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Abstract 
Core to the mathematical innovations of space syntax is the concept of graph-radius. In 
this paper, the authors propose a new mathematical mechanism to provide a relative 
measure for the local/global configuration of an axial line. We propose that cumulative 
depth be redefined as CD = Sum (1/((di-1)^k)) where d is the depth from node i to the 
origin and k is a constant factor. This method is based on the requirement that all nodes, 
within a graph must be included in the analysis. As a result of this stipulation, there is no 
need to relativize the results of a given axial map according to the total number of its 
axial lines (or nodes in its graph). The authors then demonstrate that larger factors of k 
are equivalent to smaller radii in standard integration calculations. By using different 
values of k such as 0 and negative values the authors go on to show that a number of 
different measures can be approximated by simple changes in the k factor. The authors 
conclude their paper by correlating standard ‘radii measures’ (at different radii) and the 
newly proposed ‘decay measures’ (for different values of k) results for a number of axial 
maps and hence clearly demonstrating that this mechanism produces strongly 
correlated results and that the concept of radius, as used in space syntax, may be 
unified with other space syntax measures, harmonising them within a single family of 
equations. This paper concludes that ‘radius’ may be replaced by a decay function 
applied to the network graph and identifies some optimal decay functions. 

Introduction 
Space syntax is the name given to a set of theories and techniques 
concerned with the relationship between complex spatial structures 
and the societies producing/inhabiting them. This approach can be 
applied to both large-scale urban areas and settlements as well as to 
complex buildings. However, at the heart of all space syntax analysis 
is the concept of the network graph. Although the application of graph 
representations to urban or social problems is common, the kinds of 
graphs utilized in space syntax are quite specific and, in some ways, 
unique to the field. This paper will be predominantly concerned with 
the kinds of space syntax graphs that represent urban areas although 
the methods presented in this paper could equally be applied to 
building-scale systems. 
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In an urban space syntax network graph, the nodes of the graph 
typically represent what are termed ‘axial lines’, although, more 
recently, they may, alternatively, represent road segments or road 
centre-lines (Dalton 2000; Conroy Dalton 2001; Dalton 2001; Turner 
2001; Conroy Dalton 2003; Dalton, Peponis and Dalton 2003; Dalton 
2003; Hillier and Iida 2005; Iida and Hillier 2005; Turner 2005; Turner 
and Dalton 2005). An axial line map is a way of discretising a spatial 
system, whereby the fewest and longest lines of sight required to 
access every sub-space (and complete all circulation rings) in the 
system are represented as 2D lines on a plan. Wherever two such 
axial lines intersect, a link is made between the corresponding two 
nodes in the graph representing those lines. If road segments are 
used instead of axial lines, then these are broadly analogous to road 
centre-lines, but, in contrast to, for example, traffic engineers’ models 
(which also depend on a graph meta-description), the nodes represent 
the road segments and the edges in the graph represent the abutment, 
at a junction, between any two road segments. An axial-line graph is 
non-directed and non-planar and a road segment graph is typically 
non-directed i and planar. 

The question, underpinning this research, is whether there is a way to 
unify the variety of different methods for examining the local and 
global properties of a graph by permitting the same basic equation, or 
set of equations, to be applied across all graph-types. The need for 
such an approach has come about as a consequence of the growth in 
computational methods that has taken place in recent years; as the 
methods of space representation (axial line, road segment, road 
centre-line, continuity lines (Figueiredo), isovist/visibility graph 
analysis), of graph representation (non-weighted topological, weighted 
angular, weighted metric) and of relativization (D-value (Hillier and 
Hanson, 1984), vicinity (Dalton, 2005), Teklenburg relativisations 
(Teklenburg, 1993)) have increased so has the need to simplify and 
unify these approaches. An ideal solution would be for the same 
method to be applicable across the range of different space and graph 
representations. 

