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versions of the query image. It was suggestedttieat
query image should be rotated in the range of B3P

In this paper, we propose a solution for the prable degree with a rotation step of one degree to aehiev
of rotated partia' shoeprints retrieval based oreth rotation invariance within that range. That leads t
combined use of local points of interest and SIFT Matching an additional 60 copies of the same query
descriptor. Once the generated features are encodecimage to the reference database in a brute force
using SIFT descriptor, matching is carried out gsin approach that attempts to better the matching score
RANSAC to estimate a transformation model and Such drawback is overcome with the use of coraati
establish the number of its inliers which is then filters [5]. Although rotated copies of the image®
multiplied by the sum of point-to-point Euclidean still used, only the reference images are rotated t
distances below a hard threshold. We demonstrate th generate a unique correlation filter. Still, thesideed
such combination can overcome the issue of retrieva filter is only robust to rotation within the adogte
of partial prints in the presence of rotation andise training range. To achieve a high accuracy, thatiant
distortions. Conducted experiments have shown thaiangle to which the filter is robust in [5] is namer
the proposed solution achieves very good matchingthan in the case of the PSD method [4]. As such

Abstract

results and outperforms similar work in the literst
both in terms of performances and complexity.

1. Introduction

As a form of physical evidence, a shoemark,
which is a mark made when the sole of a shoe come:
into contact with a surface, can provide an imgurta
link between the criminals and the place where the
crime occurred [1-3]. A shoeprint lifted from a 8ee
of Crime (SoC) can be checked against a database t
includes the prints of shoes in the market to deites
its model. It can also be matched against other SoC
prints and shoeprints taken from the crime suspsxts
that a given shoeprint can be identified as beiaglen
by a specific shoe. Several techniques and algosith
have been reported in the literature for automatic
classification, recognition, indexing and retrievaf
shoe prints in the presence of rotation and noise
distortions. Chazal et al[4] proposed a system for
automatically sorting a database of shoeprintsase
the outsole patterns in the Fourier domain in respo
to a reference shoeprint. As shown in [4], the Rowe
Spectral Density (PSD) coefficients of the image ar
calculated using the Fourier Transform and used as
features. A correlation function of the PSD coedfint
from a reference database and a query image isassed
a similarity metric [4]. To achieve invariance to
rotation, matching is also carried out with rotated

h

multiple filters are required if robustness to adewi
angle is to be attained. Multi resolution based
techniques have been used in [6], where the radon
transform is used to estimate the shoe print kntati
angle. A print is divided into none overlapping 16x
pixel blocks and convolved with an eight-direction
Gabor filter bank. The average variance in eackkolo
across all Gabor-filtered images is used as a tfeatu
map. To insure robustness to partial prints, eight
different partial prints are also processed antuged

in the reference database to create a 9-print ofatbe
same shoe. A similar technique was used in [7] dase
on the use of directional filter banks. However[1h

it is the energy within the filtered blocks whichtsed

to build a feature vector. It is not clear if iteeegy-
based features will perform well on a partial ptimat
was not present in the training phase of the teghas

in [6-7].

Following their successful use in image retrievahf
large databases, model based recognition, object
retrieval and texture recognition [8-10], technigder
shoe print image retrieval and classification basad
extracting local features were suggested in [11].
Pavlou et alpresented an efficient automated system
for identifying shoe models based on using Maxignall
Stable Extremal Region (MSER) features which are
transformed using SIFT descriptor [10]. Althougle th
SIFT descriptor is rotation invariant, the expentse
did not show the performances of the systems apgains
rotation distortions.



In this paper, the issue of automatically clasaiy
shoemarks is addressed. A critical issue that dvde
overcome in order to achieve such a goal isfact
that one may have no control over the quality @&
shoemarks collected form a SoC or from suspec
police custody [2] As shown in Figure 1, freque
distortions that a SoC may encompass inclpartial
occlusion, illumination variation, rotatio, noise and
affine distortions also termed foreshortening cdusg
nonperpendicular photography2]. The proposed
solution in this paper tackles the issues of rotatind
noise distortions in partial prints. The local tfeas
are the Harris detector gwrs. Typically, in a shc
print up to a thousand corners are found using
detector in []. The number of detected points duced
by creating a 4evel pyramid where a detected poin
only taken into account if itsdplacian response is
local maxima in a 3x3x3eighbourhoo. Once the
points are selected, the SIFT descriptor provide
rotation invariant representation of shoe prirl0].
Matching is carried out iteratively using RANSA
Once a transformation modal found the number of
inliers is weighted byhe sum of Euclidean distanc
below a hard threshold.

