
Edith Cowan University Edith Cowan University

Research Online Research Online

Australian Digital Forensics Conference Conferences, Symposia and Campus Events

3-12-2007

Multi-step scenario matching based on unification Multi-step scenario matching based on unification

Soroto Panichprecha
Queensland University of Technology

George Mohay
Queensland University of Technology

Andrew Clark
Queensland University of Technology

Follow this and additional works at: https://ro.ecu.edu.au/adf

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Panichprecha, S., Mohay, G., & Clark, A. (2007). Multi-step scenario matching based on unification. DOI:
https://doi.org/10.4225/75/57ad45517ff2d

DOI: 10.4225/75/57ad45517ff2d
5th Australian Digital Forensics Conference, Edith Cowan University, Perth Western Australia, December 3rd 2007.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/adf/9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41527678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/adf
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/adf?utm_source=ro.ecu.edu.au%2Fadf%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fadf%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57ad45517ff2d
https://doi.org/10.4225/75/57ad45517ff2d

Multi-Step Scenario Matching Based on Unification

Sorot Panichprecha, Jacob Zimmermann, George Mohay, Andrew Clark
Information Security Institute

Queensland University of Technology
{s.panichprecha, j.zimmerm}@isi.qut.edu.au, {g.mohay, a.clark}@qut.edu.au

Abstract
This paper presents an approach to multi-step scenario specification and matching, which aims to address some
of the issues and problems inherent in to scenario specification and event correlation found in most previous
work. Our approach builds upon the unification algorithm which we have adapted to provide a seamless,
integrated mechanism and framework to handle event matching, filtering, and correlation. Scenario
specifications using our framework need to contain only a definition of the misuse activity to be matched. This
characteristic differentiates our work from most of the previous work which generally requires scenario
specifications also to include additional information regarding how to detect the misuse activity. In this paper
we present a prototype implementation which demonstrates the effectiveness of the unification-based approach
and our scenario specification framework. Also, we evaluate the practical usability of the approach.

Keywords

Computer Forensics, Event Correlation, Multi-step Scenario, Signature Matching, Event Representation

INTRODUCTION
This paper presents our approach for detecting multi-step misuse scenarios using a unification algorithm as a
signature matching mechanism. The unification algorithm has been mainly used in logic programming and in the
artificial intelligence field due to its ability to confirm or refute solutions to problems using inference on a set of
given rules in order to find an expression that matches the fact base. The unification algorithm, or some form of
it, has been used by some misuse-based intrusion detection systems (Olivian and Goubault-Larrecq 2005,
Mounji 1997). Rules in the unification algorithm, when applied to misuse-based intrusion detection systems, are
considered to be descriptions of misuse activities. We have extended and refined previous approaches to such
use of the unification algorithm and have adapted it to the special requirements of scenario detection in order to
provide increased benefits of extensibility and flexibility. Previous work using built-in unification (as in Prolog
based intrusion detection systems) has required scenario writers in addition to specify state information and
context information. In addition, we incorporate an event correlation framework which utilises abstraction of
events derived from heterogeneous sources, e.g., system audit data, application audit data, and captured network
traffic.�

Multi-step scenario matching is a complex process. There are several issues regarding the detection of multi-step
scenarios as follows. The detection, in most cases, requires dealing with events from multiple sources e.g.,
system audit data, application logs, and captured network traffic. Therefore, multi-step scenario specification and
detection is problematic due to the fact that event data from different sources may use different semantics and
syntax. The specification of scenarios in most of the previous work (Kumar 1995, Lindqvist and Porras 1999,
Yang et al. 2000, Meier et al. 2005, Illgun et al. 1995) requires an intimate understanding of the underlying
matching mechanisms and how to match a given scenario. It is thus easily prone to human errors. In our work,
we aim at minimising the scenario writers' focus on the how of the matching mechanism providing them with a
framework which requires them only to express what to detect, as suggested by (Roger and Goubault-Larrecq
2001).

To address the lack of a uniform event representation, we employ an event abstraction model as proposed in
(Panichprecha et al. 2006). The event abstraction model provides a uniform representation of events from
multiple sources, e.g., system audit data, application logs, and network traffic. By incorporating the tools
provided by the model, our work can access events across multiple platforms and sources. �

We have developed a prototype of the unification-based multi-step scenario matching. The prototype is intended
to be a tool which facilitates log analysis. We have also developed a Python-based scenario specification
framework for specifying multi-step scenarios. A number of misuse scenarios have been used to demonstrate the
framework and to evaluate the unification-based scenario matching framework.

RELATED WORK
There has been a considerable body of research into multi-step scenario detection focusing on intrusion detection
(Lindqvist and Porras 1999, Mounji 1997, Ilgun et al. 1995, Kumar 1995), alert correlation (Morin et al. 2002,
Carey et al. 2003), computer forensics (Abbott et al. 2006), and vulnerability assessment (Ou et al. 2005).
Existing work in these fields share a common characteristic, in particular, they aim to compare two expressions
(e.g., event data with scenario specifications or host information with threat information) and return the results of
the comparison.

