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ABSTRACT 

 
 
Despite the substantial body of research accumulated on exercise-induced muscle 

damage, there remain several areas that warrant further investigation.  Study groups 

comprised of individuals from differing racial background and /or training status have 

the potential to influence the intra-group variability in damage markers following 

eccentric exercise.  In addition, if a contralateral arm model is employed, intra- and 

inter-group variation could be influenced by the formation of groups based on limb 

dominance and /or the order in which the arms are exercised.  Currently there is a dearth 

of research addressing these factors, however, these types of studies are important as 

they can shed light on methods to increase statistical sensitivity by minimizing group 

variability. 

 

Therefore, the overarching aim of the three studies comprising this thesis was to 

examine these factors suspected of influencing changes in indirect markers of muscle 

damage and soreness following maximal voluntary eccentric exercise.  The exercise 

model employed in the studies involved maximal voluntary eccentric exercise of the 

elbow flexors, and the markers investigated in each study were the criterion measures of 

maximal voluntary contraction (MVC) torque, range of motion (ROM) at the elbow 

joint, upper arm circumference (CIR), plasma creatine kinase (CK) activity, and muscle 

soreness (SOR). 

 

The purpose of the first study was to determine whether changes in these markers 

differed between contralateral arm elbow flexors of untrained males following the 

exercise intervention.  The purpose of the second study was to determine whether 

changes in the same markers differed between elbow flexors of untrained and resistance 

trained males following the eccentric exercise intervention.  The purpose of the final 

study was to determine whether these muscle damage and soreness markers differed 

between elbow flexors of untrained Caucasian and Japanese males following maximal 

eccentric exercise. 

 

The exercise intervention of all three studies comprised 10 sets of 6 maximal voluntary 

eccentric actions of the elbow flexors of one arm performed against the lever arm of a 
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Cybex 6000 isokinetic dynamometer moving at a constant velocity of 90o·s-1.  Subjects 

were seated on an arm curl bench with the exercised arm supported on the angled 

platform, and the forearm commenced movement at an angle of 90o to the upper arm 

and moved through a range of motion of 90o, finishing with a straight arm at 180o of 

elbow extension.  Passive recovery periods of 10-seconds and 3-minutes occurred 

between repetitions and sets, respectively.  Subjects were provided with pre-study 

familiarization sessions during which the criterion measures were performed and a 

demonstration of the eccentric exercise intervention was provided.  The criterion 

measures were evaluated immediately prior to, and following, the exercise intervention 

in all studies and for the next seven, five, and four days in the first, second and third 

studies, respectively. 

 

A total of 18 untrained men (mean age 30.8 ± 1.2 yrs) volunteered to participate in the 

contralateral limb investigation (Study 1).  The study involved a design in which each 

subject’s arms were counterbalanced between first and second exercise bouts resulting 

in each exercise bout having equal numbers of dominant and non-dominant limbs.  The 

resulting data were then analysed for bouts 1 and 2, and dominant and non-dominant 

comparisons.  Results showed the arm that was exercised second produced smaller post 

exercise changes in the criterion measures of MVC torque (90o only), CIR, and CK 

activity (p<0.05).  When dominant and non-dominant arm groups were compared there 

were no significant differences in any of the criterion measures.  The data showed that 

the arm that was exercised first appeared to confer a mild protective effect to the 

subsequently exercised contralateral arm resulting in significant differences in some of 

the criterion measures between the bouts.  When the groups were compared based on 

arm dominance, resulting in bout order being counterbalanced, there were no significant 

differences evident between the groups.  In order to reduce the confounding bias of 

conferred protection, it was suggested that a protracted period should be provided 

between bouts, or that bout order should be counterbalanced between groups. 

 

Thirty men (mean age 29.1 ± 1.7 yrs), 15 resistance trained and 15 untrained 

volunteered to complete study 2.  There were no significant differences between the 

groups for any of the criterion measures prior to the exercise intervention.  With the 

exception of CK activity in the trained, both groups produced significant changes in 

criterion measures from pre-exercise values following maximal eccentric exercise.  
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However, despite similar performance from both groups during the eccentric exercise 

task, the untrained group produced significantly larger changes for all of the criterion 

measures (with the exception of SOR) during the following days (p<0.05).  The results 

revealed that compared to untrained individuals, resistance trained subjects experienced 

smaller changes in some markers of muscle damage despite similar performances 

during the eccentric exercise intervention.  It was suggested that further research should 

investigate the underlying mechanisms contributing to the contrasting results between 

individuals of different training status. 

 

A total of 28 untrained male volunteers participated in the final study (Caucasian and 

Japanese).  With the exception of CK activity, there were significant differences in all of 

the subject characteristics and criterion measures pre-exercise (p<0.05), therefore 

normalized data comparisons will be reported for the sake of brevity.  Following the 

eccentric exercise intervention there were significant differences in MVC torque, ROM, 

CIR, CK activity, and extension soreness between the racial groups (p<0.05).  The data 

from this study provided evidence that when exposed to identical eccentric exercise 

Japanese men produce greater changes in muscle damage markers than Caucasians of 

the same gender.  The aetiology of the racial difference is unclear, however future 

research focusing on genetic variation may help to elucidate the matter. 

 

In conclusion, the results of the three studies demonstrate that the factors comprising 

type of contralateral arm design, training status, and racial background all affected the 

magnitude of changes in markers of muscle damage and soreness following maximal 

eccentric exercise.  In order to increase statistical sensitivity of eccentric exercise-

induced muscle damage studies, the results of the final two studies suggest that intra-

group variability could be minimized by avoiding the formation of groups containing 

mixtures of individuals from differing racial backgrounds and / or training status.  If the 

research design employs a contralateral arm model it seems advisable to minimize 

between group variation by counterbalancing across groups the order in which the arms 

are exercised. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 Background of Study 

 

Novel exercise of an eccentric nature is associated with damage to muscle and 

connective tissue, and delayed onset muscle soreness (DOMS), and has been shown to 

produce profound alterations in muscle function and other markers of muscle injury 

(Clarkson, Nosaka, & Braun, 1992; Jones, Newham, Round, & Tolfree, 1986; Rinard, 

Clarkson, Smith, & Grossman, 2000).  Depending upon the mode and / or intensity of 

the exercise, decrements in muscle function can be protracted with complete recovery 

usually occurring by two weeks (Clarkson & Hubal, 2002; Sayers, Clarkson, Rouzier, & 

Kamen, 1999), yet requiring up to one month or longer in some severe cases (Nosaka & 

Clarkson, 1996a; Sayers et al., 1999).  A substantial body of research exists examining 

the effect of eccentric activity on various aspects of exercise-induced muscle damage.  

Specific markers, often referred to as criterion measures, have been employed to 

quantify the extent of alterations to muscle arising from eccentric activity.  A variety of 

assessments have been used, but most frequently include changes in muscle torque, 

range of motion (ROM) about a joint, limb circumference, soreness of a muscle upon 

movement or palpation, activity of blood borne intra-muscular proteins, magnetic 

resonance imaging (MRI), and ultrasound echo intensity (Foley, Jayaraman, Prior, 

Pivarnik, & Meyer, 1999; McCully, Shellock, Bank, & Posner, 1992; Newham, Jones, 

Tolfree, & Edwards, 1986; Nosaka, Sakamoto, & Newton, 2002; Nosaka, Sakamoto, 

Newton, & Sacco, 2004). 

 

Several factors such as age (Manfredi et al., 1991), gender (Rinard et al., 2000), training 

status (Dolezal, Potteiger, Jacobsen, & Benedict, 2000), prior exposure to eccentric 

exercise (Clarkson & Tremblay, 1988), intra-subject design (Clarkson, Byrnes, 

Gillisson, & Harper, 1987), and race and genetics (Clarkson et al., 2005) have been 

proposed to influence the magnitude of changes in markers of exercise-induced muscle 

damage and DOMS following eccentric exercise.  However, limited research is 

available concerning the effect of intra-subject design, training status, and race on 
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changes in markers of exercise-induced muscle damage and soreness following this type 

of exercise. 

 

Many studies investigating the response of criterion measures to an eccentric exercise 

intervention have employed an intra-subject design by using a contralateral limb model 

(Connolly, Reed, & McHugh, 2002; McHugh & Pasiakos, 2004; Nosaka et al., 2004; 

Zainuddin, Hope, Newton, Sacco, & Nosaka, 2005; Zainuddin, Newton, Sacco, & 

Nosaka, 2005).  One type of design involves a limb receiving some specialised 

treatment either prior to and / or following an eccentric exercise intervention while the 

contralateral limb acts as a control and receives no treatment.  A second design involves 

two separate treatments, where each limb receives one treatment prior to evaluation of 

the criterion measures. 

 

The rationale for using a contralateral limb model is based on the assumption that the 

variance in response to the same eccentric exercise intervention is lower in magnitude 

between limbs of a single subject than it is between the same limb (e.g., dominant arm) 

of two subjects.  On the surface this rationale may seem sound, however, a review of the 

available literature detected a dearth of research addressing this matter, and an absence 

of investigations involving the arm musculature.  Whether criterion measures of the 

dominant arm differ appreciably from the non-dominant arm following eccentric 

exercise is not known, and similarly, whether eccentric activity performed on the arm 

exercised first exerts any cross over effect on criterion measures of the contralateral arm 

remains to be elucidated. 

 

Another aspect of research in this field that has received limited attention relates to 

whether there are differences in criterion measures between untrained and resistance-

trained individuals following maximal voluntary eccentric exercise.  To date, the 

majority of research studies focusing on exercise-induced muscle damage have 

employed either untrained individuals or those with a limited history of resistance 

training.  Furthermore, the few studies that have examined the effects of eccentric 

exercise in moderate to well trained subjects did not investigate responses of the 

criterion measures following a bout of maximal eccentric exercise (Bourgeois, 

MacDougall, MacDonald, & Tarnopolsky, 1999; Dolezal et al., 2000; Gibala et al., 

2000; Semark, Noakes, St Clair Gibson, & Lambert, 1999).  It is assumed that trained 
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individuals are less susceptible to exercise–induced muscle damage and soreness arising 

from such exercise but this has not been demonstrated in a controlled experimental 

manner. 

 

A further line of enquiry that has previously received little attention concerns the 

responses of differing racial groups to maximal voluntary eccentric exercise.  Clarkson 

et al. (2005) reported that in a recent study involving a large number of subjects from 

varying racial backgrounds, there were a larger percentage of Asians who produced 

high CK activity following maximal eccentric exercise of the elbow flexors.  In our 

laboratory we have noted that Japanese subjects elicited more pronounced responses 

than Caucasians following eccentric exercise, particularly in terms of changes in plasma 

concentrations of intramuscular enzymes.  To provide a more controlled comparison 

between Japanese and Caucasians, requires both groups to perform identical exercise 

protocols and have the same criterion measures evaluated before and following the 

exercise intervention. 

 

1.2 Significance of Study 

This thesis comprises three separate studies which focus on aspects of eccentric 

exercise-induced muscle damage and DOMS that have received limited research 

attention.  Each investigation compares responses of the aforementioned criterion 

measures to a bout of maximal voluntary eccentric exercise of the elbow flexors.  The 

first study focuses on a contralateral limb model in which both arms from a group of 

subjects are compared for differences following the damaging exercise.  The second 

study examines whether untrained and resistance trained subjects differ in their 

responses to the exercise intervention.  The final study investigates whether the criterion 

measures of Caucasian and Japanese males differ following the eccentric exercise.  To 

date, there are no published studies comparing the responses of contralateral arms 

exposed to identical bouts of eccentric exercise.  Research focusing on such 

comparisons will provide insight into whether differences in criterion measures between 

the limbs following identical eccentric exercise are statistically significant.  If the 

contralateral limbs respond in the same manner to identical bouts of eccentric exercise 

(i.e., no statistical difference) then this work, or a peer reviewed publication arising 

from it, will allow others to cite it as supporting evidence for their choice of research 

design. 
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The substantial body of literature addressing exercise-induced muscle damage and 

DOMS is heavily weighted toward responses of untrained individuals.  Comparing 

responses of untrained and resistance trained individuals to maximal voluntary eccentric 

exercise will contribute toward understanding whether neuromuscular adaptations due 

to resistance training are effective in attenuating the decrements in muscle function 

previously shown in research involving untrained subjects exposed to the same exercise 

intervention.  If differences are shown to exist between the groups, highlighting them 

will allow investigators to focus future research efforts on the aetiology of the contrasts.  

In addition, an understanding of how resistance trained individuals respond to maximal 

eccentric contractions will be of value to athletes and coaches who may be considering 

introducing “negative” (heavy eccentric) training into their exercise regimens. 

 

No studies have compared the responses of Asian and Caucasian subjects to maximal 

voluntary eccentric exercise.  The final study of this thesis compares criterion measures 

of Caucasian and Japanese subjects to the same maximal voluntary eccentric exercise 

intervention.  Before more detailed mechanism based investigations are undertaken it is 

important to first determine whether any differences exist between racial groups.  The 

value of the final study is that it is designed to investigate this very question. 

 

Findings from the three research studies undertaken in the present doctoral work have 

the potential to impact future research design.  In order to detect small significant 

differences due to an experimental intervention intra-group variability should ideally be 

minimised.  If differences are shown to occur between the groups in each study of this 

thesis, then during future research consideration would have to be given to the wisdom 

of employing groups incorporating mixtures of these subjects. 
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1.3 Research Questions 

The three research studies of the present doctoral thesis aim to address the following 

research questions: 

1) Will changes in markers of exercise-induced muscle damage and soreness in 

untrained males differ between contralateral arms following maximal voluntary 

eccentric exercise of the elbow flexors? 

2) Will changes in markers of exercise-induced muscle damage and soreness differ 

between untrained and resistance-trained (trained) males following maximal 

voluntary eccentric exercise of the elbow flexors? 

3) Will changes in markers of exercise-induced muscle damage and soreness differ 

between untrained Caucasian and Japanese males following maximal voluntary 

eccentric exercise of the elbow flexors? 

 

1.4 Purposes of the Studies 

 

The purpose of the first study was to determine whether changes in markers of exercise-

induced muscle damage and soreness in untrained males differed between contralateral 

arms following maximal voluntary eccentric exercise of the elbow flexors. 

The purpose of the second study was to determine whether changes in markers of 

exercise-induced muscle damage and soreness differed between untrained and trained 

males following maximal voluntary eccentric exercise of the elbow flexors. 

The purpose of the final study was to determine whether changes in markers of 

exercise-induced muscle damage and soreness differed between untrained Caucasian 

and Japanese males following maximal voluntary eccentric exercise of the elbow 

flexors. 

 
The markers of exercise-induced muscle damage and soreness employed in the present 

studies are the criterion measures of maximal voluntary contraction torque, range of 

motion at the elbow joint, upper arm circumference, plasma creatine kinase (CK) 

activity, and muscle soreness. 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

2.1 Introduction 

 

This chapter aims to provide the reader with the relevant background information 

related to the research questions and discussion that follows in subsequent chapters.  A 

concise description of the damage and repair process begins followed by coverage of 

the exercise models employed by various research laboratories.  The effect of novel or 

unaccustomed eccentric exercise on selected symptoms and markers of muscle damage 

is then considered, and the review is concluded by examining selected factors known, or 

with the potential, to influence muscle damage. 

 

2.2 Events in Muscle Damage 

 

It is well established that unaccustomed eccentric exercise leads to damage to muscle 

and connective tissue (exercise-induced muscle damage) and DOMS, and research has 

also shown that reduced muscle function and other markers of muscle damage are 

evident following exercise of this nature (Clarkson et al., 1992; Jones et al., 1986; 

Rinard et al., 2000).  Much of our current knowledge has been derived from 

experimental work employing humans and animals.  This work has implicated high 

mechanical forces associated with eccentric contractions as a possible initiating event 

leading to loss of function and development of soreness in the exercised muscles 

(Armstrong, 1990; Lieber & Friden, 1999).  The stress associated with the eccentric 

actions may manifest as "high specific tension" which could affect the sarcolemma, the 

sarcoplasmic reticulum (SR) and / or the myofibrillar structures of the muscle and allow 

the influx of extracellular calcium to the sarcoplasm (Armstrong, 1990).  The increased 

intracellular calcium concentration has been suggested to be the trigger for up-

regulation of degradative processes within the myofibre.  This initiation of cellular 

autolysis is due, in part, to activation of phospholipase A (Duncan & Jackson, 1987; 

Jackson, Jones, & Edwards, 1984), and possibly calcium activated proteases (Belcastro, 
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Shewchuk, & Raj, 1998), although the latter has been questioned (Allen, 2001).  

Activated proteases, such as calpain, may lead to increased proteolysis resulting in the 

eventual destruction of cytoskeletal and other cellular proteins (Belcastro et al., 1998; 

Byrd, 1992).  Activated phospholipase A is believed to liberate free fatty acids from the 

triglycerides composing the bilipid plasma membrane surrounding the muscle cell 

(Jackson et al., 1984).  This action in itself may lead to compromised integrity of the 

sarcolemma, although it is the metabolism of the liberated free fatty acids that is also 

believed to be linked to further destruction of the cell (Jones & Round, 1990).  Free 

radical mediated oxidation of unsaturated fatty acids in the cell membrane (lipid 

peroxidation) can result in the generation of additional free radical species, which could 

lead to eventual destruction of the cell membrane (Pyne, 1994).  Although this is an 

attractive hypothesis, there is little evidence to support such a contention and recent 

research questions its validity (Child et al., 1999). 

 

At some point during loss of sarcolemmal integrity intracellular proteins such as 

creatine kinase (CK), lactate dehydrogenase (LDH) and myoglobin leach out of the 

muscle cell and can be detected in the blood (Newham, Jones, & Edwards, 1986; 

Nosaka, Clarkson, & Apple, 1992).  Within a couple of days following the eccentric 

exercise bout large numbers of mononuclear cells such as neutrophils and macrophages 

can be detected in the damaged myofibre and are involved with phagocytosis of the 

necrotic tissue (Round, Jones, & Cambridge, 1987; Smith, 1991; Tidball, 2005).  

Phagocytic mononuclear cells involved with the disposal of the necrotic mass are 

known to produce superoxide and therefore can be assumed to contribute to the free 

radicals present in the damaged fibre (Warren, Jenkins, Packer, Witt, & Armstrong, 

1992).  In addition it is believed that certain invading phagocytic cells secrete some 

factor(s) that initiate satellite cell proliferation (Hurme & Kalimo, 1992; Tidball, 2005). 

Once the damaged portion of the muscle cell is removed by the phagocytic cells, and 

satellite cells are signaled to begin proliferation and later differentiation into myoblasts, 

the cell is said to be in the regenerative stage (Bischoff, 1989; White & Esser, 1989).  

Regeneration is near completion when myoblastic cells fuse to form myotubes, which 

begin to be filled with newly synthesized cytoskeletal and myofibrillar proteins (Carlson 

& Faulkner, 1983).  The entire process from the initial eccentric exercise until formation 

of newly regenerated myofibres can take anywhere from a couple of weeks to over a 

month. 
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2.3 Exercise Models of Muscle Damage 

 

There have been a number of different exercise models used to induce muscle damage 

and delayed onset muscle soreness in humans.  Those producing the greatest magnitude 

of exercise-induced muscle damage and soreness have incorporated eccentric muscle 

actions and include models such as bench stepping (Newham, Jones, Tolfree, & 

Edwards, 1986), downhill running (Eston, Finney, Baker, & Baltzopoulos, 1996; 

Schwane, Johnson, Vandenakker, & Armstrong, 1983), downhill backward walking 

(Nottle & Nosaka, 2005), running down stairs (Friden, Sjostrom, & Ekblom, 1981), 

plyometric jumping (Jamurtas et al., 2000; Marginson, Rowlands, Gleeson, & Eston, 

2005; Miyama & Nosaka, 2004), maximal isokinetic actions of the arms (Chen & 

Hsieh, 2001; Gleeson, Eston, Marginson, & McHugh, 2003; Philippou, Bogdanis, 

Nevill, & Maridaki, 2004) and legs (Byrne, Eston, & Edwards, 2001; Paschalis et al., 

2005), isoinertial exercise (Fielding et al., 2000; Lee et al., 2002; Nosaka & Newton, 

2002b), eccentric cycling (Walsh, Tonkonogi, Malm, Ekblom, & Sahlin, 2001), and 

electrically stimulated forced lengthening exercise (Gleeson et al., 1998; Nosaka, 

Newton, & Sacco, 2002c). 

 

It appears that the magnitude of muscle damage varies among the models.  In a recent 

review, Clarkson and Hubal (2002) report that, in terms of strength loss and recovery 

time, the greatest magnitude of change is associated with high-force eccentric exercise.  

From work cited in the review it can be determined that high-force eccentric exercise 

often generates up to 35%-40% greater force reductions than eccentrically-biased 

downhill running (Clarkson & Hubal, 2002). 

 

Another consideration in terms of exercise model is whether an inter- or intra-subject 

design is employed.  In using contralateral limbs, the intra-subject design has the 

potential advantage of matching the groups (separate limbs) in terms of genetic and 

immunological responses to an eccentric exercise challenge.  If the goal is to have one 

limb receive a treatment and the contralateral limb act as a control, then in order to 

increase the sensitivity of the study ideally there should be no difference in markers of 

muscle damage between contralateral limbs when they are subjected to identical bouts 

of eccentric exercise. 
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Both inter- and intra-subject designs have been used extensively, however there is very 

little reported research on whether contralateral limbs respond in a similar manner to an 

identical bout of maximal eccentric exercise.  To the best of the author’s knowledge 

there have been no published studies comparing changes in markers of muscle damage 

to identical eccentric exercise of contralateral elbow flexors.  As several studies 

incorporating an inter-subject design, and using one limb as a control, have employed 

eccentric exercise of the elbow flexor musculature, research needs to establish whether 

the contralateral musculature responds similarly to identical lengthening actions. 

 

In conclusion, differences in symptoms and / or markers of exercise-induced muscle 

damage following eccentric exercise are likely to be due, in part, to the various exercise 

models employed.  One unique type of exercise model is the contralateral limb design, 

however further research is required to determine the sensitivity of this model. 

 

2.4 Effect of Novel or Unaccustomed Eccentric Exercise on Selected Symptoms and 

Markers of Muscle Damage 

 

2.4.1 Maximal Voluntary Contraction (MVC) Torque 
 

Following eccentric activity in persons not accustomed to such exercise a profound 

reduction in eccentric, concentric and isometric torques (MVC torque) can be evident 

immediately following exercise which does not fully recover for many days, or weeks in 

some cases (Chapman, Newton, Sacco, & Nosaka, 2005; Clarkson et al., 1992; 

Newham, Jones, & Clarkson, 1987).  The largest decrease in MVC torque is usually 

apparent immediately following the exercise activity (Nosaka, Clarkson, McGuiggin, & 

Byrne, 1991) with a gradual recovery of force generating ability over subsequent days 

or weeks.  Clarkson and Hubal (2002) note that it has still not been positively 

established exactly how force is lost following eccentric exercise.  It seems that the 

exact mechanism remains to be elucidated.  It is, however, thought that the decline in 

MVC torque following eccentric exercise is initially caused by the high mechanical 

stress negatively affecting structures involved with excitation-contraction coupling 

(Ingalls, Warren, Williams, Ward, & Armstrong, 1998b). 
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There are also other theories, one of which suggests that sarcomeres are non-uniformly 

stretched during lengthening contractions resulting in damage from ‘sarcomere 

popping’ (Morgan, 1990; Morgan & Allen, 1999).  Another suggests that the force loss 

after eccentric exercise may be due to damage at the level of tendon attachments or 

within the series elastic elements of muscle (Clarkson & Hubal, 2002).  Ingalls, Warren 

& Armstrong (1998) note that in murine muscle significant reductions in contractile 

protein begin to occur about five days after the eccentric exercise, and account for 58% 

of force loss at this time.  From 14 to 28 days following lengthening contractions, nearly 

all of the loss in force production can be accounted for by decreased myosin heavy 

chain and actin content (Ingalls, Warren, & Armstrong, 1998).  As metabolic rate is 

relatively fast in the mouse it is likely that in humans the reductions in contractile 

protein, and force loss attributable to this, will not be as marked at five days. 

 

2.4.2 Range of Motion (ROM) 
 

ROM of the elbow joint, determined by the difference between the flexed (FANG) and 

stretched (SANG) elbow joint angle, has been shown to decrease immediately following 

novel eccentric exercise of the elbow flexor muscles, reaching the smallest angle around 

three days post exercise and slowly recovering over ensuing days (Nosaka et al., 1991).  

Relaxed elbow joint angle, which is determined by the angle at the elbow while the arm 

is hanging freely by the side of the body, is similarly found to be at its most acute 3 days 

post exercise slowly recovering to baseline by around 10 days following exercise 

(Clarkson et al., 1992).  The aetiology of the decreased range of motion following 

eccentric exercise remains to be fully elucidated, however, previous research suggests 

that shortened non-contractile components, change in calcium homeostasis due to 

muscle damage, decreased strength, and / or swelling may be implicated (Chleboun, 

Howell, Conatser, & Giesey, 1998; Jones, Newham, & Clarkson, 1987).  If swelling is 

involved, it is not thought to play an appreciable role in the decreased range of motion 

evident immediately following the lengthening contractions (Chleboun et al., 1998). 
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2.4.3 Limb Circumference (CIR) 
 

Following novel eccentric activity circumference of the exercised limb increases, 

usually peaking between three to five days post exercise (Clarkson et al., 1992; Howell, 

Gary, & Robert, 1993).  The exact mechanism causing the increased circumference is 

not clear but has been suggested to be due to either swelling within the affected muscle 

fibres (Crenshaw, Thornell, & Friden, 1994), swelling of the connective tissue 

(Clarkson et al., 1992), or increased synthesis of connective tissue rather than fluid 

accumulation (Smith, 1991). 

 

2.4.4 Intracellular Protein Release 
 

Intracellular proteins such as creatine kinase (CK), lactate dehydrogenase (LDH), 

myoglobin, and myosin heavy chain fragments are detectable in the blood of individuals 

who have performed novel eccentric exercise (Hirose et al., 2004; Nosaka et al., 1992; 

Sorichter, Puschendorf, & Mair, 1999).  The most commonly measured of these proteins 

is CK (Ebbeling & Clarkson, 1989), which peaks about three to seven days post 

exercise and slowly returns to baseline levels thereafter (Newham, Jones, & Edwards, 

1986; Nosaka et al., 1992).  Each of the three listed proteins show delayed (24 to 48 

hour) increases in the blood (Nosaka et al., 1992), suggesting that exit time from the 

muscle and / or the time taken to drain into the central circulation from the lymphatic 

system is protracted.  The activity of CK in the blood following unaccustomed eccentric 

activity is variable among subjects (Clarkson & Ebbeling, 1988) and although increased 

levels of this enzyme can be used as a marker of muscle damage, it is not recommended 

that it be used as a quantitative measure of the degree of muscle injury incurred 

(Clarkson, Byrnes, McCormick, Turcotte, & White, 1986). 

 

2.4.5 Delayed Onset Muscle Soreness (DOMS) 
 

Approximately 6 to 12 hours following novel eccentric exercise, discomfort may be felt 

in the muscles that have been worked (Clarkson et al., 1986) with peak soreness usually 

occurring at one to two days (MacIntyre, Reid, & McKenzie, 1995).  The soreness 

usually subsides by 5 to 7 days following exercise without the need of analgesic 
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medication (MacIntyre et al., 1995).  The exact cause of soreness following novel 

eccentric exercise remains unresolved although it has been suggested to be due to the 

acute inflammatory response at this time (MacIntyre et al., 1995; Smith, 1991) or 

disruption to the muscle fibre and connective tissue (Stauber, 1989).  Later work by 

Malm et al. (2000) though has questioned the role of cellular or humoral inflammation 

in DOMS, therefore further investigation seems warranted in this area. 

 

2.4.6 Magnetic Resonance Imaging (MRI) and Ultrasound (US) 
 

MR and US imaging of the muscle compartment have been employed as tools for 

assessing exercise-induced muscle damage, and the resulting increased T2 relaxation 

time (MRI) and echo intensity (US) in the days after lengthening contractions are 

considered to indicate oedema in the exercised muscle (Chleboun et al., 1998; Clarkson 

& Hubal, 2002; Foley et al., 1999).  T2 and echo intensity peak between 3 to 7 days 

following eccentric exercise, however, T2 displays an appreciably protracted recovery 

(Foley et al., 1999; Nosaka & Clarkson, 1996a; Nosaka, Newton, & Sacco, 2002b).  

Nosaka and Clarkson (1996a) noted that T2 relaxation time had returned to baseline in 

all bar one subject by 23 days following maximal eccentric exercise of the elbow 

flexors.  Foley et al. (1999) had subjects perform eccentric exercise with the same 

muscle groups used by Nosaka and Clarkson (1996a) but of higher volume and lower 

intensity and recorded elevated T2 images as long as 56 days later.  Shellock et al. 

(1991) reported that in two subjects MR images showed subclinical abnormalities that 

remained as long as 75 days after exercise-induced muscle damage symptoms 

disappeared.  As oedema has resolved well before this time it remains unclear what the 

long lasting elevated T2 images represent (Clarkson & Hubal, 2002).  Foley et al. 

(1999) suggest that it could possibly reflect some form of long lasting adaptation. 

 



 

 13

 

2.5 Factors that are Known, or Suspected, to Influence Muscle Damage 

 

There are many factors that are known, or suspected, to influence the magnitude of 

changes in markers of muscle damage following eccentric exercise.  Section 2.3 

discussed the involvement of different exercise models and noted that they possess the 

ability to influence the magnitude of muscle damage.  This section will briefly cover 

other selected factors known, or thought, to affect changes in damage markers.  Due to 

the exhaustive number of factors that could be addressed, the present review will be 

delimited to those that are felt to enhance comprehension and readability of the thesis. 

