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ABSTRACT 
 

By Ali ALJARANY 
 
The oxidation behaviour of Fe3Al intermetallic alloys with and without reactive element (RE) and 
Ti-46.7Al-1.9W-0.5Si alloy over the temperature ranges of 900 to 1100°C and 750 to 950°C 
respectively were studied for up to 240h. The isothermal and cyclic oxidation behaviour of Fe3Al 
intermetallic materials was studied in static air. The Al2O3 adherence of (Y and/or Hf)-doped 
Fe3Al alloys was examined using newly developed – by the researcher – cyclic oxidation rig built 
in AMRI’s laboratory. However the oxidation of Ti-46.7Al-1.9W-0.5Si alloy was studied in air 
and under Ar-O2 atmospheres of three oxygen partial pressures; pO2 = (0.05, 0.2 and 0.8) x 105 Pa. 
Isothermal sulphidation/oxidation work of coated – with specially designed single and multi-layer 
coatings – and uncoated Ti-46.7Al-1.9W-0.5Si alloy was performed in relatively high partial 
pressure of sulphur (pS2 = 6.8 x 10-1 Pa) and low partial pressure of oxygen (pO2 = 1.2 x 10-15 Pa) 
at 850° C for up to 240h. Characterisation of the specimens was conducted using SEM, EDX, and 
XRD techniques. Higher oxidation rates of Ti-46.7Al-1.9W-0.5Si alloy were observed in air than 
in Ar-20%O2 at all temperatures. The scale formed in air consisted of 
TiO2/Al2O3/TiO2/TiN/TiAl2/substrate, whilst the scale developed in Ar-20%O2 atmosphere was 
comprised of TiO2/Al2O3/TiO2/Al2O3/Ti3Al/substrate. The oxidation rates of Ti-46.7Al-1.9W-
0.5Si alloy increased with decreasing the oxygen partial pressure in Ar-O2 atmospheres at the 
entire range of temperatures. The employment of single AlTiN and CrN single layer coatings 
improved the sulphidation/oxidation behaviour of Ti-46.7Al-1.9W-0.5Si alloy at 850°C for up to 
240h in H2/H2O/H2S gas mixture. However, the use of NbN and CrN diffusion barrier coatings 
significantly enhanced its corrosion resistance. The scale on uncoated Ti-46.7Al-.9W-0.5Si alloy 
in sulphidising/oxidising atmosphere consisted of TiO2/Al2O3/TiS+W/TiAl3/TiAl2/substrate. The 
reactive element (RE) – Y and/or Hf – addition especially Y significantly improved the oxide 
adherence of Fe3Al over the specified range of temperature and exposure time (or cycles). 
However, higher oxidation rate of Fe3Al alloys doped with Y was obtained under both isothermal 
and cyclic oxidation. Although the scale thickness of Hf-doped alloy was always higher than that 
of Y-doped alloys, the oxidation rate constant of the later is found in some cases to be less than 
that of the first by one order of magnitude. However, the scale on the Hf-doped alloy is relatively 
adherent to the substrate if compared with the scale of undoped Fe3Al alloy even at the areas 
where oxide pegs were observed on Fe3Al-Hf alloy. Generally, no conclusion could be taken from 
the kinetic data of Fe3Al alloys regarding the reactive element effect (REE) due to the 
intergranular attack on the Y-containing alloys. Improving the interface properties by RE addition 
led to a better control of the outward diffusion of aluminium and eliminated the detrimental effect 
of sulphur (possibly present in the Fe3Al alloys). However, the presence of the RE in the alloy led 
to the formation of coherent scales. At 1100°C and after prolonged exposure, the scale of RE-
doped alloys was not able to remain in contact with the substrate especially under thermal cycling 
conditions. The external scale severely cracked especially at places where oxide ridges were 
formed. The Y-containing Fe3Al alloys were capable of producing another thin and adherent scale 
underneath the cracked external scale.  
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CHAPTER ONE

1. INTRODUCTION

 The performance of metals and alloys in high temperature (HT) corrosive environments

is dependent upon their ability to promote the formation of adherent and coherent

‘protective’ scales such as Cr2O3 and  Al2O3. These scales limit the degradation of the base

metal or alloy to be employed at HT for long periods of time, thus improving efficiency (for

example in power generation plants) and decreasing the maintenance costs [1].  At  high

temperatures where the oxygen activity is high, a protective, mechanically stable external

oxide scale is produced on the exposed alloy surface, which normally reduces the

subsequent corrosion to acceptable design levels [2]. However, under the influence of a

second oxidant e.g. sulphur, severe corrosion may occur. In environments of low oxygen

and high sulphur activities (sulphidation/oxidation), sulphides formed on certain alloys may

offer a moderate measure of protection, in fact analogous to a protective oxide film, but in

general, sulphide scales are much more friable and more subject to exfoliation than oxide

scales on most HT alloys due to larger Pilling-Bedworth ratios (see Section 2.4.1).

Furthermore, oxide scales formed on the alloys usually melt at relatively high temperatures,

above the melting point of the alloys, whereas sulphides have comparatively low melting

points and frequently form low melting point eutectics [3]. In addition, the diffusion

coefficients of cations in sulphide scales are relatively high because of the greater degree of

non-stoichiometry of sulphide structures [3-5].  The  effects  of  nitrogen  on  the  corrosion

behaviour of HT materials have also been noticed by many researchers [6-10]. The nitride

formation may prevent the formation of a continuous alumina scale and thus accelerates the

weight gain of the alloy after exposure in air. The mechanism of nitride formation and the

role of the nitride layer on the corrosion kinetics and scale properties are not quite yet clear.
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     The development of corrosion resistant alloys depends on the addition of an element,

which will oxidise selectively so that it will produce a more protective surface oxide. If

alloying elements are added in sufficient quantities, a continuous external oxide layer may

be formed. Aluminium is the principal element in common HT alloys designed to provide

adequate degrees of corrosion resistance to iron-nickel-cobalt and titanium-based alloys.

Alloying elements, such as chromium and silicon, additionally conferring a degree of

oxidation and sulphidation (except Cr in sulphur-containing environments) resistance.

However, low oxygen activity, coupled with high sulphur activity (for example, pS2

sufficient to permit the development of sulphides of iron, nickel and cobalt, but not Ti) may

have very adverse effects on the corrosion resistance of the alloys since sulphide reaction

products rather than oxides might be stable [11]. One approach for solving such problems is

to subject the alloy to pre-oxidation or pre-sulphidation treatment to form compact, adherent

and protective scales that would subsequently act as a barrier to the penetration of reacting

species such as sulphur, oxygen or nitrogen from the surrounding environment [12]. In

essence, such scales formed by pre-oxidation or pre-sulphidation are a type of conversion

coating, to be contrasted with a conventional protective extraneous coating that involves the

addition of other oxidation/sulphidation resistance materials on the surface. Such surface

treatment approach is simple and convenient and probably less costly than extraneous

coatings. However, it could be a viable alternative only if an adequate self-healing property

of the alloys exists. If the preformed (oxide/sulphide) scale cracked or spalled, accelerated

corrosion attack might occur in complex environments where the oxygen or sulphur activity

was not sufficient to promote self-healing of the cracked scale. The second approach widely

investigated is the use of HT protective coatings on the corrosion resistance alloys. The

process of coating indicates that the top surface of the alloy is isolated from the environment

by the coated layer(s). The deposited layer(s) is enriched with the desirable elements, which

are expected to provide protection of the base alloy from the reacting species of the
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surrounding environment at high temperatures. Additional improvement in the corrosion

resistance of the chromia-forming and alumina-forming alloys or coating alloys is achieved

by additions of rare earth/reactive elements. Reactive elements (REs) such as Y or Hf have

been found to be effective in improving corrosion resistance for many HT alloys, however

the mechanisms by which the improved performance occurs are not completely understood.

It is known that these elements are quite effective when used in alumina-forming structural

alloys and coatings in particular, it appears that REs may improve oxide scale adherence.

Recent research has shown that noble metal additions may also produce other beneficial

effects influencing the selective oxidation of aluminium. It is apparent, therefore, that new

alloys or coatings with adequate resistance against environments containing oxygen and

sulphur at high temperatures need to be carefully designed. In designing new coatings or

alloys, both thermodynamic and kinetic factors (as summarised in Chapter  2) that control

the formation, growth and stability of the “protective” scale on the alloy surface need to be

considered. The environmental parameters – such as gas composition and temperature –

influencing high temperatures corrosion properties of alloys must be also investigated.

     Over the past 30 years, the bulk of the oxidation/sulphidation work has been given to Fe-

Ni- and Co-base alloys without and with ternary element additions. Nowadays there is an

increasing interest in understanding the corrosion behaviour of Fe- and Ti-aluminides at

high temperatures since they have the potential to replace the higher density Ni-based super-

alloys in many industrial applications. These materials possess low density and acceptable

mechanical properties at high temperatures. Some progress has been made concerning the

understanding of the scaling behaviour of these materials at high temperatures. Several

corrosion aspects of these materials still need to be resolved.

     Among various types of intermetallics, Fe-Al and Ti-Al alloys are considered as

candidate structural and coating materials for industrial and aero-gas turbines respectively.

However, these materials have low fracture toughness (KIc)  and  relatively  poor  HT
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corrosion resistance. Recently γ-TiAl  and  Fe3Al intermetallic alloys in particular are

receiving significant attention. The low-density (3.8 g/cm3) γ-TiAl intermetallics with high

specific strength at elevated temperatures are being studied extensively with a view to

application in e.g. engine valves, turbine blades, aircraft and automotive engines [13-18]. Of

major concern of γ-TiAl alloys for structural applications is its low oxidation resistance at

high temperatures. The poor high temperature oxidation resistance of Ti-Al intermetallic

alloys is due to the fact that they do not form long-lasting protective alumina scales even if

they contain a high aluminium concentration close to 50at%. After longer exposure times,

the scales initially rich in alumina, deteriorate and scales with a high amount of titania

predominate with similar high growth rates as pure titania. According to previous studies, a

higher concentration of aluminium is needed to achieve a protective alumina scale.

However, the increase of the aluminium concentration is technologically not desired

because of loss of ductility by the formation of brittle TiAl3. The high aluminium content of

iron  aluminides  (such  as  in  FeAl  and  Fe3Al) allows the formation of relatively protective

external alumina layer that improves sulphidation resistance of iron aluminides. Therefore,

iron aluminides are particularly suitable in harsh, aggressive and corrosive environments up

to 800°C as compared to FeCrAl and FeCrNi alloys. Aluminides based on FeAl exhibit

better oxidation and corrosion resistance than Fe3Al alloys. Both iron-base intermetallic

compounds have lower density by as much as 30 to 40% if compared to steels and other

commercial iron-based alloys [19].  Although  FeAl  and  Fe3Al intermetallics containing

relatively high amount of aluminium, cracking and spallation of their scales under practical

conditions at HT is a common problem due to poor adhesion between alumina scale and the

iron aluminides. For example, it was reported that alumina scales grown on FeAl containing

40 at%Al spall extensively at 900-1100°C [20]. It is also known that addition (by doping or

surface implantation) of small amounts of reactive elements (such as yttrium, hafnium,

cerium and other rare earth metals) in such alloys can improve their scale spallation
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resistance. Also it was found that REs affect other oxidation properties for this class of

materials including reaction kinetics and scale morphology. In this context the beneficial

role of small additions (∼ 1 at%) of reactive elements, has received considerable attention.

The RE effects have, in fact, been studied extensively for chromia-forming alloys. However,

as maximum use of temperatures could increase to (∼ 1200°C), chromia is no longer

protective, due to its volatility. At higher temperatures, alumina gives better protection due

to its relatively low volatility, slow growing kinetics and chemical inertness. Most of the

experimental observations, reported in the literature show an improvement in the oxidation

behaviour of RE-doped alloys. However, the exact mechanisms by which a RE addition

changes the oxidation behaviour have not been conclusively identified and not fully

understood. Various mechanisms have been proposed, but a general agreement is yet not to

be reached. Despite all the efforts made, the understanding of HT corrosion processes of γ-

TiAl and Fe3Al intermetallics is still far from complete and requires a more thorough

investigations.

     There are several important aspects of the HT corrosion behaviour of Ti-aluminides and

Fe-aluminides intermetallics that need further attention: the occurrence of multi-layered

scales (TiO2/Al2O3),  the  transition  kinetics  of γ-TiAl,  the  effect  of  nitrogen,  the  partial

pressures of oxygen and sulphur on the scaling behaviour of γ-TiAl, also the mechanism of

the internal attack of Fe3Al  and  the  phase  transformation  of  the  formed  Al2O3 at  high

temperatures, as well as the mode of Al2O3 scale growth and scale breakdown of the Fe3Al

intermetallics – with and without reactive element – in both isothermal and cycling

conditions. All of these aspects need to be critically examined and investigated in a wide

range of temperatures and exposure time. Based on such background, the present research

programme has been undertaken with two main objectives: (1) to provide new experimental

HT corrosion data essential for alloy design purposes and (2) to provide new fundamental
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information concerning the mode of degradation of (a) un-doped and Y and/or Hf doped

Fe3Al intermetallic materials and (b) uncoated Ti-46.7Al-1.9W-0.5Si alloy and coated with

selected single and double layers of coatings.

     The research programme focuses on the study of oxidation behaviour of Ti-46.7Al-

1.9W-0.5Si alloy within the temperature range (750 - 950°C) and Fe3Al at (900 - 1100°C).

A parallel study has been conducted to examine the HT sulphidation/oxidation behaviour of

selected single (CrN and AlTiN) and double (CrN/NbN, AlTiN/NbN and AlTiN/CrN)

layers coatings on Ti-46.7Al-1.9W-0.5Si alloy at 850°C. Such studies are of particular

importance in elucidating the mechanisms of oxidation and sulphidation of these materials

before their practical use.

     The oxidation study of Fe3Al has been extended to assess the role of the RE (Y and/or

Hf) in isothermal and cyclic conditions in air. Here the aim has been to assess whether the

presence of these rare earth elements influences beneficially or adversely the oxidation

behaviour of Fe3Al in the specified range of temperatures and for long exposure time (up to

240h). The isothermal oxidation  study of Ti-46.7Al-1.9W-0.5Si alloy (at 750 - 950°C) was

intended  to  understand  the  effects  of  nitrogen  and  the  partial  pressure  of  oxygen  on  their

oxidation behaviour. The isothermal sulphidation/oxidation studies at 850°C of the uncoated

and coated Ti-46.7Al-1.9W-0.5Si alloy were attempts to understand the influences of

coating on the corrosion behaviour of Ti-46.7Al-1.9W-0.5Si alloy in high pS2 (∼ 6.8 x 10-1

Pa) and low pO2 (∼ 1.2 x 10-15 Pa) atmosphere at 850°C.

     The emphasis of this programme of work has been to adopt an integrated approach

involving assessment of weight gain data, scaling kinetics and examination of scale

formation and development processes. Such information has been needed to identify the

mechanisms of the corrosion behaviour of the experimental materials.
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     This thesis has been structured in eight chapters. An overview of the relevant theoretical

aspects of HT corrosion of metals and alloys is presented in Chapter 2. Emphasis is placed

upon the thermodynamics and kinetics of oxidation and sulphidation of metals and alloys.

This chapter also considers the effect of stresses generated within the scales and the basic

principles and theories related to the subject. Chapter  3 critically reviews the relevant

literature on the subject of the oxidation/sulphidation behaviour of Fe- and Ti-aluminides.

Also, previous work to improve the oxidation and sulphidation resistance of these classes of

materials with an emphasis on the modified and non-modified Fe3Al and γ-TiAl

intermetallics are briefly reported. Previous attempts available in the open literature to

explain the effects of environmental composition and the reactive element effects on the

corrosion behaviour of Ti-Al and Fe-Al systems have been reviewed. An introduction to the

present experimental work is outlined in Chapter  4.  Detailed  description  of  the

experimental methodology of this work is given in Chapter  5. The oxidation and

sulphidation results of the modified and non-modified Ti-46.7Al-1.9W-0.5Si alloy and

Fe3Al  alloys  are  given  in Chapter 6.  General discussion, which outlines the HT

oxidation/sulphidation of the experimental materials are included in Chapter  7. The

behaviour of the un-modified and modified Fe3Al and Ti-46.7Al-1.9W-0.5Si alloy is

compared and highlighted. The high temperature corrosion mechanisms of the experimental

materials in oxidising and sulphidising environments are also modelled. Chapter 8 includes

conclusions from the present work and future areas of research based on the outcomes

derived from this thesis.
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CHAPTER TWO

2.0 THEORITICAL ASPECTS OF HIGH TEMPERATURE CORROSION
        BEHAVIOUR OF METALS AND ALLOYS

2.1 Introduction

     High temperature (HT) oxidation involves very basic thermodynamics and kinetics. The

aim of corrosion protection is not to prevent the reaction between metals and their working

environment  (in  this  chapter  exclusively  oxygen)  but  to  use  the  reaction  product  to  inhibit

further corrosion. For better protection of the base metal or alloy, the corrosion product

must be dense and stable, preferably slow-growing and adherent to the substrate.

     This chapter summarises the basic concepts governing the thermodynamics and kinetics

of HT corrosion processes of metals and alloys, also it includes important aspects related to

defect structures and transport processes associated with scale formation and growth

processes.

2.2 Thermodynamics and Kinetics of High Temperature Corrosion

     Most metals are unstable at HT and react with environments to form corrosion products.

Oxidation reaction begin at the metal/environment interface and, unless the reaction

products are volatile, they will result in the formation of an intermediate layer which

separates the metal from the environment. The possible forms of this layer are numerous

and may alter as the reaction proceeds. Once a complete and compact film covers the metal

surface, the reaction may continue only by diffusion of the reactants through the scale film

hence, corrosion becomes dependent upon diffusion kinetics [21]. For engineering purposes,

these characteristics are usually achieved by combining some base element (such as Fe, Ni,

Co or Ti) with one or more elements (such as Cr, Al or Si) which form a protective scale.
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The formation of a metal oxide may be represented as:

( ) ( ) ( )syxgs OMOyxM =+ 22
………………………………….(1)

The mechanisms by which the reactants may penetrate the oxide layer are seen to be an

important part of the mechanism by which HT oxidation occurs. Similar principles apply to

the formation and growth of sulphide and other similar reaction products.

2.2.1 Thermodynamics of High Temperature Corrosion

     The oxidation of alloys involves the same general phenomena as for pure metals but is of

course more complex since the components of an alloy has different affinities for oxygen.

Owing to the complicated mechanisms involved, it is often difficult to predict the oxidation

behaviour of alloys except for relatively simple systems. Thermodynamics allow the

prediction of possible corrosion reactions. The overall driving force for metal reaction with

the environmental species is the associated reduction in free energy of formation, although

this may bear little or no relation to the rates of reaction, which are controlled by kinetic

phenomena. Figure 2-1 shows an Ellingham diagram of the free energies of formation of

various oxides, because Al2O3 has a lower free energy of formation than FeO and TiO2, it is

thermodynamically more stable. Thus, in equilibrium, Al will oxidise preferentially to Fe or

Ti. The change in Gibbs’s free energy ∆G for a reaction is given in equation 2 as:

KRTGG ln=°∆−∆ ……….…………………………….(2)

where, °∆G  is the standard free energy of formation associated with the reaction, R is the

gas constant and T, is the reaction temperature in Kelvin. The standard free energy of

formation is related to the equilibrium constant, K of the reaction. K is derived from the law
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Figure 2-1 Standard free energy of formation of selected oxides as a function
                  of temperature [22]
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of mass action. Considering reaction 1 and assuming activities of the metal and oxide as

unity and that of the oxygen partial pressure under equilibrium conditions,









=°∆−∆ 2

2
./ln

y

O
x
MOM aaaRTGG
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where a is the thermodynamic activity.

Equation 3 may be used to express the oxygen partial pressure at which metal oxides

dissociate, as for an ideal gas, the activity a  is equal to the partial pressure P ,  and  for  a

pure condensed phase, the activity a  = 1 thus under conditions of equilibrium where ∆G= 0


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
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=°∆ 2

2ln OpRTG
y

 ……………………………….(4)

where 2pO  is the oxygen partial pressure at the dissociation pressure of the oxide.

     The determination of the conditions under which a given corrosion product is likely to

form are useful, particularly in the design of oxidation/sulphidation resistance alloys and

coatings where elemental additions are made, preferentially react with the environment

species to form more stable and protective scales. The preferential oxidation/sulphidation,

for example, of an alloy component requires that its standard free energy of formation be

lower than that of the other alloy components.

     When a metal or alloy is exposed to gaseous oxygen or sulphur, the processes of initial

oxidation or sulphidation can be envisaged to occur in three main stages [23]:

• adsorption of oxygen or sulphur gas on the metal surface,

• formation of individual oxide or sulphide nuclei which grow laterally to form a

continuous oxide or sulphide film, and

• further growth of the oxide or sulphide film normal to the metal surface.



12

Adsorption

          Adsorption leads to a decrease in entropy as the gas molecules and atoms normally

lose some degrees of freedom. Due to the simultaneous decrease in both the free energy and

the entropy, which also imply a decrease of the enthalpy (equation 5), adsorption is

normally an exothermic process.

∆G = ∆H - T∆S ……………..………………………..(5)

     Adsorption can be termed physisorption and chemisorption. In physical adsorption, gases

become bound to the metal surface through relatively weak van der Waals’ forces for which

the enthalpies are relatively low (< 20 – 50 kJ/mole). Chemisorption is characterised by the

formation of a chemical bond, with the enthalphies involved in the range 40 to 600 kJ/mole.

Clearly the chemisorbed states are generally more stable than the most stable solid

compound of the same system. Chemisorption takes place at specific sites on clean metal

surfaces and is dependent on such factors as crystallographic orientation, edges, dislocation

links and defects on the surface. Chemisorption continues until a monolayer of the adsorbed

species is formed.

     When the surface of a metal is placed in contact with an oxidising or sulphidising gas

where the chemical activities of the oxygen or sulphur are fixed but are below a specified

value, a strong interaction occurs between the metallic atoms of the metal surface and the

oxygen or sulphur. Such an interaction leads to the formation of a monatomic layer of

oxygen or sulphur chemically adsorbed. In this range of concentrations, the metal surface

ceases to react when placed in contact with the ambient gas as soon as the monatomic layer

has formed. If, owing to the various fluctuations, nuclei whose thickness corresponds to

several atomic layers appear locally, but the latter have a short lifetime. This emphasises the

fact that when a metal is placed at a high temperature within a rarefied atmosphere,

considered as a reducing agent from the traditional thermodynamic point of view, then
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changes in the properties of the external surface and sometimes even in the internal surface

(e.g. grain boundaries and sub-grain boundaries) can be caused by the presence of the traces

of residual oxygen or sulphur. It was observed [24] using radioactive S35 that the surface of

Cu-S  alloys  at  pH2O/pH2 =  10-4-10-2 at temperatures between 800 and 900°C became

covered by a monatomic layer of sulphur. It was believed that under these conditions the

grain boundaries were also saturated by a mono-layer of sulphur atoms. Furthermore it was

proposed that in cases where pO2 or  pS2 exceeded the dissociation partial pressure of the

oxide or sulphide, the existence of a saturated monolayer preceded the formation of the

three-dimensional oxide or sulphide.

Nucleation and growth of three-dimensional compounds

     When a metal surface saturated with adsorbed oxygen or sulphur atoms is further

exposed to an atmosphere in which the oxygen or sulphur activities are above the

dissociation partial pressure of the oxide or sulphide, oxide or sulphide nuclei are formed at

some particular points on the metal surface. A model for such a growth process is shown in

Figure 2-2 [23]. The nucleation and growth of nuclei are functions of the metal type and its

orientation, the temperature and oxygen or sulphur partial pressure. Oxygen or sulphur

species in equilibrium with the gas on top of the two-dimensional adsorbed layer lead to the

formation of nuclei, which grow laterally by capturing at the perimeter. The growth pattern

follows the sequence: nuclei increase → the growth rate increases → growth rate reduced by

impingement. This particular manner of growth is ascribed to the inhibition of surface

diffusion over the exterior of the metal. The growth process is in competition with

perpendicular diffusion, thus modifying the morphologies of the reaction product(s).

     Another very important aspect is  the location of the nuclei.  It  might be thought that  the

nuclei of the oxide or sulphide would most likely start to grow at the existing imperfections.

At rather low temperatures when it is difficult for the reaction to start,
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Figure 2-2 Schematic model for the nucleation and growth of oxide or sulphide on
                   a metal surface [23]
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surface defects are likely to promote heterogeneous nucleation. On the other hand, higher

temperature producing higher mobility of species will promote homogeneous nucleation and

the influence of defects on the location of nucleation will be minimised. Oxide nucleation at

reduced oxygen pressures is characterised by the presence of an incubation period, which in

some cases is influenced by the dissolution of oxygen in the metal. Two important

observations are that particle density is a function of temperature and oxygen pressure,

increasing with increasing pO2, and decreasing with increasing temperature. At constant

particle density, the growth has been assumed to be controlled by Ostwald ripening.

2.2.2 Kinetics and Rates of High Temperature Corrosion

     The kinetics of oxidation reaction require for example minimum Al content in the alloy

in order to achieve preferential or selective oxidation of Al. The basic stages of the

oxidation reaction are shown schematically in Figure 2-3. Assuming there is sufficient Al, a

protective steady-state Al2O3 scale  will  form.  Prior  to  the  steady-state  stage  is  a  transient

stage, when less noble oxides, such as FeO may form. Typically, this initial layer is

undercut by Al2O3 to begin the steady-state oxidation. Al2O3 grows much more slowly than

FeO, so the change to a steady-state also usually implies a substantial reduction in the

oxidation rate [25]. When the substrate becomes depleted in Al, Fe-rich oxides form rapidly,

leading to breakaway oxidation. At this point, protective oxidation is no longer possible, and

the reaction proceeds more rapidly to eventual full consumption of the base metal.

     There are, of course variations of this simple model. For instance, breakdown may occur

in the steady-state period followed by the formation of the healing Al2O3 scale. Repeated

breakdown/healing cycles may even characterize the steady-state period. The breakaway

period implies that the reaction is out of control and no healing will occur. Thus, to produce

an oxidation resistant alloy, the goal is to minimize the transient stage and maximize the

length of the steady-state oxidation period (Figure 2-3). Generally, there are three common
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relationships linking scale thickness and the exposure time at a temperature as schematically

shown in Figure 2-4.

     Under certain conditions the oxidation of a metal or alloy proceeds at a constant rate and

is said to obey ‘linear rate law’ as shown in Figure 2-4, i.e.

tKx l .= ……………………….……………………(6)

where x  is the scale thickness, t  is the exposure time and lK  is the linear rate constant.

     In some cases, further increase in scale thickness results in a reduction in the metal

activity gradient across the scale and, consequently, to a reduction in ionic flux and the

reaction rate. At this point the transport of ions across the scale becomes the rate controlling

process and the rate falls with time (see Figure 2-4) according to a parabolic rate law, i.e.

tKx p .2 = …………..………………………………(7)

where pK is the parabolic rate constant.

     If metals or alloys oxidised under certain conditions, typically at low temperatures of up

to about 400°C, the initial oxide formation, up to the 1000°A range, is characterised by an

initial rapid reaction that quickly reduces to a very low rate of reaction. Such behaviour has

been found to conform to a rate law described by logarithmic functions (Figure 2-4) such

as:

x = logK  log (t + ot ) + A …………………………………….(8)

where A and ot  are constants at constant temperature. Several interpretations of this type of

behaviour have been provided.

2.2.3 Defect Structures, Diffusion and Transport Processes Throughout Scales

     The parabolic kinetic law as described before often typified the processes of oxidation

and sulphidation. When the scales formed on the metal surface act as an effective barriers,

the reactants, i.e. the metals and oxidants, are separated, and the reaction may proceed only
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Figure 2-4 Schematic illustration of the variation of weight gains with time for linear,
                   parabolic and logarithmic corrosion kinetics [23, 27]

Figure 2-3 Basic stages of oxidation reaction [26]
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through the scales. The overall reaction will be then governed by the solid-state transport of

the reactant molecules, atoms or ions. This underlines the importance of the transport

properties of the scales, such as diffusion in the oxides or sulphides, which, are formed as

reaction products. The transport properties are largely controlled by the imperfections or

defects in solids.

Defects in scales

     Since diffusion is dependent upon the defect structure of the oxide through which a

species is diffusing, it is necessary to first understand the nature of the defects in oxides and

their effect upon the transport of reactants during corrosion of the alloys. Several

mechanisms are used to explain the transport of ions through both stoichiometric and non-

stoichiometric compounds. In principle, all types of lattice defects may be present to some

extent in all compounds, however, it is generally accepted that certain types of defect

usually predominate.

     At any temperature solids in the form of crystals contain different structural and

compositional defects. These are often divided into three groups [23]: (1) point defects, (2)

line defects and (3) electronic imperfections.

     If the imperfection is limited to one structural or lattice site and its immediate vicinity,

the imperfection is termed a point defect. Simple defects of this type include: (i) empty

sites or vacancies where constituent atoms are missing in the structure and (ii) interstitial

atoms occupying the interstices of the regular sites. In principle there may also be misplaced

atoms,  e.g.  a  cation  on  an  anion  site,  but  this  type  of  defect  is  probably  not  important  in

oxides. The defects formed in pure crystals, e.g. vacancies and interstitial atoms, are

commonly termed “native” point defects. Foreign atoms are also usually considered to be

point defects.
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     Line defects or dislocations are characterised by displacements in the periodic structure

in certain directions. Planar defects comprise stacking faults, internal surfaces (e.g. grain

boundaries) and external surfaces.

     In addition to structural defects solids also contain electronic imperfections, i.e.

electrons and holes [28], which are relatively free to move in the solid. If the electrons or

holes are localised at atoms or regular sites in the structure, the electronic defects may either

be formed intrinsically through an excitation of elements from the valence to the conduction

band or be formed in association with point defects.

     Theoretically, metal oxides or sulphides under equilibrium conditions only have an exact

stoichiometric composition under specific conditions of temperature and partial pressure of

the components. However, as a general rule, metal oxides and sulphides will exhibit

deviations from the exact stoichiometry [28, 29]. Non-stoichiometry in oxides and sulphides

may arise from a deficit of oxygen or sulphur and metal relative to the stoichiometric

composition, namely [30]:

      (1) Oxides or sulphides with cation defects,

a) metal-deficit, with cation vacancies on the cation sub-lattice (p-type

semiconductor), e.g. NiO, CoO, FeO, NiS, CoS, FeS;

b) metal-excess, with interstitial cations (n-type semiconductor), e.g. possibly

ZnO, Cr2S3.

(2) Oxides or sulphides with anion defects,

a) oxygen (or sulphur)-deficit, with oxygen anion vacancies on the anion

sublattice (n-type semiconductor), e.g. Nb2O5 or Ta2O5;

b) oxygen-excess, with interstitial oxygen (sulphur) anions (p-type

semiconductor), e.g. VO2.

Actually, the defect structures are often more complex, the oxides or sulphides containing

several types of defects may be linked to the presence of impurities.
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     Generally, many metal sulphides are known to be more non-stoichiometric than the

corresponding metal oxides [3], as shown in Table 2-1. Thus the diffusion rates associated

with the non-stoichiometry in sulphides are much faster than in the oxides when the scale

growth is likely to occur by outward diffusion of metal cations towards the scale/gas

interface or by inward migration of sulphur anions via anion defects in the sulphide lattice

(Table 2-2 [3]).

Ma +ySb T (ºC) y Ma+yOb T (ºC) y

Cu1.75S 650 - 0.250 Cu1.997O 1000 - 0.003

Ni0.92S 700 - 0.080 Ni0.9999O 1000 - 0.0001

Co0.85S 720 - 0.150 Co0.99O 1000 - 0.01

Fe0.80S 800 - 0.200 Fe0.89O 800 - 0.11

Cr2.08S3 700 + 0.080 Cr1.999O3 600 - 0.001

Al2.01S3 950 + 0.010 Al2.0001O3 1000 +0.0001

Sulphide T (ºC) DM (cm2/s) Oxide T (ºC) DM (cm2/s)

Cu1.75S 650 5.2 x 10-5 Cu1.997O 1000 1.7 x 10-8

Ni0.92S 800 1.4 x 10-8 Ni0.9999O 1000 1.0 x 10-11

Co0.85S 720 7.0 x 10-7 Co0.99O 1000 1.9 x 10-9

Fe0.80S 800 3.5 x 10-7 Fe0.89O 800 1.3 x 10-8

Cr2S3 1000 1.0 x 10-7 Cr2O3 1000 1.0 x 10-12

Al2S3 600 1.0 x 10-13 Al2O3 1000 1.0 x 10-16

Table 2-1 Comparison of non-stoichiometry of certain metal sulphides with the relative oxides [3]

Table 2-2 Comparison of diffusion coefficient of certain metal sulphides with the relative oxides [3]
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     To summarise the defect properties of metal oxides or sulphides, a comparison of non-

stoichiometry of some sulphides and oxides is presented in Figure 2.5 [29]. It is reported

that sulphides of important common metals show much higher deviations from

stoichiometry, and thereby contain significantly higher defect concentrations than in the

corresponding oxides. The only exception is sulphides, which have a lower non-

stoichiometry than the oxide. It should be stressed that in the case of high non-

stoichiometry, the defect concentration in oxides as well as in the sulphides of iron, nickel

and cobalt, decreases with increasing temperature. In the case of sulphides, this behaviour is

due to strong repulsive interaction between cation vacancies, and in the case of oxides, it

arises from the formation of extended defects. Finally, it should be mentioned that the defect

structure in refractory metal sulphides has not been studied extensively probably because of

the associated difficulties in measuring deviation from stoichiometry. It has been shown

[29], for instant, that the non-stoichiometry of molybdenum sulphide at about 1000°C is

smaller than 8x10-5 mole of sulphur per mole of sulphide. The defect concentration in

refractory metal sulphides is therefore assumed to be very low.

