
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Australian Digital Forensics Conference Conferences, Symposia and Campus Events 

1-1-2010 

Lessons Learned from an Investigation into the Analysis Lessons Learned from an Investigation into the Analysis 

Avoidance Techniques of Malicious Software Avoidance Techniques of Malicious Software 

Murray Brand 
Edith Cowan University 

Craig Valli 
Edith Cowan University 

Andrew Woodward 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/adf 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Brand, M., Valli, C., & Woodward, A. (2010). Lessons Learned from an Investigation into the Analysis 
Avoidance Techniques of Malicious Software. DOI: https://doi.org/10.4225/75/57b2903540cd7 

DOI: 10.4225/75/57b2903540cd7 
8th Australian Digital Forensics Conference, Edith Cowan University, Perth Western Australia, November 30th 2010 
This Conference Proceeding is posted at Research Online. 
https://ro.ecu.edu.au/adf/74 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41527698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/adf
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/adf?utm_source=ro.ecu.edu.au%2Fadf%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fadf%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57b2903540cd7
https://doi.org/10.4225/75/57b2903540cd7


31 | P a g e  
 

Lessons Learned from an Investigation into the Analysis Avoidance 
Techniques of Malicious Software 

 
Murray Brand, Craig Valli and Andrew Woodward 

secau - Security Research Centre 
Edith Cowan University 
Perth, Western Australia 
m.brand@ecu.edu.au   
c .val l i@ecu.edu.au   

a .wood ward@ecu.edu.au  
 

Abstract 
This paper outlines a number of key lessons learned from an investigation into the techniques malicious 
executable software can employ to hinder digital forensic examination. Malware signature detection has been 
recognised by researchers to be far less than ideal. Thus, the forensic analyst may be required to manually 
analyse suspicious files. However, in order to hinder the forensic analyst, hide its true intent and to avoid 
detection, modern malware can be wrapped with packers or protectors, and layered with a plethora of anti-
analysis techniques. This necessitates the forensic analyst to develop static and dynamic analysis skills tailored to 
navigate a hostile environment. To this end, the analyst must understand the anti-analysis techniques that can be 
employed and how to mitigate them, the limitations of existing tools and how to extend them, and how to employ 
an appropriate analysis methodology to uncover the intent of the malware.  
 
Keywords 
Anti-forensics, anti-analysis, malware, digital forensics 
 
INTRODUCTION 
 
Malicious software (malware) can be considered as any software which has a malicious intent or effect (Aycock, 
2006). This goes beyond consideration of viruses, worms, bots, trojans and similar categorizations of malware 
that attack computers on an almost indiscriminate basis. It extends to malware tailored to attack an individual or 
organisation to extract confidential information. Research shows that malware signature detection is far less than 
ideal and is limited to recognition of malware that has already been extensively analysed (Chouchane, 
Walenstein, & Lakhotia, 2007; Masood, 2004). It is very unlikely that a signature will exist to detect customised 
malware that will be of benefit to the forensic analyst in the field. In such cases, the analyst may be required to 
conduct static and dynamic analysis to determine the intent of the malware. However, an extensive variety of 
anti-analysis techniques exists to hinder the analyst from analysing the malware. Modern malware incorporates 
stealth techniques to hide it from the analyst, deception techniques to hide its true intent, and active techniques to 
defeat common analysis tools in their default configurations (Grugq, 2003; Harbour, 2007; Rutkowska, 2006a, 
2006b). Such techniques are commonly referred to as anti-forensics and are becoming a very important 
consideration for the digital forensic analyst, as the majority of modern malware employs these analysis 
avoidance techniques (Falliere, 2007; Ferrie, 2008; Yason, 2007). A simple reality is that detailed analysis often 
cannot begin without mitigating these anti-analysis techniques.  
 
It was reported in an online article that a speaker at the Australian IT Security in Government Conference 
claimed that 65% of new malware employs these anti-forensics techniques to avoid detection before, during and 
after an event (Kotadia, 2006). Further, anti-forensics has also been described as any attempt to hinder the 
forensic process by negatively impacting available evidence (Rogers 2006). Anti-forensics is arguably becoming 
a very important consideration for the digital forensic analyst. Malware is becoming increasingly stealthy and 
more likely to incorporate deception to stay on the target of interest in an attempt to remain undetected. This 
could be attributed to the substantial illicit financial gain that can be achieved from the employment of malware 
(Larsson, 2007; Newman, 2006).  
 
