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Abstract
In the wetting of a solid by a liquid it is often assumed that the substrate is rigid. However, for an elastic substrate the rigidity

depends on the cube of its thickness and so reduces rapidly as the substrate becomes thinner as it approaches becoming a thin sheet.

In such circumstances, it has been shown that the capillary forces caused by a contacting droplet of a liquid can shape the solid

rather than the solid shaping the liquid. A substrate can be bent and folded as a (pinned) droplet evaporates or even instantaneously

and spontaneously wrapped on contact with a droplet. When this effect is used to create three dimensional shapes from initially flat

sheets, the effect is called capillary origami or droplet wrapping.

In this work, we consider how the conditions for the spontaneous, capillary induced, folding of a thin ribbon substrate might be

altered by a rigid surface structure that, for a rigid substrate, would be expected to create Cassie–Baxter and Wenzel effects. For

smooth thin substrates, droplet wrapping can occur for all liquids, including those for which the Young’s law contact angle (defined

by the interfacial tensions) is greater than 90° and which would therefore normally be considered relatively hydrophobic. However,

consideration of the balance between bending and interfacial energies suggests that the tendency for droplet wrapping can be

suppressed for some liquids by providing the flexible solid surface with a rigid topographic structure. In general, it is known that

when a liquid interacts with such a structure it can either fully penetrate the structure (the Wenzel case) or it can bridge between the

asperities of the structure (the Cassie–Baxter case).

In this report, we show theoretically that droplet wrapping should occur with both types of solid–liquid contact. We also derive a

condition for the transition between the Cassie–Baxter and Wenzel type droplet wrapping and relate it to the same transition condi-

tion known to apply to superhydrophobic surfaces. The results are given for both droplets being wrapped by thin ribbons and for

solid grains encapsulating droplets to form liquid marbles.
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Introduction
In wetting, the usual implicit assumption is that a solid substrate

is sufficiently thick or rigid, that it does not deform or change

shape due to the interfacial forces that arise when it contacts a

droplet of a liquid, however, in many natural systems this is not

the case. Depositing a small droplet onto a smooth substrate and

measuring the contact angle in side-profile view gives the

contact angle, θ, which is assumed (to within contact angle

hysteresis) to approximate to the Young’s law value, θe, given

by the interfacial tensions, i.e., cosθe = (γSV − γSL)/γLV where

the γij are the interfacial tensions between the solid, liquid and

vapor phases. However, the bending rigidity of a solid elastic

plate scales with the cube of its thickness and this assumption

can become erroneous [1]. When a droplet has a radius, R,

larger than the elastocapillary bending length [2], LEC =

(κb/γLV)1/2 the solid can become deformed and shaped by the

liquid. In practice, this effect has been given the name “capil-

lary origami” based on experiments showing how films of poly-

dimethylsiloxane (PDMS) shaped in two-dimensions can be

folded by evaporating droplets of water to produce a designed

three-dimensional shape [3,4]; an effect stronger than the

dimpling of an elastomer surface by a deposited droplet [5].

Capillary origami is more than a curiosity and has implications

for technological applications in creating three-dimensional

structures from initially flat films through the capillary forces

during liquid evaporation and drying [6-8]. The effect of capil-

lary forces due to nanodroplets in activating and guiding the

folding of planar graphene ribbons has recently been simulated

[9].

Figure 1 illustrates capillary origami concepts and effects based

on original ideas by Py et al [3,4]. When a PDMS (Sylgard 184)

substrate of reduced thickness is contacted by a droplet of water

(containing blue food dye) capillary forces bend it out of its

initial planar shape (Figure 1a). When the substrate thickness is

reduced to 45 μm and cut into a triangular shape (10 mm side

lengths) and scored with a laser (Universal Laser Systems 30W

CO2 laser cutter) to create fold-lines (Figure 1b), contact with a

large droplet of water can create a three-dimensional shape

(Figure 1d). On contact by the droplet the sheet is bent

(Figure 1c) and after droplet evaporation a tetrahedron is

formed (Figure 1d). Whilst this is an example of the shaping of

a solid substrate by capillary forces, the final shape relies on

evaporation to complete the process.