     The presence of foreign ions or “dopants” significantly affects the defect concentration

of an oxide/sulphide. There are numerous possible defects, which may occur in different

oxides/sulphides. Here the case of an oxide MO doped with small amounts of Mf2O3, where

Mf denotes a foreign atom, is used to illustrate the theory. Assuming the foreign Mf 3+

cations occupy normal M2+ sites, then Mf ions have a single effective charge. For

electroneutrality an equivalent concentration of negative effective charge is required,

therefore the electron concentration is increased:

2
'.

32 2
1222 OOeMfmOMf o +++= ……………………………(9)
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Figure 2-5 Collective plot of the temperature relationship of non-stoichiometry for
                   several metal sulphides and oxides [29]
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If the MO is oxygen deficient with ..VO  the predominant carriers, the increased electron

concentration will result in a reduction in the oxygen vacancy (Oo) concentration and O

denotes a perfect oxygen crystal.

om OMfOMfVO 32 .32
.. +=+ ……………………………..(10)

where VO  denotes an anion vacancy so ..VO  denotes a double negatively charged anion

vacancy. Conversely, a single valent metal oxide as dopant would result in the reduction of

electron concentration and an increase in the oxygen vacancy concentration.

The effect of aliovalent cation impurities in p-type semiconductor is opposite to that of the

n-type described above and hence addition of Mf2O3 to  a  metal-deficient  MO  may  be

written;

232
.

2
1222 . OOMfOMfh om ++=+ ………………………..(11)

where .2h  denotes a single positively charged electron hole.

     Dislocations in the crystal lattice may act as paths for fast diffusion, that is they act as a

sink for point defects or diffusing ion species. The core field of a dislocation is often a

preferred site for vacancies and interstitial atoms as it presents a low resistance path for

diffusion and results in its enhanced migration. Grain boundary diffusion is an example of

diffusion through planar defects in crystals because of their disordered atomic structure.

     The transport of ions across free surfaces is generally considered to be faster than grain

boundary diffusion such that latticeD < gbD < surfaceD  and that activation energy varies as VH∆

> gbH∆ > sH∆ . This however, is not always the case. Diffusion across free surfaces remains

the least understood diffusion phenomenon in view of the numerous difficulties associated

with its measurement [31-33].

     Studies of the defect structure in TiO2 suggest that both oxygen-ion vacancies, ..
oV , and

interstitial Ti ions, ...
iTi , or ....

iTi are the predominant point defect [23]. Accordingly, the non-
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stoichiometry can be written as Ti1+xO2-y [23]. The concentration of both kinds of defects is

dependent on the oxygen pressure and decreases with increasing pressure. The reaction

between ..
oV and gaseous oxygen can be described by

x
oo OeOV =++ '2

2
1

2
.. ………………………………..(12)

From the law of mass action it follows that
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it follows that
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Similar pressure dependence of the defect concentrations can therefore be generalised to:

( )16
3

2...

−
∝ pOC

iTi …….………………………………..(17)

and

( ) 5
1

2....

−

∝ pOC
iTi ……………..………………………..(18)

The pressure dependence of the defect concentration can therefore be generalised to:

( ) ( ) ndefect pOTiOC
1
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with n between about 4 to 6.

In general, it is concluded that interstitial Ti ions predominate at low oxygen pressures and

high temperatures and oxygen ion vacancies predominate at high oxygen pressures and low

temperatures [34].

     During parabolic oxidation of titanium, most of the scale is formed by inward oxygen

diffusion, however, a small portion is also formed by outward cation diffusion; this portion

increases with increasing temperature [8]. The measurement of Becker et al. [8] indicated

that  the  disorder  in  TiO2 is  affected  by  dissolution  of  Al2O3 in  such  a  way  that  the

concentration of interstitial Ti ions increases and/or that the oxygen-ion vacancies

decreases.

If substitutional dissolution is considered and oxygen-ion vacancies predominate, the

dissolution reaction can be written as

Al2O3 = 2 Al’Ti + ..
oV + 3 x

oO ……………….……………(20)

If interstitial Ti ions predominate by substitutional dissolution, a comparable reaction

equation is

x
TiTi + 2 Al2O3  =  4 AlTi

’ + ....
iTi + 6 x

oO ……………………..(21)

In both cases, the defect concentration increases with an increasing amount of dissolved

Al2O3. An interstitial dissolution can be described by

Al2O3 = 2 ...
iAl + 6 e’ + 23

2 O …………………………….(22)

Only in this case does the solubility of Al2O3 decrease with increasing oxygen pressure.

     In  order  to  understand  the  formation  and  re-dissolution  of  the  Al2O3 barrier inside the

scale  it  should  be  noted  that  the  solubility  of  Al2O3 in  TiO2 decreases with increasing

oxygen pressure [35]. This observation agreed with the measurements of Becker et al. [8].

Such pressure dependence is to be expected if Al2O3 is dissolved predominately as

interstitials (equation 22).
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Diffusion and transport processes in scales

     Diffusion in solids takes place because of the presence of imperfections in the crystal

structure. Point or lattice defects, i.e. vacancies or interstitial ions, are responsible for lattice

or bulk diffusion. Line and surface defects – which include grain boundaries, dislocation

and interfaces – are responsible for short-circuit or fast diffusion [36]. In polycrystalline

materials the relative contributions of these different types of diffusion are a function of

temperature, partial pressure of the atmosphere, grain size and porosity whereby short-

circuit diffusion becomes increasingly important at lower temperatures.

     A growth process, which is purely governed by volume diffusion should obey a parabolic

growth law. In a reaction diffusion experiment, however, it is not always clear if the

diffusion couple is at thermal equilibrium throughout the whole diffusion process.

Especially at the beginning, when nucleation and growth of newly formed phases take place,

deviation from the parabolic growth law can often be observed. Furthermore, in the case

where the intermetallic phase formed in the diffusion zone is always polycrystalline and

some times small columnar grains are observed, the influence of the grain boundary

diffusion on the overall diffusion is unavoidable and often dominant.

     Considerations of the transport properties suggested that at high temperatures matter

transport in metal sulphides (as in oxides) proceeds mainly through point defects. Thus,

these properties can be described by self-diffusion and chemical diffusion coefficients. In

contrast to the oxides, however, the transport properties of metal sulphides are less well

known. In a few cases only the chemical and self-diffusion coefficients have been

determined as a function of temperature and sulphur pressure. Figure 2-6 [29]  shows  a

collective plot of the measured, calculated and estimated values of self-diffusion

coefficients in some metal sulphides and oxides. It follows from their plots that the

activation energies of diffusion in sulphides are significantly lower than those in oxides. It is
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Figure 2-6 Collective plot of self-diffusion coefficients in some metal sulphides
                   and oxides [29]
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clearly visible that the self-diffusion rate in several sulphides is of the same order of

magnitude as in some oxides, e.g. Mn1-yS  and  Mn1-yO, Fe1-yS and Fe1-yO,  as  well  as  the

refractory metal sulphides and oxides. The rates of self-diffusion, on the other hand, in a

number of other sulphides are orders of magnitude higher than in oxides. In particular, the

rates of self-diffusion in sulphides of such important metals as cobalt, nickel and chromium

are several orders of magnitude higher than in their corresponding oxides.

     Since the value of self-diffusion is a product of defect mobility and their concentration,

deviations from stoichiometry and chemical diffusion coefficients should be compared in

both oxides and sulphides of these materials. Figure 2-7 [29] shows a comparison of

chemical diffusion coefficients in selected oxides and sulphides. It follows from this plot

that  the  rate  of  diffusion  and  consequently  the  mobility  of  defects  in  metal  oxides  and

sulphides do not differ significantly. In fact, the rate of chemical diffusion for metal oxides

is generally higher than in metal sulphides, but the differences do not exceed one order of

magnitude. This means that in the majority of cases, the significantly higher rate of self-

diffusion in metal sulphides results from higher defect concentrations and not from greater

defect mobility. It is also interesting to note that the activation energies for chemical

diffusion in metal sulphides and oxides are comparable, whereas the activation energies for

self-diffusion in metal oxides are much higher than in sulphides.

     From the above considerations, it follows that sulphide scales on common metals should

possess poor protective properties. One of the most important conclusions is that, as in the

case of sulphidation, sulphide scales on all common metals grow primarily by the outward

diffusion of cations, and on refractory metals by inward diffusion of sulphur species.

Figure 2-8 [29] shows a collective plot of the temperature dependence of sulphidation

and oxidation rates for some metals. These plots show clearly that sulphidation rates of such

important metals as cobalt, nickel and chromium are significantly higher than those of

oxidation. Manganese is in an intermediate position, as its sulphidation rate, is comparable
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Figure 2-7 Collective plot of chemical diffusion coefficients in  some metal sulphides
                   and oxides [29]
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Figure 2-8 Collective plot of the temperature relationship of sulphidation and oxidation
                   rates of pure metals [29]
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to that of its oxidation. On the other hand, refractory metals are highly resistant to

sulphidation, their sulphidation rate being comparable to the oxidation of chromium, which

represents one of the most resistant metals to oxidation. It should be emphasised that the

sulphidation rate of niobium is about seven orders of magnitude lower than that of iron.

     If oxidation of Ti-Al alloys is controlled by diffusion in the scale, it is generally assumed

that the concentration gradient of the diffusing species is constant across the scale as shown

in  (Figure 2-9 [8]. (If the diffusion coefficient Di is oxygen-pressure dependent, then the

product Di.∆ Gi is constant.) Then it follows from equation 16 that the slope of the oxygen

pressure across the scale becomes increasingly steeper when approaching the surface

(Figure 2-9). The variation of the Al2O3 solubility (substitutional and interstitial) across the

scale depends on the relation between Al2O3 solubility and oxygen pressure, which is

presently unknown [8]. A linear variation across the scale may be assumed for

simplification.

Figure 2-9 Variation of defect concentration and oxygen pressure in a growing
                   TiO2 scale [8]
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2.3 Wagner Oxidation Theory

     The process of thin film oxidation applies to the very initial stage of high temperature

oxidation.  As  an  oxide  film  thickens  to  form  a  compact  scale,  then  the  mechanism  of

continued oxidation is controlled by the diffusion of reactants through the scale under the

influence of a concentration gradient. This commonly results in a parabolic rate relationship.

Wagner’s theory of high temperature oxidation of metals is the best establishing model for

the mechanism of thick film formation, although many assumptions in the theory limit its

application. It is assumed that scales are compact, adherent and with only small deviation

from stoichiometry.  Thermodynamic equilibrium is assumed throughout the scale and at its

interfaces and that the rate-determining process is the migration of ions and electrons across

the scale. Hence interface reactions are assumed to be rapid. Anions, cations and electrons

are considered to diffuse independently of each other via lattice defects and under the

influence of an electrochemical potential gradient across the scale.

     The driving force for the reaction is the reduction in free energy associated with the

formation of the oxide and the concentration gradient of the components. The rate of growth

is determined by the gradient and rates of diffusion of cations, anions and electrons. The

mobility of these defects is not equal and hence a charge separation is created in the scale to

the point where a resulting space charge creates an electric field, which opposes further

charge separation, and a steady state is achieved.

     There is thus a constant concentration difference, ∆c across the oxide and the rate of

transport across the scale is dependent upon the diffusion coefficient, D and the thickness of

the scale, x.

( )xcDdtdx // ∆=  ………………………………….(23)

and hence;

tKx .2 = …………….………………………….(24)
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these mechanisms lead to a parabolic rate of oxidation. Models for oxide formation at the

metal/oxide interface (via inward anion diffusion) and the oxide/oxygen interface (via

outward cation diffusion) have been proposed where the transport of ions and electrons

through the scale take into account both diffusion due to chemical and electrical potentials.

     The importance of Wagner theory is that it provides a fundamental understanding of the

high temperature oxidation of metals and – although it is not always directly applicable to

all metal/oxide systems – it offers a theoretical basis for oxidation rate relationships.

Numerous investigators have derived the Wagner theory using different models and

assumptions [31, 38].

2.3.1 Selective oxidation

     Selective oxidation is favoured in alloys in which the oxides of the alloy components

have large variations in stability, and in which a critical concentration for preferred

oxidation is maintained. Wagner derived a model to determine the critical concentration of a

component to selectively oxidise and for preferred external oxidation [38]. For an alloy AB,

the critical concentration of B, NB for the preferred oxidation of B is:

( )2
1

/ DKMZ

VN
poB

B

π
=  …………………………………(25)

where V  is the molar volume of the alloy, BZ  is the valence of B, OM  the atomic weight of

oxygen, D  the diffusion coefficient of B in the alloy and pK  is the parabolic rate constant.

     For  an  alloy  A-B  where  B  is  the  least  noble  constituent,  then  three  cases  for  oxidation

may be described: (i) alloy composition rich in the oxide of A until such a time when the

concentration of B in the alloy reaches equilibrium, (ii) alloy composition rich in B where

only B oxidises until the concentration of A in the alloy similarly achieves equilibrium, (iii)

an intermediate composition where both A and B may oxidise.
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2.3.2 Internal oxidation

     Where oxygen is soluble in the alloy, the less noble alloy constituent may form oxide

precipitates within the alloy, beneath the oxide/metal interface.  This process requires that

the rate of diffusion of oxygen in the alloy must be somewhat faster than that of the

oxidising metal thus an oxygen gradient is established in the alloy. The degree of internal

oxidation depends on the flux of oxygen into the alloy, which in turn depends on its

solubility  and  the  rate  of  diffusion.  An  internally  oxidised  zone  extends  to  the  depth  at

which the concentration of dissolved oxygen becomes too small for the formation of oxide.

The result of internal oxidation is not necessarily undesirable, various studies have

suggested that improvements in external scale adhesion, increased hardness and improved

creep properties result from the presence of oxide particles within the material [39, 40].

     When the concentration of the less noble metal in the alloy is increased, a critical

concentration is achieved and results in the transformation from internal to external, or

selective oxidation, with the formation of a protective surface scale of the least noble

constituent. This transition may be accompanied by a reduction in the rate of oxidation from

the relatively rapid rate of dissociation of oxygen into the alloy to the slower diffusion

through the surface scale. Figure 2-10 [41] summarises the most common form of alloy

oxidation, showing complete, partial, or largely non-existent oxide miscibility.

     An important consideration is whether internal oxidation or surface oxidation of the

component  likely  to  yield  the  protective  oxide  occurs.  For  an  alloy  AB,  where  only  B

oxidises, nuclei of BO develop in a matrix of A at the surface. If B can diffuse to the alloy

surface fast enough, a complete BO surface layer develops (Figure 2-10(b), but if not,

atomic oxygen diffusing into the alloy precipitates BO internal oxides at preferred sites

(Figure 2-10(a). The formation of BO internally or externally depends then on competition

between the outward flux of B (detrimental by the alloy interdiffusion coefficient in AB)
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a minor element B oxidises alone, giving internal oxide BO in matrix of A; b minor  element  B
oxidises alone, giving external oxide BO above alloy depleted in B; c major element B oxidises
alone, giving particles of A in matrix B of BO; d major element B oxidises alone, giving external
oxide BO above alloy depleted in B; e A and B oxidise to give single solid solution or compound of
variable composition (A, B)O; f A and B oxidise to give compound ABO2 dispersed in AO matrix; g
A and minor component B oxidises to give insoluble oxidises; h A and major component B oxidises
to give insoluble oxidise with AO in BO matrix.

Figure 2-10 Schematic diagram: Classification of alloy oxidation [41]
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and the inward flux of oxygen atoms in the alloy (determined by the solubility and

diffusivity of oxygen in the alloy).  The caption of Figure 2-10, explains the meaning of the

various diagrams. The concentration of B required to give protective scaling is not an

invariant figure but depends on temperature, oxygen potential, surface nucleation sites, alloy

substructure, etc.

2.4 Stress Generation in Scales

     The previous sections considered how the high temperature corrosion resistance of a

metal or alloy is determined by the nature of its protective oxide scale. If these scales crack

or spall to expose the base metal directly to the environment, enhanced oxidation can take

place. Thus, internal stress development as the oxide scale thickens is of great importance.

These include stresses generated by the oxide(s) growth processes and thermal stresses on

changing the temperature, which result from differences in thermal expansion between the

oxide and the alloy.

2.4.1 Scale growth stresses

 If scales are to be protective they must remain intact to the metal substrate. Stress

generation in scales may result in the loss of adhesion or cracking and spalling of the film.

The two principal sources of stress are growth stresses and thermal stresses. Growth stresses

may arise  due  to  a  difference  in  the  specific  volume of  the  scales,  which  is  rarely  the  same

as that of the metal. The Pilling-Bedworth ratio (PBR) is used as a measure of sign and

magnitude of the stresses caused by volume difference.
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This ratio for the majority of metals is greater than one, which indicates that the scales layer

is likely to grow in compression. Typical values of oxides and sulphides are given in Table

2.3.

Oxide/Sulphide Pilling-Bedworth ratio

NiO 1.65
Cr2O3 2.07
Nb2O5 2.68
V2O5 3.19
Al2O3 1.28
FeO (on α Fe) 1.68
Fe3O4 (on α Fe) 2.10
Fe2O3 (on α Fe) 2.14
TiO2 1.7-1.78
CoO 1.86
Cr2S3 2.5
TiS2 1.11
Al2S3 2.6
FeS 2.5
WS2 3.47

This also allows the classification of oxides into two different categories:

ü if the P.B.R. > 1 (which is the case for most metals), i.e. the specific volume of the

oxide phase is higher than that of the metal, then the oxide is protective and the

kinetics are generally of a parabolic type,

ü if the P.B.R.< 1, then the oxide contains cracks and oxygen penetrates the scale and

rapidly consumes the substrate. In this case the kinetics are generally linear.

In the very early stages of oxidation where oxide nuclei have an epitaxial relationship with

the substrate, stresses may exist due to the difference in lattice parameter of the metal and

the oxide, epitaxial constraints are reduced as the scale thickens. Changes in lattice

parameters in alloys where a single component is oxidising and hence becomes depleted in

the substrate, may also generate stress. Scales, which exhibit large deviation in

Table 2.3 Pilling and Bedworth ratio for typical oxides and sulphides [42, 43]
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stoichiometry may also generate stresses which arise from a gradient in point defects across

the scale with resulting variations in lattice parameters. Where metals oxidise via outward

cation diffusion, vacancy injection may result in stress generation within the substrate.

2.4.2 Thermal stresses

     Thermal stresses generated during cooling because of the difference in thermal

expansion coefficients of metals and their oxide(s). In general the coefficient of thermal

expansion of the oxide is less than that of the metal such that compressive stresses are set-up

in the oxide. The large thermal stresses result in the cracking and spalling of the oxide from

the metal surface [44]. The unconstrained mismatch strain ∆ε can be written simply as:

T∆∆=∆ .1αε  ………………………….………..…(26)

where T∆  is the change in temperature, 1α∆  is the difference in thermal expansion

coefficients. Typical values of thermal expansion coefficients for a selected systems are

presented in Table 2.4. The ratio om αα /  is  also  quoted,  where mα  is the expansion

coefficient of the metal and αo is the expansion coefficient of the metal oxide. If the ratio is

greater than unity, then compressive stresses are generated in the scale on cooling. The

greatest stresses occur for ratios significantly greater than one. Hence NiO scale on Ni tend

to be adherent, whereas Cr2O3 scales on Cr tend to spall at the metal surface.

System Metal coefficient
(αm/K-1)

Oxide coefficient
(αo/K-1)

Ratio
(αm/αo)

Ni/NiO   17.6 x 10-6 17.1 x 10-6 1.03
Co/CoO   14.0 x 10-6 15.0 x 10-6 0.93
Fe/FeO   15.3 x 10-6 12.2 x 10-6 1.25
Cr/Cr2O3     9.5 x 10-6   7.3 x 10-6 1.30
Ni-20Cr/Cr2O3 12-16 x 10-6   7.3 x 10-6 1.64-2.19

Table 2.4 Linear expansion coefficients of typical oxides and metals [43]
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As well as the fracture of the scale and loss of adhesion to the substrate, plastic deformation

of the oxide and substrate are further mechanisms of stress relief [45] and the adherence of

films is strongly dependent upon film plasticity.

     Grain boundary sliding and creep are proposed as the most favourable mechanisms of

deformation, since slip is unlikely in oxides. The numerous models, which have been

proposed for the origin and generation of stresses in oxides have been reviewed by Douglass

[45]  and  Stringer  [46]. Griffin et al. [47]  studied  the  deformation  behaviour  of  the  Al2O3

formed on Fe3Al after cooling from various temperatures. After cooling, the scale spallation

from the substrate was found to be temperature dependent. Scale spallation was attributed to

the difference of thermal expansion between the substrate and the scale. This finding is in

agreement with the results obtained by Wright et al [48]. The thermal expansion coefficients

of Fe3Al alloy and Al2O3 at different temperatures are shown in Table 2.5. This

demonstrates the need to design alloys and coatings, which can produce scales of better

adhesion with their substrate at higher temperatures.

Temperature
(K)

Fe3Al
(x 10-6 K-1)

Al2O3
(x 10-6 K-1)

198 15.4 5.4
500 16.1 6.8
700 18.3 7.3
900 20.6 7.7

1100 22.1 8.0
1300 23.4 8.4

Table 2.5 Coefficient of thermal expansion of Fe3Al and Al2O3 [48]
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CHAPTER THREE

3.0 REPORTED HIGH TEMPERATURE CORROSION BEHAVIOUR
      OF TITANIUM- AND IRON- ALUMINIDES

3.1 Introduction

     The present chapter summarises the reported behaviour and the development of high

temperature corrosion resistant Ti and Fe aluminides. Emphasis is placed on the high

temperature corrosion behaviour of Ti-Al and Fe-Al intermetallics. The aim of the review is

to asses the information available in the open literature regarding the corrosion behaviour of

γ-TiAl and Fe3Al alloys in particular.

     The available information on the corrosion behaviour of Ti-Al alloys is summarised in

Section 3.2. The mechanism and rates of the corrosion reaction of titanium aluminides at

various experimental conditions reported in the literature are summarised. Previous attempts

to study the effects of environmental gas composition (exclusively oxygen, nitrogen and

sulphur) on the corrosion behaviour of Ti-Al systems are highlighted and critically assessed.

The effects of Ti-Al alloy composition and surface treatments to this class of materials at

high temperatures are also concluded in this chapter.

     The current understandings of the mechanism of Al2O3 scale formation and growth on

Fe-aluminides are outlined in Section 3.3. Views emphasising the RE effect in relation to

Al2O3 growth, features and adhesion are briefly discussed. Various aspects of the main

methods of RE additions to Al2O3-forming materials are summarised. Transport processes

and the role of stresses in relation to oxide integrity and adhesion to Fe-aluminides are also

discussed
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3.2 Reported High Temperature Corrosion Behaviour of Titanium-aluminides

3.2.1 Introduction

     Titanium-aluminides based on the intermetallic phase in particular are a new group of

intermetallic alloys with a relatively low density (~ 3.76 g/cm3) and good strength at high

temperatures. Gamma titanium aluminide (γ-TiAl) could for example replace nickel-base

alloys in certain aircraft engine components. Industrial applications of γ-TiAl above 700°C,

however, are still restricted due to the insufficient corrosion resistance of these materials

[49-62].

     The corrosion behaviour of titanium and Ti-Al alloys has been studied by many

researchers [63-82]. The nature of the oxide scale on titanium aluminides is more complex

than that of pure titanium. The scale on Ti-Al is a mixture of fast-growing TiO2 and

potentially protective slow growing Al2O3 [83-98].  Even though Ti-Al alloys contain about

50 at%Al, this is not sufficient to form a long-lasting protective alumina layer at high

temperatures (> 700°C) in air. Poor oxidation resistance of Ti-Al systems in air at high

temperatures initially results from the formation of Al2O3, TiO2 (rutile), Ti2AlN and TiN [7-

10], with the latter two near the scale/substrate interface. After longer exposure times, the

mixed corrosion scale was overgrown by relatively fast growing TiO2 [99-106]. However,

since Al2O3 does  not  form a  continuous  barrier  in  TiO2/Al2O3 mixtures, generally the scale

is non-protective. For long-term oxidation resistance, the formation of an α-AI2O3 barrier in

the metal/oxide interface zone is necessary.

     Corrosion by gaseous environments containing sulphur is a serious problem in various

technical high temperature processes, since sulphidation can significantly reduce the service

life of metallic components. Whereas in strongly oxidizing conditions adequate corrosion

resistance can be achieved, this is more difficult in environments characterized by a low

oxygen and high sulphur activity. In these atmospheres the simultaneous nucleation of
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sulphides as well as oxides was observed [64-67, 107-118]. A great deal of research work

has been undertaken to improve the corrosion behaviour of Ti-Al alloys by adding ternary

and quaternary elements [111-117, 119, 120]. From these studies, both beneficial and

detrimental results have been reported and even apparently contradicting conclusions were

obtained. This might be partly caused by differences in alloy purity, since several alloying

elements have been demonstrated to possess a significant effect on the corrosion properties,

even if they are present in small quantities. Also differences in alloy conditions and reactive

gas composition can affect the corrosion behaviour of the materials under investigation.

3.2.2 Mechanism and Corrosion Rates of Titanium-aluminides

     The oxidation resistance of γ-TiAl-based alloys becomes poor at temperatures near or

about 700°C [121]. According to Taniguchi [122], that is because of the following reasons:

(1) the little difference in free energy of the oxidation between aluminium and titanium; (2)

the larger oxidation rate of titanium than that of aluminium; (3) the high solution content of

oxygen in TiAl; (4) the small diffusion rate of aluminium in TiAl, and (5) the internal

oxidation tendency of aluminium in TiAl. Therefore, improving the oxidation resistance of

this alloy is key to its practical application. The research activities in this field including

surface treatment and alloying addition were extensively carried out, but the achievement of

adequate oxidation resistance is still a matter of concern.

     It seems likely that the reduction in oxygen diffusion into Ti-Al alloys is a consequence

of the improved barrier properties of their oxide scale and the subsequence inhibition of

oxygen diffusion through this scale. If aluminium is substituted into the rutile lattice,

according to the Wagner-Hauffe theory, the trivalent (Al3+) cations will cause an increase in

the number of anion vacancies and consequently enhance their rate of diffusion. Accelerated

oxidation is not observed, which might suggest that aluminium takes up interstitial positions
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in the rutile. A modification of the flux of oxygen across the scale may arise from a

reduction in the rate of ionic charge in the presence of alumina, which has a lower rate of

ionic conductivity than rutile. In addition to the electronic effects, which inhibit the

diffusion of oxygen through the scale, alumina-containing scales are more protective

because they are less porous and have improved adhesion. The multi-layering of oxide

scales is less distinct in the mixed scales and the oxide layers are thinner. Hence scales

become denser as the aluminium content increases and oxygen has more limited access to

the metal/oxide interface.

     From the above background self-diffusion data on Ti and Al in Ti-aluminides are

necessary to understand the corrosion mechanism of Ti-Al systems and also for the

interpretation of the Ti-Al high temperature corrosion phenomena. Unfortunately,

experimental studies of diffusion in the Ti-AI system are hampered primarily by the non-

availability and expensive radioactive isotopes of Ti and Al. 44Ti is the only suitable

radiotracer for Ti [123], but it is produced by a nuclear reaction at a cyclotron and is very

expensive. The only suitable isotope for Al, 26Al [123], which is also a cyclotron product; it

is even more expensive than 44Ti and, in addition, has very low specific activity.

     Herzig et al [124] launched a broad programme of extensive experimental investigations

of diffusion in the Ti-Al systems. Such investigations included lattice diffusion in different

phases of the system and grain boundary diffusion and diffusion along γ/α2 interfaces. To

date, their efforts have resulted in accurate measurements of lattice self-diffusion and Al

impurity diffusion in pure α-Ti  [124], and Ti self-diffusion and single-phase inter-diffusion

in  bcc  Ti-Al  alloys  [125]  and  in  the  Ti3Al aluminide [126, 127]. However, Sprengel et al.

[128] could not make any reasonable evaluation of Al diffusivity in TiAl by combining their

interdiffusion coefficients with the data of Kroll et al. [129].

     Recently, the work of Herzig et al. [123] led to accurate measurements of 44Ti self-

diffusion coefficients in γ-TiAl over a wide temperature range (Table 3.1 [123]). They also
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studied diffusion in three different Ti-Al materials with near-stoichiometric compositions.

One of the materials used was the same material as that studied by Kroll et al. [129].

T (ºC) DTiAl (m2/s) DTi (m2/s) DAl (m2/s)

900 3.596 2.07 x 10-17 1.18 x 10-17 2.40 x 10-18

1000 3.088 2.23 x 10-16 8.87 x 10-17 3.52 x 10-17

1100 2.885 6.40 x 10-16 2.17 x 10-16 1.69 x 10-16

They  [123] evaluated Al self-diffusion coefficients in TiAl by using their new Ti self-

diffusion data and the interdiffusion coefficients obtained by Sprengel et al. [128]. The

calculations of Herzig et al. [123] suggest that, in the compositions studied experimentally,

Ti diffusion at low temperatures is dominated by the vacancy mechanism. At higher

temperatures the anti-structural bridge mechanism can essentially contribute to the overall

diffusivity, which can explain the experimentally observed non-Arrhenius behaviour of Ti

diffusivity. Al diffusion occurs predominantly by the vacancy mechanism, but 3-jump

cycles and especially anti-structural bridges can also play an important role. These results

were in agreement with their experimental data and their calculations predict that Al

diffuses with a higher activation energy than Ti. These findings are very useful for the

interpretation of our oxidation results of γ-TiAl as presented and discussed in Chapter  6

and 7 respectively.

               Table 3.1 The thermodynamic factors (  ), chemical diffusion coefficients of TiAl
                                (DTiAl), titanium and aluminium self-diffusion coefficients (DTi and DAl)

at various temperatures [123]
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3.2.3 Effect of Environmental Gas Composition on the Corrosion Behaviour of
         Ti-Al Alloys

     The reaction of gaseous species (exclusively oxygen) with titanium and titanium-

aluminides at different temperatures has been studied in numerous investigations [130-143].

A comparison of the different studies however, shows large disagreement and discrepancies

in both the mechanism and rates of their corrosion. The reasons for this lie in the complexity

of processes involved in the reaction, the different temperatures and pressures of the

reacting species. Also the corrosion reaction is influenced by the alloy composition and

surface conditions. Several studies by various researchers have dealt with the influence of

various  alloy  composition  and  surface  conditions  [62, 144-152]. Both improved and

decreased environmental resistance of Ti-Al were reported. However, the studies regarding

the influence of gaseous species on their corrosion behaviour have been relatively few. The

influence of nitrogen in oxidising gases has been discussed in several papers [6-10]. These

studies imply that the oxygen partial pressure and the presence of nitrogen in air may have

some influence on the corrosion behaviour of Ti-Al. Previous attempts to explain the effects

of nitrogen, oxygen and sulphur on the corrosion behaviour of Ti-Al are discussed in this

section.

Effects of nitrogen on corrosion behaviour of Ti-Al alloys

     The majority of the oxidation experiments of Ti-Al intermetallics were performed in air.