 

2.5.1 Exercise Type and Intensity 
 

The type of exercise is a major determinant of the magnitude of changes in markers 

of muscle damage (criterion measures).  Research has shown conclusively that exercise 

incorporating eccentric contractions (actions) leads to greater changes in criterion 

measures than those of an isometric or concentric nature (Clarkson et al., 1986; Friden, 

Sjostrom, & Ekblom, 1983; Lavender & Nosaka, 2006a).  It is also known that the type 

of eccentric exercise can affect the magnitude of change in these measures.  

Submaximal eccentric exercise has been reported to cause a similar magnitude of initial 

damage to that of a maximal bout, however, subsequent damage was smaller (Nosaka & 

Newton, 2002b).  Clarkson and Tremblay (1988) also revealed that eccentric exercise 

that was lower in volume produced only a modest amount of damage when compared to 

a higher volume bout. 

 

The velocity and range of motion of the eccentric exercise have also been shown to 

affect the magnitude of subsequent muscle damage.  Chapman, Newton, Sacco and 

Nosaka (2005) reported that in untrained subjects, when time under tension is constant, 

fast velocity eccentric exercise produces a larger magnitude of muscle damage than 

slow velocity exercise.  Some, but not all, research has shown that a greater magnitude 

of damage is caused by eccentric exercise which is performed at long compared to short 

muscle lengths (McHugh & Pasiakos, 2004; Nosaka & Sakamoto, 2001).  Nosaka and 

Sakamoto (2001) noted that the greater changes following eccentric exercise at the 
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longer ranges of motion appeared to be due to a larger magnitude of damage to the 

brachialis and biceps brachii.  In contrast, however, eccentric exercise of the human 

rectus femoris at a short muscle length induced greater muscle damage and declines in 

peak torque than the corresponding long length (Paschalis et al., 2005). 

 

2.5.2 Muscle Group 
 

It appears that responses to eccentric exercise are different between leg and arm 

muscles; and the magnitude of muscle damage seems greater for arm muscles compared 

with leg muscles. However, little research has been conducted directly comparing the 

magnitude of muscle damage between different muscle groups employing the same 

relative intensity of eccentric exercise.  A recent study by Jamurtas et al. (2005) had 

subjects perform sub-maximal eccentric exercise of the knee extensors and elbow 

flexors while relative intensity was controlled.  The results suggested that the magnitude 

of muscle damage was greater and the recovery of muscle function was slower in the 

elbow flexor muscles.  Whether such variability exists between other muscle groups 

remains to be elucidated. 

 

2.5.3 Training 
 

The majority of research focusing on exercise-induced muscle damage has employed 

untrained subjects.  Findings from these studies have provided important information in 

furthering our understanding of the effect of eccentric exercise on muscle function and 

delayed onset muscle soreness, however, they do little to inform us how trained muscle 

responds to such exercise.  In a recent review Falvo and Bloomer (2006) noted that 

there is little research that has investigated the response of “trained” individuals to 

exercise-induced muscle damage.  This is unfortunate as there is a wealth of research 

describing the neuromuscular and endocrine adaptations gained from exercise training. 

 

When resistance exercise is employed as the training modality, muscles have been 

shown to improve their ability to produce force in all contraction modes and 

improvements in strength have been shown as early as during the first training session 

(Hakkinen, 1989).  Early increases in strength are believed to be primarily neural in 
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nature (Gabriel, Kamen, & Frost, 2006; Jones, Rutherford, & Parker, 1989) and may 

involve increases in maximal firing frequency, down regulation of inhibitory pathways 

(Aagaard, 2003) and increased motor unit synchronization (Gabriel et al., 2006).  With 

chronic resistance training, peripheral adaptations such as muscular hypertrophy begin 

to contribute appreciably to the gains in strength (Deschenes & Kraemer, 2002).  

Increased absolute amounts of connective tissue have been reported in resistance-trained 

individuals (MacDougall, Sale, Alway, & Sutton, 1984) leading Stone (1992b) to 

speculate that strength training may cause adaptations to these structures allowing them 

to better resist injury.  Depending upon the view one takes of such neuromuscular 

adaptations it could be argued that resistance-trained individuals are more, equally, or 

less susceptible to exercise-induced muscle damage.  The increased strength may allow 

them to produce and absorb more force and hence increase their chance of incurring 

damage.  Alternatively, the improved peripheral adaptations may provide more resilient 

muscle and tendon structures and render them less susceptible to exercise-induced 

damage, or both increased strength and muscular resilience may exert equal influence 

causing the resistance-trained and untrained individuals to exhibit similar susceptibility. 

 

In one of the only studies to investigate CK response, soreness and muscle function 

following a strenuous resistance training regimen, Vincent and Vincent (1997) reported 

that trained subjects produced a blunted CK response but soreness and loss of muscle 

function was no different to the untrained group.  The paucity of data involving the 

response of trained individuals to exercise-induced muscle damage suggests that further 

research is warranted. 

 

As a resistance-training regimen typically incorporates multiple sets of both concentric 

and eccentric contractions performed at relatively high intensity, it seems plausible to 

presume that individuals undertaking this type of training over a period of time may be 

conferred some degree of protection against exercise-induced muscle damage. 

 

2.5.4 Repeated Bout Effect 
 

Support for the suggestion that resistance-trained individuals may be at least partially 

protected against exercise-induced muscle damage is found in the phenomenon referred 
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to as the “repeated bout effect”.  Research has shown that an initial bout of eccentric 

exercise in untrained individuals can confer protection against a subsequent bout of the 

same activity (Clarkson et al., 1992; Ebbeling & Clarkson, 1989).  The extent of 

protection varies depending upon the damage marker examined and lasts for at least six 

months for most damage markers but is lost between nine and twelve months (Nosaka, 

Sakamoto, Newton, & Sacco, 2001a).  Protection has also been shown to occur when 

the initial eccentric exercise bout was lower in volume and produced only small changes 

in the markers of damage (Clarkson & Tremblay, 1988).  Nosaka et al. (2001b) 

demonstrated that as little as two maximal eccentric contractions performed by 

untrained individuals can confer protection against a subsequent bout of 24 maximal 

eccentric contractions performed two weeks later.  It has also been shown by Nosaka et 

al. (2005) that an initial bout of maximal eccentric exercise of the elbow flexors 

performed at short muscle length (0.87 – 1.74 radians) provided partial protection 

against the same exercise performed at long muscle length (2.27 – 3.14 radians).  In 

contrast, McHugh and Pasiakos (2004) reported that in the quadriceps an initial 

eccentric exercise bout performed at short muscle length did not confer protection 

against strength loss and pain in a subsequent bout at longer length. 

 

Although there have been a large number of studies investigating the repeated bout 

effect there remains little consensus as to the mechanism behind the phenomenon 

(McHugh, Connolly, Eston, & Gleim, 1999).  In a review addressing the phenomenon 

McHugh et al. (1999) suggests that neural, connective tissue, excitation-contraction 

coupling, inflammatory response, or cellular adaptations may be responsible for the 

protective effect.   

 

2.5.5 Age 
 

The effect of eccentric exercise on markers of muscle damage in humans of differing 

age is not clear.  Some studies have reported that young and old subjects differ little in 

their susceptibility to exercise-induced muscle damage (Clarkson & Dedrick, 1988; 

Roth et al., 1999), whereas others (Lavender & Nosaka, 2006b; Manfredi et al., 1991; 

Ploutz-Snyder, Giamis, Formikell, & Rosenbaum, 2001; Roth et al., 2000) note that 

older individuals incur a greater magnitude of muscle injury. 



 

 17

 

These conflicting findings also extend to when a repeated bout of eccentric exercise is 

performed.  In a study comparing young and older (>60 years) women Clarkson and 

Dedrick (1988) had both groups perform two bouts of eccentric exercise of the forearm 

flexors spaced seven days apart.  They noted that, with the exception of muscle 

shortening, the damage process follows a similar course for both age groups and the 

repair process is equally as effective with both groups showing the same ability to 

adapt.  In contrast, Lavender and Nosaka (2006b) reported that in older men (>65 years) 

the protective effect conferred by the initial bout was of lower magnitude than that of 

the younger adults.  They suggested that this may have been due to the older men 

incurring less muscle damage following the first bout of eccentric exercise, however, 

they could not rule out the possibility that the protective effect in older adults does not 

last as long as the younger men. 

 

Data from a recent, as yet, unpublished study shows that young and middle-aged men 

do not differ in their susceptibility to exercise-induced muscle damage (Lavender and 

Nosaka - unpublished data).  Soreness, however, did differ significantly between the 

groups with middle-aged men reporting approximately half the level of younger men 

following eccentric exercise. 

 

2.5.6 Gender 
 

Many studies investigating the response to eccentric exercise have employed 

research designs that include both genders.  Due to greater circulating levels of the 

hormone oestrogen in women it has been the common belief that this gender may be 

protected from exercise-induced muscle damage more so than men.  Whether the 

markers of exercise-induced muscle damage are affected to the same extent in both 

genders has been a point of interest and has attracted considerable investigation 

(Dannecker, Koltyn, Riley, & Robinson, 2003; Rinard et al., 2000; Sayers & Clarkson, 

2001; Stupka et al., 2000).  In reviewing the available literature Clarkson and Hubal 

(2001) note that contrary to the commonly held belief women are not conferred greater 

protection and may in fact experience a greater magnitude of damage, based on indirect 

measures, than men.  In order to reduce any possible variations due to gender 
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differences and the effect of oestrogen, the studies comprising the present research were 

restricted to men. 

 

2.5.7 Genetics 
 

To date, there has been little research addressing the question of whether genetic 

differences affect the responses of markers of muscle damage following maximal 

eccentric exercise.  Two recent studies employing maximal eccentric exercise of the 

elbow flexors provide contrasting findings, with Gulbin and Gaffney (2002) reporting 

that variability in changes of markers of exercise-induced muscle damage cannot be 

attributed to genetic differences, whereas Clarkson et al. (2005) reveal that phenotypic 

responses to muscle damaging exercise are influenced by variations in genes coding for 

specific myofibrillar proteins.  The studies differed in their research approaches with 

Clarkson et al. (2005) studying genotype associations via blood samples, while Gulbin 

and Gaffney (2002) investigated responses of 16 pairs of identical twins without genetic 

assessment of blood or muscle samples.  Clearly additional research is required to 

resolve the issue of whether and / or to what extent genetic variation is associated with 

phenotypic responses to exercise-induced muscle damage. 

 

2.5.8 Racial Background 
 

There is a dearth of research investigating the effect of racial background on 

responses to exercise-induced muscle damage.  In a recent study Clarkson et al. (2005) 

reported that there were a disproportionate number of Asian subjects who were 

homozygous for the MLCK 49T rare allele of the gene coding for the myofibrillar 

protein myosin light chain kinase (MLCK).  These subjects produced significantly 

elevated CK and myoglobin activity following maximal eccentric exercise compared 

with the other subjects suggesting that ethnicity could be a factor.  However, the 

researchers noted that the sample size of Asians was too small to draw any firm 

conclusions.  Whether this apparent difference between Asian and Caucasians extends 

to other markers of muscle damage remains to be elucidated and warrants further 

investigation. 
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2.5.9 Treatment Strategies 
 

Although not directly related to the present research, it is important to acknowledge 

that various treatment strategies have been employed in a prophylactic manner and / or 

following exercise to influence the magnitude of changes in markers of muscle damage.  

In a recent review Cheung, Hume and Maxwell (2003) reported that nonsteroidal anti-

inflammatories, massage, and exercise seem to exert some positive effects on selected 

markers of muscle damage and soreness, however, cryotherapy, stretching, homeopathy, 

ultrasound, and electrical current modalities have shown no effect. 

 

Studies investigating immobilization have shown reductions in magnitude of some of 

the muscle damage markers such as CK response (Chen, Nosaka, & Lin, 2005; Sayers, 

Clarkson, & Lee, 2000b) and swelling (Chen et al., 2005), and an enhanced recovery of 

muscular strength (Chen et al., 2005; Sayers, Clarkson, & Lee, 2000a; Sayers et al., 

2003).  Wearing a compression garment on the limb following eccentric exercise has 

also been shown to reduce some of the markers of muscle damage.  Recent research by 

Kraemer et al. (2001) showed that compression prevented loss of elbow extension, 

decreased soreness, reduced swelling, and enhanced recovery of force. 

 

Finally, nutritional supplementation has also produced mixed results with differing 

responses between supplements.  Four supplements that have received some attention 

are creatine monohydrate, beta-hydoxy-beta-methylbutyrate (HMB), and vitamins C 

and E.  Rawson et al. (2001) reported that 5 days of creatine supplementation did not 

reduce indirect markers of muscle damage or expedite recovery following eccentric 

exercise.  Van Someren et al. (2005) reported that combined supplementation with 

HMB and alpha-ketoisocaproic acid reduced signs and symptoms of exercise-induced 

muscle damage in non-resistance trained males.  Another study by Paddon-Jones et al. 

(2001), however, noted that short term supplementation with HMB had no beneficial 

effect on a range of symptoms associated with eccentric muscle damage.  Similar 

contradictory results have been reported with respect to supplementation with vitamin 

E.  In reviewing the available literature Goldfarb (1999) noted that the effects of vitamin 

E supplementation has produced mixed results and warrants further research.  With 

respect to vitamin C and muscle damage, Goldfarb (1999) reports that there is a paucity 

of good research on the effectiveness of this supplement. 
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2.6 Summary 

 

It is known that novel eccentric exercise results in damage to muscle and connective 

tissue (exercise-induced muscle damage) and delayed onset muscle soreness.  It has also 

been shown that reduced muscle function and other markers of muscle injury are 

evident following this type of exercise.  A number of different exercise models have 

been employed to induce muscle damage and soreness, and the magnitude of symptoms 

and changes in markers of damage are likely attributable to the structure of these 

models.  A number of factors such as age, exercise, muscle group, gender, genetics, 

racial background, and various interventions such as massage, immobilization and 

nutritional supplementation are thought to affect the susceptibility to exercise-induced 

muscle damage, although some of the above factors such as contralateral limb usage, 

training status and racial background of individuals have received limited attention and 

hence further research is warranted in order to fully elucidate their effects. 
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CHAPTER 3 

METHODS 

 
3.1 Study Design 

 

The three studies comprising the research chapters of the thesis investigated the effects 

of arm dominance and exercise bout order (Study 1), training status (Study 2), and racial 

background (Caucasian and Japanese; Study 3) on markers of muscle damage and 

DOMS following a bout of maximal eccentric exercise.  The first study employed an 

arm to arm comparison model in which each subject exercised both arms separated by a 

period of 4 weeks.  The other two studies used separate groups of subjects to evaluate 

the effects of the eccentric exercise intervention.  All three studies employed the same 

eccentric exercise intervention although there were minor differences in the duration of 

each study and the number of dependent variables (criterion measures) evaluated.  

Further design details specific to each study will be presented in the relevant study 

chapters. 

 

In order to determine a suitable sample size for the studies a power calculation was 

performed based on the work of Sayers et al. (2000a) .  Using an effect size of 1.0 for 

Study 1 and 1.2 for Studies 2 and 3, an alpha of 0.05, and a power of 0.8 in a two tailed 

design the estimated sample size for Studies 1, 2, and 3 were 17, 12, and 12, 

respectively.  The effect size chosen for Study 1 was lower due to the assumption that 

the difference in criterion measures between arms of an individual would be smaller 

than that recorded between arms of different subjects (Studies 2 & 3). 

 

It is also noteworthy that previous peer reviewed studies focussing on exercise-induced 

muscle damage have employed sample sizes of less than 14 per group (Clarkson & 

Tremblay, 1988; Nosaka & Sakamoto, 2001; Rawson et al., 2001; Saxton et al., 1995; 

Sayers et al., 2000a; Sayers et al., 2003), lending further weight to the adequate sample 

size selection in the present studies. 
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3.2 Subjects 

 

Volunteers for each study were recruited by word of mouth from staff and students of 

Edith Cowan University, and from their friends, family, and sporting team members.  

Subjects completed a medical questionnaire prior to their participation in any testing or 

exercise sessions and all were found to be free of any disease or injuries that would 

contraindicate their inclusion in the study (Appendix A).  All subjects reported that they 

did not use any medications for the duration of their study. 

 

Subjects were requested not to alter their usual eating patterns during the course of the 

studies and not to perform any exercise, other than that prescribed by the investigator, 

for one week prior to and during the course of each study.  Subject characteristics such 

as age, height and weight are described in each of the relevant study chapters (i.e., 4 to 

6). 

 

3.3 Ethical Considerations 

 

Ethical approval was granted by Edith Cowan University’s ethics committee and 

subjects were required to complete a written informed consent document consistent with 

principles set out in the Declaration of Helsinki before they were able to participate in 

the study.  Subjects were informed of the procedures that they would undergo and were 

free to withdraw from the study at any stage for any reason without prejudice.  Consent 

forms for each study are shown in Appendices B - D. 

 

3.4 Pre-exercise Familiarisation 

 

In the week preceding commencement of the study proper, subjects visited the 

laboratory on two occasions, separated by at least 48 hours, during which they were 

familiarized with the testing and exercise protocols.  Static and dynamic maximum 

voluntary elbow torque were recorded, and range of motion (ROM), upper arm 

circumference, plasma creatine kinase activity (CK), and soreness measured.  The data 

collected during the two familiarisation sessions was used to determine reliability of the 

criterion measures (section 3.7 below).  During the first of the familiarisation sessions 
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subjects were provided with a demonstration by the investigator of the eccentric 

exercise intervention to be performed. 

 

3.5 Eccentric Exercise Intervention 

 

The exercise intervention comprised 10 sets of 6 maximal voluntary eccentric actions of 

the elbow flexors of one arm, performed against the lever arm of a Cybex 6000 

isokinetic dynamometer (Ronkonkoma, New York, USA) moving at a constant velocity 

of 90o·s-1.  Subjects were seated on an arm curl bench with the exercised upper arm 

supported at 45o of shoulder abduction and their elbow aligned with the axis of rotation 

of the dynamometer’s lever arm.  The forearm remained in a supinated position 

throughout all sets of exercise.  The forearm commenced the movement at an angle of 

90o to the upper arm and moved through a range of movement of 90o, finishing at 180o 

of elbow extension (i.e., straight arm; Figure 1).  Subjects were exhorted to maximally 

resist the lever arm of the dynamometer throughout the entire lengthening phase of the 

movement.  A 10-second passive recovery period occurred between eccentric 

repetitions while the lever arm was returned to the starting position at 9o·s-1 by the motor 

of the isokinetic dynamometer.  A 3-minute passive recovery period was undertaken 

between sets to allow for phosphagen resynthesis. 

 

Raw torque and displacement signals of each repetition of the exercise and strength 

testing bouts were output from the Cybex 6000 dynamometer and captured by a data 

acquisition hardware and software system (Minirack, AMLAB II, Lewisham, 

Australia), and a purpose designed schematic allowed torque and work output to be 

saved to disk and displayed in real time on an IBM desktop computer. 

 

Peak torque and total work were determined for every repetition of the eccentric 

exercise bout and saved for later analysis. 
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Figure 1: Starting (a) and finishing (b) positions for each of the 60 maximal eccentric 

actions of the elbow flexors. 

 

3.6 Criterion Measures 

 

The criterion measures of maximal voluntary isometric and isokinetic torque, ROM, 

upper arm circumference, plasma CK activity, and muscle soreness used in the present 

series of studies have been employed extensively in studies of exercise-induced muscle 

damage and DOMS (Chapman et al., 2005; Gleeson et al., 2003; Rinard et al., 2000). 

 

All of the criterion measures mentioned above are considered indirect markers of 

muscle damage and were chosen as appropriate dependent variables due to the 

acceptance of such measures in the peer reviewed literature.  Warren, Lowe and 

Armstrong (1999) believe that maximal voluntary contraction torque is the best measure 

of injury resulting from eccentric contractions and provides the primary means for 

determining muscle function in human studies. 

 

ROM is also considered a useful marker of the functional decrements resulting from 

eccentric exercise and as such Warren et al. (1999) suggest that these measurements 

should, ideally, be included in human studies. 

 

Following eccentric exercise muscle swelling, which is likely related to tissue damage 

and the inflammatory response, is generally estimated from the change in limb 

circumference (Chelboun, Howell, Conaster, & Giesey, 1998), and Clarkson and Hubal 

a b 
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(2002) noted that blood CK activity provides an indirect qualitative marker of muscle 

damage. 

 

The time course over which the criterion measures were evaluated varied slightly 

between the studies and have, therefore, been described under the same heading in the 

relevant study chapters.   

 

3.6.1 Maximal Voluntary Contraction (MVC) Torque 
 

Isometric MVC torque was measured at fixed joint angles of 90o and 150o of elbow 

extension, and MVC isokinetic torque at concentric velocities of 30o·s-1, 90o·s-1, 150o·s-1, 

210o·s-1, and 300o·s-1.  The order of measurement was as it appears above. 

 

Subjects assumed a position on the arm curl bench as described in the exercise protocol 

section above.  Subjects were exhorted to produce a continuous maximal voluntary 

contraction of the elbow flexors for three seconds against an immovable lever arm of 

the Cybex 6000 isokinetic dynamometer at fixed elbow joint angles of 90o and 150o 

(Figure 2a & b).  Two efforts were allowed at each joint angle and the highest torque 

production of the two was recorded.  A 30-second passive rest period was provided 

between attempts at a given angle, and one-minute of passive recovery was employed 

between testing at the two joint angles.  Torque data from the Cybex 6000 dynamometer 

was collected using AMLAB and saved for later analysis. 

 

   

Figure 2. Determination of maximal isometric torque at fixed angles of (a) 90o and (b) 

150o of elbow extension. 

a b 
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Isokinetic MVC torque at concentric velocities of 30o·s-1, 90o·s-1, 150o·s-1, 210o·s-1, and 

300o·s-1 were also collected during each testing session.  Isokinetic assessment followed 

the isometric measurements during every session with a two-minute passive recovery 

provided between the different testing modalities. 

 

Arm curl bench and Cybex 6000 set-up were the same as for isometric strength 

assessment, and the range of motion used for the eccentric exercise intervention was 

employed for the concentric contractions (i.e., 90o). 

 

Torque was recorded throughout the range of motion, however, only peak torque was 

used for analytical purposes.  Two maximal attempts were made at each concentric 

velocity and the highest of the two retained for later analysis.  The two attempts at each 

velocity were made consecutively and a one-minute passive recovery was provided 

between successive velocities.  Isokinetic testing velocities were ordered from slowest 

to fastest for all subjects and testing sessions. 

 

Subjects were verbally encouraged throughout the eccentric exercise intervention, and 

the isometric and isokinetic concentric contractions in an attempt to obtain maximum 

effort. 

 

3.6.2 Range of Motion (ROM) and Elbow Joint Angle 
 

Range of motion of the elbow joint was determined by the difference between the flexed 

(FANG) and stretched (SANG) elbow joint angle as measured by goniometry.  FANG 

was determined by the angle formed at the elbow when it is held by the side while the 

subject attempted to fully flex the elbow joint to touch their shoulder with the palm of 

the supinated hand (Figure 3a).  SANG was determined as the angle formed at the 

elbow joint when the subject attempted to extend their arm as much as possible with the 

elbow held by their side and the hand in mid pronation (Figure 3b).  To obtain 

consistent measurements four marks were drawn on the skin with a semi-permanent ink 

pen, one laterally approximating the level of the deltoid tuberosity, the second at the 
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level of the lateral epicondyle of the humerus, a third at the mid-point of the wrist, and 

the fourth laterally at the styloid process of the radius (Figure 3a & b). 

 

    

 

Figure 3. Upper arm, elbow and hand positions adopted for determination of (a) FANG 

and (b) SANG. 

 

A plastic Jamar E-Z Read goniometer (Sammons Preston Rolyan, Illinois, USA) was 

used to record the FANG and SANG measures (Figure 4a & b).  Two measurements 

were taken for FANG and SANG with the mean value of the two used for the 

determination of ROM. 

 

a b 
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Figure 4.  FANG (a) and SANG (b) as measured by goniometry.  The hole in the centre 

of the goniometer is located over the mark made on the lateral epicondyle of the 

humerus. 

 

3.6.3 Upper Arm Circumference 
 

Upper arm circumference was determined using a Gulick constant tension tape measure 

(model J00305, Lafayette Instrument, Indiana, USA) at five sites on the upper arm 3, 5, 

7, 9, and 11 cm from the elbow crease (Figure 5a).  Measurements were collected with 

the subject’s arm relaxed and hanging by their side (Figure 5b).  Two measurements 

were taken from each site and the mean value was determined.  An overall mean for the 

five sites was then calculated and used for later analysis.  To obtain consistent 

measurements over the study period the five sites were marked on the skin with a semi-

permanent ink pen. 
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Figure 5.  Upper arm circumference markings (a) and measurement with a constant 

tension tape. 

 

3.6.4 Plasma Creatine Kinase (CK) Activity 
 

Approximately 30 µl of blood was collected in a heparinised capillary tube following 

the piercing of the subject's pre-cleaned finger with a spring loaded lancet.  The blood 

was immediately transferred by pipette to a CK test strip and assayed by a Reflotron 

spectrophotometer (Boehringer-Manheim, Pode, Czech Republic) for plasma CK 

activity. 

 

According to Boehringer-Manheim information slips provided with the CK test strips 

the “normal” reference range for CK using this method is 24 to 195 IU·L-1 when 

assaying at 37oC.  When CK activity exceeded the linear accuracy of the 

spectrophotometer (approximately 1500 IU·L-1) another blood sample was obtained 

from the subject and diluted with saline solution before being assayed.  The resulting 

CK activity was then adjusted to account for the dilution. 

a b 
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3.6.5 Muscle Soreness 
 

Muscle soreness was assessed by the investigator palpating the subject’s upper arm and 

forearm, and extending and flexing the elbow joint while the subject attempted to relax 

the arm.  Subjects rested their arm on a table during arm palpation and flexion 

measures, however, during measurement of extension soreness the investigator raised 

the subject’s relaxed arm off the table to perform the evaluation (figure 6a, b, & c). 

 

   
 

Figure 6.  Upper arm (a), flexion (b), and extension (c) soreness positions. 

 

Palpation soreness was assessed by the examiner applying firm pressure to the specific 

location on the arm or forearm, directing pressure primarily through the index and 

middle fingers (Figures 6a & 7).  Two of the four sites employed for palpation soreness 

were located using the lines marked for upper arm circumference measurements.  The 

first site was located on the belly of the biceps brachii between the lines marked 3 and 5 

cm above the elbow crease.  The second site was located between the lines marked 9 

and 11 cm above the elbow crease and pressure was once again applied to the belly of 

the biceps brachii.  The third site was located on the lateral side of the upper arm just 

above the elbow and was targeted at the brachialis musculature (Figure 7a).  The final 

site for palpation soreness was located on the forearm and was targeted at the 

brachioradialis (Figure 7b). 

 

a b c 
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Figure 7. Locations used for measurement of (a) arm palpation site 3 (brachialis) and 

(b) forearm palpation. 

 

During flexion and extension soreness measures the subject was asked to relax their arm 

as much as possible while the investigator passively flexed and extended the elbow joint 

(Figure 6b & c). 

 

In line with the previously employed protocol of Cleary et al. (2002), a visual analog 

scale (VAS) was used to provide a quantitative measure of the subject’s soreness .  The 

VAS incorporates a 100 mm line marked with 0 at one end, indicating no discomfort at 

all, and 100 at the other, representing extreme soreness (Appendix E).  The subject 

marked the 100 mm line with a pen, using the hand of the arm not being assessed, at a 

point along the scale that coincided with their perceived level of soreness.  The 

investigator provided each subject with the verbal anchors for both ends of the VAS 

during each soreness recording.  The distance from zero, in mm, was measured and the 

numerical result recorded for later analysis. 

 

3.7 Reliability of Criterion Measures 

 

Data collected from the two familiarisation sessions were used to determine the test-

retest reliability of selected criterion measures.  The criterion measures assessed for 

reliability were isometric and isokinetic MVC torque, ROM, upper arm circumference, 

and plasma CK activity.  Upper arm palpation, forearm, extension and flexion soreness 

were not assessed for test-retest reliability due to all subjects recording VAS scores of 

zero for each soreness class during both familiarisation sessions.  All of the criterion 

a b 
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measures in each study were collected by the one investigator who was familiar with the 

measurement procedures. 

 

Intraclass correlations were used to determine the test-retest reliability of the two 

familiarization sessions for the selected criterion measurements.  Statistical Package for 

the Social Sciences (SPSS) version 13.0 for Windows was used to perform the 

reliability computations, and statistical significance was set at p<0.05 for all analyses.  

The reliability across the two familiarisation sessions (R1) was similar between the three 

studies, with the ranges for isometric and isokinetic torque, ROM, upper arm 

circumference, and plasma CK activity of 0.96 – 0.99, 0.91 – 0.99, 0.98 – 0.99, and 0.80 

- 0.93, respectively.  According to Vincent (1999) the reliability of isometric and 

isokinetic torque, ROM and upper arm circumference are considered “high”, with CK 

activity being regarded as “moderate”. 

