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Abstract

ignificant progress has been made on maximising passive solar heating loads
Sthrough the careful selection of glazing, orientation and internal mass within
building spaces. Control of space heating in buildings of this type has become a
complex problem. Additionally, and in common with most building control
applications, there is a need to develop control solutions that permit simple and
transparent set up and commissioning procedures. This work concerns the
development and testing of an adaptive control method for space heating in buildings

with significant solar input.

A simulation model of a building space to assess the performance of different
control strategies is developed. A lumped parameter model based on an optimisation
technique has been proposed and validated. It is shown that this model gives an
improvement over existing low order modelling methods. A detailed model of a hot
water heating system and related control devices is developed and evaluated for the

specific purpose of control simulation.
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Abstract

A Pl-based fuzzy logic controller is developed in which the error and change of

error between the internal air temperature and the user set point temperature is used as
the controller input. A conventional PID controller is also considered for comparison.
The parameters of the controllers are set to values that result in the best performance

under likely disturbances and changes in setpoint.

In a further development of the fuzzy logic controller, the Predicted Mean Vote
(PMV) is used to control the indoor temperature of a space by setting it at a point
where the PMV index becomes zero and the predicted percentage of persons
dissatisfied (PPD) achieves a maximum threshold of 5%. The controller then adjusts
the air temperature set point in order to satisfy the required comfort level given the
prevailing values of other comfort variables contributing to the comfort sensation.
The resulting controller is free of the set up and tuning problems that hinder

conventional HVAC controllers.

The need to develop an adaptive capability in the fuzzy logic controller to account
for lagging influence of solar heat gain is established and a new adaptive controller
has therefore been proposed. The development of a “quasi-adaptive” fuzzy logic
controller is developed in two steps. A feedforward neural network is used to predict
the internal air temperature, in which a singular value decomposition (SVD) algorithm
is used to remove the highly correlated data from the inputs of the neural network to
reduce the network structure. The fuzzy controller is then modified to have two
inputs: the first input being the error between the setpoint temperature and the internal
air temperature and the second the predicted future internal air temperature. When
compared with a conventional method of control the proposed controller is shown to
give good tracking of the setpoint temperature, reduced energy consumption and

improved thermal comfort for the occupants by reducing solar overheating.

The proposed controller is tested in real time using a test cell equipped with an oil-
filled electric radiator, temperature and solar sensors. Experimental results confirm
earlier findings arrived at by simulations, in that the proposed controller achieves
superior tracking and reduces afternoon solar overheating, when compared with a

conventional method of control.
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Chapter 1

Introduction, Research Aims and Thesis Organisation

1.1. Introduction
In most European countries, buildings account for approximately 40% of the total

energy use. Energy use is increasing, despite the fact that improved technologies
and stricter building codes are making buildings more energy efficient. Furthermore,
their total number is increasing; they use more equipment, and have higher comfort

requirements than ever.

Research and development on energy efficiency and the use of renewable energy in

buildings has until recently primarily focused on small scale, residential buildings. In

1
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most European climates, high-energy prices and strict building codes have resulted in

residential buildings that use very little energy for space heating.

Significant progress has also been made on maximising passive solar heating loads
through the careful selection of glassing, orientation and internal mass. Control of
space heating in buildings of this type has become a complex problem and it is this

area that has been addressed in this thesis.

Key issues in the control of heating in low energy buildings with passive solar

features are as follows:

1. Frequent instances of reduced output operation (stability, tracking and
minimising energy use).

2. Ability to deal with a range of room space thermal capacity (robust, stability and

tracking).
3. Ability to respond to solar inputs likely to be received at a later part of the day

(need for adaptability).
Additionally, and in common with most building control applications, there is a

need to develop a control solution that permit simple and transparent set up and

commissioning procedures.

1.2. Research aims and objectives

The aims of this thesis are to develop and test an adaptive control method for space
heating in buildings with significant solar input. The intention is to establish a control
strategy that enjoys at least the same stability and tracking properties as “well tuned”
conventional control is adaptive to change in adventitious heat gain (solar and other
sources). Also, it should display good robustness properties for light load control and
operation in both high and low thermal capacity space, and enjoys simple and
intuitive commissioning. Thus, the proposed control strategy should have the

following properties:

1. Consideration of solar radiation in the control strategy.
2
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2. Self-adaptation of the controller to building and climate parameter changes.

3. Robust, i.e. wide applicability of the controller to the characteristics of the
buildings space and plant capacity.

4. Reduced commissioning over the conventional controller.

Many of the above points can be addressed through the use of adaptive fuzzy
systems. It is therefore intended that a fuzzy framework will form the brains of the
control strategy to be developed. Fuzzy logic has the advantages of being able to
model imprecise conditions whilst not requiring an exact mathematical model of the
control process, and is capable of decision-making as well as dealing with multi-

variant problems.

The objectives of the research are therefore as follows:

1. A simulation model of the thermal performance of a building with space heating
plant and control will be developed as a test bed for analysing control strategies.

2. Design of a single-input single-output fuzzy logic controller, as an internal air
temperature regulator, and benchmarking with a conventional proportional-
integral-derivative (PID) controller.

3. Design of a thermal comfort based fuzzy logic controller to provide an acceptable
range of thermal comfort for the occupants as a refinement of the above.

4. Development of a predictor to estimate internal comfort conditions with a moving
time horizon as a basis for control system adaptability. Initially, the use of an
artificial neural network (ANN) is expected to be promising in this role.

5. Design of a mechanism for the adaptiveness to changing climate variables (in
particular solar heating) of the comfort —based fuzzy logic controller.

6. Real-time implementation and evaluation of the proposed controller.

1.3. Organisation of the Thesis

A brief description of the thesis organisation is given below.