In general, the oxidation rate was found to be faster in air than in oxygen, and the scatter of

the oxidation curves in air is much larger than in oxygen. The oxidation curves relevant to

the effect of nitrogen on the oxidation behaviour of Ti-Al systems presented in the literature

[7, 10] are summarised in Figures 3-1 to 3-4,  but  most  –  if  not  all  –  of  these  results  are

contradictory and not satisfactorily understood and need further investigation. Meier et al.
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[7] studied the oxidation of Ti-52 at%Al at 900°C in various atmospheres including air and

pure oxygen gas and also in oxygen mixed with different (2, 10, 90, 98 and 100%) nitrogen-

containing atmospheres (Figure 3-1). Such comparisons of the oxidation behaviour of TiAl

without paying attention to the effect(s) of oxygen partial pressure – free of nitrogen – in the

reactive gas were detected. Meier et al. [7] concluded that protective alumina scales in pure

O2 were formed, while in nitrogen-containing atmospheres, continuous alumina scales could

not form, but intermixed TiO2/Al2O3 nodules were detected. The density of these nodules

was found to be increased as the nitrogen concentration increased in the reactive

atmosphere. Also their [7]  AES  results  revealed  the  formation  of  N2-rich (not specified)

layers.  However,  the  oxidation  results  of  Ti-Al  by  Zheng et al.  [10]  in  air  and  Ar/O2

atmospheres (Figure 3-2) showed contrary – beneficial – effects of nitrogen for Ti48Al-

5Nb at 900°C.  The  beneficial  effect  of  nitrogen  was  attributed  to  the  internal  oxidation  of

Nb-containing alloy, which occurred during exposure in Ar-20%O2 [10].  However,  in  the

same study of Zheng [10] at 900°C, opposite – detrimental – effect of nitrogen were

observed  for  Ti50Al  (Figure 3-3 [10]). When comparing oxidation kinetics in air and pure

oxygen, two possible effects should be taken into account:

o possible nitridation – especially at high temperatures – in hot air where the pO2 is

equal to ∼ 0.2 x 105 Pa and

o the oxygen partial pressure, for example pO2 in pure O2 is ∼1 x 105 Pa, i.e. it is five

times higher than in air.

The thermogravimetric method was used by Zheng et al. [10] to study the nitrogen effect on

the oxidation behaviour of Ti-Al alloys. The thermogravimetrical analyses were carried out

during which the gas atmosphere was changed from air to Ar-20%O2 and vice versa,

without intermediate cooling of the specimen (Figures 3-4). The results showed, that



47

Figure 3-1 Weight change versus temperature for Ti-52 at%Al oxidised at 900ºC in
                   various atmospheres [7]

Figure 3-2 Weight change versus temperature for Ti-48 at%Al oxidised at 900ºC in
                   various atmospheres [10]
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Figure 3-3 Thermogravimetric analysis of Ti-50 at%Al during oxidation at 900ºC in
                   different atmospheres [10]

Figure 3-4 Thermogravimetric analysis of Ti-50 at%Al during two stage oxidation
                   at 900ºC in which the gas atmosphere was changed from Ar-O2 to air and
                   vice versa [10]
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nitrogen – in air – adversely affected the formation of the initially formed alumina scale and

it enhanced the growth rate of the rapidly growing Ti-rich oxide. These effects were

observed in the Ti-50Al alloy investigated, but their themogravimetric results indicated an

opposite effect of nitrogen for the Ti-48Al-5Nb alloy. However, Choudhury et al. [6]

concluded that the faster oxidation of TiAl in air as compared with that in oxygen was due

to nitridation in air. The mechanism by which the nitrogen adversely affects the oxidation

behaviour is still not yet satisfactorily understood. It is clear that the authors [10] neglected

the pre-oxidation effect (before changing over to the second atmosphere – in the first step of

oxidation) in each atmosphere on the subsequent oxidation behaviour of the specimen. In

order to clarify the contradictory results (regarding the nitrogen effect) on the oxidation

behaviour obtained by Zheng [10], these results should be referred to other oxidation studies

of Ti-Al where the effects of pre-oxidation on the corrosion behaviour were observed [153,

154].

Effects of oxygen partial pressure on corrosion behaviour of Ti-Al alloys

     Taniguch et al. [155]  used  commercial  gases  (O2, Ar-21%O2, Ar-1%O2, He-1%O2 and

Ar) to explain the effects of the partial pressure of oxygen on the oxidation behaviour of γ-

TiAl. These gases contained relatively high levels (1 to 2.6 ppm) of impurities such as CO2,

N2, H2O and H2. All the oxidation curves of their study showed mass gains larger than those

expected from parabolic rate laws. The oxidation curve at 1000°C in O2 was the lowest and

it became higher as the oxygen partial pressure decreased in the reactive atmosphere.

Surprisingly, the oxidation kinetic results (Figure 3-5) in Ar showed the highest mass gain

at the same exposure temperature. That was probably because of the other oxidants present

in the Ar such as CO2, H2, and H2O. Rapid increase of the mass gain in Ar atmosphere was

attributed by Taniguch et al. [155], as due to the presence of nitrogen (< 2ppm) in the
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reactive atmosphere. In fact the rapid increase of the weight gain of the experimental

material used by Taniguch et al. [155] in Ar atmosphere was due to the presence of water

vapour (H2O). The significant effect of water vapour on the γ-TiAl corrosion behaviour was

experimentally examined by the present author (see Figure 3-6)  and  also  by  others  (e.g.

Kremer – Figure 3-7 [156]). Also, Shigeji et al. [157] reported that water vapour in the O2

significantly increased the oxidation rate of TiAl at 727 and 927°C.  They [157] concluded

that the oxidation mass gain significantly increased as the H2O content increased in the

atmosphere and the oxidation rate followed approximately linear kinetics laws at 927°C.

The dramatic increase of the weight gain was attributed by Shigeji et al [157]  due  to  the

formation of high intensity of TiO2 grains in the H2O-containing atmospheres. Although the

outer surface morphology of the scale formed on Ti-Al in the H2O-containing atmospheres

was very different from the normal morphology of such alloys in air and O2 cited

Figure 3-5 Oxidation curves of TiAl at 1027ºC in various gases under atmospheric pressure [155]
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Figure 3-6 Effect of steam on the oxidation of Ti-46.7Al-1.9W-0.5Si alloy at 850ºC

Figure 3-7 Effect of moisture on the oxidation of Ti50 at%Al at 900ºC [156]
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in the literature, no hydride(s) formation of Ti and/or Al was reported by Shigeji et al  [157].

Another  effort  to  explain  the  effects  of  the  partial  pressure  of  oxygen  in  the  oxidising

environment  of  Ti-Al  systems  was  undertaken  by  Becker et al. [8]. The study showed

contrary effects of oxygen partial pressure to the finding of Taniguch et al [155]. The

oxidation rate of TiAl-V reported by Becker (Figure 3-8 [8]) in oxygen was higher than in

Ar-1%O2 at a single temperature (900°C). It should be noted that the purity of the used

argon-oxygen gases was not mentioned in the report of Becker [8]. In the same study,

Becker et al.  [8] extensively investigated the transport processes through Ti-Al scales. The

authors concluded, the formation of protective Al2O3 increased with the increase of oxygen

partial pressure in the reactive atmosphere. This was believed due to; (i) the low solubility

of Al2O3 in TiO2 at higher oxygen pressures (the exact relationship is still unclear – refer to

Section 2.2.3) and (ii) low defect structures in Al2O3 if compared to that in TiO2. The

consequences of Al2O3 formation  (Figure 3-9(a) at the outer part of the inner layer (at

higher oxygen pressures), is that it reduced the oxygen flux through the scale. Once a

diffusion ‘Al2O3’  barrier  has  begun  to  form,  the  discontinuity  at  the  border  between  the

inner and outer layers of the scale increased (Figure 3-9(b) [8]).

Corrosion behaviour of Ti-Al in high sulphur and low oxygen potential environments

     Ti-Al intermetallics developed for good oxidation resistance may suffer rapid

sulphidation attack in several technical processes, such as those involved in the fossil-fuel

industry, oil refining and coal gasification, containing appreciable partial pressures of

sulphur (∼ 1 Pa) and low partial pressures of oxygen (∼ 10-15 Pa) [42, 158-166]. In spite of

the extensive research developed on the oxidation of Ti-Al intermetallics, very little work

has been done for these alloys under environments containing both sulphur and oxygen.

Special interest to understand the mechanism of Ti-Al alloys scale formation especially in
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Figure 3-8 Mass gain-time curves of TiAl-V at 900ºC in air, 100%O2 and 1%O2-99%Ar [8]

Figure 3-9 Becker [8] model for the formation of an Al2O3 barrier layer at the border between
                   inward and outward growing parts of the TiAl scale in Ar-O2 atmosphere
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environments of relatively high partial pressure of sulphur and low oxygen activity.

Recently, Takayuki et al. [110] and Kai et al. [167] extensively investigated the effect of Al

content  on the Ti-Al alloy scale protectivity in H2/H2S/H2O gas mixture over a wide range

of temperatures. General agreement between the authors [110, 167] regarding the effect of

Al and they concluded that the corrosion behaviour of Ti-Al intermetallics improved with

increasing the aluminim content in the alloys. The scale was found to be mainly consisting

of rapid growing TiO2 and Al2O3 with a mixture of Ti and Al sulphides.

     It is considered that improvement in oxidation/sulphidation resistance may also follow

the addition of ternary or even quaternary elements. However, the influence of alloying

elements on the mixed gas corrosion and in the presence of deposits is less well understood.

Datta et al. [67] studied the effects of Nb additions on the scaling behaviour of Ti-Al alloys

in  H2/H2S/H2O gas mixtures of various partial pressures of sulphur at 900°C. Significant

reduction in the sulphidation rate of Nb-containing alloy if compared with the binary TiAl

was observed. The improvement was attributed to the formation of inert zone of Nb-

sulphide [67]. However, Datta [67] for Ti-48Al-2Nb-2Mn would suggest that even with the

addition of Nb this alloy has significant oxidation/sulphidation problems. Prevention of such

corrosion by coatings and other surface modifications is a promising route. More recently

Takeshi et al. [120] studied the effect of 2 at% addition of X (X = V, Fe, Co, Cu, Nb, Mo,

Ag and W) to TiAl alloy sulphidation behaviour at 900°C. Sulphidation attack of the alloys

were almost the same as that of TiAl, while the thickness of the alloy surface layer

decreased in the order: V > Co > Fe > Mo > Cr > W and Nb. The sulphide scale was found

to be composed of multi-layer structures: an outermost (rich in Ti sulphides), an outer (rich

in Al2S3), an inner (a mixture of Ti-sulphides and Al2S3) and innermost (rich in Ti-

sulphides) layer. Comparison study by Du et al. [64] of the sulphidation behaviour of pure

titanium and Ti-Al-V alloy revealed considerable improvement to the sulphidation

behaviour of Ti-Al after V addition to the alloy. In another sulphidation/oxidation study by
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Du et al. [168] for two Ti-46.6Al-1.4Mn-2Mo (at%) alloys with duplex and laminar

microstructures, the corrosion resistance for the alloy with a laminar microstructure was

slightly better than the alloy with duplex structure. Both materials showed superior

corrosion resistance at 900°C to that at 750°C. The difference is attributed due to the higher

oxygen partial pressure in the environment at 900°C, which altered the defect structure

[168]. Du et al. [169] and Takayuki et al. [110] also studied the effect of sulphur partial

pressures on the degradation behaviour of Ti-Al alloys. In the study of Du et al [169], it was

found that the sulphidation amount decreased with increasing the partial pressure of sulphur

in the atmosphere, whereas opposite results was obtained by Takayuki et al. [110].

However, both authors [110, 169] concluded that the higher aluminium of Ti-Al alloy

exhibited a superior resistance to sulphidation/oxidation resistance.

3.2.4 Effect of Ti-Al Alloy Composition

     In spite of their high aluminium content, TiAl-based intermetallics do not generally form

long-lasting protective alumina scales [7, 50, 170]. After longer exposure times, the scales,

which are initially rich in alumina, deteriorate and scales consisting of mixed alumina

(Al2O3) and titania (TiO2)  predominate,  with  high  growth  rates  similar  to  those  of  pure

titania.  For  this  reason  the  addition  of  other  elements  by  alloying  to  improve  the  corrosion

resistance has been studied by several authors [171 - 184]. The situation is rather

complicated since elements, which might be beneficial for high temperature corrosion,

might adversely affect the mechanical properties. Additionally, the published corrosion data

show significant scatter and even lead to contradicting conclusions. This is possibly partly

caused by differences in alloy purity, because several alloying elements have been

demonstrated to possess a significant effect on the corrosion properties even if they are

present in small quantities. Hence, there is need for a fast screening procedure of possible
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alloying elements with respect to their impact on the corrosion properties of these materials.

Another  important  observation  from  the  previous  studies  is  that  for  the  same  alloy

composition and very similar environmental conditions, different results were derived. This

implies significant effect of other alloy conditions such as surface conditions which must be

considered during high temperatures corrosion studies.

     Aluminium is a major alloying element in titanium materials, having effective solid

solution strengthening and usefully low-density, its presence has a significantly beneficial

effect on the oxidation behaviour. The higher the aluminium concentration, the greater the

reduction  in  oxidation  rate  with  respect  to  that  of  pure  titanium.  This  applies  to  all  of  the

oxidation studies [185 - 187]. Unfortunately, a high percentage of aluminium in Ti-Al

systems is undesirable in terms of their mechanical properties. The critical concentration of

aluminium is lowered by the addition of elements, which have the effects of reducing the

solubility and diffusivity of oxygen, and increase the diffusivity of aluminium. Diffusivity

of aluminium is increased in the (α2+β) alloys if a larger proportion of β phase is retained.

Thus the β stabilising elements are most effective in reducing the critical concentration of

aluminium and therefore oxygen diffusivity. The addition of chromium to titanium has a

marked influence on the oxidation behaviour, although the effect is complicated and not

necessarily beneficial depending on the exact chromium content and temperature [188 -

190]. Concentrations up to 11 wt%, chromium have a very unfavourable effect on oxidation

during exposure at low temperature, as would be predicted by the Wagner-Hauffe theory. At

higher temperatures this situation is reversed and at about 800°C, the rate of oxidation is

very  much  reduced  over  that  of  pure  titanium  [191, 192].  The  addition  of  silicon  is  a

significant factor in the alloy development for high temperature applications because of its

beneficial effect on creep strength. If silicon is added to titanium, a reduction in oxidation

rate will occur due to the formation of SiO2, which follows a parabolic rate law extending to

higher temperatures than for pure titanium. This effect is not directly proportional to silicon
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content, although the reduction in oxidation rate is more pronounced at higher silicon levels

[188 - 190]. Additions of third element to Ti-Al also have been investigated [171 - 184] to

improve the corrosion resistance of Ti-aluminides at elevated temperatures, and some have

shown significant improvements. On the other hand some elements showed detrimental or

neutral effects on the corrosion behaviour of Ti-Al. Generally, addition of Nb, Ta, Si, W or

Mo reduced the corrosion rate of Ti-Al [191 - 193]. Few studies were undertaken to study

the combined effects of some elements on the corrosion behaviour of Ti-Al. For example,

K. Maki et al [180] and Li et al [194] observed the improvement of oxidation behaviour of

Ti-Al alloys after the combined addition of Si and Nb. However, the mechanism of the

effect of both elements is not yet clearly understood.

     Small additions of tantalum, of the order of 1 to 4wt%, were also found to improve Ti-Al

oxidation resistance [191, 192] and the absence of evidence for the formation of tantalum

oxides again suggests that rutile can dissolve large concentrations of Ta2O5 or tantalum sub-

oxides  [195]. Vanadium, however, forms volatile oxides and would therefore not have the

same ability to improve scale properties as do niobium and tantalum. The addition of

phosphorus to titanium aluminides has been found to be very effective in improving their

oxidation resistance [60, 62, 196]. The reduction in the concentration of oxygen vacancies

in the phosphorus-doped rutile seems the obvious explanation for this effect, however one

might also be tempted to consider other factors such as ionisation potential and ionic radius,

with respect to the mobility of anion vacancies. This effect has the significant implication

that the addition of other Group V or VI elements in the periodic table, may also improve

oxidation resistance.
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3.2.5 Effect of Ti-Al Alloy Surface and Subsurface Conditions

     Titanium alloys, in general, readily absorb oxygen leading to oxidation and alpha-case

formation  when  exposed  to  high  temperatures  (>  500°C)  in  air.  This  is  known  to  severely

limit the high temperature capability of alloys in terms of their mechanical properties. In

order for titanium alloys to be utilized more effectively at higher temperatures, the ingress

of oxygen must be reduced, if not prevented completely. Recent results on bare IMI 834

alloy at different temperatures revealed that the thickness of the oxide scale and the depth of

the alpha-case are proportional to the exposed temperature [197]. Also alpha-case formation

becomes significantly enhanced at and above 800°C. This result stresses the need for

application of surface modifications such as pre-oxidation, pre-sulphidation, ion

implantation and surface coatings to avoid or to limit oxide scale growth. Surface

modification techniques have been examined as a means of limiting ingress of reacting

species from the environment by many researchers [117, 198 - 200]. However, this subject

still needs further investigation.

Effect of Ti-Al alloy surface coatings

     One approach of surface modifications is to develop corrosion resistant coating systems

based on the usage of high melting point intermetallic layers to act as a diffusion barrier.

This approach is not designed to entirely remove the brittle surface layer, but to engineer the

intermetallic layer to act as a diffusion barrier, at a thickness considerably smaller than the

alpha-case that would form on an unprotected titanium alloy. This will limit the potential

reduction in mechanical properties of the alloys after extended exposure within corrosive

environments at high temperatures due either to the ingress of reactive gases or secondary

intermetallic phase formations.
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    Protective coatings are required for the successful application and performance of critical

airfoil components in gas turbines. The success of a coating in a high temperature

application is measured by its ability to remain in place, to resist corrosion, avoid cracking

and limit diffusion between the coating and substrate [201]. The mechanical behaviour of

the coatings is, however, also of importance in high-temperature cyclic oxidation, which is a

point not often considered in coating selection or life assessment.

      In some studies, For example, Manley et. al. [202] found that, while surface roughening

can occur with coating-affected substrate melting, it is on a much grosser scale and at

significantly higher temperature (1200°C) than that of the surface rumpling observed during

cyclic oxidation testing. As expected, isothermally exposed specimens did not exhibit

rumpling. He then showed that surface rumpling was dependent on the relative changes in

strain that occur with thermal cycling. Deb et al. [203] attributed the amount of rumpling

observed to a number of possible effects including coefficient of thermal expansion (CTE)

mismatch, the thermal gradient across the coated specimen, the mechanical properties of the

coating and the strain and/or thermal cycle experienced by the coating. It was proposed that

thermal expansion mismatch could produce either compressive or tensile strains within the

coating during cycling, depending upon the state of the CTE mismatch. It was established

that for cyclic oxidation, the CTE value for the coating is less than the CTE value for the

substrate and therefore the coating experiences compressive strain during cooling. The

residual strain state at the start of the cooling cycle (and hence test hold time) is also

important, as the low-strength coating can relax to a zero strain state, while the stronger

substrate can maintain a significant strain level.

     The effect of protective coatings on the oxidation resistance of Ti-AI alloys was widely

investigated. Aluminising forms a TiAl3 layer, which could improve the oxidation resistance

of TiAl and Ti3Al [204, 205];  MCrAlY overlay coatings could provide good protection for

the  TiAl  alloy  with  rather  low  oxidation  rate  due  to  the  formation  of  a  continuous  Al2O3
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scale [206, 207]. However, these two kinds of conventional protective coatings, widely used

for the protection of Ni-base super alloys, encounter some problems for the protection of

TiAl due to the brittleness of the TiAI3 phase or the severe coating/substrate inter-diffusion,

which would be harmful to the long-term oxidation resistance and the mechanical properties

of TiAl alloy. Recently, a new class of Ti-AI-Cr coatings has been proposed, providing

excellent oxidation protection for TiAl intermetallics [208 - 210], e.g. low-pressure plasma

spray Ti-51Al-12Cr coating [209] and magnetron sputtered Ti-50Al-I0Cr coating [210].

Other investigated coatings include nanocrystalline TiAl [211, 212], Si3N4 [213], SiO2

[214], and Al2O3 [214, 215]. These investigations mainly emphasized their isothermal

oxidation behaviours. However, prevention of Ti-Al alloys from both oxygen and sulphur at

high temperatures by coatings is of practical importance. Datta, et al [216] have

comprehensively reviewed this area. In this context, Du and Datta et al.  [66] also

demonstrated that the coatings of Nb and HfN significantly enhanced the

oxidation/sulphidation resistance of Ti and Ti-based alloys. Titanium nitride (TiN) is widely

used as a protective coating in multiple applications. TiN hard coatings, despite their

excellent mechanical properties, could not be used at elevated temperatures in

oxidising/sulphidising atmospheres due to their poor chemical stability. Additives such as

Al, Si frequently improve the mechanical and corrosion properties of nitride coatings. An

outstanding example is TiAlN coating which are commonly used in dry and high-speed

machining operations on aluminium alloys and die steels due to their high temperature (up

to 800°C)  oxidation  [217 - 220] and abrasion resistance [221]. Increasing the Al/Ti ratio

(e.g. in case of AlTiN) in the coatings obviously improves its corrosion resistance at higher

temperatures. The present work (see Section 6.3.1) showed that AlTiN coatings form stable,

protective Al2O3 surface layer even at low oxygen activities. Al2O3 is also highly insulating

oxide, with low ion mobility and acts as effective diffusion barrier to the reacting species

such  as  oxygen  and  sulphur  in  the  environment.  CrN  system  is  also  a  promising  candidate
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for high temperature applications and exhibits complementary mechanical and structural

properties [222] to (TiAI)N coatings.

     Although single-layer coatings are finding a range of applications in many sectors of

engineering, there are an increasing number of applications where the properties of a single

material coating are not sufficient. One way to surmount this problem is to use a multi-layer

coating that combines the attractive properties of several materials, each chosen to solve a

problem in the application. Simple examples of this include the use of interfacial bonding

layers to promote adhesion, or thin inert coatings on top of wear-resistant layers to reduce

the corrosion of cutting tools.

     Despite the large amount of work present in the open literature on the mechanical and

corrosion properties of different coatings on Ti-Al alloys, very few – if non – of the

published  work  was  devoted  to  study  the  corrosion  behaviour  for  this  class  of  coating

(AlTiN, CrN, NbN) materials in sulphur containing environments. As part of the present

work is concentrated on isothermal oxidation behaviour of Ti-46.7Al-1.9W-0.5Si alloy, also

single (CrN and AlTiN) and multiplayer (AlTiN/CrN, AlTiN/NbN and CrN/NbN) coatings

on the Ti-46.7Al-1.9W-0.5Si alloy were developed in order to examine their protectiveness

to Ti-46.7Al-1.9W-0.5Si alloy in sulphidising/oxidising environments of relatively high

partial pressure of sulphur and low partial pressure of oxygen at 850° C.

Effect of Ti-Al microalloying (ion implantation)

     One of the possibilities to improve the corrosion behaviour of Ti-Al alloys is by

microalloying (ion implantation). Ion implantation can serve as a research tool and has been

used successfully by various researchers [223 - 227]. First, the concentration and depth of

implantation can be reproduced and controlled with high precision. Secondly, a well-defined

profile of the implanted element allows monitoring during oxidation [228]. Also, ion
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implantation showed unique modification advantages in comparison with others. Because

this process does not produce a coating, the dimension and bulk properties of the part

remain unchanged, and implanted surfaces have no problems with adhesion and residual

stresses. These features are particularly attractive when both oxidation and wear resistance

are considered to be issues in a component. Microalloying relates to only a few hundred

ppm or even less of the added element. It was found that implantation of Nb gives a good

oxidation protection Ti-Al alloys [225 - 227] for high implanted doses of 1x1017 cm-2. It was

found recently, that very small amounts of chlorine dramatically improve the oxidation

behaviour [59, 228 - 230] of Ti-Al alloys. The 'Cl effect' protects TiAl even at very low Cl

concentration below 500 ppm.

     Recently, ion implantation by the metal vapour vacuum arc (MEVVA) source method

was tested to improve oxidation resistance of intermetallic compounds [231, 232]. It has

been verified that the weight gain of Ti-48Al decreases noticeably with niobium and

aluminium implantation, respectively. Also some experimental work of implantation of

copper and yttrium in improving the oxidation of Ti-60 alloy has been done and has gained

positive results [233].

Effect of Ti-Al alloy surface processing

     Another effective and simple method of surface processing techniques to improve the

corrosion behaviour of Ti-Al systems is the pre-formation – before exposure – of stable

oxide or sulphide from the base metal or alloy. Various investigations of Ti-Al alloys

oxidation behaviour shown that pre-sulphidation to develop a substantial sulphide scale can

improve significantly the subsequent oxidation resistance of such alloys. For example,

Yoshioka et al. [113 - 115], Toshio el al. [117] and Takeshi et al. [120] reported the

formation of a TiAl3 layer (TiA12 included) on the alloy surface by preferential sulphidation

of Ti in high temperature sulphidation of a TiAl alloy. Oxidation experiments established
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that scales of sulphidation processed TiAl alloy could be maintained over long periods of

time  in  air  at  800°C, in contrast to the rapid oxidation observed for the conventional TiAl

alloy. This has been termed by the authors as the “sulphidation processing” method. In the

early stage of oxidation, a sulphidation processed TiAl alloy oxidises like the TiAl3 alloy.

After some increase in exposure time, when the phase transformation from TiAl3 to TiAl2 is

complete at about 22h, the amount of oxidation increased gradually to 111h and then

abruptly after 277h. Compared with the conventional TiAl alloy, the sulphidation processed

TiAl alloy demonstrates good high temperature oxidation resistance [117]. The process

changing TiAl2 to TiAl was not uniform especially where “under cutting” corrosion

advances from locally degraded portions and may result in the loss of oxidation resistance.

Yoshioka et al. [113 - 115] found with further oxidation, the thickness of the TiAl2

decreased slowly and disappeared after about 1100h. The cross-section of the sulphidation

processed TiAl alloy oxidized at 800°C in air for different times showed different structures.

Yoshioka et al. [115] observed local degradation of a TiAl2 layer, generated at the grain

boundary of a TiAl substrate, and this seems to be due to a rapid diffusion of Al along the

alloy grain boundary.

     There appears to be at least two processes involved in the degradation of the TiAl2 layer

a  formation  of  Al2O3 and TiO2 at  the  airside  and  a  decomposition  of  TiAl2 to TiAl due to

reaction  diffusion  at  the  alloy  substrate  side  [117]. When a protective Al2O3 scale was

formed, the oxidation reaction was observed to be very slow, and the rate of the phase

transformation from TiAl2 to TiAl may be presumed to play an important role in the rate of

degradation. In the phase diagram of the Ti-Al system, the γ-TiAl phase has a composition

range between 49 and 54 at% Al at 800° C. Therefore,  there would be inward diffusion of

aluminium from the TiAl2 to the TiAI substrate and the decomposition rate may be

controlled by the diffusion of Al into the TiAl alloy substrate because the diffusion in the

TiAl2 phase  [234, 235]  is  much  faster  than  in  the  TiAl  phase  [117].  In  this  case  the  grain
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boundary of the TiAl substrate could act as a more rapid diffusion path for Al into the alloy

substrate.

     There are several options when trying to reduce the decomposition rate of TiAl2 to TiAl.

Below, the various aims are listed:

q reducing the number of alloy grain boundaries,

q decreasing the diffusivity along the grain boundary,

q increasing AI content in the alloy,

q decreasing in the diffusivity in TiAl,

q controlling microstructures,

q stabilising of an Al2O3 scale.

3.3 Reported High Temperature Corrosion Behaviour of Iron-aluminides

3.3.1 Introduction

     Iron-aluminides based on Fe3Al and FeAl are of interest for many land-based

applications because of their appropriate mechanical and corrosion properties and low cost.

However,  until  recently  their  potential  use  as  structural  materials  was  still  in  doubt  due  to

severe spallation of their alumina scale(s) during cycling [236 - 242]. Recent studies

indicate small additions of certain ‘’reactive’’ elements have a large beneficial effect on the

oxidation behaviour of high temperature alloys [243 - 252]. This improvement, known as

the reactive element effect (REE), has been used in the manufacture of high temperature,

oxidation resistance alloys since their discovery. From an engineering perspective, the

primary effect is a marked enhancement in the spallation resistance of protective oxide

scales, such as Cr2O3 and  Al2O3,  grown  on  these  alloys.  However,  the  reasons  for  the

beneficial effects of reactive elements are still not satisfactorily understood. Using advanced
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analytical techniques, a new understanding has emerged of the REE on the Al2O3 oxide

growth mechanisms, microstructures and adhesion to the Fe-Al substrates will be discussed

briefly throughout the following sections of this chapter.

3.3.2 Microstructural Features and Adhesion of Al2O3 Scales

     There are certain morphologies and microstructures, which are typical of a particular

oxide, such as porous or dense scales, columnar or equiaxed grains, even oxide blades and

whiskers. The review here concentrates on structures typical of Al2O3 scales of Fe-Al

systems, especially those which related to the effects of RE. Each of these cases of scale

features is briefly reviewed in this section in order to clarify their descriptions as will be

used in this study. Scale adhesion testing during isothermal and cyclic conditions of

undoped Fe-Al and doped with RE are compared and summarised.

Convoluted Al2O3

     “Buckling” one of the common structures for undoped α-Al2O3 scales formed on FeAl

and FeCrAl alloys and it is the case where a scale of uniform thickness is convoluted but the

underlying alloy remains relatively flat. For the purpose of this study, a scale exhibiting this

type of convolution will be referred to as “buckled”. This type of structure is shown

schematically in Figure 3-10(a). The scale in this case has buckled, leaving voids between

the alloy and the oxide. In view of the reduced contact between the metal and the oxide,

poor adhesion is the inevitable consequence.

     Smialek et al.  [252] noted the buckling of Al2O3 scales  grown on  FeAl  at  1100°C, this

morphology was also noted by Golightly et al. [253] in Al2O3-formers at 1200°C on FeCrAl

without RE addition. This structure was attributed to the lateral growth of the scale due to

the mixed mode of oxidation, i.e. both Al and O diffusing simultaneously. Poor oxide
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adherence was also observed [253], whereas in the same study for a Y-containing alloy, no

buckling was observed. The doped scale was uniform in thickness and relatively flat, as was

the alloy/oxide interface. The elimination of scale buckling was attributed to Y blocking the

diffusion of Al through the lattice [253]. Thus the doped scale was proposed to grow only

by O diffusion and was not buckled.

     “Rumpling” is a second type of convolution, characterised by the alloy conforming to

the oxide convolutions, making for a more complete oxide/metal interface. This structure is

shown schematically in Figure 3-10(b). From the surface, rumpling and buckling look the

same. However, in the case of rumpling, fewer voids are formed within the scale and the

scale is in better contact with the substrate. Thus, scale adhesion is not necessarily reduced

when rumpling is observed. Bennett et al. [254] observed this behaviour at 1200 and

1400°C with undoped FeCrAl. The extent to which convolutions of the alloy followed those

of the oxide increased with temperature over this range [254].

Oxide ridge & whisker structures

     “Oxide Ridge Structure” is also identified as another important microstructural feature

of alumina scales: the ridge structure of α-Al2O3 oxide. In this case, oxide ridges on the gas

surface of the scale are formed, which correspond to oxide grain boundaries, Figure 3-

10(c). For the ridges, there is a localized increase in scale thickness. Ridges are observed at

the gas/scale interface and less frequently, at the oxide/alloy interface [255]. Doychak et al.

[256] proposed that the ridge morphology found after long exposure time at 1000°C was a

remnant of the phase transformation of θ-Al2O3 to α-Al2O3. The ridge spacing was also

inversely related to the oxidation temperature. However, at higher temperatures (> 1200°C),
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Figure 3-10 Schematic of various Al2O3 oxide morphologies [256]
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meta-stable Al2O3 phases were not observed to form. Therefore, it is difficult to relate the

finer ridge structure observed at high temperatures to the coarse ridges found at lower

temperatures.

     “Oxide Blades and Whiskers” is another class of surface morphology typical to

alumina-formers. Numerous studies have noted that Al2O3 scales grown below 1000°C have

a blade-type structure. A number of studies did not characterise the phase of the Al2O3 scale

[257 - 260]. However, more recent studies have conclusively identified this morphology

using  SIMS  and  XPS  as  belonging  to  the θ-Al2O3 [261 - 264]. Whiskers have also been

observed to form on the surface of undoped α-Al2O3 scales from 1000°C to 1200°C [265].

Both whiskers and blades are indicators of an outward growth mechanism.

Al2O3 scale adhesion testing

     One of the most important issues from an engineering standpoint of high temperature

materials is oxide adherence. Even if the oxide grows slowly, it spall readily upon cooling

(or at a temperature), then the lifetime of the substrate is limited. Eventually the Al (or Cr,

Si) content will be depleted to the point where less noble oxides will be formed. If the oxide

remains adherent, less spallation occurs and the parabolic nature of the reaction will slow

the degradation over long exposure times.

     Over the past years, several oxide adherence studies were undertaken, with many

concentrating on chromia-formers. Very limited studies were undertaken to investigate the

REE on alumina-formers. The RE effects were ignored in order to concentrate on explaining

the reasons for oxide spallation. The general conclusions of the comparative studies between

undoped  and  RE-doped  (e.g.  with  Y)  showed  beneficial  effects  of  RE  even  if  they  are  in

small amounts in the alloys. However, the mechanism of the RE effect is still not clear
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satisfactorily. The general conclusion from the previous studies was that the addition of

small amounts of RE improves the oxidation resistance of metals and alloys.