Radius measures are of particular utility as they permit an 
examination of and hence comparison between local and global 
properties of the graph. In turn, these permit the calculation of 
secondary spatial measures, such as intelligibility and synergy 
(correlations between different local and global properties of a graph). 
What is particularly interesting is that the concept of radius, as used in 
space syntax graphs, represents a mathematical innovation unique to 
this field. The authors have used this concept of local/global 
properties of the graph, as the starting point for their endeavor to 
simplify the current, mathematical formulae. 

The Depth Decay Function 
A decay function is simply a power function, y = f (a-x), in which the 
resultant value, y, decreases in proportion to x. Such formulae are 
particularly useful when modeling physical phenomenon, where a 
value of ‘something’ decreases in relation to ‘something else’ 
commonly time (i.e. radioactive decay) or distance (i.e. gravity). 

Imagine what would happen if we began to consider the axial-line 
graph, which represents an axial map, as if it obeyed some kind of 
distance-decay model. Since every node in the graph represents a 
single axial line and each edge represents the connection of two lines, 
then by applying a generic distance-decay model equation, y would be 

proportional to 
1

d2  where d is the distance between them and y could 

be considered a measure of ‘contiguity’. Of course, there is no ‘real’ 
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distance between two axial lines, as they intersect. In space syntax 
analyses, the distance, or depth, between any two intersecting axial 
lines is always 1. The depth between any two non-intersecting lines is 
equal to the length of the shortest path in the graph connecting the 
two nodes (or the step depth). Angular or fractional analysis, in space 
syntax, utilises non-integer depths between the nodes in the graph, 
which represents the angle between the two lines. Therefore, for non-
angular, axial line graphs, the contiguity between any two intersecting 

lines would be 
1
1

, i.e. 1, and for angular analysis, it would be
1

d2 , 

where d represents the approach angle between the two lines. In 
angularly calculated systems, if two lines connect obtusely, d 
approaches zero and contiguity is high; if two lines connect at close to 
right angles then d approaches 1 and hence producing a low 
contiguity value. This is the first basic stage for introducing the 
concept of distance decay into space syntax graphs. The next stage 
takes this further by looking at justified graphs and mean-depth 
calculations. 

Central to space syntax analysis is the concept of integration, which is 
approximately analogous to the measure of closeness as used in 
graph theory. For the purposes of this paper, it is necessary to explain 
how integration is calculated and, in order to do so, the concepts of 
the justified graph and of mean depth need to be clarified. Imagine 
that a graph has been created which represents an axial line map. Let 
us start from one node (or axial line) in the graph. All lines that 
immediately intersect with the initial line are deemed to be at depth 1 
from the original line (i.e. 1 step away in the graph). All lines 
connected to any of these depth-1 lines are held to be at depth 2 from 
the original starting line, and so on. This can be represented 
graphically as, what is termed, a justified graph. See figure 1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If node A represents an axial line, there are two lines that are 
connected to it, at depth 1 from node A: these are drawn on a row 
above node A. There are three lines (or nodes) connected to one of 
the depth-1 lines, these are considered to be at depth 2 from node A 

Figure 1: 

Justified graph 
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and are shown arranged on a single row. The columns of numbers to 
the right of the graph indicate the number of lines (or nodes) at each 
incremental depth from node A. Usually, a justified graph ‘grows’ until 
every node in the system has been reached and accounted for. In 
order to calculate the mean depth of all lines (or nodes) from line A, 
the number of nodes at each depth is multiplied by its depth value (the 
starting node is held to have zero depth). Therefore, in figure 1, there 
is one node at depth zero (total = 0), two nodes at depth one (total = 
2), three nodes at depth two (total = 6) etc. These values are added 
together to give a sum of 47 (0 + 2 + 6 + 9 + 20 + 10). There are 16 
nodes in the graph, so, excluding the origin node, it can be said that 
the mean depth of all nodes from node A is 47/15 = 3.13. The space 
syntax measure of integration is proportional to the reciprocal of mean 
depth; the smaller the mean depth of a line the more integrated it is 
within the system and the larger the mean depth the less integrated, 
or more segregated it is within the system. However, integration is not 
purely the reciprocal of mean depth, as it is both normalized ii and 
relativized iii for the size of the system, a process that this paper shall 
readdress in its final section. For now, it is enough to know that it is 
proportional to it (on a range of 1 to 0 from the deepest to the 
shallowest it could possibly be given that number of nodes). 