Chapter 2: Literature review

‘This chapter reviews the previous research with reference to heating system

control. The aim of the review was to establish the various types of controllers have

3
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been used in the past in this application, together with their successes and failures. An

area of emphasis is the review of previous application of fuzzy logic to the control of

heating, ventilating and air-conditioning (HVAC) plant.

Chapter 3: Building modelling for control investigation
This chapter describes the development of a simulation model of a building space

to assess the performance of different control strategies developed in later chapters of
the thesis. A lumped parameter model based on an optimisation technique has been
proposed and validated and it is shown that this model gives an improvement over the
widely used first order lumped parameter model based on Lorenz & Masy [1].

Development and implementation of solar data processor is also discussed.

Chapter 4: Heating system modelling
In this chapter, a detailed model of a hot water heating systems and related control

devices is developed and evaluated for the specific purpose of control simulation.

Chapter 5: Static fuzzy logic and PID controllers
This chapter presents the architecture and the principles in the design of the static

fuzzy logic controller (FLC) developed for the control of the internal air temperature.
A Pl-based fuzzy logic controller and conventional PID controller are developed in
which the error and change of error between the internal air temperature and the user
set point temperature are used as the controller inputs. The output of the controller is
applied to the heating system to bring the internal air temperature to the setpoint
temperature. The parameters of the controllers are set to values that result in the best

performance under likely disturbances and changes in setpoint.

Chapter 6: Thermal comfort based fuzzy logic control
In this chapter, the predicted mean vote (PMV) is used to control the indoor

temperature of a space by setting it at a point where the PMV index becomes zero and
the predicted percentage of persons dissatisfied (PPD) achieves a maximum threshold
of 5%. This is achieved through the use of a fuzzy logic controller that takes into

account a range of human comfort criteria in the formulation of the control action that

)
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should be applied to the heating system to bring the space to comfort conditions. The

resulting controller is free of the set up and tuning problems that hinder conventional
HVAC controllers. The PMV-based fuzzy logic controller investigated in this chapter
starts with the evaluation of the predicted mean vote level and compares this with the
required comfort range in order to arrive at a linguistic definition of the comfort
sensation. The controller then adjusts the air temperature set point in order to satisfy
the required comfort level, given the prevailing values of the other comfort variables
contributing to the comfort sensation. A comparison is then made between the
developed control strategy and the conventional method of building space-heating

control.

Chapter 7: Adaptive fuzzy logic control
In this chapter a new adaptive controller has been proposed. The development of a

proposed quasi-adaptive fuzzy logic controller is developed in two steps. A
feedforward neural network is used to predict the internal air temperature, in which a
singular value decomposition (SVD) algorithm is used to remove the highly correlated
data from the inputs of the neural network to reduce the network structure. Then, the
fuzzy controller has two inputs: the first input is the error between the setpoint
temperature and the internal air temperature and the second input is the predicted
future internal air temperature. The controller is shown to give good tracking to the
setpoint temperature, reduced the energy consumption for the heating and improve

thermal comfort for the occupants by reducing solar overheating.

Chapter 8: Controller testing ,
In this chapter, the proposed controller is tested in a real time test cell using an oil-

filled electric radiator, temperature and solar sensors. The experiment was carried at a
remote test facility at Cranfield University. Hardware consisted of a filter circuit for
the internal and external air temperature, an amplifier and filter for solar radiation, a
pulse width modulation circuit and semiconductor relay as a power circuit for the oil-
filled electric radiator. A comparison is carried out between the proposed controller

and a conventional PID controller.
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Chapter 9: Conclusions and recommendations for further work
This final chapter considers the findings of the research project and presents the

main conclusions. Recommendations are made with regard to areas of the research

that are worthy of further investigation.

1.4. Contribution of this Thesis
The contributions from this research work are summarised as follows:

1. A new approach to building space modelling is described and implemented,
based on a parameter-optimised second order description of each building
envelope element.

2. Subsystem models of HVAC plant and control are also developed making use of
an existing component library where possible. The result is a detailed dynamic
model of a building space with HVAC plant and control which enjoys flexibility,
transparency and computational efficiency, essential for the specialist case of
investigating control system response over low time scales. |

3. A new thermal comfort based fuzzy logic controller has been developed based on
the using of predictive mean vote (PMV) as a control criterion but using air
temperature as a proxy for comfort.

4. A new application of a feedforward neural network with singular value
decomposition (SVD) to predict the internal air temperature of the building space
based on the external climate and internal behaviour of the heating system and the
building space has been demonstrated.

5. A new combination between a fuzzy logic control and neural network to produce
a quasi-adaptive fuzzy controller has been developed. This controller is designed
and tested to compensate for afternoon solar heating received by the building

space.
The contributions of this work are supported by various publications:
1. Gouda MM, S Danaher, and C P Underwood “Modelling the Heating of A

Buildine Space Using MATLAB-SIMULINK”, 3 Mathematical and Modelling
Conference (3rd MATHMOD), Vienna University, Vienna, Austria, 2000.
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2.

Gouda MM, S Danaher, and C P Underwood “Fuzzy Logic Control versus
Conventional PID for Controlling Indoor Temperature of a Building’s Space”,
Computer Aided Control System Design (CACSD2000) Conference, Salford
University, Salford, UK, 2000.

Gouda MM, S Danaher, and C P Underwood “Low Order Model for the
Simulation of a Building and Its Heating System”, Building Services Engineering
Research and Technology, 2000.

Gouda MM, S Danaher, and C P Underwood “Thermal Comfort based Fuzzy

Logic control”, Building Services Engineering Research and Technology, 2001.
Gouda MM, S Danaher, and C P Underwood “Building Thermal Model
Reduction by Non-linear Constrained Optimisation”, Building and Environment,
2001.

Gouda MM, S Danaher, and C P Underwood “Development of an artificial neural

network predictor for indoor temperature of a solar building”, IASTED
Conference of Intelligent System and Control (ISO2001), Tampa, Florida, USA,
2001.