Figure 2 illustrates a number of effects as a droplet contacts a

thin PDMS strip substrate (“ribbon”) hanging vertically. If a

droplet is deposited on a long ribbon it causes substrate deform-

ation, but is unable to wrap or fold the substrate around itself

and, as evaporation proceeds, the deformation decreases

(Figure 2a). However, when the length of ribbon below the

Figure 1: Effect of droplets of blue-dyed water on a thin polydimethyl-
siloxane (PDMS) membrane: a) droplet causing bending of the
substrate, b) initial shaped substrate with the three score lines for
folding, c) droplet induced folding, and d) three-dimensional shape left
after completion of evaporation.

droplet contact point is sufficiently short, the contacting droplet

can quickly fold the ribbon up against gravity and wrap itself.

Figure 1 and Figure 2 are illustrative of the ability of capillary

forces to deform, fold and bend substrates. The concepts of

capillary origami and droplet wrapping also have implications

for our understanding of the definition of hydrophobicity and its

relationship to adhesion. Gao and McCarthy demonstrated that

spontaneous and complete droplet wrapping occurs, without the

need for evaporation, with a thin film of Teflon® even though

this material would normally have a contact angle to water

greater than 90° and so be regarded as hydrophobic [10]; an

effect one of the current authors explained on the basis of the

changes in the balance between interfacial and bending ener-

gies [11].

In a previous report, McHale argued from surface free energy

considerations that, when the bending energy is small, all solids

should demonstrate droplet wrapping and so can, in an absolute

sense, be considered hydrophilic [11]. That work also discussed

why for a partially wetting droplet to be observed there is ne-

cessarily an assumption of some rigidity of the substrate, so that

the usual definition of relative hydrophobicity (and relative

hydrophilicity) through contact angle measurement includes a

structural non-surface chemistry based assumption about the

solid. It was also suggested that a set of loose spherical grains

could be considered to be the extreme case of a solid with no

bending energy, thus relating the concept of droplet wrapping to
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Figure 2: Effect of droplets of water on a thin polydimethylsiloxane
(PDMS) membrane ribbon substrate hanging vertically: a) droplet
causing a bending of the substrate which disappears as evaporation
proceeds (three frames), b) spontaneous wrapping as a droplet
touches a membrane ribbon (initial and final states).

that of the formation of liquid marbles [12,13]. It was further

argued that when the flexible solid surface possessed rigid

surface roughness or the solid grains had a rigid surface rough-

ness, droplet wrapping might, under defined conditions for the

surface chemistry defined contact angle, be suppressed. Since

wrapping a spherical droplet requires both bending and

stretching of the solid, in this report, we consider the simpler,

but experimentally realizable, cases of wrapping of a droplet of

water by a thin ribbon and the assembly of solid grains to form

a liquid marble. For both cases, we extend the previous theoreti-

cal consideration to ribbon-type substrates and disconnected

solid grains with a rigid surface structure. We review the case

for surface roughness that has low aspect ratio so that the liquid

can penetrate into the structure – the Wenzel case [14,15]. We

then consider whether droplet wrapping can occur without

penetration into the surface structure – the Cassie–Baxter case

[16,17]. We show that droplet wrapping should occur with both

types of configuration and we derive a condition for the tran-

sition between these two cases; this condition is the same as for

the Wenzel to Cassie–Baxter transition on a superhydrophobic

surface [18,19].

Results and Discussion
1. Droplet wrapping theory
To assess whether it is energetically favourable for a liquid to

become wrapped in a solid we consider the change in inter-

facial energy as the solid–vapor interface is replaced by a

solid–liquid interface together with the increase in bending

energy as the solid deforms from a planar ribbon, similar to

those shown in Figure 2, of width w << R, where R is the

droplet radius. The use of a ribbon substrate allows the problem

to be simplified to a quasi-two dimensional situation. Assuming

there is no spontaneous curvature of the solid film, the initial

energy is given by the sum of the energy associated with the

liquid in contact with the vapor and the surfaces of the solid in

contact with the vapor (Figure 3a),

(1)

where Ai
LV is the initial liquid–vapor interfacial area, Ap

SV is

the initial planar projection of the area of the upper surface of

the solid film, rW is the Wenzel roughness of the surface, and

the γij are the interfacial tensions; the lower surface of the film

is assumed to have an area Alower
SV. The initial liquid-vapor

area is Ai
LV = 4πR2, where R is the droplet radius, and after

wrapping it is assumed that the shape is spherical with the same

radius R. This means that a planar projected area 2πRw of the

ribbon’s area is involved in the wrapping. For simplicity in the

following, we limit the initial ribbon length to 2πR, so that Ap
SV

= 2πRw is assumed.

