0.707 0.721 0.060 0.045 0.244 1.248 202 

JulQ 0.654 0.573 0.068 0.562 0.237 1.321 166 

AugL 0.674 0.637 0.031 -0.299 0.228 1.000 69 

AugN 0.971 0.932 0.052 0.286 0.597 1.426 14 

AugQ 0.967 0.962 0.057 0.187 0.529 1.402 48 

SepL 0.816 0.972 0.133 -0.562 0.164 1.303 74 

SepN 0.916 1.020 0.077 -1.398 0.171 1.245 45 

SepQ 1.015 1.032 0.108 -0.385 0.179 1.621 43 

OctL 0.898 0.861 0.025 -0.065 0.494 1.162 42 

OctN 0.770 0.721 0.044 0.045 0.393 1.110 19 

OctQ 0.717 0.665 0.086 0.689 0.376 1.269 24 
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Table J.4-2. Accuracy measures for standardised CPUE cross validation estimates, 2004. 

Week ME MSE MAD MPE MAPE RSQ MStdE MSDR 
r(True/ 

CVest) 

r(CVest/

CVerr) 

MarL -0.003 0.105 0.249 12.740 31.171 0.184 -0.002 0.655 0.429 0.109 

MarN 0.022 0.093 0.226 20.087 36.048 0.652 0.047 0.563 0.808 0.019 

MarQ 0.006 0.043 0.162 16.118 34.525 0.664 0.014 0.247 0.815 0.048 

AprL 0.000 0.051 0.164 13.538 31.895 0.646 -0.004 0.294 0.804 0.020 

AprN 0.000 0.082 0.218 13.090 31.581 0.296 -0.003 0.454 0.544 0.147 

AprQ -0.020 0.081 0.209 12.392 32.472 0.680 -0.046 0.459 0.825 -0.020 

MayL -0.025 0.221 0.340 12.218 28.397 0.514 -0.056 1.366 0.717 -0.030 

MayN 0.037 0.099 0.235 14.487 26.857 0.361 0.086 0.576 0.601 0.067 

MayQ -0.006 0.172 0.294 40.130 61.844 0.546 -0.021 0.957 0.739 0.021 

JunL 0.009 0.064 0.195 17.834 35.369 0.535 0.022 0.368 0.731 0.050 

JunN -0.003 0.055 0.175 21.346 41.135 0.605 -0.005 0.303 0.778 0.030 

JunQ -0.019 0.063 0.187 12.160 32.935 0.480 -0.047 0.331 0.693 0.042 

JulL 0.010 0.041 0.164 18.863 35.976 0.552 0.025 0.236 0.743 0.051 

JulN 0.008 0.031 0.136 9.614 24.765 0.637 0.018 0.168 0.798 0.064 

JulQ -0.005 0.057 0.188 20.803 41.668 0.581 -0.012 0.307 0.762 -0.090 

AugL 0.018 0.049 0.157 20.529 34.801 0.343 0.042 0.295 0.586 0.076 

AugN -0.043 0.233 0.324 25.575 51.429 0.003 -0.086 0.973 0.054 0.407 

AugQ -0.033 0.173 0.336 14.363 39.048 0.191 -0.075 0.971 0.437 0.100 

SepL 0.019 0.048 0.172 12.939 27.570 0.751 0.038 0.268 0.866 -0.061 

SepN 0.064 0.075 0.227 20.050 33.910 0.466 0.139 0.410 0.683 0.101 

SepQ -0.048 0.216 0.346 17.287 45.308 0.160 -0.108 1.192 0.400 0.271 

OctL 0.014 0.093 0.251 16.660 35.746 0.130 0.028 0.535 0.360 0.144 

OctN 0.080 0.066 0.215 25.090 37.447 0.324 0.177 0.345 0.570 0.162 

OctQ -0.037 0.122 0.243 16.804 40.684 0.340 -0.084 0.637 0.583 0.116 
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J.5 Standardised CPUE cross validation estimate errors 2004 