Gouda MM, S Danaher, and C P Underwood “Application of an artificial neural

network for modelling the thermal dynamics of a building's space and its heating

system”, Mathematical and Computer Modelling of Dynamic Systems, 2002.
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Chapter 2

Literature Review

2.1 Introduction
It is now frequently acknowledged that heating systems present one of the most

challenging situations to deal with from the point of view of control. Swings in

day to day, week to week and season to season energy demand, together with an
infinitely complex combination of user needs at the human interface, contribute to
highly non-stationary “environment” within which control takes place. It is little
wonder then that much of heating system control is about compromise; a compromise

that usually amounts to reasonable comfort at minimum energy use and cost.

8
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Heating system control, in common with all process system control, requires the
governance of two distinct actions: those of “switching” or “enabling” and
“regulating” or “adjustment”. Switching in the majority of applications amounts to
ensuring that the plant is available at certain times of the day (generally clock based,
occupancy sensor based or indeed based on some other logical two state conditions
such as an alarm state). Regulation, which is what this thesis essence is about,
amounts to ensuring that the plant capacity is matched to the demands placed upon the
system. The HVAC or heating system controller can be classified according to its

system and/or according to its action.

This chapter aims to give the reader an overview of the research previously carried
out into the use of different control strategies and more specifically fuzzy control for
controlling the heating system and HVAC applications. Also, it gives the previous

work, carried out in the area of building modelling techniques.

2.2. Energy crises and solar buildings design
In the mid-1970s, when the so-called energy crisis first made all the world aware

of the finite nature of fossil fuels, architects and urban planners, who are in the part
reSponsible for a field that account for more than half our energy consumption, were
unable to find an immediate answer to this problem. For far too long, energy had
been available in unlimited quantities and at a reasonable price, and there had seemed
to be no vital need to reduce its consumption. Although there was a great sense of
insecurity at the time, the challenge that this new situation presented was at least
recognised: the primary function of buildings-the provision of shelter and comfort for

man and his belongings-had to be reinterpreted.

The careful husbanding of energy and its more effective use in ecologically
sustainable forms (in particular solar energy) came to assume a central role in the
work of buildings design. This new approach was a pragmatic response to the
situation and- was not based just on fashionable trends. Now, three decades later, one
can point to a number of outstanding structures that reveal an ambitious architectural

concept as well as completely new interpretations and intense applications of

9



Cﬁapter 2 : o&terature p eview

environmental energy-for heating, cooling, natural ventilation, lighting and the
generation of electricity. The buildings in which solar energy has become a factor of
the design and has been used in aesthetically effective form include schools,
universities, housing schemes of all kinds and sizes, offices, museums, galleries and

many other structures.

Concepts for new urban districts are now being developed in which structures
using solar energy are no longer exotic, isolated examples. Today, the many potential
uses of solar energy are seen in conjunction with the structures of urban and building
developments, public open spaces and the infrastructure as forming an integral whole.
As a result, it has been possible to achieve a considerable reduction in the
consumption of energy from fossil fuels for the complex system that the city

represents [2]. There are two benefits found from decreasing the energy consumption:

1. From cost point of view, energy consumption has become an important issue for
policy makers on a global scale. This is due to additional strain on the
environment due to the expected vast increase in world energy demand over the
next 30 years [3]. In addition to the global concern, escalation in energy costs has
made energy savings for building owners a viable option.

2. From environmental point of view, the energy saving reduce the production of

greenhouse gases and/or other harmful waste products.

Good examples of solar buildings are the Doxford solar office in Sunderland, and
the BP institute, University of Cambridge [4]. Passive solar building can contribute to
reduce energy consumption in two ways: by increasing useful solar gains in buildings
and thus offsetting the demand on the building’s heating system. Also, by controlling
heat gain in non-domestic buildings and allowing solar heated air to assist natural
circulation and ventilation, a reduction of the need for mechanical ventilation and
cooling is achieved. Unfortunately, this high level of uncontrolled solar gain can lead
to uncomfortable overheating periods, even during the heating season. An adaptive
heating control strategy should take both concerns into account in order to minimize

occupant discomfort while keeping the energy consumption as low as possible.

10
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There is a need for this type of controller (adaptive heating controller) not only for
building spaces with high insulation and variable thermal mass but to adapt to
adventitious heat gains received by the space under control. Instantaneous heat gains
(i.e. arising from internal casual gains) can easily be dealt with by direct feedback but
the lagging source due to solar radiation is much less responsive and requires the

controller to take on an adaptive role.

2.3. Space heating control
Many electronic HVAC controller traditionally have fixed tuning which can not be

adjusted on-site, often leaving the maintenance team with the problem of making the

best out of a bad job in situation where the controller is not suited to an application.

Thus, development of current and future generation of HVAC control has begun to
focus on in-built intelligence at the controller, in particular, adaptive control. Many of
the ideas presently being explored are not new. John & Dexter [5] first discussed the
potential for intelligence in building services control in 1989, identify progress and
ongoing work in fields such as self-tuning, adaptive and rule base control. Zaheer-
uddin [6] also reviews progress in adaptive and optimal control and gives illustrative
examples of their applications in the HVAC field. Dexter & Haves [7] who discuss

implementation issues of self tuning control with reference to HVAC applications.

Self-tuning and adaptive control are similar, representing control systems capable
of adjusting themselves to changes in their operational domain as well as hanging
requirements. Self tuning control systems make these adjustments in search of
optimality over an initial period, and then freeze the parameters, whilst the adaptive
controller continues to make adjustments throughout the life of the system. A general
consensus is that with self-tuning controllers it is assumed that the process under
control has initially unknown but constant parameters which can be estimated on-line,
whilst no such assumptions about parametric constancy can be made with adaptive
control. The early heating optimisers are examples of self-tuning systems in so far as
a finite adjustment timespan is concerned, and considerable work has been done on

these over the years [8-11].