     While cyclic testing remains the most widely used technique for gauging oxide adhesion,

there are other techniques as well. Acoustic emissions have been monitored in order to

detect signs of cracking, both isothermally and during cool down [266]. Using micro-

indentation, Tortorelli and Kaiser [267] have attempted to quantify the mechanical

properties of scales, including their adhesion. Sigler [268] deformed oxidation coupons after

oxidation with a punch to examine

oxide adherence. These techniques remain somewhat controversial and difficult to interpret.

In general, cyclic testing is favoured because of its simplicity.

3.3.3 Methods of Reactive Element Additions

     The benefits of a RE addition have been expounded, the more practical issue of actually

adding the RE to a system becomes significant. While most of the first 30 years of RE

research examined mainly RE alloy addition, the last two decades have emphasized other

types of additions. A RE oxide dispersion is particularly attractive because of the dual

purposes of the dispersion. A stable RE oxide (such as Y2O3) not only benefits the oxidation

behaviour but also improves the creep properties at high temperatures. A second technique,

first used in the electronics industry, is ion implantation. This surface treatment essentially

allows any element to be added to any solid substrate in the near-surface region. Both oxide

dispersion and ion implantation provide a uniform source of the RE and eliminate problems

associated with alloying.
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Alloying Additions

     While alloying of the reactive element would seem to be the simplest and easiest way of

adding the element to the system, the success of RE alloy additions is sometimes limited

because of their phase separation in the metal. Numerous studies have found a more

beneficial effect of a RE when it is more evenly dispersed in the alloy.  For example, Hf

addition produces better oxidation behaviour than an equal addition of Y in CoCrAl [269].

     Kuenzly and Douglass [270] found general detrimental effects for the addition of 0.5

wt%Y to Ni3Al at temperatures between 1100°C and 1200°C. However, in the same study

the detrimental effect of Y was attributed to Y-enhanced formation of NiO, no internal

attack was reported. The authors [270] also concluded, Y addition did not affect the weight

gain. Similar results were found by Kumar [271] in the case of Y addition to NiCrAl alloys.

Ion Implantation

     Surface implantation of a RE has been found to yield more uniform effects than alloying,

for which RE-rich particles often form in the alloy. Microstructurally, this leads to a more

uniform scale, where no oxide pegs or other anomalies are found. For instance, Sprague and

Johnston [272] found that voids formed beneath oxide films on both CoCrAl and CoCrAl-

0.5 wt%Y but they did form when the alloy was implanted with Y. The conclusion was that

because Y segregated in the alloy, the voids in CoCrAlY formed in areas denuded of Y.

     Jedlinski and Mrowec [273] studied the effect of implanted Y on oxidation of Ni-Al

(51.9 at%Al) between 1000 and 1300°C.  Without  Y implants,  Al2O3 scales  exhibited  poor

adherence. With doses of 2x1016 Y+ / cm2 at 70 keV, adherence was improved and weight

gain was reduced [273]. Jedinski and Mrowec described the adherence of the scales on Y-

implanted NiAl as “perfect”.
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     There is no experimental evidence to suggest that the implantation process itself affected

the oxidation behaviour. For instance, Pivin et al. [274] implanted both Y and Ar into Ni-Cr,

Fe-Ni-Cr and Fe-Ni-Cr-Al alloys. In each of the alloys, implanted Ar had neutral effect on

the oxidation properties. Thus it is a chemical effect of the implanted species and not a

result of the radiation damage caused by ion implantation.

Oxide Dispersions

     A RE oxide dispersion in an alloy, generally provides the best method for introducing the

RE uniformly throughout the material. It has the additional benefit for high temperature

structural materials that the oxide dispersion improves the creep resistance of the material

by pinning dislocations (oxide dispersion strengthening, ODS). The drawback of the

dispersion is in the fabrication. In order to achieve a uniform dispersion, powder metallurgy

techniques such as mechanical alloying are necessary [275].

     There has been general agreement in the literature about the beneficial effects of a RE

oxide dispersion. The most significant issue has been the case of a non-RE oxide dispersion

(especially Al2O3), which reportedly improves the oxide adherence on both Al2O3-[245,

246, 276] and Cr2O3-[248, 277, 278] formers. However some of the other results [279] are

rather strange and frustrating. If they are true, they require a rethinking of some aspects of

the REE. For instance the work of Whitte et al. [279] concludes that 1 wt% addition of Zr,

Hf and Ti did not affect the oxidation behaviour of Co-10Cr and Co-15Cr. It should be

noted that all of these studies relied on kinetic and some XRD work for their evidence.

3.3.4 Attempts to Explain the Effect of Reactive Element Addition

     Small additions of certain “reactive” elements have a large beneficial effect on the

oxidation behaviour of alloys. This improvement, known as the reactive element effect
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(REE), has been used in the manufacture of high temperature corrosion resistant alloys since

its discovery. From an engineering perspective, the primary effect is a marked enhancement

in  the  spallation  resistance  of  protective  oxide  scales,  such  as  Cr2O3 and  Al2O3, grown on

Fe-Al and Fe-Cr alloys. Also reduction in the oxidation rate has been documented, the basic

reasons for the beneficial effects of reactive elements have not been fully determined and

still a subject of controversy.

     Using a number of superior analytical tools, a new understanding has emerged of the

effect of REs on the scale growth, adhesion mechanisms, microstructures and growth rates.

All of these effects have been observed for the oxidation of alloys that form Cr2O3 scales,

while only the second effect (better adhesion) has been observed for alloys that form Al2O3

scales. These affects have been attributed to the segregation of the RE ions, e.g. Y3+, to scale

grain boundaries [280]. In both chromia- and alumina-forming materials, the REE is most

basically characterized from an engineering or macroscopic view by a reduction in the rate

of oxidation and an improvement in oxide adherence. The oxide adherence to the alumina-

former substrate is reported to be greater than that to the chromia-former. Both oxides are

observed to be more adherent to the substrate when doped with a RE.

Segregation phenomena

     The segregation phenomenon in scales was outlined first by Przybylski and Yurek [281]

for chromia-formers. The major observation by Cotell et al. [280], was that the growth

mechanism for Y-implanted Cr (2x1016/cm2) was changed to primarily oxygen transport

inward. The grain boundary flux of outward-diffusing Cr was limited by the segregation of

Y to the oxide grain boundaries. Due to this change in mechanism and a solute-drag effect,

the segregation also had a profound effect on the oxide microstructure. Without a dopant,

new oxide formed at the gas interface, leading to large columnar grains (axis normal to the

metal interface) near the gas interface at 900°C. With a dopant, the much thinner scale and a
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finer grain size and more equiaxed grains developed. Columnar grains were observed in this

case near the metal interface, exactly the opposite situation of the undoped case.

     According to the segregation mechanism, the RE addition reduces scale spallation due to

a number of factors. The changes in oxidation mechanism and oxidation rate reduce the

scale thickness, thus reducing growth stresses. Przybylski and Yurek [281] also concluded

that while impurities (like sulphur) in the alloy were deleterious to the oxide adhesion,

removing them without a RE addition would not improve long-term adherence. Eventually

the faster-growing undoped scale would generate sufficient stress to cause failure. Thus

sulphur removal could not be substituted for a RE addition in the long-run.

     The work of Funkenbush et al. [282] and Smialek [283] determined a relationship

between the effect of RE and the segregation of sulphur which may be present in the alloy.

Different mechanisms have been proposed for the interaction of a RE and sulphur. The first

is that the RE such as Y reacts with the indigenous sulphur to form a stable sulphide, thus

preventing the sulphur from degrading oxide adhesion [284].  The second premise is  that  Y

segregated to the alloy/oxide interface lowers the driving force for sulphur segregation to

this interface, thus eliminating its detrimental role [285]. Although all of these ideas remain

largely unproven, however, when good adherence is found, the RE and not sulphur is found

at the metal/oxide interface, also when adherence is poor (with no RE addition), sulphur is

found. Segregation of foreign ions in oxide scales was detected first by Ramanarayanan et

al. [286].  Using  TEM  of  scales  grown  on  a  commercial  Y2O3-dispersed FeCrAl alloy

(MA956), Y was found to segregate to the oxide grain boundaries. No mention was made of

segregation to the metal/oxide interface. A number of arguments can be made regarding the

possible reasons for segregation. The most important point is that there is a variety of

driving forces for segregation of foreign ions to oxide grain boundaries including charge and

ion size.
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Scale/alloy interface

          There are several proposed mechanisms to explain the role of the RE in improving

scale adherence. These theories are concentrated on the metal/oxide interface, which can be

briefly outlined in this section.

(1) The Graded Seal. This is the simple idea that a RE-rich layer forms between the

substrate and the oxide. According to this hypothesis, the rate-limiting steps modified

because of slower diffusion through this layer and adhesion is improved because this layer

acts as a strengthening intermediary phase. This theory persisted because early analytical

techniques such as EPMA did not have sufficient resolution to detect such a thin layer

[287]. When more advanced analytical techniques (such as TEM) were used (e.g. by

Ramanarayanan et al [288]) to study the interface between the oxide and the substrate, these

indicated that such a layer did not exist.

(2) Oxide Pegs. This idea was based on observations of internal oxidation of the RE when

the  RE  was  added  by  alloying.  The  selective  internal  oxidation  of  the  RE  near  the  surface

would often form oxide protrusions into the substrate which were attached to the external

scale. These oxide “finegers” were proposed to grab onto the alloy, thus improving scale

adherence [269, 289, 290]. Over the past 20 years, as RE additions have moved beyond

simple alloying, this theory has become less prominent. Addition of the RE by ion

implantation and oxide dispersions improves the oxide adherence without the formation of

pegs. Thus, while pegs may play a role, they are not necessary to improve adherence.

(3) Interface Bonding. According to this hypothesis, the undoped metal/oxide bond is

normally  weak.  By  adding  a  RE  to  the  alloy,  the  bond  is  strengthened.  Obviously,  this

theory is somewhat unspecific regarding exact mechanisms. After the detrimental role of

indigenous sulphur was demonstrated (e.g. by Smeggil et al [291]), sulphur was identified

as the reason for the weak undoped interface.
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(4) Void Theory. This theory is another hypothesis arising from observations of the

alloy/oxide interface. In this case, the undoped interface is observed to have voids at the

interface, while the doped interface is adherent and no voids are observed. An idea

attributed to Stringer [292] is that the RE in the alloy acts as a vacancy sink. Thus, vacancies

are captured by the RE rather than coalescing into voids at the alloy/oxide interface. Kumar

et al. [271] proposed that an internally-oxidised RE in the alloy forms dislocation loops

which annihilate these vacancies. (No attempt was made to look for these dislocations).

Accordingly, when the RE addition becomes saturated with vacancies, voids would form

and cause failure.

     Tsuzi [293] observed, in FeCr with 0.87%Y, that no voids were present at the alloy/oxide

interface, but voids were found centred on internally-oxidised Y2O3 particles in the alloy.

These voids were observed in metallographic cross-sections and no consideration was made

of possible polishing effects or the adherence in thermal expansion between Y2O3 and FeCr.

The void explanation has also been used in numerous other systems including the addition

of Y to Ni3Al [270].

     Experimental observations have not always been consistent with this hypothesis. A

Y2O3-dispersed NiCr alloy oxidised at 1000°C  [294] was investigated for possible void

formation near YAlxOw particles in the alloy. Before and after oxidation, TEM parallel

sections of the alloy near the oxide interface were examined. No voids were found at these

interfaces in either case. However, the oxide adherence was excellent.     One of the

weaknesses of the void theory is that it deals mainly with the issue of improved adherence.

It does not address the other RE effects such as the observed changes in the oxidation

mechanism or the oxide microstructure.
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Scale plasticity

     This hypothesis is experimentally based, mainly on the observed reduction in the oxide

grain size with the addition of a RE. It is proposed that this reduction in oxide grain size

improves the mechanical properties of the scale (e.g. plasticity), thus improving the oxide

adherence (e.g. Ramanarayanan et al [286]). This idea is fully consistent with the

segregation theory in that the segregation of the RE to the oxide grain boundaries slows the

grain growth, producing a finer grained scale. A reduction in Al2O3 scale grain size would

alter mechanical properties of the scale, with a likely improvement in ease of creep

deformation and thus a greater ability to relieve growth stresses. However, there was no

evidence that a finer oxide scale is more adherent than a larger grained scale.

Elimination of growth stresses

     This  theory  is  also  based  on  the  “rate-limiting  step”  of  oxidation  in  which  for  both

chromia and alumina scales cation transport is reduced with the addition of a RE. Mrowec

et. al.  [244]  concluded  that  the  entire  REE is  due  to  a  change  in  the  oxidation  mechanism

and not due to any interfacial phenomena, such as sulphur segregation or oxide pegging.

Golightly et al.  [253] had earlier proposed a similar explanation for alumina-formers. When

cation transport is eliminated, metal vacancies responsible for the outward diffusion are no

longer generated, thus eliminating voids at the metal/oxide interface and improving oxide

adhesion. Oxide microstructures are also modified by the change in the scale growth

mechanism.

     Stresses generated in the oxide film – during thermal cycling – are also important factors

in scale integrity and adhesion. In chromia-formers, comparing doped and undoped scales is

inappropriate, because the faster oxidation rate in the undoped case will cause higher

stresses and always leading to a greater failure rate. With a reduction by one to two orders
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of magnitude in the scale growth rate for RE-doped substrates, it is more logical to compare

scales of equal thickness. However, this type of argument for the case of alumina-formers is

not fully covered, because it was believed that the reduction in the oxidation rate of

alumina-formers (by the addition of the RE) is not really significant [1].

Studies of Al2O3 oxidation mechanism and the reactive element effect

      Virtually no argument arises in the case of chromia-formers about the oxidation

mechanism. Al2O3 appears  to  be  a  more  complicated  case  with  little  agreement  in  the

literature. Both of inert markers and 18O tracers are used to explain the mechanism of Al2O3

scale formation and growth. The premise on which inert marker experiments are based is

quit simple. If anion diffusion is the primary growth mechanism, then the markers should

remain at the original metal surface and oxide grow beneath them. In the case of growth by

cation diffusion, the oxide should grow over the markers, and the marker should be found

beneath the oxide at the metal/oxide interface. In the case of mixed mode growth, the

markers should be found within the scale. Pettit’s initial work [295] on Ni-Al alloys

concluded that Al2O3 scales  grew by  inward  diffusion  of  oxygen.  However  because,  of  the

thin non-adherent scale on these alloys, no marker or other experiments were conducted to

confirm this  hypothesis.  Marker  experiments  on  more  adherent  Al2O3 scales,  such  as  those

formed on Ni-Al-3Y alloys at temperatures between 900 and 1100°C, have been performed

by Young et al [257]. They concluded that Al2O3 scales grow by inward diffusion of oxygen

although the validity of the marker experiment was questioned.

     Oxidation models involving grain boundary segregation are based on the ability of

foreign ion segregants to effectively block the outward boundary transport of native cations

and to inhibit grain growth [302].  Small  ions,  such  as  Ti,  Nb  and  Ta,  may  segregate  but,

owing to their small size, may be unable to effectively inhibit cation diffusion and/or grain

growth during oxidation. For example Pint and Alexander [302]  reported  that  Nb-  and  Ti-



78

doping to FeCrAl reduce the parabolic rate constant at 1200ºC and exhibit scale ridge

formation but they do not produce the same fine grain size as does Y to the alloy. Another

factor in determining the effectiveness as a segregation regent is the amount of dopant

addition. For example, Pint and Alexander [302] suggested that 0.025 - 0.05 at% are less

effective  to  change  the  scale  morphology.  In  the  same  study  [304]  it  is  suggested  that  the

detrimental effect of Hf, Sc and Ce was due to the excessive dopant level (0.2 at%) and can

be corrected by lower dopant levels such as the 0.025 at% La addition in which case

excellent behaviour was observed.

     Strawbridge and Rapp [303] also investigated the effect of ion size on dopant effects on

the oxidation and interpreted their results to suggest that there was a critical optimum ion

size ratio (dopant/native oxide cation) range for the best dopants in Fe, Ni and Co oxides

3.4 SUMMARY

     The evidence available from the corrosion studies on titanium alloys and intermetallics,

suggests that improvements largely depend on the protective properties of the formed scales,

either by the inhibition of the environmental species – such as oxygen and/or sulphur –

diffusion through the scale, or by the elimination of fast diffusion paths of the reacting

species. It seems probable that some alteration in the characteristics of scale and metal/scale

interface also plays an important role. However, this is largely dependent upon the

behaviour of individual elemental additions, and there is little information regarding the

mechanism involved. Whilst it is generally assumed that the reduction in environmental

contamination of the alloyed substrates is the result of improved barrier qualities of the

scale, the environmental impact on Ti-Al substrates, have received very little attention and

further investigations is needed.
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     Reactive element(s) additions to Fe-base alloys have significant effects, which could lead

to selective oxidation, transient oxidation and oxide adherence. Insufficient characterisation

prevents conclusive arguments to be made about these effects. Yet most of the studies relied

mainly on kinetics work for their effectiveness. A review of the various studies about the

REE reveals significant effect of small addition of RE for chromia-formers, whereas very

limited amount of work on the REE on alumina-formers exists. Several hypotheses have

been proposed based on various theories and models, without sufficient accompanying

experimental observations.

     Despite the vast body of technical information on Ti-Al and Fe-Al intermetallics, the

literature appears to be deficient in the corrosion behaviour of these materials at high

temperatures. The relative contributions and properties of the corrosion products of the

intermetallic materials – in different environment gas composition – would provide the

necessary information for both alloy development and coatings technology.

     Part of the present work is undertaken with the aim of elucidating the effect of

environmental oxidising gas composition on the scale morphology and formation

mechanisms on Ti-46.7Al-1.9W-0.5Si alloy. Also the research programme is undertaken to

examine the ‘protectiveness’ of a selected single and double layer(s) coatings on γ-TiAl in a

sulphidising/oxidising atmosphere. A considerable part of the current research programe

also concentrates on determining the REE (Y and/or Hf) on the scale formation and scale

adhesion to Fe3Al intermetallics. The adhesion testing procedure was carried out by the

comparison of the isothermal and cycling conditions over a wide range of temperatures.
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CHAPTER FOUR

4.0 INTRODUCTION TO THE PRESENT EXPERIMENTAL WORK

     It is evident from the information set out in Chapters 2 and 3 of this thesis that the

corrosion behaviour of engineering alloys exposed at high temperatures (HT) in corrosive

environments, especially those containing oxygen and sulphur, is a subject of theoretical

interest, and also of technological significance. The environmental conditions experienced

by materials, for example in combustion atmospheres of boilers and gas turbines give rise to

complex corrosion products, consisting of external scales and varying degrees of

degradation, accounted for by both oxide and sulphide formation; the formation of

sulphide(s) as an inner layer underneath the oxide scale may also occur even though the

thermodynamic considerations suggest exclusive external oxide formation.

     It is clear that the nature of the external scales formed in these atmospheres of oxygen-

and sulphur-containing environment is important. The degree of ‘‘protectiveness’’ offered

by the scales in terms of minimising the extent of further scaling and especially in

preventing, or reducing the degree of sulphur penetration is critical. Environments of

relatively high oxygen activity may be expected to reduce the amount of internal

degradation. The “protective” scales formed on most HT alloys during oxidation consist of

either Cr2O3 or  Al2O3. The formation of the latter as an external oxide scale is considered

desirable principally because of its lower growth rate compared with chromia; and also

because unlike Cr, Al does not form volatile oxide species at high temperatures (> 1200°C).

The poor adherence of alumina scales, it has been seen, may be considerably improved by

small additions of reactive elements such as Y, Zr or Hf.



81

     The aim of this chapter is not to summarise the previous work reported in the literature

on  the  HT  behaviour  of  Fe3Al and γ-TiAl, but the intention here is to examine the

importance of the present experimental work in order to explain various aspects of the high

temperature degradation processes of the selected experimental materials.

     A survey of the relevant open literature reported in Chapter  3 revealed that significant

progress in recent years has been achieved on Ti- and Fe-aluminides. In particular,

considerable research efforts have been paid on studying the mechanical properties of these

intermetallic alloys. The main problem to the use of the intermetallic Ti-Al compounds  for

aerospace and automobile engine components is its oxidation resistance at high

temperatures is considerably inferior to that of conventional super-alloys. Improvement of

oxidation resistance and understanding of Ti-Al corrosion mechanisms are important before

their practical applications can be realised. The poor oxidation resistance of Ti-AI has been

attributed to the difficulty in forming protective external alumina scales and undesired rapid

growth of rutile.

     Iron-base intermetallics are generally considered to be corrosion resistant (especially in

sulphur-containing environments) because of their ability to form slow-growing Al2O3

scale(s). However, their applications at HT are hampered by easy spallation of the external

scale and also due to their susceptibility to intergranular degradation. The primary

advantages of iron intermetallic compounds are high strength of ∼ 500 MPa up to 500°C.

However, these materials should possess the minimum amount of aluminium to form

protective alumina scale. High aluminium content in the alloy detrimentally affects its

mechanical properties. Additions of RE is believed to maintain and facilitate the formation

of alumina scales, even if they are present in very small quantities in the alloy.

     Several efforts have been reported (refer to Chapter  3) to improve the corrosion

resistance of Ti-Al and Fe-Al including alloying additions and surface treatments. However,

very limited research has been conducted to study the corrosion behaviour of Fe3Al and γ-
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TiAl intermetallics as candidate structural and coating materials for HT applications.

Although some investigations have been carried out on HT corrosion behaviour of both

types of intermetallics, most of the results derived from these studies are controversial and

still unclear. Further investigations – using clear and more reliable experimental procedures

– are needed in order to resolve these conflicts and to clarify their degradation behaviour.

Several aspects governing the corrosion mechanism(s) of Fe3Al and γ-TiAl form the basis of

the current investigation.

     As noted in Section 3.2, it therefore appeared that the previous work mentioned above

and similar studies were not sufficient enough to reach an unequivocal conclusion regarding

the effects of nitrogen and oxygen partial pressure on the oxidation behaviour of Ti-Al. To

investigate the nitrogen effect, it was considered necessary to compare air oxidation results

at a given temperature with those in atmospheres free of nitrogen and other impurities of the

same partial pressure of oxygen, whereas, the effect of oxygen partial pressure must be

performed in environments free of nitrogen (and other impurities), with different oxygen

contents in the reactive atmosphere. Also for better conclusion and more reliable outcomes,

these investigations must be done in a wide range of temperatures and exposure times as

explained in some detail in Chapter 5.

     With the above background, a considerable part of the present research programme deals

with the influence of nitrogen and oxygen partial pressure (separately) on the oxidation

behaviour of Ti-46.7Al-1.9W-0.5Si alloy as follows:

• The results of the air oxidation of Ti-46.7Al-1.9W-0.5Si alloy at 750 - 950°C for up

to 240h are compared with its oxidation results in Ar-20%O2 (free of impurities such

as hydrocarbons and water vapour). The reactive gases – air and Ar-20%O2 – are of

the same pO2 (∼ 0.2 x 105 Pa) also, the two oxidation experimental conditions such

as the ranges of temperature and exposure time are standardised.
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• The influence of the oxygen partial pressure on the oxidation behaviour of Ti-

46.7Al-1.9W-0.5Si alloy has been also studied in high purity – specially prepared for

this purpose – Ar-5%O2, Ar-20%O2 and Ar-80%O2 gases.

For the accuracy of the results, the heating and cooling rates of the specimens in the

atmospheres are kept very similar (furnace heating and cooling) as reported in Chapter 5.

     As stated in Section 3.2.5, AlTiN coatings form stable, protective Al2O3 surface layer at

high temperatures even at low oxygen activities in the environment. This is due to their high

Al/Ti ratio compared to other types of coatings including TiAlN. Al2O3 is also highly

insulating oxide, with low ion mobility and acts as an effective diffusion barrier to the

reacting species. CrN coating, are also thermally stable system in oxidising environments

due to their Cr2O3 (chromia) formation and promise excellent HT corrosion resistance for

many applications. Further more they also exhibits complementary mechanical and

structural properties to (TiAI)N coatings. In some technological and industrial applications,

interlayer coatings are found to be necessary to provide further advantages to the coating

systems such as; diffusion barrier and/or for better adhesion between the substrate and the

external coatings. NbN coatings are an example for the high inert barrier (chemically stable)

coatings especially in sulphur containing atmospheres. For this reason, part of the

undertaken research programme is to examine the sulphidation/oxidation protection of a

selected nitride coatings to Ti-46.7Al-1.9W-0.5Si alloy.

     Although there was very limited research reported in the open literature on the corrosion

behaviour of Fe-Al, several different mechanisms have been proposed to explain the REE

on the corrosion behaviour of Fe-aluminides at high temperatures (see Section 3.3). These

effects are still unclear and need further investigations. Iron-aluminides based on Fe3Al have

been less widely studied than other alumina-formers, but recently they have received special

attention due to their low densities and also their ability to form external alumina scales. As

more detailed experimental work has been performed on Fe-aluminides some conflicts
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between researchers have been noted in oxide morphology, scale thickness and mass gains

depending on test parameters and alloy conditions. Large scatters have been reported in

mass change data and scale adhesion after cooling of Fe-Al (with and without RE) from

high temperatures. More detailed studies on the REE on the high temperature oxidation

kinetics of Fe-Al systems are essential. Adhesion testing techniques are also required to

examine critically the REE on the Al2O3 adhesion of Fe-aluminides scales during cycling at

high temperatures. For this purpose, single and combined effects of selected RE on the

isothermal oxidation behaviour of Fe3Al have been investigated in this thesis. Isothermal air

oxidation studies of iron-aluminides at high temperatures were conducted in order to explain

the REE. Most of the reported studies (refer to Section 3.3), believed that REs such as Y,

Hf, Ce and Zr dramatically change the oxidation behaviour of iron-aluminides even if they

only exist in small quantities in the alloy. However, the effects of the RE are still subject of

controversy and are still far from satisfactory and so further investigations are needed.

     The majority of the previous workers confirmed that spallation occurs as a result of

cooling and they concluded that thermal stresses are more important than growth stresses.

Thermal cycling (heating and cooling) was thought to reflect more realistically what is

happening in practice where components are subjected to variations in temperature. Very

little has been published about the Fe3Al (with and without RE) oxidation under thermal

cycling conditions. In the present thesis the REE has been examined on Fe3Al using a newly

developed – by the researcher – thermal cycling technique built within the Advanced

Materials Institute (AMRI)’s laboratory, the technique enabled us to control – to a wide

range of time – precisely the number of cycles as well as the heating and cooling periods at

a set of temperatures.

     The oxidation behaviour of undoped Fe3Al  and  Fe3Al doped with Y and/or Hf under

isothermal and cyclic conditions was studied within the temperature range 900 - 1100°C for

up to 240h. Considerable part of the research programme has been undertaken to examine
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critically the effects of nitrogen and oxygen partial pressure on the oxidation behaviour of

Ti-46.7Al-1.9W-0.5Si alloy in the temperature range between 750° and 950°C  for  up  to

240h. Also in this study, single and double nitride layer coatings were developed on Ti-

46.7Al-1.9W-0.5Si alloy in order to examine thermodynamically stable nitrides – CrN and

AlTiN – as a single coatings to improve HT corrosion behaviour of Ti-46.7Al-1.9W-0.5Si

(at%) intermetallic alloy in an environment of H2/H2S/H2O yielding high sulphur (pS2 ~ 6.8

x 10-1 Pa) and low oxygen (pO2 ~ 1.2 x 10-15 Pa) potentials at 850oC. Due to the possibility

of achieving further improved corrosion resistance, NbN and CrN – as diffusion barriers –

together with external CrN and AlTiN coatings have been examined in the same

sulphidising/oxidising environment.

     An integrated experimental approach has been adopted in the determination of reaction

kinetics and characterisation of the morphology and composition of the corrosion products

using the available XRD, SEM and EDX techniques. Such programme of study it was

believed would provide information, which was expected to be of considerable interest and

of commercial/technological significance in the field of HT corrosion.
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CHAPTER FIVE

5.0  METHODOLOGY OF THE CURRENT RESEARCH PROGRAME

5.1 Introduction

     This investigation into the high temperature corrosion behaviour of γ-TiAl and Fe3Al and

some selected types of experimental coatings has included the study of their corrosion

kinetics and scale characteristics. The experimental procedures and techniques, which have

been employed, are described in Section 5.2 of this chapter. The oxidation and sulphidation

experiments were carried out using available and recently developed rigs in AMRI.

Corrosion products have been assessed using SEM, XRD and EDX.

5.2 Experimental

     This section is a summary of the methodology of the current research programme. In

Section 5.2.1, description of the materials used in this study, as well as the preparation

procedure of the experimental coupons before exposure are described. Section 5.2.2

summarises the oxidation/sulphidation procedures as well as the gas compositions used in

this study. Section 5.2.3 specifies the characterization techniques used to assess the nature

and composition of the corrosion product(s) of the experimental materials.

5.2.1 Materials Composition and Preparation

Materials

     All of the experimental materials used in this study were procured from outside sources.

Fe3Al (un-doped and doped with small amounts of RE) ingot alloys were made at the IRC-
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Birmingham University. The chemical composition of Fe3Al intermetallics is given in

Table 5.1.

                                  Element (wt%)
Alloy

Fe Al Y Hf
Fe3Al Bal 21.29     -
Fe3Al - Y Bal 21.29 0.15     -
Fe3Al - Hf Bal 21.29    -  0.25
Fe3Al - (Y+Hf) Bal 21.29 0.15  0.25

     Conventionally cast Ti-46.7Al-1.9W-0.5Si (at%) alloy rods of 22mm diameter were

provided by ABB-Switzerland. The -TiAl intermetallics chemical compositions are given

in Table 5.2.

Element (wt%) Ti Fe Al W Si C O Cu

γ-TiAl Bal 0.052 31.05 8.56 0.34 0.01 0.0698 0.01

     While most of the work in the study concentrated on the oxidation behaviour of the two

Fe3Al and Ti-46.7Al-1.9W-0.5Si intermetallic alloys, single (CrN and AlTiN) and

multiplayer (AlTiN/CrN, AlTiN/NbN and CrN/NbN) coatings on Ti-46.7Al-1.9W-0.5Si

alloy were also developed in order to examine their protectiveness to Ti-46.7Al-1.9W-0.5Si

alloy in sulphidising/oxidising environments of relatively high partial pressure of sulphur

and low partial pressure of oxygen. All CrN (single or diffusion barriers) and NbN  coatings

of about 1.5µm thickness were deposited on all sides of Ti-46.7Al-1.9W-0.5Si alloy

coupons using Ionbond PVD coating unit. The Ionbond procedure is summarised in

Appendix A.

     In cases where combination (double-layered) of coatings were required (e.g.

AlTiN/NbN), improved adhesion between the AlTiN and NbN coatings was achieved by

Table 5.2 Chemical composition of Ti-46.7Al-1.9W-0.5Si intermetallic alloy

Table 5.1 Chemical composition of Fe3Al intermetallic alloys
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depositing an inter-layer of about 1µm thickness of pure titanium film. Following the

deposition of the inter-layer, AlTiN coating of about 2.5µm was made in TecVac Ltd, using

similar coating procedure (described in Appendix A) made by Ionbond Ltd.

Specimen preparation and surface area calculations

     Square 10x10mm coupons of 2.5mm thickness were cut from Fe3Al ingots by means of

wire cutting machine (spark erosion cutting). The 3mm outer layer of the casted γ-TiAl rods

was removed using lathe machine. The removal of the outer layer is to ensure that the whole

surfaces of the test samples could be free from any possible scale or voids resulting after the

casting processes. Half disks of 19mm diameter coupons from γ-TiAl billets and 2.5mm

thickness  were  cut  by  means  of  a  Buehler  Isomet  2000  precision  saw.  A  hole  of  1mm

diameter, to facilitate suspension by platinum wire in the specimen boat, was bored in each

sample of Fe3Al and γ-TiAl (coated and uncoated) using WC drills. The surfaces of the

specimens were prepared by grinding on metallographic SiC papers up to 1200 grit. As a

matter of record, the specimen dimensions prior to exposure were accurately measured in

three locations using a digital micrometer, followed by degreasing in (IMS) and cleaning by

acetone. The samples were then weighed before and after exposure on a Mettler HLS

balance capable of reading to a resolution of ±0.02mg. The total mass gain of the sample

was determined by the mass change of the sample plus the alumina crucible in order to

include any spalled scale. However, one possible source of error is that, without a lid, any

violently spalled scale may not have been captured in the crucible. In most cases this loss

was minimal. The weight changes of the material (with the spalled scale) were necessary to

determine the kinetic data for each material at a temperature. To reflect the realistic weight

change data, the weight change of the sample after exposure was calculated by the
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difference in weight of the sample after exposure (with the spalled scale) and the weight of

the sample before exposure.

     The geometry of the experimental materials and the samples surface area calculations are

described in Appendix B. Microsoft Excel was utilised to facilitate the method of surface

area calculation.