There are two multi-step scenario matching techniques of relevance to this work: the use of rule-based expert
systems (Lindqvist and Porras 1999, Mounji 1997, Roger and Goubault-Larrecq 2001) and state transition
models (Ilgun et al. 1995, Kumar 1995, Cuppens and Ortalo 2000, Meier et al. 2005). We now provide brief
details of these techniques, their advantages, and limitations.

Rule-based expert system techniques define mechanisms to compare rules (scenarios or signatures) against audit
records. Examples of such systems are EMERALD (Lindqvist and Porras 1999), ASAX (Mounji 1997), and
ORCHIDS (Olivain and Goubault-Larrecq 2005). EMERALD uses a forward chaining rule-based expert system
where the system establishes a chain of rules which links facts (audit records) to goals (signatures). Similarly,
ASAX uses a rule-based expert system, however, it specifies signatures as pairs of conditions and actions. When
a condition is met, the corresponding action is triggered, which can either be activating another set of chain
condition pairs or reporting an alert. ORCHIDS is an intrusion detection system based on the technique proposed
in (Roger and Goubault-Larrecq 2001) whose idea is derived from ASAX. The detection is performed by
comparing event streams against application-specific temporal logic expressions. The advantages of the rule-
based expert system approach and its variants are the simplicity and straightforwardness of the signature
matching mechanism. However, this technique generally suffers from the problem of being inefficient and if the
set of rules is large, which is common to intrusion detection systems, this technique will not perform well.

Similar techniques have been employed in vulnerability assessment and attack graph generation fields, i.e.,
adopting a logic programming approach to detect vulnerabilities on computer hosts. MulVAL (Multihost,
multistage Vulnerability Analysis) proposed by Ou et. al. (Ou et al. 2005) is an example of a vulnerability
assessment tool. It uses a unification-based model for the analysis of a system's exposure to various threats. The
MulVAL system comprises a Datalog implementation1, a library of predefined predicates that model common
threat effects (such as the ability to execute code, to transmit data over the network, to modify access control or
users' privileges, etc.), a vulnerability scanner that generates a base of Datalog clauses which list the
vulnerabilities present on the analysed host(s), and a base of clauses which describe the effects of known
vulnerabilities. The MulVAL system utilises the Datalog built-in unification algorithm to carry out various types
of analysis, namely: threat assessment, security policy assessment, and speculative analysis. One advantage of
the MulVAL system is its ability to represent threats that result from a combination of vulnerabilities. This is a
direct consequence of the use of Prolog-style unification: each vulnerability effect is represented as a Datalog
clause, which can in turn be reused as a condition for another clause. Our present work is motivated by this
benefit, however its approach and purpose are different. Our goal is the detection of actual occurrences of multi-
step attack scenarios in analysed logs. Instead of relying on Prolog-style variables and clauses only, we use a
higher-level data model, i.e., the event abstraction model proposed in (Panichprecha et al. 2006), which provides
a uniform and generic representation of events on the system and network being monitored. We also represent
attack scenarios as clauses, however we introduce specific features designed to take full advantage of the
underlying framework's expressive power. We have implemented a dedicated unification engine, adapted to the
framework and scenario model. Finally, for prototyping purposes, we define a simple concrete syntax for attack
scenario specification, based on the Python programming language (Python Software Foundation 2007).�

State transition techniques model attacks against a system in terms of system states and state transitions. An
occurrence of an attack is identified by reaching the terminal state of a signature. Examples of such systems are
IDIOT (Kumar 1995), EDL (Meier et al. 2005), LAMBDA (Cuppens and Ortalo 2000), and STAT (Ilgun et al.
1995). IDIOT and EDL use a Petri-net based modelling approach to signature specification and matching. The
state transition techniques have been proved to perform well in real-time detection. However, they suffer from
the complexity of the state and transition instantiation mechanism.�

Scenario and signature specification languages have been typically designed to match their underlying matching
techniques. In this paper, we are interested in the languages which allow the expression of multi-step misuse
activities (Lindqvist and Porras 1999, Mounji 1997, Eckmann et al. 2000, Cuppens and Ortalo 2000, Michel and
Mé 2001, Meier et al. 2002, 2005, Lin et al. 1998, Ning et al. 2002, Pouzol and Ducassé 2001). To name a few,
P-BEST (Production-Based Expert System Toolset) (Lindqvist and Porras 1999) and STATL (State Transition

1 Data log is a subset of the Prolog programming language.

Analysis Technique Language) (Eckmann et al. 2000) are widely recognised and are good examples of systems
which implement the rule-based expert system techniques and the state transition techniques respectively.�

P-BEST is used in several rule-based expert system namely EMERALD (Porras and Neumann 1997) and several
other systems (Sebring et al. 1988, Lunt et al. 1989, Anderson et al. 1995). The P-BEST language provides
syntax for expressing inference rules and responses to derived facts. It provides operators and data structures for
modelling low-level operating system and network activities. Also, the language provides an interface to the C
programming language. Hence, it allows scenario developers to incorporate functions written in the C
programming language.