 

3.8 Analysis of Results 

 

Both absolute and “normalised” data were used for analysis of selected criterion 

measures.  In terms of both isometric and isokinetic MVC torques, “normalised” 

referred to percentages of pre-exercised values (i.e., normalised to pre-exercise).  For 

ROM and upper arm circumference “normalised” referred to changes from pre-exercise 

values, however, in the case of these two criterion measures the differences were 

presented as actual units of measure (i.e., degrees for ROM and mm for circumference).  

Both CK activity and soreness were analysed using only absolute values. 

 

Changes in all criterion measures over time were compared between the groups in each 

study using a between-within factorial analysis of variance (ANOVA).  Two-way 

repeated measures ANOVA were applied to the data to calculate the main effects and 

interaction.  When the ANOVA returned a significant main effect for the normalised 

“between group” comparison in the trained versus untrained and Caucasian versus 

Japanese studies, independent t-tests with Bonferroni correction were applied post hoc 

to locate any significant interactions.  Paired t-tests with Bonferroni correction were 

employed post hoc for the Bout 1 versus Bout 2 - Dominant versus Non-dominant study 

when a significant “between group” main effect resulted. 
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When the two-way repeated measures ANOVA returned a significant main effect for 

“within group” comparisons, one-way repeated measures ANOVAs with Bonferroni 

corrected pairwise comparisons were applied to the absolute value data of each group to 

locate any significant differences over time. 

 

Independent t-tests with Bonferroni correction were applied to the subject 

characteristics and pre-exercise absolute values of the criterion measures for the trained 

versus untrained and Caucasian versus Japanese studies to locate any significant 

differences between the groups.  For the Bout 1 versus Bout 2 - Dominant versus Non-

dominant study, paired t-tests with Bonferroni correction were employed to locate any 

significant differences between the groups for pre-exercise absolute values of the 

criterion measures. 

 

Pearson’s product moment correlation coefficients were calculated for selected time 

points in the Bout 1 versus Bout 2 - Dominant versus Non-dominant study to determine 

the relationship between the groups.  Scatterplots of individual subject data with fitted 

lines of equality were also used to highlight the degree of agreement between the 

groups. 

 

Data analysis was performed using the Statistical Package for the Social Sciences 

(SPSS) version 13.0 for Windows.  Statistical significance was set at p<0.05 for all 

analyses.  Where Bonferroni corrections were employed a single-test alpha level of 0.05 

was divided by the number of tests performed.  As the single test alpha level of 0.05 

was employed for all analyses, for brevity in the textual results p<0.05 will be reported 

for all comparisons including those involving Bonferroni correction.  Data are presented 

as means ± SEM, unless otherwise stated. 

 

3.9 Limitations and Delimitations 

 

Subjects were all male and aged between 18 and 42 years, therefore results may not be 

representative of the entire population in terms of gender and age.  The present studies 

employed a maximal eccentric exercise model incorporating the elbow flexors which 

may not be representative of other muscle groups.  The criterion measures used in the 
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present studies provided indirect measures of muscle damage and, therefore, should not 

be inferred to represent actual ultrastructural damage to muscle and connective tissue. 

 

The measurements of soreness used in the three studies are subjective by nature, 

however, they have been used extensively in peer reviewed exercise-induced muscle 

damage and DOMS literature to quantify soreness. 
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CHAPTER 4 

 

4.1 Introduction 

The exercise-induced muscle damage literature is replete with examples of wide inter-

subject variations in criterion measures following exercise of an eccentric nature 

(Clarkson & Tremblay, 1988; Gulbin & Gaffney, 2002; Newham et al., 1987; Nosaka & 

Clarkson, 1996; Nosaka et al., 1991; Sayers et al., 1999).  The criterion measure 

typically exhibiting the greatest inter-subject variability is the intramuscular enzyme CK 

(Clarkson & Tremblay, 1988; Newham et al., 1987; Nosaka & Clarkson, 1996b), 

however, force loss (Gulbin & Gaffney, 2002; Sayers et al., 1999) and limb 

circumference (Sayers et al., 1999) have also been reported to exhibit appreciable 

variation.  The aetiology of the large variability in these measures is not well 

understood, although recently genetic factors have been implicated (Clarkson et al., 

2005). 

 

Two common experimental models have been employed during the study of exercise-

induced muscle injury and soreness.  The more common of the models uses two groups 

of subjects, one of which receives an exercise intervention while the other acts as either 

a control or receives a different intervention.  The second model is similar with regard 

to the intervention and control scenario, however, only one group of subjects is required 

due to the use of contralateral limbs.  The attraction of the contralateral limb model lies 

in the belief that variances in the criterion measures will be minimised following 

identical bouts of maximal voluntary eccentric exercise if the same subject is used for 

both exercise bouts.  Certainly this has been shown to be the case for some of the 

criterion measures when eccentric exercise has been performed twice on the same limb 

of a subject with a lengthy non-exercise period interspersed between the bouts (Nosaka 

et al., 2001a).  Nosaka et al. (2001a) showed that with a non-exercise period of 12 

months between maximal eccentric exercise bouts of the elbow flexors of the same arm 

there were no significant differences for changes in strength, limb circumference, 

muscle soreness, CK activity, and MRI T2 relaxation times.   

Loss of ROM about the elbow joint, however, was significantly greater following the 

second bout performed 12 months later (p<0.05). 
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The problem with using the same limb for both bouts of eccentric exercise lies in the 

protracted non-exercise period required between the bouts which would be impractical 

for most studies.  Criterion measures of the same limb have been shown to differ 

significantly if shorter periods are employed between the eccentric exercise bouts 

(Clarkson et al., 1992; Nosaka, Newton, & Sacco, 2005).  This phenomenon is well 

described in the literature and is referred to as the repeated bout effect (McHugh et al., 

1999; Nosaka et al., 2001b; Thompson, Clarkson, & Scordilis, 2002).  Nosaka et al. 

(2001a) have shown that a non-exercise period as long as six months still resulted in 

significantly smaller changes in the criterion measures of muscular strength loss, limb 

circumference, muscle soreness, CK activity, and MRI T2 relaxation times following 

the second bout of eccentric exercise.  This protective effect of prior eccentric exercise 

causes statistically significant differences in the ipsilateral limb and would likely mask 

any small effects of a treatment under investigation, which effectively renders the same-

limb within-subject model unsuitable for studies completed over short periods. 

 

Another option is to implement a contralateral limb model.  This model, which involves 

eccentrically exercising both limbs of subjects separated by a short period, has been 

used to study the effects of various phenomena and interventions such as cross-

education protection (Connolly et al., 2002), immobilization (Zainuddin, Hope et al., 

2005) massage (Zainuddin, Newton et al., 2005), muscle length (McHugh & Pasiakos, 

2004), and muscle temperature (Nosaka et al., 2004).  Chen et al. (2003) noted that this 

type of model allows elimination of molecular noise from genetically heterogenous 

humans.  A period of at least one to two weeks is usually employed to allow for 

recovery of blood borne markers of muscle damage.  The success of such a model relies 

on almost identical changes in criterion measures of the contralateral limbs following 

the same eccentric exercise intervention.  Any significant differences between the 

contralateral limbs could act in the same manner as a repeated bout on the same limb, 

effectively masking any effect due to the treatment. 

 

To the best of the author’s knowledge there has been no published study addressing 

whether criterion measures of contralateral elbow flexor musculature differ when 

exposed to identical eccentric exercise treatment.  Variation between the limbs could 

potentially be caused by dominance and / or cross education effects.  To date, there 

appears to be no published studies examining whether a dominant limb would respond 
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differently to eccentric exercise than its non-dominant counterpart.  In terms of cross 

education, research has shown that uni-lateral resistance training leads to appreciable 

increases in strength of the untrained contralateral limb (Farthing & Chilibeck, 2003; 

Hortobagyi, J., & P., 1997; Shima et al., 2002).  Limited research has suggested that 

eccentric exercise performed on one limb does not confer any protective effect by way 

of cross education to a non-exercised contralateral limb, although these studies were not 

performed on the elbow flexors (Clarkson et al., 1987; Connolly et al., 2002). 

 

The importance of continued investigation of this kind was highlighted in the 

conclusions of a study by Connolly et al. (2002) where it was stated that “further work 

in this area [repeated bout crossover effect] is warranted and should consider a greater 

degree of damage than was induced in the current study, use of an upper body model or 

a model that revisits the initially damaged muscle before the contralateral limb” (p. 85). 

 

Therefore, the purpose of the present study was to determine whether changes in the 

markers of muscle damage and soreness in untrained males differed between 

contralateral arms following maximal voluntary eccentric exercise of the elbow flexors. 

 

In order to address this purpose, a period of one month was interspersed between 

exercise of contralateral arms to allow the indirect markers of damage and soreness 

(criterion measures) to return to baseline levels.  Arm dominance was counterbalanced 

between bout 1 (arm exercised first) and bout 2 (arm exercised second).  As the 

contralateral arms were not exercised at the same time, two separate research questions 

were required. 

 

The first addressed the issue of exercise order by asking whether the indirect markers of 

damage and soreness of the elbow flexors of the arm exercised second would be 

influenced by the preceding exercise on the contralateral arm. 

The second research question addressed the issue of arm dominance by asking whether 

the indirect markers of damage and soreness would differ between the elbow flexors of 

the dominant and non-dominant arms. 
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4.2 Methods 

 

4.2.1 Experimental Design 
 

The study employed one group of subjects who performed the eccentric exercise 

intervention on both arms, one at a time, separated by a period of one month.  This 

contralateral arm model resulted in two bouts of exercise being performed by the group, 

one involving the dominant arm and the other the non-dominant.  The data was then 

arranged allowing it to be analysed as two separate parts, one of which focused on 

comparisons between dominant and non-dominant arms, while the other compared 

responses associated with the first and second bouts of eccentric exercise.  Each part of 

the study utilised a 2x10 factorial design to investigate the effect of the manipulation of 

the independent variable on the dependent variables.  The independent variables for the 

first and second parts were arm dominance (dominant or non-dominant), and bout 

number (bout 1 or bout 2), respectively.  The dependent variables were the criterion 

measures described in chapter 3 (section 3.6).  The main experimental period consisted 

of two blocks of 8 consecutive days of measurement preceded by two familiarization 

sessions.  The time course of the testing sessions is described in section 4.2.4 below. 

 

Dominant and non-dominant arms were randomly assigned to the first bout of eccentric 

exercise in such a way that dominance was counter balanced among subjects (i.e., 50% 

of subjects performed the first bout with the dominant arm).  As a contralateral arm 

model was used for the study, counterbalancing the first bout resulted in the second bout 

automatically being counterbalanced for arm dominance. 
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4.2.2 Subjects 
 
Eighteen male subjects volunteered to take part in the study.  The mean ± SEM age, 

height, and weight were 30.8 ± 1.2 years, 170.9 ± 5.4 cm, and 80.6 ± 3.2 kg, 

respectively.  All subjects completed informed consent forms and a medical 

questionnaire and were free of any disease or injuries that would contraindicate their 

inclusion in the study. 

 

4.2.3 Eccentric Exercise Bout 
 

The exercise intervention consisted of 10 sets of 6 maximal voluntary eccentric actions 

of the elbow flexors against the lever arm of the isokinetic dynamometer (Cybex 6000, 

Ronkonkoma, NY, USA.) moving at constant velocity of 90º·s-1.  A detailed explanation 

of the protocol was described in chapter 3 (section 3.5). 

 

4.2.4 Timetable of Criterion Measures 
 

All of the criterion measures were recorded during the two familiarisation sessions 

which were completed in the week preceding the eccentric exercise intervention.  Table 

1 shows the other testing sessions during which the criterion measures were evaluated.  

During each testing session the order in which the criterion measurements were taken 

remained consistent commencing with CK followed by muscle soreness, ROM, upper 

arm circumference, and concluding with MVC torques (isometric preceding isokinetic).  

The criterion measures that were collected in this study employed the techniques 

described in chapter 3 (section 3.5). 

 



 

 40

 

Table 1 

Timetable of Criterion Measure Testing Prior to and Following the Eccentric Exercise 

Intervention 

Criterion measure Testing session in relation to the eccentric exercise intervention 

 Pre Post Day following eccentric exercise 

 Pre-ex Imm 30 min 1 2 3 4 5 6 7 

MVC torque           

ROM           

Circumference           

CK activity           

Soreness           

Note. A tick “ ” indicates that testing has taken place at this time point.  

“Circumference” refers to upper arm circumference.  “Pre-ex” and “Imm” refer to 

immediately preceding and immediately following the eccentric exercise intervention, 

respectively. 

A full description of the methods used to analyse the data of the present study is 

outlined in chapter 3 (section 3.8). 
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4.3 Results 

 

4.3.1 Differences in Pre-exercise Criterion Measures 
 

There were no significant differences between the groups in the pre-exercise absolute 

values of any of the criterion measures for the Dominant versus Non-dominant and Bout 

1 versus Bout 2 study. 

 

4.3.2 Peak Torque During Eccentric Exercise 
 

 Dominant versus Non-dominant Arms 

Mean peak torque for dominant and non-dominant groups were similar for each of the 

ten sets of eccentric exercise (Figure 8a). 

 
Figure 8.  Comparison of changes in mean peak torque of 6 eccentric actions over 10 

sets of eccentric exercise between dominant and non-dominant arm bouts (a) and first 

and second bouts (b). n.s.: not significantly different between bouts, #: significantly 

different from the 1st set. 
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During the first set of exercise the mean peak torque for the dominant and non-dominant 

groups were approximately 65 Nm and 63 Nm, respectively.  Over the course of the ten 

sets mean peak torque declined in the dominant and non-dominant groups by 

approximately 30% and 35%, respectively.  Despite the apparent contrast there were no 

significant differences between the groups for this torque measure during any of the sets 

of exercise.  Both groups, however, recorded significant declines in mean peak torque 

from baseline (set 1) over the course of the ten sets of exercise (p<0.05).  In the 

dominant group sets 2 to 10 were all significantly below baseline, as were sets 3 to 10 

for the non-dominant (Figure 8a). 

 

 Bout 1 versus Bout 2 

Figure 8b shows that the mean peak torque of bout 1 and bout 2 groups were also 

similar for each set of eccentric exercise.  The measures of approximately 63 Nm for 

both groups during the first set were similar to those of the dominant and non-dominant 

arms.  The decrement in mean peak torque over the ten sets of exercise was also similar 

with bout 1 and bout 2 groups declining by approximately 30% and 32%, respectively.  

There were also no significant differences evident for this measure between bouts 1 and 

2 for any of the ten sets. 

 

In terms of mean peak torque decrements from baseline, sets 2 to 10 and 3 to 10 were 

significantly lower than set 1 for bouts 1 and 2, respectively (p<0.05). 

 

4.3.3 Work During Eccentric Exercise 
 

 Dominant versus Non-dominant 

Total work per set was similar for both dominant and non-dominant groups for each of 

the ten sets of eccentric exercise with no significant differences found between the 

groups (Figure 9a). 
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Figure 9.  Comparison of changes in the total work per set over 10 sets of eccentric 

exercise between dominant and non-dominant arm bouts (a) and first and second bouts 

(b). n.s.: not significantly different between bouts, #: significantly different from the 1st 

set. 

 

Both groups recorded total work of approximately 500 Joules (J) for the first set which 

had decreased by approximately 30% by the final set.  The total work per set was 

significantly lower than the initial set in both groups by set 4 and remained so for the 

final six sets (p<0.05).  Total work over the ten sets of 4319 J for dominant and 4119 J 

for non-dominant were not significantly different between the groups. 

 

 Bout 1 versus Bout 2 

Bouts 1 and 2 produced nearly identical results to the dominant and non-dominant 

groups (Figure 9b).  A total work per set of approximately 500 J was recorded by both 

groups for the first set and was approximately 30% lower by the conclusion of set 10.  

In parallel to the results of the dominant and non-dominant groups, the total work per 

set in bouts 1 and 2 was significantly lower than baseline from sets 4 through 10 

(p<0.05).  Total work over the ten sets of eccentric exercise was not significantly 

different between bouts 1 and 2 with both groups recording values of slightly over 4000 

J. 
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4.3.4 Isometric Torque 
 

 Dominant versus Non-dominant 

Figure 10a shows that mean peak torque at a fixed elbow joint angle of 90o was not 

significantly different between the dominant and non-dominant groups at any time 

following the eccentric exercise intervention.  Peak torque of both groups decreased by 

approximately 40% immediately following exercise and gradually increased over 

subsequent days to remain approximately 15% below pre-exercise levels by the final 

day of testing (p<0.05). 

 

 
 

Figure 10.  Comparison of changes from baseline (pre: 100%) in maximum isometric 

torque at 90° immediately (0) and 1-7 days following exercise between dominant and 

non-dominant arm bouts (a) and first and second bouts (b). Pre-exercise isometric 

torque (mean ± SEM) at 90o was 68.4 (0.9) Nm. n.s.: not significantly different between 

bouts, #: significantly different from pre-exercise levels (pre). *: a significant difference 

between bouts (over all: p<0.05, each time point: p<0.006). 

 

Despite the lack of significant differences between the groups for this measure, 

inspection of the scatter plots (Figure 11a & b) and resulting correlation coefficients for 
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immediately after exercise, and 7 days post, reveals that there is minimal agreement 

between the dominant and non-dominant arms of individual subjects.  The line of 

equality has been provided to highlight the variance of many subjects between the 

dominant and non-dominant conditions. 

 

 

 
 

 

Figure 11.  Maximum isometric torque compared to the pre-exercise value immediately 

post exercise and 7 days post-exercise of each subject for the dominant (D) and non-

dominant (ND) bouts (a, b) and the first (1st) and second (2nd) bouts (c, d). Pearson 

correlation coefficient (r) and its significance level are shown in each graph (n.s.: not 

significant).  The line indicates that the two bout values are identical. 

 

There were also no significant differences between the groups at any time following 

exercise for mean peak torque at a fixed elbow joint angle of 150o (Figure 12a).  The 

decrements in torque immediately following exercise were similar to that reported for 
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the 90o angle, however, both groups were not significantly different to pre-exercise 

levels (~46 Nm) by the final day of testing. 

 

 
 

Figure 12.  Comparison of changes in maximum isometric torque at 150° immediately 

(0) and 1-7 days following exercise from baseline (pre* 100%) between dominant and 

non-dominant arm bouts (a) and first and second bouts (b). Pre-exercise isometric 

torque (mean ± SEM) at 150o was 46.1 (0.8) Nm. n.s.: not significantly different 

between bouts, #: significantly different from the 1st set. *: a significant difference 

between bouts (over all: p<0.05, each time point: p<0.006). 

 

 Bout 1 versus Bout 2 

In contrast to the dominant and non-dominant groups, there were significant differences 

(p<0.05) between bouts 1 and 2 for mean peak torque on several days following the 

eccentric exercise intervention at an elbow joint angle of 90o (Figure 10b).  The pattern 

of recovery of torque was different between the bouts and is reflected by a significant 

time by group interaction (p<0.05).  Mean peak torque immediately following exercise 

decreased by approximately 45% and 35% in bouts 1 and 2, respectively.  By the final 

day of testing the only group to remain significantly below pre-exercise levels was bout 

1 (p<0.05). 
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Scatter plots and correlation coefficients for immediately following, and 7 days after 

eccentric exercise show a poor relationship between the bouts for individual subjects 

(Figure 11c & d).  The large number of data points lying above the line of equality 

indicates that the majority of individuals showed smaller peak torque decrements 

following exercise in bout 2. 

 

In contrast to the findings at an elbow joint angle of 90o, there were no significant 

differences between bouts 1 and 2 for mean peak torque at any time following eccentric 

exercise at the larger elbow joint angle of 150o (Figure 12b).  Both groups showed 

decrements in mean peak torque immediately following exercise of approximately 35%, 

however, by the final day of testing there was a divergence of the groups with bouts 1 

and 2 approximately 15% and 1% below pre-exercise levels, respectively.  Despite the 

14% difference between bouts 1 and 2 at day 7 following exercise, the mean peak 

torque of both groups were not significantly below pre-exercise levels. 

 

There was a noticeable difference in standard error of the mean between the elbow joint 

angles with both groups producing appreciably larger readings at the greater angle of 

150o than the smaller angle of 90o. 

 

4.3.5 Isokinetic Torque 
 

 Dominant versus Non-dominant 

Table 2 reveals that there were no significant differences between the dominant and 

non-dominant groups for any of the testing sessions at any of the concentric velocities 

following the eccentric exercise intervention.  Both groups produced their greatest 

decrements in isokinetic torque of between ~33 – 40% either immediately following, or 

30 minutes after, eccentric exercise (p<0.05).  Torque at all velocities, and for both 

groups, remained significantly below pre-exercise levels for several days (p<0.05) but 

had recovered to non-significant levels by the final day of testing. 
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Table 2. 
Changes in Normalised Isokinetic Torque at Five Different Velocities from Pre-exercise (100%) over 7 days Following Eccentric Exercise for 
Dominant and Non-dominant Conditions.  Mean and Standard Error of the Mean (SEM) are Shown 
 

Percentage of pre-exercise torque  
 Time following eccentric exercise 

Velocity Arm n  Imm 
Post 

30 min 
Post Day1 Day2 Day3 Day4 Day5 Day6 Day7 

Mean 63.5# 63.4# 68.5# 73.5# 79.5# 80.8# 84.5 89.5 90.1 Dominant 18 SEM 2.9 2.1 2.8 3.7 3.6 3.9 4.5 3.9 4.3 
Mean 62.1# 62.6# 63.3# 66.7# 70.7# 75.6# 81.2# 83.7# 86.4 

30o·s-1 

 
Non-dominant 18 SEM 3.4 3.1 2.8 3.3 3.1 4.6 4.0 3.8 4.5 

Mean 65.0# 63.0# 65.0# 69.6# 79.5# 81.8# 85.3 85.5 89.9 Dominant 18 SEM 2.9 3.2 3.8 3.9 3.7 5.0 4.5 4.4 5.1 
Mean 62.3# 61.9# 62.3# 69.2# 72.7# 79.4# 80.5 82.4# 84.7 90 o·s-1 

Non-dominant 18 SEM 3.7 3.2 2.9 3.9 4.0 4.3 4.6 4.1 4.1 
Mean 63.5# 63.8# 67.0# 70.5# 76.1# 79.2# 84.3# 86.0 87.8 Dominant 18 SEM 3.1 3.0 4.0 4.2 4.0 4.3 4.7 4.6 4.8 
Mean 60.6# 63.0# 63.4# 73.8# 74.0# 82.8 84.2 83.1# 87.0 150o·s-1 

Non-dominant 18 SEM 2.2 3.3 3.1 4.6 3.8 4.7 4.2 3.9 4.5 
Mean 66.4# 67.3# 70.7# 71.6# 78.3# 80.1# 85.9 86.3 87.6 Dominant 18 SEM 3.8 2.5 4.1 3.2 3.5 3.5 3.8 3.8 4.3 
Mean 63.4# 67.3# 66.5# 74.0# 78.0# 86.4 86.9 85.4 85.4 210o·s-1 

Non-dominant 18 SEM 2.7 3.3 3.5 4.5 3.9 4.0 4.3 4.4 4.2 
Mean 64.7# 69.0# 71.5# 73.2# 79.3# 82.1# 84.3 88.1 86.9 Dominant 18 SEM 3.9 4.0 4.1 4.0 3.9 3.9 5.1 4.2 4.7 
Mean 65.5# 68.9# 71.9# 75.3# 81.0# 86.0 91.0 90.9 88.4 300o·s-1 

Non-dominant 18 SEM 2.9 3.3 3.4 4.6 3.5 3.8 4.7 4.4 4.0 
Note.  No significant difference between groups (Dominant versus Non-dominant) at any velocity after Bonferroni correction (p>0.05). 
#: = significantly different from pre-exercise (p<0.05).  Absolute values used for within group comparisons. 
Imm Post: = Immediately following eccentric exercise. 
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 Bout 1 versus Bout 2 

Table 3 shows that there were also no significant differences between bouts 1 and 2 for 

any of the testing sessions at any of the concentric velocities following the exercise 

intervention.  The nadir in isokinetic torque for both groups was also between ~33 – 

40% below pre-exercise levels and, with one exception, was temporally similar to that 

reported for the dominant and non-dominant groups.  At a concentric testing velocity of 

90o·sec-1 bout 1 was the exception producing its nadir on day 1.  Although both groups 

produced significant decrements in torque at all velocities for several days following 

eccentric exercise (p<0.05), by day 7 they no longer exhibited declines that differed 

significantly from pre-exercise levels. 

 

4.3.6 Range of Motion (ROM) 
 

 Dominant versus Non-dominant 

There were no significant differences between the groups for changes in ROM at any 

time point following eccentric exercise (Figure 13a).  Immediately following exercise 

dominant and non-dominant groups decreased ROM by 10.92o and 10.38o from pre-

exercise values, respectively.  The nadir in ROM was separated temporally between the 

groups with the greatest decrement occurring at day 1 for the non-dominant group and 

day 4 for the dominant.  By day 7 the ROM of both groups was separated by less than 

0.5o and had recovered to within 3.5o of pre-exercise levels.  For several days of testing 

the SEM of the dominant group was more than twice that of the non-dominant (Figure 

13a). 
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Table 3 
Changes in Normalised Isokinetic Torque at Five Different Velocities from Pre-exercise (100%) over 7 days Following Eccentric Exercise for 
Bout 1 and Bout 2 Conditions.  Mean and Standard Error of the Mean (SEM) are Shown 
 

Percentage of pre-exercise torque  Time following eccentric exercise 

Velocity Arm n  Imm 
Post 

30 min 
Post Day1 Day2 Day3 Day4 Day5 Day6 Day7 

Mean 61.3# 59.6# 62.4# 65.7# 71.4# 74.0# 77.9# 82.1# 83.6 Bout 1 18 SEM 3.3 2.2 2.9 3.4 3.1 4.2 4.3 3.6 4.5 
Mean 64.3# 66.5# 69.3# 74.5# 78.8# 82.5# 87.8 91.1 93.0 

30o·s-1 

 
Bout 2 18 SEM 3.0 2.8 2.6 3.5 3.7 4.2 3.9 3.9 4.1 

Mean 64.2# 61.2# 60.8# 65.4# 73.3# 75.1# 77.1# 80.2# 83.4 Bout 1 18 SEM 3.7 3.3 3.4 3.4 3.5 4.7 4.3 4.6 4.8 
Mean 63.1# 63.7# 66.5# 73.4# 78.9# 86.0 88.7 87.7 91.1 90 o·s-1 

Bout 2 18 SEM 2.8 3.1 3.2 4.2 4.2 4.2 4.5 3.7 4.4 
Mean 59.2# 62.9# 63.2# 68.0# 72.9# 76.3# 80.2# 81.3# 85.0 Bout 1 18 SEM 2.6 3.4 3.8 4.4 4.1 4.6 4.3 4.6 5.0 
Mean 64.8# 63.9# 67.3# 76.3# 77.2# 85.6 88.3 87.9 89.7 150o·s-1 

Bout 2 18 SEM 2.6 2.9 3.4 4.1 3.7 4.2 4.4 3.9 4.2 
Mean 64.3# 67.6# 68.5# 70.3# 76.1# 80.8# 85.4 84.6 85.3 Bout 1 18 SEM 3.6 3.6 4.6 4.2 4.1 4.7 4.6 4.6 4.5 
Mean 65.5# 67.0# 68.7# 75.2# 80.3# 85.7# 87.3 87.1 87.8 210o·s-1 

Bout 2 18 SEM 3.0 2.1 3.0 3.5 3.2 2.6 3.4 3.4 4.0 
Mean 63.0# 66.4# 68.5# 71.2# 77.1# 80.8# 82.5 89.5 85.9 Bout 1 18 SEM 3.4 3.8 3.7 4.3 3.6 4.3 5.3 4.6 4.8 
Mean 67.2# 71.6# 74.9# 77.4# 83.2# 87.4 92.9 89.4 89.5 300o·s-1 

Bout 2 18 SEM 3.3 3.4 3.7 4.3 3.7 3.2 4.2 4.1 3.8 
Note.  No significant difference between groups (Bout 1 versus Bout 2) at any velocity after Bonferroni correction (p>0.05). 
#: = significantly different from pre-exercise (p<0.05).  Absolute values used for within group comparisons. 
Imm Post: = Immediately following eccentric exercise. 
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Figure 13.  Comparison of changes in ROM immediately (0) and 1-7 days following 

exercise from the baseline (pre: 0) between dominant and non-dominant arm bouts (a) 

and first and second bouts (b). n.s.: not significantly different between bouts, #: 

significantly different from the 1st set. 

 

Figure 14 (a & b) shows scatter plots and associated correlation coefficients for changes 

in ROM immediately following exercise, and 4 days later.  Immediately following 

eccentric exercise there was a significant but low correlation between the dominant and 

non-dominant groups (p<0.05).  When viewing the individual data points in relation to 

the line of equality, the variance between dominant and non-dominant arms for several 

subjects is appreciable.  At day 4 the correlation coefficient was not significant and 

extremely low at 0.11 indicating a poor relationship between the groups.  One subject’s 

data showed extreme variance between the dominant and non-dominant conditions, 

however, even when this data point was removed the correlation coefficient remained 

extremely low and non-significant. 
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Figure 14.  Changes in ROM from the pre-exercise value immediately post exercise and 

4 days post-exercise of each subject for the dominant (D) and non-dominant (ND) bouts 

(a, b) and the first (1st) and second (2nd) bouts (c, d). Pearson correlation coefficient (r) 

and its significance level are shown in each graph (n.s.: not significant).  The line 

indicates that the two bout values are identical. 