LESSONS LEARNED 
 
This research had two main avenues of enquiry. The first was a study of the effectiveness of the analysis 
avoidance techniques malware can employ, together with an investigation into how the use of these techniques 
can be detected and mitigated. The most significant papers on the employment of these techniques present code 
snippets of assembly language programs together with brief discussions on how the techniques can be mitigated 



32 | P a g e  
 

(Falliere, 2007; Ferrie, 2008; Yason, 2007). These same techniques were then incorporated by this research into 
small, standalone assembly language programs so that the effectiveness of the techniques could be determined 
using popular debugging tools in a series of quasi-experiments. All of the employed techniques were found to be 
effective. Popular debuggers are able to be scripted to automate analysis of disassemblies and this can be useful 
for static analysis. However, malware is often so heavily obfuscated, it must be allowed to run so that the 
instructions and data are de-obfuscated at run time to be able to be read and analysed. Debuggers are also able to 
be scripted to interact with the program at run time to assist in this endeavour. This feature is very useful in order 
to detect and mitigate anti-forensic techniques. The second line of enquiry was to analyse network based 
malware collected from a honeynet and examine how effective anti-virus (AV) software is at detecting malware 
and also to examine the use of anti-forensic techniques employed by the malware. It was essentially found that 
AV signature detection is less than ideal, and that the collected malware invariably contained anti-analysis 
techniques. These avenues of enquiry resulted in a number of lessons learned, and the key lessons learned as a 
result of this research are presented below. 
 
Malware Signature Detection its Far Less Than Ideal 
 
An examination of 738 malware specimens collected for the purposes of this research shows that even though 
the majority of the malware collected had been observed in the field for periods of time approaching or even 
exceeding one year, the unanimous detection by a collection of thirty six AV detection engines was only 10.4%. 
The particular AV engine used by the Anubis (International Secure Systems Lab, Vienna University of 
Technology, Eurecom France, & UC Santa Barbara, 2008) online virus analyser only recorded a 73.7% detection 
rate of the samples as malicious. This is a significant and potentially alarming result as it indicates that even 
though the use of AV software is considered mandatory for both personal and enterprise users, detection of all 
malware could be highly unlikely. This supports the findings of other researchers (Masood, 2004; Mohandas, 
n.d.; Skoudis & Zeltser, 2004; Szewczyk & Brand, 2008). 
 
Presentation of a Taxonomy of Analysis Avoidance Techniques 
 
A review of the literature uncovered an extensive range of techniques, mostly published by three key researchers 
who each provide their own, slightly differing taxonomies of analysis avoidance techniques (Falliere, 2007; 
Ferrie, 2008; Yason, 2007). Note that these papers have only been published within the past year or two of this 
research and this could be indicative of the problems encountered by the increased spectrum of techniques 
malware is now employing to hinder analysis. Their work is supplemented by other researchers whose online 
articles focus on more individual techniques and provide greater detail with respect to implementation and 
analysis (Anthracene, 2006; Gordon, n.d.; Rolles, 2007; Smidgeonsoft, 2005; Smith & Quist, 2006; xC, 2007). 
The work of Rolles in particular focuses on leading edge techniques such as malware that uses its own virtual 
machines to severely hinder detailed analysis. Such malware is difficult to analyse because the custom virtual 
machines have their own instruction sets, and these customised instruction sets have to be determined before 
detailed analysis can commence. A proposed taxonomy by the authors of this research combines elements of the 
taxonomies of Falliere, Ferrie and Yason, and appears in  
 
Table 1, in an attempt to provide a more complete coverage of techniques. Note that each technique listed in the 
taxonomy is the highest level stratum and could be further stratified.  
 
Analysis Avoidance Techniques are Very Effective 
 
An extensive range of anti forensic techniques can be implemented in malware as indicated by  
 
Table 1. The literature and search of reverse engineering web sites revealed more than 80 fundamental 
techniques. Note that these techniques can have multiple variations and can be used in various combinations. A 
number of these techniques were implemented in small standalone assembly language programs and tested 
against popular analysis tools in a series of quasi-experiments. All of the techniques were found to be effective 
against the tools in their default configurations. With the appropriate settings and/or with appropriate scripts or 
plugins, these techniques could be detected and mitigated. However, significant analysis skills are still required 
in order to successfully ascertain the modus operandi of each piece of malware. 
 