Figure 1. Left. SOC partial print with scale, ridat
and illumination variation. Right. Correct mai

2. Multi-scale Harris detector and SIFT

descriptor
A Harris point is any pint image where th
signal value changegsificantly in two dimensions

Conventional “corners”, such as-corners, T-
junctions and Yjunctions, which are all intersectio
of two edges, satisfy this definition. However, m
such a definition, a corner can also be an isolpteqt
or an end of line. A Harris corner can be cuted
over a local neighbourhoc(x,y) as a weighted sum of
first order derivatives products defined 12]:

Where the subscript indicesx and y indicate a
derivative of the imagé with respect to the variabx
andy, respectivelyln practice, the weighting functic
is Gaussian function of standard deviat
which will be notedin the remainder of the papas
. Furthermore, a sce-space representation of
the image with scale parame is defined as [8-9]:

Thus, the normalisetlaplacian of Gaussian (LoCof
(2) can be expressed as1(]:

Mikolajczyk et alhave extendecthe Harris corner
detector in [12] to a multscale form, which can dete
the corners at different scales9]. It takes account of
feature detection with automatic charactec scale
selection as shown in 3], where LoG has been
demonstrated to be successful in scale selectiba
multi scale detector, termed Ha-Laplace detector,
exploits the high accuracy of loion of a Harris
corner detector and the robust scale selectiorhe
LoG detector [8%0, 13]. It wasshown that such
detector’s points possess a better repeatabiliy the
SIFT algorithm points while they are mcabundant in
images than the MSER feires [8]. The scale adaptive
Harris detectois based on an extension of the ma
A in (1), where, and are the integration and
differentiation scalegespectivel [8-9]:




The eigenvalues}; and XL, of A(x,y,0;,0,) its adjacent pixels in a 3-D search over a 3x3x3
characterises thecornerness of a given image  neighbourhood.

neighbourhood, which makes Harris points invartant Associated with Harris points detector is a

rotation. The case wherk, and A, are both large  descriptor which provide a hash signature of the
indicates the presence of a corner. As suggested iineighbourhood of a given point. The SIFT descriptor
[8,12], rather than computing the eigenvalues of computes a weighted gradient magnitude histogram of
A(x,y,0;,04), one can computes tlmrnernessof a gradient location and orientation in a region

point by computing : surrounding the detected point of interest [10]strito
assign an orientation to a given point of interasthe
Cor = A, — 1 (A + Ay)? level in the scale-space representation in whiah th

point was detected, a 36-bin gradient histogram
covering the 360 degree range of orientations is
computed. In the resulting histogram, the absgbetak
and any local peak within 80% of its value are celé
The computation of (5) is simpler than the compatat  as orientation angles. This approach together thigh
of the eigenvalues df(x,y, g;, 04), where the value of  subsequent interpolation suggested in [10], lead to
constantx, which is a tunable sensitivity parameter, creating multiple points in the same space locaiot
can be empirically set. Such a multi scale Hardmip scale, though with a different orientation. Thus fa
detector may detect all the corners types of pointseach point is assigned a spatial locafie)y), a scales
described previously. The Harris-Laplace detector and an orientatiord. To build a SIFT descriptor; a
computes the scale-adapted Harris formula in (8) an circular patch centred at a point of interest igcted.
selects the points for which theoG in (3) attains a  The selected neighbourhood is mean and standard
local maximum over scale. It builds a scale-space deviation normalised. The gradient magnitudes and
representation and only selects points which aséesc orientations are sampled around the key point iocat
adapted Harris corners and coincide withag local to a 16 x 16 pixels neighbourhood which is the size
maxima at the scale. Although such approach majy lea the descriptor window [10]. Such window grid is
to designing a scale invariant technique, a pyramidformed of 4 x 4 blocks each of 4 x 4 pixels. The
with very few levels is considered in this papeheT gradient angle associated with every block is geadt
aim is to reduce the number of detected points byinto 8 directions using the gradient magnitude. The
selecting only those which are local maxima. resulting 3-D histogram is a 128 dimensional featur
vector.