 

 Bout 1 versus Bout 2 

Figure 13b indicates that although the mean values for changes in ROM in bouts 1 and 2 

were separated by approximately 5o at days 3, 4, and 5 following exercise, in statistical 

terms there were no significant differences between the groups.  The finding of no 

significant difference between bouts 1 and 2 extended to all other time points over the 7 

days.  The nadir in ROM occurred two days earlier and was over 1o less following the 

second bout of eccentric exercise.  On days 3, 4, 5, and 6 following the eccentric 

intervention the SEM of bout 1 was over double that recorded in bout 2. 
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The scatter plots and correlation coefficients for immediately following, and 4 days 

after, the eccentric exercise are shown in Figure 14 (c & d).  The significant correlation 

coefficient of 0.52 immediately following exercise was low suggesting a poor 

relationship between the bouts.  Inspection of the scatter plot reveals a number of data 

points sitting above the line of equality showing smaller decrements in ROM for these 

subjects following bout 2, however, there were also four points located well below the 

line indicating the opposite in these individuals. 

 

Four days following eccentric exercise the correlation coefficient of 0.12 between the 

two bouts was very low and not significant (Figure 14d).  Even with the obvious outlier 

removed the correlation coefficient remained low at 0.38.  The scatter plot shows that 

the majority of the data points were located away from the line of equality indicating 

appreciable individual differences between the bouts for changes in ROM. 

 

4.3.7 Upper Arm Circumference 
 

 Dominant versus Non-dominant 

Changes in circumference between the dominant and non-dominant groups were not 

significant for any of the testing sessions.  This is illustrated clearly in Figure 15a.  

There were, however, significant changes in circumference within the groups over the 

eight days of testing.  Both dominant and non-dominant groups recorded significant 

increases in circumference of approximately 4 mm from pre-exercise levels 

immediately following the eccentric intervention (p<0.05).  Thirty minutes later the 

circumference in both groups had decreased such that they were no longer significantly 

larger than pre-exercise values.  By day 1 following the eccentric intervention the 

circumference in both groups had increased again and were significantly elevated above 

pre-exercise levels (p<0.05).  The change in circumference from pre-exercise levels 

continued to increase over the next few days peaking on days 4 and 5 for the dominant 

and non-dominant groups, respectively.  By day 7 following eccentric exercise the 

upper arm circumference of both groups were still significantly larger than pre-exercise 

values (p<0.05). 
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Figure 15.  Comparison of changes in upper arm circumference immediately (0) and 1-7 

days following exercise from baseline (pre: 0) between dominant and non-dominant arm 

bouts (a) and first and second bouts (b). n.s.: not significantly different between bouts, 

#: significantly different from the 1st set. *: a significant difference between bouts (over 

all: p<0.05, each time point: p<0.006). 

 

The scatter plots of changes in circumference between dominant and non-dominant 

conditions show the sizeable spread of data points around the line of equality (Figure 16 

a & b).  The magnitude of this spread at 7 days following exercise is reflected in the 

extremely low correlation coefficient of -0.02.  The correlation coefficient of 0.63 for 

immediately following eccentric exercise was significant (p<0.01), however, it was not 

strong due to many data points straying from the line of equality. 
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Figure 16.  Changes in upper arm circumference from the pre-exercise value 

immediately post exercise and 7 days post-exercise of each subject for the dominant (D) 

and non-dominant (ND) bouts (a, b) and the first (1st) and second (2nd) bouts (c, d). 

Pearson correlation coefficient (r) and its significance level are shown in each graph 

(n.s.: not significant).  The line indicates that the two bout values are identical. 

 

 Bout 1 versus Bout 2 

In contrast to the dominant and non-dominant data, there were significant differences 

between bouts 1 and 2 in terms of changes in upper arm circumference (p<0.05).  There 

was a significant time by group interaction which is clearly illustrated in Figure 15b by 

the divergence of the groups over several days of testing (p<0.05).  There were 

noticeably large standard error of the means on many of the testing days for bout 1 

which were not seen at corresponding time points in bout 2.  Both bouts recorded 

significant main effects for within group comparisons.  This can be seen in Figure 15b 

where significant increases in circumference from pre-exercise levels are evident at all 
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but one testing session (p<0.05).  The greatest change in circumference for bouts 1 and 

2 occurred one day apart at days 5 and 4, respectively. 

 

The scatter plots of individual change in circumference responses to both bouts of 

eccentric exercise are shown in Figure 16c and d.  As seen in the dominant and non-

dominant results above, there was a significant but low correlation for bouts 1 and 2 

immediately following exercise.  At day 7, when circumference measures were much 

larger, the correlation between bouts 1 and 2 was extremely low and non-significant at 

0.24. 

 

Scatter plots at both time points show appreciable straying of data points from the line 

of equality.  The day 7 data is most striking, revealing that the majority of subjects 

produced smaller changes in circumference following the second bout of eccentric 

exercise. 

 

4.3.8 Plasma Creatine Kinase (CK) Activity 
 

 Dominant versus Non-dominant 

There were no significant differences between the dominant and non-dominant groups 

for plasma CK activity either before (pre) or at any time following exercise (Figure 

17a).  Both groups recorded CK values that were within the normal reference range for 

healthy adult males prior to performing the eccentric intervention.  Figure 17a shows 

that following eccentric exercise CK activity in both groups increased progressively 

over the first several days, peaking at day 5 with values approximately 12 times greater 

than pre-exercise measures.  The SEM of both groups was large over many of the 

testing days, however, it was markedly so for the dominant group which recorded 

values approximately 25% greater than the non-dominant. 
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Figure 17.  Comparison of changes in plasma CK activity before (pre) and 1-7 days 

following exercise between dominant and non-dominant arm bouts (a) and first and 

second bouts (b). n.s.: not significantly different between bouts, #: significantly 

different from pre-exercise value. *: a significant difference between bouts (over all: 

p<0.05, each time point: p<0.006). 

 

The scatter plots of 1 day post and peak values show striking contrasts (Figure 18a & b).  

At day 1 following the eccentric intervention, when CK activity was only beginning to 

rise, the correlation between the groups was significant and relatively strong with many 

of the data points located fairly close to the line of equality (p<0.05).  However, as 

shown in Figure 18b the correlation between the groups is very low and statistically 

non-significant at the time peak CK activity values were recorded.  When viewing the 

peak CK values for each individual it is clear that dominant and non-dominant arms 

produced disparate responses that were relatively balanced on either side of the line of 

equality. 
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Figure 18.  Plasma CK activity at 1 day post-exercise and its peak value of each subject 

for the dominant (D) and non-dominant (ND) bouts (a, b) and the first (1st) and second 

(2nd) bouts (c, d). Pearson correlation coefficient (r) and its significance level are shown 

in each graph (n.s.: not significant).  The line indicates that the two bout values are 

identical. 

 

 Bout 1 versus Bout 2 

In contrast to the dominant and non-dominant groups, the patterns of CK response 

differed between bouts 1 and 2 following eccentric exercise (Figure 17b).  This was 

reflected by a significant time by group interaction and a significant main effect for 

between group comparisons (p<0.05).  Bout 2 produced lower CK activity than bout 1 

at all time points following eccentric exercise, although only days 5 and 6 were 

statistically significant (p<0.05). 

 

CK activity increased following both bouts of eccentric exercise with approximately 12 

and 8 fold increases over pre-exercise levels in bouts 1 and 2, respectively.  Large SEM 



 

 59

values were also noticeable for both bouts on many of the days following the eccentric 

intervention (Figure 17b). 

 

The scatter plot for 1 day following eccentric exercise shows a relatively linear pattern 

of data points with many located in close proximity to the line of equality (Figure 18c).  

This is supported statistically with a significant correlation coefficient of 0.78 indicating 

a moderate relationship between the bouts (Vincent, 1999). 

 

The scatter plot of CK activity measured at its peak following the eccentric intervention 

(Figure 18d) shows many data points located in the lower section of the plot remote 

from the line of equality.  This pattern reinforces that shown in Figure 17b and indicates 

that many subjects produced appreciably larger CK activity following the first bout of 

eccentric exercise. 

 

4.3.9 Soreness 
 

 Dominant versus Non-dominant 

There were no significant differences between the groups for any soreness class for the 

duration of the study (Table 4).  However, within groups differences were evident with 

both groups recording significant increases in soreness from pre-exercise levels for 

several days following the eccentric intervention (p<0.05).  Peak soreness levels 

occurred in both groups for all of the soreness classes on day 2, however, the VAS 

scores varied between the classes with extension producing the highest mean values and 

flexion the least. 

 

Table 4 shows that recovery of soreness for all classes in both groups was nearly 

complete by day 7 following the eccentric intervention with no value being significantly 

elevated above pre-exercise levels. 

 

Scatterplots of peak soreness values for upper arm palpation and extension soreness 

show marked differences for dominant and non-dominant arms of the individual 

subjects (Figure 19a & b).  There are numerous deviations from the line of equality in 

both scatterplots and the correlation coefficients are small. 
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Table 4 
Changes in Upper Arm, Forearm, Extension and Flexion Soreness over 7 Days Following Eccentric Exercise of the 
Forearm Flexors for Dominant and Non-dominant Conditions (Peak Soreness also Shown).  Mean and Standard Error of 
the Mean (SEM) are Shown 
 

Visual Analog Scale soreness (mm) 
 

Time following eccentric exercise and peak reading 
Soreness 
class Arm n  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Peak 

18 Mean 27.8# 33.8# 28.6# 17.6 9.6 5.2 2.3 39.2 
Dominant 

18 SEM 4.9 4.7 5.0 4.9 3.8 3.0 1.4 5.1 
18 Mean 28.9# 38.2# 33.7# 22.1# 10.1 4.4 3.2 41.1 

Upper 
Arm 

Non-Dominant 
18 SEM 4.7 4.8 4.7 3.7 3.1 2.1 1.9 4.7 
18 Mean 16.7# 23.9# 19.6# 12.6 6.9 3.1 1.0 28.4 

Dominant 
18 SEM 4.2 4.5 4.1 3.6 3.0 1.9 0.8 4.7 
18 Mean 18.2# 21.1# 19.8# 11.7# 7.2 2.6 1.3 29.7 

Forearm 
Non-Dominant 

18 SEM 3.9 3.8 3.8 3.0 2.6 1.2 0.7 4.0 
18 Mean 27.6# 40.1# 30.8# 18.6 8.8 3.9 2.7 46.8 

Dominant 
18 SEM 4.5 4.8 5.4 5.4 3.8 2.9 2.4 5.4 
18 Mean 28.1# 39.1# 28.2# 18.5# 12.0 6.3 2.4 42.8 

Extension 
Non-Dominant 

18 SEM 5.4 4.9 5.2 4.4 4.7 3.4 1.5 5.3 
18 Mean 11.6# 16.5# 13.1 9.0 2.9 0.9 0.7 22.1 

Dominant 
18 SEM 2.5 3.7 4.2 4.7 2.4 0.8 0.6 5.3 
18 Mean 14.4# 19.1# 11.8# 7.8# 1.8 0.8 0.7 21.7 

Flexion 
Non-Dominant 

18 SEM 3.4 4.3 3.1 1.9 0.9 0.7 0.6 4.2 
Note.  No significant difference between groups (Dominant versus Non-dominant) for all soreness classes after Bonferroni 
correction (p>0.05). 
#: = significantly different from pre-exercise (p<0.05).  Pre-exercise soreness was zero for all soreness classes and 
conditions. 
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Figure 19.  Peak muscle soreness upon palpation and extension of each subject for the 

dominant (D) and non-dominant (ND) bouts (a, b) and the first (1st) and second (2nd) 

bouts (c, d). Pearson correlation coefficient (r) and its significance level are shown in 

each graph (n.s.: not significant).  The line indicates that the two bout values are 

identical. 

 

 Bout 1 versus Bout 2 

Bouts 1 and 2 showed a similar pattern of soreness responses to that of the dominant 

and non-dominant groups.  Table 5 shows that throughout the study there were no 

significant differences evident between the groups for any soreness class.  However, 

bouts 1 and 2 also produced within group differences with all soreness classes recording 

significant increases from pre-exercise levels (p<0.05).  In parallel with the dominant 

and non-dominant data, peak soreness for all classes was recorded at day 2 in both 

groups and the extension and flexion classes produced the highest and lowest VAS 

scores, respectively (Table 5). 
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In similar fashion to the dominant and non-dominant groups, by the final day of the 

study recovery of soreness in both groups was nearly complete for all classes with no 

value being significantly different from pre-exercise measures. 

 

Scatterplots for upper arm palpation and extension soreness show that few data points 

were located on the line of equality revealing that there were marked differences 

between the bouts for individual subjects (Figure 19c & d).  Correlation coefficients for 

both upper arm palpation and extension soreness were small indicating low 

relationships between bouts for these measures. 
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Table 5 
Changes in Upper Arm, Forearm, Extension and Flexion Soreness over 7 Days Following Eccentric Exercise of the 
Forearm Flexors for Bout 1 and Bout 2 Conditions (Peak Soreness also Shown).  Mean and Standard Error of the Mean 
(SEM) are Shown 
 

Visual Analog Scale soreness (mm) 
 

Time following eccentric exercise and peak reading 
Soreness 

class Arm n  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Peak 

18 Mean 23.3# 36.2# 33.2# 21.4# 11.9 5.7 2.8 39.9 
Bout 1 

18 SEM 4.2 4.7 5.0 4.9 3.9 3.0 1.6 4.9 
18 Mean 33.4# 35.8# 29.2# 18.3# 7.7 3.9 2.7 40.3 

Upper 
Arm 

Bout 2 
18 SEM 5.0 4.8 4.8 3.7 2.9 2.1 1.7 4.9 
18 Mean 16.1# 23.4# 21.1# 16.9# 10.3 4.5 1.7 31.4 

Bout 1 
18 SEM 4.1 4.6 3.7 4.2 3.7 2.1 0.9 4.6 
18 Mean 18.8# 21.6# 18.4# 7.4# 3.7# 1.2 0.7 26.7 

Forearm 
Bout 2 

18 SEM 4.0 3.7 4.2 1.5 1.0 0.6 0.5 3.9 
18 Mean 23.2# 42.2# 35.9# 20.9 15.4 7.7 3.7 47.7 

Bout 1 
18 SEM 4.1 5.3 5.9 5.8 5.4 3.9 2.5 6.0 
18 Mean 32.4# 36.9# 23.1# 16.2# 5.4 2.4 1.4 41.8 

Extension 
Bout 2 

18 SEM 5.5 4.3 4.2 3.8 2.0 1.9 1.2 4.6 
18 Mean 12.3# 20.7# 15.7# 11.8 3.4 1.1 0.8 25.6 

Bout 1 
18 SEM 2.4 4.4 4.2 4.7 2.4 0.8 0.6 5.6 
18 Mean 13.7# 14.9# 9.2 5.0 1.3 0.7 0.6 18.2 

Flexion 
Bout 2 

18 SEM 3.5 3.4 2.9 1.6 0.9 0.7 0.6 3.5 
Note.  No significant difference between groups (Bout 1 versus Bout 2) for all soreness classes after Bonferroni correction 
(p>0.05). 
#: = significantly different from pre-exercise (p<0.05).  Pre-exercise soreness was zero for all soreness classes and 
conditions. 
 



 

 64

 

4.4 Discussion 

 

The primary focus of the present study was to determine whether changes in markers of 

muscle damage and soreness (criterion measures) differed between arms when exposed 

to identical maximal eccentric exercise of the elbow flexors.  The findings of the present 

investigation revealed that for some of the criterion measures there were significant 

differences between contralateral arms of the first and second eccentric exercise bouts, 

suggesting that order of exercise plays an important role.  This was despite no 

significant difference in any of the pre-exercise values of the criterion measures and 

similar performance in terms of work during both eccentric exercise bouts (Figures 9b).  

When dominant and non-dominant arms were compared, however, there were no 

significant differences evident in any of the criterion measures. 

 

Considering the results of the current study, it would seem prudent to counterbalance 

the exercise bouts by arm dominance and then analyse the results using groups based on 

dominance.  The suggestion presented above stems from the results of the present study 

showing similarities with those that have investigated the repeated bout effect using an 

ipsilateral limb model (Clarkson et al., 1992; Clarkson & Tremblay, 1988; Nosaka, 

Newton, & Sacco, 2005).  In the present work, where there were significant differences 

between arms (Figures 10b, 15b, and 17b), the group of arms that was exercised second 

produced smaller changes in criterion measures.  This was despite the torque changes 

and work showing almost no variance between bouts during the eccentric intervention 

(Figures 8b and 9b), suggesting that the exercise stress to the elbow flexors of 

contralateral arms was similar.  In research that has focused on repeated exercise of an 

ipsilateral limb, lower levels of disruption have been reported following a second bout 

of eccentric exercise (Clarkson et al., 1987; Clarkson & Tremblay, 1988; Nosaka et al., 

1991; Nosaka & Sakamoto, 2001).  These reductions in the markers of muscle damage 

and soreness (criterion measures) are referred to in the literature as a “protective” or 

“repeated bout” effect. 

 

The protective effect conferred by the initial eccentric exercise bout in ipsilateral limb 

studies is appreciably greater in magnitude than that of the present contralateral arm 
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study.  Although the protective effect conferred to the second bout in the present study 

was minor, it was significant enough to warrant further consideration. 

 

A possible explanation for how a repeated bout type effect could be evident in some of 

the criterion measures of the present study may lie in the phenomenon of cross 

education.  Research on cross education presents convincing evidence that the exercise 

training of one limb can induce improvements in the untrained contralateral limb 

(Cannon & Cafarelli, 1987; Farthing & Chilibeck, 2003; Hortobagyi, J. et al., 1997; 

Hortobagyi, Lambert, & Hill, 1997; Housh, Housh, Johnson, & Chu, 1992; Shima et al., 

2002).  The contralateral transfer of strength is believed by some to be solely of neural 

origin (central adaptation) and not related to local adaptations such as increases in cross 

sectional area or modifications to intrinsic fibre characteristics of the contralateral 

muscle (Hortobagyi, Lambert et al., 1997; Zhou, 2000), although two previous studies 

have shown a small amount of hypertrophy of the untrained limb as a whole (Housh et 

al., 1992) or type II fibres within the limb (Brown, McCartney, & Sale, 1990).  In a 

review of several studies examining cross transfer of strength, Zhou (2000) notes that 

the contralateral limb achieved approximately 60 percent of the ipsilateral strength gain.  

This translated to strength increases in the contralateral arm of between 3 and 77 percent 

depending upon the nature of the training and the mode of testing employed (Zhou, 

2000).  Hortobagyi et al. (1997) showed that compared with concentric exercise 

significantly greater eccentric and isometric strength cross education occurred if the 

training included eccentric contractions. 

 

In contrast to the present study where the eccentric exercise consisted of a single bout, 

the duration of training in the aforementioned studies ranged from six to twelve weeks.  

The effect that a single bout of maximal eccentric exercise would have on cross 

education remains to be elucidated.  Cross education was not evaluated in the present 

study, however, if it were to occur whether it would have been of a large enough 

magnitude to confer a protective effect is unclear.  This could be put forward as a 

possible explanation for why a protective, or repeated bout effect, was not conferred to 

the criterion measures of concentric isokinetic torque, isometric torque at 150o, range of 

motion at the elbow joint, and soreness.  It may be that certain criterion measures 

require greater cross education than others in order to be afforded a degree of protection 

from muscle damage and soreness.  Future studies addressing this topic may be wise to 
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assess the criterion measures of the limb to be exercised second prior to the eccentric 

intervention of the first limb, and then again in the usual manner immediately prior to its 

own eccentric intervention.  This would inform the investigators whether the eccentric 

exercise on the first limb had exerted any effect on the contralateral limb prior to its 

own intervention.  In hindsight this would have been an improvement in the current 

study design. 

 

It is important to note that evidence of damage and soreness was manifest in all of the 

criterion measures following both bouts of eccentric exercise.  Therefore, protection that 

appears to have been afforded to the criterion measures of isometric torque at 90o, 

circumference, and CK activity following the second bout was significant but not 

complete (Figures 10b, 15b & 17b).  In terms of isometric torque this is a similarity 

shared by many studies that have investigated the repeated bout effect using an 

ipsilateral limb model.  Following a second bout of eccentric exercise on the same limb, 

strength loss immediately after exercise is usually similar or slightly lower than what 

was reported following the initial bout, but the rate of recovery is often appreciably 

faster after the subsequent bout (Clarkson & Tremblay, 1988; McHugh & Tetro, 2003; 

Newham et al., 1987).  In terms of CK activity a different response is usually evident 

following a repeated bout.  In many cases it is not significantly elevated following a 

subsequent bout of eccentric exercise of the ipsilateral limb suggesting a complete 

protection for this criterion measure (Clarkson et al., 1992; Clarkson & Tremblay, 1988; 

Newham et al., 1987; Nosaka et al., 1991).  Using an ipsilateral design Clarkson and 

Tremblay (1988) showed that even when the first maximal eccentric bout was 

approximately one third the volume of the second, full protection was conferred to the 

subsequent bout in terms of CK response.  Why full CK protection was not conferred to 

the second bout involving the contralateral arm is unclear but it may be due to lack of 

sufficient neural and peripheral crossover. 

 

In contrast to the present study, Clarkson et al. (1987) and Connolly et al. (2002) 

reported no protective or repeated bout type effect using a contralateral limb model.  

The Clarkson et al. (1987) investigation used subjects of the same gender as those 

employed in the present study, however, three quarters of the subjects used by Connolly 

et al. (2002) were female.  Connolly et al. (2002) considered it appropriate that males 

and females were recruited due to there being no conclusive evidence suggesting that 
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there is a gender effect.  In the Connolly et al. (2002) study pain was significantly lower 

following the second bout of exercise, however, the authors attributed this to a tolerance 

effect rather than a protective adaptation.  In both the present study and that of Clarkson 

et al. (1987), soreness was no different between contralateral limbs suggesting the 

absence of a tolerance effect. 

 

Both Clarkson et al. (1987) and Connolly et al. (2002) studies employed designs that 

eccentrically exercised the leg musculature at lower intensities than the arm model of 

the present study and therefore care should be employed when making comparisons.  

Arm musculature was chosen for the present study due to the claim of Thompson et al. 

(2004) that arms are used less in modern society than are legs.  Thompson et al. (2004) 

suggest that use of the arm musculature reduces some of the baseline strength 

differences that would be evident in the legs due to daily activities such as walking and 

climbing stairs.  Whether the differences between these and the present study were due 

to the choice of limb model and / or the intensity of eccentric exercise remains to be 

elucidated.  Future studies could attempt to address this problem by employing one 

group of subjects that exercised contralateral arms and legs using the same relative 

intensity of eccentric exercise for each limb.  One potential drawback of such a study 

would be the time requirement of each participant due to the need to allow complete 

recovery between each limb. 

 

In the present study, when the elbow flexors were separated into groups based upon arm 

dominance and the criterion measures were analysed using this criteria, there were no 

significant differences evident between the groups for any of the testing sessions.  This 

was also reflected in the dominant and non-dominant torque and work measures 

recorded during the eccentric interventions with no significant differences evident 

between the groups.  Due to the design of the present study, arm dominance was 

counterbalanced between the first and second bouts in order to avoid any possible bias 

due to the dominant arm when assessing the effect of exercise order.  However, as there 

were significant interactions between exercise bouts for some of the criterion measures 

it raises the possibility of a bias being introduced to the dominant versus non-dominant 

comparison caused by conferred protection to some of the dominant and non-dominant 

elbow flexors.  In order to control for this possibility it would be necessary to include a 

protracted period between bouts to eliminate any protective effect.  Nosaka et al. 
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(2001a) demonstrated that the repeated bout effect lasts at least six months for most 

criterion measures with some still exhibiting a protective effect at nine months.  By 

twelve months following the initial bout of maximal eccentric exercise no protection 

was evident for any of the examined criterion measures.  Unfortunately a study model 

that delays a subsequent bout by at least nine months is not a desirable option for most 

investigations and would probably be deemed unusable. 

 

The dominant versus non-dominant results, though, support the findings of Clarkson et 

al. (1987) and Connolly et al. (2002) who reported no evidence of protection due to a 

contralateral crossover effect.  The results of the present investigation appear to suggest 

that an intra-subject contralateral arm model is a viable alternative to the inter-subject 

design if the order of exercise is counterbalanced by arm dominance.  It is unclear 

though whether Clarkson et al. (1987) and Connolly et al. (2002) employed a 

counterbalanced design based upon leg dominance.  Connolly et al. (2002) made no 

mention of the specific assignment of legs to exercise bouts and Clarkson et al. (1987) 

noted that right and left legs were balanced over subjects and across days but made no 

reference to dominance. 

 

There are two primary benefits proposed for employing a contralateral limb model when 

assessing muscle damage and soreness.  The first suggests that there is an optimal 

matching of limbs due to both being associated with the same subject, and the second is 

linked to the reduced number of subjects required to complete a study.  By using both 

limbs of each subject it essentially means that half as many participants need to be 

recruited to maintain the same statistical power.  Whether this model is any better than 

an inter-subject design is questionable based on the individual scatterplots of the 

criterion measures.  With the exception of CK activity one day following the eccentric 

interventions (Figure 18 a & c) all of the other criterion measures for both conditions 

(exercise order and dominance) produced correlations that Vincent (1999) considers to 

be low.  It is not surprising that the correlations between arms were high for CK activity 

one day following the interventions as this measure does not usually peak until 

approximately day 5 (Figure 17 a & b).  At 24 hours following the exercise intervention 

CK activity would remain close to baseline for most subjects.  However, by the time CK 

activity peaked the correlations were extremely low and non-significant. 
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In the present study it is contended that of higher importance than the correlation 

coefficients is the variation of points from the line of identity.  As opposed to high 

proximity to the line of identity, large correlation coefficients approaching 1.0 do not 

necessarily indicate that the criterion measures of the contralateral arms were similar.  

Perusal of most of the scatterplots in the results section reveals that despite identical 

eccentric interventions the contralateral arms deviated appreciably from each other at 

times when damage and soreness were high, even when the arms were grouped 

according to dominance.  Thus, even though criterion measures of the dominant and 

non-dominant groups were not significantly different, responses of the contralateral 

arms of individuals often varied.  This may well be due to a protective effect conferred 

to the contralateral arm by the previously exercised arm.  This suggests that any small 

but ‘real’ differences due to an intervention may not be detected by the model.  

However, the same criticism can apply to the inter-subject model where the variances 

between matched individuals may be no smaller than any supposed crossover protection 

in the contralateral design. 

 

It is unknown how resistance trained individuals would respond to an intra-subject 

contralateral limb model similar in nature to the present study.  In chapter 5 it is shown 

that following identical maximal eccentric exercise to that used in the present study, 

resistance trained individuals produced changes in criterion measures which contrasted 

those found in untrained subjects.  In future work it would be interesting to replicate the 

present study in a group that had substantial resistance training experience. 

 

In conclusion, findings from the present investigation reveal that comparison of 

contralateral elbow flexors following maximal eccentric exercise results in significant 

differences of some criterion measures when analysis focuses on the effect of exercise 

order.  However, when dominant and non-dominant elbow flexors were compared, 

resulting in exercise order being counterbalanced, no significant differences were 

evident for any of the criterion measures.  Such findings have implications for the 

design of eccentric exercise studies when the goal is to use one of the contralateral 

limbs as a control.  In such situations it would seem sagacious to counterbalance the 

exercise bouts by arm dominance and then analyse the results using groups based on 

dominance. 
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CHAPTER 5 

 

5.1 Introduction 

Resistance training provides a unique stimulus to the neuromuscular system culminating 

in alterations to neural (Aagaard, 2003; Gabriel et al., 2006), muscular (Higbie, Cureton, 

Warren, & Prior, 1996; Jones et al., 1989; Staron et al., 1994) and connective tissue 

(Stone, 1988).  Depending upon the structure of the training regimen adaptations such 

as increased muscular strength, power, and hypertrophy may be attained.  Resistance 

training typically incorporates a mixture of concentric, eccentric and isometric actions.  

Individuals employing this form of training to increase maximum strength spend 

significant time exercising at high intensity with resistances in the vicinity of their 

concentric one repetition maximum (e.g., 1 to 6 RM) (Kraemer, Duncan, & Volek, 

1998).  Although these resistances usually correspond to 80% or greater of the weight 

that could be lifted only once through the concentric phase of the movement (1 RM), 

they may represent appreciably less of an individual’s eccentric maximum.  This 

suggests that during traditional resistance training the majority of the eccentric work 

may be performed at a sub-maximal level. 