5.2.2 Oxidation and Sulphidation Experiments: Rigs, Procedures and Gases

Isothermal air oxidation

The principal features of the apparatus used for isothermal air oxidation monitoring are

shown in Figure 5.1. The rig consisted essentially of an horizontal vitreous silica tube, the

mid-section of which was heated by an electric resistance type furnace (Carbolite). The

heating rate of the used furnaces was 50°C/min.

     A Eurotherm proportional regulator, coupled with thyristor units, controlled the furnace

operating temperature, was capable of maintaining a minimum “hot zone” (defined by an N-

type thermocouple) of the working tube length in the reaction tube of 8cm with a maximum

temperature fluctuation of ± 5°C. The temperature measurement and control were achieved

using two separate thermocouples. The control thermocouple was located between the

furnace wall and the silica reaction tube, whilst the measuring thermocouple connected with

a temperature probe was used to check the hot zone temperature.

     The prepared specimens were suspended – in a silica crucible – above a small alumina

boat (see Figure 5-2) – for scale collection – using 0.1mm diameter platinum wire. At the

end of the Ti-46.7Al-1.9W-0.5Si alloy isothermal air oxidation tests, the specimens were

furnace cooled, whereas, the specimens of Fe3Al  alloys  were  rapidly  cooled  to  room

temperature after each exposure time at the test temperature. The mass change of the
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Figure 5-1 Horizontal electrical tube furnace

Figure 5-2 Silica push rod, cruciable, boat and cross member
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specimens of both intermetallics was measured including spalled oxide scales (individual

boats were used for scale collection, Figure 5.2) after each run.

Cyclic air oxidation

     Cyclic air oxidation experiments (for Fe3Al alloys) were carried out using the same type

of furnace used for isothermal air oxidation experiments (Figure 5.1). An automatic device

to insert and withdraw of the silica crucible carrying four specimens (with their individual

alumina boats and seats) of Fe3Al  alloys  was  newly  built  as  shown  in Figure 5.3. Readily

available computer – Pneu Alpha Visual Logic – software was used to control precisely the

frequency of cycling such as; exposure time in the furnace (holding in the furnace hot zone),

cooling period (at the end of the furnace tube) and the number of cycles at the test

temperature.

     The samples were loaded in a silica crucible in a similar way to the isothermal oxidation

experiments. The loaded silica crucible with the experimental Fe3Al samples were linked to

a ceramic push rod (Figure 5.2) from one end and the other end of the push rod was joined

to a sliding cylinder by means of a two-piece metallic adapter (Figure 5.3). The length of

the push rod was enough to bring the silica crucible (with the samples) to the furnace hot

zone. The movement of the adapter (with the push rod) was automatically controlled

through a controller card, which is linked to the computer. Compressed air was used to

move the adaptor and the push rod according to the pre-stored cycling data – such as the

number of cycles, exposure time of the samples and the cooling time – through a controller

card. A continuous supply of compressed air to the system was essential to ensure regular

cycling of the samples as specified by the computer programme. The cyclic oxidation

experiments were performed in static laboratory air. Each cycle consisted of a period of one
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Figure 5-3 Cyclic air oxidation rig

Adapter
Silica push rod

Controller card

Compressor

    Electrical  furnace
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hour at the test temperature and 12 minutes at the ambient temperature, the latter was

sufficient to cool the specimens below 50°C. The specimens were inserted into and removed

from the hot zone of the preheated furnace – at the test temperature – within a few seconds

to guarantee rapid heating and cooling of the samples.

Gases

     All of the gas cylinders used in this study were supplied by B.O.C. special gases (UK).

The specially prepared gases used in this study had negligible levels of impurities as listed

in Table 5.3. For the sulphidation/oxidation experiment, the ratio of H2/H2S was chosen so

as  to  yield  a  pS2 value  of  (∼ 6.8 x 10-1 Pa) at the reaction temperature (850°C).  In  A-O2

oxidation experiments, Ar-5%O2, Ar-20%O2 and Ar-80%O2 was chosen. Ar-20%O2 was

used to adjust the oxygen partial pressure to that of ordinary air to study the effect of

nitrogen on the oxidation of Ti-46.7Al-1.9W-0.5Si alloy, whereas the Ar+5%O2, Ar-20%O2

and Ar+80%O2 gases were used to study the effect of oxygen partial pressure on the

oxidation behaviour of Ti-46.7Al-1.9W-0.5Si alloy.

Gas Impurities (ppm)

CO CO2 H2 H2O N2 O2

Ar < 1 < 1 < 1 < 20 - < 15

H2 - < 8 < 80 < 5

H2/H2S - < 2 < 30 < 2

Ar-O2 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 -

Table 5.3 Impurity levels of various gases supplied by B.O.C. special gases (UK)
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Controlled isothermal oxidation rig

     The controlled isothermal oxidation rig used the same type of furnace as shown in

Figure 5.1.  Provision  was  made  for  the  controlled  oxidation  –  using  special  (Ar-O2) gases

mentioned in the previous paragraph – in order to admit and exit the reactive gases at the

tube ends via fabricated glass end-pieces, which incorporated appropriate taps as in Figure

5.4.

     The oxidation tests were performed in a flow of highly purified Ar-5%O2, Ar-20%O2 or

Ar-80%O2 under atmospheric pressure. In all Ar-O2 oxidation experiments, the reactive gas

was passed through dryer and a gas flowmeter, then entering the reaction chamber. The flow

of the gas is also monitored using a water bubbler at the gas outlet. The furnace-heating rate

was 50°C/min. At the end of the oxidation test, the Ti-46.7Al-1.9W-0.5Si alloy specimens

were furnace cooled in the reactive gas. To avoid any possible contaminating impurities

such as H2O or hydrocarbons which might be present in the argon, so the reactive gas (Ar-

O2) was used as a purging gas as well.
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Figure 5-4 Schematic of the experimental rig for Ar-O2 isothermal oxidation
monitoring
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Sulphidation/Oxidation rigs

     The pathways of the reactive and the purging (Ar and H2) are schematically represented

in Figure 5-5.  For  sulphidation/oxidation  experiments  the  system  was  flushed  for  three

hours with Ar and two hours with H2 at a flow rate of 12 l/h to remove the residual air from

the reaction chamber. the premixed H2/H2S  (10%  H2S  and  90%  H2)  gas  mixture  was

introduced at a rate of 2 l/h through two Dreschel bottles containing de-ionised water held at

a temperature of 23°C to yield pO2 ∼ 1.2 x 10-15 Pa;  this  flow rate  was  maintained  for  the

duration of the experiment. The sulphidation/oxidation experiments were performed in an

H2/H2S gas mixture yielding a pS2 of ∼ 6.8 x 10-1 Pa at 850ºC (The method used to calculate

the pS2 and pO2 values is set out in appendix C).  The pre-mixed H2/H2S gas mixture was

passed through a gas flow rate gauge. One gas bubbler partially filled with inert silicones oil

for flow-monitoring purposes was located just downstream from the furnace gas-outlet.

After complete flushing of the reaction chamber with the reactive gas, the furnace was

switched on (adjusted already to the desired temperature). The samples were exposed for

various periods up to 240h. At the end of each experiment, the specimens were furnace

cooled in Ar at a flow rate of 8 l/h over a period of 12h. At the ambient temperature, the

experimental rig system was opened and the corroded specimens were withdrawn for

examination.
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Figure 5-5 Schematic of the experimental rig for isothermal sulphidation monitoring
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5.2.3 Characterisation Procedures

SEM

     After an initial visual examination, the corroded samples were examined by scanning

electron microscope (SEM), which was Cambridge MK2. Representative samples of

corroded alloys were examined in order to evaluate the scale surface morphology. Scales

were also examined in cross-section using SEM for an accurate measurement of each scale

thickness and to observe the extent of stratification or layering of the scales and the

conditions of the metal/oxide interface. The corroded Fe3Al samples were coated with Au in

order to avoid any possible charging effect.

EDX

     An Energy Dispersive analysis by X-ray (EDX) system of Jeol JSM 352 and Link AN

10000, attached to the SEM, enabled the distribution of elements in the as received

materials and in the scales of the corroded samples to be qualitatively and semi-quantitavely

determined. Qualitative (not quantitative), X-ray distribution maps (Digimaps) of the

elements present in the samples were recorded photographically.

XRD

     X-ray Diffraction (XRD) analysis was also used in this investigation to identify the

phases of the various corrosion products. The samples were fixed in SEIMENS Diffract

5000 while being bombarded with Cu-Kα radiation. This technique has the advantage of

enabling the convenient use of bulk specimens rather than powder specimens. Only the

major phases present were identified by X-ray diffraction techniques because of the

complex nature of various scales produced. For some of the thick-scaled samples,

subsequent polishing – using 1200 SiC grit – was performed and examined separately by

XRD in order to determine the phases at each layer in the scale.
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5.2.4 Difficulties of the Present Characterisation Work

     Quantitative estimates of the nitrogen and nitrogen compound were found to be very

difficult to detect and characterise using the available techniques. The nitride compounds

(e.g. TiN) which was present in the corrosion product of Ti-46.7Al-1.9W-0.5Si alloy (after

air  oxidation)  was  found  to  be  complicated  by  the  fact  that  the  nitrogen  –  as  a  very  light

element – was much below the resolution ability of the detector of the used EDX. Also the

peaks from Si and W in Ti-46.7Al-1.9W-0.5Si alloy overlapped due to their similar

emission wavelengths. Qualitative analysis of the corroded Ti-46.7Al-1.9W-0.5Si alloy by

conventional XRD revealed clear peaks of TiN, SiO2 and WS2. The peaks vary in their

orientations as the experimental condition changed, which reflects the reliability of the

results obtained from the XRD. SEM was conducted on cross-sectioned samples of Ti-

46.7Al-1.9W-0.5Si alloy, in order to determine the thickness, nature and location of the

nitride  layer.  Useful  information  was  derived  from the  X-ray  maps  regarding  the  formation

of TiO2, Al2O3 and the enrichment or depletion of Ti and Al at the subsurface of Ti-46.7Al-

1.9W-0.5Si alloy. By correlating these obtained data from various characterising techniques

in this study, it was possible to understand the corrosion mechanism(s) of Ti-46.7Al-1.9W-

0.5Si alloy. Based on this understanding, the corrosion models were derived and clear

interpretations regarding the effects of the nitrogen, oxygen and sulphur became possible.

     One of the difficulties in characterising the scale properties of Fe3Al alloys (with and

without reactive element) such as growth mechanism and adherence is not being able to

observe – using the available techniques – the substrate/scale interface on these alloys. It

should be pointed out that examining oxide adherence of similar alloys in the literature was

not  possible  in  many  studies.  Conclusions  about  non-adherent  scales  thus  can  be  based  on

SEM morphologies. While the morphology gives an indication of where the failure

originated, it does not indicate why failure occurred. Thus while the RE addition is observed
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in each case of the previous studies and this investigation to at least temporarily improve

oxide adherence, no definite and clear experimental evidence to date, suggests a reason(s)

for this improvement(s). In order to examine the REE – as in the present case – on the scale

adhesion after oxidation of Fe3Al with and without RE, a set of characterisation work was

undertaken using SEM. The surface and the cross-sections of the oxidised (isothermal and

cyclic oxidation) samples were critically examined. However, results based on the SEM

were not satisfactory to explain the REE. So it  was suggested that EDX should be used to

identify the locations of the reactive element(s) in the oxidised samples, but due to the small

amounts of the RE present in the experimental alloys, it was difficult in many instances to

reach definite conclusions from the EDX results. For the same reason, the peaks from the

conventional  XRD  of  the  oxidised  alloys  showed  that  Al2O3 is the main constituent of the

external scale.



CHAPTER SIX

RESULTS
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CHAPTER SIX

6.0 RESULTS

6.1 Introduction

     In this chapter high temperatures (HT) corrosion results of Ti-46.7Al-1.9W-0.5Si and

Fe3Al  (with  and  without  REs)  alloys  are  presented. Section 6.2, reports the isothermal

oxidation of Ti-46.7Al-1.9W-0.5Si alloy in air and in Ar-O2 atmospheres of various oxygen

contents within a temperature range 750 to 950°C for up to 240h exposure time. The aim of

the  Ti-46.7Al-1.9W-0.5Si  alloy  oxidation  studies  is  to  investigate  the  effects  of  nitrogen  –

present in air – and the oxygen partial pressures of (0.05, 0.2 and 0.8) x 105 Pa  on  the

oxidation behaviour of Ti-46.7Al-1.9W-0.5Si intermetallic alloy. The oxidation was

performed in Ar-20%O2 atmospheres  (free  of  nitrogen)  in  order  to  avoid  any  possible

nitridation (or any other nitrogen effects) with the same partial pressure of oxygen (0.2 x 105

Pa) in air. The difference between 0.05 x 105 Pa and 0.8 x 105 Pa (free from other

impurities) of oxygen pressure in the reactive atmosphere was aimed to clarify the effect of

oxygen partial pressure on the oxidation behaviour of Ti-46.7Al-1.9W-0.5Si alloy. After

comparison of the oxidation results of Ti-46.7Al-1.9W-0.5Si alloy in different oxidising

atmospheres, several interesting findings were obtained – these will be presented in Section

6.2. Summary of the sulphidation/oxidation behaviour of the coated and uncoated Ti-

46.7Al-1.9W-0.5Si alloy is reported in Section 6.3. The obtained sulphidation/oxidation (in

pS2 ∼ 6.8 x 10-1 Pa and pO2 ∼ 1.2 x 10-15 Pa at 850°C) results revealed sever attack of the

uncoated Ti-46.7Al-1.9W-0.5Si alloy and a thick scale was formed, therefore, single (AlTiN

and  CrN)  and  double  (AlTiN/CrN,  AlTiN/NbN  and  CrN/NbN)  layered  coatings  have  been

designed to protect Ti-46.7Al-1.9W-0.5Si alloy from such aggressive environment. The
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developed coatings have proven their high protection capability to Ti-46.7Al-1.9W-0.5Si

alloy for prolonged exposure time (240h) at 850°C as summarised in Section 6.3.

     Isothermal and cyclic air oxidation results of the undoped and doped Fe3Al intermetallics

with the selected REs (Y and/or Hf) are presented in Section 6.4. The oxidation experiments

for Fe3Al alloys were carried out in the temperature range 900 and 1100°C for up to 240h

(or cycles). Comparison of the oxidation behaviour of undoped and doped Fe3Al

intermetallic materials in isothermal and cyclic conditions is made. The aim of the

comparison is to investigate the effects of thermal cycling and the REE on the kinetics and

scale properties of the Fe3Al alloys. During thermal cycling, the materials were subjected to

a number of cycles. Each cycle period was one hour in the hot zone of the preheated furnace

– to the desired temperature – and rapid cooling to approximately room temperature in air

for 12 minutes. However, the materials under isothermal conditions were continuously

heated in the furnace chamber – without interruption – for each exposure time. The

exposure time – in cyclic condition – can also be considered as the number of cycles. The

kinetic data of Fe3Al alloys presented are based on the gross (with the spalled scale) weight

gain, which is the difference in the weight of the oxidised materials (with the spalled scale)

and its weight before exposure at a temperature. In general, the microscopic examination for

the oxidised samples reflects the REE of scale adhesion to Fe3Al intermetallics. However,

the kinetic data are important in understanding the mechanism of the scale formation and

growth process. In the present study and in most of the cases, and for better understanding

of the REE, the microscopic investigation should be correlated to the kinetic data as will be

explained throughout this section.
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6.2 Isothermal Oxidation of Ti-46.7Al-1.9W-0.5Si Intermetallic Alloy

     The microstructure of the as-cast Ti-46.7Al-1.9W-0.5Si alloy was investigated using

optical microscope as illustrated in Figure 6-1. The microstructure consisted of

predominately γ/α2 lamellar structure. EDX results also shows the existence of WSi2 as

shown in Figure 6-2. Analysis of the spectra from conventional XRD confirm that the

principal phases existing in the alloy are composed of γ-TiAl, α2-Ti3Al and small amounts

of WSi2.

Figure 6-1 Optical micrograph of the as-cast Ti-46.7Al-1.9W-0.5Si intermetallic alloy

x 100



104

Figure 6-2 Back scattered electron image and Digimaps of the as-cast Ti-46.7Al-1.9W-0.5Si
                   intermetallic alloy



105

6.2.1 Isothermal Oxidation of Ti-46.7Al-1.9W-0.5Si Alloy in Air and Ar-20%O2

Mass change of Ti-46.7Al-1.9W-0.5Si alloy after isothermal oxidation in air and Ar-
20%O2

     Figures 6-3 to 6-5 illustrates the oxidation kinetic results for the Ti-46.7Al-1.9W-0.5Si

alloy in environments of air and Ar-20%O2 at 750, 850 and 950oC respectively. In general,

oxidation rates in air are higher than those in Ar-20%O2 at all three temperatures. The

oxidation rate in both atmospheres increases with the increase of exposure temperature.

However the effect of air on the oxidation behaviour of the alloy is more remarkable with

increasing oxidation temperature. Marginal difference in weight gains of the alloy after

oxidation in air and Ar-20%O2 is observed at 750oC (Figure 6-3) and the oxidation rate was

doubled at 850oC after 240h exposure. The corrosion rate in air was three times faster than

that in Ar-20%O2 at 950oC for 240h oxidation. The oxidation of the alloy follows a

parabolic rate law in both air and Ar-20%O2 at 750oC. At 850oC, the alloy oxidised

parabolically in air, whereas, the alloy oxidised parabolically at early stage of exposure (up

to 24h) in Ar-20%O2 then its oxidation rate was significantly reduced (Figure 6-4). The

alloy also oxidised parabolically in air at 950oC prior to 72h exposure but the corrosion rate

was reduced after prolonged exposure. A quasi-parabolic rate was observed for the

oxidation of the alloy in Ar-20%O2 at 950oC  (Figure 6-5). Table 6-1 gives the oxidation

parabolic rate constants of Ti-46.7Al-1.9W-0.5Si alloy in both air and Ar-20%O2 between

750 and 950oC. The parabolic rate constants in both atmospheres are comparable at lower

temperature (750oC)  whilst  the  parabolic  rate  constant  in  air  at  950oC  is  one  order  of

magnitude higher than that in Ar-20%O2.
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Figure 6-3 Weight gains versus exposure time for the Ti-46.7Al-1.9W-0.5Si intermetallic
                    alloy after oxidation in air and Ar-20%O2 at 750ºC for up to 240h

Figure 6-4 Weight gains versus exposure time for the Ti-46.7Al-1.9W-0.5Si intermetallic
                   alloy after oxidation in air and Ar-20%O2 at 850ºC for up to 240h
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750oC 850oC 950oC

Ar-20%O2 4.6x10-14 1.2x10-13 3.8x10-13

Air 5.4x10-14 7.3x10-13 3.7x10-12
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Table 6-1 Oxidation parabolic rate constants (g2/cm4/s) of Ti-46.7Al-1.9W-0.5Si intermetallic
                 alloy after exposure in air and Ar-20%O2 at 750, 850 and 950ºC for up to 240h

Figure 6-5 Weight gains versus exposure time for the Ti-46.7Al-1.9W-0.5Si intermetallic
                   alloy after oxidation in air and Ar-20%O2 at 950ºC for up to 240h
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     The oxidation parabolic rate constants versus reciprocal of temperature are plotted in

Figure 6-6. The activation energies for oxidation of the alloy in both air and Ar-20%O2

atmospheres are calculated from the slopes. The values of activation energy are 508,365

J/mole in air and 251,516 J/mole in Ar-20%O2. The activation energy for oxidation of the

Ti-46.7Al-1.9W-0.5Si alloy in air is more than double in Ar-20%O2, which implies that the

temperature dependence of the parabolic oxidation rate in Ar-20%O2 was significantly

lower than in air. This is due to the nitridation of the alloy after oxidation in air.

Figure 6-6 Parabolic rate constants of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after
                   oxidation in air and Ar-20%O2 versus reciprocal of exposure temperatures
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Scale morphology and composition of Ti-46.7Al-1.9W-0.5Si alloy after isothermal
oxidation in air and Ar-20%O2

     Initially, when the Ti-46.7Al-1.9W-0.5Si alloy specimens were exposed to both air and

Ar-20%O2 atmospheres, isolated islands of TiO2 formed on the alloy surface. A continuous

alumina layer, which was identified by XRD as Al2O3 appeared to develop. With increasing

exposure time, the alumina scale grew. However TiO2 grew very slowly and did not form a

continuous layer at low temperature (e.g. 750oC) in both atmospheres even after long-term

exposure (240h), as shown in Figures 6-7(a)  and  (b). At higher experimental temperature

(e.g. 850oC), the oxide scales were developed much more rapidly than at lower temperature.

For example, a continuous Al2O3 layer was fully generated after just one hour exposure, as

illustrated in Figures 6-7(c)  and  (d). Raising experimental temperature also promoted the

outward diffusion of titanium, particularly in air atmosphere. Figures 6-7(e)  and  (f) show

typical surface morphologies of Ti-46.7Al-1.9W-0.5Si specimens after 240h exposure in air

and Ar-20%O2 at 950oC respectively.  The TiO2 layer had fully cover the sample surface in

air (Figure 6-7(e)) whilst it did not fully cover the sample surface in Ar-20%O2 (Figures 6-

7(f)).  Thickening of TiO2 layer in air atmosphere caused a great deal of thermal stresses

during the cooling period and gave rise to partial spallation of the oxide scale (Figure 6-

7(e)).

     The cross-sectioned morphologies and EDX analysis together with XRD results give

more detailed information for the oxidised Ti-46.7Al-1.9W-0.5Si alloy in both air and Ar-

20%O2 environments. At 750oC, any corrosion products were undetectable at early stages

(e.g.  5h)  of  oxidation  in  air.  However,  increasing  exposure  time  both  TiO2 and Al2O3

became detectable. For example, TiO2, Al2O3 and TiN phases were found on the oxidised
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(a) In air, 750oC, 240 hours (b) In Ar-20%O2, 750oC, 240 hours

(c) In air, 850oC, 1 hour (d) In Ar-20%O2, 850oC, 1 hour

(e) In air, 950oC, 240 hours (f) Ar-20%O2, 950oC, 240 hours

Figure 6-7 SEM morphologies of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after
                  oxidation in air and Ar-20%O2 at 750, 850 and 950ºC for 240h
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sample in air at 750oC after 240h exposure, as shown in Figure 6-8.

X-Ray maps of the oxidised Ti-46.7Al-1.9W-0.5Si alloy sample in air at 750ºC for 240h are

shown in Figures 6-9. It is clear that the scale of the sample oxidised in air is consisting of

multi-layers of TiO2 and Al2O3 with very thin layer of aluminium depletion. Increasing

exposure temperature led to acceleration of the growth rate of the scales. Figures 6-10

depicts the back-scattered (BS) micrographs and Digimaps for air oxidised Ti-46.7Al-1.9W-

0.5Si alloy at 850oC after 240h exposure. The scale is multi-layered and thicker than that

formed at 750oC  and  consisted  of  a  continuous  Al2O3 layer above which a discontinuous

TiO2 layer also formed. Beneath the Al2O3 layer,  a  thick  TiO2 layer developed with large
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Figure 6-8 XRD pattern of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after oxidation in air at
                   750ºC for 240h
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voids existed underneath this layer, then a thin TiN layer can be observed. The formation of

the TiN layer in air at 850ºC gave rise to the development of a dark Al-enriched band that

was  identified  by  XRD  (Figures 6-11) as TiAl2. When the experimental temperature was

further increased to 950oC, the outward diffusion of Ti was remarkably accelerated, hence, a

continuous TiO2 developed much earlier than at 750 and 850oC. Figures 6-12 to 6-14 show

the cross-sectioned BS micrographs and X-ray maps of oxidised Ti-46.7Al-1.9W-0.5Si

alloy at 950oC in air for 5h, 72h and 240h respectively. Clearly a continuous TiO2 had

formed after 5h exposure (Figure 6-12). The overall microstructure of the scales is similar

to that formed at 850oC. However, it is interesting to note that the scale and the dark TiAl2

band became thicker with the increase of exposure time at 950oC. It is also obvious that the

Al2O3 precipitated within the TiO2 layer between the Al2O3 layer and TiN layer. A great

deal of W (white spots in Figure 6-14)  segregated  at  the  interface  of  substrate  and  TiAl2

band.

     In the Ar-20%O2 environment, a multi-layered scale of TiO2/Al2O3/TiO2/Al2O3 formed

on the Ti-46.7Al-1.9W-0.5Si alloy at all three exposure temperatures. However the outer

TiO2 and  the  Al2O3 layer near the substrate were discontinuous at lower temperature

(750oC) even after 240h exposure time, as illustrated in Figure 6-15.
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Figure 6-9 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                   intermetallic alloy oxidised in air at 750ºC for 240h
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Figure 6-10 Back scattered electron image Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in air at 850ºC for 240h
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Figure 6-11 XRD pattern of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after oxidation in air at
                     850ºC for 240h
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Figure 6-12 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in air at 950ºC for 5h
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Figure 6-13 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in air at 950ºC for 72h
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Figure 6-14 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in air at 950ºC for 240h
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Figure 6-15 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in Ar-20%O2 at 750ºC for 240h
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When the temperature increased to 850oC in Ar-20% O2,  both  layers  of  TiO2 and Al2O3

became clear and continuous, as revealed in Figure 6-16. Figure 6-17 contains the

micrograph and Digimaps of the Ti-46.7Al-1.9W-0.5Si alloy after 240h oxidation at 950oC

in Ar-20%O2. It is noted that a substantial amount of Al2O3 precipitated in the second TiO2

layer. Also considerable amount of pure W segregated through the aluminium depleted layer

–  identified  by  XRD  as  Ti3Al – Figure 6-18. Spallation of the scale formed on Ti-46.7Al-

1.9W-0.5Si alloy after air oxidation by a wedging process was observed as illustrated in

Figure 19(a). The cross-sectioned morphologies of the cooled samples after oxidation in air

– especially after longer exposure time at higher temperature (850 and 950ºC) – showed

evidence of transverse cracks normal to the scale/TiN layer interface and also cracks formed

along the interface just above the TiN layer. On the other hand, the multi-layered scale

formed in Ar-20%O2 environment were adherent but the scale grew non-uniformly (Figure

19(b)).
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Figure 6-16 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in Ar-20%O2 at 850ºC for 240h
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Figure 6-17 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in Ar-20%O2 at 950ºC for 240h
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Figure 6-18 XRD pattern of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after oxidation in
                    Ar-20%O2 at 950ºC for 240h
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Figure 6-19 Back scattered SEM micrographs of Ti-46.7Al-1.9W-0.5Si intermetallic alloy
                    after oxidation  at 850ºC (a) in air for 168h and (b) in Ar-20%O2 for 240h

(a)

(b)



125

6.2.2 Isothermal Oxidation of Ti-46.7Al-1.9W-0.5Si Alloy in Ar-5%O2, Ar-20%O2 and
         Ar-80%O2 Atmospheres

Mass changes of Ti-46.7Al-1.9W-0.5Si alloy after isothermal oxidation in Ar-5%O2,
Ar-20%O2 and Ar-80%O2 atmospheres

Figures 6-20 to 6-22 show the isothermal kinetic weight changes of Ti-46.7Al-1.9W-

0.5Si alloy in Ar-5%O2, Ar-20%O2 and Ar-80%O2 at 750, 850 and 950°C respectively for

up to 240h exposure time. Generally, the isothermal oxidation curves and the kinetic data

analysis (Table 6-2) obtained at the three temperatures indicated some effects of oxygen

partial pressure on the oxidation behaviour of Ti-46.7Al-1.9W-0.5Si alloy especially at

higher temperatures. It is apparent that the oxidation rate of the material is higher in Ar-

5%O2 than  in  Ar-20%O2 and Ar-80%O2 within the entire range of exposure time and

temperatures. At 750°C,  the  isothermal  oxidation  behaviour  of  the  alloy  for  up  to  72h

exposure  time  in  the  three  Ar-O2 atmospheres was similar (Figure 6-20).  As  the  exposure

time increased, more increase of weight gain of the alloy in Ar-5%O2 was observed,

whereas the alloy showed parabolic behaviour in Ar-20%O2 and Ar-80%O2 for up to 240h.

Although the parabolic oxidation rate constants of the alloy at 750°C and 850°C in Ar-

5%O2, Ar-20%O2, Ar-20%O2 and Ar-80%O2 were of the same order of magnitude (Table

6-2), the reaction rate constant of the alloy in Ar-5%O2 is approximately two times than in

Ar-80%O2. The divergence of mass gain data of the alloy in the three Ar-O2 atmospheres at

850°C is very similar for up to 240h (Figure 6-21). At 950°C, the effect  of oxygen partial

pressure became more noticeable and the oxidation parabolic rate constant in Ar-5%O2 is

one order of magnitude higher than in Ar-80%O2 (Table 6-2). In Ar-5%O2 and Ar-20%O2

at 950°C,  the  alloy  showed  parabolic  oxidation  behaviour,  whereas  in  Ar-80%O2

atmosphere quasi-parabolic ‘protective’ oxidation kinetic behaviour was observed (Figure

6-22).
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Figure 6-20 Weight gains versus exposure time for the Ti-46.7Al-1.9W-0.5Si intermetallic
                     alloy after oxidation in Ar-5%O2, Ar-20%O2 and Ar-80%O2 at 750ºC for up to 240h

Figure 6-21 Weight gains versus exposure time for the Ti-46.7Al-1.9W-0.5Si intermetallic alloy
                     after oxidation in Ar-5%O2, Ar-20%O2 and Ar-80%O2 at 850ºC for up to 240h
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750oC 850oC 950oC

Ar-5%O2 6.8 x 10-14 3.41 x 10-13 1.21 x 10-12

Ar-20%O2 4.26 x 10-14 1.89 x 10-13 1.08 x 10-12

Ar-80%O2 3.59 x 10-14 1.18 x 10-13 3.80 x 10-13
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Figure 6-22 Weight gains versus exposure time for the Ti-46.7Al-1.9W-0.5Si intermetallic
                     alloy after oxidation in Ar-5%O2, Ar-20%O2 and Ar-80%O2 at 950ºC for up to 240h

Table 6-2 Oxidation rate constants (g2/cm4/s) of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after
                 exposure in Ar-5%O2, Ar-20%O2 and Ar-80%O2 at 750, 850 and 950ºC for up to 240h
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Scale morphology and composition of Ti-46.7Al-1.9W-0.5Si alloy after isothermal
oxidation in Ar-5%O2, Ar-20%O2 and Ar-80%O2 atmospheres

     Generally, the scale formed in Ar-5%O2 at 750°C was similar to that in Ar-20%O2 but

slightly different in Ar-80%O2. During the initial periods of oxidation at 750ºC (up to 5h),

no corrosion product was detected in the three Ar-O2 atmospheres. After 72h exposure at

750°C, very low intensity peaks of TiO2 and Al2O3 in the XRD pattern was identified. With

the increase of exposure time to 240h, the scale became visible at high magnification

(Figure 6-23).  The  proportion  of  TiO2 and  Al2O3 islands in the scale in the three Ar-O2

atmospheres was very hard to distinguish at 750°C for up to 240h exposure. However, the

intensities of TiO2 peaks in Ar-5%O2 was higher than those in Ar-80%O2 – Figures 6-24(a)

and (b) respectively. Although the XRD patterns – Figures 6-24(a) and (b) –  of  the

oxidised samples.indicated the presence of both TiO2 and Al2O3,  the EDX results (Figures

6-25 and 6-26) of the corresponding samples revealed a mixed scale of TiO2 and Al2O3 was

formed in both Ar-5%O2 and Ar-80%O2 atmospheres. However, it is more obvious in Ar-

5%O2, the scale showed transverse micro-cracks perpendicular to the scale/alloy interface –

Figures 6-25. Also a very thin depleted layer of aluminium at 750°C after 240h oxidation in

Ar-5%O2 and Ar-80%O2 atmospheres was detected by EDX analysis (Figures 6-25 and 6-

26). However, it was not possible to identify this thin layer by the available XRD.

Figure 6-27 show the surface morphologies of the scale formed on Ti-46.7Al-1.9W-

0.5Si alloy after oxidation in Ar-5%O2 and Ar-80%O2 at 850°C for 5h exposure. The rutile

in Ar-5%O2 started to overgrow (Figure 6-27(a)) resulting in a scale predominant of TiO2
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Figure 6-23 SEM micrographs of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after oxidation
                     at 750ºC for 240h (a) in Ar-5%O2 and (b) in Ar-80%O2

(a)

(b)
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Figure 6-24 XRD patterns of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after oxidation at 750ºC
                     for 240h (a) in Ar-5%O2 and (b) in Ar-80%O2
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Figure 6-25 Back scattered electron Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in Ar-5%O2 at 750ºC for 240h
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Figure 6-26 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in Ar-80%O2 at 750ºC for 240h
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Figure 6-27 SEM micrographs of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after
                     oxidation at 850ºC for 5h (a) in Ar-5%O2 and (b) in Ar-80%O2

(a)

(b)
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with  some  islands  of  Al2O3 (TiO2/Al2O3)  scale,  as  revealed  by  EDX  analysis  – Figures 6-

28. Whilst for the scale in Ar-80%O2, the concentration of TiO2 and Al2O3 has changed

over, i.e. more Al2O3 can be observed (Figure 6-27(b)) and the scale becomes predominant

in Al2O3 (Al2O3/TiO2), Figure 6-29. A very thin layer rich in titanium in Ar-5%O2 and Ar-

80%O2 was detected by EDX (see Figures 6-28 and 6-29).  However,  this  layer  was  not

possible to be identified by XRD (see Figures 6-30(a) and 6-30(b)) in both atmospheres.