Figure 3: Initial and final states involved in a droplet wrapping event
for a flexible ribbon membrane with rigid roughness. In the Wenzel
case the liquid penetrates between features and in the Cassie case it
bridges between them.

The energy per unit area, fb, associated with bending and

stretching a thin membrane substrate is related to the principal

radii of curvatures of the substrate,

(2)

where κb is the elastic bending rigidity and κG is the Gaussian

bending modulus [20]. For a film of thickness h, the bending

rigidity is given by κb = Eh3/12(1−ν2), where E is Young’s

modulus and ν is Poisson’s ratio; the Gaussian bending modulus

relates to any stretching or compression of the film. The coeffi-

cients c1 and c2 are the principal radii of curvature, which for a
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spherical droplet are c1 = c2 = 1/R. For a ribbon bending only

along its length c1 = 1/R and c2 = 0 so that for a radius of R the

bending energy per unit area is,

(3)

When the liquid comes into contact with the ribbon, assuming

the ribbon can bend, and that the roughness remains unchanged,

we can imagine two types of wrapping scenarios. In the Wenzel

case, the liquid may penetrate between the surface features and

retain contact with the ribbon at all points along its surface

(Figure 3b). In the alternative Cassie–Baxter case, the surface

structure combined with the surface chemistry may be such that

the liquid bridges between the tops of the surface features

leaving vapor between them (Figure 3c).

1.1 Wenzel case
In the Wenzel case, the liquid penetrates between surface

features (Figure 3b) and the difference in energy between the

final and the initial state related to the attachment of the droplet

to the ribbon is given by,

(4)

which can be rewritten using the definition of the Young’s law

equilibrium contact angle on a rigid surface of cosθe = (γSV −

γSL)/γLV, as,

(5)

For liquids which on a rigid smooth solid substrate are consid-

ered to be partially wetting the cosine satisfies −1 < cosθe < 1

and θe gives a finite Young’s law contact angle. However, for

those liquids which completely wet and form films, the combin-

ation (γSV − γSL)/γLV has a value greater than 1. The combin-

ation of the roughness, rW, multiplying cosθe immediately

introduces the Wenzel contact angle,

(6)

One assumption in Equation 6 is that the final radius of the

wrapped portion of the droplet is approximately the same as the

initial droplet radius.

1.2 Cassie–Baxter case
In the Cassie–Baxter case, complete penetration of liquid

between surface features does not occur (Figure 3c). The

liquid only contacts a fraction φs of the surface thus leaving

a fraction (rW − φs) of the solid surface in contact with the

vapor. In addition, the liquid bridges between surface features,

thus providing a set of menisci, here approximated by a frac-

tion (1 − φs) of the surface with a liquid–vapor interface. The

difference in energy between the final and the initial state

related to the attachment of the droplet to the ribbon is then

given by,

(7)

Cancelling terms involving the roughness factor rW and using

the definition of the equilibrium contact angle on a rigid

substrate of cosθe = (γSV − γSL)/γLV gives,

(8)

Defining the Cassie–Baxter combination cosθCB = φscosθe −

(1−φs), which is familiar from the modelling of droplets on

superhydrophobic surfaces, gives,

(9)

The similarity of Equation 6 and Equation 9 can be revealed by

writing,

(10)

where the subscript T defines the topographic assumption of the

liquid either in a Wenzel (“penetrating”) or Cassie–Baxter

(“skating”) state. In the form presented by Equation 10, the

principal radius of curvature c1 is given by 1/R and so the

energy change per unit area of the ribbon substrate depends on

the droplet size.

