
Northumbria Research Link

This article is available on the Northumbria Research Link site:

http://northumbria.openrepository.com/northumbria/handle/10145/122994

This paper was originally published by IEEE, 2010. Further details are available on the publisher’s Website:

http://www.ieee.org/index.html

Roberts-Morpeth, P. and Ellman, J. (2010) 'Some security issues for web based

frameworks', in Proceedings of the 7th international symposium on Communication

systems networks and digital signal processing (CSNDSP), University of Northumbria,

Newcastle, UK, 21-23 July, IEEE Xplore, pp. 726-731.

Northumbria Research Link: http://northumbria.openrepository.com/

University Library, Sandyford Road, Newcastle-upon-Tyne, NE1 8ST

lr.openrepository@northumbria.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/4149052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computer 1

Computer 2

BURP Suite

WAMP
RUBY on

Rails
Radiant

CMS

PERL

Webscarab

IIS .asp Receiver Site

.net Framework IIS DASBlog

WAMP Cake PHP DRUPAL CMS

Wireless Network

Figure 1. The Security Testing Configuration

SOME SECURITY ISSUES FOR WEB BASED

FRAMEWORKS.

P. Roberts-Morpeth, J. Ellman

School of Computing, Engineering, and Information Sciences, Northumbria University, Newcastle upon Tyne, UK

Jeremy. Ellman @unn.ac.uk

Abstract—This report investigates whether a vulnerability

found in one web framework may be used to find a

vulnerability in a different web framework. To test this

hypothesis, several open source applications were installed

in a secure test environment together with security analysis

tools. Each one of the applications were developed using a

different software framework. The results show that a

vulnerability identified in one framework can often be used

to find similar vulnerabilities in other frameworks. Cross-

site scripting security issues are the most likely to succeed

when being applied to more than one framework.

I. INTRODUCTION

Web Frameworks such as Ruby on Rails [1] and
Microsoft’s ASP.NET, are technologies designed to
support the development of web applications, web sites
and web services. [2] believe that a benefit of their use is
to improve software quality. If this were to be the case, it
is not unreasonable to expect this to be reflected in a
reduction in the number of security issues.

[3] discusses maintainability as a major deciding factor
when choosing between Ruby on Rails and the .NET
framework. However there is no mention of security
issues, or the possibility of any built-in vulnerability. The
question is then whether web application frameworks can
be relied upon to manage every aspect of security. To this
end we have investigated some current security
vulnerabilities relating to web based applications and
frameworks.

Several Web frameworks were selected that use
different underlying technologies. These were ASP.Net,
Ruby on Rails, and Cake PHP. These frameworks were
then used to implement test applications whose security
could be investigated in an isolated network lab. Web
framework vulnerabilities are published in several web
sites. These sites were used to find published security
issues together with the Security Focus Bugtraq. We then
tested our experimental hypothesis; that a vulnerability
reported in one framework could be used to identify a
similar vulnerability in an application built using a
completely different framework.

The paper proceeds as follows: Firstly we briefly
review and describe the most common web application
security failures [4]. Then we discuss how these apply to
web framework based applications. Next we describe
security testing environment used. Finally we present
results that offer good support for our experimental
hypothesis before moving on to discussion and
conclusions.

II. BACKGROUND TO THE PROBLEM

As network firewalls and security updates have become

more common, network boundaries have become more

secure. For this reason computer security hackers and

crackers have moved their attention from the Network

Layer [5] to the Application Layer [5], focusing on the

websites themselves. Over seventy percent of attacks now

occur at the application layer [6] and research by

WhiteHat Security has found eight in ten websites have

serious vulnerabilities [6].
A web application is a piece of software written in a

browser supported language such as HTML, Java, PHP,
C#.NET that is accessed using the http protocol. Http is
stateless. Thus, when a resource is requested and a
response received, the next request is dealt with by the
server as a new, unique request. To achieve the
appearance of state, web applications can use a Session
Identifier (SID). This simulates a session on top of http
[7]. Following a client request, the server creates and
returns an SID. The client then includes this SID in all
subsequent requests within the same session.