STATL is used in the STAT framework (Eckmann et al. 2000). The STATL provides syntax for modelling
system states and activities which affect the states. The modelling of activities is expressed in terms of STATL's
internal structures which are provided by STAT's providers and extensions. The providers and extensions
provide a single-level event abstraction where audit data and network traffic are converted into STATL's built-in
structure, which is in fact a struct data type in the C++ programming language.�

In summaries, there are two main limitations with existing scenario specification languages. Firstly, most
languages require scenario developers to specify scenario details at a low-level, e.g., system calls and network
protocol-level details. Secondly, many of these languages expose their internal scenario matching mechanisms to
scenario developers. For instance, the STATL requires scenario developers to specify transition types which
need an intimate understanding about the transitions. Thus, the scenarios are often complex and easily prone to
human error.�

The multi-step scenario matching framework proposed in this work is rule-based and employs a unification
algorithm. In fact, existing systems implicitly use some form of unification. EMERALD and ASAX use a
forward-chaining (bottom-up) unification approach to detect misuse activities which consider event data to be
facts and conclude new facts from the event data and assertion rules but do so by employing a built-in or implicit
unification engine which is correspondingly inflexible and non-extensible.

Our work differs from previous systems which make use of the unification algorithm in several points. Firstly,
we use the unification algorithm explicitly and thus derive the benefits of flexibility and extensibility which we
demonstrate later in this paper. We have implemented the unification algorithm and adapted it to our needs. The
advantage of implementing the unification algorithm is the flexibility to extend and optimise the matching
engine thus addressing one of the limitations of previous work on scenario specification and matching. Secondly,
we utilise the event abstraction model proposed in (Panichprecha et al. 2006) which allows our misuse scenario
specification to specify scenarios using event abstraction rather than low-level events as in the previous work.
Finally, our misuse-scenario specification approach does not require scenario developers to compile scenarios
into binary executable format unlike EMERALD, ASAX, and ORCHIDS. Scenarios in our framework can be
used by the engine right away which reduces the complexity and makes the system more human operator
friendly.

OUR APPROACH: UNIFICATION-BASED SCENARIO MATCHING
The unification algorithm was first proposed by Robinson (Robinson 1965) as a mechanism for comparing two
expressions and substituting variables in one expression with variables or sub-expressions from the other so that
the two expressions can be tested for syntactic equivalence (Baader and Snyder 2001). This section discusses our
approach to scenario matching using the unification algorithm. We first describe how events are represented in
our framework, followed by a description of the operators that can be applied to scenario specifications. We then
present our overall architecture and the Python-based scenario specification framework, and describe how
composite scenarios can be implemented using the framework.

Event Representations

The event representation proposed in the event abstraction model (Panichprecha et al. 2006) provides a range of
event representations from operating system activities, to network activities, and to application events. The event
representation is built based on an object-oriented approach which comprises two object hierarchies: the Sensor
Event Tree (SET) and the Abstract Event Tree (AET). The SET provides an abstraction of sensor event types
derived from heterogeneous sources, e.g., audit data, application data, and network traffic. The entries from the
SET are then used by the AET to represent abstract system and network activities occurring on the system or
network being monitored.

In order to use this event abstraction model with the unification algorithm, we need to define additional rules to
the unification algorithm. The rules are as follows:

1. Free variables can represent either objects or values of object attributes.�

2. If a variable is constrained by the class of the objects it can represent, it can be instantiated with any
object which belongs to that class, or one of its subclasses.�

3. A free variable that represents the value of an attribute can be instantiated with either an atomic value,
e.g., string, integer, or date, or with an object when appropriate. In the latter case, it can also possibly be
constrained by the class of the object.

We use the modified unification algorithm with these rules to match attack signatures against events.

The Operators

We have defined the following operators to enable scenario writers to specify patterns of scenarios in several
aspects, i.e., term equivalence, string patterns, and chronological order of events:

• “==” defines equality of two terms based on their type. For example, if the two terms are strings, the
operator means the two strings must be an exact match. If one of the two terms is a variable and the
other is a class, the operator produces a class constraint on the variable;

• “!=” is a shorthand notation of the complement of ==. Note that this operator does not support event
objects, due to the fact that the complement of an event object refers to all other types of event objects
which can cause the number of unifiers to grow exponentially. As far as we concerned, there is no
scenario that requires the application of event object complement;

• containsPattern defines string pattern matching using regular expression;

• sizeGreaterThan and sizeLessThan compare the lengths of two strings;

• before and after compare the timestamps of two events. Optionally a time threshold (timeout) can be
specified.