 

Following chronic high intensity resistance training, individuals usually exhibit striking 

contrasts to their previously untrained state in terms of muscle function.  They are 

generally capable of lifting greater weights in the specific movements used in training 

and are able to generate appreciably higher rates of force development and power 

outputs (Aagaard, Simonsen, Andersen, Magnusson, & Dyhre-Poulsen, 2002; 

Deschenes & Kraemer, 2002).  How chronically resistance trained individuals respond 

to maximal voluntary eccentric exercise is not well described.  This is noted in a recent 

review by Falvo and Bloomer (2006) where they report that there is a dearth of research 

that has investigated the response of “trained” individuals to exercise-induced muscle 

damage.  The majority of research examining exercise-induced muscle damage has 

employed either untrained individuals or those who have not been involved in chronic 

resistance training.  The small number of studies that have explored the response of 

trained individuals to eccentric exercise did not examine how the criterion measures 

changed following a bout of maximal eccentric exercise (Bourgeois et al., 1999; Dolezal 

et al., 2000; Gibala et al., 2000; Semark et al., 1999; Vincent & Vincent, 1997). 
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Five studies have had previously untrained subjects exercise for periods of time ranging 

from one session to nine weeks using only concentric actions, following which they 

were exercised eccentrically and changes in various criterion measures were recorded 

(Gleeson et al., 2003; Nosaka & Clarkson, 1997; Nosaka & Newton, 2002a; Ploutz-

Snyder, Tesch, & Dudley, 1998; Whitehead, Allen, Morgan, & Proske, 1998).  Three of 

the studies (Gleeson et al., 2003; Ploutz-Snyder et al., 1998; Whitehead et al., 1998) 

reported that prior concentric training caused greater changes in some of the criterion 

measures suggesting an increased vulnerability to eccentric exercise-induced 

dysfunction and muscle injury.  Ploutz-Snyder et al. (1998) suggested that the increased 

susceptibility may have been the result of training-induced elevation of the concentric 1 

RM allowing the subjects to handle greater eccentric loading.  In contrast, Nosaka & 

Newton (2002a) found that prior concentric training did not exacerbate eccentric 

exercise-induced muscle damage and Nosaka & Clarkson (1997) showed that muscle 

dysfunction was actually attenuated if eccentric exercise was preceded immediately by a 

bout of concentric contractions.  Differences in the exercise protocols between the 

studies, and training status of the individuals, make it difficult to predict how 

chronically resistance trained subjects would respond to the same eccentric 

interventions. 

 

It is also well established that previously untrained individuals who are exposed to a 

single bout of either maximal or sub-maximal eccentric exercise exhibit less muscle 

dysfunction and injury when exposed to a subsequent bout of maximal eccentric 

exercise 1 to 10 weeks after the initial bout (Brown, Child, Day, & Donnelly, 1997; 

Newham et al., 1987; Nosaka et al., 2001b).  This prophylactic effect of an initial bout 

of eccentric exercise on a subsequent bout is a phenomenon referred to as the “repeated 

bout effect”.  If the initial bout of eccentric exercise is considered a resistance training 

session, then based upon the available research literature it could be argued that 

resistance training incorporating entirely eccentric contractions confers protection 

against the effects of subsequent maximal voluntary eccentric exercise. 

 

In contrast to the period between exercise bouts in the above mentioned studies, typical 

resistance training regimens incorporate a second bout of eccentric and concentric 

contractions for the same muscle group, usually within 72 hours.  The effect of repeated 
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eccentric exercise within short periods on muscle dysfunction and injury has been 

investigated by several groups who had previously untrained subjects perform identical 

bouts of eccentric exercise separated by a period of 72 hours or less (Chen & Hsieh, 

2000; Paddon-Jones, Muthalib, & Jenkins, 2000; Smith, Fulmer et al., 1994).  The 

primary findings of these studies were that the time course of recovery of criterion 

measures were not altered and damage was not exacerbated following the subsequent 

bout(s), even though they were undertaken prior to complete recovery from the initial 

bout. 

 

Chen and Hsieh (2001) and Nosaka and Newton (2002a) had previously untrained 

subjects exercise repeatedly for 7 days and 8 weeks, respectively, using the same bouts 

of eccentric training.  Chen and Hsieh (2001) trained their subjects daily for 7 days 

whilst Nosaka and Newton (2002a) had their group exercise weekly for 8 weeks.  Both 

studies found that muscle damage was not exacerbated following a bout of maximal 

eccentric exercise undertaken at the end of the training programs. 

 

Whether experienced resistance trained individuals respond similarly, following 

maximal voluntary eccentric exercise, to the repeated bout response of untrained 

subjects is unclear.  Furthermore, whether individuals with a significant resistance 

training history, including high intensity concentric contractions and non-maximal 

eccentric actions, respond differently to untrained subjects in terms of changes in 

criterion measures following maximal voluntary eccentric exercise remains to be 

elucidated.  Therefore, the purpose of the present study was to determine whether 

changes in markers of exercise-induced muscle damage and soreness differed between 

untrained and resistance-trained (trained) males following maximal voluntary eccentric 

exercise of the elbow flexors. 
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5.2 Methods 

 

5.2.1 Experimental Design 
The study utilised two groups of subjects who performed the eccentric exercise 

intervention using one arm.  A 2x8 factorial design was used to investigate the effect of 

manipulation of the independent variable on dependent variables.  The independent 

variable was training status (resistance-trained or untrained), and the dependent 

variables were the criterion measures described in chapter 3 (section 3.6).  The main 

experimental period consisted of a block of 6 consecutive days of measurement 

preceded by two familiarization sessions.  The time course of the testing sessions is 

described in section 5.2.4 below. 

 

A counterbalanced design was employed for assigning which arm would be used for the 

eccentric exercise intervention resulting in both groups having the same number (50%) 

of dominant and non-dominant arms exercised. 

 

5.2.2 Subjects 
Thirty male subjects, 15 resistance trained and 15 untrained, volunteered to take part in 

the study.  The mean ± SEM age, height, and weight of the 15 resistance trained 

subjects were 28.2 ± 1.9, 175.0 ± 1.6, and 77.6 ± 1.9, respectively.  The corresponding 

data for the untrained subjects were 30.0 ± 1.5, 169.8 ± 7.4, and 79.9 ± 4.4, respectively.  

All subjects completed informed consent forms and a medical questionnaire and were 

free of any disease or injuries that would contraindicate their inclusion in the study.  The 

inclusion criteria for the trained subjects required a minimum of one year of resistance 

training with a frequency of at least three sessions per week including exercises 

involving the elbow flexor musculature.  None of the trained subjects performed any 

pure negative (maximal voluntary eccentric) exercise as part of their resistance training 

program.  The mean ± SEM years of resistance training of the trained group was 7.7 ± 

1.4 years.  The untrained subjects were not currently undertaking any form of vigorous 

exercise and had not performed any resistance training for at least one year. 
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5.2.3 Eccentric Exercise Bout 
The exercise intervention consisted of 10 sets of 6 maximal voluntary eccentric actions 

of the elbow flexors against the lever arm of the isokinetic dynamometer (Cybex 6000, 

Ronkonkoma, NY, USA.) moving at constant velocity of 90º·s-1.  A detailed explanation 

of the protocol was described in chapter 3 (section 3.5). 

 

5.2.4 Timetable of Criterion Measures 
All of the criterion measures were recorded during the two familiarisation sessions 

which were completed in the week preceding the eccentric exercise intervention.  Table 

6 shows the other testing sessions during which the criterion measures were evaluated.  

During each testing session the order in which the criterion measures were taken 

remained consistent commencing with CK followed by muscle soreness, ROM, upper 

arm circumference, and concluding with MVC torques (isometric preceding isokinetic).  

The criterion measures that were collected in this study employed the techniques 

described in chapter 3 (section 3.6). 

 

Table 6 

Timetable of Criterion Measure Testing Prior to and Following the Eccentric Exercise 

Intervention 

Criterion measure Testing session in relation to the eccentric exercise intervention 

 Pre Post Day following eccentric exercise 

 Pre-ex Imm 30 min 1 2 3 4 5 

MVC torque         

ROM         

Circumference         

CK activity         

Soreness         

Note. A tick “ ” indicates that testing has taken place at this time point.  

“Circumference” refers to upper arm circumference.  “Pre-ex” and “Imm” refer to 

immediately preceding and immediately following the eccentric exercise intervention, 

respectively. 

A full description of the methods used to analyse the data of the present study is 

outlined in chapter 3 (section 3.8). 
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5.3 Results 

 

5.3.1 Subject Characteristics and Pre-exercise Criterion Measures 
 

No significant differences between the groups were evident for age, height, weight, or 

any of the pre-exercise criterion measures (Table 7). 

 

Table 7 

Pre-exercise values (mean ± SEM) of maximum isometric torque at 90° (ISO-90) and 

150° (ISO-150), isokinetic torque at 30o⋅s-1 (IK-30), 90o⋅s-1 (IK-90), 150o⋅s-1 (IK-150), 

210o⋅s-1 (IK-210) and 300o⋅s-1 (IK-300), ROM, upper arm circumference (CIR: mean of 

the five sites), and plasma CK activity for the trained (T) and untrained (UT) groups 

Group ISO90 
(Nm) 

ISO150 
(Nm) 

IK30 
(Nm) 

IK90 
(Nm) 

IK150
(Nm) 

IK210
(Nm) 

IK300 
(Nm) 

ROM 
(°) 

CIR 
(mm) 

CK 
(IU⋅L-1)

T 72.8 
±4.2 

52.9 
±2.7 

50.4 
±2.8 

49.6 
±2.6 

44.6 
±2.5 

40.0 
±2.5 

35.1 
±2.2 

128.3 
±1.8 

299.5 
±6.4 

370 
±73 

UT 68.4 
±3.2 

47.3 
±3.4 

48.6 
±3.2 

42.6 
±2.7 

38.1 
±2.5 

35.1 
±2.4 

31.6 
±2.5 

132.1 
±2.1 

283.1 
±5.8 

144 
±16 

 

5.3.2 Peak Torque During Eccentric Exercise 
 

Peak eccentric torque progressively declined for both groups over the ten sets of 

eccentric exercise.  When evaluated in terms of mean torque per set, Figure 20 shows 

that for both groups the last seven sets produced significantly lower torque than set one 

(p<0.05).  Over the course of the ten sets of eccentric exercise the mean torque per set 

for the untrained and trained groups decreased approximately 33% and 22%, 

respectively.  Despite the apparent contrast, there was no significant difference between 

the groups in terms of mean torque over the ten sets. 

 

When the torque of the first and last of the 60 eccentric contractions were expressed as a 

ratio of the pre-exercise isometric torque, it is noteworthy that the resulting ratios were 

less than unity (Figure 20 inset).  Even when the peak eccentric torque for each group 

was considered, regardless of where it occurred during the 60 contractions, the ratio to 
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pre-exercise isometric torque was exactly one (unity).  Therefore, neither group was 

able to generate eccentric torque with the elbow flexors that was greater than that 

produced isometrically.  Independent t-tests revealed that the untrained group produced 

a significantly greater decline in eccentric torque than the trained group over the sixty 

contractions when expressed as a ratio of pre-exercise isometric torque (Figure 20 

inset).  

 

 
Figure 20.  Changes in mean peak torque of 6 eccentric actions over 10 sets of eccentric 

exercise for the trained and untrained groups.  n.s.: not significantly different between 

groups, #: significantly different from the 1st set.  In the inset graph, a ratio between pre-

exercise maximum isometric torque and peak torque during the 1st (1) and 60th (60) 

eccentric actions for the trained and untrained groups is shown. *: significantly different 

from the corresponding untrained group value. 

 

5.3.3 Work During Eccentric Exercise 
 

A similar pattern to torque was evident when considering the work production during 

the eccentric exercise.  The work produced by both groups progressively decreased 

during each successive set of exercise.  In percentage terms, both groups produced 

declines in work over the ten sets that were identical to that shown in the previous 
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section for torque production (i.e., 33% for untrained and 22% for trained).  The total 

work per set was significantly lower than baseline (set 1) by the third set for the trained 

group, but not until the ninth set for the untrained (Figure 21).  Despite the within group 

contrast, there were no significant differences between the groups for work production 

during any of the ten sets or for total work (Figure 21 and inset). 

 

 
 

Figure 21.  Changes in the total work per set over 10 sets of eccentric exercise for the 

trained and untrained groups.  n.s.: not significantly different between groups, #: 

significantly different from the 1st set.  In the inset graph, the total work of 10 sets for 

the trained and untrained groups is shown. 

 

5.3.4 Isometric Torque 
 

Isometric torque responses at fixed angles of 90 and 150 degrees of elbow extension for 

both groups showed similar patterns of strength loss and subsequent recovery following 

the eccentric exercise intervention (Figures 22 & 23).  Immediately following the 60 

eccentric contractions the maximum isometric torque of both groups had declined 

significantly at 90 and 150 degrees of elbow extension (p<0.05).  At this time point 

following exercise there were significant differences between the groups with the 
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trained group exhibiting a decline of approximately 25% for both angles whereas the 

untrained group decreased approximately 40% and 47% at elbow extension angles of 

150 and 90 degrees, respectively (p<0.05).  The differences between the groups 

remained significant for all subsequent tests through day 5 (p<0.05).  By day 3 (90o) and 

2 (150o) following exercise the isometric torque of the trained group was not 

significantly different from pre-exercise (baseline) levels, and had returned to 90% of 

baseline by day 5 of testing (Figures 22 & 23).  In contrast, the torque of the untrained 

group remained significantly lower than baseline at both angles throughout the study 

and was still depressed by approximately 30% at day 5. 

 

The significant time by group interactions for both joint angles, which is evident upon 

inspection of the diverging lines for trained and untrained groups in Figures 22 and 23, 

demonstrate that the rates of recovery of isometric torque were dissimilar (p<0.05). 

 

When recovery of isometric torque was calculated from the nadir to the final day of 

testing, the trained group recovered by approximately 20% at a fixed angle of 90o.  In 

contrast, the untrained group produced a smaller recovery of approximately 15%.  A 

similar pattern was evident for the groups at an angle of 150o. 
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Figure 22.  Changes in maximum isometric torque measured at 90° from baseline (pre: 

100%) immediately (post) and 30 minutes after exercise, and 1-5 days following 

exercise for the trained and untrained groups.  *: significantly different between groups 

(over all: p<0.05, each time point: p<0.007), #: significantly different from pre-exercise 

value. 
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Figure 23.  Changes in maximum isometric torque measured at 150° from baseline (pre: 

100%) immediately (post) and 30 minutes after exercise, and 1-5 days following 

exercise for the trained and untrained groups.  *: significantly different between groups 

(over all: p<0.05, each time point: p<0.007), #: significantly different from pre-exercise 

value. 

 

5.3.5 Isokinetic Concentric Torque at 30, 90, 150 , 210 and 300o··s-1 
 

Table 8 shows changes in isokinetic concentric torque following exercise.  Torque at all 

concentric velocities decreased significantly from pre-exercise levels for both groups 

immediately following the eccentric exercise treatment (p<0.05).  Torque at the 

concentric velocities for the untrained group was 14% – 20% lower at this time point 

than that recorded by the trained, and was significantly different between the groups at 

30, 150, and 210o.s-1 (Table 8).  These concentric torque decrements were similar to the 

isometric values recorded at angles of 90o and 150o.  Both groups produced nadirs in 

concentric torque by day 1 following the eccentric exercise treatment for all tested 

velocities (Table 8). 
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Table 8. 
Changes in Normalised Isokinetic Torque at Five Different Velocities from Pre-exercise (100%) over 5 days Following 
Eccentric Exercise for Untrained and Trained Conditions.  Mean and Standard Error of the Mean (SEM) are Shown 
 

Percentage of pre-exercise torque  Time following eccentric exercise 

Velocity Group n  Imm 
Post 

30 min 
Post Day1 Day2 Day3 Day4 Day5 

Mean 58.5*# 57.5*# 58.3*# 60.4*# 66.2*# 66.7*# 71.8*# Untrained 15 SEM 4.0 2.6 2.7 2.9 2.8 4.3 4.5 
Mean 79.5# 77.1# 83.7# 86.5 90.4 94.5 94.1 

30o·s-1 

 
Trained 15 SEM 2.8 4.0 3.6 3.7 4.2 4.2 3.6 

Mean 60.4# 58.1# 55.0*# 60.9*# 65.9*# 66.5*# 69.2*# Untrained 15 SEM 4.8 3.7 3.2 3.7 3.4 4.5 4.8 
Mean 74.4# 68.9# 78.7# 82.6 89.0 89.7 92.0 90 o·s-1 

Trained 15 SEM 3.5 2.9 4.3 4.9 5.3 5.5 5.4 
Mean 56.8*# 59.3# 57.3*# 64.7*# 66.8*# 69.8# 72.7# Untrained 15 SEM 3.0 3.8 3.3 4.1 3.7 4.8 4.6 
Mean 76.2# 72.3# 80.7# 82.8 91.3 89.4 92.0 150o·s-1 

Trained 15 SEM 3.5 3.3 4.3 4.3 4.3 4.9 5.2 
Mean 59.9*# 64.2# 63.8*# 62.7*# 70.0*# 72.5# 77.0 Untrained 15 SEM 3.9 4.2 4.4 3.4 4.8 5.1 5.6 
Mean 78.2# 73.2# 84.7 87.7 90.8 90.7 94.8 210o·s-1 

Trained 15 SEM 3.3 2.8 4.0 4.6 4.3 4.1 5.5 
Mean 60.1# 62.8# 63.5*# 64.5*# 72.2*# 74.2# 77.7# Untrained 15 SEM 4.5 4.5 3.6 4.0 4.4 5.1 5.7 
Mean 75.3# 73.5# 85.3 86.5 91.7 92.0 95.9 300o·s-1 

Trained 15 SEM 3.6 2.8 3.6 3.3 5.1 4.6 6.2 
Note.  *: = significantly different between conditions after Bonferroni correction (p<0.05). 
#: = significantly different from pre-exercise (p<0.05).  Absolute values used for within group comparisons. 
Imm Post: = Immediately following eccentric exercise. 
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Recovery of concentric torque progressed over the subsequent testing days for both 

groups at all velocities, and had returned to over 90% of pre-exercise levels in the 

trained group by day 5.  By day 2 of recovery all concentric torque measures of the 

trained group were no longer significantly different from pre-exercise levels (p<0.05).  

In contrast, the concentric torques at all velocities in the untrained group remained 

significantly below pre-exercise levels on day 4 of testing.  Table 8 reveals that torque 

at all velocities remained over 20% below pre-exercise levels in the untrained group at 

day 5 following exercise. 

 

5.3.6 Range of Motion (ROM) 
 

Figure 24 reveals that the change in upper arm ROM from pre-exercise levels was 

significant for both the untrained and trained groups following the 60 maximal eccentric 

contractions (p<0.05).  The largest decrease in ROM for the trained group occurred 

immediately following exercise, after which it recovered to pre-exercise levels by the 

final day of testing.  In contrast, the untrained group showed a continuing decrease in 

ROM reaching a nadir of just over -18o degrees on day 3 following exercise before 

recovering slightly over the final two days of testing.  ROM in this group was 

significantly lower than pre-exercise levels at all points following the eccentric exercise 

intervention, with the exception of the final day of testing (p<0.05). 

 

The changes in ROM between the groups was appreciable with the untrained group 

decreasing significantly more than the trained group at all time points following the 

maximal eccentric exercise (p<0.05).  Immediately following eccentric exercise the 

ROM of the untrained group was approximately 6o lower than the trained group with the 

margin increasing to a maximum difference between the groups of 17o at day 4 before 

recovering slightly by the final day of testing. 
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Figure 24.  Changes in ROM from baseline (pre: 0) immediately (post) and 30 minutes 

after exercise, and 1-5 days following exercise for the trained and untrained groups.  *: 

significantly different between groups (over all: p<0.05, each time point: p<0.007), #: 

significantly different from pre-exercise value. 

 

5.3.7 Upper Arm Circumference 
 

Upper arm circumference increased in both groups following the exercise treatment 

with the untrained group displaying the greatest response (Figure 25).  The increase in 

circumference was apparent immediately after eccentric exercise in both groups, with 

the peak increase of approximately 5 mm in the trained group occurring 1 day following 

exercise while the largest circumference of 16 mm was recorded on day 5 in the 

untrained group. 

 

In contrast to the trained group which first recorded a significant increase in 

circumference over pre-exercise levels at day 1, the larger response of the untrained 

group resulted in significance immediately following the eccentric exercise treatment 

which remained through day 5 (p<0.05). 
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As illustrated in Figure 25, the disparity in trained and untrained circumference 

responses resulted in significant differences between the groups for the final three days 

of testing (p<0.05).  By the final day of testing the increase in circumference of the 

untrained group was over 3 times greater than that of the trained. 

 

 
 

Figure 25.  Changes in upper arm circumference from baseline (pre: 0) immediately 

(post) and 30 minutes after exercise, and 1-5 days following exercise for the trained and 

untrained groups.  *: significantly different between groups (over all: p<0.05, each time 

point: p<0.007), #: significantly different from pre-exercise value. 

 

5.3.8 Plasma Creatine Kinase (CK) Activity 
 

Figure 26 indicates that mean plasma CK activity was not significantly different 

between the groups prior to performing the 60 maximal eccentric contractions, however, 

it is noteworthy that the mean reading of the trained group (370 IU·L-1) was above the 

upper limit of the normal reference range of 220 IU·L-1 for healthy adult males. 
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In the days following the eccentric exercise session mean CK activity was elevated, 

reaching a peak in both groups on the final day of testing (day 5).  There was a stark 

contrast in the response of CK between the groups following the exercise treatment with 

the trained group not quite doubling the activity to 735 IU·L-1 by day 5, whereas the 

untrained group recorded slightly over a 20 fold increase from its pre-exercise value of 

164 IU·L-1.  Although CK activity was not significantly elevated above pre-exercise 

levels at any point following eccentric exercise in the trained group, it did reach 

significance in the untrained group at days 4 and 5 (p<0.05).  These final two days of 

testing were also marked by significant differences between the two groups for CK 

activity (p<0.05).  Peak CK activity did not occur in all of the subjects on the final day 

of testing resulting in a mean peak CK that was slightly higher in both groups than that 

recorded on day 5 (Figure 26 inset).  Significant differences were evident between the 

groups for this measure (p<0.05). 

 

The inter subject variability in CK response was high for both groups across all testing 

days resulting in relatively large standard errors of the mean. 
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Figure 26.  Changes in plasma CK activity before (pre), and 1-5 days following exercise 

for the trained and untrained groups.  *: significantly different between groups (over all: 

p<0.05, each time point: p<0.007), #: significantly different from pre-exercise value.  In 

the inset graph, comparison of peak CK activity between groups is shown.  *: 

significantly different from the untrained group. 

 

5.3.9 Muscle Soreness 
 

On the VAS scale of zero to 100, muscle soreness for forearm, upper arm palpation, 

extension and flexion was rated at zero prior to eccentric exercise which represented a 

subjective representation of no pain at all.  Following the performance of 60 maximal 

eccentric contractions of the elbow flexors both groups reported muscle soreness that 

was significantly greater than pre-exercise levels (p<0.05).  Table 9 indicates that with 

the exception of flexion in the trained group, all other soreness classes of both groups 

resulted in significant increases from pre-exercise levels one day following the eccentric 

contractions (p<0.05).  Extension and flexion soreness was similar between the groups 

at this time point, however, for upper arm and forearm measures the trained group 

recorded VAS scores slightly under double and approximately triple that of the 
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untrained, respectively.  A significant increase from baseline occurred at day 2 in the 

trained group for soreness during passive flexion of the upper arm (p<0.05). 

 

Table 9 shows that upper arm peak soreness was approximately 14% higher for the 

trained group and occurred one day earlier than in the untrained.  By day 5 the soreness 

had subsided in both groups and was no longer significantly different to pre-exercise 

levels.  The trained group also peaked earlier and recorded a VAS score of 

approximately 21% higher for forearm soreness.  In this soreness measure both groups 

were also no longer significantly elevated above pre-exercise levels on the final day of 

testing. 

 

For extension and flexion soreness both groups peaked on day 2 following the eccentric 

intervention.  Although there were no significant differences in soreness between the 

groups at this time the untrained group recorded VAS scores of just under double those 

of the trained group for extension soreness, and approximately 30% higher for the 

flexion measure (Table 9). 
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Table 9 
Changes in Upper Arm, Forearm, Extension and Flexion Soreness over 5 Days Following Eccentric 
Exercise of the Forearm Flexors for Untrained and Trained Conditions (Peak Soreness also Shown).  
Mean and Standard Error of the Mean (SEM) are Shown 
 

Visual Analog Scale soreness (mm) 
 

Time following eccentric exercise and peak reading 
Soreness 

class Group n  Day 1 Day 2 Day 3 Day 4 Day 5 Peak 

15 Mean 17.1# 32.8# 33.3# 22.3# 13.2 37.7 
Untrained 

15 SEM 3.4 5.6 6.2 5.9 4.6 5.9 
15 Mean 33.4# 38.1# 28.5# 15.3 8.3 42.8 

Upper 
Arm 

Trained 
15 SEM 5.4 5.5 4.9 4.5 2.6 5.7 
15 Mean 8.5# 20.8# 21.4# 17.3 12.9 27.3 

Untrained 
15 SEM 2.5 4.3 4.5 4.8 4.3 5.1 
15 Mean 25.9# 20.3# 11.4# 6.5 3.1 28.0 

Forearm 
Trained 

15 SEM 5.1 5.2 2.5 2.4 1.4 5.3 
15 Mean 22.5# 43.1# 39.9# 26.7# 20.5 49.2 

Untrained 
15 SEM 4.1 5.4 6.3 7.0 6.2 6.5 
15 Mean 21.3# 23.3# 13.1 7.5 3.5 27.0 

Extension 
Trained 

15 SEM 5.8 6.1 4.1 3.3 2.2 5.8 
15 Mean 13.0# 20.7# 18.3 14.8 5.7 26.1 

Untrained 
15 SEM 3.4 5.4 5.3 5.9 3.1 6.7 
15 Mean 13.5 15.9# 10.1 4.5 2.6 19.0 

Flexion 
Trained 

15 SEM 3.9 4.3 3.2 2.3 1.5 4.4 
Note.  #: = significantly different from pre-exercise level (p<0.05).  Pre-exercise soreness was zero for 
all soreness classes and conditions. 
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5.4 Discussion 

 

The purpose of the present study was to determine whether the criterion measures 

differed between untrained and trained males following maximal voluntary eccentric 

exercise of the elbow flexors.  The results revealed that there were significant 

differences evident between the untrained and trained subjects for all of the criterion 

measures, with the exception of muscle soreness (Figures 22, 23, 24, 25, 26 and Table 

9).  Despite both groups performing similarly in terms of torque and total work during 

the eccentric exercise intervention (Figures 20 and 21), the trained group produced 

smaller changes in muscle function (torque and ROM) and other damage markers of 

upper arm circumference and CK activity.  Such a response is consistent with the 

“repeated bout effect” in which an initial bout of eccentric exercise provides varying 

degrees of protection against muscle damage in a subsequent bout performed some time 

later (Ebbeling & Clarkson, 1989; McHugh et al., 1999).  The degree of protection 

appears to be dependent upon the criterion measure in question, the intensity and / or 

volume of the initial and subsequent bouts of eccentric exercise, and the intervening 

period between the bouts (Clarkson et al., 1992; Clarkson & Tremblay, 1988; Nosaka et 

al., 1991; Nosaka et al., 2001a, 2001b). 

 

In the present study, muscle soreness in the trained group did not show a response 

usually associated with the “repeated bout effect” (Table 9).  This was unexpected 

considering that some degree of protection was evident for the other criterion measures.  

Repeated bout studies employing untrained subjects have shown that an initial bout of 

maximal eccentric exercise conferred a protective effect against a subsequent eccentric 

bout that was complete (Brown et al., 1997; Chen & Hsieh, 2000; Newham et al., 1987; 

Nosaka et al., 2001a), and the full protective effect extended to muscle soreness. 

 

Although statistically non-significant, the resistance-trained group reported peak muscle 

soreness of 14% and 21% higher than the untrained for upper arm and forearm 

palpation, respectively.  This was despite showing smaller changes in the other criterion 

measures than the untrained group.  In one of the few studies comparing the responses 

of chronically resistance-trained and untrained males to eccentric exercise, Vincent and 

Vincent (1997) also reported that, although not statistically significant, the trained group 
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rated soreness higher than the untrained.  In the present study the situation was reversed 

when considering the muscle soreness during extension and flexion with the untrained 

group reporting higher, but statistically non-significant, VAS readings (Table 9).  An 

explanation for the differing results in regard to muscle soreness is not immediately 

clear, however, it may simply be a reflection of chance occurrence as none of the 

between group differences reached statistical significance.  Despite the lack of 

significant differences in muscle soreness between the untrained and trained groups, 

both did experience soreness that was significantly greater than pre-exercise levels at 

various times following the eccentric intervention (Table 9).  Although there is a 

scarcity of data relating to resistance-trained individuals, the soreness findings of the 

untrained group are consistent with those reported elsewhere for individuals of this 

training status (Chen & Hsieh, 2000; Clarkson et al., 1986; Smith, Keating et al., 1994). 

 

A possible explanation for the trained groups’ lack of protective effect in terms of 

soreness may lie in the principle of specificity.  The administration of the eccentric 

exercise in the present study involved a Cybex dynamometer, the contraction type was 

isokinetic, and the eccentric intensity was maximal.  The elbow flexor training routinely 

performed by the trained subjects involved significant free weight barbells and 

dumbbells, the contraction mode was concentric and eccentric dynamic constant 

external resistance (Fleck & Kraemer, 2004), and the eccentric contractions were not 

maximal in nature.  Due to the novelty of the eccentric exercise intervention employed 

in the present study the trained subjects may not have adapted specifically to the unique 

stress applied to the elbow flexors. 

 

It was interesting that muscle soreness was the only criterion measures not to show a 

“repeated bout” type effect in the trained group.  Nosaka et al. (2002a) concluded that 

delayed onset muscle soreness is a poor reflector of eccentric exercise-induced muscle 

injury, and that changes in indirect markers of muscle damage are not necessarily 

associated with DOMS.  Warren et al. (1999) also noted that soreness has shown poor 

correlations with changes in muscle function following eccentric exercise.  It may be 

that soreness was not a sensitive enough marker of muscle damage to distinguish any 

differences between the groups.  From a training standpoint, the present results suggest 

that individuals performing resistance training on a regular basis should exercise caution 
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using the degree of soreness to indicate the magnitude of damage and loss of muscle 

function. 