We define a vulnerability as a weakness in a web
application, web service or web site which can be caused
by a programming error, design flaw or an implementation
bug. Web applications and web services are vulnerable to
a number of attacks [8]. Input manipulation attacks mainly
occur via the application interface to exploit
vulnerabilities in the application server. A number of
different types of attack and security issue are discussed
by [8] with the view of developing a validation framework
for checking input before it is sent to the application

!"#$

%&'#(#'$()*#)$%#$+(,+-.*/,,01.,(,02333

&.$ "!45!60.,(,

server. This would however only protect against people
sending input to the application server via the input form.
It would not protect against attacks that bypass client side
validation by sending data directly to the application
server.

Web application security analysis tools are designed to
target an application from an attacker's point of view [9].
Several programs are readily available and well known
(e.g. BURP Suite[10]; OWASP WebScarab[4]; and Paros
Proxy [11]). These have common features such as the
ability to manipulate requests and responses, spider an
application to obtain a list of files in the site, and utilities
for encoding and decoding sensitive data. One feature of
the BURP Suite program is to allow all hidden html form
fields to be displayed and updated on the web page. This
demonstrates that the use of such fields is completely
insecure.

A. Web Application Vulnerabilities

The Open Web Application Security project, OWASP,
[4] tracks the most common failures in the area and has
identified Injection attacks, Cross Site Scripting (XSS),
and Broken Authentication and Session Management, as
three most common areas of weakness. Consequently, we
further describe these as relevant to our investigation.

Cross-site scripting (XSS) is an injection attack by one
user of a web site on other users [12]. The typical attack
pattern involves a malicious user including JavaScript
code in a web page such as a blog post or other user
editable field such the web server then delivers the page to
other users. The embedded JavaScript may then be used to
steal the victim's session, or other data stored in cookies.

A variation on XSS is cross site request forgery (XSRF,
or CSRF). Here the payload JavaScript causes the victim
to execute web requests with their network access and
security privileges.

[13] discuss how most XSS scanners check input and
rely on either a testing or static taint analysis approach (a
list of functions designated as input cleaners) to detect
illicit JavaScript. [13] found that in most cases, even
flawed validation code catches such exploits and the
perpetrators of such attacks know this and create exploits
to target known validation weaknesses. [13] therefore
proposed an approach based firstly on an adapted string
analysis which tracks untrusted string values. They
secondly propose checking for untrusted scripts. This
check is based on formal language techniques. [13] also
discuss the limitations of such a proposal as it does not
work for Domain-Object-Model (DOM) based Cross Site
Scripting.

In a further variation on XSS, an attacker could
intercept web application traffic using an 'evil twin' rogue
wireless access point, or comprised proxy server. Then
using applications such as Burp Proxy [10,15] or
Webscarab[16, 17] the attacker could inject JavaScript
into the victims session in a 'man in the middle' attack.
This would be equivalent in outcome to an XSS where
JavaScript is stored on the server, and is worthy of further
consideration.

SQL injection is a well known attack style [18] to
which all web applications could be vulnerable. The
general principle is that attackers input SQL code in
addition to the input expected from a normal user (such as
name, or any user data).

Using SQL injection techniques, a software hacker
could take advantage of errors or vulnerabilities and use a
web application to execute SQL statements against a
database or to gain access to data files [18]. An attacker
using SQL injection to insert code either directly in the
URL or via form fields, could result in the system either
giving access or returning an error supplying information
about the system.

SQL injection and cross-site scripting techniques
belong to a type of security issue known as “taint-style
vulnerabilities” [19]. Those authors suggested that issues
of this type share a “source-sink” characteristic. This is
explained by the fact the user entered values or “tainted
values” enter a program at certain points and then are
propagated throughout the program. Microsoft offer a tool
to find SQL injection vulnerabilities in Active Server
Pages [20].

SQL injection attacks are however somewhat generic in
that most web applications could be potential targets.
Consequently, we considered it them be out of the scope
of this investigation as we are concentrating on web
application frameworks.

Several HTML tags may be used to inject cross site
scripting using their attributes (e.g. href, style and src) and
are also potentially dangerous. These tags at risk include
applet, body, embed, frame, script, frameset, html, iframe,
img, style, layer, link, ilayer, and object [21].