The last two operators (before and after) are significant for multi-step scenario specifications since they allow
scenario writers to specify chronological relationships between two events, which is common to multi-step
scenarios. However, these two operators rely on the assumption that the timestamps are derived from a
trustworthy time source and clocks of the two event sources are synchronised.

Architecture

The architecture of our system is depicted in Figure 1. The left-hand side of the figure shows components of the
event abstraction model framework proposed in (Panichprecha et al. 2006). The framework comprises a set of
sensor event generators, a SET persistent object store, a set of abstract event generators, and an AET persistent
object store. When the framework is executed, the sensor event generators read data from heterogeneous sources
and generate corresponding sensor event objects which are recorded in the SET persistent object store. Then, the
abstract event generators read sensor event objects from the SET persistent object store and generate abstract
event objects which are recorded in the AET persistent object store. The right-hand side of the figure shows our
unification-based scenario matching system proposed in this paper. The prototype comprises three components:
a set of scenarios, the unification-based scenario matching engine, and a reporting module. When our system is
executed, the unification-based scenario matching engine reads the scenarios written in our Python-based
scenario specification framework and unifies them with event objects from the AET persistent object store. If the
unification succeeds, the unifiers are sent to the reporting module which, at this stage, prints out all values stored
in the event objects.

Python-based Scenario Specification Framework

As a proof-of-concept, we have defined a Python-based scenario specification framework and have incorporated
the event representations and the operators as discussed above into the framework. It is not intended that our
framework introduce novel features or define new syntactic constructs. Rather, it is intended to demonstrate the
expressiveness of unification for scenario matching. We avoid introducing new syntax and ``yet another scenario
specification language'', but instead use the popular Python programming language (Python Software Foundation
2007) as a foundation for scenario expressions.

We have developed a set of Python APIs which provide the means to write multi-step scenarios (i.e.,
expressions) for our unification algorithm. Since they are built on the Python programming language, the APIs
have full access to the Python language's features and other APIs if needed. In addition, our framework
incorporates the APIs provided by the event abstraction framework which enable access to uniform event
representations regardless of platforms or applications (Panichprecha et al. 2006).

Abstract
Event

Objects Unification-based Scenario
Matching Engine

Reporting Module

Python-based Scenario
Expressions

Abstract Event Objects

Sensor
Event

Objects

. . . SensorSensor

Abstract Event Tree
Persistent Object Store

Abstract Event GeneratorsSensor Event Tree
Persistent Object Store

Sensor Event Generators

Sensor Event Objects

Raw audit data from
heterogeneous
event sources

Scenario Matching
Results (unifers)

Scenarios

Event Abstraction Model Framework Unification-based Scenario Matching

Results

Figure 1: The Prototype Unification-based Multi-Step Scenario Matching

Composite Scenarios

In our Python-based scenario specification framework, a scenario can incorporate other scenarios (i.e., a
composite scenario) and use them to describe attack steps in a multi-step scenario. Composite scenarios are used
for two reasons: to represent abstract events and to facilitate signature development. Firstly, for abstract event
representations, a scenario can represent a set of concrete events as one abstract event which can then be
included by referencing it in other higher order scenarios. Secondly, for facilitating scenario development and
management, the scenario composition provides re-usability of existing scenarios. This feature helps decrease
time for scenario development and eases scenario management.

THE PROTOTYPE
We have developed a proof-of-concept implementation of our unification-based multi-step scenario matching
framework. The scenario matching framework has been implemented in the Python programming language due
to a number of benefits of the language. For instance, the Python language's built-in data structures (dictionaries
and lists) facilitate the development of the unification algorithm. Also, some implementations of the Python
language allow a Python program to incorporate APIs from other programming languages, e.g., the Jython
interpreter allows a Python program to incorporate Java libraries (Bock et al. 2007) and the IronPython project
which enables a Python program to call Microsoft .Net libraries (Microsoft Corporation 2007). The Jython
interpreter provides two major benefits. Firstly, it allows a Python program to run on any platform that supports
the Java Virtual Machine. Secondly, it allows our unification-based scenario matching framework to incorporate
the APIs provided by the event abstraction framework (Panichprecha et al. 2006). Therefore, we have chosen the
Jython interpreter for implementing our prototype. We have implemented the Python-based scenario
specification framework which provides the necessary components for developing scenarios, i.e., variables,
operators, and access to abstract events.

Note that it is possible to use the Prolog language to implement the scenario matching framework, since the
matching mechanism used in the Prolog language is a unification algorithm. However, it will be difficult and
time consuming to develop a set of Prolog programs to interface with the event abstraction framework. Also, we
have little-to-no control of the unification algorithm in Prolog. In particular, we need to use the persistent object
stores (object-oriented database) provided by the event abstraction model framework but the Prolog interpreter
uses its own internal database, to which we have no direct access. All in all, the Python programming language
allows quick development of the unification matching framework and more importantly can connect to the AET
persistent object store.