The intensity of the SiO2 peak is higher in Ar-5%O2 than that in Ar-80%O2 (e.g. Figures 6-

31(a) and 6-31(b)). By increasing the exposure time at 850ºC to 72h, more islands of TiO2

were observed in Ar-5%O2 than that at Ar-80%O2. After 240h of oxidation in Ar-5%O2 and

Ar-80%O2 atmospheres the top surface of Ti-46.7Al-1.9W-0.5Si alloy is almost covered

with TiO2 in both atmospheres, Figures 6-32(a) and (b). However, still Al2O3 islands could

be seen after oxidation in Ar-80%O2 for 240h at 850ºC, Figure 6-32(b). Also localised

oxidation was observed in Ar-5%O2 atmosphere especially in places where W was

observed, Figure 6-33(a)  whilst,  the  scale  in  Ar-80%O2 was  protective  and  almost  flat  to

the substrate (Figure 6-33(b)). The thickness of the aluminium-depleted layer identified by

XRD as Ti3Al (see Figure 6-31) increased with the increase in exposure time in both Ar-

5%O2 and Ar-80%O2 atmospheres.

     At 950°C, the surface morphologies of the oxidised samples in Ar-5%O2, Ar-20%O2 and

Ar-80%O2 were covered with rutile. However, the cross-sectioned scales of the samples

oxidised in Ar-5%O2 showed substantially thicker TiO2 layer  (Figure 6-34), whereas, the

scale in Ar-80%O2 is consisting almost of “protective” Al2O3 containing very thin of

discontinuous layers of rutile, Figure 6-35. More interesting features of the cross-sectioned

scales were observed at 950°C in both Ar-5%O2 and Ar-80%O2 atmospheres: The thickness
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Figure 6-28 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in Ar-5%O2 at 850ºC for 240h
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Figure 6-29 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in Ar-80%O2 at 850ºC for 240h
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Figure 6-30 XRD patterns of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after oxidation at 850ºC
                     for 5h (a) in Ar-5%O2 and (b) in Ar-80%O2

(a)

(b)



138

Li
n 

(C
ou

nt
s)

0

1000

2000

3000

4000

5000

6000

7000

2-Theta - Scale
10 20 30 40 50 60 70 80 90

A
l2

O
3 

(0
12

)

Ti
O

2 
(1

10
)

S
iO

2 
(0

10
)

A
l2

O
3 

(1
04

)
   

   
   

  T
i3

A
l

A
l2

O
3 

(1
10

)
   

   
   

  T
i3

Al
 (0

02
)

W
(1

10
)

   
Ti

3A
l (

20
1)

A
l2

O
3 

(1
13

)

  A
l2

O
3 

(0
24

) Ti
O

2 
(2

11
)

Ti
O

2 
(2

20
)

   
   

   
   

  A
l2

O
3 

(1
16

)

  A
l2

O
3 

(3
00

) W
 (2

11
)

Figure 6-31 XRD patterns of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after oxidation at 850ºC
                     for 240h (a) in Ar-5%O2 and (b) in Ar-80%O2
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Figure 6-32 Back scattered SEM micrographs of Ti-46.7Al-1.9W-0.5Si intermetallic
                     alloy after oxidation  at 850ºC for 240h (a) in Ar-5%O2 and (b) in Ar-80%O2

(a)

(b)
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Figure 6-33 Back scattered SEM cross-sectional micrographs of Ti-46.7Al-1.9W-0.5Si intermetallic
                 alloy after oxidation  at 850ºC for 240h (a) in Ar-5%O2 and (b) in Ar-80%O2

(a)

(b)
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Figure 6-34 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in Ar-5%O2 at 950ºC for 240h
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Figure 6-35 Back scattered electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si
                     intermetallic alloy oxidised in Ar-80%O2 at 950ºC for 240h
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of the depleted layer increases as the exposure time increased in both atmospheres.

However, the depletion band of aluminium increased as the oxygen partial pressure

increased at a temperature. For example, the thickness of the depleted layer at 950°C after

240h oxidation in Ar-80%O2 (Figure 6-35) is about two times than in Ar-5%O2, Figure 6-

34.  Another  important  feature  of  the  scale  formed in  Ar-5%O2 and Ar-80%O2 at 950°C is

that, after 240h the existence of porosities within the inner layer of the scale in Ar-5%O2

and voids at the scale/alloy interface in Ar-80%O2 can be observed. Generally, the XRD

results of the oxidised samples in Ar-O2 atmospheres revealed no sign of nitridation of the

Ti-46.7Al-1.9W-0.5Si substrate were detected. Also the oxidation results obtained in Ar-

20%O2 reported in Section 6.2.1 is consistent with the findings in Ar-5%O2 and Ar-80%O2

atmospheres (refer to Figure 6-15, 16 and 17). As mentioned in Section 5.2.4,  it  was

difficult to quantify the SiO2 in the scale using EDX analysis due to the similarity in the

emission-wave lengths of Si and W. However, the XRD patterns of the oxidised samples in

all oxidising atmospheres at all exposures (except at 750°C) showed clear peaks of SiO2

characteristic. Also, pure W was identified by the XRD analysis in most of the oxidised

samples.

6.3 Sulphidation/Oxidation of Coated and Uncoated Ti-46.7Al-1.9W-0.5Si
      Intermetallic Alloy

     While most of the work in the study concentrated on the oxidation behaviour of Ti-

46.7Al-1.9W-0.5Si intermetallic alloy, single (CrN and AlTiN) and multiplayer

(AlTiN/CrN, AlTiN/NbN and CrN/NbN) coatings on Ti-46.7Al-1.9W-0.5Si alloy were also

developed in order to examine their protectiveness to Ti-46.7Al-1.9W-0.5Si alloy in

sulphidising/oxidising environments. Figure 6-36 show the SEM micrographs of the as

received single and double layer coatings.
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Figure 6-36 SEM micrographs of (a) AlTiN, (b) CrN, (c) AlTiN/NbN, (d) AlTiN/CrN and
                    (e) CrN/NbN coatings

a b

c d

e
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6.3.1 Mass Changes and Kinetics of Coated and Uncoated Ti-46.7Al-1.9W-0.5Si
         Intermetallic Alloy in H2/H2S/H2O Atmosphere

Figure 6-37 depicts the kinetics of sulphidation/oxidation for the coated and uncoated

Ti-46.7Al-1.9W-0.5Si alloy at 850oC in the environment of H2/H2S/H2O (pS2 ∼ 6.8x10-1 Pa

and pO2 ∼ 1.2x10-15 Pa) for up to 240h. The sulphidation/oxidation of uncoated 46.7Al-

1.9W-0.5Si alloy follows a parabolic reaction law with a parabolic rate constant of 6 x 10-11

g2/cm4/s. The kinetic data analysis demonstrate that all the coatings significantly enhanced

the corrosion resistance of Ti-46.7Al-1.9W-0.5Si alloy over the range of exposure time at

850°C, Table 6-3.

     From Figure 6-37, at the early stages of exposure (e.g. 5h), the degree of protection

among all the coatings was hardly distinguishable. However it was observed that the AlTiN

combined with diffusion barriers (CrN or NbN) provided better protection for prolonged

exposure, in particular the AlTiN with NbN showed the best sulphidation/oxidation

resistance. Slightly inferior corrosion resistance were offered by AlTiN/CrN and CrN/NbN

coatings over prolonged exposure (up to 240h) at 850°C. The single layer coatings of AlTiN

and CrN behaved differently; AlTiN coating enhanced significantly the corrosion resistance

of Ti-46.7Al-1.9W-0.5Si alloy at 850oC in the environment of H2/H2S/H2O for up to 100h,

beyond which the AlTiN coating became no longer protective. However, the alloy coated

with CrN showed continuous and rapid weight gains with the increase of exposure time.

Weight gain data for the CrN coating after sulphidation/oxidation at 850°C showed the

highest parabolic constant relationship with the exposure time compared to other coatings.
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Coated alloy withUncoated
alloy

CrN AlTiN CrN/NbN AlTiN/CrN AlTiN/NbN
Kp

(g/cm4/s) 6 x 10-11 4.4 x 10-11 2.6 x 10-11 5 x 10-12 4.8 x 10-12 2.5 x 10-12

Figure 6-37 Weight gains versus exposure time for the coated and uncoated
                     Ti-46.7Al-1.9W-0.5Si  intermetallic alloy after sulphidation/oxidation
                     in environment of pS2 ∼ 6.8 x 10-1 Pa and pO2 ∼ 1.2 x 10-15 Pa, at 850ºC for up to 240h

Table 6-3 Sulphidation/Oxidation rate constants (g2/cm4/s) of coated and uncoated
                  Ti-47Al-1.9W- 0.5Si intermetallic alloy after exposure in environment of
                  pS2 ∼ 6.8x10-1 Pa and pO2 ∼ 1.2 x 10-15 Pa, at 850ºC for up to 240h
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6.3.2 Scale Morphology and Composition of Uncoated Ti-46.7Al-1.9W-0.5Si Alloy in
         H2/H2S/H2O Atmosphere

Figure 6-38 illustrates the cross-sectioned SEM morphology of uncoated Ti-46.7Al-

1.9W-0.5Si alloy after 240h exposure. The top layer of the scale consisted of rutile (TiO2).

Beneath the rutile layer, a continuous layer of Al2O3 formed. Then a thick and relatively

porous layer of TiS containing scattered pure W was observed. Beneath this scale, a TiAl3

layer was identified whilst a thin TiAl2 layer developed between the substrate and the TiAl3

layer. In order to clarify the observed results, XRD analyses was carried out by careful and

sequential polishing of the exposed sample for 168h. On the surface (before polishing), only

rutile phase was detected as indicated in Figure 6-39(a). After removing the top part of this

layer, the Al2O3 phase was revealed (Figure 6-39(b)) which also demonstrates the existence

of pure W. Further removal of the scale surface by polishing revealed the presence of TiS –

see Figure 6-39(c). After subsequent polishing, XRD was able to identify two phases of

aluminium-rich TiAl3 and  TiAl2 – Figure 6-39(d). The semi-quantitative analysis shows

that there was a gradient of Al concentration, which decreased toward the substrate.
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TiO2
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Figure 6-38 Back scattered SEM micrograph of uncoated Ti-46.7Al-1.9W-0.5Si intermetallic
                    alloy after exposure in environment of pS2 = 6.8 x 10-1 Pa and pO2 = 1.2 x 10-15 Pa
                    at 850ºC for 240h
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Figure 6-39 XRD patterns of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after exposure in
                     environment of pS2 ∼ 6.8 x 10-1 Pa and pO2 ∼ 1.2 x 10-15 Pa at 850ºC for 168h
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Cont. Figure 6-39 XRD patterns of Ti-46.7Al-1.9W-0.5Si intermetallic alloy after exposure in
                               environment of pS2 ∼ 6.8 x 10-1 Pa and pO2 ∼ 1.2 x 10-15 Pa at 850ºC for 168h
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6.3.3 Scale Morphology and Composition of Coated Ti-46.7Al-1.9W-0.5Si Alloy in
         H2/H2S/H2O Atmosphere

 The lack of corrosion of the Ti-46.7Al-1.9W-0.5Si alloy coated with AlTiN after short

exposure (e.g. 5h), demonstrated by the kinetic data, is also confirmed by the morphological

state of the scale, which remained compact and adherent during this exposure period. The

XRD results indicate that all the phases existing on the non-exposed sample were present on

the  exposed  samples  with  a  minor  amount  of  titanium  oxide  as  confirmed  by  the  EDX

results. However sulphur diffused through the AlTiN coating and locally formed TiS after

prolonged exposure. Figure 6-40 shows the cross-sectioned morphology and Digimaps for

the AlTiN coated Ti-46.7Al-1.9W-0.5Si alloy after 240h corrosion. It demonstrates that the

coating was almost consumed within the corrosion product nodule. Although it remained

attached to the substrate, the Al2O3 became arch-shaped which was caused by the outward

push of TiS which formed beneath the Al2O3 scale as the formation of TiS led to a positive

volume expansion. In front of the TiS a band of Al-enriched adjacent to the substrate is

observed. The morphologies and compositions of the nodule were similar to those of the

uncoated Ti-46.7Al-1.9W-0.5Si sample.

     The CrN in both single and double-layered coatings specimens after short exposure time

was completely converted to Cr2S3 layer. For the CrN single-coated layer after 5h exposure

time (Figure 6-41), a discontinuous TiO2 layer is formed. The outward diffusion of titanium

led  to  the  development  of  aluminium-rich  zone  beneath  the  pre-formed  Cr2S3 layer. In the

case of the double layer coating of CrN and NbN, there was no evidence for the formation

of TiO2, which indicates the significant barrier effect on the outward migration of Ti. With

increasing exposure time to 240h, the amount of titanium increasingly migrated outwards to

form TiO2. At the same time, species of oxygen and sulphur diffused inwards and a layer of

Al2O3 formed beneath the TiO2/Cr2S3 mixed layer and a TiS zone also developed beneath
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Figure 6-40 Electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si alloy coated with AlTiN in
                    environment of pS2 = 6.8 x 10-1 Pa and pO2 = 1.2 x 10-15 Pa  at 850ºC for 240h
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Figure 6-41 Electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si alloy coated with CrN in
                    environment of pS2 = 6.8 x 10-1 Pa and pO2 = 1.2 x 10-15 Pa at 850ºC after 5h exposure
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the Al2O3 layer. The formation of TiO2 and TiS depleted the alloy of titanium, consequently

a aluminium-rich bright zone was also observed.

 The kinetic results demonstrate superior corrosion resistance for the double layer

coatings compared to the single layer coating. Similar to the case of the single layers (AlTiN

or CrN), the double layer coatings of AlTiN/CrN and AlTiN/NbN were firmly attached to

the substrate after short periods of exposure (e.g. 5h). However the XRD results showed

some  degree  of  transformation  of  NbN  and  CrN  into  Nb2N  and  Cr2N indicating the

dissociation of NbN and CrN and the release of nitrogen. Prolonged exposure (240h at

850ºC) led to the development of detectable TiO2 and Al2O3. For the double layer coatings

AlTiN/NbN) and (AlTiN/CrN – Figures 6-42 and 6-43 respectively, NbS2 and Cr2S3 were

detected. It is apparent that the formation of NbS2 and Cr2S3 acted as a diffusion barrier to

the outward diffusion of substrate elements and ingress of sulphur and oxygen. However,

some localised attack occurred leading to the development of nodular corrosion products

beneath the coatings, growing toward the substrate as shown in Figures 6-42 and 6-43. It

should  be  pointed  out  that  such  localised  attack  did  not  affect  the  overall  integrity  of  the

coatings. The coatings remained compact and adherent and provided effective protection

even after 240h exposure.
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Figure 6-42 Electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si alloy coated with AlTiN/NbN in
                    environment of pS2 = 6.8 x 10-1 Pa and pO2 = 1.2 x 10-15 Pa at 850ºC after 240h exposure
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Figure 6-43 Electron image and Digimaps of Ti-46.7Al-1.9W-0.5Si alloy coated with
                    CrN/NbN in environment of pS2 = 6.8 x 10-1 Pa and pO2 = 1.2 x 10-15 Pa
                    at 850ºC after 240h exposure
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6.4 Oxidation Behaviour of Fe3Al Intermetallic Alloys

6.4.1 Introduction

 Four Fe-based intermetallic alloys, Fe3Al, Fe3Al-Y, Fe3Al-Hf  and  Fe3Al-(Y+Hf) were

used among the experimental materials in the present oxidation studies. In the as-recieved

conditions, the Fe3Al alloys presented a microstructure of longitudinal grains with a non-

uniform size. The average grain size (as determined by optical microscop) of the four Fe3Al

intermetallics were very similar and it was about 83µm (Figure 6-44). The isothermal and

cyclic air oxidation behaviour of the four Fe3Al intermetallics will be dealt separately

throughout this section. For better understanding of the isothermal and cyclic oxidation

behaviour of the experimental materials, it was found necessary to describe and compare

them at single temperature. As would be expected for the REE, the Fe3Al with RE(s) have a

lower oxidation rate than the undoped materials. However, from the results obtained, the

situation seems to be more complicated and needs rethinking. Also it was reported in the

literature that more severe weight losses of similar undoped materials after a number of

cycling than RE doped materials. However, these cases may not be true in the present study.

Figure 6-44 Optical micrograph of Fe3Al intermetallic alloy

x100
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6.4.2 Isothermal Air Oxidation Behaviour of Fe3Al Intermetallic Alloys

Mass changes after isothermal oxidation of Fe3Al intermetallic alloys

     The recorded mass changes for the undoped Fe3Al and doped with Y and/or Hf under

isothermal air oxidation conditions at 900, 1000 and 1100°C are shown in Figures 6-45, 6-

46, and 6-47 respectively. Generally, the mass gains of the alloys increased as the exposure

time and temperature increased. As a matter of simplicity, the explanation of isothermal

oxidation kinetic data at the three temperatures will be dealt separately.

     At 900°C, the oxidation curves indicated that all alloys exhibited parabolic oxidation

behaviour (refer to Figure 6-45). The oxidation kinetic data show variations of the mass

gain and oxidation rate constants of the experimental materials. Surprisingly at 900°C, the

weight  gain  of  the  Fe3Al alloy doped with Y is higher than that of the undoped material

under the same isothermal conditions. On the other hand the material doped with both Y and

Hf [Fe3Al-(Y+Hf)] showed the lowest weight gain among all Fe3Al experimental materials.

Initially and up to 24h, the weight gain of Fe3Al-Y alloy at 900°C is significantly higher

than the other materials. After the initial incubation of oxidation at 900°C, a steady state

condition of the alloys oxidation is reached with a parabolic mass gain – with the spalled

scale. However, the scatter of the mass gain of alloys in isothermal oxidation conditions at

900°C was very similar throughout the whole exposure time (up to 240h).

     At 1000°C, the scatter of the kinetic data is similar to that at 900°C, but with higher

weight gain. Again the Y-doped intermetallic showed the highest weight gain among the

Fe3Al experimental materials (Figure 6-46). However, the diverging of the mass gain of the

four materials looks very similar throughout the whole exposure time at 1000°C. At

1100°C, the kinetics of isothermal oxidation behaviour of Fe3Al based intermetallics is far
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Figure 6-45 Weight gains versus exposure time for the Fe3Al intermetallic alloys after
                     isothermal air oxidation at 900ºC for up to 240h

Figure 6-46 Weight gains versus exposure time for the Fe3Al intermetallic alloys after
                     isothermal air oxidation at 1000ºC for up to 240h
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more complex than that at 900 and 1000°C. Although the weight gain of the experimental

materials [except Fe3Al-(Y+Hf)] at 1100°C, beyond 150h looks very similar (Figure 6-47),

however, their scale properties are found to be very different.

     The isothermal oxidation data from this study show significant changes in the oxidation

rate  of  Fe3Al especially with the addition of yittrium. In certain cases (depending on the

exposure temperature), the RE adversely affected the kinetic oxidation behaviour of Fe3Al

intermetallics. This is because of various reasons as will be discussed in Chapter  7. For

comparison between the isothermal oxidation behaviour of the Fe3Al alloys, the calculated

kinetic oxidation data of the materials between 900 and 1100°C are presented in Table 6-4.

It is clear that the reaction rate constants for each material increased with increasing

Figure 6-47 Weight gains versus exposure time for the Fe3Al intermetallic alloys after
                     isothermal air oxidation at 1100ºC for up to 240h
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Kp (g2/cm4/s-1)

Material
at 900ºC at 1000ºC at 1100ºC

Fe3Al 6.9 x 10-14 8.9 x 10-13 6.2 x 10-12

Fe3Al-Y 4.2 x 10-13 1.6 x 10-12 6.4 x 10-12

Fe3Al-Hf 1.5 x 10-14 4.8 x 10-13 6.1 x 10-12

Fe3Al-(Y+Hf) 7.6 x 10-15 1.06 x 10-13 8.8 x 10-11

the exposure temperature. From Table 6-4, it is obvious that Y adversely affected the

oxidation rate of Fe3Al alloy by one order of magnitude. However, the Y-doped material is

less sensitive among Fe3Al alloys to the temperature increase under isothermal conditions.

For example, the oxidation rate constant of Fe3Al-Y at 1100°C  is  just  one  order  of

magnitude higher than that at 900°C, whilst the difference in the oxidation rate constant of

other materials at these two temperatures is at least two orders of magnitude. More

interestingly, it is clear from Table 6-4 that the combined additions of Y and Hf adversely

affected the oxidation rate of Fe3Al alloys especially at higher temperatures. For example,

the reaction rate constant of the Fe3Al doped with both Y and Hf at 1100°C is one order of

magnitude higher than that of the undoped Fe3Al alloy at a given temperature. The

beneficial addition of both Y and Hf to the oxidation rate of Fe3Al alloy was observed up to

1000°C, beyond which the alloy with both Y and Hf showed the highest isothermal

oxidation rate constant among the Fe3Al alloys. Surprisingly, addition of Hf alone to the

alloy did not alter significantly the isothermal oxidation rate of Fe3Al alloy in the whole

range of exposure temperatures. This finding confirms that Y addition is detrimental to the

oxidation kinetics of Fe3Al alloys under the present experimental conditions.

Table 6-4 Isothermal air oxidation rate constants (g2/cm4/s) of Fe3Al intermetallic alloys at
                 900, 1000 and 1100ºC for up to 240h
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     While some authors have insisted (in some case in spite of their data) that a RE addition,

especially Y, beneficially affected the oxidation rate of alloys similar to our experimental

materials. In other studies, authors have concluded that RE addition does not change the

oxidation rate (refer to Section 3.3). However, the present investigation revealed complex

and dramatic change in the oxidation rates of Fe3Al alloys when temperature increased from

900 to 1100°C. This makes it difficult to explain the REE base only on the oxidation kinetic

data and further investigations on the scale morphology and composition of the

experimental materials were made in order to clarify the REE on Fe3Al alloys.

Scale morphology and composition after isothermal air oxidation of Fe3Al
intermetallic alloys

     Although the scale thickness of the experimental materials at a given temperature was

comparable especially at low temperatures, the scale morphologies and protectiveness to the

substrate are significantly different. At the early stages of oxidation (e.g. 5h) at 900°C, no

corrosion product was detected. With increasing the exposure time to 240h, fast growing

(probably θ-Al2O3 of  a  blade-like  nodules  – Figure 6-48(a)) formed. The scale formed on

undoped Fe3Al alloys after 240h under isothermal conditions at 900°C was not continuous

and  showed  some  porosity  (Figure 6-48(b)). Also the scale was neither compact nor

adherent to the substrate – severely cracked and spalled easily during cooling (Figure 6-

48(c)). XRD analysis (e.g. Figure 6-49) of the oxidised Fe3Al alloys at 900ºC revealed trace

peaks of Fe2O3 together with Al2O3. The scales formed on Y-containing Fe3Al intermetallics

[Fe3Al-(Y)  and  Fe3Al-(Y+Hf)] under the same isothermal conditions were slow growing,

coherent and adherent ‘protective’ to the substrate. The scales formed on Fe3Al-Y alloy

were found more adherent than those formed on Fe3Al-(Y+Hf) as depicted from Figure 6-

50(a) if compared to Figure 6-50(b). However, in both alloys, no significant detachment of

large oxide particles was observed at the flat surfaces of the specimens. Careful examination
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to  the  scale  formed  on  Fe3Al-Y substrate under isothermal oxidation at 900° C revealed

continuous and integrated ‘coherent’ oxide scale, even in places where large cavities

between the substrate and the scale were found (refer to Figure 6-50(c)). On large areas at

the corners of oxidised materials (except Fe3Al-Y  alloy)  at  900°C, the scale completely

delaminated (lifted) from the substrate during cooling after 240h exposure. Although the

external oxide layer of the Y-containing materials were thin and adherent to the substrate,

the phenomenon of intergranular – at the alloy grain boundaries – oxidation starts to appear

at low temperature as 900°C in the Y-doped alloys (e.g. Figure 6-50(d)). The phenomenon,

directly changes the overall oxidation kinetics of Y-doped alloys (refer to Figure 6-45) by

increasing the weight gain of the oxidised materials doped with yittrium. Although, the scale

of Hf-doped alloy was not protective (Figure 6-50(e)) – where the surfaces of the scale and

the substrate were corrugated and porous – the intergranular oxidation was not observed in

Hf doped alloy at 900°C. Under the same exposure conditions, Hf in Fe3Al-(Y+Hf), reduced

the  weight  gain  of  Fe3Al probably by limiting or preventing the intergranular oxidation of

the  alloy  (Figure 6-50(f). This leads to the conclusion that Y is the main cause of the

intergranular attack of Fe3Al alloys even at low temperatures as 900°C.  The  effects  of  the

RE become clearer as the temperature of the oxidation increased.
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(a)

(b)

(c)

Figure 6-48 SEM micrograph of Fe3Al intermetallic alloy after isothermal air oxidation at
                    900ºC for 240h
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Figure 6-49 XRD pattern of Fe3Al intermetallic alloy after isothermal air oxidation at
                    900ºC for 240h
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Figure 6-50 Back scattered SEM micrographs of (a, d and c) Fe3Al-Y, (b and f) Fe3Al-(Y+Hf)
                    and (e) Fe3Al-Hf intermetallic alloys after isothermal air oxidation at 900ºC for 240h

a b

c d

e f
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     At 1000°C, and under isothermal oxidation conditions, the scale thickness of undoped

Fe3Al  and  Fe3Al doped with Hf increased dramatically with increase of exposure time

(Figure 6-51(a) and Figure 6-51(b))  respectively.  For  the  undoped Fe3Al at 1000°C after

5h exposure in air, the scale consists mainly of Al2O3, with trace peaks of spinel of iron and

aluminium oxides as indicated by XRD pattern (Figure 6-52 (a). With increasing exposure

time to 72h the spinel were no longer detected and the scale became only Al2O3 (Figure 6-

52(b). The oxides tend to spall easily from the undoped Fe3Al after 240h during cooling as

shown in Figure 6-53. However, at 1000°C, the scale of the Hf-doped material remain in

contact with the substrate even at the sample corners (Figure 6-54(a)  and  (b). With the

infinite supply of Al from the substrate, relatively thick scales from the undoped Fe3Al and

doped with Hf were formed. Furthermore, no sign of aluminium depletion from both

materials even after prolonged exposure time (168h) at 1000ºC as shown in Figures 6-55

and 6-56 respectively. Again and for the same reason (intergranular oxidation – Figure 6-

57(a)), the Y-doped alloy recorded the highest weight gain at 1000ºC (refer to Figure 6-46).

However, the external scale is very thin and remain adherent even at sample corners (Figure

6-57(b)). The depth of the internal attack of Fe3Al-Y increased as the exposure time

increased. The internally attacked areas (oxide pegs) for the material doped with Hf was

relatively thick, whereas the intergranular oxidation of the Fe3Al-Y material was narrow and

deeper than the oxide pegs of Hf-doped material. Furthermore, the surface morphology of

the oxide formed on the Y-doped materials at the same experimental conditions are also

different. The alloy grain boundaries of the Y-doped material are clearly marked –

convoluted scale – by the formation of oxide ridges at the alloy grain boundaries (Figure 6-

57(c)). Generally, the scale formed on Y-containing alloys has rough surface of cigar-like

shop  (Figure 6-57(d)), whereas the scale formed on Hf-doped materials has relatively

smooth surfaces – rumpling shape (refer to Figures 6-51(b) and 6-54(a)). Both
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Figure 6-51 Back scattered SEM micrographs of (a) Fe3Al and (b) Fe3Al-Hf intermetallic
                    alloys after isothermal air oxidation at 1000ºC for 168h

(a)

(b)
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Figure 6-52 XRD patterns of Fe3Al intermetallic alloy after isothermal air oxidation at
                    1000ºC (a) for 5h and (b) for 72h

(a)

(b)
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Figure 6-53 Back scattered SEM micrographs of Fe3Al intermetallic alloy after isothermal air
                     oxidation at 1000ºC for 240h
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Figure 6-54 Back scattered SEM micrographs of Fe3Al-Hf intermetallic alloy after
                     Isothermal air oxidation at 1000ºC for 240h

(a)

(b)
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Fe O

Al

Figure 6-55 Back scattered SEM micrographs and Digimaps of Fe3Al intermetallics alloy
                    after isothermal air oxidation at 1000ºC for 168h
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Fe O

Al

Hf

Figure 6-56 Back scattered SEM micrographs and Digimaps of Fe3Al-Hf intermetallic alloy
                    after isothermal air oxidation at 1000ºC for 168h
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Figure 6-57 Back scattered SEM micrographs of Fe3Al-Y intermetallics alloy after isothermal
                    air oxidation at 1000ºC for 240h
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morphologies  of  the  Al2O3 scales are briefly described in Section 3.3.2. The external scale

of Fe3Al doped with both Y and Hf showed double layered scale, the inner layer remained

in contact and almost flat with the surface of the alloy (Figure 6-58(a)), whereas the outer

layer is convoluted and tends to spall easily especially at the sample corners (Figure 6-

58(b)). The micrograph and the digimaps of the Y and (Y+Hf) doped Fe3Al alloys after

240h isothermal air oxidation at 1000ºC are shown in Figures 6-59 and 6-60 respectively.

Although the REs (Y and/or Hf) are present in the Fe3Al alloys in small quantities (refer to

Table 5.2) EDX analysis of the oxidised alloys (at 1000ºC for 168h) doped with only Y

indicated presence of Y at the alloy grain boundaries (Figure 6-59). However, Y after

oxidation  of  Fe3Al-(Y+Hf) was not visible at the alloy grain boundaries, Figure 6-60.

Again, it is clear that Y is the main cause of the scale adhesion – beneficial effect – as well

as it is the primary reason for the Fe3Al alloy internal attack – detrimental effect.

     Although the single and combined addition of Y and/or Hf adversely affected the

isothermal oxidation kinetics of Fe3Al at 1100°C (refer to Figure 6-47), the scale thickness

of undoped Fe3Al after 72h exposure at 1100°C is more than three times than that of Fe3Al-

Y and Fe3Al-(Y+Hf) alloys as depicted from Figure 6-61. The scale of the undoped Fe3Al

alloy is thick, convoluted and spall easily from the substrate (Figure 6-61(a)  and  (b)).

However, under similar isothermal oxidation conditions, the scale of the Y-containing

materials remained relatively thin and adherent to the alloys (Figure 6-61(c)). Again, the

oxide  on  Fe3Al-(Y+Hf)  consists  of  two  layers  of  which  the  outer  layer  is  normally

convoluted, while the inner layer which is in contact with the substrate is almost flat and

adherent to the substrate (Figure 6-61(d)).  After  168h,  cooling  the  Fe3Al  alloys  from

1100ºC, serious breakdown of their external layer took place. For example, severe internal

attack to Fe3Al-(Y+Hf) was observed (Figure 6-62(a)). Also, beneath the oxide scale and at

the internally oxidised areas of Fe3Al-(Y+Hf) at 1100°C after 168h exposure, large numbers
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Figure 6-58 Back scattered SEM micrograph of Fe3Al-(Y+Hf) after isothermal air oxidation
                    at 1000ºC for 240h
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Figure 6-59 Back scattered SEM micrographs and Digimaps of Fe3Al-Y intermetallic alloy after
                     isothermal air oxidation at 1000ºC for 240h

Fe O

Al

Y
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Figure 6-60 Back scattered SEM micrographs and Digimaps of Fe3Al-(Y+Hf) intermetallic
                    alloy after isothermal air oxidation at 1000ºC for 240h

Fe O

Al

HfY
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Figure 6-61 SEM micrographs of (a and b) Fe3Al, (c) Fe3Al-Y and (d) Fe3Al-(Y+Hf)
                    after isothermal air oxidation at 1100ºC for 72h

a b

c d



180

(a)

(c)

Figure 6-62 SEM micrographs of Fe3Al-(Y+Hf) after isothermal air oxidation at 1100ºC
                     for 168h

(b)
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of  cavities  and  voids  formed  (Figure 6-62(b)).  These  voids  caused  severe  damage  to  the

external oxide scale during cooling as shown in Figure 6-62(c). However, the scale formed

on Fe3Al-Y at 1100ºC after 168h, showed single external scale (almost flat and free from

voids  – Figure 6-63(a)) and the scale tends to spall after cooling especially at the oxide

ridges and sample corners, Figures 6-63(b) and (c) respectively.