11
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Jota & Dexter [12] have developed general minimum variance (GMV) and general
predictive control (GPC) algorithms for the heating and cooling coils of an air
handling system. These have been applied directly to valve actuators and also
“cascaded” in which the algorithm modifies the set point of a conventional fixed
parameter PI controller. Direct application was found to produce unacceptable

oscillation whilst the cascaded method gave a substantial improvement.

Brandt [13] developed a pole cancellation algorithm with “bracketing software”
and applied it to two (small or large) VAV (variable air volume) systems with the
bracketing software applied to the large test case only. The algorithm was applied to
cooling coil and mixing damper control in each system. Brandt concluded that self-
tuning control can work as well as a well tuned PID fixed parameter control without
the need for lengthy and repetitive tuning of the latter, but the bracketing software
proved essential for robustness. Other work on HVAC adaptive controllers using the
pole placement method are reported by MacArthur et al. [14], Zaheer uddin [6] and
Wellenborg [15].

Robust design offers the potential to deal with situations in which several aspects
of the plant behaviour are uncertain in the presence of disturbances and measurement
noise. Despite this, little work has been done to apply the robust methods the HVAC
case. Though Attia & Rezeka [16] develop a state observer method to obtain robust
multivariable control of temperature and humidity in the hot arid climates. Their
results, based on simulations demonstrate improved stability and response times over
conventional control, subject to a significant room space participating in the control

loops.

Currently, fuzzy control is by far the most successful application of fuzzy logic to
practical problems. Fuzzy controllers are expert control systems that smoothly
interpolate between hard-boundary crisp rules. Rules fire simultaneously to a
continuous degree or strengths and the multiple resultant actions are combined into an
interpolated result. Processing of uncertain information and saving of energy using
common sense rules and natural language statements are the basis for fuzzy control.
The use of sensor data in practical control systems involves several tasks that are

usually done by a human in the decision loop. All such tasks must be performed
12
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based on the evaluation of data according to a set of rules in which the human expert

has learned from experience or training.

Dexter & Trewhella [17] were among the first to apply fuzzy logic methods to
HVAC plant. They developed five fuzzy inputs sets for the performance assessment
of a hot water fan coil unit under PI control. The fuzzy input sets cover performance,
energy use, control error, valve travel and occupant dissatisfaction. Two fuzzy output
sets are generated, reflecting occupant response and plant performance. The rule base
was developed with some advice from practitioners. The results revealed that fuzzy
approach can give a plausible assessment of plant performance though a careful

interpretation of the results was found to be essential.

For an unusual application in the holistic treatment of FLC, Dounis et al. [18]
consider the thermal and visual environment resulting in a fuzzy controller which

controls heating, cooling and window opening, shading and lighting.

Huang & Nelson [19] combine a PID controller with FLC and apply it to a general
second order plant model. Fuzzy input sets are developed for control error, integral
error and derivative error and an output set for the control signal. Results obtained
using computer simulation show that the combined controller can virtually eliminate
all of the damped oscillation common with tuned conventional PID control as well as

achieving faster response.

Huang and Nelson [20] present a rule based fuzzy logic controller, which
considered the error and rate of change of error as inputs to the controller. The paper
discusses three important elements that have a critical influence on the behaviour of
such controllers. These are the rule base, the membership functions and the scale
factors (or tuning parameters). In a companion paper Huang and Nelson [21]
described an experiment using the developed rule based fuzzy logic controller to
control an HVAC system. Experimental results indicated that the fuzzy logic
controller performed better than a conventional PID controller. The design of the
fuzzy logic controller is similar to that reported by So et al. [22].

13
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Willey [23] considered the use of fuzzy logic to model occupant actions and hence
their control of the internal environment. The study suggests that fuzzy logic is better
suited to estimating the imprecise actions an occupant may take to control their

environment, e.g. window opening, than conventional algorithms.

Geng and Dexter [24] examine the use of fuzzy gain scheduling methods to deal
with the non-linearities of HVAC plant. The paper considers the fuzzy gain
scheduling of the control loops of a conventional proportional integral controller and a
self-tuning predictive controller. The paper shows that the fuzzy gain scheduling

schemes used in the control loop improved the overall performance of the system.

Ling et al. [25] examined the development of fuzzy rule-based supervisors for a
self-tuning controller based on the Generalised Predictive Control Algorithm [26,27].
A fuzzy rule based fuzzy gain scheduler is first used to make use of the qualitative
prior knowledge about changes in the plant gain, over the entire operating region. A
simple fuzzy rule based fuzzy supervisor is then used to adjust the tuning parameters
of the controller according to expert opinion based on qualitative descriptions of
application dependent performance criteria, so improving the control loop
performance gradually. The research suggests that the fuzzy gain scheduling provides
a means of incorporating the uncertain prior knowledge about the process and

improves the stability and or performance of the controller.

Dounis et al. [28] describe the use of a fuzzy reasoning process to provide visual
comfort within buildings. A fuzzy logic controller is used to control lighting levels
and glare by the use of window blinds and the turning on and off of artificial lights
within the space. It shows that fuzzy control in this case is better than no control but
does not prove any improvements over conventional control techniques. However,
the research does bring out the ease with which fuzzy logic can be implemented
without the availability of a mathematical model by incorporating human knowledge

in the form of natural language.

MacConnell and Owens [29] used a fuzzy supervisor to ensure user comfort is
maximised. The commissioning costs of the controller were minimised, the fuel

economy was maximised by efficient use of the plant, maintenance costs were
14
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reduced by eliminating stop-start cycles and allowing adaptation to unscheduled
disturbances. The theory could also be implemented using low cost chip technology

for real-applications.