Session Hijacking involves swapping a unique
identifier belonging to one user with the unique identifier
of another. Each user has a unique identifier which is used
during their use of a web application. This starts with the
server issuing a unique identifier to each user when the
user logs in or navigates via the home page of a site [22].
Future requests include this unique number so web
applications can identify users and associate them with
distinct sessions. Sessions are hijacked to gain greater
privileges in the application than those to which users
would be entitled. Thus application administrators are
potentially targets.

A session could be hijacked by calculating the
alphanumeric sequence of identifiers allocated by the
application [23]. Indeed, WebScarab [16] will attempt to
predict session keys based on the analysis of a large
quantity of session data.

A further way that a session could be stolen would be to
use security analysis software to launch a man-in-the-
middle attack and copy the session information to another
location for future use. Session identifiers can also be
stored in cookies by applications and loaded each time the
application starts. [24] considers session hijacking and
how attacks performed by people eavesdropping via a
network are commonly known as "sidejacking". [24]
suggests that while Secure Sockets Layer (SSL) [25] can
help protect such attacks. The use of SSL is not an option
in every case as it can affect the performance of the
application. Also, SSL may not be considered when
dealing with non sensitive data. [24] therefore proposes a
JavaScript client/server solution which uses the benefits of
SSL to encrypt the session key but the remaining data in
the page would be transmitted using http sessions. Every
http request from that point on would include an encrypted
authentication code. For this solution to work a JavaScript
library has to be included in each web page and this is
used to generate the secret key.

!"#$ &.& "!45!60.,(,

[24] discusses two limitations of the proposed solution.
Firstly that a Session Lock is totally dependent upon
JavaScript being enabled. Secondly that Session Lock
does not protect against an attacker either amending or
adding code to the plain http request which could be used
to steal the session key and to use it elsewhere.
Consequently, whilst Session Lock is a good idea and
protects against a certain type of attack, it is still
susceptible to attackers changing or stealing data from the
page, including the session key itself.

In summary there are numerous types of attacks that
can be performed against web applications [8]. XSS
attacks are still considered to be a major threat against
web applications and the security of web application data.

III. THE EXPERIMENT

Here we describe the isolated lan environment used to
investigate the vulnerabilities described. A new
application designed to receive data from the target
applications is also discussed. Following this a description
of the known security issues that were tested for is
provided, and the application of the issues is then
performed. Each test is described and a result of either
success or failure allocated depending upon the test
outcome. A summary of the findings is then given.

The test environment was based on Microsoft Windows
technologies. This was configured to safely test a cross
section of available, modern technologies. This consisted
of a laptop and a pc both running MS windows. Two
installations of each application were required for Session
Hijacking tests to facilitate the production of fake session
ids.

The applications chosen for testing were DASBlog. A
blogger application based on Microsoft .NET framework ;
RADIANT. A CMS application based on the Ruby on
Rails, and DRUPAL, a CMS application based on the
Cake PHP framework.

A. Software Tools used in this experiment

1) BURP-Proxy:
Burp Proxy is a Java based web proxy server that

allows user interaction. It is used for attacking and testing
web applications [10, 15]. It functions as a man-in-the-
middle between the user’s browser and the target web
server. This allows the user to intercept, and modify the
raw http traffic between their browser and web server.
Burp Proxy supports http request modification and can be
used for attacks such as SQL injection, cookie
interception, privilege escalation, Session Hijacking and
buffer overflows.

2) OWASP Webscarab:
OWASP is the Open Web Application Security Project

whose aim is the improvement of security of applications
[4]. It offers an environment for testing and learning about
security issues is using a Free, Open Source Software
(FOSS) model. OWASP includes tools such as Webscarab
for analyzing and discovering security issues in
applications. Webscarab has a built in HTTP Proxy (with
HTTPS interception), web-site crawler, session ID
analysis, a script interface allowing for automation and a
Base64 and MD5 encoder/decoder [4].

3) The Receiver Application

The receiver is a web application written for this project
as a repository of site specific data sent from the target
applications. The receiver includes a number of web pages
for processing and writing data to log files. This is done
using JavaScript functions designed to be called from
within the target applications. The functions are also used
to insert data or JavaScript code into the application pages.