     Thus it appears that the oxidation process of Fe3Al alloys is complex. The single and

combined effects of Y and Hf on the isothermal oxidation behaviour of Fe3Al are

complicated and it is a strongly influenced by the experimental conditions such as exposure

time and temperature in particular. Obviously, various degrees of scale spallation took place

during cooling of the oxide scales formed not only for undoped alloy but also the scales of

RE-containing materials. The phenomena of scale adherence and spallation is more clear

when the materials is subjected to a number of thermal cycling as will be summarised in

Section 6.4.3.
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Figure 6-63 SEM micrographs of Fe3Al-Y after isothermal air oxidation at 1100ºC for 168h

(a)

(b)

(c)
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6.4.3 Cyclic Air Oxidation Behaviour of Fe3Al Intermetallic Alloys

     Thermal cycling conditions seem to be more severe and realistic than isothermal

conditions in many high temperature applications. Thus a considerable part of the current

research programme was undertaken to examine the REE on the cyclic oxidation behaviour

of Fe3Al intermetallics and to compare with the isothermal oxidation results at a fixed

temperature.

Mass changes after cyclic oxidation of Fe3Al intermetallic  alloys

Figures 6-64 to 6-66 show the oxidation behaviour of the four Fe3Al intermetallic alloys

under thermal cycling conditions at 900, 1000 and 1100ºC for up to 240 one-hour cycles.

The cyclic oxidation rate constants of the Fe3Al experimental materials are summarised in

Table 6-5. From Table 6-5, cyclic oxidation behaviour of the materials under investigation

seems to be more complicated than that under isothermal conditions described in Section

6.4.2. For example, at 900°C, similar to the isothermal oxidation conditions, the reaction

rate constant of the Y-doped alloy is one order of magnitude higher than that of other

materials – including the undoped Fe3Al.  Also,  at  900°C,  the  weight  gain  of  Fe3Al-Y

dramatically increased with the increase of cycles (one-hour cycles), while in the other

materials, the changes of their weight gain from initial stage of oxidation to the prolonged

stage (up to 240 cycles) were very similar (Figures 6-64). The experimental materials

(except the Y-doped alloy) at 900°C  showed  similar  weight  gain  data  up  to  240  cycles  at

900°C, however their scale properties at this temperature were different. Unlike the

isothermal oxidation of Fe3Al alloys (refer to Figures 6-45 to 6-47), the Y-doped Fe3Al

alloy under thermal cycling conditions showed lower oxidation rates after long-term

exposure at 1000 and 1100ºC.
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Kp (g2/cm4/s-1)
Material

at 900ºC at 1000ºC at 1100ºC

Fe3Al 2.75 x 10-14 4.12 x 10-12 9.63 x 10-11

Fe3Al-Y 4.55 x 10-13 1.14 x 10-12 1.51 x 10-11

Fe3Al-Hf 2.02 x 10-14 8.93 x 10-12 1.61 x 10-10

Fe3Al-(Y+Hf) 2.85 x 10-14 1.72 x 10-13 6.42 x 10-11

Figure 6-64 Weight gains versus exposure time for the Fe3Al intermetallic alloys after
                     cyclic air oxidation at 900ºC for up to 240 one-hour cycles

Table 6-5 Cyclic air oxidation rate constants (g2/cm4/s) of Fe3Al intermetallic alloys at
                 900, 1000 and 1100ºC for up to 240 one-hour cycles
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     At 1000°C (Figures 6-65),  the  cyclic  air  oxidation  behaviour  of  the  Fe3Al alloys varied

from the initial stage to the prolonged exposure time (or cycles). After the first 24 one-hour

cycles at 1000ºC, Fe3Al-Y showed the highest weight gain among the experimental Fe3Al

materials. Although the cyclic oxidation rate constant of the experimental alloys [except

Fe3Al-(Y+Hf)] are of the same order of magnitude at 1000ºC (see Table 6-5). However, it is

clear from Figure 6-65,  the  weight  gain  for  Fe3Al-Hf under cyclic oxidation at 1000°C

showed almost linear relationship with the increase of thermal cycles. Other Fe3Al materials

showed parabolic relationships with the increase of cycles (exposure time). The oxidation

rate constant of Fe3Al-(Y+Hf) at 1000°C under cyclic conditions is one order of magnitude

less than that of other materials (refer to Table 6-5). Comparison of the kinetic data of

Fe3Al-Y, Fe3Al-Hf  and  Fe3Al-(Y+Hf) in cyclic conditions at 1000°C reveals the beneficial

– rather than detrimental – effect of Y to the kinetic behaviour of Fe3Al alloys during cyclic

oxidation.

     At 1100°C, it is clear that Y-containing alloys [Fe3Al-(Y) and Fe3Al-(Y+Hf)] show

better cyclic oxidation behaviour by one order of magnitude less than that of undoped and

Hf-doped Fe3Al materials. However, the weight gain of the four experimental materials

behaves similarly under cyclic oxidation conditions at 1100°C for up to 24 one-hour cycles,

beyond that the divergence in the weight gain data of the alloys becomes significantly

different, Figure 6-66. The weight change (with the spalled scale) of Fe3Al-Y after 24h

exposure did not alter significantly (quasi-parabolic – protective – behaviour) with the

increase of exposure time at 1100°C, while other materials did show significant weight gain

as the number of cycles increased. The cyclic oxidation kinetics of Hf-doped alloy at

1000°C and 1100°C are very similar. At these two temperatures the Hf-doped alloy

recorded the highest weight gain among the Fe3Al alloys and a linear relationship between

its weight change and the number of cycles was recorded, Figure 6-66.
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Figure 6-65 Weight gains versus exposure time for the Fe3Al intermetallic alloys after
                     cyclic air oxidation at 1000ºC for up to 240 one-hour cycles
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Figure 6-66 Weight gains versus exposure time for the Fe3Al intermetallic alloys after
                     cyclic air oxidation at 1100ºC for up to 240 one-hour cycles
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Scale morphology and composition after cyclic air oxidation of Fe3Al intermetallic
alloys

     The microscopic results of the cyclic oxidation are different from those at isothermal

conditions  for  the  Fe3Al intermetallics. Also, the phenomenon of intergranular oxidation is

limited under cycling conditions, while the material wastages due to internal oxidation

under thermal cycling oxidation were clearly observed. The degree of internal oxidation

under cycling condition varies for the same material as the temperature increased.

Generally, the scale characteristics of the Y-doped material under cyclic oxidation are

different to those in other Fe3Al alloys. At 900°C the scale formed on undoped Fe3Al under

cycling (240 one-hour cycles) conditions is characterised by convoluted surface – Figure 6-

67(a) – if compared to that formed on other Fe3Al alloys. Also the scales of Y-containing

materials [Fe3Al-Y and Fe3Al-(Y+Hf)] are characterised by rough surface morphologies

(cigar-like shape – Figures 6-67(b) and (c)) if compared with those of Hf-doped Fe3Al

alloys (Figure 6-67(d)) after 240 one-hour cycles at 900°C.

     At 1000°C  and  under  cycling  conditions,  the  most  noticeable  effect  of  the  RE  to  the

kinetics and scale morphologies of Fe3Al intermetallics can be seen. At the early oxidation

period (e.g. 5 one-hour cycles) at 1000°C, the scale formed on Fe3Al without RE is porous

but still in contact with the substrate (Figures 6-68(a)). After 72 one-hour exposure cycles,

the oxide of the undoped Fe3Al alloy severely spalled from the undoped substrate as shown

in Figure 6-68(b). The morphology of the oxide scale formed on the surface of Fe3Al-Y at

1000°C is  found to  be  different  to  the  scale  of  undoped Fe3Al alloy. The scale of Fe3Al-Y

after 5 one-hour cycles at 1000°C is very adherent to the substrate (Figures 6-69(a) and (b))

and most of the scale remains in contact with the alloy. Increasing the number of cycles

(240 cycles), the scale thickness especially, at the oxide grain boundaries – Figures 6-69(c)
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a b

c d

Figure 6-67 Back scattered SEM micrographs of (a) Fe3Al, (b) Fe3Al-Y, (c) Fe3Al-(Y+Hf) and
                    (d) Fe3Al-Hf intermetallic alloys after cyclic air oxidation at 900ºC for 240h
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Figure 6-67 Back scattered SEM micrographs of (a) Fe Al, (b) Fe Al-Y, (c) Fe Al-(Y+Hf) and

Figure 6-68 Back scattered SEM micrographs of Fe3Al intermetallic alloy after cyclic air oxidation
                    at 1000ºC (a) for 5h and (b) for 72h

(a)

(b)
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Figure 6-69 Back scattered SEM micrographs of Fe3Al-Yintermetallic alloy after cyclic air oxidation
                    at 1000ºC (a and b) for 5h, (c and d) for 240h

a b

c d
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and  (d))  –  of  Fe3Al-Y alloy increased and eventually the oxide ridges cracked and small

areas of the oxide had spalled. Generally, the scales on the Fe3Al-Y were less convoluted

than those formed on the undoped Fe3Al. Under cycling conditions at 1000°C, the scales

formed on Fe3Al-Hf  were  relatively  non-protective  and  showed  formation  of  oxide  pegs

even after just 5 one-hour cycles (Figures 6-70(a)). The depth and width of the oxide pegs

increased rapidly with increase of exposure time (168 cycles) as shown in Figures 6-70(b)

and the scales became relatively thick. Surprisingly, although the scale of Hf doped Fe3Al

alloy was thick, most of the scale remained in contact with the substrate. The intermetallic

alloy doped with both Y and Hf [Fe3Al-(Y+Hf)] at 1000°C showed the best response among

the Fe3Al experimental materials in terms of the scale adhesion under cycling conditions.

The scale of Fe3Al-(Y+Hf) after 5 one-hour cycles was very thin, almost flat and adherent to

the substrate and no sign of intergranular or internal oxidation was observed (Figure 6-

70(c). After 240 one-hour cycles, the scale of Fe3Al-(Y+Hf) became thicker and very

convoluted (Figure 6-70(d)).  Higher  magnification  showed  that  the  convoluted  scale  of

Fe3Al-(Y+Hf) alloy seriously cracked along the oxide ridges during cooling (Figure 6-

70(e)).

     At 1100°C, the scale of undoped and Hf-doped Fe3Al became thick and spall easily from

their substrates especially after long exposure time (cycles). For example, after the first 5

one-hour cycles, the scale of the undoped Fe3Al alloys was relatively thick and multi-

layered Figures 6-71(a). As the number of cycles increased, the scale of the undoped Fe3Al

material suffered severe spallation and the substrate surface also became highly convoluted

(Figure 6-71(b)). The external scale of Y- and Hf-containing materials remains very thin

for the first 5 one-hour cycles, consisting of single layer. Increasing the exposure time to 72

cycles, the external scales of Y and Y+Hf alloys were non-protective (Figure 6-72(a)
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a b

c

d e

Figure 6-70 Back scattered SEM micrographs after cyclic air oxidation at 1000ºC of (a) Fe3Al-Hf for
                    5h, (b) Fe3Al-Hf for 168h, (c) Fe3Al-(Y+Hf) for 5h, and (d and e) Fe3Al-(Y+Hf) for 240h
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Figure 6-71 Back scattered SEM micrographs of Fe3Al intermetallic alloy after cyclic air
                     oxidation at 1000ºC (a) for 5h and (b) for 72h

(a)

(b)
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and (b)) and the scale severely spalled. Careful examination to the external scale of the

Fe3Al-Y revealed that spallation of the scale starts at the interface of the intergranular and

external scales (at the oxide ridges – Figure 6-72(c)). Under same cycling conditions (after

72 cycles at 1100ºC), the scale of Hf-doped Fe3Al materials was very thick, full of cavities

and showed large oxide pegs (Figure 6-72(d)) especially in places where Hf oxide is

expected to exist. After further increase of the number of cycles to 240 one-hour cycles at

1100ºC,  the  scales  of  all  Fe3Al alloys became non-protective and spalled easily from their

substrates. Figure 6-73(a)  showed  severe  material  losses  of  undoped  Fe3Al alloy, also the

alloy with Hf suffered very deep oxide penetration (oxide pegs – Figure 6-73(b)). However,

the scale of Y-containing alloys [Fe3Al-Y  and  Fe3Al-(Y+Hf)], showed sever intergranular

attack (Figure 6-73(c) and (d)) as well as massive damage to their external scales (Figure

6-73(e) and (f)) respectively.
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a b

c d

Figure 6-72 Back scattered SEM micrographs of (a and c) Fe3Al-Y, (b) Fe3Al-(Y+Hf) and
                    (d) Fe3Al-Hf intermetallic alloys after cyclic air oxidation at 1100ºC for 72h
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Figure 6-73 Back scattered SEM micrographs of Fe3Al intermetallic alloys after cyclic air
                     oxidation at 1100ºC for 240h

a b

c d

e f
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CHAPTER SEVEN

7.0 DISCUSSION OF RESULTS

7.1 Oxidation of Ti-46.7Al-1.9W-0.5Si Intermetallic Alloy

7.1.1 Introduction

     From the results presented in Chapter  6, oxidation of Ti-46.7Al-1.9W-0.5Si alloy in

air led to titanium nitride formation beneath the scale, whilst under the same exposure

conditions in Ar-20%O2 (free of other impurities), different scale morphologies – no

nitridation – and kinetic data were obtained. The differences are attributed to the nitrogen

effect(s). A few observations in the literature indicated that the nitridation could have

beneficial effect with regard to protective Al2O3 formation at the scale/alloy interface.

However, others (refer to Section 3.2.3) concluded it accelerates the oxidation rate of TiAl

alloys. With the vast number of the corrosion studies on titanium aluminides, no

publication could be found in the open literature in which a model has been proposed even

for the effects of nitrogen on the oxidation behaviour of titanium aluminides and γ-TiAl in

particular. The nitrogen effects are not yet clearly understood. However, in the present

investigation, detrimental effects of nitrogen on the oxidation behaviour of Ti-46.7Al-

1.9W-0.5Si alloy were clearly noticed in both scale properties and kinetics of Ti-46.7Al-

1.9W-0.5Si alloy oxidation as will be discussed and modelled in the following section.

     After exposure of Ti-Al alloy of high aluminium content in oxygen-containing

environments (free from other impurities – including nitrogen) at high temperature, it is

natural at a first glance to predict the formation of a protective alumina layer. However,

protective alumina was not observed in many studies. Very little published work has been

done regarding the effect of oxygen partial pressure on the oxidation behaviour of Ti-Al
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systems. However, large disagreement between authors (refer to Section 3.2.3 was

reported on the mechanism of scale formation in relation to the partial pressures of oxygen

in the reactive atmosphere. Failure of Ti-Al alloys to form protective Al2O3 was attributed

to the similarity in the affinity of Ti and Al for oxygen. The situation is far more complex

than given by the simple thermodynamic relations between the reacting species of the

alloy with the surrounding atmosphere. In the present work, scaling processes in Ti-

46.7Al-1.9W-0.5Si alloy at various oxygen partial pressures have been studied not only as

a function of oxygen partial pressure but also in an environment of (Ar-20%O2), where

nitrogen was eliminated keeping oxygen partial pressure in the reactive atmosphere same

as in air, bearing in mind high purity of Ar-O2 gas mixtures have been used.

7.1.2 Effect of Nitrogen

     In order to predict and understand the scaling process of the materials under

investigation, it is considered necessary to carry out some basic thermodynamic

calculations using available thermodynamic data. In this study, the minimum activities of

Ti and Al required to form TiO2 and A2O3 can be calculated at the known oxygen partial

pressure (0.2 x 105 Pa) and experimental temperatures (750, 850 and 950oC). The standard

free energies of formation for TiO2 and Al2O3 [296] are described as follows (J/mole):

TG o
TiOT 173910000

2, +−=∆ ..…………………………..(30)

TG o
OAlT 3201676000

32, +−=∆ …………………………(31)

where T  is the experimental temperature in Kelvin. Our calculations for the Ti-46.7Al-

1.9W-0.5Si alloy indicated that the Ti activity in the alloy should be slightly higher than

the Al activity at the three temperatures (750, 850 and 950ºC) as summarised in Table 7.1.



199

Therefore, it is concluded that TiO2 should  be  the  favoured  product  when  the  alloy  was

exposed to both air and Ar-20%O2 atmospheres.

750oC 850oC 950oC

aTi 1.23x10-34 8.01x10-31 1.23x10-27

aAl 1.86x10-37 2.55x10-33 7.38x10-30

     A layer of discontinuous TiO2 at  the  early  stages  of  oxidation  was  observed  in  this

study. This can be attributed to the nature of the two-phase microstructure, which implies

that the activities of Ti and Al preventing TiO2 to  form  in  certain  areas.  When  the  Ti-

46.7Al-1.9W-0.5Si alloy is exposed to air at the experimental temperatures favouring the

formation of TiO2, that is, the following reaction occurs:

                                                Ti (s) + O2 (g) D  TiO2 (s) ………………………………(32)

     The formation of TiO2 would change the balance of activities of Ti and Al and oxygen

partial pressure between TiO2 and the substrate. The reduced activity of Ti and the

decreased partial pressure of oxygen at this interface, the formation of Al2O3 became

possible, i.e.

                                            2Al (s) + 3/2 O2 (g)D Al2O3 (s) …………………...…..……(33)

     The development of an Al2O3 layer  leads  to  the  formation  of  a  Ti-enriched  zone

beneath the Al2O3 layer. At the same time nitrogen migrates through the Al2O3 thin layer

Table 7.1 The minimum activities of Ti and Al to form TiO2 and Al2O3 in 0.2 atmosphere of
                 oxygen partial pressure at 750, 850 and 950oC.
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to the Ti-enriched zone from the external atmosphere (air), which creates a favourable

situation for the following reaction to take place:

          Ti (s) + 1/2 N2 (g) D   TiN (s) ………..……………………(34)

Thus a TiN layer develops beneath the Al2O3 layer. In the mean time oxygen species also

diffuse inward to the interface between the Al2O3 layer and TiN layer and there builds up

the oxygen partial pressure. When the oxygen partial pressure reaches a certain level, TiN

becomes unstable at the Al2O3/TiN interface and decomposes, i.e.

                                    TiN (s)  + 1/2 O2 (g)D  TiO2 (s) + 1/2 N2 (g) ……...………….( 35)

Nitrogen is released and migrates inwards via the TiN layer. The nitrogen partial pressure

gradually increases at the TiN/substrate interface and the nitrogen species meets titanium

from the substrate and reaction (34) takes place again. This gives rise to the formation of

a titanium-depleted zone beneath the TiN layer, which is demonstrated by the existence of

a TiAl2 band  beneath  the  TiN  layer.  The  oxidation  mechanisms  of  Ti-46.7Al-1.9W-0.5Si

alloy in air are schematically described in Figure 7-1. It is apparent that the thickness of

the TiO2 layer increases with exposure time. So does the thickness of the TiN layer as

nitrogen migrates inwards from the external environment. However it is not clear why

AlN did not develop between the TiN and TiAl2 band,  as  the  affinities  of  Al  and  Ti  for

nitrogen are very close [296]. This is  probably due to the faster self-diffusion of Ti in the

TiAl substrate than that of Al especially at lower temperatures (< 1000ºC – see Table 7-

2). Thus, TiN became the kinetically favoured product.
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T (ºC) DTi (m2/s) DAl (m2/s)

900 1.18 x 10-17 2.40 x 10-18

1000 8.87 x 10-17 3.52 x 10-17

1100 2.17 x 10-16 1.69 x 10-16

     In the Ar-20%O2 atmosphere – the same oxygen partial pressure as in air (pO2 ~ 0.2 x

105 Pa)  –  also  favoured  TiO2 formation on the surface of Ti-46.7Al-1.9W-0.5Si alloy

when it is exposed to the environment. Similarly as in air, the formation of TiO2 leads to

changes in the activities of Ti and Al and oxygen partial pressure between TiO2 and the

substrate. Then an Al2O3 layer develops. Also, a Ti-enriched zone is created between the

Al2O3 layer and substrate. Some of titanium further diffuses outwards through the Al2O3

layer to the specimen surface and reacts with oxygen in the atmosphere forming TiO2. At

the same time, oxygen diffuses inwards to the Al2O3/substrate interface. When the oxygen

partial pressure reaches a certain level, reaction (32) occurs and a TiO2 layer develops.

The formation of the TiO2 layer creates a circumstance where Al2O3 becomes the

favourable corrosion product from the reaction of ingressing oxygen and Al2O3 and TiO2

layers. The formation of the second Al2O3 layer  again  would  deplete  Al  in  the  substrate

and create a Ti3Al band. The oxidation mechanisms of Ti-46.7Al-1.9W-0.5Si alloy in the

Ar-O2 environments are schematically illustrated in Figure 7-2.

     The experimental results show that the oxidation rate of Ti-46.7Al-1.9W-0.5Si alloy is

higher  in  air  than  in  Ar-20%O2 environment at all three experimental temperatures. For

example, the oxidation parabolic rate constant in air at 950oC (Kp = 3.7x10-12 g2/cm4/s) is

one order of magnitude higher than in Ar-20%O2 (Kp = 3.8x10-13 g2/cm4/s). It is apparent

that the continuous layer of Al2O3 may be the control step for the whole scaling

Table 7.2 Titanium and aluminium self-diffusion coefficients (D) in TiAl at various
                 temperatures [123]
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Figure 7-1 Stages of Ti-46.7Al-1.9W-0.5Si alloy oxidation in air atmosphere

(a) TiO2 islands form

TiO2

(b) Al2O3 layer and Ti-rich zone
form and  TiO2 grows

(c) TiN layer develops in T i-rich
zone and Al-rich zone forms

(d) T iN layer oxidises and shifts
inwards and TiO2, Al2O3 layers
and T iAl2 grows
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Figure 7-2 Stages of Ti-46.7Al-1.9W-0.5Si alloy oxidation in Ar-O2 atmospheres
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processes in both air and Ar-20%O2. The thickness of the Al2O3 layer played an important

role.  It  is  noticed  that  two  continuous  layers  of  Al2O3 developed  on  the  alloy  in  Ar-

20%O2,  whilst  only  one  Al2O3 layer was formed in air. The thickness of all Al2O3 layers

was  similar.  Thus  the  total  thickness  for  the  two  Al2O3 layers in Ar-20%O2 is nearly

doubled compared to that in air. According to Fick’s first law of diffusion:









∂
∂

−=
x
cDJ ………………………………………(36)

where, J is the flux of reactant species, D is the diffusion coefficient, c is the concentration

or partial pressure and x is the thickness of oxide layer. At a certain moment of diffusion,

equation (36) becomes:

x
cDJ −=  …………………………………………(37)

     This  indicates  that  the  flux  J,  is  inversely  proportional  to  the  thickness  of  the  barrier

oxide layer. As the Al2O3 layer is the key step of the whole scaling process – an increase

in  thickness  of  Al2O3 “barrier” would lead to a decrease in the oxidation rate. The

formation of the two-layers of Al2O3 would also bring about another advantage, that is, the

reduction of the growth and thermal stresses during the cooling cycle. The weight gains of

the Ti-46.7Al-1.9W-0.5Si alloy in air are actually contributed from the formation of the

oxides (TiO2 and Al2O3) and nitride (TiN). It is assumed that the inward diffusion of

oxygen and nitrogen are not mutually influenced. Thus the formation of TiN in air simply

contributes to the total weight gains.

     It is found that spallation of the oxide scale by the wedging process above the TiN

layer occurred during the cooling period after air oxidation. This must be caused by

thermal stresses generated in the scale by the mismatch of thermal expansion coefficients

between the TiN and TiO2 layers. According to Evans [241], the critical temperature drop

Tc to initiate spallation is:
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where F is the fracture energy per unit area of interface, x is the thickness of oxide layer,

 is the difference of thermal expansion coefficients and OXυ  is the Poisson’s ratio of the

oxide. In the present situation this derivation has been considered in relation to Evans

fracture of the oxide/nitride interface. However, as wedging spallation happened, it is also

necessary to consider the development of shear cracks through the oxide layer since these

needs  first  to  be  present  before  wedging  can  proceed.  Evans  [241] also gave the critical

temperature drop Ts to produce shear cracks in a four-side array of side length  as:
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where o is the surface energy of the oxide. In both cases, the critical temperature drops

are strongly related to the mismatch of the thermal expansion coefficients ( ). The Tc is

proportional to the reciprocal of , and particularly, Ts is inversely proportional to

)2. The relevant data of thermal expansion coefficients for the oxides and TiN are

given in Table 7.3. It is apparent that the mismatch of thermal expansion coefficients

between TiN and TiO2 (in the case of air oxidation) are much more severe than those

between TiO2 and Al2O3 (in the case of Ar-20%O2 oxidation).

TiN TiO2 Al2O3 TiAl TiAl3

 x 10-6 (1/T) 9.35 7.14 8.5 11.43 10.65

Therefore the critical temperature drops in air oxidation would be much smaller than those

in the Ar-20%O2 atmosphere. It was difficult to calculate the exact values of Tc and Ts

Table 7.3 Data for linear thermal expansion coefficients of various compounds [241]
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owing to the lack of the relevant data. Nevertheless these descriptions do help to explain

qualitatively why spallation of an oxide scale by the wedging process happens in air

oxidation. In addition, severe segregation of vacancies and the formation of large voids are

occurred at the TiO2/TiN interface, as illustrated in Figures 6-10. These voids would

reduce the cohesion between TiO2 and TiN and obviously this would enhance spallation

by the wedging process as demonstrated in Figure 6-19(a).

7.1.3 Effect of Oxygen Partial Pressure

     In general the scale microstructures and the kinetics of scale formation in all the three

different partial pressures of oxygen (0.05, 0.2 and 0.8) x 105 Pa are different. Comparison

of the present oxidation results of the Ti-46.7Al-1.9W-0.5Si alloy in different oxygen

partial pressures revealed the differences in the scale properties (see Figures 6-34 and 6-

35) and kinetics (refer to Figures 6-20 to 6-22) at the three atmospheres. Such differences

can be understood, to some extent, by considering the defect structures in the scale, which

are influenced by the oxygen partial pressures in the reactive atmospheres. Previous

studies  on  the  TiO2 and Al2O3 defect structures and the solubility of these phases in each

other and the effect of oxygen partial pressure has been reported (refer to Section 3.2.3).

These studies concluded that the transport processes in TiO2 are more rapid than in Al2O3

due to the defect structure of TiO2. Also, the solubility of Al2O3 and TiO2 decreased as the

partial pressure of oxygen increased in the environment. These findings are consistent

with the obtained results in this study and will be used for the interpretation of our

experimental observations.

     For illustration, the cross-sectional morphology (Figure 7-3) of the scale formed on Ti-

46.7Al-1.9W-0.5Si alloy at 950ºC after 240h exposure in Ar-5%O2, Ar-20%O2 and  Ar-

80%O2 is employed to explain the effect of oxygen partial pressure on the oxidation
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behaviour of Ti-46.7Al-1.9W-0.5Si alloy. After oxidation of Ti-46.7Al-1.9W-0.5Si alloy

at 950ºC in all  Ar-O2 atmospheres proceeds, a multi-layered scale of alternating TiO2 and

Al2O3 is formed. The composition of the inner layer of the scale was different at various

oxygen partial pressures in the oxidising atmosphere as illustrated in Figure 7-3.  In  Ar-

5%O2, the inner layer consisted predominantly of TiO2 with some Al2O3 (Figure 7-3(a)).

As the oxygen content increased in the reactive atmosphere (Ar-20%O2),  the  Al2O3

content in the inner layer of the scale increased at the expenses of TiO2 (Figure 7-3(b)).

Further increase of oxygen in the Ar-O2 gas mixture (Ar-80%O2), led to the formation of

oxide scale consisting of mostly Al2O3 with discontinuous TiO2 (Figure 7-3(c)). The

gradual increase of Al2O3 in the scale with the increase of oxygen partial pressure in the

reactive atmosphere is due to the following reasons: (i) the lower solubility of Al2O3 in

TiO2 at higher oxygen partial pressures in the reactive atmosphere, (ii) lower defect

structure in Al2O3 if compared to that in TiO2.  The consequences of the Al2O3 formation

in the scale at higher oxygen partial pressures is that minimum possible flux of oxygen

vacancies in the scale significantly lower than that at lower oxygen partial pressures. In

fact, the process of Al2O3 barrier formation at various oxygen contents in the environment

has been reported by Becker et. al. [8] and the present experimental observations is

consistent with their schematic model (refer to Figure 3-9 and see Figure 7-3).

Furthermore, the process of Al2O3 dissociation reported in the same study of Becker et. al.

[8] explain the existence of porosity at the outer part of the inner layer at low oxygen

content in the atmosphere (e.g. Ar-5%O2 – Figure 7-3(a)). The dissociation of Al2O3 – at

higher oxygen partial pressures (Ar-20%O2 and Ar-80%O2) in the scale probably changes

the defect concentration in TiO2.
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Figure 7-3 SEM micrographs of Ti-46.7Al-1.9W-0.5Si alloy after oxidation at
                   950ºC for 240h in (a) Ar-5%O2, (b) Ar-20%O2 and (c) Ar-80%O2

(a)

(b)

(c)
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7.1.4 Comments on the role of W and Si on the Oxidation of Ti-46.7Al-1.9W-0.5Si
         Alloy

     The as received Ti-46.7Al-1.9W-0.5Si alloy showed the presence of WSi2 (refer to

Figure 6-2). However, the distribution of this compound was not uniform in the alloy.

From the amounts of W and Si, it can be concluded that the formation of WSi2 could leave

some free W in the alloy probably as solid solutions in some of the phases. Following

oxidation W-enrichment at the alloy/scale interface was observed. It is speculated that W

probably played an indirect role in the processes of oxidation by influencing (i) the

activity of Ti and Al, (ii) the diffusion of Al.

7.2 Sulphidation/Oxidation of Coated and Un-coated Ti- 46.7Al-1.9W-0.5Si
      Intermetallic Alloy in H2/H2S/H2O Gas Mixture

7.2.1 Introduction

     The present results indicate that the uncoated Ti-46.7Al-1.9W-0.5Si alloy performed

reasonably well (Kp ~ 6 x 10-11 g2/cm4/s) in the environment of low oxygen and high

sulphur partial pressures at 850oC. The employment of single and double layer coatings

further improved the high temperature sulphidation/oxidation corrosion resistance of the

alloy. The interpretation of these results can be understood in terms of the mechanisms

and theories relating to the processes of scale development in these coated and uncoated

samples.

7.2.2 Scaling of Ti-46.7Al-1.9W-0.5Si Intermetallic Alloy in H2/H2S/H2O Gas Mixture

     The parabolic rate reaction (Kp ~ 6 x 10-11 g2/cm4/s) of uncoated Ti-46.7Al-1.9W-0.5Si

alloy in the environment of H2/H2S/H2O with pS2 ~ 6.8 x 10-1 Pa and pO2 1.2 x10-15 Pa at

850oC  indicate  that  the  corrosion  process  was  controlled  by  diffusion  of  the  substrate
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elements and of oxygen and sulphur species from the atmosphere. The scaling kinetics of

the various layers also followed a parabolic rate law; the parabolic rate constants for TiO2

and TiS layer were 6x10-16 and 3x10-16 m2/s respectively. When the Ti-46.7Al-1.9W-0.5Si

alloy exposed to the environment of H2/H2S/H2O at 850oC, reactions (32)  and  (33) was

also likely to occur. For both reactions, the values of standard free energies of formation

( o
TG∆ , Joule/mole) for TiO2 and Al2O3 with temperature (T in Kelvin) can be obtained

from equations (30) and (31) respectively.

Also,

2
3232 .
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RTKRTG
Ti

TiOo −=−=∆ …………………………… (40)
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where K32 and  K33 are the equilibrium constants for reactions (32)  and  (33) respectively

and R is the gas constant. In the present situation ascribing unit activities to Al2O3 and

TiO2, our thermodynamic calculations reveal that the minimum activities of Al and Ti

required to form Al2O3 and TiO2 in the environment used (i.e. pO2 ~ 1.2 x 10-15 Pa) are 2.1

x 10-16 and 4.3 x 10-14 respectively. However, the actual activities of Al and Ti in this alloy

are around 7.0 x 10-3 and 1.4 x 10-1. These results indicate the difficulty, using solely

thermodynamic  grounds,  to  decide  which  oxide  formed  preferentially  on  exposure  of  the

alloy to the environment. However, in the present situation the observed formation of TiO2

at the initial stages of exposure, it is suggested, was decided by the kinetic factors. The

temperature dependence of self-diffusivities of Ti and Al are [297]:

         DTi (m2/s) = 1.5x10-6 exp [-250 (kJ/mol)/RT] ……………………… (42)
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                     DAl (m2/s) = 2.1x10-2 exp [-360 (kJ/mol)/RT] ……………………… (43)

The calculated values for DTi and  DAl are ~ 3.5 x 10-18 (m2/s) and 3.8 x 10-19 (m2/s) at

850oC  giving  the  value  of  DAl ten times smaller than that of DTi. Thus, when the Ti-

46.7Al-1.9W-0.5Si alloy was exposed to the sulphidising/oxidising environment at 850oC,

it was more favourable for TiO2 to form as Ti diffused faster than Al. The development of

TiO2 led  to  the  depletion  of  Ti  beneath  the  TiO2 layer, which promoted the formation of

the Al2O3 layer  by  the  ingress  of  oxygen  species  through  the  TiO2 layer. Meanwhile,

sulphur species also diffused inward through the layers of TiO2 and Al2O3 and reacted

with Ti to form TiS.