CASE STUDIES AND EVALUATION
This section demonstrates the proof-of-concept implementation of our system. The prototype has been run in an
experimental environment, which comprises four machines, i.e., a victim machine (running as a PXE server2 and
a mail server), a PXE-enabled client machine, a Microsoft Windows 2000 machine, and an adversary machine.
All machines, except the machine running Microsoft Windows 2000, use the Linux operating system. All
machines are connected to the same physical network and allocated in the same subnet.

Due to space limitations, in this paper, we demonstrate two multi-step attacks. All attacks related to the
signatures are run in the experimental network, alongside random harmless traffic such as SSH sessions, HTTP
traffic, etc. Related logs and network traffic were collected and parsed using SET and AET generators. The
unification algorithm was then applied to the generated AET database to identify the attacks post-hoc. Although,
these attacks are tested in a controlled environment, they are real attacks and they can be run in real
environments.

During the course of the experiment, audit data was collected from corresponding systems and applications i.e.,
Apache web server logs, Unix system logs, Unix system call logs, and Microsoft Windows security logs. Also,
network traffic from the experimental network was captured with tcpdump. All audit data and network traffic
data was converted to event objects using the parsers and generators provided by the event abstraction model
framework. From the collected data, the generators produce 24,981 sensor event objects and 25,325 abstract
event objects. The objects are stored in the SET and AET persistent object store respectively. The abstract event
objects from the AET persistent object store are considered to be facts and are used by our unification-based
scenario matching framework.

Masqueraded Preboot Execution Environment Server Scenario

Due to the lack of a host authentication mechanism, the PXE operation is prone to at least two attacks: denial of
service attacks and an adversary host masquerading as a PXE server. In the first attack, an adversary launches a
number of successful DHCP handshakes, where a newly generated MAC address is used for each request, until
the DHCP server's table of allocated IP addresses is full. This attack causes the PXE server to enter a state where
it cannot provide IP addresses (denial of service). In the second attack, the adversary can run DHCP and TFTP
services on his/her host which serves as a PXE server. By combining these two attacks, the adversary can create
a masqueraded PXE server and use it to serve malicious operating system images (for example, images
containing backdoors or spyware) to clients. The scenario comprises steps listed below:

1. DHCP no lease event: The error message reported by a DHCP server when the pre-allocated block of IP
addresses is exhausted;

2. DHCP offer: The network event which indicates that a DHCP server is offering an IP address to a
client. If the IP address of the DHCP server is not the same as the address in step 1, it signifies an
anomalous event;

3. TFTP session: This event identifies TFTP communications between a TFTP server and a TFTP client.
In this scenario, if the IP address of the TFTP server is not the same as in Step 1, it indicates that a PXE
client downloads a bootstrap file namely “boot.msg” from the adversary machine. The download leads
to retrieving an operating system image which may be preloaded with backdoors.

The scenario definition to detect this attack is shown in Figure 2. The scenario comprises four methods. Note
that this is purely a code readability choice and it illustrates the seamless use of all Python language features in
the scenario specification. The details of the four methods are described as follows:

• detect: This is the main method of the scenario. This method is executed by our unification-based
scenario matching engine;

• dhcp_no_lease: This method detects the DHCP no lease event. Two variables dhcpnolease and
realDHCPServer are instantiated with the DhcpNoLeases events and the address of DHCP server
respectively.;

• dhcp_offer: This method detects a potential masqueraded DHCP server on line 14 which specifies
that the address of the DHCP server is different from realDHCPServer. On line 13, we demonstrate the
application of our after operator which specify a 2 second timeout between the DHCP offer and DHCP
no leases events.;

2 PXE (Preboot Execution Environment) is a hybrid of DHCP and TFTP (Intel Corporation 1999).

• tftp_session: This method detects a TFTP download session which corresponds to a client
downloading an operating system image from the masqueraded PXE server.

1 class pxeattackScenario(Scenario):
2 def detect(self):
3 self.dhcp_no_lease()
4 self.dhcp_offer()
5 self.tftp_session()
6
7 def dhcp_no_lease(self):
8 Variable(‘dhcpnolease’) == AET(DhcpNoLeases)
9 Variable(‘realDHCPServer’) == Variable(‘dhcpnolease’).dhcpServerIPAddress
10
11 def def_dhcp_offer(self):
12 Variable(‘dhcpoffer’) == AET(DhcpOffer)
13 Variable(‘dhcpoffer’).eventTime == after(dhcpnolease.eventTime, 2000)
14 Variable(‘dhcpoffer’).serverIPAddress != Variable(‘realDHCPServer’)
15 Variable(‘fakeServer’) == Variable(‘dhcpoffer’).serverIPAddress
16
17 def tftp_session(self):
18 Variable(‘tftpsession’) == AET(TFTPSession)
19 Variable(‘tftpsession’).eventTime == after(Variable(‘dhcpoffer’).eventTime, 2000)
20 Variable(‘tftpsession’).destinationAddress == Variable(‘fakeServer’)
21 Variable(‘tftprequest’) == AET(TFTPReadRequest)
22 Variable(‘tftprequest’).destinationAddress == Varible(‘fakeServer’)
23 Variable(‘tftprequest’).fileName == containsPattern(“boot.msg”)