1.3 Wrapping and transitions with roughness
The wrapping state will be stable provided the energy change

given by Equation 10 is negative, i.e.,
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(11)

Defining the dimensionless curvature elastocapillary number

nEC = κbc1
2/2γLV, Equation 11 can be written as,

(12)

A ribbon substrate that is unable to bend in response to contact

with the liquid will have an elastocapillary number that tends

to infinity and so wrapping will not occur. When the elasto-

capillary number has a finite value, wrapping will occur, but

will depend on the volume and shape of the liquid. For a drop-

let with a spherical shape of radius R, the elastocapillary

number is nEC = κb/2γLVR2 = ½(LEC/R)2, where LEC =

(κb/γLV)1/2 is the characteristic elastocapillary length.

Equation 12 then becomes,

(13)

This condition for droplet wrapping depends upon the state

of contact of the wrapped liquid with the solid surface, i.e.,

penetrating or skating. For the Cassie–Baxter state with its

air-pockets to be thermodynamically stable compared to

the Wenzel state, requires ΔFCB < ΔFW in addition to

ΔFCB < 0. Since the curvature energy contributes the same

to both, Equation 10 implies cosθW < cosθCB, which gives a

condition on the relationship between the Young’s law

contact angle θe, and the roughness rW and solid surface frac-

tion φs,

(14)

where θc is a critical contact angle for thermodynamic stability

of the Cassie–Baxter state; when the Young’s law contact angle

exceeds the critical contact angle the Cassie–Baxter state is

favoured over the Wenzel state. Equation 14 is exactly the same

as the condition derived by Bico et al., for the thermodynamic

stability of the Cassie–Baxter state on a superhydrophobic

surface [18,19]. As noted by these authors, when 90° < θe < θc,

the Cassie–Baxter state may exist due to, e.g., pinning on sharp

edges of features, but it is a metastable state.

Here we have also only considered a simple model that assumes

either a Wenzel state or a Cassie–Baxter state. However,

surfaces with curvature can effectively have a combination of

both Wenzel and Cassie–Baxter properties with the solid

surface fraction becoming a function of the Young’s law

contact angle [21]. Re-entrant surfaces have been shown to be

particularly effective in producing suspended droplets of liquids

with low surface tensions [22]. Following the superhy-

drophobic literature, we can also anticipate that if the surface

chemistry tends towards hydrophilic (i.e., θe < 90°) there might

be a hemi-wicking effect with the liquid invading the surface

texture, but wetting the asperities of the topographic features. A

simple two-dimensional model consideration of the energy

changes as a liquid invades a structure on a thin substrate

suggests that the critical Young’s law contact angle for hemi-

wicking will be shifted to values lower than θc due to the contri-

bution of bending energy.

1.4 Drop size and contact angle effects
The inclusion of the energy associated with the curvature

of a substrate introduces a characteristic elastocapillary

length and results in drop size effects. For a ribbon film

substrate, Equation 10 implies wrapping requires the

droplet radius R to be greater than a critical radius, Rc, given

by,

(15)

which can be compared to the condition R > LEC/√2

given by Py et al [3]. Thus, there is a critical radius which

depends on the Young’s law contact angle, θe, and the topo-

graphic structure via the surface roughness, rW, or solid surface

fraction, φs.

In the Cassie–Baxter case, cosθT = cosθCB, and θCB can ap-

proach 180° from below and, as it does so, the critical radius for

wrapping tends to infinity; a strongly superhydrophobic ribbon

will not result in droplet wrapping because the energy gain

cannot overcome the bending energy. In the Wenzel case, cosθT

= cosθW, and this is positive when θe < 90°, but negative when

θe > 90°. In the former case, the critical radius becomes smaller

as the Young’s law contact angle tends to zero or as the rough-

ness increases; a film can be wrapped in a tighter curve and,

hence, a smaller droplet radius is needed. It should also be

noted that cosθe is defined by a combination of the interfacial

tensions and this combination can be greater than unity; this

corresponds to a film of liquid on a smooth and rigidly flat

surface. In the considerations above, no account has been taken

of the finite mass of the substrate on the critical volume of

liquid required for wrapping; a problem recently considered

experimentally and theoretically for square and triangular sheets

of PDMS by Chen et al [23].
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2. Liquid marbles and topographically struc-
tured grains
When a solid in the form of a thin ribbon wraps around a drop-