Equation 1 Mean Depth Formula 

mean _ depth _of _ nodek =
di,k

i= 0

i= n

∑
(n −1)

  

where n is the number of nodes in the system 

From the mean depth calculation example above (refer also to 
Equation 1 for the formula) it should be immediately obviously that 
those nodes furthest from the origin node are adding more value to 
the measure and it is for this reason that integration is proportional to 
the reciprocal of mean depth. However, what would happen if a 
reciprocal function were to be introduced directly into the initial 
justified graph? The graph could easily be transformed into one of the 
forms below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INSERT figure 2 here)

Figure 2: 

Justified graphs with 
reciprocal depths 
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It is now clear that it is those nodes that are most proximal or closest 
in graph-steps, to node A that are adding most to the cumulative total, 
and those furthest away contributing least to the mean depth 

calculation. The sum for the reciprocal depths (for 
1

d2 ), in this case, is 

now 3.48. The resultant equivalent to mean reciprocal depth, i.e. 
3.48/15 would be 0.29. (The reciprocal of the previous mean depth 
value, 3.13, is 0.32). However, by introducing the reciprocal of the 
depth, or distances, between the nodes into the justified graph 
equation, we are effectively turning the mean depth calculation into a 
distance-decay model. This approach can be generalized into a more 
flexible, and hence more useful, version, but first a problem with the 
increments of the depths in the justified graphs must be remedied. It 
can be seen, in figure 2, that by assigning the starting node to be 
depth ‘zero’, a problem is introduced into the calculation, as the 
reciprocal of zero is infinity. This problem is encountered again, in a 
slightly different way, in the case of calculating fractional or angular 
mean depth, as two line segments that have no angular deviation 
between them are usually assigned a depth of zero from each another 
(i.e. proceeding in a straight line accumulates no added angular depth 
to the trip), (Dalton 2001; Dalton 2003; Turner 2003). Adding a value 
of 1 to all depths solves both of these problems: d → 1+ d( ) . 
Therefore, the equations for depth decay and mean depth decay may 
be generalized as: 

Equation 2 General Depth Decay Function 

1

1+ di( )xi=1

i=N

∑  

Equation 3 Mean Depth Decay Function 

1

N −1( )
1

1+ di( )xi=1

i=N

∑  

Note that, in equations 2 and 3, the square of the depth has been 
replaced with a power function of the depth, which can take the value 
of 2, but equally need not. By applying different values of x, different 
variants of decay functions may be applied. If we begin to investigate 
the effect of varying the value of x (the power to which the depth is 
raised) some interesting results can be noted. In the next section, this 
paper will document the effect of varying the power of x in the decay 
function, shown in equation 2. 

Variations of the Decay Function and their Potential 
Applications 
Some common variants of the distance decay function are shown 
below. A number of these will be discussed in detail, outlining their 
utility and their relation, if any, to existing space syntax graph 
measures. 