Analysis Tools Have Deficiencies 
 
A number of analysis tools are utilized by malware forensic analysts, with static and dynamic analysis 
representing two significant methodologies that can be used to analyse malware (Aquilina, Casey, & Malin, 



33 | P a g e  
 

2008). Software disassemblers and debuggers such as IDA Pro (Hex-Rays, 2008) and OllyDBg (Yuschuk, 2008) 
can be used to perform a detailed analysis of the malware code and provide an internal view of the malwares 
functionality (Valli & Brand, 2008). This is referred to as static analysis. In contrast, dynamic analysis runs the 
malware and observes the interaction of the running malware with the computer from a behavioural point of 
view. A number of plug-ins that extend the functionality of IDA Pro and OllyDBg include IDA Stealth (Newger, 
2008) and Olly Advanced (MaRKuS, 2006) respectively to work with malicious code that employ anti-analysis 
techniques. The intention of such plug-ins is to provide functionality to hide their associated tools  
 
Table 1: A proposed taxonomy of techniques employed by malware in order to avoid analysis 
 
Technique Description 
Anti Emulation A range of techniques exist to detect that the malware is running inside 

popular VM’s such as VMWare or Virtual PC. 
 

Anti Online Analysis A variety of techniques exist for malware to determine if it is running in 
a specific online analysis engine such as Anubis or Norman Sandbox. 
 

Anti Hardware 
 

Techniques that target hardware such as the CPU including the debug 
registers to determine if it is being debugged. 
 

Anti Debugger 
 
 
 
Anti Disassemblers 
 
 
Anti Tools 
 
Anti Memory 
 
 
 
Anti Process 
 
 
Anti-Analysis 

Target the way debuggers work and take advantage of these to take 
control of the flow of execution. This gives malware the opportunity to 
incorporate deception. 
 
Target the way disassemblers work and take advantage of this to 
produce a false disassembly. 
 
Detect the presence of specific analysis tools and enter a deceptive 
mode. 
 
Target the way memory is used when a process is being debugged and 
take advantage of this as well as the way processes can be dumped from 
memory including the use of stolen bytes. 
 
Target the way processes are handled when being debugged and take 
advantage of this including structured exception handling. 
 
Target the way analysis is conducted. Use junk code, code camouflage, 
check sum checks, destruction of the Import Address Table and other 
deceptive techniques to make analysis harder. 
 

Packers and Protectors Use run time packers and protectors to obfuscate code and data and 
make it hard to unpack to find the original entry point. This includes 
packers that use their own virtual machines such as HyperUnpackme2. 
 

Rootkits Insert rootkits at Ring 0 to take control of the way the operating system 
manages processes and use deception to hide malicious processes. 

 
from the malware they are analysing. The research conducted in this work showed that the number of anti 
forensic techniques covered by such plug-ins is much less than the number of techniques that are available to be 
implemented by malware. In addition, this research shows that although the plug-ins successfully hides the 
debugger or disassembler, the tools do not provide any information to the analyst about having detected the use 
of analysis avoidance techniques. This is significant for two major reasons. Firstly, because detection of the use 
of anti-analysis techniques in software may be of assistance to a digital forensic investigator to show that 
deception was used to hide malicious intent. Secondly, a false sense of security from using the plugins may lead 
to the analyst not conducting a thorough analysis of the malware and being the resultant subject of deception. 
This suggests a deficiency in existing tools that the analyst must be aware of. 
 
A variety of scripting languages and Application Programming Interfaces (API) exist to extend popular 
debuggers in order to successfully detect and mitigate the use of anti-analysis techniques. Given the claim by 



34 | P a g e  
 

this research that existing plugins have severe limitations due to their lack of coverage of anti-analysis 
techniques and lack of logging functionality to show discovery of the use of these techniques, scripting of 
debuggers is an essential skill required for analysing malicious software.  
 
Detection and Mitigation Techniques can be Effective 
 
This research shows that the use of scripting for debuggers and disassemblers extends the functionality of the 
tools to facilitate the detection and mitigation of analysis avoidance techniques employed by malware. This 
research recommends that the development of debugger and disassembly scripting skills is requisite to being 
able to detect and counter analysis avoidance techniques of malware. This contribution exists at the current front 
line of research in the detection of malware. 
 