Figure 2: Masqueraded Preboot Execution Environment Server Scenario

This scenario demonstrates an application of our Python-based scenario specification framework. The scenario
also shows how to specify a sequence of events and timeout using the after operator. Corresponding events and
their attribute values are stored in six variables. The attack scenario was successfully detected. However, two
sets of events have been generated, while there is only one instance of the attack. This is caused by the fact that
there are two instances of DHCP no leases events recorded by syslog with the same timestamp due to the well
known 1 second resolution of syslog. This problem can be solved by either implementing a simple ‘tidy-up’ in
the AET generators which detects exact duplicate objects or adding an expression which checks for duplicates.

Sendmail Executing a Shell Scenario

Several versions of Sendmail are vulnerable to buffer overflow attacks. In this example, we demonstrate a
scenario specification which detects a buffer overflow attack in Sendmail version 8.11.6 (SecurityFocus and
Zalewski 2003). The attack exploits vulnerability in the prescan function, where it fails to check the size of e-
mail addresses in SMTP headers. We have analysed the exploit code, sormail.c from (SecurityFocus and
Zalewski 2003), and found that the code exploits the vulnerability and executes a shell with the privilege of the
user who runs Sendmail which, in most cases, is run with system administrator privileges.

The signature for this attack is shown in Figure 3. It comprises two scenarios: the scenario which detects that the
Sendmail process executes a shell (Figure 3a) and the scenario which detects that Sendmail is executed (Figure
3b). When executed, Scenario 3a, on line 3, invokes Scenario 3b, where the variable execSendmail is
instantiated with an Execute event. Note that the Execute event is an abstract event which represents program
execution independent from the platform. Also, the sendmailPID is instantiated with the process ID of
sendmail. Then, the expression on line 4 of Scenario 3a calls the start_root_shell method which
instantiates the variable startingRootShell. Also, the start_root_shell method specifies two
constraints on the variable where one of them specifies that the process ID of the sendmail must be equal to the
variable processID which is instantiated in Scenario 3b.

This scenario demonstrates the ability of our Python-based scenario specification framework to invoke a
scenario from another scenario (scenario composition). The composition is possible because the unifiers are
implemented as a global Python variable. Thus, a variable instantiated in one scenario is accessible from all
other scenarios. In this scenario, the variable sendmailPID is instantiated in Scenario 3b. Thus, the value is
accessible by Scenario 3a. The attack was successfully detected with no false alarms. Since abstract events are
used in the scenario, this scenario can detect other attacks which have similar behaviour, i.e., the sendmail
process executing a shell.

1 class sendmailExecutingShell(Scenario):
2 def detect(self):
3 executingSendmail()
4 self.start_root_shell()
5
6 def start_root_shell(self):
7 Variable(‘startingRootShell’) == AET(ProcessOperationEvent)
8 Variable(‘startingRootShell’).processID == Varible(‘sendmailPID’)
9 Variable(‘startingRootShell’).processName == comtainsPattern(“sh”)

(a) Sendmail Executing a Shell
1 class executingSendmail (Scenario):
2 def detect(self):
3 Variable(‘execSendmail’) == AET(Execute)
4 Variable(‘execSendmail’).newProcessName == containsPattern(“sendmail”)
5 Variable(‘sendmailPID’) == Variable(‘execSendmail’).processID

(b) Executing Sendmail

Figure 3: Sendmail Executing a Shell Scenario

CONCLUSION AND FUTURE WORK
We have developed a proof-of-concept unification-based multi-step scenario matching framework. The
framework uses abstract events to address the heterogeneity of event sources and aims to address the complexity
of scenario specification by using a unification algorithm and a Python-based scenario specification framework.
The unification algorithm and our scenario specification framework enable scenario writers to specify
descriptions in terms of what to detect rather than how to detect it. By employing the unification algorithm,
scenarios are easier to read, write, and understand. In our Python-based scenario specification framework, we
have implemented operators and data types which are sufficient for specifying multi-step scenarios as well as
single-step scenarios.

Our proof-of-concept framework has been tested with several scenarios which involve events from multiple
sources. Due to space limitations, only two scenarios have been demonstrated in this paper. We have
demonstrated our Python-based scenario specification framework in specifying multi-step attacks and
constructing composite scenarios. The system has successfully detected all instances of the misuse activities in
those scenarios.