 

The criterion measure of CK activity demonstrated marked differences between the 

groups with the trained subjects exhibiting what could be referred to as complete 

protection in terms of “repeated bout” nomenclature (Figure 26).  The magnitude and 

temporal nature of the CK response of the untrained group was similar to that reported 

in other studies, peaking at around 3500 IU·L-1 on day 5 following the eccentric 

intervention (Nosaka & Clarkson, 1992; Paddon-Jones et al., 2000; Smith, Fulmer et al., 

1994).  Vincent and Vincent (1997) reported a small rise in CK activity in their trained 

subjects following exercise which incorporated an eccentric component.  In a similar 

response to the present study, their untrained group also showed significantly larger 

increases in CK activity than the trained subjects. 

 

The trained group commenced the present study with CK activity that was higher than 

the reference range for healthy adult males, but not statistically different from that of the 

untrained subjects.  The likely cause of the slightly higher CK activity in the trained 

group was the resistance training incorporating eccentric contractions undertaken just 

over a week prior to study commencement. 

 

The lack of a rise in CK activity for the trained group following the eccentric 

intervention suggests that the large repeated mechanical stress placed on the exercised 

elbow flexor muscles did not lead to loss of integrity of the sarcolemma.  When 

compared to the 20 fold increase in CK activity in the untrained group following 

eccentric exercise, there appears to be some adaptation associated with chronic 

resistance training that confers protection to the worked muscles of the trained subjects 

preventing efflux of CK into the lymph and blood. 

 

There are a number of neuromuscular adaptations arising from chronic resistance 

training, some of which may be associated with the protective effect exhibited by the 

trained group for the criterion measures of torque, ROM, upper arm circumference and 

CK activity.  These adaptations are also closely related to those put forward to explain 

the “repeated bout effect” experienced by untrained subjects following an initial bout of 

eccentric exercise. 
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Chronic high intensity resistance training has been shown to increase strength and lean 

muscle mass by a combination of neurological, endocrinological, and intramuscular 

adaptations (Fleck & Kraemer, 1988; Fry, 2004; Gonyea & Sale, 1982; Jones et al., 

1989; Kraemer et al., 1998; Kraemer & Ratamess, 2005).  It was, therefore, interesting 

that the untrained and trained groups did not differ in terms of isometric and isokinetic 

concentric torque or upper arm circumference at the commencement of the study.  The 

absence of a strength difference between the groups may be attributable to the lack of 

specificity between the training and testing conditions.  Rutherford and Jones (1986) 

note that “task specific methods of assessing strength, such as weight lifting, will 

obviously give larger changes than a less accustomed exercise.”  They showed that 

dynamic resistance training produced increases in training weights of about 200% but 

much smaller isometric force improvements of only 15-20%.  Therefore, if the groups 

of the present study were tested in terms of the weight they could lift in “traditional” 

resistance training exercises there may have been a statistically significant difference 

evident.  It was not possible to determine if the untrained and trained groups differed 

with respect to lean muscle mass.  Circumference measurements were not sensitive 

enough to provide the contribution of fat and muscle to upper arm volume.  In hindsight 

it would have been sagacious to have included a more sensitive measure of upper arm 

muscle mass, however, the inclusion of dual energy x-ray absorptiometry (DEXA), 

computed axial tomography (CAT) or magnetic resonance imaging (MRI) scans were 

beyond the budgetary constraints of the study and the use of skinfold measurements was 

felt to introduce unacceptable error.  However, based upon the circumference 

measurements, and the findings of no significant difference between the groups in terms 

of isometric and isokinetic concentric torque, it is unlikely that the groups differed in 

terms of absolute lean muscle mass. 

 

If differences in strength (isometric and isokinetic concentric) and / or lean muscle mass 

are doubtful to explain the protective effect in this case, then other factors must play a 

role.  Armstrong (1984) mentions that “training appears to be highly specific, not only 

for the particular muscle involved in the type of exercise, but for the type of 

contractions performed.  Thus, the DOMS that results from eccentric exercise is reduced 

specifically by training that involves eccentric contractions.”  This is definitely 

applicable to the trained group of the present study as their typical training regimens 

incorporated regular performance of eccentric contractions. 
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Armstrong (1984) also suggests that in order for a muscle to produce a given force, a 

smaller number of motor units are activated during an eccentric contraction.  Therefore 

in eccentric contractions the force is spread over a smaller cross-sectional area of 

muscle, meaning that the specific tension is greater.  This greater specific tension could 

potentially give rise to mechanical damage to any number of activated fibres leading to 

focal necrosis, immune cell infiltration and subsequent repair of the injured area. 

 

Armstrong, Ogilvie and Schwane (1983) put forward a theory to explain the repeated 

bout effect.  They suggested that the fibres injured in the initial eccentric exercise bout 

represented a population of “susceptible fibres” which are eliminated during a novel 

bout of eccentric exercise, the remaining fibres being able to withstand subsequent 

eccentric exercise without further injury.  If such a theory was shown to be correct then 

it may be one possible explanation for the findings of the present study.  The eccentric 

exercise performed as part of the trained subjects regular training could lead to damage 

and subsequent removal of stress susceptible fibres rendering the muscles at least 

partially protected against injury during subsequent eccentric challenges.  Newham et 

al. (1987) reported that the results of experiments conducted in their laboratory provided 

some evidence in favour of the possibility of the susceptible fibre theory.  They had 

subjects perform maximal eccentric exercise of the elbow flexors on three occasions 

spaced two weeks apart.  Their data demonstrated that the adaptation following the 

bouts did not result in any change in strength or contractile properties (20 / 100%) of the 

muscle tissue or the ability of it to resist fatigue.  The recovery of force generation and 

20/100% value was slower following the first bout of eccentric exercise than after the 

subsequent two bouts.  The authors suggested it was possible that the force reduction 

and release of CK represented the removal of part or all of any irreparably damaged 

fibres, which were replaced during the recovery period.  Doubt has been cast on this 

theory, however, by the originators themselves (Schwane & Armstrong, 1983) as well 

as Clarkson and Tremblay (1988) who showed that an initial bout of eccentric exercise 

that resulted in a very small magnitude of damage conferred protection against 

subsequent eccentric exercise known to normally produce much more severe injury. 

 

Alternatively, an initial bout of eccentric exercise, or chronic resistance training, may 

cause sub-lethal stress to weakened myofibres which initiates structural reinforcement 
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of the fibres themselves and / or connective tissue in the immediate vicinity (Clarkson & 

Tremblay, 1988; Lapier, Burton, Almon, & Cerny, 1995; McHugh et al., 1999; Morgan, 

1990; Newham et al., 1987; Schwane & Armstrong, 1983).  Stone (1988) states that 

“there is little doubt that physical training increases the maximum static strength of 

tendons and ligaments.” (p.164)  In later work (1992a) he notes that strength training 

may cause adaptations to tendons and ligaments causing them to become larger, 

stronger, and better able to resist injury.  MacDougall and co-workers’ (1984) research 

with resistance-trained individuals showed evidence of increased absolute, but not 

relative, amounts of connective tissue following chronic resistance training.  This 

suggests that the body adapts to a resistance training challenge by increasing the 

amounts of both muscle and connective tissue, however, the ratio of connective tissue to 

muscle does not change. 

 

It has also been speculated that strengthening of the cell membrane may be implicated 

in the protective effect (Clarkson & Tremblay, 1988; Vincent & Vincent, 1997).  This 

suggestion has received some experimental support in recent times with Koskinen et al. 

(2001) reporting that downhill treadmill running in rats led to changes in synthesis of 

type IV collagen in the basement membrane at both mRNA and protein levels. 

 

In the present study, the isometric and dynamic torque responses following the eccentric 

intervention produced a “repeated bout” type effect in the trained group (Figures 22 & 

23 and Table 8).  For both isometric angles (90o and 150o), and concentric velocities of 

30o·sec-1, 150o·sec-1, and 210o·sec-1, the protective effect was evident immediately 

following eccentric exercise which is a finding not reported in all human repeated bout 

studies (Clarkson et al., 1992; Clarkson & Tremblay, 1988; Newham et al., 1987).  

Protection immediately following the eccentric intervention did not appear to extend to 

the concentric test velocities of 90o·s-1 and 300o·s-1 in the trained group.  However it 

should be noted that the number of testing sessions included in the ANOVA reduced the 

corrected alpha level appreciably below the single test level of 0.05 decreasing the 

likelihood of locating significant differences.  These velocities (90o·s-1 and 300o·s-1), 

though, showed trends toward significant differences between the groups and therefore 

further explanation for the lack of apparent protection at these velocities will not be 

explored. 
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The significant differences between the untrained and trained groups in isometric and 

dynamic torque immediately following the eccentric exercise intervention suggests that 

the protective effect conferred by chronic resistance training may be due in part to 

adaptations at the level of the dihydropyridine (DHP) channels in the T-tubules and 

ryanodine receptors in the sarcoplasmic reticulum.  From data collected in mouse and 

rat studies researchers have suggested that the majority of the pronounced decrement in 

normalized maximum isometric force production following eccentric exercise is likely 

the result of E-C failure (Balnave & Allen, 1995; Ingalls, Warren et al., 1998b; Warren, 

Ingalls, Shah, & Armstrong, 1999; Warren et al., 1993).  Ingalls et al. (1998a) 

determined that E-C uncoupling could account for at least 75% of the reduction in 

maximum isometric force production immediately following the eccentric exercise and 

at least 57% of the decrement following 5 days of recovery.  Warren et al. (1999) 

believe that the main site for E-C uncoupling is “localized between the t-tubular voltage 

sensor and the SR Ca2+ release channel” (p. 618).  They believe that the failure may be 

associated with sensing the membrane depolarization by the voltage sensor (DHP) and / 

or transduction of the signal to the SR Ca2+ release channel.  It is possible that the high 

mechanical forces produced during the early stages of an intense resistance training 

program cause disruption to these structures and adaptation occurs to the structures 

themselves, or their supporting cellular framework, allowing for improved signal 

transduction and calcium handling, resulting in lower torque decrements when exposed 

again to the same or similar exercise stress. 

 

Another adaptation that has been suggested to occur within the muscle fibre as a 

response to eccentric activity is the addition of sarcomeres in series (Morgan, 1990; 

Morgan & Allen, 1999).  In a study involving incline and decline treadmill running by 

rats, Lynn and Morgan (1994) showed evidence of such a change, lending support to 

Morgan’s earlier hypothesis.  The effect of such an adaptation would be for the 

subsequent active lengthening of the sarcomere to occur on the ascending limb of the 

length tension curve thus avoiding the more damaging descending limb.  Lynn et al. 

(1998) performed a further experiment involving treadmill running with rats and 

suggested that the observed repeated bout effect may be due to a greater number of 

sarcomeres in series.  If this effect is evident in humans then it is a possible contributor 

to the protective effect shown in the present study for the trained subjects.  However, 

the effect of the concentric exercise of the trained subjects on sarcomere numbers in 
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series is unknown and, in theory, could negate the lengthening effect of the eccentric 

component of the training regimens.  Sarcomere shortening during concentric training 

has been suggested by Morgan (1990) and Lynn et al. (1998). 

 

Resistance training has been shown to induce heat shock protein expression and 

mitogen-activated protein kinase (MAPK) activation, and it has been suggested that 

these molecules may play an important role during subsequent muscle adaptation 

(Thompson, Maynard, Morales, & Scordilis, 2003).  Willoughby et al. (2003) showed 

that it is the eccentric contractions that produce the largest response in terms of heat 

shock protein-72 (HSP-72) and activity of the apoptotic protease caspase-3 and the 

ubiquitin proteolytic pathway.  Thompson et al. (2003) also reported that high-force 

eccentric contractions of the elbow flexors in untrained subjects elicited significant 

increases in HSP27 and HSP70 protein and mRNA, and activation of intramuscular 

MAPK through elevation of JNK and ERK phosphorylation. 

 

Koh (2002) put forward the hypothesis that muscle cells may be protected by the 

induction of heat shock proteins following mechanical loading caused by exercise.  He 

suggested that the protection of muscle may be mediated by the heat shock proteins 

interacting with cytoskeletal elements and / or the glutathione system.  Work by 

Thompson et al. (2002) suggests that the heat shock protein system may adapt in such a 

way as to protect muscle during exposure to repeated bouts of exercise.  As the trained 

subjects in the present study were exposed to repeated bouts of eccentric and concentric 

resistance training over a protracted period (i.e., years), it is tempting to speculate that 

adaptation to the heat shock system may be responsible, in part, for the attenuated 

responses in damage markers compared to the untrained group. 

 

Although not investigated in the present study, neural adaptations due to the chronic 

resistance exercise performed by the trained subjects may be partly responsible for the 

attenuated responses in many of the criterion measures in this group following the 

eccentric intervention.  Such adaptations could take the form of increased motor unit 

activation for a given torque, alterations to motor unit recruitment, or increased 

synchronisation of motor unit activation (McHugh, Connolly, Eston, Gartman, & 

Gleim, 2001).  Warren et al. (2000) demonstrated some evidence for an increased 

recruitment of slow motor units and a concomitant decrease in fast unit activation 
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following a repeated bout of maximal voluntary eccentric exercise.  In terms of the 

present study, the work of Warren et al. (2000) could be taken to suggest that, through 

incorporation of eccentric contractions during exercise, trained subjects “learned” to 

switch off significant numbers of the more damage susceptible fast twitch fibres while 

concurrently recruiting the hardy slow twitch fibres to bear the load during subsequent 

training.  Although such a prospect seems attractive, McHugh et al. (2001) reported 

research which showed no change in EMG per unit torque or median frequency between 

novel and repeated bouts of submaximal isokinetic eccentric exercise.  The conclusion 

drawn by these researchers was that there was no evidence of any neural adaptation 

accompanying the repeated bout effect.  Whether the disparity between these two recent 

studies was due to the intensity of the eccentric contractions is unclear, however, future 

research focusing on neural mechanisms should shed more light on the aetiology of the 

repeated bout effect. 

 

Despite the trained group exhibiting protection against decrements in muscle function 

and other criterion measures when exposed to the eccentric exercise intervention, the 

magnitude of the effect was not complete for most of the criterion measures.  This is 

with the notable exception of CK activity.  As discussed above, soreness did not show 

any evidence of a protective effect when compared to the responses of the untrained 

group.  Thus far, the focus of the discussion has been on the differences between the 

groups and what may have contributed to the apparent protective effect in the trained 

subjects.  Another question that warrants attention is, what factors may have inhibited a 

full protective effect in the trained subjects? 

 

The first potential factor to be considered involves the trained subjects performing 

resistance training too close to the beginning of the study and somehow affecting the 

response to the eccentric exercise intervention.  This was very unlikely as subjects in the 

trained group were instructed to refrain from performing their personal resistance 

training regimen for the week prior to the commencement of the study.  There is always 

the possibility of some detraining effect due to the requested one week abstinence from 

training, however, the likelihood of this occurring was probably offset to some degree 

by the two familiarisation sessions that the subjects were required to attend during this 

week.  These sessions required the subjects to perform sets of low volume but high 

intensity maximal voluntary isometric and isokinetic concentric arm curl exercise.  
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There is support for the utility of performing high intensity resistance training when 

maintenance of previously established gains is the goal (Berger, 1962).  It has also been 

shown that strength levels can be maintained for many weeks or months in the face of 

significant reductions in volume of training if the intensity of maintenance sessions 

remain high (Berger, 1962; Graves et al., 1988).  Further support for the lack of a 

detraining effect in the present study is found in a recent study of Nosaka and Newton 

(2002a) who showed that following 8 weeks of either concentric (con) or eccentric (ecc) 

resistance training of the elbow flexors, with a dumbbell set at approximately 50% of 

maximum isometric force, the gains achieved in strength were maintained when 

assessed following four (con) and six (ecc) weeks of detraining (absolutely no training). 

 

The second factor to be considered relates to whether the performance of concentric 

exercise as part of the trained subjects resistance training regimen could have limited 

the impact of the protective effect compared to a program in which only eccentric 

exercise was performed.  All subjects reported that high-intensity concentric exercise 

formed a major component of their regular resistance training.  Due to the use of 

traditional barbell, dumbbell and variable resistance weight stack machines this 

contraction mode was combined with an eccentric phase during their training. 

 

Research focusing on whether prior concentric contractions (exercise) affect the 

magnitude of decrements in muscle function and other indirect markers of muscle 

damage following eccentric exercise has produced contradictory findings.  Work by 

Gleeson et al. (2003), Ploutz-Snyder et al. (1998) and Whitehead et al. (1998) suggest 

that the inclusion of concentric training for a period (days or weeks) prior to an 

eccentric intervention increases the susceptibility of muscle to changes in the criterion 

markers associated with damage.  They suggest that this probably occurred due to the 

concentric 1 repetition maximum being increased by training, possibly allowing the 

muscle to be exposed to a larger eccentric load.  In contrast, Nosaka and Clarkson 

(1997) and Nosaka and Newton (2002a) reported that an acute bout and short term 

concentric training, respectively, did not exacerbate muscle damage as measured by 

changes in the criterion markers.  In the Nosaka and Newton (2002a) study the criterion 

measures were no different to those of the eccentric-only training group following the 

maximal eccentric exercise despite the concentric-only group increasing both isometric 

and maximal isokinetic concentric strength following the training program. 
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The present study differed from those presented above in two respects.  First, the 

subjects in the cited studies were not chronically trained.  All studies recruited 

previously untrained subjects and had them perform concentric exercise for periods 

ranging from one bout to nine weeks prior to the eccentric intervention.  The second 

difference related to the mode of training.  In the present study the subjects combined 

concentric and eccentric contractions as part of their regular training regimen, which 

contrasted with the concentric-only training performed in the studies cited above.  The 

design of the present study does not allow for an answer to the question of whether the 

inclusion of concentric contractions in the trained groups exercise regimen could have 

inhibited the protective effect compared to an eccentric-only program.  Future research 

employing a slightly modified design to that used in the present study could shed light 

on this question. 

 

The final factor to be considered relates to whether the absence of maximal voluntary 

eccentric contractions in the trained groups exercise regimen inhibited the protective 

effect compared to a program that incorporated regular maximal eccentric exercise.  All 

the subjects in the trained group reported that they did not perform any pure “negative” 

(i.e., maximal eccentric) training due to the inconvenience associated with this kind of 

training. A few of the subjects were also of the opinion that this type of training 

increased the likelihood of sustaining an injury. 

 

There is currently a lack of research comparing the responses of criterion measures to 

maximal eccentric exercise between groups who had previously performed chronic 

training incorporating either maximal voluntary eccentric exercise or submaximal 

eccentric contractions.  Nosaka and Newton (2002a) had a group of subjects train using 

only sub-maximal eccentric contractions for a period of 8 weeks and then exposed them 

to a bout of maximal voluntary eccentric exercise 6 weeks later.  Following the maximal 

eccentric exercise subjects produced only a slight attenuation in the markers of muscle 

damage when compared to a previous study.  The previous study used the same 

eccentric intervention but was investigating the repeated bout effect of maximal 

voluntary eccentric contractions.  Using this cross study comparison Nosaka and 

Newton (2002a) concluded that short-term submaximal eccentric-only training was not 
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as effective as a single bout of maximal voluntary eccentric exercise in conferring 

protection against subsequent maximal eccentric exercise. 

 

In light of the Nosaka and Newton (2002a) conclusion, the results of the trained group 

in the present study are interesting as the protective effect seemed to be similar to that 

shown in other studies investigating the “repeated bout” phenomenon and employing 

bouts of maximal eccentric exercise.  In fact, the torque loss experienced by the trained 

group immediately following the exercise intervention showed a greater magnitude of 

protection compared to some of the “repeated bout” studies using maximal eccentric 

exercise in each bout (Clarkson et al., 1992; Clarkson & Tremblay, 1988; Newham et 

al., 1987).  It is possible that several years of lower level mechanical stress caused by 

the sub-maximal eccentric training in the trained group produces neuromuscular 

adaptations similar to that experienced following acute maximal voluntary eccentric 

exercise.  Whether chronic resistance training incorporating maximal voluntary 

eccentric exercise would confer additional protection is unclear and will make for 

interesting future research. 

 

In conclusion, the results of the present study show that chronically resistance trained 

males experienced smaller changes in muscle function, limb circumference, and CK 

activity following maximal eccentric exercise than untrained males despite similar 

performances in the eccentric exercise task.  The aetiology of the protective effect in the 

trained individuals was not able to be determined in the present study but may relate to 

neuromuscular adaptations not directly related to increased strength or muscle mass.  

Future research could be directed at elucidating the physiological mechanisms 

responsible for the adaptations in resistance trained athletes that results in smaller 

changes in most markers of exercise-induced muscle damage compared to untrained 

individuals. 

 

It also appears that the degree of muscle soreness is not a sensitive indicator of the 

magnitude of damage and loss of muscle function in both resistance-trained and 

untrained males. 
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CHAPTER 6 

 
6.1 Introduction 

 

In the previous chapter I explored the variation in responses to eccentric exercise 

associated with training status.  One obvious source of difference between individuals is 

that based on racial background, however, there is presently a dearth of research 

addressing this factor with regard to changes in criterion measures following eccentric 

exercise.  In a study evaluating the efficacy of an analgesic to treat muscle pain, 

Clarkson et al. (2005) subjected individuals of varying racial backgrounds to a bout of 

maximal eccentric exercise of the elbow flexors.  DNA testing of the subjects showed 

that there were a disproportionate number of Asian subjects who were homozygous for 

the MLCK 49T rare allele of the gene coding for the myofibrillar protein myosin light 

chain kinase (MLCK).  When compared with the remainder of the group, subjects 

homozygous for this rare allele produced significantly elevated CK and Mb activity 

following the maximal eccentric exercise. 

 

In our laboratory it has been noted that subjects with a Japanese heritage often produced 

larger CK activity following eccentric exercise than those of Caucasian subjects.  In a 

number of studies mean peak CK activity of between 15,000 – 20,000 IU·L-1 was 

recorded for the untrained male Japanese subjects (Nosaka & Newton, 2002c; Nosaka, 

Newton et al., 2002a; Nosaka & Sakamoto, 2001; Nosaka et al., 2001b) following 24 

maximal eccentric actions of the elbow flexors, which contrasted with values of under 

10,000 IU·L-1 for exercise of the same muscle groups in untrained Caucasians (Clarkson 

et al., 1992; Evans, Knight, Draper, & Parcell, 2002; Jones et al., 1987; Paddon-Jones et 

al., 2000; Saxton et al., 1995; Smith, Keating et al., 1994).  In all bar one of the cited 

Caucasian studies maximal eccentric exercise consisted of appreciably more than 24 

actions, however, the majority included both male and female subjects which may have 

impacted on the mean peak CK activity. 

 

Studies involving other Asian populations have not shown the same magnitude of peak 

CK activity as seen in the Japanese groups following maximal eccentric exercise of the 

elbow flexors.  Chen and Hsieh (2000) reported that untrained male Taiwanese subjects 
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produced mean peak CK activity of approximately 4000 IU·L-1 following performance 

of 3 sets of 10 maximal eccentric contractions of the elbow flexors.  In a subsequent 

study administering the same eccentric exercise protocol to 22 untrained Taiwanese 

males, mean peak CK activity of slightly over 10,000 IU·L-1 was recorded (Chen & 

Hsieh, 2001).  When Chen (2003) had 9 untrained Taiwanese males perform 30 

maximal eccentric contractions of the elbow flexors peak CK activity of approximately 

13,000 IU·L-1 was recorded 5 days following the exercise intervention.  Zainuddin et al. 

(2005; , 2005) and (2006) subjected untrained male and female Malaysian individuals to 

10 sets of 6 maximal eccentric actions of the elbow flexors and recorded peak CK 

activity of less than 4,000 IU·L-1 following exercise for each of the three studies. 

 

In terms of other criterion measures, differences also seemed to be evident between 

studies of Japanese and other races, with the Japanese subjects recording changes of 

slightly greater magnitude.  It is difficult, though, to make definitive comparisons 

between the experiments due to differences in some of the exercise protocols and the 

method of determining certain criterion measures, as well as the inclusion of both 

genders in several of the studies.  In order to provide a more controlled comparison 

between Japanese and Caucasians, an environment needed to be established where both 

groups comprised the same gender, received identical maximal voluntary eccentric 

exercise, and had equivalent criterion measures evaluated using the same method before 

and following the exercise intervention. 

 

Therefore, the purpose of the present study was to compare the changes in criterion 

measures between untrained Caucasian and Japanese males following maximal 

voluntary eccentric exercise of the elbow flexors. 

 

6.2 Methods 

 

6.2.1 Experimental Design 
 

The Caucasian versus Japanese study included two groups of subjects who performed 

the eccentric exercise intervention on the non-dominant arm.  A 2x5 factorial design 

was employed to investigate the effect manipulation of the independent variable had on 

the dependent variables.  The independent variable was racial background (Caucasian or 
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Japanese), and the dependent variables were the criterion measures described below 

(section 6.2.4) and in chapter 3 (section 3.6).  The main experimental period consisted 

of a block of 5 consecutive days of measurement preceded by two familiarization 

sessions.  The time course of the testing sessions is described in section 6.2.4 below. 

 

6.2.2 Subjects 
 

Thirty male subjects, 15 Caucasian and 15 Japanese, volunteered to take part in the 

study, however, one subject of each racial background withdrew prior to all of the data 

being collected.  The mean ± SEM age, height, and weight of the remaining 28 subjects 

is shown in Table 11 below (section 6.3.1).  All subjects completed informed consent 

forms and a medical questionnaire and were free of any disease or injuries that would 

contraindicate their inclusion in the study. 

 

6.2.3 Eccentric Exercise Bout 
 

The exercise intervention consisted of 10 sets of 6 maximal voluntary eccentric actions 

of the elbow flexors against the lever arm of the isokinetic dynamometer (Cybex 6000, 

Ronkonkoma, NY, USA.) moving at constant velocity of 90º·s-1.  A detailed explanation 

of the protocol is provided in chapter 3 (section 3.4). 

 

6.2.4 Timetable of Criterion Measures 
 

The criterion measures evaluated in the present study included MVC torque (isometric 

90o only), ROM, upper arm circumference, CK activity and muscle soreness.  All of the 

criterion measures were recorded during the two familiarisation sessions which were 

completed in the week preceding the eccentric exercise intervention.  Table 10 shows 

the other testing sessions during which the criterion measures were evaluated.  During 

each testing session the order in which the criterion measures were taken remained 

consistent commencing with CK followed by muscle soreness, ROM, upper arm 

circumference, and concluding with MVC torque.  The criterion measures that were 

collected in this study employed the techniques described in chapter 3 (section 3.6). 
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Table 10 

Timetable of Criterion Measure Testing Prior to and Following the Eccentric Exercise 

Intervention 

Criterion measure 
Testing session in relation to the eccentric exercise 

intervention 

 Pre Post Day following eccentric exercise 

 Pre-ex Imm 1 2 3 4 

MVC torque       

ROM       

Circumference       

CK activity       

Soreness       

 

Note. A tick “ ” indicates that testing has taken place at this time point.  

“Circumference” refers to upper arm circumference.  “Pre-ex” and “Imm” 

refer to immediately preceding and immediately following the eccentric 

exercise intervention, respectively. 

A full description of the methods used to analyse the data of the present 

study is outlined in chapter 3 (section 3.8). 

 

6.3 Results 

 

6.3.1 Subject Characteristics and Pre-exercise Criterion Measures 
 

Table 11 displays a comparison of subject characteristics and selected pre-exercise 

criterion measures of isometric torque, upper arm circumference, ROM, and CK activity 

between the Caucasian and Japanese groups. 

 

The Caucasian group was on average 10 years older, five centimetres taller, and 15 

kilograms heavier than the Japanese (p<0.05).  There were also significantly greater pre-

exercise measures in the Caucasian group for isometric torque (~22 Nm) and upper arm 

circumference (~4 cm), however, ROM was 9o less than the Japanese group (p<0.05). 
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Although not statistically significant, pre-exercise CK activity was approximately 29 

IU·L-1 higher in the Japanese group. 

 

All subjects in both groups reported VAS scores of zero for upper arm palpation, 

extension, and flexion soreness. 

 

Table 21 

Comparison of Subject Characteristics and Selected Pre-exercise Criterion Measures 

Between Caucasian and Japanese Groups.  Mean and Standard Error of the Mean 

(SEM) of 14 Subjects are Shown 

Measure Caucasian Japanese 

 Mean SEM Mean SEM 

Age (yr) 

 
30.1 * 1.9 20.5 0.4 

Height (cm) 

 
177.8 * 1.4 172.6 1.1 

Weight (kg) 

 
76.8 * 1.9 61.9 1.1 

Isometric Torque 

90o (Nm) 
65.9 * 3.9 43.6 0.9 

Circumference 

Upper Arm (mm) 
282.2 * 5.2 242.7 3.3 

Range of Motion 

(degrees) 
132.4 * 1.1 141.4 1.9 

Creatine Kinase 

Activity (IU·L-1) 
117 18 146 23 

 

Note: * denotes that the groups are significantly different at p<0.05.  

Independent t-tests with Bonferroni correction were used for the analyses. 
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6.3.2 Isometric Torque 
 

Figure 27 (a & b) shows both absolute and normalized (% of pre-exercise) isometric 

torque for the Caucasian and Japanese groups, respectively, at a fixed angle of 90 

degrees of elbow extension.  The Caucasian group commenced the study with a mean 

isometric torque that was approximately 22 Nm greater than that of their Japanese 

counterparts (Figure 27a).  Immediately following the bout of maximal eccentric 

exercise both groups recorded significant decreases in isometric torque production 

(p<0.05).  When normalized to pre-exercise levels (Figure 27b), it is clear that the 

decrement in isometric torque at this time point was significantly greater for the 

Japanese group (~59%) than the Caucasian (~37%).  Both groups showed continual 

increases in torque over the subsequent days of testing with the Caucasian and Japanese 

groups recovering to approximately 82% and 60% of pre-exercise levels, respectively 

by day 4. 