The detection of anti-analysis techniques features far less in the literature than does the discussion of the 
employment of anti-analysis techniques. Detection of anti-analysis techniques in code would not only assist the 
analyst in investigation of malicious intent and the discovery of any attempts at deception, it also appears that 
detection of anti-analysis techniques may be a very good indicator that the code has a malicious intent. That is 
not to say that the use of anti-analysis techniques does not have a place in protecting the intellectual property of 
legitimate software. However, this research shows that malware invariably incorporates anti-analysis techniques 
and that detection of such techniques may warrant further investigation, even if the detailed analysis may have to 
be conducted by a specialist. 
 
An Extensive Knowledge Domain is Required 
 
A significant body of knowledge is required to obtain detailed information from manual analysis in order to 
determine the in-depth functionality of the malware (Valli & Brand, 2008). A short, non-exhaustive, requisite 
skills list for the analysis of Windows-based malware analysis indicated by Valli & Brand could include: 
 
Assembly language programming ability 
Program debugging skills 
Static code analysis techniques 
Dynamic code analysis techniques 
Windows Applications Programming Interface (API) programming skills 
Windows Operating System internals knowledge 
Computer networking and network programming skills 
Malware techniques knowledge 
Reverse engineering skills 
Knowledge of analysis avoidance techniques 
 
This research shows that the extent of knowledge required to analyse malware is extensive. A proposed Malware 
Analysis Body of Knowledge (MABOK) was initiated by the conduct of this research where the treatment of 
anti-analysis techniques is a key and vital component. The reality is, that because malware extensively 
incorporates anti-analysis techniques, detailed analysis cannot start until the anti-analysis techniques are 
mitigated. 
 
Packers and Protectors are Extensively used by Malware 
 
Run time packers are utilised by network based malware to compress malware and to act as a counter measure to 
signature based AV software via obfuscation (Sun, Ebringer, & Boztas, 2008). The packed malware has to be 
unpacked before an investigator or specialist can perform a detailed static analysis, because packed malware 
obfuscates the malware code. Knowledge of the packer used assists in the process of unpacking because the 
appropriate unpacking methodology can be employed to unpack it. Software tools are available that attempt to 
determine the name of the packer that was used to pack the malware by signature recognition. This research 
showed that two popular packer detectors that were used by this researcher did not agree on the names of any of 
the packers that were used. This is significant because it indicates uncertainty could be associated with the 
determined packer signatures and that more in depth, manual analysis is required to validate the type of packing 
that was employed. Generally, once the packer signature has been determined, the appropriate algorithm can be 
applied to unpack the malware to arrive at the original entry point (OEP), which is the original entry point of the 
program before it was packed. However, if conflicting packer signatures are determined from two or more 
packer signature detectors, both algorithms may have to be applied to arrive at the OEP, and there is no 
guarantee that either one of them is correct without validation from a manual analysis perspective. This has 



35 | P a g e  
 

implications with respect to the consumption of the time available to the analyst and certainly benefits the 
malware writer whose objective is to prevent or hinder analysis of the malicious code.  
 
The line of this research was extended to examine entropy (randomness) measurements of the packed malware 
as a method of determining if the collected malware was packed or not. Entropy measurements are shown in this 
research to be a very good indicator that malware has been packed. 
 
Derivation of an Appropriate Analysis Methodology 
 
A review of the literature on malware analysis methodologies found that the most effective methodologies take 
the presence of analysis avoidance techniques into account (Skoudis & Zeltser, 2004; Zeltser, 2007). Zelter 
(2007) presents an  incremental, static and dynamic spiral analysis methodology for analysing malware which 
additionally moulds the analysis environment as understanding of the malware is attained. A simple example of 
Zelter’s methodology begins by performing a basic static analysis of the malware specimen, such as performing 
a virus scan, determining the type of file and the type of packer used. This is followed by setting up a suitable 
environment to examine the specimen in, such as Windows XP in a virtual machine if the type of malware was a 
Microsoft Windows executable file. This is followed by running the malware and observing its behaviour with 
dynamic analysis tools. Using knowledge gained from this phase, static analysis can then be used to focus on 
sections of code or data of interest. This spiral based approach continues until as much detail on the malware has 
extracted as required. This methodology was adapted to include the detection and mitigation of anti-analysis 
techniques in each phase.  
 