Our future work plans are to focus on addressing time-related issues. Time related issues are very important for
correlating events from heterogeneous sources and multi-step scenario specifications. In the current stage, we
correlate events from heterogeneous sources based on the assumption that clock synchronisation of all the event
sources is properly implemented. However, this is not always the case. Although clock synchronisation
mechanisms are widely available, they are often not properly implemented. In order to address these issues, we
are planning to look into employing time tolerance. The principle of time tolerance is to use a time range instead
of a single point of time. By applying time tolerance to an event, the timestamp is converted into a time range. In
addition to time tolerance, our future work will incorporate a standard reporting format, i.e., Intrusion Detection
Message Exchange Format (IDMEF) (Debar et al. 2007), into the reporting module.

REFERENCES
Jonathon Abbott, Jim Bell, Andrew Clark, Olivier De Vel, and George Mohay. (2006) Automated Recognition

of Event Scenarios for Digital Forensics. In Proceedings of the 21st Annual ACM Symposium on Applied
Computing, Dijon, France.

Debra Anderson, Thane Frivold, and Alfonso Valdes. (1995) Next-generation Intrusion Detection Expert System
(NIDES): A summary. Technical Report SRI-CSL-95-07, SRI International.

F. Baader and W. Snyder. (2001) Unification theory. In J.A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, volume 1, pages 447–533. Elsevier Science Publishers.

Finn Bock, Barry Warsaw, Jim Hugunin, and The Jython Development Team. The jython project., Accessed
April 2007.

Nathan Carey, George Mohay, and Andrew Clark. (2003) Attack Signature Matching and Discovery in Systems
Employing Heterogeneous IDS. In Proceedings of the 19th Annual Computer Security Applications
Conference (ACSAC 2003), pages 245–254, Las Vegas, Nevada.

Frédéric Cuppens and Rodolphe Ortalo. (2000) LAMBDA: A Language to Model a Database for Detection of
Attacks. In Proceedings of Recent Advances in Intrusion Detection, 3rd International Symposium, RAID
2000, volume 1907 of Lecture Notes in Computer Science, pages 197–216, Toulouse, France, Springer.
ISBN 3-540-41085-6.

H. Debar, D. Curry, and B. Feinstein. (2007) The Intrusion Detection Message Exchange Format (IDMEF).
Request for Comments (RFC): 4765.

S.T. Eckmann, G. Vigna, and R.A. Kemmerer. (2000) STATL: An Attack Language for State-based Intrusion
Detection. In Proceedings of the ACM Workshop on Intrusion Detection Systems, Athens, Greece.

K. Ilgun, R.A. Kemmerer, and P.A. Porras. (1995) State Transition Analysis: A rule-based intrusion detection
system. IEEE Transactions on Software Engineering, 21(3):181–199.

Intel Corporation. (1999) Preboot execution environment (PXE) specification version 2.1, September 1999.

Sandeep Kumar (1995). Classification and Detection of Computer Intrusions. PhD thesis, Purdue University.

Jia-Ling Lin, X. Sean Wang, and Sushil Jajodia. (1998) Abstraction-based Misuse Detection: High-level
Specifications and Adaptable Strategies. In The Eleventh Computer Security Foundations Workshop,
pages 190–201, Rockport, MA.

Ulf Lindqvist and Phillip A Porras. (1999) Detecting Computer and Network Misuse Through the Production-
Based Expert System Toolset (P-BEST). In Proceedings of the 1999 IEEE Symposium on Security and
Privacy, pages 146–161, Oakland, California. IEEE Computer Society Press, Los Alamitos, California.

T. F. Lunt, R. Jagannathan, R. Lee, A. Whitehurst, and S. Listgarten. (1989) Knowledge-based Intrusion
Detection. In Proceedings of the Annual AI Systems in Government Conference, pages 102–107,
Washington, D.C., IEEE Computer Society Press.

Michael Meier, Niels Bischof, and Thomas Holz. (2002) SHEDEL-A Simple Hierarchical Event Description
Language for Specifying Attack Signatures. In Proceedings of the Security in the Information Society:
Visions and Perspectives, IFIP TC11 17th International Conference on Information Security (SEC2002),
pages 559–572.

Michael Meier, Sebastian Schmerl, and Hartmut Koenig. (2005) Improving the efficiency of misuse detection. In
Proceedings of the Second Conference on Detection of Intrusion and Malware and Vulnerability
Assessment (DIMVA2005). Springer Verlag.

Cédric Michel and Ludovic Mé. (2001) ADELE: An Attack Description Language for Knowledge-based
Intrusion Detection. In Proceedings of the 16th International Conference on Information Security
(IFIP/SEC 2001), pages 353–365.