Equation 4 Some Common Depth Decay Functions 

1

(1+ d)3 , 
1

(1+ d)2 , 
1

(1+ d)
, 

1

(1+ d)0.5 , 
1

(1+ d)−0.5 , 1

(1+ d )−1
, 1

(1+ d)−2
, 1

(1+ d)−3
 

In order to discuss the utility of the range of decay functions, it is 
important to understand the concept of radius, as used in space 
syntax and as briefly referred to in the introduction. Returning to the  
justified graph in figure 1, it can be seen that each row of nodes are 
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attributed incremental depth values until all nodes in the network have 
been reached. In space syntax, the concept of radius refers to the 
practice of truncating the justified graph after a maximum depth has 
been reached, see Figure 3. For example, the measure of radius three 
integration, applies the integration formula to all nodes that are depth 
three or less from a starting node. This is akin to placing a moveable 
‘window’ onto the network graph and effectively disregarding all nodes 
falling outside the ‘radius’ or extents of the window. The concept of 
radius could be held to be a kind of decay model insomuch as it 
prioritizes nodes close to the origin node and ignores outlying nodes 
(the difficulty in making this assertion is that radius represents an 
abrupt cut-off and decay models are more gradual). It so happens, 
that in empirical tests (see section 3 and table 1) conducted so far, 

that one particular decay function, 5.6)1(
1
d+

 correlates highly with 

radius three integration. This is important for two reasons: first, radius 
three is a particularly useful radius as it is frequently shown to 
correlate well with observed pedestrian movement. Second, there 
have been some difficulties with respect to relativising radius 
measures (of which radius three is just one example); since the value 
of n, the number of nodes within each radius, constantly varies, it is 
impossible to simply divide by the size of the system. However if a 
decay function is used instead of a radius function, n remains constant 
and therefore relativising becomes far more straightforward, as will be 
discussed at the end of this paper. The higher the power of d (the 
larger the value of x in the equations) the smaller the effective radius 
and the smaller the power of d, the larger the radius until you reach a 
value of x = -1 which is approximately equivalent to total depth and 
inversely proportional to global integration (radius infinity). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normalisation, or relativisation, is important to space syntax as there 
is frequently a need to compare systems (cities, districts, 
neighborhoods) of differing sizes. Dalton has recently shown (Dalton 
2005) that certain anomalies are associated with the current 
relativisation equations as used in space syntax (especially at radii 
greater than ‘radius-radius iv’). One of the benefits of introducing the 
decay function into the justified graph is that not only does it unify 

Figure 3: 

A justified graph with the 
equation 1/(d^2) applied to 
the step-depths 
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radius measures with mean depth/integration measures under the 
same family of equations, but it also simplifies the relativisation 
process in a manner that makes it applicable to both non-angular and 
angular analyses (which hitherto has also been problematic). 

Another benefit of the decay function is that it allows more control over 
the radius selected. By varying the power of d, it becomes possible to 
examine non-integer radius effects, a notion that would have been un-
computable and even nonsensical using the previous methods of 
calculation v. 

Finally, it might even be possible, by exploring variations on the basic 
decay function to arrive at measures with no prior equivalence. One 
such measure is, for want of a better word, the ‘doughnut measure’ 
whereby those nodes furthest away are given greater importance than 
those closest by (illustrated in the final row of table 2). This might be 
termed a ‘true global’ measure. One possible application to this might 
be found in the spatial analysis of crime. It has been shown (van Nes 
2005) that burglars rarely commit crimes in their own neighborhood, 
but instead will travel a minimum distance from their home before 
committing a crime. A measure such as this could be valuable when 
investigating such anomalous spatial behavior. The ‘doughnut’ effect 
occurs where the value of x < -1, i.e. the spatial system becomes 
super-saturated. If there were a radius equivalent of this, it would be 
‘beyond infinity’. At this point, the nodes close by become relatively 
unimportant and all emphasis is placed on the boundary or the edge. 
Such an approach could be useful in the mapping of crime locations. 
The next section will present some preliminary empirical data that 
begins to clarify the correlations between different decay functions 
and radius measures. 