     It is to be noted here that the scaling processes involved did not allow the development

of tungsten sulphide and/or oxide. The lack of WS2 and WO2 formation can be explained

on  the  following  theoretical  basis.  The  formation  of  WSi2 using all Si in the alloy would

indicate 0.5 at%Si reacting with 0.25 at%W allowing ~1.65 at%W to remain in the alloy.

When W reacts with sulphur and oxygen species, the following reactions may take place:

                              W (s) + S2 (g) = WS2 (s) ………………………….….…… (44)

                                W (s) + O2 (g) = WO2 (s) ………….…..…………..……….(45)

The values of standard free energies ( o
TG∆ , Joule/mole) with temperature (T in Kelvin)

can be obtained from the following equations [296]:

TG o
T 96900,260,44 +−=∆ …….……..……………………. (46)

TG o
T 153484,579,45 +−=∆ …………………………………(47)

or



211

2
44,44 .

lnln 2

pSa
a

RTKRTG
W

WSo
T −=−=∆ ………………….……… (48)

2
45,45 .

lnln 2

pOa
a

RTKRTG
W

WOo
T −=−=∆ ..………….…………. (49)

where K44 and  K45 are the equilibrium constants for reactions (44)  and (45) respectively.

Assuming  unity  for  the  activities  of  both  WS2 and  WO2, then the minimum W activities

required to form WS2 and WO2 in the atmosphere (pS2 ~ 6.8 x 10-1 Pa and pO2 ~ 1.2 x 10-

15 Pa) and at reaction temperature (850oC) employed in this project were about 10-2 and

7.3 respectively. Therefore the formation WO2 can be excluded under the employed

experimental conditions as the minimum W activity for the formation of WO2 was greater

than unity. It is believed that the sulphur partial pressure beneath the coating was even

lower  than  6.8  x  10-1 Pa, so that the minimum activity of W required to develop WS2

would be higher than 10-2. It should also be noticed that the W content was only 1.9at% in

the alloy and the presence of WSi2 would further lower the W activity. Thus the effective

W  activity  would  be  lower  than  the  value  of  10-2, making it difficult for WS2 to  form in

the current situation. Therefore when Ti beneath the layers of TiO2 and Al2O3 reacted with

sulphur species, W remained in a metallic form. This is verified by the presence of pure W

in the TiS layer as confirmed by XRD analysis (refer to Figure 6-39(b)  and  (c)). The

formation of the TiAl3 band resulted from Al-enrichment beneath the TiS layer following

faster outward diffusion of Ti. It is apparent that high Al concentration existed closer to

the TiS layer and higher Ti concentration closer to the substrate. Thus it would be

reasonable for a band of TiAl2 to exist between the TiAl3 layer and TiAl substrate.
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7.2.3 Protection of Ti-46.7Al-1.9W-0.5Si Intermetallic Alloy in H2/H2S/H2O Gas
         Mixture Using Single and Double Layered Coatings

     It is suggested that the protectivity of uncoated Ti-46.7Al-1.9W-0.5Si intermetallic

alloy against sulphidising/oxidising attack was conferred by the formation of Al2O3 and

TiAl3 layers. The significant improvement of sulphidation resistance exhibited by the

coated samples is indicated by the low weight gain. The coatings remained adherent and

compact in general up to an exposure time of 240h. However some coatings suffered

localised degradation characterised by the formation of nodular corrosion products. The

development of cracks in the AlTiN coating probably from pre-existing defects within the

coating or at the coating/substrate interface. These cracks within the coating acted as a

rapid diffusion path for the reactant species during the isothermal exposure.

     Thus on exposure of the coated Ti-46.7Al-1.9W-0.5Si alloy to the

sulphidising/oxidising environment, an Al2O3 layer would be formed on the surface of the

coating. In the mean time, the cracks would also be formed within the coating caused by

thermal stress. The cracks would act as rapid diffusion paths for the ingress of oxygen and

sulphur and outward migration of substrate elements. The experimental results confirmed

the localised nodular attack. The compositions and phases of these nodules were similar to

those formed on uncoated samples, as illustrated in Figures 6-40 and 6-42. The nodular

shape of the corrosion products stemmed from the diffusion of the reactant species

occurring through the cracks. CrN and NbN layers not only acted as diffusion barriers but

also were effective in reducing the thermal stresses produced by mismatch between the

AlTiN coating and substrate. It was apparent that a similar formation of the cracks also

occurred within the double layer coatings producing the nodular corrosion products

although the number of nodules formed was less than that on the single (AlTiN) layer

coating.
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     In the case of NbN and AlTiN double layer coating, NbS2 would  form by  the  inward

diffusion of sulphur through the cracks beneath the AlTiN coating. The formed NbS2 was

still an effective diffusion barrier as there is low defect concentrations or defect mobility

in this sulphide [42]. However for the CrN and AlTiN system, the formed Cr2S3 would not

be able to effectively stop diffusion of the reactant species [42] as it has much higher

deviations from stoichiometry, and thereby contain significantly higher defect

concentrations than NbS2. The differential performance of the CrN and NbN diffusion

barriers is reflected in the kinetic data (Figure 6-37). However, all double layer coatings

had superior corrosion resistance to the uncoated specimens.

7.3 Isothermal and Cyclic Air Oxidation of Fe3Al Intermetallic Alloys

7.3.1 Introduction

     The objective of this section is to discuss the effects of adding Y and/or Hf on the

oxidation resistance of Fe3Al alloy under isothermal and cyclic conditions in air. The first

part  (Section 7.3.2)  discusses  the  REE  on  the  scale  formation  and  the  variation  of  scale

thickness in both single and combined addition of Y and Hf after isothermal air oxidation

of Fe3Al  alloys.  The  second  part  (Section 7.3.3)  discusses  the  oxide  adherence  of  Fe3Al

alloys (with and without REs) under thermal cycling conditions. The aim of the cycling

process is to examine the REE on the degree of adherence between the substrate and the

scale. Due to lack of information in the literature, it was found necessary in many

instances, to correlate and to compare the isothermal oxidation and the cyclic oxidation

results for the same type of alloy. The REE under thermal cycling conditions seems to be

more complicated than isothermal exposure due to various reasons as discussed

throughout this section.
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7.3.2 Effect of Reactive Elements (Y and/or Hf) on Al2O3 Oxide Growth after
         Isothermal Oxidation

     No clear interpretation of the REE in this study can be obtained based only on the

observed variation of the reaction rate constants of the alloys at a temperature, Tables 6-4

and 6-5.  For  example,  the Fe3Al alloy  with  Y addition  showed the  highest  oxidation  rate

constant. However, the external scale thickness of Y-containing alloys [Fe3Al-Y and

Fe3Al-(Y+Hf)] was found to be about ten times less than that of undoped alloy especially

at high temperatures (see Figures 6-51(a) and 6-57(a). Also the scale adhesion

significantly  improved  by  the  addition  of  Y  and/or  Hf  (Figures 6-54, and 6-58. This

inconsistency in weight gain, scale thickness and adhesion can be attributed to the

formation of intergranular (at the alloy grain boundaries) oxide, which adversely affected

the  oxidation  rates  of  the  alloys.  This  intergranular  attack  caused  the  formation  of  oxide

ridges affecting the external scale adhesion, Figure 6-62.

     The RE affecting scale characteristics of the doped Fe3Al alloys were more

distinguishable at higher temperature (> 900ºC). At lower temperature (e.g. 900ºC), the

comparable weight gains of the doped and undoped alloys failed to indicate clearly the

effects of RE. Additionally, at lower temperatures the formation of some transient θ-Al2O3

as evidenced by the formation of blade-like morphologies (Figure 6-48(a), probably

masked the RE effect due to its faster growth rate. At 1000°C, little or no transient

alumina phases would be expected to form and there were much clearer effects of the RE

on the oxidation behaviour of Fe3Al  alloys.  The  formation  of  iron  oxide  at  1000°C was

rapidly suppressed due to the faster diffusion of aluminium and oxygen facilitating the

development of α-Al2O3. Trace peaks of spinel from iron and aluminium oxide at the early

exposure time (e.g. 5h) at 1000°C was detected, Figure 6-52(a).  However,  after  longer

exposure time (e.g. 72h), Al2O3 was the only oxide detected, Figure 6-52(b). As the
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exposure temperature increased to 1100°C, faster diffusion of aluminium and oxygen

ensured more rapid formation of Al2O3 even at short exposure time (e.g. 5h).

     At present no agreement in the literature regarding the oxidation mechanism of Al2O3

The oxidation mechanism of alumina-forming alloys has been characterised by 18O tracer

and inert marker experiments. Pint, et al [261] and Young, et al [257] in 18O tracer

experiments attributed Al2O3 scale growth to the outward diffusion of aluminium.

However, it is difficult to obtain clear conclusion from most of the inert marker

experiments reported in the literature regarding the mechanism of Al2O3 growth. For

example Young et al [257] expressed strong doubt on the validity of the marker-type

experiments and the marker was found buried within the scale. From our oxidation results,

the formation of convoluted scales of the undoped Fe3Al (Figure 6-51 (a), indicate both

the inward diffusion of oxygen and outward diffusion of aluminium to form Al2O3.

However, the flat surface of the Y-contaning materials scale after oxidation suggested the

Al2O3 scale (Figure 6-57) growth was mainly by the inward diffusion of oxygen. It should

be pointed out that the scale corrugation and flatness of the Al2O3 scale for the same

materials (doped or undoped) are also influenced by the experimental conditions

especially  the exposure temperature

     The segregation of RE (especially Y) at the alloy grain boundaries (Figure 6-59), is

believed to have acted as oxygen getter leading to aluminium oxidation. The scale

thickness of the Y-containing alloys was also modified probably by segregation of the RE

to the oxide/substrate interface and also through the oxide grain boundaries. The

segregation process of the RE to the alloy/scale interface limited the outward diffusion of

Al cations. This reduction in cation diffusion played an important role in the scale growth

mechanism and thus reduced the scale thickness. The oxide ridges (e.g Figures 6-57(c)

and 6-62(a)) on Y-containing alloys were also observed which is indication of aluminium

outward – towards the alloy/scale interface – diffusion through the alloy grain boundaries.
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These oxide ridges cracked during cooling – Figures 6-61(c) and 6-62(b)  (more clear in

cycling conditions). The depth and the width of the alloy intergranular attack increased

with increasing exposure time and temperature due to faster diffusion of aluminium and

more  segregation  of  Y  to  the  alloy  grain  boundaries.  As  oxidation  proceeded  for  Y-

containing Fe3Al alloy, the continuous movement of oxide at the alloy/oxide interface

inevitably resulted in either fracture or partial detachment (Figure 6-63) of the oxide from

the alloy surface during cooling. The later was most likely to occur especially at the oxide

ridges and thus led to the development of cavities between the external oxide and alloy

interface, Figure 6-62. The development of the cavities or voids at the scale/substrate

interface has previously been observed for various undoped Al2O3-forming alloys [298,

299] after prolonged exposure – as found in the present case – and accounted for the

vacancy condensation. These studies were carried out in disordered FeCrAl alloy and not

in ordered intermetallics. However, in the study of Golightly et al.[253] vacancy

condensation was considered unlikely to be the case and cavities were observed at the very

early stage of oxidation (after 1 minute) at 1200°C. In the present study, the excessive

formation of interfacial voids in Fe3Al scales is believed to be due to the diffusion

characteristics of the ordered Fe3Al matrix (unlike FeCrAl alloys), which may have been

inherently more susceptible to the formation of the Kirkendall-type voids at the oxidation

front. After longer-term exposure (240h) at 1100°C, the Al2O3 of Y-containing alloys was

no longer effective in protecting the alloys. Careful examination to the cross-sectioned

scale of Y-containing alloys revealed that cracks at the area of the oxide ridges (Figure 6-

62 and 6-63) facilitated breakdown of the flat oxide from the substrate during cooling.

     The increased scale thickness of the Hf doped alloy (Figure 6-54) may be attributed to

the scale-embedded HfO2 stringers acting as short-circuit paths for oxygen transport. This

transport mechanism would lead to the observed preferential localised scale thickening in

the neighbourhood of the possible HfO2 particles as indicated by EDX results, Figure 6-
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56.  The formation of oxide pegs of Fe3Al-Hf led to the development of a highly irregular

alloy/scale interface. Smialek el al. [252] also observed scale spallation on Fe-40%Al with

Hf  and  Zr  alloy  additions.  They  concluded  that  the  inability  of  these  RE  additions  to

prevent scale spallation was related to the large differences in the coefficient of thermal

expansion between α-Al2O3 and iron-aluminides than other alumina-formers. The present

results suggest that, rather than the occurrence of excessive damage during cooling, the

observed scale spallation on undoped Fe3Al and Hf-doped alloys was a result of scale

buckling (Figure 6-51), yet there was some improvement of scale adherence for the Hf-

doped alloys (Figure 6-51(b) if compared to undoped Fe3Al alloy, Figure 6-51(a).

     In the present study, the use of 0.25 wt%Hf in the Fe3Al alloys appeared to be “over-

doping” if compared to 0.15 wt%Y in the experimental alloys. Excessive amounts of RE

in the alloy may result in detrimental effects to the corrosion behaviour of the alloy. For

example, higher Y2O3 contents in ODS FeCrAl have been observed to accelerate the alloy

oxidation [247, 300]. Thus in the present study, the lower Hf concentration (e.g. 0.1 at%),

could have been well effective in improving scale growth and better integrity of the scale.

For the case of 0.15 at%Y addition in our study, it appeared to be just above the optimum

level probably due to its low solubility in the alloys. However, addition of 0.15 at%Y to

Fe3Al did improve the scale adhesion to a great extent. This improvement, was attributed

by (e.g. Smeggil et al [284]) to gettering of sulphur and decreasing the growth stresses as a

result of Y segregation through the oxide grain boundaries and alloy/scale interface

respectively. However, excessive amounts of Y segregate and enriched the alloy grain

boundaries with oxygen and thus facilitating the formation of Al2O3 along the grain

boundaries (intergranular oxidation), which contributed high weight gains for the Y-

containing Fe3Al alloys.
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7.3.3 Effect of Reactive Elements (Y and/or Hf) on Al2O3 Oxide Adherence Under
         Cycling Conditions

     The analysis using SEM of the surface and cross-sectioned morphologies of Fe3Al

alloys showed significant differences in scale adherence to the substrate under cycling

conditions. Generally, the scale of the RE-doped alloys under cycling conditions was thin

and more adherent to the substrate at all temperatures. However, the scale of undoped

Fe3Al material was generally less protective and showed different morphologies under

thermal cycling if compared to those under isothermal conditions. One major difference

between the isothermal and the cyclic oxidation was the increased oxidation rate under

cycling, which was associated with increased oxide thickness and formation of voids and

cracks within the scale and also at the alloy/scale interface especially at higher

temperatures.

     Under thermal cycling conditions, the scale of Fe3Al alloy without RE was cavity-filled

and poorly adherent to the substrate, Figure 6-71. There are several mechanisms by which

stresses can develop within the scale and/or at the scale/alloy interface, such stresses are

due to oxide growth or during thermal cycling. Interfacial voids also play an important

role in the stress development within the scale.

     For the present experimental Fe3Al alloy with only 0.25at%Hf under cycling

conditions, a moderate oxide adherence to the substrate was observed although a

considerable thick scale with a number of robust Al2O3 pegs was readily apparent at the

oxide/alloy interface of Fe3Al-Hf alloy, Figure 6-70(a and b). The development of a peg-

like morphology of Hf doped Fe3Al alloys supported Stott’s [240, 298] idea that the

interlocking between the scale and the alloy through the growth of a profusion of oxide

intrusions,  or  “pegs”,  is  the  most  pertinent  factor  in  the  adhesion  of  thick  scales  “by

pinning”. However, it is not clear weather the remarkable cohesion between the oxide

intrusions and the alloy is purely mechanical or involves chemical bonding as well. The



219

mixed alloy/scale region would accommodate the mismatch in the specific volumes and

thermal expansion coefficients of the scale and the substrate. It improves the fracture

toughness of this composite system due to: (a) the obvious limited crack propagation path,

(b) large interfacial contact area associated with the dendritic, lateral peg growth (see

Figure 6-72(d)).

     When yttrium rather than hafnium was utilised in the present study as an “active”

element, very thin, and excellent adherence of the scale with the substrate was observed

with almost flat surfaces especially at low exposure and no sign of oxide pegs was

observed, Figure 6-69(b).  However, oxidation of the Y-containing alloys at the alloy

grain boundaries (intergranular oxidation) was clearly noticed also under cycling

conditions (Figure 6-72(a) and (b)). One major difference between the isothermal and

cycling oxidation for Y-doped alloy is attributed to the reproducibility (after external scale

spallation under cycling conditions) of thin Al2O3, which limited the ingress of oxygen

through the grain boundaries. Another possibility is that after a number of cycles and due

to the small amount of Y in the alloy, there were not enough Y to segregate to the alloy

grain boundaries (e.g. Figure 6-72(a). During longer-term testing especially under cyclic

conditions at high temperature (1100ºC), the relatively flat scale of Y-containing alloys

would fail as a result of the growth of voids, which would limit contact between the scale

and the substrate. When the void fraction would reach a critical level, the cooling stresses

could  be  sufficient  to  spall  the  scale.  The  scale  of  the  RE  doped  alloys  would  also  be

subjected to thermal stresses, which leading to the cracking of the external scale. Due to

the high aluminium content of the alloys (21 at%Al), and also the oxygen diffusion

through the preformed cracks, oxides (after internal oxidation) reformed and pushed

outwards the external scale. With further increase of cycles, the number of cavities –

between the internal and the external scales – for all Fe3Al alloys (Figure 6-73) increased

and eventually the external scale completely or partially delaminated from the system.
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Comparison of our oxidation results of Y-doped and undoped Fe3Al alloys clearly showed

detrimental effect of sulphur – possibly present with small quantities in our experimental

alloys – to the scale adherence of undoped Fe3Al alloy at the scale/substrate interface. This

effect is suppressed by the presence of 0.15 at%Y in the Y-containing intermetallics.

Funkenbush et al [282] and Smialek [301] found that the scale adhesion was poor when Y

was added as Y-sulphide. Also in the same study [301], when yttrium was added to a

sulphur-containing alloy at levels sufficient to tie up both indigenous sulphur and a

sulphur resulting from the deposition of Y2S3, adherent scale returned. Surprisingly, the

presence  of  0.25  at%Hf  with  just  0.15  at%  of  Y  in  Fe3Al alloy [Fe3Al-(Y+Hf)] did not

alter significantly the external scale morphology of the alloy and the scale remained thin,

with no oxide pegs at the alloy/scale interface (Figure 6-73(d and e)). The dominant effect

of  Y  on  the  Fe3Al-(Y+Hf) oxidation behaviour is still not clear and needs further

investigation.
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CHAPTER EIGHT

8.0 CONCLUSIONS AND SUGGESTIONS FOR THE FUTURE WORK

     This chapter summarises the main conclusions from the carried out work and also some

suggestions for the future work are included.

8.1 Conclusions

8.1.1 Oxidation of Ti-46.7Al-1.9W-0.5Si Intermetallic Alloy

1. The Ti-46.7Al-1.9W-0.5Si alloy displayed parabolic kinetics of oxidation in air and Ar-

20%O2 at 750ºC - 950ºC although the rate of oxidation was relatively slower in Ar-

20%O2.

2. In both air and Ar-20%O2, multi-layered scales developed. The scales on Ti-46.7Al-

1.9W-0.5Si alloy developed in air were comprised of

TiO2/Al2O3/TiO2/TiN/TiAl2/substrate whilst a multi-layered scale

TiO2/Al2O3/TiO2/Al2O3/Ti3Al/substrate was generated in Ar-20%O2.

3. During cooling, spallation of oxide layers by a wedging processes occurred in air

oxidation due to the large mismatch of thermal expansion coefficients between the TiO2

and TiN. However, the scales formed in Ar-O2 remained adherent and uneven after long

exposure time.

4. The observed reduction of the Ti-46.7Al-1.9W-0.5Si alloy scale thickness in Ar-80%O2

(pO2 = 0.8 x 105 Pa)  with  the  likely  reduction  in  the  rate  of  diffusion  of  the  reacting

species (oxygen, aluminium and titanium) throughout the scale were associated to:

i. the increased tendency of the formation of relatively pure Al2O3 –  rather than

multi-layered scale of TiO2 and Al2O3 (in at Ar-5%O2 – pO2 = 0.05 x 105 Pa);
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ii. the low defect structure of the formed Al2O3 compared to that of TiO2;

iii. the low solubility of Al2O3 in TiO2 at higher oxygen pressures.

5. While the diffusion of Ti and Al in the long-ordered Ti-46.7Al-1.9W-0.5Si alloy was not

investigated in this study, however, the mechanism of scale growth is strongly believed

to be controlled by diffusion of the reacting species.

8.1.2 Sulphidation/Oxidation of Coated and Uncoated Ti-46.7Al-1.9W-0.5Si
         Intermetallic Alloy

1.  The high temperature corrosion behaviour of uncoated Ti-46.7Al-1.9W-0.5Si alloy at

850oC in an environment of H2/H2S/H2O (pO2 ~ 1.2 x 10-15 Pa and pS2 ~ 6.8 x 10-1 Pa)

followed  a parabolic reaction law with the Kp value of 6 x 10-11 g2/cm4/s.

2. A multi-layered scale formed on the uncoated Ti-46.7Al-1.9W-0.5Si alloy consisted of

TiO2/Al2O3/TiS+W/TiAl3/TiAl2 from the gas/scale interface to the surface of the

substrate.

3. Employment of AlTiN coating greatly increased the sulphidation/oxidation resistance of

Ti-46.7Al-1.9W-0.5Si alloy, particularly at the early stages of exposure. However the

mismatch of thermal expansion coefficients between the coating and the substrate led to

the development of cracks in the coating, which became diffusion paths for the reaction

species – substrate elements, oxygen and sulphur – brought about the formation of the

nodular corrosion products. The morphologies, composition and phases in the nodules

were similar to the scales formed on the uncoated samples.

4. The involvement of diffusion barrier coatings of NbN and CrN with AlTiN further

enhanced the corrosion resistance of Ti-46.7Al-1.9W-0.5Si alloy. The benefits of double

layer coatings lasted even after 240h exposure at 850ºC. The degradation mechanism of

the double layer coatings showed a similar pattern to that of the single AlTiN layer
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coating. The formation of nodular corrosion products due to localised attack did not

undermine the overall integrity of the coatings.

5. For the single layer CrN coating, the protection stemming from the formation of a Cr2S3

was limited and the integrity of the Cr2S3 was  undermined  by  the  outward  diffusion  of

the substrate elements. In the case of the double layer coatings of CrN and NbN, the

formation of NbS2, that has a low defect concentration, prevented the outward migration

of the substrate elements, and hence increased the high temperature corrosion resistance

of the alloy.

8.1.3 Isothermal and Cyclic Air Oxidation of Fe3Al Intermetallic Alloys

1. Without RE (Y and/or Hf) additions, the Al2O3 scales developed on Fe3Al alloys became

convoluted and grew by a mixed diffusion mode of aluminium and oxygen transport.

With the addition of a RE (especially yittrium), aluminium diffusion was reduced and the

scale became almost flat and it grew mainly by the inward transport of oxygen. This was

observed at the three temperatures (900, 1000 and 1100°C).

2. No aluminium nitride was detected in the scales of Fe3Al alloys within the range of

exposure temperatures studied.

3. The reduction in the transport of aluminium in RE-doped Fe3Al alloys, which reduced

the Fe3Al alloy rate of oxidation, was probably caused by the segregation of the RE to

the scale/alloy interface.

4. Intergranular oxidation of the Y-containing Fe3Al alloys can be explained by the

segregation of Y (not Hf) to the alloys grain boundaries.

5. Excessive Hf content in Fe3Al alloy was detrimental to the oxide growth process. The

formation of Hf-rich oxide particles facilitated inward scale growth, leading to the
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formation of localised oxide thickening “pegs” and eventual formation of less protective

oxide especially under thermal cycling.

8.2 Suggestions for Future Work

     A series of further investigations is needed for a better understanding of the corrosion

mechanisms and for the development of better corrosion resistant Ti-Al and Fe-Al

intermetallic alloys. Such investigations should include the following:

1. The effects of reactive gas composition (conclusively oxygen and sulphur) especially

at the very early stage of corrosion of Ti-Al alloys, which would result in either

different corrosion products or different rates of growth of the same product. This

could be useful for:

a) allowing a better understanding of the high temperatures oxidation/sulphidation

mechanism of Ti-Al systems;

b) providing a strong basis to investigate the effects of surface modification such as

pre-oxidation (preferably in pure oxygen) or pre-sulphidation (at high sulphur

pressure) on the prolonged high temperature corrosion behaviour of Ti-Al alloys.

c) allowing also a better understanding of the solubility of different gas components

(especially oxygen) in titanium and Ti-Al alloys at high temperatures.

2.   Diffusion studies are essential in order to achieve more fundamental understanding of the

scale growth mechanism of Ti-Al systems. Of special importance is to calculate precisely

the diffusion coefficients of Ti and Al at various temperatures.

3. Studies of the solid solubility between oxide phases existing in the Ti-Al-O phase

diagram, and their oxygen pressure dependence could provide information on the

transport processes in TiO2 and  Al2O3 oxide  phases.  Studies  of  the  influence  of  oxygen
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solubility  on  the  activities  of  Ti  and  Al  at  different  phases  (α and/or γ) present in the

alloy would be appropriate.

4. Phase diagrams, which can explain other nitrogen effects on the corrosion behaviour of

Ti-Al systems, are required. For example AlN could not be detected within the

temperature range 750 to 950°C for Ti-46.7Al-1.9W-0.5Si alloy and between 900 -

1100ºC for Fe3Al alloys in this study, however TiN was formed after Ti-46.7Al-1.9W-

0.5Si alloy oxidation in air even at 750°C.

5.  The effects of ternary addition to Ti-Al alloy are important: For example, small additions

of Nb or Si to Ti-Al alloys were found to have significant effect on their oxidation

behaviour at high temperatures. However, the combined effects of Nb and Si need to be

fully investigated. The influence of various concentrations of a third element addition to

Ti-Al would lead to better design of Ti-Al alloys.

6.  Studies of the ion implanted RE in Fe3Al would further elucidate the role of the elements

     in changing the scale adhesion.
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Appendix A

Ion Bond Coating Procedure

• The polished (up to 1200 SiC grit) samples were cleaned using an ultrasonically

agitated cleaning line, this consists of a serious of aqueous alkaline detergent baths,

towns water rinse stage, de-ionised water rinse stages and hot air drying.

• The  coating  system  was  evacuated  to  a  pressure  of  2.0  E-5  mT  (milli-Tar)  during

this time the samples were radiant heated for 20 minutes with a heater set point of

480°C.

• A vacuum integrity test was then carried out by closing-off the pumping system and

monitoring the change in vacuum level. A final pressure of less than 2E-4 mT after

60 seconds is regarded as a pass.

• The first stage of the in-situ cleaning process was then commenced; this involved the

creation of DC gas plasma using a high negative bias (final level – 1000V) in the

presence of first hydrogen, then a mixed hydrogen/argon environment with a system

pressure in the range of 100 to 150 mT.

• The next stage is high-energy metal ion bombardment using ions derived from the

coating source. During this phase a bias of -1000V is applied to the samples and an

arc source ignited. Energetic ions released from the source are accelerated by the

bias and bombard the samples. The temperature of the samples rises rapidly during

this stage and the process is halted when the samples reach 380°C. this is repeated

twice more before proceeding to the coating stage and no gas is admitted during this

step.
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• For the coating phase, the bias level is reduced to the required level for the coating

process typically –50 to –250V and gas is admitted into the coating system. In all

cases the flow of gas was adjusted such that the pressure within the coating system

was 15mT. The samples positioned directly in front of the coating source and the

conditions held constant. The temperature of the samples during the coating process

was between 370° and 430°C in all cases. The following table shows the conditions

which were used during the coating stage:

Conditions of Ionbond coating procedure [304]

Coating Arc current Substrate bias Coating time

NbN 90A -150V 47Ah

CrN 80A -150V 47Ah
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Appendix B

Sample surface area calculations

The specimen surface areas were precisely calculated using the following equations:

• For Fe3Al samples

( ) ( ) ( )THTWWHSA *2*2*2 ++=

• For coated and uncoated γ-TiAl samples

( ) ( )[ ] ( ) ( ) 













++



 += TWTWWH

W
HSA *

2
**43

6
2 22 π

where SA  is the sample surface area, H  is the sample height, W  is the sample width and T

is the sample thickness. The small hole surface area in the samples was neglected.

W

H

T

T

W

H
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Calculations of Sulphur and Oxygen Partial Pressures

q Calculation of Sulphur Partial Pressure

From the reaction:

                              2H2S (g)D 2H2 (g) + S2 (g)                                                          (i)

The value of the standard free energy change ( Gº T, cal/mole) with temperature (T in

Kelvin) for the reaction can be obtained from the following equation:

Gº T = A + BT log T + CT                                                       (ii)

where, A = 40210, B = -7.25 and C = 1.21 which were provided by Kubaschewski, Evans

and Alcock [297]. Then equation (ii) becomes:

Gº T = 40210 – 7.25 T log T + 1.21 T                                          (iii)

on the other hand, Gº T can also be expressed by Van’t Hoff’s reaction as

Gº T = - RT ln Kp                                                          (iv)

where R is the gas constant (1.987 cal.degree/mole), Kp is the equilibrium constant.

From equations (iii) and (iv), the relationship between Gº T and Kp can be established, that
is:

                                                      ln Kp = - Gº T / RT

or

 log Kp = - Gº T / 4.575 T                                                   (v)
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by substituting for Gº T from (iii)

                Kp = ( )
T

TTTanti
575.4

21.1log25.740210log −−−                                        (vi)

Applying the law of Mass Action for equation (i), the equilibrium constant can be expressed

by the following relationship:

Kp = ( ) ( )
2

2

2
2

2

)( SpH
pSpH                                                         (vii)

or

                                                        pS2 = ( )
2

2

2
2

)( pH
SpHKp

or                                                      pS2 =
2

2

2








pH

SpHKp                                                    (viii)

By combination of equations (vi) and (viii), the sulphur partial pressure (pS2), in atm, can be

calculated at any temperature (T). For a 10%H2S/90%H2 gas mixture at 850ºC (1123K), the

sulphur partial pressure is given by

  pS2 =
2

2

2

575.4
2.1log25.740210log 












 −+−

pH
SpH

T
TTTanti

       =  antilog [(40210 - 7.25 x 1123 log 1123 + 1.21 x 1123)/(4.575 x 1123)] x (10/90)2

       = 6.8 x 10-6 atm

       = 6.8 x 10-1 Pa
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q Calculation of Oxygen Partial Pressure

For the reaction

H2O (aq)D H2 (g) + ½ O2 (g)                                                        (a)

The value of the standard free energy change is given by the relationship [297]:

Gº T = 57250 – 4.48 T log T + 2.21 T                                              (b)

and it can be expressed by

                                               Gº T = -4.575 T log Kp                                                          (c)

and

                                                  Kp =
( )( )

( )OpH
pOpH

2

2
1

22                                                             (d)

From equations (b), (c) and (d) and assuming pH2 to  equal  1  atm  in  the  system,  then  the

oxygen partial pressure is given at 850ºC by the following relationship:

pO2 =  4.3 x 10-20 (pH2O)2                                                   (e)

From the vapour pressure/temperature relationship of H2O:

log (pH2O) = -2900/t + 22.613 – 4.65 log t                                      (f)

where t is the temperature of water in Kelvin

pH2O is the saturated water vapour pressure at t in mm of Hg
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It is possible to achieve a value for pH2O in mm Hg.

Dividing by 760 will give a value of pH2O in atm and therefore, at any water temperature (t)

and any furnace temperature (T), the oxygen partial pressure, pO2 can be determined.

At 23ºC (296K) and at T = 850ºC, the oxygen partial pressure, pO2, can be calculated:

pO2 = 4.3x 10–20 x (-2900/296 + 22.613 – 4.65 x log 296)2

       = 9.12 x 10-18 mm Hg

       = 1.2 x 10-20 atm

       = 1.2 x 10-15 Pa
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