= det(A(x,y, 0, 04)) — ntrace?(A(x,y,0;,04))  (5)

3. Points detector and descriptor
implementation

Based on equations (4) and (5), a 4-level
scale-space representation using Harris function ha
been built. The initial scale and the interval betw
two successive was set to 1.2 and 1.5, respectively
With such a large interval between two successive
levels and few levels built, it is not expectedathieve
scale invariance. However, selecting only the oint
which are local maxima reduces dramatically the
number of corners selected to only a few hundreds.
The constantc in equation (5) was set to 0.04. The
ratio of the differentiations,; scale to integration
scales; was set to 0.7. Harris points of interest are 2-D
local maxima; that is a point is selected if it as Figure 2. SIFT Descriptor in [10]
maxima in a 3x3 neighbourhood. To remove weak and
instable maxima points, only maxima points thatatre Matching is carried out in two steps. First, ini¢hat
least 15% of the value of the level absolute maximu belong to a rotation transformation are found. The
are taken into account. The selected Harris paings ~ Score from this step is the number of computectisli
then checked whether or not theioG response that belong to the estimated rotation transfornmtio
achieves local maxima over scales; that id.aG that is the number of points in the query image tha
response of a given Harris point is more importaah ~ Match other points in a reference image on a goint-
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point basis. In the second step, one computes axn
of point-topoint distances between the reference
query images.Such strategy sums up all distan
below a threshold, set in the presented experimer
0.005. The distance used to build the f-to-point
distance matrix is the Euclidean distance of ang
points’ normalised descriptors. As with RANS/
voting, the highest is the score, the better is
matching. Let be the number of detected poi
in a query image using the mudicale Harris detectt
in equations (5). Similarly, let be the number of
detected points in a reference image. A ming score
based on the points extracted using the Harrisctit
can be obtained from a matrix formed from
Euclidean distancd; elements below a threshc

(6)

Finally, the matching score is the result of mujfipg
the number of inliers by the score computed6).

4. Experiments and results

Experiments were run on a reference databa:
300 shoe prints from Foster Freeman [3]. To
simulate scene of crimeripts, degraded images frc
the reference database were created. Divided linge
query databases, the degradations inc

* Rotation distortions

¢ Noise distortions

e rotation distortions with Gaussian no
perturbations

To simulate partial prints in SoCs, random que
prints were selected to build the above four qt
databases. As such, a shoe is divided into itsatmt
heel parts, which are then divided into a left aigtht
part. Each of the above four test datas was built
separately; that is it was not required that alhbase:
should be built from the same partial prints. -
selected quarter print is then rotated and/or Gan
noise added to constitute the above three datat
Figure 3 shows three quelynages with differen
amount of added Gaussian noise and their cc
match. Each query databases is formed of 300 p
which are matched against the 300 prints in
reference databas&lthough such approach is n
conventional as data is not divic into training data
and test data, it is common in al image features
literature [1Q. It circumvents some very strict de
protection regulations in force in the UK. Furthena,
when the proposed solution is compared with sin

techniques in the litature, the same te¢ constraints
are applied to all of them, making the comparissl
fair and extensive as possible. Other ways of ngl
training and test databases can be carried ouskipg
supposed suspects to provide multiple prints ofrt
shaes, from which few will be selected for trainingde
the remaining prints, which may be further in -
processed, are used for test. Carried out in aaited
environment, the way in which the prints
collectedly implies good quality prints and doeot
reveal the performances of the algorithms in
presence of shoe print degradatiorCumulative
Matching Characteristic (CMC) curve is used
comparisonQur results are compared against the v
in [4] which is aPSD feature based shoeprint matc
algorithm. Such technique achieves rotation inveng
within a given range. In a brute force matchindestit
uses rotated copies of the query print for matc
from which the best result of correlations betwéss
query rotated copies and the rence image is taken
into account.