Figure J.5-1. Cross validation errors, March-June 2004. Adj denotes standardised catch rate CPUEs. 
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Figure J.5-2. Cross validation errors, July-October 2004. Adj denotes standardised catch rate CPUEs. 
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J.6 Histograms and scatterplots of standardised CPUE cross validation estimates 
2004 

Figure J.6-1. Scatterplots of CPUEs cross validation estimates, March-June 2004. Adj denotes 
standardised catch rate CPUEs. 
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Figure J.6-2. Scatterplots of CPUEs cross validation estimates, July-October 2004. Adj denotes 
standardised catch rate CPUEs. 
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Figure J.6-3. Histograms of CPUEs cross validation estimates, March-June 2004. Adj denotes 
standardised catch rate CPUEs. 
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Figure J.6-4. Histograms of CPUEs cross validation estimates, July-October 2004.  
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Figure J.6-5. Errors versus estimates of CPUEs cross validation estimates, March-June 2004. Adj denotes 
standardised catch rate CPUEs. 
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Figure J.6-6. Errors versus estimates of CPUEs cross validation estimates, July-October 2004. Adj 
denotes standardised catch rate CPUEs. 
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J.7 Cross Validation Estimates of CPUE 2004 

Figure J.7-1. Cross validation estimates of CPUE, March-June 2004. 
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Figure J.7-2. Cross validation estimates of CPUE, July-October 2004. 
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J.8 Summary Statistics of CPUE Cross Validation Estimates 2004 

 

Table J.8-1. Summary statistics for CPUE cross validation estimates, 2004. 

Week Mean Med Var Skew Min Max N ME MSE MSDR rho 

MarL 35.89 34.05 45.25 3.04 29.24 63.98 51 -0.11 127.89 0.66 0.18 

MarN 31.90 25.86 199.14 1.27 13.73 74.52 112 0.72 101.36 0.56 0.65 

MarQ 18.35 15.83 67.31 1.27 6.90 41.16 140 0.17 31.57 0.25 0.66 

AprL 27.23 24.88 203.09 0.46 7.16 61.23 200 0.16 90.40 0.29 0.68 

AprN 33.24 34.65 79.03 0.01 14.09 60.99 202 0.01 124.93 0.45 0.30 

AprQ 24.64 21.28 152.76 0.62 6.58 53.72 178 -0.59 73.46 0.46 0.68 

MayL 68.64 74.93 527.65 -0.17 25.72 113.98 196 -0.94 365.30 1.37 0.61 

MayN 47.69 46.46 92.85 -0.09 14.71 67.73 203 1.38 140.08 0.58 0.36 

MayQ 25.49 22.66 171.57 0.93 6.21 62.74 165 -0.17 134.85 0.96 0.55 

JunL 32.40 35.41 122.87 -0.57 5.06 55.74 198 0.36 96.96 0.37 0.53 

JunN 23.12 23.93 89.71 0.05 2.30 52.23 195 -0.08 55.70 0.30 0.61 

JunQ 16.37 17.81 33.80 -0.29 2.28 28.60 143 -0.44 33.31 0.33 0.48 

JulL 21.47 22.04 50.84 -0.39 5.00 33.38 197 0.31 38.07 0.24 0.55 

JulN 17.33 17.66 36.20 0.05 5.98 30.59 202 0.19 18.76 0.17 0.64 

JulQ 11.36 9.96 20.40 0.56 4.12 22.95 166 -0.10 17.28 0.31 0.58 

AugL 15.20 14.37 15.86 -0.30 5.14 22.56 69 0.40 24.95 0.30 0.34 

AugN 17.67 16.96 17.34 0.29 10.86 25.95 14 -0.79 77.03 0.97 0.00 

AugQ 12.67 12.59 9.81 0.19 6.93 18.36 48 -0.43 29.65 0.97 0.19 

SepL 14.21 15.86 40.90 -0.40 3.01 22.34 74 0.39 13.81 0.27 0.76 

SepN 14.47 16.12 19.16 -1.40 2.70 19.67 45 1.01 18.64 0.41 0.47 

SepQ 12.52 12.74 16.47 -0.39 2.21 20.01 43 -0.59 32.95 1.19 0.16 

OctL 18.93 18.15 11.08 -0.07 10.42 24.51 42 0.30 41.57 0.54 0.13 

OctN 15.47 14.49 17.81 0.05 7.90 22.31 19 1.61 26.56 0.35 0.32 

OctQ 12.36 11.47 25.57 0.69 6.49 21.89 24 -0.63 36.44 0.64 0.34 
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APPENDIX K: CPUE JACKNIFE AND GRID ESTIMATES 

K.1 Jacknife and grid estimates, April 2004 

Figure K.1-1. Jacknife and grid estimates of CPUE, April 2004. 