Empirical Correlations between Measures 
In this penultimate section, we will attempt to demonstrate the 
relationship between the depth decay functions and certain measures 
regularly used in space syntax research. It is the intention of this 
paper to demonstrate this relationship empirically through a number of 
real-world examples. First, figure 4 illustrates a typical ‘axial line map’. 
This is the map for an area of London centered on a district called 
Barnsbury (North West London near Kings Cross and St. Pancras 
railway stations). Figure 5 shows the relationship between the axial 
line map and its underlying graph network. In figure 5, a node has 
been placed at the centroid of each axial line; vertices represent the 
intersections of any two lines. Figure 5 retains the geographic and 
metric layout of the original street system. Figure 6 illustrates a typical 
‘justified graph’, in this case from the Pentonville Road (the most 
integrated road in this spatial system). Although far more complex, in 
terms of the number of nodes (or the order of the graph) the principal 
behind the creation of this justified graph is no different to those 
graphs presented in figures 1 and 2. 

In order to empirically test the real world correlates of the various 
decay functions, a number of cities or urban areas were selected. First, 
each area was represented as a space syntax network graph (in the 
same way in which Barnsbury is illustrated in figures 4, 5 and 6). Then 
all depth decay measures were correlated with radius three measures. 
The results of these tests, along with their correlation values 
(expressed in terms of their r-squared correlation coefficients) are 
shown in table 1 below and are expressed graphically in Figure 7. 
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Figure 4: 

Barnsbury axial lines 
network 

Figure 5: 

Network graph of Barnsbury; 
nodes placed at line 
centroids 
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It can be seen here, although this is a small sample of cities, that 
there is some agreement between the radius three and radius seven 
correlates. Essentially, the average power, k, to which (1+d) must be 
raised, that correlates best with radius three is 6.5 Statistically, the r-
squared value for this is high (between 0.9618 ). As a result of these 
good correlations, it is the authors’ suggestion that the definition of 
radius be completely redefined as the ‘act of placing different weights 
on far or near nodes’. This is in direct opposition to the original 
definition of radius, which could only make sense as an integer value, 
as it reflected the number of, whole, steps (or changes in direction) 
away from a starting location. 

Using the real world data, we were also able to determine the effect of 
taking the power of (1+d) to a high positive or low negative value. 
Essentially, by using a high positive value of k, it is possible to 
examine ‘ultra-local’ areas, to an extent where, when k is between 10 
and 15, you achieve an almost perfect correlation with the space 

Figure 6: 

Justified graph from the 
Pentonville Road 

Table 1: 

Correlates with space syntax 
radii measures 

Figure 7: 

Correlation coefficients of 
powers of k with radius 3 
for ten cities 
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syntax measure, ‘connectivity vi’ (when k = 15, r-squared with 
connectivity is 1.0000). When x takes on increasingly low negative 
values, we arrive at a ‘hyper-global’ measure: where all the depth is 
weighted at the extreme edges, this would be a sort of ‘liminality’ 
measure: a measure of the effect or shape of the boundary. 

Conclusion 
The effect of inserting depth or distance decay functions into the 
justified graph has the result of producing an extremely flexible 
method that permits a comparison with existing space syntax 
measures in a uniform way, uniting all current measures under a 
single family of equations. The existing space syntax measures, which 
could be replaced by their new depth decay equivalents, are mean 
depth, integration, all radii measures and connectivity. Second-order 
graph measures, such as intelligibility (the relationship between ‘local’ 
measures and ‘global measures’) could be redefined in terms of the 
relationships between different decay functions (i.e. different powers 
of x) and could represent an expansion of the number of current ways 
of calculating intelligibility; the authors of this paper believe that by 
comparing low and high values for x in the generic depth decay 
function, such new forms of intelligibility could be developed. By 
plotting two continuously variable powers of (1+d), an ‘intelligibility 
surface’ could be created, permitting an hitherto unimaginable 
descriptor of the intelligibility of a system. 

In table 2, overleaf, the primary decay equations are shown alongside 
their approximate equivalent measures in current space syntax terms. 
Column two shows a series of diagrams roughly illustrating these 
concepts. Note that the higher the power of d the smaller the radius 
and vice versa. 