Figure 3.Query prints with different rotation angl
and noise levels: Top, partial prints with a noisto
of: Left 20%, Centre 15%, Right 1(
Bottom, correct maitc

The first test was carried out on noisy qus. The
Gaussian noise is expressed as the ratio of Gal
noise variance to the power of the shoe print im
The evaluation of the performances of the prop:
technique detailed in Table 1 and Fig4. It shows
that the proposed technique performdter than the
PSD method in [# As a matter of fact, despite havi
its performances drop as the level of noise in@®
the probability of finding the correct match withtime



returned top 10 matches is in the worst case ab8ut
Still, in our experiments, the proposed technique
clearly outperforms results of the PSD method. This
evidenced in Figure 4 where the CMC performances of
the proposed technique with the highest level a$ao

in our experiment are better than the PSD methad wi
the lowest level of noise. The goal of the secasl t
was to evaluate the performances of proposed
technique against rotation  distortions. The
performances are measures for a rotation angle
between 0 to 30 degrees and then for a rotatiofeang
of 45 degrees, which is outside the range of thB PS
method. Even within the range of the PSD methoel, th
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Figure 5. CMC performances for partial prints with
rotation distortions.

Table 2. Performances evaluation for rotation-distb
partial prints.

proposed technique achieves much  bettel e 3d s 107
performances. However, when the performances of the Rank | Rank | Rank | Rank
PSD drop dramatically for a rotation angle outside Har SEIT

range, the proposed technique retains its invagidac 0°< anales3o° 97.67| 98.67| 98.67| 99
rotation, which is clearly demonstrated in Figurar@l (0°= anglec30’)

Table 2. The Third and finale test was carried @ut Har_?IFT 91 |96.33| 97 | 97.33
prints that encompass both rotation and noise (45°)

distortions, where rotation angle were selected PSD 85.67| 91.67| 94.33| 9667
randomly between 15 and 30 degrees and the noige (0°< angle<30°) ' ' ' '
levels were set to 10%, 15% and 20%. Once gain, the PSD 567 9 10.67! 15.67
proposed technique achieves much higher (45°) ' ' '

performances than the PSD method as shown in Figur
6 and Table 3. Even with an additive Gaussian noise
level of 20%, the CMC of the proposed technique
rallies rapidly so that there is a probability dioat
82% of finding the correct match within the list tbie
top 10 returned prints. At this level of noise, the

proposed technique performs better than the PSC
method at a noise level of only 10%.
e
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Figure 6. CMC performances for partial prints with
rotation and noise distortions.

Table 3. Performances evaluation for noisy and tedta
partial prints.

10’ 10' gt 10 lsl 3rd 51h loth
Figure 4. CMC performances for partial prints with Rank | Rank | Rank | Rank
noise perturbations Har_SIFT (10%) | 90 94 | 95.67| 97.33
Har_SIFT (15%) | 75.33 | 87.33| 89.67 | 92.67
Table 1. Performances evaluation for noisy paptiits. Har_SIFT (20% | 55.3¢ | 7167 | 73.6i | 81.6i
T 3 = o PSD(10%) [61.67]6833] 71 [78.67
Rant Rant Rant Rant PSD (152/0 43.6 54 58.3 | 63.67
Har_SIFT (10%)| 95.67 98 98 99.33 PSD (20%) 30 35.67] 40.67] 47.33
Har_SIFT (15%)| 88.33 | 93.33 | 95.67 97
Har_SIFT (20%)| 73 81.33 86 89.67 .
PSD (10% 7C 78 82 88 5. Conclusions
PSD (15% 53.3: 61 62.61 68.3:
PSD (20%) 37.33 46 50 57.67 In this paper, we have suggested a technique

for retrieval of shoe prints based on combiningridar
points and SIFT descriptor. Experiments were



conducted on partial synthetic images with rotatod
Gaussian noise distortions. The suggested soliion
this paper achieves excellent classification

performances and outperforms the results of similar

work in the literature. It is also faster and mgahnpler
to implement as one no longer requires to rotage th
guery print to achieve a limited rotation invarianc
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