B. Vulnerabilities and issues subject to testing

We examined for three vulnerabilities1, Cross Site
Scripting using JavaScript injection, Cross Site Scripting
with HTML Object tag insertion, and Session Hijacking.

For XSS vulnerabilities, the first test was to insert a
JavaScript file from a remote site containing functions to
extract information from within the applications. The
JavaScript file was inserted into the login page of each
application and then executed. Information sent from this
function was sent to the receiver and logged.

The second test was for XSS HTML Object tag
insertion. Here we attempted to insert an html object tag
into a field using the Burp Proxy intercept option. This
was then saved by the application as part of the user data.
This object was configured to point to the receiver
application where JavaScript would be used to obtain data
from the target application.

The third test was Session Hijacking. Here we
attempted to manipulate session information to give an
ordinary user priveleged access.

C. Applying the vulnerabilities to the target frameworks

1) Test 1: XSS JavaScript injection.
The purpose of this test was to investigate whether

JavaScript from the receiver could be inserted into the
login page and executed. Success would be achieved by
including and executing a reference to a JavaScript file in
the receiver site. Failure would be concluded if the
JavaScript file could not be included successfully, or if the
page did not subsequently function correctly, or if the
JavaScript function was not executed.

a) JavaScript injection in to the DasBlog

application.

The BURP proxy intercept option was used to add
JavaScript to the DasBlog login page and to change the
flow of the site by replacing the form submit button with
one under our control. This was achieved by intercepting
the message between the client and the server and
inserting an html tag into the header section of the page.
The purpose of this html was to call a JavaScript function
in the receiver application. That is, to effect a cross site
request forgery.

Next, again using BURP Proxy, the original submit
button used by the page was hidden by setting the type
attribute in the control to hidden. An html image tag was
then added to the page as the new submit button. Finally
an onclick event was added to the new submit button with
a reference to a JavaScript function ‘getFormValues’ in
the newly added informerFunctions.js.

The DasBlog Site was started and the login page
displayed containing the newly inserted submit button.
When the new submit button was pressed the page was
submitted, the getFormValues JavaScript function sent the

1
 For details see [20-26]

!"#$ &.' "!45!60.,(,

form data sent to the receiver application. The Event
Target, Event Argument, ViewState, Event Validation,
User Name and Password fields were also logged. This
test was successful as the JavaScript was added to the
login page, executed and the target data collected by the
receiver.

b) JavaScript injection in to the Radiant CMS

application.

The BURP proxy intercept option was used, as with
DasBlog above, to replace the login form submit button
with one connected to the inserted JavaScript library. Here
the User Name, Password and Authenticity_Token (used
by Radiant CMS for security purposes) fields were
collected by the receiver. This test was again successful as
the injected JavaScript allowed the receiver to collect
confidential data.

c) JavaScript injection in to the Drupal CMS

application.

The BURP proxy intercept option was again used as
with DasBlog and Radiant CMS above to hide the original
submit button and replace this with our custom JavaScript
functions. The test was again successful as the JavaScript
executed and the receiver collected the target data.

The test was successful for all three applications, as the
JavaScript function was added to the login pages in all
three of the applications. The JavaScript was then
executed and login information was sent to the receiver
application and recorded in a log file.

2) Test 2: XSS: HTML Object tag insertion.
The purpose of this test was to see whether an html

object tag could be added to a user input field. Here
BURP Proxy’s intercept option was used in the test
environment (see fig 1) to intercept the message between
the client and the server and insert an html object tag. This
was added to a new content or blog entry depending on
the application. Success would be achieved if the html
object tag were added to an application input field.

a) HTML object tag insertion in to the DasBlog

application.

Two new blog entries were added, allowing a different
version of the object tag to be added to the first line of
each blog. These were added to the first line of the blog
entry as this line is also displayed on the blogger site
home page. The first entry was a plain text version titled
Blog 2. The second was an encoded version added to an
entry entitled encoded object.

Next the entries were viewed on the home page of the
site using the Firefox web browser. The new entries were
visible on the DasBlog home page but the Encoded Object
entry had been translated into a plain text format. The
original plaintext version in object 2 was not visible
(which is expected as the source object did not exist). The
entries on the home page were then viewed using the
Internet Explorer 7 browser.