Dounis et al. [30] investigated the impact of natural ventilation on the thermal
comfort index assuming the implementation of fuzzy reasoning control for visual
thermal comfort as described by Dounis et al. [28]. Controlling the window openings
provided thermal comfort, and hence ventilation flows, by conventional controllers
responding to the difference between the outside and zone temperatures. Free cooling
was made available using this approach. The paper claims that the fuzzy visual
comfort reasoning machine was capable of exploiting natural ventilation to control

thermal comfort.

Early work applying ANNs to HVAC problems mostly concerned identification
and modelling problems. Miller & Seem [31] use a three layers feedforward ANN,
trained using back-propagation, to predict the start up time for heating during set back
— in effect “optimal start control”. They compare the results of ANN prediction with
a conventional recursive least squares method, concluding that there was no
significant advantage for the ANN in performance terms. However, the ANN
required less data for training than the RLS and the ANN proved to be more robust.
Anstett & Kreider [32] apply an ANN to the prediction of energy use in a large
institutional building and, like Miller & Seem [31] they compare this approach with a

conventional approach to energy management.

Curtiss et al. [33] use a backpropagated feed forward ANN with two hidden layers,
each of 10 neurons, for energy management in central plant, concluding that ANNs
can be successfully used to model energy use as well as to carry out energy
management tasks, such as set point resetting. Huang & Nelson [34] train an ANN to
determine delay times in HVAC plant. Besides successfully predicting delay time,
the ANN was found to be capable of tolerating different levels of input measurement

noise.

Curtiss et al. [35] and So et al. [36] develop ANN based predictive controllers as

alternatives to conventional PID control. Curtiss and co workers develop a “look
15
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ahead” adaptive ANN in which plant error is backpropagated through the ANN in a
Hopfield-like fashion and the network used to predict future plant behaviour (i.e.
future error) as a basis for control action. The resulting controller was found to be at
least as good as well-tuned PID control but this crucially depended on the choice of
network learning rate. In later work, Curtiss [37] goes on to demonstrate the
implementation of a network assisted PID controller on a laboratory scale heating coil
control loop. So et al. [36] develop a combined identifier/controller for MISO
application in which control of an entire air handling plant is considered using an
ANN. They compare this with well tuned PID and a fuzzy logic controller concluding
that the response rate of ANN based method was inferior to the fuzzy logic controller
and the steady state accuracy was slightly inferior to well tuned PID. However, the
ANN training data were relatively easily obtained, the controller required nor tuning,
no did it require any expert knowledge (as did the fuzzy logic controller).

Krideer and Wang [38] have applied ANNs to predict energy use in commercial
buildings. In particular the authors have applied the method as part of their work on
the application of expert systems to HVAC diagnostics in commercial buildings.
They have used ANNSs to determine with good accuracy the energy use of the chillers
by using hourly averaged data collected from the system.

Curtiss et al. [39], demonstrated how ANNs can be used to optimise the energy
consumption in a commercial scale HVAC system. For this study information from
the actual system has been used to train a network in an attempt to optimise the
energy consumption without sacrificing comfort and by considering all the physical

limitations of the system.

Ling and Dexter [40] use a fuzzy rule based supervisor to evaluate control
performance and adjust the temperature set point of an air-conditioning system within
a given comfort band. The overall control objective aims to use free cooling, by
altering the amount of fresh air entering a zone in a constant volume system, to
maintain the zone temperature close to the upper limit of the comfort band. When

free cooling is not capable of achieving this, plant cooling is used.
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von Altrock [41] describes the use of a fuzzy controller to create an adaptive
controller for use with a home heating system. The controller ensures optimal
adaptation to customer heating demands while using one sensor less than a

conventional control system. The findings of this paper are also given in Ross [42].

Dounis et al. [43] investigated the performance of a fuzzy reasoning machine for
the control of indoor air quality in naturally ventilated buildings. Simulations were
carried out using an airflow and pollutant transport model that used CO,
concentrations as an index for indoor air quality. The aim of the fuzzy controller was
to maintain the CO, concentration within certain limits while ensuring good stability
of the window opening area. Using conventional control techniques to adjust
actuators for the window opening would cause continuous window movement and

would bother the occupants.

SO et al. [44] applied FLC to the control of air handling plant VAV systems.
Using triangular FISs for error and error rate, FLC signals are generated for the air
handling plant, fresh air damped fan control, cooling coil, humidifier and reheat coil.
Results are compared with tuned and detuned PID control, using computer simulation.
The results show that the FLC compares well with tuned PID control but was more
robust and the FLC was superior to detuned PID control. In later work, they develop
a self-learning FLC using an artificial neural network (ANN) based on the same air
handling control problem as their earlier work [45]. The ANN is used to monitor the
plant and update the parameters of the FLC, which permits robustness in spite of

changes in operating conditions and non-linearities.

Egilegor et al. [46] described the results of simulations using a neuro fuzzy
controller to adjust the airflow rate through fan coils for three zones of a dwelling to
improve thermal comfort. The input variables of zone temperature and humidity are
used to calculate the value of Fanger’s PMV thermal comfort index, which is then
used as a comfort variable. Fuzzy proportional derivative control is used to provide
the desired zone conditions while a neural network is trained to tune the fuzzy
controller to optimise the fuzzy tuning parameters and improve the control

performance for different situations. Simulations carried out for the neuro fuzzy
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controller indicate an improvement in the PMV compared to the benchmark

simulations using thermostatic control.

2.4. Conclusions
This chapter introduced the reader to a brief history about energy crises, solar

building design, space heating control and thermal modelling of the building. The
review showed that, spurred by the energy crises, building designers produced passive
solar buildings. However, this type of building can carry a high overheating risk due

to large solar gain.

The review showed that, each controller provides only one or two benefits such as:
good tracking, robustness, consideration of the solar radiation in the control strategy,
self-adaptation of the controller to building and climate parameter changes, or reduced

commissioning over the conventional controller.