let it only needs to bend, whereas when the solid is a sheet it

needs to either stretch and deform or to crumple and fold. Such

a situation could be considered, but additional energies relating

to these effects would need to be included unless the contribu-

tion from these is at no energy cost. One possible situation that

conceptually is similar to a substrate able to deform and

conform to a liquid surface, but without any bending or

stretching energy cost, is the adhesion of a collection of solid

grains to a liquid surface to encapsulate it and form a liquid

marble (Figure 4a and Figure 4b) [12,13,24]. In an abstract

sense, a collection of grains assembled in a close-packed form

onto a liquid–vapor interface is the extreme limit of a flexible

solid possessing no curvature (or stretching) energy and, hence,

a vanishing elastocapillary length. In the study of liquid

marbles, the simplest assumption is that each grain is spherical

in shape and has no particular surface topography. As a conse-

quence all grains, irrespective of their surface chemistry, will

adhere to the water-air interface; a similar conclusion to that

regarding the absolute hydrophilicity of solids when their curva-

ture energy is zero. The effect of surface chemistry, charac-

terised through the Young’s law contact angle, is to determine

the strength of the adhesion to the air-water interface with

maximum strength corresponding to θe = 90°; if θe > 90° more

than half the grain projects out of the interface into the air. In

practice, the surfaces of the grains do not need to be smooth and

can have a topographic structure. For example, pollen grains

come in a variety of shapes, commonly spherical, ovoid or disc-

like with lengths in the order of 10–100 μm and their surfaces

(exine) under scanning electron microscopy vary from rela-

tively smooth to mesh-like and ones adorned with sharp spikes

(see, e.g., [25]).

By considering the changes in interfacial areas as a spherical

grain of radius Rg with a roughness rW attaches to a droplet of

radius R (Figure 4c), we deduce the change in surface free

energy ΔFM
T,

(16)

where Acap = πRg
2(1 + cosθT) is the spherical cap area of the

solid grain of radius Rg intersecting the droplet and θT is either

the Wenzel contact angle or the Cassie–Baxter contact angle,

depending on whether the liquid penetrates between the topo-

graphic features on the surface of the grain or whether it bridges

between the asperities (and is therefore only in contact with a

fraction of the solid area, φs). In a similar manner to droplet

wrapping, Equation 14 defines a minimum Young’s law contact

Figure 4: Formation of a liquid marbles: a) droplet contacting substrate
composed of loose grains, b) attachment of grains to encapsulate a
droplet, c) minimisation of surface free energy by replacement of a
portion of the liquid–vapor interface by a portion of the rough solid
surface from an attaching grain.

angle for the Cassie–Baxter state to be thermodynamically

stable over the Wenzel state. The idea of a solid film that tends

to a non-adhesive surface for liquids can be extended to non-

stick granular or powder systems. All smooth spherical grains

adhere to the liquid interface because (1 + cosθe) can never be

negative. However, when the surface of a grain is structured it

can become superhydrophobic and it will then only weakly

attach to the surface of the liquid.

Conclusion
In this work, we have focused on a rigid surface structure on a

thin flexible substrate, but the inverse situation of a flexible

surface structure on a rigid substrate has recently also been

modelled [26,27]. A result of that work is an understanding that

elastocapillary effects can provide additional stability for

Cassie-type suspended liquid states involved in, e.g., plastron

respiration [27-29]. It therefore seems likely that to fully under-

stand superhydrophobic surfaces, the flexible nature of elements

of surfaces needs to be understood. Using a model of a thin

ribbon (strip) substrate we have shown that relaxing the

assumption of a rigid substrate allows a contacting droplet to

shape and bend the substrate provided the droplet radius is

larger than a critical value. When the flexible substrate has a

surface with a rigid topographic structure, the critical

droplet radius at which droplets wrap depends on both the

elastocapillary length and a function of either the Wenzel or the

Cassie–Baxter contact angle dependent on the state of the

contact. We have argued that liquid marbles can be thought of

as such a system, but with a vanishing elastocapillary length.

Manipulating the surface structure therefore provides a method,
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complementary to control of substrate thickness, to tune the

balance of adhesive forces between liquids and solids both

within capillary origami and granular systems.
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