Launching the DASBlog web-site and logging in
through IE7 revealed that the home page could no longer
be viewed. Each time the home page was launched it
forwarded itself on to the test address
http://god/dasblog/www.mysite.com. This effectively
made the application unusable in IE7. We considered this
test to be successful as the object tag was added to the
blog page and saved by the system. However, the

application was unusable in Internet Explorer as the home
page could not be reached and every action forwarded the
application on to an unreachable url. Since this was a
serious bug it was logged in the DASBlogIssue Tracker on
codePlex (issue number 4183).

b) HTML object tag insertion in to the Radiant

application.

As with DasBlog, the BURP proxy intercept option was
used to add the html object tag to a new content entry on
page submission. Next the entry was viewed on the home
page of the site using the Firefox web browser. The new
entry was visible on the Radiant home page pointing to
the the receiver application application which has been
inserted in to the page. An html tag defining an object
with an invalid Url was then inserted. However, the
Invalid object was ignored by the Radiant application and
neither the target application nor the html tag were
displayed. This test was successful as the object tag was
added to the content page and saved by the application.
The object displayed the target Receiver Application in
the page. The application did handle incorrectly
configured object tags.

c) HTML object tag insertion in to the Drupal

application.

 Two new content pages were added, allowing a
different version of the object tag to be added to the first
line of each. On Test 1 the object is not displayed. On Test
2 the encoded text has been converted and the object tag
displayed. This test was consequently a failure as the
object tag was handled correctly by the application and
disallowed.

3) Test 3: Session Hijacking.
This method of attack was reported on a Ruby site

forum and had been used to attack the Radiant CMS
application [27]. The purpose of this test was to
investigate whether the session information used by the
applications to manage security levels and system access
could be manipulated to give a standard user a higher
level of access. Again the BURP Proxy security analysis
tool was used in the test environment shown in fig 1,
using the receiver application to record data. Success
would be demonstrated by gaining a higher level of access
in the system or by gaining access without using a user
credentials for example, bypassing the login screen.

a) Session Hijacking: DASBlog.

The BURP proxy intercept option was used to change
the session information used by the DASBlog application
and the options available to the user were then observed.

The administrator’s session information can be gained
by either accessing the administrator users stored cookie
information, which in the case of the Windows operating
system is located within their roaming profile. Or, as used
in this case a separate test version of the application was
used to generate valid administrator session details which
were used within the live application.

The test DASBlog site was launched and the
administrator’s account used to login. On login the form
details including the session value were passed and logged
by the receiver application. The live DASBlog application
was launched using a direct url pointing to a page within
the site rather than the login page. The BURP Proxy
intercept option was then used to locate and replace the

!"#$ &.% "!45!60.,(,

DASBlog ASP session value with the value obtained by
the receiver application. This was repeated for each
message that contained the session value.

The DasBlog application was launched and the user
was presented with a blog view page. It was then possible
to select, edit and delete any blog entry. This type of
functionality can normally only be performed by the site
administrator account. This test was successful as the site
was accessed with administrator access without entering a
user name or password. Radiant: Thus, for DasBlog type
of functionality can normally only be performed by the
site administrator account whilst access had been enabled
for an ordinary user.

b) Session Hijacking. Radiant

Here we proceeded as for DasBlog using a test and live
application. The test Radiant site was launched and the
administrators account used to login. On login the form
details including the session value were passed and logged
by the receiver application. The Live Radiant application
was launched using a direct url pointing to a page within
the site rather than the login page. The BURP Proxy
intercept option was then used to locate and replace the
Radiant session value with the value obtained by the
receiver application. This was repeated for each message
that contained the session value.

The Radiant application was launched and the user was
presented with a content administration page for
maintaining users and configuring site preferences. This
functionality can normally only be performed by the site
administrator account, and is consequently a significant
security vulnerability.

c) Session Hijacking: Drupal.

Here we proceeded as above taking an administrator
session id from a correctly authorized session on a test
site, and using this key in a live Drupal site. However, the
'create content' page was exactly the same as would be
presented to an anonymous user. Changing the session
information had no effect. Thus, for Drupal this test failed.