Also, the review of previous applications of fuzzy logic to the control of building
services components suggests that fuzzy logic is capable of providing control
techniques which are often simpler to implement than conventional control systems
and sometimes capable of providing superior control. Where a lack of knowledge
regarding system behaviour exists, a solution using fuzzy logic may be possible where

conventional control techniques are not suitable.

The research project described by this thesis aims to develop and test an adaptive
control method for space heating in buildings with significant solar input. The
literature review carried out into fuzzy logic and neural network suggested that an
adaptive controller based upon a fuzzy control system combined with a neural

network would be capable of dealing with such control aims.

18



C’/Lapfer 3 gui&’ing Woéféng ﬁr Conlro/ jrweaﬁyah’on

Chapter 3
Building Modelling for Control Investigation




Céafn‘er 3 gmﬂmg molk[an Ar C)onlm/ jm/edtigah'on

Chapter 3
Building Modelling for Control Investigation

3.1. Introduction
r I Yhe short-time horizon modelling of building thermal response is of relevance in

situations where Heating, Ventilating and Air Conditioning (HVAC) plant and
control system analyses are of interest. In the precise area of building thermal
modelling, issues of model accuracy and computational efficiency become important.
Significant progress has been made in recent years on the development of modular
and generic simulation programs for investigating the thermal behaviour of buildings
and associated HVAC plant and controls. A large variety of building codes suitable
for the evaluation of the energy consumption of building are available today. These

codes use energy parameters [46], physical laws [48-52], and performance data [53-
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56] to predict building energy consumption. The physical models use three basic
methods [50]: numeric [48], harmonic [51], and response factors [49,52]. Building

thermal models are used for calculation of energy consumption in a variety of
buildings: single and multiple zone, thermally light and heavy, low rise and high rise
[47,57], and residential and office [47,58]. Some building models also have
integrated models of heating ventilation and air condition (HV AC) systems [51,55], of
airflow in buildings [59], and passive solar, photovoltaic and combined heat and
power system [60]. These models use either simulation or sensitivity analysis to
design new buildings, and for retrofit applications to evaluate their heating and
cooling performance [58,61,62]. These models can be either simple to apply and use,
such as the low-cost, one zone model called BRE-ADMIT [63], or more laborious and
time consuming to set-up and run such as DOE-2 [61,64], BLAST [65], TRNSYS [66],

BUNYTP [67], and ESP [60]. These latter examples are also more expensive.

Such programs have found widespread acceptance as tools for energy analysis or
thermal design of large commercial buildings. Also, many simplified programs are
merely computer implementations of handbook methods [68]. Usually, these models
cannot be changed, thereby reducing the flexibility of design. Thus a major
disadvantage of such software is that they are often used for conditions for which they
are not valid, or their results are misinterpreted due to poor understanding of the
mathematical models on which they are based. Many of these programs are
furthermore inflexible for the specific analysis of HVAC plant and control systems
due to combinations of the following [69,70]:

1. Most established thermal modelling programs are not suited to short-time scale
investigations (minutes or hours), having been developed with computational
efficiency in mind for long-time-scale applications (e.g. seasonal energy use),

2. The use of steady-state plant component models in some instances makes them
prone to numerical instability when high-frequency input excitations are applied
and the dynamical design of controller is not possible with such model
formulations, and |

3. Programs using finite-differences for building dynamics tend to be computationally
inefficient (though this is becoming less important with advances in computer

technology).
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In response to these shortcomings, a simple modelling method is needed which is

numerically stable, when dealing with a wide spectrum of plant input excitations, and
yet is computationally efficient. For the time horizons of interest in controller design,
it is necessary and sufficient for such a modelling method to yield accurate results
over several hours or a few days (i.e. as opposed to weeks or months as in the case of
the “traditional” programs mentioned in earlier). The aim therefore is to develop and
validate a flexible “lumped parameter” thermal model of a building, where many
control strategies may be applied tested and “tuned” dynamically in order to

investigate their behaviour under realistic plant operating conditions.

Lumped parameter (or lumped capacitance) approach have been used for some
time to satisfy the dual needs of computational efficiency, whilst reconstructing the
main dynamic features of interest among the various state variables. However the
earlier, coarser, lumping strategies are known to have weaknesses and a method is

proposed here which seeks to address this.

For the treatment of plant dynamics in buildings, the building response model
requires not being only sufficiently accurate for the purpose but also computational
efficient, since the faster-acting plant dynamics will tend to govern the choice of the
time interval used for the solution of the equations. Relatively low order linear
systems can capture the essential elements of observed behaviour. Simplified, or
reduced order lumped parameter thermal models are therefore of interest. Potential
advantages of simplified thermal models include reduced computing overheads,

shorter coding, analytical solution of the state equations and easier verification.

Lorenz and Masy [1] made the first serious attempt at low-order thermal response
modelling based on the proposals of Laret [71]. This work in turn formed the basis of
analytical parameter estimation for the 5-parameter 2% order model of Crabb et al.
[72] in which a room air capacitance and a single lumped construction capacitance
was linked with an instantaneous conduction path through a network of three
resistances. Though good agreement with a limited set of observed data was

demonstrated with reference to dominant inputs (i.e. ventilation rate and zone heat
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inputs), the impact of model structure on this was not discussed, especially at lower

timescales when plant dynamics tend to dominate.

Dewson et al. [73] developed the model of Crabb et al. [72] further by proposing a
method for identifying the values of the required five parameters of the model from

observed data for possible application to online system identification.

Tindale [74] recognised that the 2% order prescriptions used by the previous
workers broke down when applied to buildings with very high thermal capacity (i.e.
involving one or more high-mass construction elements). He added a further node to
the basic 2" order model and separated the convective and radiant heat transfer paths
that had previously been treated as a lumped air equivalent point. The further node
was connected as a fictitious path and a method was developed for the calculation of

its parameters.