Figure 3 depicts a proposed analysis methodology for analysing malware that facilitates the discovery and 
mitigation of analysis avoidance techniques as an extension to Zelter’s analysis methodology. The advantage of 
this adapted methodology is that when anti forensic techniques are encountered, they can be detected and 
mitigated before proceeding with the analysis. The analysis begins with a preliminary static analysis, such as 
determination of the file type of the malicious executable under investigation, and an appropriate static analysis 
environment is then established. Anti-analysis techniques can be categorized to target static and dynamic 
analysis techniques, therefore, it makes sense to focus on detecting and mitigating static analysis avoidance 
techniques before conducting a detailed static analysis. This phase is followed by tailoring an appropriate 
dynamic analysis environment using any relevant information found by the previous phase. Any dynamic 
analysis avoidance techniques are then detected and mitigated before proceeding with a more detailed dynamic 
analysis. The information discovered during this cycle is then used as input to determine how to proceed with the 
next static analysis phase. This spiral cycle continues until enough satisfactory information about the malware 
has been extracted.  

Detailed Static Analysis

Detailed Dynamic Analysis

Tailor Dynamic Analysis
Environment

Detect and Mitigate Dynamic
Analysis Avoidance

Technique

Tailor Static Analysis
Environment

Detect and Mitigate Static
Analysis Avoidance

Technique

Preliminary Static Analysis

Preliminary Dynamic Analysis

 
Figure 3: An extension of Zelters spiral analysis methodology proposed as a means of analysing and classifying 
avoidance techniques employed by malware.  
 
 
 



36 | P a g e  
 

An Alternate Paradigm for Malware Detection is Required 
 
Anti-virus software typically uses signature matching and recognition of heuristics to detect malware. This 
approach generally requires the malware to have been collected from targeted or victim computers, subsequently 
analysed, and signatures downloaded to client computers to approach any level of effectiveness. Significant 
damage to computers could occur between the time of collection and the point at which signature updates have 
been performed. In addition, it is very unlikely that AV software will detect custom malware that has not been 
set loose on the internet, but targeted against an individual or a corporation, because it will not have been 
analyzed and a signature will not have been obtained by an AV company.  Anti-virus software that uses this 
approach is seen to be fighting a losing battle, both in the literature and from observations made during this 
research (Mila Dalla, Mihai, Somesh, & Saumya, 2008; Zhou & Meador Inge, 2008). This research supports a 
proposal for a new paradigm for malware detection. In particular, this research proposes that detection of 
deception and anti-analysis techniques in software should flag the software as potentially malicious and delegate 
for further in depth analysis or removal. 
 
AVENUES FOR FURTHER RESEARCH 
 
A number of avenues exist for furthering this research, with suggestions to include plugin development for 
analysis tools, collation of analysis avoidance techniques, improved packer and protector identification and a 
new paradigm for malware detection. These suggestions are expanded upon in the following sub sections. 
 
Plugin Development 
 
This research noted that plugins such as IDAStealth and OllyAdvanced provide coverage for only a subset of 
analysis avoidance techniques. A limitation of the existing plugins is that their focus is on hiding the debugger 
and do not have the ability at this point in time to detect and log the use of anti-analysis techniques. Additional 
research could be conducted on extending the coverage of techniques of such plugins. The detection and logging 
of techniques as they are discovered during forensic analysis of malware could assist in the collection of 
evidence suitable for a court of law. 
 
Collation of Analysis Avoidance Techniques 
 
This research revealed an extensive range of analysis avoidance techniques that is currently distributed amongst 
research papers, hacking, and reverse engineering web sites. Detection and mitigation techniques are not heavily 
represented in academic literature, as compared to the information available on hacking and reverse engineering 
sites. A very useful contribution to the field of malware analysis research could be to collate analysis avoidance 
techniques, together with their corresponding detection and mitigation techniques into a central library and to 
further develop an encompassing taxonomy. 
 
Improved Packer Signature Detection 
 
Packer signature detection has been revealed in this research to be an area that requires further and most likely, 
continual research. This also extends to the area of unpacking packed malware as well, because malware can use 
multiple packers not only from a sequential sense. For example, pack the entire malware specimen with packer 
A and then pack the result with packer B, but firstly pack sections of code with packer A and then pack the result 
with packer B. This last scenario is another deception technique that is generally only uncovered once manual 
analysis is conducted. It is possible that an automated analysis process may miss the second, or subsequent 
iterations, of packing. This remains an area of research that lacks published work, and should be a focus for 
future research in order to increase levels of detection in general. 
 