Microsoft Corporation (2007) IronPython, URL http://www.ironpython.com.

Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducassé. (2002) M2D2: A Formal Data Model for
IDS Alert Correlation. In Proceedings of Recent Advances in Intrusion Detection, 5 t h International
Symposium, RAID 2002, volume 2516 of Lecture Notes in Computer Science, pages 115–137, Zurich,
Switzerland, Springer. ISBN 3-540-00020-8.

Abdelaziz Mounji.(1997) Languages and Tools for Rule-Based Distributed Intrusion Detection. PhD thesis,
University of Namur, Belgium.

Peng Ning, Sushil Jajodia, and X. Sean Wang. (2002) Design and Implementation of a Decentralized Prototype
System for Detecting Distributed Attacks. Computer Communications, Special Issue on Intrusion
Detection Systems, 25(15): 1374–1391.

Julien Olivain and Jean Goubault-Larrecq. (2005) The ORCHIDS Intrusion Detection Tool. In Kousha Etessami
and Sriram Rajamani, editors, Proceedings of the 17th International Conference on Computer Aided
Verification (CAV’05), volume 3576 of Lecture Notes in Computer Science, pages 286–290, Edinburgh,
Scotland, UK, Springer.

Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. (2005) MulVAL: A Logic-based Network
Security Analyzer. In Proceedings the 14th USENIX Security Symposium, Baltimore, Maryland.

Sorot Panichprecha, Jacob Zimmermann, George Mohay, and Andrew Clark. (2006) An Event Abstraction
Model for Signature-based Intrusion Detection Systems. In Proceedings of the 1st Information Security
and Computer Forensics (ISCF-2006), pages 151–162, Chennai, India. Allied Publishers Pvt. Ltd.

Phillip A. Porras and Peter G. Neumann. (1997) EMERALD: Event Monitoring Enabling Responses to
Anomalous Live Disturbances. In Proceedings of the 10th National Information Systems Security
Conference, pages 353–365, Baltimore, Maryland. National Institute of Standards and
Technology/National Computer Security Center.

Jean-Philippe Pouzol and Mireille Ducassé. (2001) From Declarative Signatures to Misuse IDS. In Proceedings
of Recent Advances in Intrusion Detection, 4th International Symposium, RAID 2001, volume 2212 of
Lecture Notes in Computer Science, pages 1–21, Davis, CA, USA. Springer. ISBN 3-540-42702-3.

Python Software Foundation. (2007) Python programming language, URL http://www.python.org, Accessed
April 2007.

J. A. Robinson. (1965) A Machine-oriented Logic Based on the Resolution Principle. Journal of the Association
for Computing Machinery, 12(1):23–41. ISSN 0004-5411.

Muriel Roger and Jean Goubault-Larrecq. (2001) Log Auditing Through Model Checking. In Proceedings of the
14th IEEE Computer Security Foundations Workshop (CSFW’01), pages 220–236, Cape Breton, Nova
Scotia, Canada. IEEE Computer Society Press.

M. M. Sebring, E. Shellhouse, (1988) M. E. Hanna, and R. A. Whitehurst. Expert Systems in Intrusion
Detection: A case study. In Proceedings of the 11th national Computer Security Conference, pages 74–
81. National Institute of Standards and Technology/National computer Security Center.

SecurityFocus and Michal Zalewski. (2003) Sendmail address prescan memory corruption vulnerability, Bugtraq
id: 7230. URL http://www.securityfocus.com/bid/7230.

Jiahai Yang, Peng Ning, X. Sean Wang, and Sushil Jajodia. (2000) CARDS: A Distributed System for Detecting
Coordinated Attacks. In Proceedings of IFIP TC11 the Sixteenth Annual Working Conference on
Information Security, pages 171–180.

COPYRIGHT
[Sorot Panichprecha, Jacob Zimmermann, George Mohay, Andrew Clark] ©2007. The author/s assign Edith
Cowan University a non-exclusive license to use this document for personal use provided that the article is used
in full and this copyright statement is reproduced. Such documents may be published on the World Wide Web,
CD-ROM, in printed form, and on mirror sites on the World Wide Web. The authors also grant a non-exclusive
license to ECU to publish this document in full in the Conference Proceedings. Any other usage is prohibited
without the express permission of the authors.

	Multi-step scenario matching based on unification
	Recommended Citation

	Abstract
	Keywords
	INTRODUCTION
	RELATED WORK
	OUR APPROACH: UNIFICATION-BASED SCENARIO MATCHING
	Event Representations
	The Operators
	Architecture
	Python-based Scenario Specification Framework
	Composite Scenarios
	THE PROTOTYPE
	CASE STUDIES AND EVALUATION
	Masqueraded Preboot Execution Environment Server Scenario
	Sendmail Executing a Shell Scenario
	CONCLUSION AND FUTURE WORK
	REFERENCES
	COPYRIGHT