The model gave improvements over the simpler 2" order model but there
remained uncertainty regarding the adequacy of treatment of heat transfer through

massive construction elements.

Variations on the above have been reported based on extending the two or three-
node problem to one in which a capacity node is used to treat each opaque
construction element resulting in 5%/6™ order representations (one node each for floor;
ceiling/roof; external wall (two external walls for a corner room); partitions and room
air) [74-76]. These models tend to move away from analytical solutions to the low
order problem to computationally efficient state-space methods for these higher-order

cascs.

In this chapter, two models are developed based on the lumped parameter method.
In the first method, each construction element is described using a single lumped
capacitance and a method proposed by Lorenz & Masy method [1] is used to find its
parameters. The second model describes each construction element as a second order
clement and uses an optimisation technique based on nonlinear constrained

optimisation to find its parameters. Both modelling methods are completed using
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first-order air capacitance and both are applied to low and high thermal capacity

buildings for comparison.

3.2. Building thermal model input variables
There are many factors that influence the energy balance on a building space, such

as follows (figure (3.1)):

1. Microclimate; external air temperature, wind effects and solar heat gains.

2. Casual heat gains.

3. The heating system.

Most solar heat gain to a building space is by direct radiation through windows.
The heat gain in a building by radiation from the sun depends upon site-specific
factors and dynamic factors. The former consists of the surface area and angle of tilt
of the glass, the composition of the glass, the geographic location of the site, the
orientation of the building on the site and any local shading factors. The dynamic
factors consisting of the season of the year, prevailing cloud conditions and the
existence of any adjustable shading mechanisms (e.g. moveable external louvres or

internal blinds).

The maximum gain through vertical south-facing windows in the northem
hemisphere tends to occur in spring and autumn when the prevalent lower sun-angles
cause radiation to fall more directly onto the window surfaces. Similarly, where roof
lights are used, the maximum gain will be in peak summer when the sun’s altitude is
at a maximum. Clearly with careful window and shading element design, the solar
gain can assist winter heating whilst giving minimum nuisance overheating in

summer-the objective of passive solar design of building spaces.

The fabric solar heat gains through walls and roofs may be considered negligible
for most old buildings. Little solar heat reaches the interior of the building because
the high thermal capacity of “heavy” constructions tends to delay transmission of the
heat until its direction of flow is reversed with the arrival of evening. Low thermal
capacity construction on the other hand tends to be well insulated ensuring that solar

heat transmission is minimised.
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Figure (3.1): Building energy balance.

Casual heat gains take account of the heat given off by various activities and
equipment, the major sources being people, lighting, cooking and electrical
appliances. Casual heat gain is useful in winter and, as buildings become better
insulated, can form a high proportion of the total heat needed in certain types of
building. Since the heating system in intermittently-used buildings is sized for early
morning preheating when casual sources and solar radiation are unavailable, the
availability of these sources after preheating ensures that the heating is heavily

oversized during normal operation, making control at light load especially crucial.

Figure (3.2) illustrates the relationship between the various energy transfer paths in

a building space.

From a control system perspective, the zone temperature (7;) is defined as a

process output that has to be controlled. This temperature is the result of controllable

and uncontrollable energy inputs, as shown in figure (3.3).

The primary heat input is the controllable input through the radiators (electric or
hot water radiator). The secondary heat input is the uncontrollable input represented

by solar radiation, outdoor air temperature and internal casual gains. Though the solar
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input is at least partly controllable in practice (e.g. through the use of moveable

louvres and blinds) it is assumed for the purpose of this study that it is uncontrollable.

Q.]V—_ “'ms
i 'A'A" ANMN—T,,

Floor/ Ground
Windows ;/_'

AN AMN—T,,

Partitions
T o

External wall

T.,-"——W\f—-l'_—W\: AMN— T,

RooffCeiling

Figure (3.2): Simplified building energy transfer paths.

Auxiliary Heating from,
(1) Electric Heater, or Controllable
(1) Water Boiler. —
Uncontrollable

(1) Solar Radiation (for this application)
Figure (3.3): Classification of variables.

Thermal Model

of Indoor Tem .
a Building

(2) Internal Gains (for this application)

(3) Outdoor Temperature.

Therefore the controllable influence over zone air temperature (7;) lies in one or

more heating system parameters e.g. hot water flow rate or temperature (and,

conceivably, both).
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3.3. Basic application of the lumped parameter method

The following is based on the prescription of Lorenz and Masy [1] and has been

applied by a number of previous workers as discussed above. The method has been

included here as a basis for comparison with the reduced-order method developed

later.

A construction element consists of several layers of different materials, each layer
defined by its thickness, thermal conductivity, specific heat capacity and density as
shown in figure (3.4). With this method, an element consisting of »n layers of

material can be combined to form two “lumped” thermal resistances ( R, R, ), and

one thermal capacity (C,,, ), as illustrated in figure (3.5).

Outside| 1] 2 |~ n-1| n |Inside

Figure (3.4): Construction element layers.

out ’ ins

out ins

ol
A

total

il

1

Figure (3.5):"Lumped Parameters” construction element.

The total thermal resistance and the total thermal capacitance can be calculated by

following equations:
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=N

R =y 10 41,4 3D/ 4 G.1)

I=1 ¥}

I=n

Coora = A% (z x, xp;xCp) 3.2)
=1

R, and R, can be calculated by the following equations (Lorenz and Masy [1]):

Rins =ax Rtotal (33)

Rout = (1= @) % Rigtal 34

a , the “accessibility factor”, can be calculated for the external construction elements

using the following equations:

.k=n
S R xG,
a=1-|42— (3.5)
R % Ciom
where:
i=n-1 R
Rl =R+ —ZL (3.6)
j=1

3.4. Proposed method
The coarse lumped parameter approach involving Lorenz and Masy [1] parameter

evaluation is known to break down when dealing with high thermal capacity elements
or elements involving a mix of materials with differing thermal properties. There are
also difficulties when dealing with surface (i.e. radiant) heat flux because the method
can not represent the behaviour between transmission and storage adequately. A
higher order description will overcome these difficulties but with an associated high
computational cost. Thus in this section, a very high order description is “reduced” to

a low order description in an attempt to satisfy both modelling objectives.