A New Paradigm for Malware Detection 
 
This research has shown AV software to be less than fully effective at detecting malware. Research could 
continue into investigating a new paradigm for malware detection, particularly by detecting the use of anti-
analysis techniques in scanned software and flagging it for more detailed attention.  
 
 
 



37 | P a g e  
 

CONCLUDING REMARKS 
 
Malware can use anti-forensic techniques and use deception to hide its real purpose whilst being analysed. If it 
does not perform any malicious action while it is being analysed, it may be accepted on the system as being safe, 
or excluded from the evidence collection process. Once free from analysis, the malware can perform its original, 
malicious objective.  
 
Some considerations must be made in order to closely analyse malware. Firstly, totally relying on AV software 
to classify the malware could be a mistake because signature based detection is far from ideal as it is unlikely to 
recognise customised malware that has not been analysed before. This leads to the necessity of the digital 
forensic analyst to analyse the malware manually. It must be noted that a significant number of anti-analysis 
techniques exist covering the entire spectrum of the computational mechanics of computers. These techniques 
are very effective at hindering analysis, can be compounded by additional factors, and include deficiencies in 
analysis tools that do not cover the number of anti-analysis techniques that are available to be employed. 
Analysis is made more difficult by the number of packers and protectors that malware can use. This makes it 
hard because a typical technique to unpack the malware is to use known algorithms to let the malware unpack 
itself to reach the OEP. In doing so, control is given to the malware and an opportunity exists for the malware to 
detect that it is being analysed and provides the opportunity of the malware to employ deception. An additional 
consideration is that a very extensive knowledge of programming, debugging and operating system internals is 
required that arguably exceeds the level attained even by competent software engineers. On the positive side, the 
use of anti-analysis techniques can be detected and mitigated if significant analysis skills have been attained. 
This can be assisted by using an appropriate methodology where static and dynamic methods are combined in 
such a way that the view of the malware transitions from a high level of detail down, to a low level of detail, 
mitigating the anti-analysis techniques as analysis progresses in a spiral analysis methodology. Although 
legitimate software uses anti-analysis techniques to protect itself from reverse engineers, malware is almost 
certain to use anti-analysis techniques. So much so, the detection of the use of anti-analysis techniques may be a 
very good indicator of the presence of malware. 
 
As suggested previously, if more work is not undertaken in this field, there are a number of adverse 
consequences. It is possible that the use of these anti-forensic techniques will not only make the job of the 
forensic investigator difficult, there is also the potential to render anti-virus software next to useless as a means 
of protecting computers and networks. 
 
REFERENCES 
Anthracene. (2006). Unpacking with Anthracene.   Retrieved August 21, 2007, from 
http://www.tuts4you.com/download.php?list.18 

Aquilina, J., Casey, E., & Malin, C. (2008). Malware Forensics Investigating and Analyzing Malicious Code. 
Burlington, MA: Syngress. 

Aycock, J. (2006). Computer Viruses and Malware. New York: Springer 

Chouchane, M., Walenstein, A., & Lakhotia, A. (2007). Statistical signatures for fast filtering of instruction-
substituting metamorphic malware. Paper presented at the Proceedings of the 2007 ACM workshop on 
Recurring malcode.  

Falliere, N. (2007). Windows Anti-Debug Reference.   Retrieved October 1, 2007 from 
http://www.securityfocus.com/infocus/1893 

Ferrie, P. (2008). Anti-Unpacker Tricks. Paper presented at the 2nd International Caro Workshop. from 
http://www.datasecurity-event.com/uploads/unpackers.pdf 

Gordon, J. (n.d.). Win32 Exception handling for assembler programmers.   Retrieved Feb 10, 2008 from 
http://win32assembly.online.fr/Exceptionhandling.html 

Grugq. (2003, August 26, 2006 ). The Art of Defiling, Defeating Forensic Analysis on UNIX File Systems. 
Paper presented at the Black Hat Asia 2003, Singapore. 

Harbour, N. (2007). Stealth Secrets of the Malware Ninjas.   Retrieved October 20, 2007 from 
https://www.blackhat.com/presentations/bh-usa-07/Harbour/Presentation/bh-usa-07-harbour.pdf 

Hex-Rays. (2008). IDA Pro. 