 
Figure K.1-2. Jacknife and grid estimates of CPUE using additional L week, April 2004. 
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K.2 Jacknife and grid estimates, June 2004 

Figure K.2-1. Jacknife and grid estimates of CPUE, June 2004. 

 
Figure K.2-2. Jacknife and grid estimates of CPUE using additional L week, June 2004. 
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K.3 Jacknife and grid estimates, August 2004 

Figure K.3-1. Jacknife and grid estimates of CPUE, August 2004. 

 
Figure K.3-2. Jacknife and grid estimates of CPUE using additional L week, August 2004. 
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K.4 Jacknife and grid estimates, September 2004 

Figure K.4-1. Jacknife and grid estimates of CPUE, September 2004. 

 
Figure K.4-2. Jacknife and grid estimates of CPUE using additional L week, October 2004. 
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K.5 Jacknife and grid estimates, October 2004 

Figure K.5-1. Jacknife and grid estimates of CPUE, October 2004. 

 
Figure K.5-2. Jacknife and grid estimates of CPUE using additional L week, October 2004. 
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K.6 Summary statistics of CPUE jacknife estimates 

Table K.6-1. Summary statistics for CPUE jacknife estimates using previous month, 2004. 

Week Mean Med Var Skew Min Max N ME MSE MSDR rho 

AprL 33.23 33.00 184.47 0.12 8.88 58.79 199 6.24 206.39 0.34 0.65 

AprN 36.21 35.72 47.74 0.40 21.15 52.37 178 3.71 161.92 0.30 0.41 

AprQ 21.67 19.17 84.90 0.57 10.99 39.58 56 0.35 73.70 0.21 0.78 

MayL 45.99 47.79 102.91 -0.79 17.08 61.78 161 -21.75 1217.48 2.04 0.46 

MayN 42.42 43.03 28.22 -2.75 12.82 52.42 135 -5.11 212.12 0.42 0.34 

MayQ 22.65 20.87 116.80 0.30 5.40 41.06 63 -10.54 294.75 1.03 0.82 

JunL 40.62 42.20 145.00 -0.41 10.19 64.37 198 8.57 204.74 0.42 0.64 

JunN 27.81 27.09 105.67 0.32 8.18 60.31 195 4.61 101.09 0.29 0.68 

JunQ 17.95 18.76 51.85 0.30 7.10 35.76 61 -1.08 67.89 0.33 0.47 

JulL 24.13 25.70 56.02 -1.05 4.15 36.46 197 2.97 50.09 0.17 0.72 

JulN 19.05 19.26 28.04 -0.02 4.14 31.27 198 1.88 27.44 0.13 0.73 

JulQ 11.77 13.01 14.77 -0.80 1.15 18.54 55 -3.14 30.38 0.27 0.73 

AugL 18.27 19.15 12.78 -1.10 8.73 24.21 69 3.48 35.85 0.23 0.61 

AugN 14.86 15.52 12.57 -0.39 9.21 19.93 12 -1.41 20.77 0.17 0.66 

AugQ 6.94 6.35 3.47 1.19 4.70 11.14 21 -3.72 35.15 0.56 0.25 

SepL 18.15 19.62 17.30 -0.23 11.55 25.61 74 4.33 49.23 0.46 0.69 

SepN 17.87 18.82 9.23 -1.01 10.57 21.69 45 4.40 40.08 0.47 0.61 

SepQ 14.30 13.90 7.18 -0.15 8.21 18.96 27 -0.93 28.69 0.50 0.25 

OctL 21.99 22.63 5.16 -1.68 13.01 24.57 42 3.36 62.09 0.42 0.04 

OctN 21.80 22.82 16.22 -0.38 14.47 27.18 19 7.94 112.34 0.77 0.01 

OctQ 14.94 14.14 12.33 0.42 10.88 20.99 11 1.49 33.84 0.29 0.64 

 

Table K.6-2. Summary statistics for CPUE jacknife estimates using L week, 2004. 