IV. EXPERIMENT RESULTS

We chose three common vulnerabilities to investigate.
The first was to apply a XSS vulnerability to each of the
applications. Weakness in application security allowed
JavaScript to be injected into a web page before the page
was rendered by the browser on the client machine.

For the first test, an XSS, JavaScript injection
vulnerability was found for all three applications tested, as
JavaScript was added and displayed within the client web
browser.

The second test was to apply a XSS, HTML Object tag
insertion vulnerability. Application weakness allowed
JavaScript to be injected into an input field in a web page.
The injected JavaScript was then saved by each
application to either a database or an XML file. This
vulnerability was successful for two of the three
applications tested.

The third test Session Hijacking used a second
installation of each application to generate a session key
that was usable to gain access to the first installation. The
vulnerability gave administrator access to two of the
applications, removing the need to login using a user
name and password. The DRUPAL application alone did
not allow access via this method.

These results are summarized in Table 1 below.

Table 1: Summary of Vulnerabilities

Did the expected vulnerabilities exist? Application

XSS

JavaScript

injection

XSS

HTML tag

injection

Session

Hijacking

DASBlog Yes Yes Yes

Radiant

CMS

Yes Yes Yes

DRUPAL

CMS

Yes No No

V. DISCUSSION AND CONCLUSION

This paper has reported an investigation into the
security issues of web based frameworks. Its hypothesis
was that a vulnerability found in one web based
framework can be used to uncover a similar vulnerability
in a different framework. For example, the Session
Hijacking issue tested against the Radiant CMS
application was originally reported on the Radiant Issue
log site. This was then used to uncover the same issue
with the DASBlog application.

New vulnerabilities were also found as a result of the
testing. Using the BURP Proxy application allowed an
html object tag to be inserted into the content field of a
new blog in the DASBlog application. This highlighted a
serious issue, if the path specified in the object tag was
invalid, the application was rendered unusable in Internet
Explorer. This was reported on the DASBlog issue tracker
as a number of sites use this application and are
potentially vulnerable.

All web based frameworks provide and recommend
security features to protect application data from
malicious code. However, the majority expect malicious
code to be inserted in to form fields. Using XSS,
JavaScript injection and a proxy-server it is possible to
inject the malicious code in to any section of the web
page, or remove any existing protective code from a web
page.

This paper has shown that any person with a proxy
server can read, extract and manipulate the data sent. This
would allow a man-in-the-middle to change web pages
sent from a web server, before the page arrived on the
client machine. Unfortunately people with this ability are
constantly around us as whenever we visit a hotel, a coffee
shop or other location using a proxy server.

There are currently internet sites that inform the users
of the site that a built in proxy server is used to protect
their identity. As all of the messages are travelling through
the proxy server, the site could be used to manipulate the
data and pages in the ways described in this paper.

If there are sites that advertise the use of built in proxy
servers, there will be sites or more importantly search
engines that do not advertise the fact, leaving the users of
the site vulnerable.

The underlying frameworks do provide security
features to test and clean scripts from input and hidden

!"#$ &), "!45!60.,(,

fields, but the page content in its entirety is not validated.
Would it be possible to develop a security technique to
ensure that the page displayed within the client browser is
exactly as expected? If any extra lines of code exist could
a warning be displayed to inform the user? For example,
could a Cyclic Redundancy Check (CRC) be performed
on the data to ensure that data received had not been
changed in anyway? [28] discuss and demonstrate a
method used to manipulate data in a way that is not
detectable to a CRC. Although [28] demonstrates the
theory on business application data, It does bring into
doubt the usability of CRC to guarantee successful
delivery of web based communications.

This report has shown that there is fair evidence to
support our hypothesis: that a vulnerability found in one
web framework may be used to find a vulnerability in
another, entirely separate web framework.

Our future work will consider potential defenses against
these types of attacks against web framework based
applications.