 

It is evident from Figure 27b that the decrement in normalized torque was significantly 

greater for the Japanese group at all time points following exercise (p<0.05).  In 

percentage terms, however, the rate of recovery in isometric torque from immediately 

following exercise to the final day of testing was similar with both groups increasing by 

approximately 19% over this time.  Examination of Figure 27 (a & b) indicates that 

although the recovery over the four days was similar in terms of percentage, the pattern 

of recovery within the four days varied between the groups.  This is supported by the 

significant time by group interactions (p<0.05). 

 

Figure 28 (a & b) show plots of the normalized isometric torque of individual subjects 

from both the Caucasian and Japanese groups immediately following eccentric exercise 

and four days later.  Inspection of the plots reveals that although the mean values vary 

significantly, the spread of values in both groups is similar.  The coefficient of variation 

for the Caucasian and Japanese groups immediately following exercise was 14.5% and 

15.5%, respectively.  Four days after exercise the coefficients of variation were slightly 

more divergent at 16% for the Caucasian and 20% for the Japanese group. 
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Figure 27.  Comparison between Caucasian (CAU) and Japanese (JAP) groups for 

changes in maximum isometric torque (a) and normalised changes in the torque (b) 

before (pre), immediately after (post), and 1-4 days following exercise.  *: significantly 

different between groups (over all: p<0.05, each time point: p<0.008), #: significantly 

different from pre-exercise value. 
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Figure 28.  Maximum isometric torque level (% pre-exercise value) immediately post-

exercise (a) and 4 days post-exercise (b) for each subject in the Caucasian (CAU) and 

Japanese (JAP) groups. 

 

6.3.3 Range of  Motion (ROM) 
 

Figure 29 (a & b) displays absolute ROM and changes in ROM from pre-exercise 

levels, respectively.  Immediately following the eccentric intervention it can be seen that 

both groups produced significant decreases in ROM (p<0.05).  It is at this time point 

that the Japanese group produced their largest decrease in ROM of slightly over 25o.  

Although in absolute terms (Figure 29 a) the difference is not significant between the 

groups, when considered in terms of changes in ROM from pre-exercise levels (Figure 

29 b) they differed significantly (p<0.05).  This pattern continues over the subsequent 

days of testing with no significant differences evident between the groups in absolute 

terms, however, when considered as changes from pre-exercise levels the groups 

differed at every testing session (p<0.05). 
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The groups also differed temporally in terms of when they produced their largest change 

from pre-exercise levels.  The Caucasian group recorded their greatest decrease in ROM 

one day later than the Japanese group. 

 

The contrasts between the groups extended to the magnitude of the change in ROM with 

the Japanese group producing a decrease of 25.6o, over double that recorded by the 

Caucasians (11.3o).  This difference of approximately 14o between the groups was still 

evident during the final testing session on day 4 following eccentric exercise.  The 

significant time by group interaction reveals that the pattern of changes in ROM over 

the recovery period were different for each group (p<0.05). 

 

Figure 29b shows that although contrasting in terms of magnitude, both groups recorded 

significant changes in ROM from pre-exercise levels during every testing session 

(p<0.05).  By day 4 following exercise both groups had recovered less than 4o from 

their lowest recorded ROM with the Japanese group still experiencing a loss of 

approximately 22o. 
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Figure 29.  Comparison between Caucasian (CAU) and Japanese (JAP) groups for 

changes in absolute ROM (a) and changes in normalized ROM from the pre-value (b) 

before (pre), immediately after (post), and 1-4 days following exercise.  *: significantly 

different between groups (over all: p<0.05, each time point: p<0.008), #: significantly 

different from pre-exercise value. 

 

6.3.4 Upper Arm Circumference 
 

Significant changes in upper arm circumference from pre-exercise levels were evident 

following maximal eccentric exercise (Figure 30 a & b).  The Caucasian group 

commenced the study with an average upper arm circumference approximately four 

centimetres larger than that of the Japanese (Figure 30 a).  The circumference of both 

groups increased significantly from pre-exercise levels immediately following the 

eccentric exercise intervention (p<0.05).  The Japanese group recorded a significantly 

larger increase at this time point with the change in circumference from pre-exercise 

levels being slightly over three times greater than that of the Caucasian group (p<0.05). 
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Figure 30 (a & b) shows that there was a trend for circumference measures to continue 

increasing over the subsequent days of the study with each time point following the 

eccentric treatment significantly greater than pre-exercise values for both groups 

(p<0.05).  Although absolute upper arm circumference was significantly different 

between the groups at all testing time points (Figure 30 a), when the data is treated in 

terms of change from pre-exercise values (Figure 30 b) the Caucasian and Japanese 

groups recorded significant differences immediately following exercise, and at days 3 

and 4 (p<0.05).  The significant main effect for time by group interaction is evident 

upon inspection of Figure 30b where it can be seen that the patterns of increase in 

circumference are different between the groups (p<0.05).  From immediately following 

eccentric exercise to the final day of testing, the upper arm circumference of the 

Japanese group increased by approximately nine percent which was slightly over two 

and a half times that of the Caucasian group. 

 

 
Figure 30.  Comparison between Caucasian (CAU) and Japanese (JAP) groups for 

changes in absolute upper arm circumference (a) and changes in the normalised 

circumference from the pre-value (b) before (pre), immediately after (post), and 1-4 

days following exercise.  *: significantly different between groups (over all: p<0.05, 

each time point: p<0.008), #: significantly different from pre-exercise value. 
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6.3.5 Plasma Creatine Kinase (CK) Activity 
 

There were striking contrasts between the groups in terms of plasma CK activity 

following the 60 maximal eccentric actions of the elbow flexors.  Figure 31 illustrates 

the differing pattern of response between the groups over the days of testing.  Both 

groups commenced the study (pre) with mean values in the normal reference range for 

healthy adults and did not differ significantly in terms of CK activity.  By day 4 

following eccentric exercise the Caucasian group had increased their CK activity 

slightly over 12 fold, however due to the intra-group variability of this criterion measure 

the mean value was not significantly different from the pre-exercise measure.  In 

contrast, the mean CK activity of the Japanese group increased approximately 108 fold 

over pre-exercise levels and was significantly elevated over baseline at days 3 and 4 

(p<0.05). 

 

Differences between the groups were significant at days 3 and 4 with the mean value of 

the Japanese group at day 4 of 15,795 IU·L-1 being about 11 times greater than the 

Caucasian group at the same time (p<0.05).  Figure 32 shows the CK activity of 

individuals in the Caucasian and Japanese groups at day 4.  Not all 14 data points of 

each group are visible due to very similar measures in a number of subjects.  The 

highest recorded CK activity by an individual subject in the Caucasian group was 6080 

IU·L-1.  In contrast, 78.5% of the Japanese subjects recorded CK readings that exceeded 

this value.  The largest CK activity measured on a Japanese subject was 33,700 IU L-1 

(Figure 32). 

 

The pattern of increase in CK activity over the four days following the eccentric 

exercise treatment was also different between the groups and is reflected by the 

significant time by group interaction (p<0.05). 
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Figure 31.  Comparison between Caucasian (CAU) and Japanese (JAP) groups for 

changes in plasma CK activity before (pre), and 1-4 days following exercise.  *: 

significantly different between groups (over all: p<0.05, each time point: p<0.008), #: 

significantly different from pre-exercise value. 

 

                        
 

Figure 32.  Plasma CK activity at 4 days post-exercise for each subject in the Caucasian 

(CAU) and Japanese (JAP) groups. 
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6.3.6 Soreness 
 

All subjects from both groups recorded zero (no pain at all) on the visual analog scale 

for upper arm palpation, extension, and flexion soreness during the pre-exercise testing 

session (Figure 33 a, b, & c).  With the exception of flexion soreness for the Caucasians 

both groups recorded significant increases in soreness at the first testing session 

following the eccentric exercise intervention for palpation, extension and flexion 

(p<0.05).  The soreness for all measures continued to increase and peaked for both 

groups at day 2, after which it began to subside. 

 

Upper arm palpation soreness was significantly elevated above pre-exercise levels at all 

time points following the eccentric intervention for both groups (p<0.05), however, at 

no time was there any significant difference between the groups (Figure 33 a). 

 

Flexion soreness (Figure 33 c) was perceived as being the least sore of the three 

measures following exercise, however, at specific time points after the eccentric 

intervention it was elevated significantly above pre-exercise levels by both groups 

(p<0.05).  As with upper arm palpation soreness, there was no significant difference 

between the groups for any of the testing sessions. 

 

In contrast, there were significant differences between the Caucasian and Japanese 

groups for extension soreness at days 1, 2, and 3 following eccentric exercise.  Although 

the Japanese group was still recording a soreness score in mm double that of the 

Caucasian’s during the final testing session (day 4), the difference was not statistically 

significant. 

 

The highest mean reading for the Caucasian group of 43.1 mm was recorded for upper 

arm palpation soreness, whereas the Japanese group perceived the extension measure to 

be the most uncomfortable with a peak score of 57.4 mm out of a possible 100. 
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Figure 33.  Comparison between Caucasian (CAU) and Japanese (JAP) groups for 

changes in muscle soreness upon palpation (a), extension (b), and flexion (c) before 

(pre) and 1-4 days following exercise.  *: significantly different between groups (over 

all: p<0.05, each time point: p<0.008), #: significantly different from pre-exercise value. 

 

6.4 Discussion 

 

The purpose of the present study was to determine whether the criterion measures 

differed between untrained Caucasian and Japanese males following maximal voluntary 

eccentric exercise of the elbow flexors.  To the best of the author’s knowledge, this is 

the first study to compare a number of the more common criterion measures between 

Caucasian and Japanese subjects subjected to maximal eccentric exercise.  The results 

revealed that there were significant differences evident between the Caucasian and 

Japanese subjects for all of the criterion measures, however, in terms of soreness this 

was restricted to only extension scores. 

 

In our laboratories it had previously been noted that untrained Japanese subjects 

appeared to respond differently to untrained Caucasians.  It was, however, difficult to 

directly compare studies dealing with these two populations due to the differing 
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eccentric exercise interventions employed.  In the present study the independent 

(exercise intervention) and dependent (criterion measures) variables were identical for 

both groups allowing for direct comparisons to be made. 

 

Maximal voluntary contraction (MVC) torque is a commonly measured variable in 

exercise muscle damage studies and is considered by Warren et al. (1999) to provide the 

best measure of muscle injury resulting from eccentric contractions.  In terms of 

isometric torque decrement following the exercise intervention both groups responded 

in a similar manner to that reported in previous studies (Chapman et al., 2005; Newham 

et al., 1987; Nosaka & Clarkson, 1994; Nosaka & Newton, 2002b; Nosaka & Sakamoto, 

2001; Philippou et al., 2004; Rinard et al., 2000).  The nadir occurred immediately 

following the eccentric intervention and maximum isometric torque progressively 

recovered over the subsequent four days (Figure 27 a & b).  Although the general 

pattern of isometric torque loss and subsequent recovery was similar for both groups, 

the magnitude of loss differed with the Japanese group recording significantly greater 

decrements during each testing session following the intervention. 

 

In order to account for the significant difference in baseline (pre) isometric torque 

between the groups (Figure 27a) the torque data from each testing session was 

normalized to pre-exercise values (Figure 27b).  The appreciable loss of torque (~59%) 

recorded by the Japanese group immediately following the eccentric intervention is not 

unique to this study (Figure 27b).  Previous work employing untrained Japanese 

subjects produced similar decrements in this muscle group immediately following 

exercise despite the subjects performing only 12 (Nosaka, Newton et al., 2002b) or 24 

maximal eccentric actions (Murayama, Nosaka, Yoneda, & Minamitani, 2000; Nosaka 

& Newton, 2002c; Nosaka et al., 2001b).  In these studies, however, the lower volume 

of eccentric exercise was administered by an apparatus operated manually by the 

experimenter, and not an isokinetic dynamometer.  From previous experience using 

both types of devices it appears that the manually operated device, commonly employed 

in the laboratories of Clarkson and Nosaka, produces greater decrements in isometric 

torque for a given number of maximal eccentric actions. 

 

In previous Caucasian studies the greatest isometric torque decrements following 

maximal eccentric exercise have varied in magnitude from less than 20% to slightly 
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over 70% (Chapman et al., 2005; Evans et al., 2002; Gleeson et al., 2003; Lee & 

Clarkson, 2003; Lee et al., 2002; Paddon-Jones et al., 2000; Philippou et al., 2004; 

Rinard et al., 2000; Saxton et al., 1995; Sayers & Clarkson, 2003; Sayers et al., 2000a; 

Sayers et al., 2000b).  The large variability in isometric torque decrements among these 

studies may be the result of the gender composition of the groups, the volume of 

repetitions performed, the velocity of the eccentric contractions, or the method 

employed to administer the exercise (e.g., isokinetic dynamometer or other).  When the 

studies cited above were restricted to those that used isokinetic dynamometers to 

administer the exercise, performed no more than 60 repetitions, and employed 

contraction velocities of 120o·sec-1 or less (5 studies), then the average decrement in 

isometric torque was approximately 40%.  This figure is within a few percent of that 

recorded by the Caucasian group of the present study immediately following the 

eccentric exercise intervention (~37%). 

 

By day 4 of recovery the isometric torque of the Japanese group was still significantly 

below that recorded by the Caucasians, despite the rate of recovery being similar for 

both groups.  This difference was likely due to the significantly greater decrement in 

isometric torque of the Japanese group immediately following the eccentric 

intervention.  Studies conducted using a rodent model (Ingalls, Warren et al., 1998a; 

Ingalls, Warren, Zhang, Hamilton, & Armstrong, 2004) have provided evidence that a 

major proportion of the decrement in isometric torque in the short-term following 

eccentric exercise is due to E-C uncoupling.  These authors continue to suspect that the 

cause of this disruption lies at the interface between the dihydropyridine and ryanodine 

receptors (Ingalls et al., 2004).  In a study incorporating untrained men, Deschenes et al. 

(2000) suggested that the disturbance following exercise containing an eccentric 

component was probably due to dysfunction within the E-C coupling mechanism.  

Therefore, it is possible that, following maximal eccentric exercise, the Japanese group 

was more susceptible than the Caucasians to disruption at the interface described by 

Ingalls et al. (2004). 

 

The criterion measures of range of motion, upper arm circumference, CK activity, and 

extension soreness (Figures 29, 30, 31, and 33b, respectively) were also significantly 

different between the two groups at various time points following the eccentric 

intervention.  In fact, it could be argued that all of the criterion measures in the 
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Caucasian group, with the exception of palpation and flexion soreness, exhibited a form 

of repeated bout effect.  It is well established that when individuals are subjected to 

repeated bouts of eccentric exercise, the magnitude of the changes in criterion measures 

are diminished with respect to the initial novel bout (Clarkson & Tremblay, 1988; 

McHugh & Tetro, 2003; Nosaka et al., 1991; Nosaka, Newton, Sacco et al., 2005; 

Nosaka et al., 2001a).  If the Japanese group were exposed to an identical bout of 

eccentric exercise at some time following the first, criterion measures similar to those 

produced by the Caucasian group could be expected.  Nosaka and co-workers have 

previously reported that a repeated bout effect occurs with groups of Japanese subjects 

when exposed to an initial bout of full volume maximal (Nosaka, Newton, Sacco et al., 

2005; Nosaka et al., 2001a), or reduced volume (Nosaka et al., 2001b) maximal 

eccentric exercise.  Based upon previous repeated bout studies employing Japanese 

subjects, minor differences to those produced by the Caucasian group may be expected.  

For example, Nosaka et al. (2005) reported recovery of isometric torque and range of 

motion to be more rapid following a subsequent bout of identical eccentric exercise.  

However, in general, when exposed to the same eccentric exercise intervention the 

criterion measures of the Caucasian group exhibited what looks remarkably like a 

repeated bout type effect.  This is exemplified by the response of creatine kinase activity 

between the groups.  By the final day of testing mean CK activity had increased slightly 

over 12 fold in the Caucasian group compared to approximately 108 in the Japanese 

(Figure 31).  Plots of individual subject responses during the final testing session 

(recovery day 4) reveal that all of the Caucasian subjects exhibited CK responses of less 

than 6500 IU·L-1 which was in striking contrast to the Japanese group who had 71% of 

subjects exceed this value (Figure 32).  In fact, 57% of the Japanese group produced CK 

values in excess of 15,000 IU·L-1. 

 

Palpation and flexion soreness were not statistically different between the groups during 

any of the post-intervention testing sessions (Figure 33a & b).  Considering the between 

group contrasts with regard to the other criterion measures, including extension 

soreness, it is puzzling why palpation and flexion soreness were rated by the subjects as 

being similar.  A possible explanation involves the subjective nature of rating soreness.  

Although the most commonly used marker of injury (Warren, Lowe et al., 1999), 

soreness measured by a visual analog scale is the most subjective criterion measure and 

is potentially open to larger error. 
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Although it was not the purpose of the present study to investigate the aetiology of the 

differences between the two groups, some mention is made concerning potential causes 

in the section below discussing future studies. 

 

When considering the discussion presented above, the possibility exists that the 

differences in selected pre-exercise absolute criterion measures between the Caucasian 

and Japanese groups (Table 11) could account for some, or all, of the significant 

differences between the groups following the eccentric exercise intervention.  Although 

this possibility cannot be totally discounted the likelihood is appreciably reduced due to 

the affected criterion measures of both groups being matched at the pre-exercise level 

by the application of normalizing procedures.  Ideally, the groups would have been 

matched in absolute terms at the pre-exercise stage, however, although this was the 

intent during the design of the study it proved extremely difficult for a number of 

reasons.  In the first instance, the study was conducted using volunteers and the average 

age of those that volunteered to complete the experiment was significantly higher for 

the Caucasian group.  Although the contrast in age in the present study is undesirable 

some recent (2006) unpublished findings of Lavender and Nosaka showed that, with the 

exception of muscle soreness, young (19-25 yrs) and middle-aged (41-57 yrs) Japanese 

men did not differ in changes in criterion measures following eccentric exercise. 

 

The second problem involved the size of the subjects in terms of height, weight, and 

arm circumference.  The untrained Japanese subjects were of a smaller stature than their 

Caucasian counterparts and it was not possible to match them on any of these measures.  

In a study investigating the nutrient intakes of middle-aged individuals from China, 

Japan, the United Kingdom, and the United States it was noted that the average body 

mass index (BMI) was appreciably higher for the Western groups (Zhou et al., 2003).  

From the problem experienced matching the two groups in the present study, it would 

appear that a similar trend in BMI is also evident in the younger age groups of these 

populations. 

 

Whether other Asian populations experience changes similar to those recorded for the 

Japanese group of the present study is unclear.  In order to investigate this question 

studies would need to control for subject gender, eccentric exercise protocol and 
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criterion measures.  In our laboratory we have recently exercised three groups of 

Malaysian subjects using an eccentric intervention and criterion measures that were 

identical to the current study (Zainuddin, Hope et al., 2005; Zainuddin, Newton et al., 

2005; Zainuddin et al., 2006), however, a potential confounding variable was that the 

Malaysian groups were comprised of both genders.  For the criterion measures of 

isometric torque, arm circumference, and CK the Malaysian groups experienced 

changes similar to those shown by the Caucasian subjects of the current study.  For 

range of motion measures the Malaysian groups recorded changes similar to those of the 

Japanese subjects.  Extension soreness scores of two of the Malaysian groups were 

similar to the Japanese and one was appreciably higher.  In terms of flexion soreness the 

two Malaysian groups that had this measure recorded rated the discomfort as 

appreciably higher than both the Caucasian and Japanese groups.  Future studies could 

match Malaysian or other non-Japanese groups and investigate whether they differ from 

a similarly matched Japanese group in the responses of the criterion measures to an 

identical eccentric exercise protocol. 

 

Prior to investigating the aetiology of any contrasting responses of Japanese and 

Caucasian populations, it was important to establish that the two population groups did 

in fact differ in at least one or more of the criterion measures.  Therefore, the design of 

the present study was not to examine any underlying causes but simply to investigate 

whether the two groups differed with regard to any of the criterion measures.  Having 

established that differences are apparent, future studies investigating the discrepant 

responses of Caucasian and Japanese populations to eccentric exercise could focus 

attention on a number of areas such as variations in genetics, diet, and daily activity 

between the groups.  It would also be interesting to examine whether female sub-groups 

from these populations differ in a similar manner to the males of the present study. 

 

To date, there has been very little research focused on linking post eccentric exercise 

differences in criterion measures between subjects to genetic factors.  Clarkson et al. 

(2005) subjected individuals (78 men and 79 women) of varying racial backgrounds to a 

bout of maximal eccentric exercise of the elbow flexors.  They noted that some of the 

subjects produced CK and myoglobin activity that was significantly larger than others 

despite all individuals receiving the same eccentric exercise intervention.  DNA analysis 

of the subjects revealed that there were a disproportionate number of Asian subjects 
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who were homozygous for the MLCK 49T rare allele of the gene coding for the MLCK.  

Subjects homozygous for this rare allele produced significantly elevated CK and Mb 

activity following the exercise.  The Clarkson et al. (2005) study also revealed that 

although the release of CK & Mb from damaged muscle was strongly associated with 

MLCK C49T genotype, the protracted strength loss was not.  On-going research such as 

that of Thompson et al. (2004), investigating functional polymorpisms associated with 

human muscle size and strength, may locate other genes and polymorphisms within 

those genes that are likely to be implicated with the deleterious effects induced by novel 

eccentric exercise.  Chen et al. (2003) have also recently showed that damaging 

eccentric exercise in humans induced a series of genes involved with stress response, 

specific growth promotion, and anti-proliferation.  As allele frequencies are known to 

vary as a function of ethnicity (Thompson et al., 2004), examination in this context of 

any candidate genes and their polymorphisms located from current research may shed 

light on the apparent contrasting responses of untrained Caucasian and Japanese groups. 

 

Examination of dietary differences between the two ethnic groups may also reveal 

information that could form the basis of future research investigating the contrasting 

responses of the criterion measures to the eccentric intervention.  It has been shown that 

the macro- and micro-nutrient composition of the traditional diet of 40-59 year old East 

Asians differs from that of their Western counterparts (Zhou et al., 2003).  Western diets 

have been found to be higher in total fat, saturated and trans fatty acids, higher in simple 

sugars, and lower in total carbohydrate and starch (Zhou et al., 2003).  A 2002 study by 

Andersson and colleagues (2002) reported that the fatty acid composition of muscle 

lipids in skeletal muscle reflects the dietary fatty acid composition of healthy men and 

women.  It has also been shown that regular exercise training (Helge, Wu et al., 2001) 

or a single bout of eccentric exercise (Helge, Therkildsen et al., 2001) influences fatty 

acid composition of phospholipids in the muscle membrane.  Zhou et al. (2003) reported 

that the Asian diet was higher in sodium and lower in potassium resulting in an elevated 

sodium / potassium ratio.  Fish intake for all ages is known to be high in Japan (Arisawa 

et al., 2003), although when dietary fats were classified according to origin, Japanese 

males and females in their 30s were found to consume less oil of marine origin 

(Nakamura et al., 1995).  Despite these findings the diet of young Japanese males 

appears to remain isoflavone rich.  Lewis et al. (2005) compared 60 Japanese and 60 

New Zealand males between 21 and 31 years of age who were consuming traditional 
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diets and found plasma genistein and equol levels that were several times higher in the 

Japanese males.  Their study also revealed that androstenedione, 

dehydroepiandrosterone, calculated free testosterone and markers of 5alpha-reductase, 

dihydrotestosterone, and the combined levels of androsterone sulfate and 

epiandrosterone sulfate were significantly higher in the Japanese males.  Levels of the 

compounds measured by Lewis et al. (2005) were not determined in the subjects of the 

present study, however, if the Japanese group did possess greater steroidogenesis then it 

would be interesting to investigate whether this played a role in the contrasting criterion 

measures between the groups. 

 

Monitoring daily activity of the Caucasian and Japanese subjects in the present study 

may have shed some light on the differences found between the groups in terms of pre-

exercise anthropometric data and responses of the criterion measures to the eccentric 

intervention.  In an attempt to establish whether the untrained Japanese subjects perform 

less daily activity involving contractions of an eccentric nature, future studies could 

consider monitoring both the volume and type of activity undertaken by the participants 

in a selected period prior to the eccentric intervention. 

 

In conclusion, when untrained Caucasian and Japanese males were subjected to a bout 

of 60 maximal eccentric contractions of the elbow flexors, significantly greater changes 

in all criterion measures, with the exception of palpation and flexion soreness, were 

recorded in the Japanese group. 
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CHAPTER 7 

SUMMARY AND RECOMMENDATIONS 

 

Despite the substantial body of research accumulated on eccentric exercise-induced 

muscle damage, there remain several areas that warrant further investigation.  In 

previous chapters it was reported that there are many factors with the potential to 

influence the magnitude of changes in markers of muscle damage following eccentric 

exercise.  If eccentric exercise study designs incorporate groups with a mixture of these 

factors, there exists the potential for increased intra-group variability in the responses of 

the criterion measures leading to a lowered sensitivity for detecting significant inter-

group differences. 

 

Of the many factors that have been proposed to influence the magnitude of changes in 

markers of muscle damage following eccentric exercise, contralateral limb usage, 

resistance training status, and racial denomination have received limited research 

attention.  In order to address the lack of experimental data relating to these factors, 

three studies were designed to investigate the following research questions.  The first 

question focused on whether there would be changes in the markers of muscle damage 

and soreness between contralateral arms of untrained males following maximal 

eccentric exercise of the elbow flexors.  The second question addressed whether the 

markers of exercise-induced muscle damage and soreness would differ between 

untrained and resistance-trained males following maximal voluntary eccentric exercise 

of the elbow flexors.  The final question focused on whether there would be changes in 

the markers of muscle damage and soreness between untrained Caucasian and Japanese 

males following maximal voluntary eccentric exercise of the elbow flexor muscles. 

 

The initial study incorporated an intra-subject design and examined the first research 

question by investigating two aspects of intra-subject variability in criterion measures 

following maximal voluntary eccentric exercise of contralateral elbow flexor 

musculature (i.e., arms).  The first aspect that was addressed related to whether maximal 

eccentric exercise of the elbow flexors of one arm would influence the response of the 

same muscle group in the contralateral arm when exposed to a subsequent bout of 



 

 124

identical eccentric exercise.  In order to remove the effect of arm dominance from this 

question, the exercise bouts were counterbalanced with dominant and non-dominant 

arms.  The second aspect related specifically to the issue of arm dominance and 

investigated whether the criterion measures would differ between the elbow flexors of 

dominant and non-dominant arms.  In order to remove any possible effect of cross 

education protection, the dominant and non-dominant arms were counterbalanced 

between the two eccentric exercise bouts.  Investigation of whether contralateral arms 

differ in their response to identical eccentric exercise is important as many studies have 

and will continue to use a model employing both arms to study various interventions.  

These studies work on the assumption that changes in the markers of exercise-induced 

muscle damage between contralateral arms do not differ following identical eccentric 

exercise. 

 

The findings of the first study revealed that for some of the criterion measures there 

were significant differences between contralateral arms of the first and second eccentric 

exercise bouts, suggesting that order of exercise plays an important role.  However, 

when dominant and non-dominant arms were compared, there were no significant 

differences in any of the criterion measures.  Therefore, it is recommended that if an 

intra-subject design is employed using contralateral arms dominant and non-dominant 

comparisons should be made with arm dominance counterbalanced between the first 

and second exercise bouts.  An important additional finding of the research, though, 

demonstrated that the correlation was low between dominant and non-dominant arms 

for changes in criterion measures following maximal eccentric exercise and that the 

responses of each arm deviated appreciably from the line of identity.  This has led to the 

suggestion that although there was no statistically significant difference between 

dominant and non-dominant arms, the model may not be sensitive to any small but 

‘real’ differences due to an intervention.  It is unknown how contralateral arms of 

resistance trained subjects would respond to identical eccentric exercise.  Whether the 

changes in markers of exercise-induced muscle damage would reflect that shown by 

untrained subjects remains to be elucidated and it was suggested in chapter 4 that this 

should be investigated in future work. 

 

The second research question was investigated in study two where the responses of 

untrained and trained subjects were compared following identical maximal eccentric 
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exercise of the elbow flexor muscles.  This research is useful because it employed an 

identical exercise intervention for both groups, allowing the results to contribute toward 

our understanding of whether neuromuscular adaptations due to resistance training are 

effective in attenuating the decrements in muscle function previously shown in research 

involving untrained subjects exposed to the same exercise intervention.  The findings 

showed that despite both groups performing similarly in terms of torque and total work 

during the eccentric exercise intervention, the trained subjects produced significantly 

smaller changes for all of the criterion measures, with the exception of muscle soreness.  

The responses of the trained subjects were attributed to adaptations consistent with the 

“repeated bout effect” previously reported in untrained subjects. 