38 | P a g e  
 

International Secure Systems Lab, Vienna University of Technology, Eurecom France, & UC Santa Barbara. 
(2008). Anubis: Analyzing Unknown Binaries.   Retrieved October 4, 2008, from http://anubis.iseclab.org/ 

Kotadia, M. (2006). Beware ‘suicidal’ malware, says CyberTrust.   Retrieved August 27, 2006 from 
http://software.silicon.com/malware/0,3800003100,39160966,00.htm 

Larsson, L. (2007). Meeting the Swedish Bank Hacker.   Retrieved April 14, 2007 from 
http://computersweden.idg.se/2.2683/1.93344 

MaRKuS. (2006). Olly Advanced. 

Masood, S. G. (2004). Malware Analysis for Administrators.   Retrieved 17 March, 2007 from 
http://www.securityfocus.com/infocus/1780 

Mila Dalla, P., Mihai, C., Somesh, J., & Saumya, D. (2008). A semantics-based approach to malware detection. 
ACM Trans. Program. Lang. Syst., 30(5), 1-54. 

Mohandas, R. (n.d.). Hacking the Malware – A reverse-engineer’s analysis.   Retrieved 17 March  2007, from 
geocities.com/rahulmohandas/hacking_the_malware.pdf 

Newger, J. (2008). IDA Stealth Plugin. 

Newman, R. (2006). Cybercrime, identity theft, and fraud: practicing safe internet - network security threats and 
vulnerabilities. Paper presented at the Proceedings of the 3rd annual conference on Information security 
curriculum development.  

Rolles, R. (2007). Defeating HyperUnpackMe2 With an IDA Processor Module.   Retrieved Feb 28, 2008 from 
http://www.openrce.org/articles/full_view/28 

Rutkowska, J. (2006a). Fighting Stealth Malware - Towards Verifiable OSes. Journal. Retrieved from 
http://www.invisiblethings.org/papers/towards_verifiable_systems.ppt 

Rutkowska, J. (2006b). Introducing Stealth Malware Taxonomy. Journal. Retrieved from 
http://www.invisiblethings.org/papers/malware-taxonomy.pdf 

Skoudis, E., & Zeltser, L. (2004). Malware Fighting Malicious Code. New Jersey: Prentice Hall. 

Smidgeonsoft. (2005). SetUnhandledExceptionFilterTrick.   Retrieved Feb 11, 2008, from 
http://www.openrce.org/forums/posts/45 

Smith, S., & Quist, D. (2006). Hacking Malware: Offense is the new Defense.   Retrieved July 24, 2007 from 
http://www.offensivecomputing.net/dc14/valsmith__dquist_hacking_malware_us06.pdf 

Sun, L., Ebringer, T., & Boztas, S. (2008). Hump-and-Dump: efficient generic unpacking using an ordered 
address execution histogram. Journal. Retrieved from http://www.datasecurity-
event.com/uploads/hump_dump.pdf 

Szewczyk, P., & Brand, M. (2008). Malware Detection and Removal: An Examination of Personal Anti-Virus 
Software. Paper presented at the 6th Australian Digital Forensics Conference, Edith Cowan University, Mount 
Lawley Campus, Western Australia. 

Valli, C., & Brand, M. (2008). Malware Analysis Body of Knowledge. Paper presented at the 6th Australian 
Digital Forensics Conference, Edith Cowan University, Mount Lawley Campus, Western Australia. 

xC. (2007). Defeating Anubis File Analyzer.   Retrieved Jul 21, 2007 from 
http://www.ryan1918.com/viewtopic.php?p=68714&sid=354448fa02136b766d94dfcea11b4e2d 

Yason, M. (2007). The Art of Unpacking.   Retrieved Feb 12, 2008 from 
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf 

Yuschuk, O. (2008). OllyDbg. 

Zeltser, L. (2007). Reverse Engineering Malware: Tools and Techniques Hands-On. Bethesda: SANS Institute. 

Zhou, Y., & Meador Inge, W. (2008). Malware detection using adaptive data compression. Paper presented at 
the Proceedings of the 1st ACM workshop on Workshop on AISec. 

 

 
 


	Lessons Learned from an Investigation into the Analysis Avoidance Techniques of Malicious Software
	Recommended Citation

	7th Australian Digital Forensics Conference