One of the benefits of using the depth decay function at the level of 
the justified graph is that it simplifies the process of relativisation (See 
Park 2005 for an full discussion of relativisation). To recall, 
relativisation was introduced in space syntax in order to facilitate the 
comparison of two spatial systems with differing numbers of spaces 
(or orders of graphs). In practice, the role of relativisation is used to 
perform three tasks. First, is to compare two different graphs, such as 
two separate cities or systems: for example London and Paris. 
Second, to study systems over time, as they evolve or as changes are 
introduced. The third use of relativisation is for the comparison of sub-
systems at the same radius; when doing this, the number of items 
(lines, nodes) encountered within a fixed radius changes along with 
the total depth. 

In his 2005 paper, Dalton, introduced the concept of ‘micro structure’, 
that is the observation that in most real world axial maps the 
correlation between total depth and the number of items encountered 
within radius three strongly correlates with the total depth within that 
radius (r2 > 0.998 typical). Dalton asserts that relativisation in space 
syntax depends upon this near universal ‘micro structure’ property of 
all axial maps. Recently, space syntax has seen a move towards new 
types of representations such as angular/fractional segmented axial 
lines (or road center-lines). It is not clear that this micro-structure 
property, which Dalton considers vital for the proper function of the RA, 
RRA and integration equations, will be found in all types of segmental 
maps. As such, the ability to calculate localised (radius three-like) 
measures within segmental systems, without some revision of the 
current relativisation equations, comes into question. 
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Fundamental to the view of generalized relativisation is the 
observation that the operation must function both with and without 
‘micro-structure’ properties. One method is to avoid the use of the 
count of number of lines encountered and the total depth encountered 
(which ‘micro-structure’ asserts will be proportional). It has already 
been seen that the new depth decay function takes the whole system 
into account when calculating local measures, but proceeds to take 
less interest in the depths of items that are further and further away. In 
effect, the decay function always examines the whole system and so 
effectively breaks the ‘micro-structure’ effect. Distance decay can do 
this and still produces values that are strongly correlated with the 
radius three or radius n measures. What also makes depth or distance 
decay interesting as a function is that it can operate with both rational 
and integer edge-weights. 

Further work needs to be done on establishing, more precisely, the 
relationships between the current ‘tried and tested’ space syntax 
measures and this family of new depth decay measures. This is best 

Table 2: 

Summary of equivalence  
measures 
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done empirically, in the manner which has been presented in this 
paper, namely through the use of graphs representing real-world 
areas, districts and cities rather than idealized or random graphs. 
Additional work needs to be done to establish which depth decay 
functions correlate best with observed flow, both pedestrian and 
different kinds of vehicular flow. The flexibility of the depth decay 
function also facilitates new areas of research, such as investigating 
the effect of assigning weights to the nodes in the graph. Finally, new 
methods of relativisation (across systems not within systems) may be 
applied uniformly to angular, non-angular, weighted and non-weighted 
graphs; however the best way to achieve this must be the product of 
future research and separate publication; it is beyond the scope of this 
paper to fully do justice to this topic. 
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i. A road segment graph could be directed were the one-way road system to be entered into the model, as traffic engineers do. 

ii. Normalisation is the process by which mean depth is transformed in order to set the limits between 0 and 1; the RA and 
RRA equations are used for this purpose. 

iii. This is achieved by dividing by the D-value and is essentially performed to enable value comparisons between systems of 
different sizes. 

iv. Radius-radius is where the radius limit is set to the same value as the mean depth of the system as calculated from the 
most integrated line in the system.  

v. This is true for axial line maps as depths are restricted to integer values, however the concept of non-integer radii is 
currently applicable to fractional or angular analyses where non-integer depths are already being computed. 

vi. In an axial map, the ‘connectivity’ value of a line is the number of other lines that one line intersects. In graph terms, it would 
be equivalent to the degree (in and out) of a node. 
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