 

In light of the results of the second study three recommendations were made regarding 

future research.  The first suggests that future work should investigate whether a group 

resistance trained in the traditional style incorporating concentric and eccentric 

contractions differs from another that employs eccentric only exercise.  This suggestion 

stems from research in untrained subjects that have reported a greater magnitude of 

exercise-induced muscle damage if the eccentric exercise bout was preceded by 

concentric work on the same muscle group.  The second recommendation for future 

research invites an investigation into whether chronic exercise training, incorporating 

significant maximal voluntary eccentric exercise, confers a greater protective effect on 

criterion measures compared to the traditional style resistance training that incorporates 

high-intensity concentric but submaximal eccentric loading.  The final recommendation 

urges that there be investigation into uncovering the underlying mechanisms responsible 

for conferring the adaptations in resistance trained individuals that allows them to 

experience smaller changes in most markers of exercise-induced muscle damage 

compared to those that are untrained. 

 

The final research question, designed to address racial differences, was examined in the 

third study where the responses of the criterion measures to maximal eccentric exercise 

were compared between Caucasian and Japanese subjects.  The findings revealed that 

racial differences appear to exist as the Japanese subjects produced significantly greater 

changes in all of the criterion measures, with the exception of upper arm palpation and 

flexion soreness.  The aetiology of the racial differences remain to be elucidated 
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although it was suggested that they may be related to genetic differences in the Asian 

population as reported by Clarkson et al. (2005). 

 

It was suggested that future studies investigating the differing responses between these 

two racial groups to eccentric exercise focus on areas such as variations in genetics, 

diet, and daily activity between the groups.  It was also proposed that ensuing studies 

compare the responses of Caucasian and Japanese females to maximal voluntary 

eccentric exercise in order to determine whether the results of the male groups are 

reflected in the opposite gender. 

 

All three studies comprising the present doctoral thesis share more than one common 

element.  Firstly, as mentioned in the opening paragraph of this chapter, they each 

investigated factors that have been proposed to influence the magnitude of changes in 

markers of exercise-induced muscle damage and DOMS.  However, they also share 

another commonality in that either directly or indirectly they are concerned with the 

variability of responses of the criterion measures to maximal voluntary eccentric 

exercise. 

 

In order to design a model that is sensitive to small changes in the criterion measures 

following an eccentric exercise intervention, intra-group variability should be 

minimised.  As such, the findings of each of the three presented studies provide 

information that can be of assistance when forming these types of subject groupings.  If 

difficulty in subject recruitment is an issue and study duration is not as critical, then an 

intra-subject contralateral limb model may be an attractive option.  However, the results 

of the first study suggest that due to the variability between contralateral arms this 

model may be no more sensitive than an inter-subject design in detecting small changes 

in criterion measures.  If, however, an inter-subject model is adopted and sensitivity to 

small changes in criterion measures is important, then results from the final two studies 

suggest that from a variability standpoint it would not be wise to mix male resistance 

trained and untrained individuals, and / or  Caucasian and Japanese men within a group.  

Whether the term ‘Japanese’ can be extended to other Asian populations is unclear and 

warrants further research.  Future studies should also determine whether the findings of 

the present investigations extend to the female gender. 
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The studies comprising the present thesis have contributed to the body of knowledge by 

investigating three factors suspected of influencing the magnitude of changes in markers 

of exercise-induced muscle damage.  The research has provided evidence that these 

factors do have the potential to impact the results of exercise related muscle damage 

investigations and as such provide information that could prove useful in future study 

design. 

 

By way of some concluding remarks I feel that it has been a privilege to conduct 

research that hopefully contributes some small pieces to the complex jigsaw that is 

exercise-induced muscle damage.  The experimental studies completed as part of the 

present doctoral work were important because they determined that differences do exist 

between individuals of different training status and race following maximal eccentric 

exercise.  It was also shown that criterion measure responses of contralateral arms differ 

significantly if bout order is not counterbalanced across groups.  However, the present 

studies simply described the changes due to the interventions, what is required of 

subsequent research is to elucidate the underlying mechanisms contributing to the 

observed differences.  With emerging tools and techniques designed to probe such 

mechanisms, I look forward with anticipation and excitement to contributing to the 

future research effort. 
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Medical Questionnaire 

 

The following questionnaire is designed to establish a background of your medical history, 

and identify any injury and/ or illness that may influence your testing and performance. 

Please answer all questions as accurately as possible, and if you are unsure about any thing 

please ask for clarification.  All information provided is strictly confidential.  If you 

answer "yes" to any non-exercise related question that may contraindicate you from 

completing this study a clearance from a qualified medical practitioner will be required 

prior to commencement of any exercise or testing. 

 

Personal Details 

 

Name:________________________________ ID number:_________________ 

 

Date of Birth (DD/MM/YYYY):__________________  

 

Medical History 

 

Have you ever had, or do you currently have any of the following? 

 

If YES, please provide details 

 

High or abnormal blood pressure Y N ___________________________ 

 

High cholesterol   Y N ___________________________ 

 

Rheumatic fever   Y N ___________________________ 

 

Heart abnormalities   Y N ___________________________ 

 

Asthma    Y N ___________________________ 

 

Diabetes    Y N ___________________________ 

 

Epilepsy    Y N ___________________________ 
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Recurring back pain   Y N ___________________________ 

 

Recurring neck pain   Y N ___________________________ 

 

Severe allergies   Y N ___________________________ 

 

Any infectious diseases  Y N ___________________________ 

 

Any neurological disorders  Y N ___________________________ 

 

Any neuromuscular disorders  Y N ___________________________ 

 

Are you currently on any medications? Y N_________________________ 

 

Have you had a flu in the last two weeks? Y N_________________________ 

 

Have you recently injured yourself?  Y N_________________________ 

 

Do you have any recurring muscle  

or joint injuries?    Y N_________________________ 

 

Have you had any elbow or  

shoulder problems in the past?  Y N_________________________ 

 

Have you participated in resistance  

training in the last 12 months?  Y N_________________________ 

 

Is there any other condition not previously  

mentioned which may affect your upper  

arm exercise?     Y N_________________________ 
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Lifestyle Habits 

 

Do you exercise regularly?   Y N 

If YES, what do you do?

 ______________________________________________________________ 

How many hours per week?

 ______________________________________________________________ 

 

Do you smoke tobacco?   Y N 

If YES, how much per day?

 ______________________________________________________________ 

 

Do you consume alcohol?   Y N 

If YES, how much per week?

 ______________________________________________________________ 

 

Do you consume tea or coffee?  Y N 

If YES, how many cups per day?

 ______________________________________________________________ 

 

Declaration 

 

I acknowledge that the information provided on this form, is to the best of my knowledge, 

a true and accurate indication of my current state of health. 

 

Participant 

 

Name:_______________________________ 

Date (DD/MM/YYYY):_________________ 

Signature:____________________________ 
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Practitioner (only if applicable) 

 

I, Dr _______________________________________ have read the medical 

questionnaire and information/ consent form provided to my patient 

Mr____________________________________, and clear him medically for 

involvement in the study entitled: (specific study title was inserted here). 

 

 

Date (DD/MM/YYYY):________________________ 
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APPENDIX B 

INFORMED CONSENT FOR STUDY ONE 
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Informed Consent Form 

 
For the study 

 
Comparison of selected measures of muscle function and soreness between 

contralateral elbow flexor muscles of subjects following high-intensity eccentric 
exercise 

 
Thank you for expressing interest in my research. The reason for providing you with the following 
information is to fully inform you of the purpose and the nature of the study.  
 
 
Purpose of the study  
 
The objective of this study is to investigate whether the contralateral elbow flexor muscles of subjects 
significantly differ in regard to selected measures of muscle function and soreness following high-
intensity eccentric exercise. 
 
 
Exercise and Measurements 
 
If you agree to participate in the study, you will be asked to report to the laboratory on nineteen 
separate occasions.  The first and second occasions will be five and three days prior to the first exercise 
session.  These initial laboratory visits will be used to familiarise you with 1) the testing and exercise 
apparatus, and 2) the testing and exercise procedures that will be employed in the study.  The actual 
exercise and testing will be conducted over two eight-day blocks, with a six-week non-exercise rest 
period between the blocks.  On the first day of each block, you will be asked to perform exercise with 
one arm.  Several measurements will be taken immediately before and after, 30 minutes after, and 1, 2, 
3, 4, 5, 6 and 7 days following exercise.  We will also require your approval to take a small sample of 
blood from your finger on eight separate occasions (before, and 1, 2, 3, 4, 5, 6 and 7 days after 
exercise) for analysis of an enzyme called creatine kinase.  During the second block of eight days the 
other arm, referred to as the contralateral arm, will be exercised and tested.  The session will take 
approximately two and a half hours for the first day, and a maximum of 30 minutes for each of the 
remaining days of each block.  The exercise and measurements will take place at a sports science 
research laboratory located at Joondalup campus. 
 
Exercise: You will be asked to perform your exercise task on a machine known as a Cybex 6000 
isokinetic dynamometer.  Your upper arm will be resting on the arm support of a preacher curl bench 
forming a 45-degree angle with the trunk of the body.  Your wrist will be secured to the pad of a lever 
arm, which will cause the forearm to form a 90-degree angle with the upper arm at the starting position.  
During exercise the lever arm will be driven in a downward motion at 90o/ sec by the motor of the 
Cybex forcing the arm angle to extend to a finish position of 180 degrees in one second.  You will be 
verbally encouraged to maximally resist the motion of the lever arm and thereby produce what we call 
a “maximal voluntary eccentric contraction” of the elbow flexor muscles.  The lever arm, and therefore 
your arm, will be returned to the starting position at 9o/ sec by the Cybex during which time you will be 
requested to “relax and let the machine move your arm back to the starting position”.  Exercise will 
consist of 10 sets of 6 maximal eccentric repetitions with a 10-second rest between repetitions and a 3-
minute recovery between sets. 
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Measurements: The following measurements will be taken from the exercised arm. 
 
Range of motion: Your elbow joint angles will be measured by an investigator using a plastic 
goniometer when you, in a standing position, try to fully flex the elbow joint to touch your shoulder 
with the palm, try to straighten the elbow joint, and relax your arm at your side. Range of motion of the 
elbow joint will be assessed by the difference between the flexed and stretched elbow joint angle. To 
obtain consistent measurements, four marks will be placed on the skin by a semi-permanent ink marker 
pen. 
Upper arm circumference: Circumference will be assessed by a constant tension tape measure at five 
sites on your upper arm (3, 5, 7, 9, 11 cm from the elbow crease) when you relax and let the arm hang 
down by your side. To obtain the measurements at consistent sites, the five sites will be marked on the 
skin over the elbow flexors by semi-permanent ink. 
Muscle soreness: Following novel eccentric exercise muscle soreness and tenderness may be 
experienced by subjects.  In this study muscle soreness will be assessed by palpating the selected elbow 
flexor muscles (primarily the biceps brachii) at a number of sites, and extending and flexing the elbow 
joint forcibly, during which time the subjects will be asked to report their level of discomfort using a 
visual analog scale (VAS) with 100 mm line (0: no pain, 100: very painful). 
Plasma creatine kinase activity: Creatine kinase is an intramuscular enzyme that may be detected in the 
blood following novel or unaccustomed exercise.  Approximately 50 µl of blood will be collected in a 
heparinised capillary tube following the piercing of a selected finger with a spring loaded lancet.  
Blood collection will occur immediately prior to the eccentric exercise task and at 1, 2, 3, 4, and 7 days 
post exercise.  The blood will be immediately assessed by a spectrophotometer for plasma creatine 
kinase concentration. 
Maximal isometric torque: Maximal voluntary isometric torque of the elbow flexors at elbow joint 
angles of 90 and 150 degrees will be measured twice, for 3-seconds each, using an isokinetic 
dynamometer and a preacher curl bench. 
Force-velocity relationship: Maximal voluntary torque of the elbow flexor muscles will be measured 
through a set range of motion (90o) for five specific velocities (30, 90, 150, 210, and 300o/ sec).  Two 
attempts will be allowed at each velocity and exercise will be performed on an isokinetic dynamometer 
and a preacher curl bench. 
 
Risk and Ethical Considerations 
 
You may experience some degree of muscle soreness and decreases in muscle function, such as muscle 
strength and range of motion, in the days following exercises. You may also experience swelling of the 
upper arm and forearm.  These symptoms are often seen after unaccustomed exercise containing 
eccentric muscle actions, and will disappear in a week or so. 
You will experience transient discomfort when a lancet pierces your finger during the process of blood 
sampling for creatine kinase analysis.  Since blood is withdrawn by an experienced researcher in 
accordance with a safety manual of blood sampling, risk for infections or injury are negligible.  Other 
measurements employed in the study are risk free. 
No direct comparisons between different individuals participating in the study will be made at any 
stage of the testing.  Analysis of data will be made on a group basis with means and variance between 
selected groups being compared.  You are therefore not in competition with any other individuals in the 
study and will in no way be made to feel that your results are inadequate or incorrect. 
All personal information and test results recorded will remain confidential and will not be used for any 
purpose other than the current study. Moreover, no data analysis will include your name or information 
that may identify you specifically as a subject. 
You will be free to withdraw from this study at any stage and for any reason without prejudice. 
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Requirements 
 
As the study is aimed at assessing any changes that may occur across a period of time, you will be 
requested not to perform unaccustomed exercises or sports activities, not to take any anabolic steroids, 
anti-inflammatory drugs or nutritional supplements, and not to alter your diet and life style (sleeping 
time etc) that may influence your results during the experimental periods.  
Additionally, as the study involves an exercise protocol, it is required that you be healthy at the time of 
testing.  For this reason, you will be asked to complete a medical questionnaire prior to the 
commencement of testing.  
 
Should you have any questions relating to any of the information provided above, please feel free to 
contact me for a further explanation.  If you have any concerns about this research, or would just like to 
speak to an independent person, you may contact the Head of our School, Assoc Prof. Barry Gibson on 
telephone (6304 5037). 
 
Thank you very much for your cooperation and contribution to the study. 
 
Yours Sincerely, 
 
 
Mike Newton B.App.Sci (Hons) MSc. (PhD candidate) 
School of Biomedical and Sports Science, Edith Cowan University 
100 Joondalup Drive, Joondalup WA 6027 
Phone: 6304-5961 E-mail: m.newton@ecu.edu.au 
 
Declaration 
 
I _______________________________________________ have read all of the information contained 
on this sheet, have completed a medical questionnaire, and have had all questions relating to the study 
answered to my satisfaction. 
 
I agree to participate in this study realising that I am free to withdraw at any time, for any reason 
without prejudice. 
 
I agree that the research data obtained from this study may be published, provided I am not identifiable 
in any way. 
 
Participant ________________________________ Date _________________________ 
 
Investigator _______________________________ Date _________________________ 
 
 



 

 
155

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX C 

INFORMED CONSENT FOR STUDY TWO 

 

 



 

 
156

Informed Consent Form 
 

For the study 
 

Comparison of selected measures of muscle function and soreness between elbow 
flexor muscles of trained and untrained subjects following high-intensity eccentric 

exercise 
 
Thank you for expressing interest in my research. The reason for providing you with the following 
information is to fully inform you of the purpose and the nature of the study.  
 
 
Purpose of the study  
 
The objective of this study is to investigate whether the elbow flexor muscles of trained and untrained 
subjects significantly differ in regard to selected measures of muscle function and soreness following 
high-intensity eccentric exercise. 
 
 
Exercise and Measurements 
 
If you agree to participate in the study, you will be asked to report to the laboratory on eight separate 
occasions.  The first and second occasions will be approximately five and three days prior to the first 
exercise session.  These initial laboratory visits will be used to familiarise you with 1) the testing and 
exercise apparatus, and 2) the testing and exercise procedures that will be employed in the study.  The 
actual exercise and testing for the main component of the study will be conducted over a six day block.  
Several measurements will be taken immediately before and after, 30 minutes after, and 1, 2, 3, 4, and 
5 days following exercise.  We will also require your approval to take a small sample of blood from 
your finger on seven separate occasions (during familiarisation session 1, immediately before, and 1, 2, 
3, 4, and 5 days after exercise) for analysis of an enzyme called creatine kinase.  The session will take 
approximately two and a half hours for the eccentric exercise day, and a maximum of 30 minutes for 
each of the remaining days of each block.  The exercise and measurements will take place at a sports 
science research laboratory located at Joondalup campus. 
 
Exercise: You will be asked to perform your exercise task on a machine known as a Cybex 6000 
isokinetic dynamometer.  Your upper arm will be resting on the arm support of a preacher curl bench 
forming a 45-degree angle with the trunk of the body.  Your wrist will be secured to the pad of a lever 
arm, which will cause the forearm to form a 60-degree angle with the upper arm at the starting position.  
During exercise the lever arm will be driven in a downward motion at 90o/ sec by the motor of the 
Cybex forcing the arm angle to extend to a finish position of 180 degrees in just over one second.  You 
will be verbally encouraged to maximally resist the motion of the lever arm and thereby produce what 
we call a “maximal voluntary eccentric contraction” of the elbow flexor muscles.  The lever arm, and 
therefore your arm, will be returned to the starting position at 12o/ sec by the Cybex during which time 
you will be requested to “relax and let the machine move your arm back to the starting position”.  
Exercise will consist of 10 sets of 6 maximal eccentric repetitions with a 10-second rest between 
repetitions and a 3-minute recovery between sets. 
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Measurements: The following measurements will be taken from the exercised arm. 
 
Range of motion: Your elbow joint angles will be measured by an investigator using a plastic 
goniometer when you, in a standing position, try to fully flex the elbow joint to touch your shoulder 
with the palm, try to straighten the elbow joint, and relax your arm at your side. Range of motion of the 
elbow joint will be assessed by the difference between the flexed and stretched elbow joint angle. To 
obtain consistent measurements, four marks will be placed on the skin by a semi-permanent ink marker 
pen. 
Upper arm circumference: Circumference will be assessed by a constant tension tape measure at five 
sites on your upper arm (3, 5, 7, 9, 11 cm from the elbow crease) when you relax and let the arm hang 
down by your side. To obtain the measurements at consistent sites, the five sites will be marked on the 
skin over the elbow flexors by semi-permanent ink. 
Muscle soreness: Following novel eccentric exercise muscle soreness and tenderness may be 
experienced by subjects.  In this study muscle soreness will be assessed by palpating the selected elbow 
flexor muscles (primarily the biceps brachii) at a number of sites, and extending and flexing the elbow 
joint forcibly, during which time the subjects will be asked to report their level of discomfort using a 
visual analog scale (VAS) with 100 mm line (0: no pain, 100: very painful). 
Plasma creatine kinase activity: Creatine kinase is an intramuscular enzyme that may be detected in the 
blood following novel or unaccustomed exercise.  Approximately 30 µl of blood will be collected in a 
heparinised capillary tube following the piercing of a selected finger with a spring loaded lancet.  
Blood collection will occur during familiarisation session 1, immediately prior to the eccentric exercise 
task and at 1, 2, 3, 4, and 5 days post exercise.  The blood will be immediately assessed by a 
spectrophotometer for plasma creatine kinase concentration. 
Maximal isometric torque: Maximal voluntary isometric torque of the elbow flexors at elbow joint 
angles of 90 and 150 degrees will be measured twice, for 3-seconds each, using an isokinetic 
dynamometer and a preacher curl bench. 
Force-velocity relationship: Maximal voluntary torque of the elbow flexor muscles will be measured 
through a set range of motion (90o) for five specific velocities (30, 90, 150, 210, and 300o/ sec).  Two 
attempts will be allowed at each velocity and exercise will be performed on an isokinetic dynamometer 
and a preacher curl bench. 
 
Risk and Ethical Considerations 
 
You may experience some degree of muscle soreness and decreases in muscle function, such as muscle 
strength and range of motion, in the days following exercises. You may also experience swelling of the 
upper arm and forearm.  These symptoms are often seen after unaccustomed exercise containing 
eccentric muscle actions, and will disappear in a week or so. 
You will experience transient discomfort when a lancet pierces your finger during the process of blood 
sampling for creatine kinase analysis.  Since blood is withdrawn by an experienced researcher in 
accordance with a safety manual of blood sampling, risk for infections or injury are negligible.  Other 
measurements employed in the study are risk free. 
No direct comparisons between different individuals participating in the study will be made at any 
stage of the testing.  Analysis of data will be made on a group basis with means and variance between 
selected groups being compared.  You are therefore not in competition with any other individuals in the 
study and will in no way be made to feel that your results are inadequate or incorrect. 
All personal information and test results recorded will remain confidential and will not be used for any 
purpose other than the current study. Moreover, no data analysis will include your name or information 
that may identify you specifically as a subject. 
You will be free to withdraw from this study at any stage and for any reason without prejudice. 
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Requirements 
 
As the study is aimed at assessing any changes that may occur across a period of time, you will be 
requested not to perform unaccustomed exercises or sports activities, not to take any anabolic steroids, 
anti-inflammatory drugs or nutritional supplements, and not to alter your diet and life style (sleeping 
time, etc) that may influence your results during the experimental periods.  
Additionally, as the study involves an exercise protocol, it is required that you be healthy at the time of 
testing.  For this reason, you will be asked to complete a medical questionnaire prior to the 
commencement of testing.  
 
Should you have any questions relating to any of the information provided above, please feel free to 
contact me for a further explanation.  If you have any concerns about this research, or would just like to 
speak to an independent person, you may contact the Head of our School, Assoc Prof. Barry Gibson on 
telephone (6304-5037). 
 
Thank you very much for your cooperation and contribution to the study. 
 
Yours Sincerely, 
 
 
Mike Newton B.App.Sci (Hons) MSc. (PhD candidate) 
School of Biomedical and Sports Science, Edith Cowan University 
100 Joondalup Drive, Joondalup WA 6027 
Phone: 6304-5961 E-mail: m.newton@ecu.edu.au 
 
Declaration 
 
I _______________________________________________ have read all of the information contained 
on this sheet, have completed a medical questionnaire, and have had all questions relating to the study 
answered to my satisfaction. 
 
I agree to participate in this study realising that I am free to withdraw at any time, for any reason 
without prejudice. 
 
I agree that the research data obtained from this study may be published, provided I am not identifiable 
in any way. 
 
Participant ________________________________ Date _________________________ 
 
Investigator _______________________________ Date _________________________ 
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Informed Consent Form 
 

For the study 
 

Comparison of selected measures of muscle function and soreness between elbow 
flexor muscles of Caucasian and Japanese subjects following high-intensity eccentric 

exercise 
 
Thank you for expressing interest in my research. The reason for providing you with the following 
information is to fully inform you of the purpose and the nature of the study.  
 
 
Purpose of the study  
 
The objective of this study is to investigate whether the elbow flexor muscles of Caucasian and 
Japanese subjects significantly differ with regard to selected measures of muscle function and soreness 
following high-intensity eccentric exercise. 
 
 
Exercise and Measurements 
 
If you agree to participate in the study, you will be asked to report to the laboratory on seven separate 
occasions.  The first and second occasions will be approximately five and three days prior to the first 
exercise session.  These initial laboratory visits will be used to familiarise you with 1) the testing and 
exercise apparatus, and 2) the testing and exercise procedures that will be employed in the study.  The 
actual exercise and testing for the main component of the study will be conducted over a five day 
block.  Several measurements will be taken immediately before and after, and 1, 2, 3, and 4 days 
following exercise.  We will also require your approval to take a small sample of blood from your 
finger on six separate occasions (during familiarisation session 1, immediately before, and 1, 2, 3, and 
4 days after exercise) for analysis of an enzyme called creatine kinase.  The session will take 
approximately two and a half hours for the eccentric exercise day, and a maximum of 30 minutes for 
each of the remaining days.  The exercise and measurements will take place at a sports science research 
laboratory located at Joondalup campus. 
 
Exercise: You will be asked to perform your exercise task on a machine known as a Cybex 6000 
isokinetic dynamometer.  Your upper arm will be resting on the arm support of a preacher curl bench 
forming a 45-degree angle with the trunk of the body.  Your wrist will be secured to the pad of a lever 
arm, which will cause the forearm to form a 60-degree angle with the upper arm at the starting position.  
During exercise the lever arm will be driven in a downward motion at 90o/ sec by the motor of the 
Cybex forcing the arm angle to extend to a finish position of 180 degrees in just over one second.  You 
will be verbally encouraged to maximally resist the motion of the lever arm and thereby produce what 
we call a “maximal voluntary eccentric contraction” of the elbow flexor muscles.  The lever arm, and 
therefore your arm, will be returned to the starting position at 12o/ sec by the Cybex during which time 
you will be requested to “relax and let the machine move your arm back to the starting position”.  
Exercise will consist of 10 sets of 6 maximal eccentric repetitions with a 10-second rest between 
repetitions and a 3-minute recovery between sets. 
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Measurements: The following measurements will be taken from the exercised arm. 
 
Range of motion: Your elbow joint angles will be measured by an investigator using a plastic 
goniometer when you, in a standing position, try to fully flex the elbow joint to touch your shoulder 
with the palm, try to straighten the elbow joint, and relax your arm at your side. Range of motion of the 
elbow joint will be assessed by the difference between the flexed and stretched elbow joint angle. To 
obtain consistent measurements, four marks will be placed on the skin by a semi-permanent ink marker 
pen. 
Upper arm circumference: Circumference will be assessed by a constant tension tape measure at five 
sites on your upper arm (3, 5, 7, 9, 11 cm from the elbow crease) when you relax and let the arm hang 
down by your side. To obtain the measurements at consistent sites, the five sites will be marked on the 
skin over the elbow flexors by semi-permanent ink. 
Muscle soreness: Following novel eccentric exercise muscle soreness and tenderness may be 
experienced by subjects.  In this study muscle soreness will be assessed by palpating the selected elbow 
flexor muscles (primarily the biceps brachii) at a number of sites, and extending and flexing the elbow 
joint forcibly, during which time the subjects will be asked to report their level of discomfort using a 
visual analog scale (VAS) with 100 mm line (0: no pain, 100: very painful). 
Plasma creatine kinase activity: Creatine kinase is an intramuscular enzyme that may be detected in the 
blood following novel or unaccustomed exercise.  Approximately 30 µl of blood will be collected in a 
heparinised capillary tube following the piercing of a selected finger with a spring loaded lancet.  
Blood collection will occur during familiarisation session 1, immediately prior to the eccentric exercise 
task and at 1, 2, 3, and 4 days post exercise.  The blood will be immediately assessed by a 
spectrophotometer for plasma creatine kinase concentration. 
Maximal isometric torque: Maximal voluntary isometric torque of the elbow flexors at elbow joint 
angles of 90 and 150 degrees will be measured twice, for 3-seconds each, using an isokinetic 
dynamometer and a preacher curl bench. 
 
Risk and Ethical Considerations 
 
You may experience some degree of muscle soreness and decreases in muscle function, such as muscle 
strength and range of motion, in the days following exercises. You may also experience swelling of the 
upper arm and forearm.  These symptoms are often seen after unaccustomed exercise containing 
eccentric muscle actions, and will disappear in a week or so. 
You will experience transient discomfort when a lancet pierces your finger during the process of blood 
sampling for creatine kinase analysis.  Since blood is withdrawn by an experienced researcher in 
accordance with a safety manual of blood sampling, risk for infections or injury are negligible.  Other 
measurements employed in the study are risk free. 
No direct comparisons between different individuals participating in the study will be made at any 
stage of the testing.  Analysis of data will be made on a group basis with means and variance between 
selected groups being compared.  You are therefore not in competition with any other individuals in the 
study and will in no way be made to feel that your results are inadequate or incorrect. 
All personal information and test results recorded will remain confidential and will not be used for any 
purpose other than the current study. Moreover, no data analysis will include your name or information 
that may identify you specifically as a subject. 
You will be free to withdraw from this study at any stage and for any reason without prejudice. 
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Requirements 
 
As the study is aimed at assessing any changes that may occur across a period of time, you will be 
requested not to perform unaccustomed exercises or sports activities, not to take any anabolic steroids, 
anti-inflammatory drugs or nutritional supplements, and not to alter your diet and life style (sleeping 
time, etc) that may influence your results during the experimental periods.  
Additionally, as the study involves an exercise protocol, it is required that you be healthy at the time of 
testing.  For this reason, you will be asked to complete a medical questionnaire prior to the 
commencement of testing.  
 
Should you have any questions relating to any of the information provided above, please feel free to 
contact me for a further explanation.  If you have any concerns about this research, or would just like to 
speak to an independent person, you may contact the Head of our School, Assoc Prof. Barry Gibson on 
telephone (6304-5037). 
 
Thank you very much for your cooperation and contribution to the study. 
 
Yours Sincerely, 
 
 
Mike Newton B.App.Sci (Hons) MSc. (PhD candidate) 
School of Biomedical and Sports Science, Edith Cowan University 
100 Joondalup Drive, Joondalup WA 6027 
Phone: 6304-5961 E-mail: m.newton@ecu.edu.au 
 
Declaration 
 
I _______________________________________________ have read all of the information contained 
on this sheet, have completed a medical questionnaire, and have had all questions relating to the study 
answered to my satisfaction. 
 
I agree to participate in this study realising that I am free to withdraw at any time, for any reason 
without prejudice. 
 
I agree that the research data obtained from this study may be published, provided I am not identifiable 
in any way. 
 
Participant ________________________________ Date _________________________ 
 
Investigator _______________________________ Date _________________________ 
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APPENDIX E 

VISUAL ANALOG SCALE FOR RATING OF SORENESS 
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Name ___________________________________  Bout  
 
Exercised Arm:   L   R  STUDY _________________ 
 
D1 D2 D3 D4 D5 D6 D7  
 
Upper arm 
 
Palpation 1 ( 3-5) 0_______________________________________________100  
 
Palpation 2 (9-11) 0_______________________________________________100 
 
Brachialis 
 
Palpation 3       0_______________________________________________100 
 
Forearm 
 
Palpation 4  0_______________________________________________100 
 
Extension & Flexion Soreness 
 
Extension  0_______________________________________________100 
 
Flexion  0_______________________________________________100 
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