REFERENCES

[1] Bachle M & Kirchberg P. 2007 Ruby on Rails. IEEE Software, v
24, n 6, pp 105-108

[2] Fayad M & Schmidt D.1997 Object-oriented application
frameworks. CACM, pp32-38,

[3] Lok F, Fang S, Stan J & Bimlesh W.A Comparative Study of
Maintainability of Web Applications on J2EE, .NET and Ruby on
Rails. Nat. Uni. Singapore, 2008

[4] OWASP(b) http://www.owasp.org/index.php/Main_Page
Accessed 23/01/10)

[5] Peters L, De Turck F, Moerman I, Dhoedt B & Demeester P.
Network Layer Solutions forWireless Shadow Networks. Proc.
Mobile Comms and Learn. Tech (2006)

[6] Grossman J 2007 10 “Things You Should Know about Website
Security.”
http://www.whitehatsec.com/home/resource/whitepapers/website_
security.html

[7] Gollmann D. Securing Web applications. Hamburg Uni.
Technology, Hamburg 21071, Germany. Information on Security
Technical Report, pp 1-9, 2008.

[8] Brinhosa R, Westphall CB and Westphall MC. 2008 A.Security
framework for Input Validation. Network & Management Lab,
Fed Uni. Santa Catarina, Brasil

[9] Fonseca, J, Vieira, M & Madeira, H. Testing and Comparing Web
vulnerability Scanning Tools for SQL Injection and XSS Attacks.
Proc.13th PRDC 2007, pp 365-372

[10] Portswigger, http://portswigger.NET/proxy/ Accessed
(22/06/2009)

[11] Scambray J, Shema M & Sima C. 2006 Hacking Web
Applications Exposed. McGraw

[12] Braganza R. 2006 Cross-site scripting - an alternative view.
Network Security no 9

[13] Wassermann G & Su GW Static Detection of cross-site scripting
vulnerabilities, Uni. California, pp 171-180, 2008

[14] Krebs B 2006 ‘Hacked Ad Seen on MySpace Served Spyware to a
Million’ The Washington Post
"http://blog.washingtonpost.com/securityfix/2006/07/myspace_ad
_served_adware_to_mo.html" accessed Feb 2010

[15] Stuttard Dafydd; Marcus Pinto 2007 "The Web Application
Hacker's Handbook: Discovering and Exploiting Security Flaws"
John Wiley & Sons

[16] OWASP 2010 " OWASP WebScarab Project" accessed Feb 2010
http://www.owasp.org/index.php/Category:OWASP_WebScarab_
Project

[17] Hope Paco; Walther Ben 2008 "Web Security Testing Cookbook"
(Cookbook) O'Reilly Media, Inc.

[18] Bisson R 2005. SQL Injection, The Computer Bulletin, No 47,
pp25

[19] Jovanovic N and Kruegel C and KirdaA E. Static Analysis Tool
for Detecting Web Application vulnerabilities, Technical Uni.
Vienna, 2006.

[20] Microsoft 2008 “The Microsoft Source Code Analyzer for SQL
Injection tool is available to find SQL injection vulnerabilities in
ASP code” http://support.microsoft.com/kb/954476

[21] Microsoft(a) http://msdn.microsoft.com/en-
us/library/ms998274.aspx (2009)

[22] Andrews M and Whittaker J.A 2006 "How to Break Web
Software." pp 59 Pearson Ed.

[23] Endler D. 2001 Brute-Force Exploitation of Web Application
Session Ids. iDefense Labs,

[24] Adida B 2008 SessionLock: Securing Web Sessions against
Eavesdropping, CRCS Harvard University, Refereed Track:
Security and Privacy - Web Client Security

[25] Dierks T & Allen C 1999 The TLS protocol version 1.0, RFC
2246, www.ietf.org

[26] Roberts-Morpeth Paul 2009 An investigation into security
vulnerabilities of Web based frameworks. MSc Thesis,
Northumbria University. Available on request.

[27] Radiant CMS Accessed (21/06/2009). http://www.ruby-
forum.com/topic/116043

[28] Schiller F and Mattes T and Weber U 2009 Undetectable
Manipulation of CRC Checksums for Communication and Data
Storage, 1st International Business Conference, ChinacomBiz,
Communications and Networking in China, Vol 26, pp 1-9,

!"#$ &)("!45!60.,(,