Week Mean Med Var Skew Min Max N ME MSE MSDR rho 

AprQ 23.62 24.46 79.40 -0.36 8.02 37.60 178 -1.61 162.79 0.53 0.55 

MayQ 38.96 44.14 215.03 -0.95 5.40 58.52 159 13.10 537.76 2.01 0.30 

JunQ 16.72 16.08 32.89 -0.08 4.45 28.62 131 -0.87 47.78 0.28 0.52 

JulQ 9.39 9.03 9.49 0.46 3.82 17.91 164 -2.18 28.22 0.29 0.67 

AugQ 7.96 7.72 6.95 0.12 3.86 12.06 48 -5.14 56.40 0.94 0.41 

SepQ 10.76 12.97 13.02 -1.03 2.15 13.98 43 -2.35 32.00 0.66 0.52 

OctQ 13.21 12.44 15.53 0.27 8.68 18.58 18 -0.25 16.91 0.18 0.89 
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K.7  Summary statistics of CPUE grid estimates 

Table K.7-1. Summary statistics for CPUE grid estimates using previous month. 

Week Mean Median Variance Skewness Min Max Count 

AprL 35.198 33.536 143.796 0.196 13.689 59.763 6951 

AprN 29.900 27.471 117.105 0.490 10.068 56.816 5281 

AprQ 20.433 18.767 73.398 0.657 8.138 40.568 1279 

MayL 34.479 29.286 240.219 0.489 8.648 80.103 9392 

MayN 28.923 24.360 185.075 0.477 6.901 71.007 7437 

MayQ 19.657 17.021 97.211 0.498 4.979 45.232 2330 

JunL 32.440 29.404 164.868 0.506 8.946 68.377 9400 

JunN 27.735 25.490 119.863 0.606 7.922 63.533 6983 

JunQ 18.289 17.513 54.218 0.611 5.116 43.575 1453 

JulL 21.257 21.185 55.679 0.109 3.383 43.893 8450 

JulN 17.082 17.818 31.959 -0.039 2.353 35.292 6936 

JulQ 11.841 12.439 14.437 -0.093 1.164 23.071 1820 

AugL 14.250 11.776 29.166 0.391 6.046 29.892 7920 

AugN 11.373 9.517 17.626 0.476 4.877 24.221 5650 

AugQ 7.252 6.338 6.417 0.991 3.824 17.036 2105 

SepL 16.423 15.143 19.271 0.597 8.645 30.304 6556 

SepN 15.278 14.456 17.765 0.324 7.015 26.195 5034 

SepQ 13.582 13.490 10.763 -0.011 5.986 22.042 1039 

OctL 16.182 17.515 43.394 -0.467 3.543 29.610 4728 

OctN 20.158 21.570 21.133 -1.033 4.583 28.606 2424 

OctQ 17.853 18.937 11.961 -0.483 10.883 24.163 403 

 

Table K.7-2. Summary statistics for CPUE grid estimates using additional L week. 

Week Mean Median Variance Skewness Min Max Count 

AprQ 21.009 20.509 83.571 0.355 6.246 45.462 7677 

MayQ 33.805 37.959 214.504 -0.365 4.979 60.924 5522 

JunQ 16.152 14.471 35.335 0.366 4.401 28.551 7163 

JulQ 10.581 10.632 14.516 0.339 3.805 18.276 6370 

AugQ 7.290 7.412 7.258 0.140 1.820 14.051 5131 

SepQ 7.068 6.233 18.266 0.426 1.592 15.168 5483 

OctQ 14.661 15.315 6.936 -0.957 7.296 19.317 2680 
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