The purpose of model order reduction is to derive a low order model of an
intrinsically high order system to achieve an advantage in terms of computational
effort required preserving as much of the dominant dynamic description possessed by

the original high order system as possible. Any model reduction approach should
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include appropriate methods for the selection of key parameters and their optimisation

in relation to some specified criteria. Various authors (e.g. [77]) have pointed out that
there can be no universal model reduction algorithm due to the diversity of plant
characteristics and applications. Indeed no general model reduction approach has
been developed though, from a theoretical viewpoint, such a possibility should not be
excluded. Model reduction techniques can be grouped into three categories:

1. Polynomial reduction methods.

2. Optimisation approaches.

3. State-space transformation based techniques.

Polynomial reduction methods are generally applied in the frequency domain and
usually are not computationally intensive. They are used to find low-order transfer
functions whose coefficients are chosen to satisfy various criteria, so that the output of
the reduced order model matches, as much as possible, the output of higher-order
system. Some of the available methods are based on matching moments and Markov
parameters between the original and reduced order models. The Padé approximation
(coupled with various procedures to preserve the stability of the approximate model)
is also popular and effective, as is the method of continued fraction expansion.
Approaches following the Routh method, which retains stability properties and
preserves a contribution in the energy sense of the impulse response in the low-order

model, are also available [78].

Optimisation approaches form the second class of the model reduction techniques.
In general, they are based on sequential parametric optimisation procedures aimed at
the minimisation of some index, which measures an error between the original and the
reduced order models. If the reduced order model has fixed eigenvalues, a model can
usually be obtained analytically. Otherwise optimal reduced order models must be
obtained numerically by an iterative solution of linear matrix equations leading to
high computational effort that may be prohibitive if the original model order is high.
The optimal projection approach can also be used in solving such problems. These
methods, often applied in the time domain, are dependent on and limited by the choice

of the error index [78].
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The third class of model reduction method includes procedures that involve the

transformation of an original state-space model representation. The approach is based
on the evaluation of the stability of different state coordinate selections in the full
order model and on the selection of a reduced order model maintaining, as much as
possible, the original model properties (time response, observability, controllability,

closed loop performance).

The value and potential accuracy of first order simplified construction element
thermal models have been established and shortcomings of these simple models have
been identified in terms of application to high time resolution problems involving
plant and control simulations, and applications involving “massive” construction
elements. The following describes some straightforward modifications that can
significantly improve the accuracy of these models without seriously compromising
simplicity or speed of computation. These modifications involve describing each
construction element with a 2™ order description and “tuning” the parameters of these
descriptions with reference to a high order model description for which the calculation

errors may be assumed to be negligible [78].

3.4.1. Optimisation method
Optimisation in engineering refers to the process of finding the ‘best’ possible

values for a set of variables for a system while satisfying various constraints. The
term ‘best’ indicates that there are one or more design objectives that require being
optimised by either minimising or maximising. In an optimisation process, variables
are selected to describe the system (e.g. size, shape, material type, and operational
characteristics). An objective refers to a quantity that the decision-maker wants to be
made as high (a maximum) or as low (a minimum) as possible. A constraint refers to
a quantity that indicates a restriction or limitation on an aspect of the system’s
technological capabilities. ~ Generally, an optimisation problem that involves

minimising one or more objective functions subject to some constraints is stated as:

minmize, o, {; (%), /5 (¥)s---+s fu(X)} 3.7
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where f,, i =1,......m, is a scalar objective function that maps a variable vector x into

the objective space. The n -dimensional design variable vector x is constrained to lie
in a region D, called the feasible domain. Constraints to the above problem are
included in the specification of the feasible domain. In general, the feasible domain is

constrained by J -inequality and/or K -equality constraints as:
D={xg;(x)<0,h(x)= 0,j=1,..,J,k=1..K} (3.3)

An optimisation problem in which the objective and constraint functions are linear
functions of their variables is referred to as a linear programming (LP) problem. On
the other hand, if at least one of the objective or constraint functions is nonlinear, then
it is referred to as a non-linear programming (NLP) problem. An LP problem can be

stated as fellows:

minmize f (x)
subject to: Ax <b
A x=b, (3.9)

Ly X S Uppma
where f', b, and b,, are vectors and 4 and 4, are matrices. The quantity x is a
vector of design variables, and the apostrophe indicates the transpose. The matrix 4

and the vector b are the coefficients of the linear inequality constraints, and 4,, and

b,, are the coefficients of the equality constraints.

NLP problems may be divided into two classes: unconstrained methods and
constrained methods. The latter method is in most cases preferable because of the

discipline it places on problem solving.

Constrained non-linear optimisation methods find the minimum of a constrained
function as formulated by Egs (3.7) and (3.8) for the case of a single objective

function, i.e. m=1. This can involve a constrained single-variable method or
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constrained multi-variable method. The constrained single-variable method finds the

minimum of a function of one variable on a fixed interval as follows:

minimize, f (x) subjectto a, <x=<a, (3.10)

In constrained multivariable optimisation, the method finds the minimum of a non-
linear multivariable constrained optimisation problem. Both equality and inequality
constraints can be considered. Also, both the objective and/or the constraint functions
can be non-linear. A non-linear multivariable constrained optimisation problem can

be stated as:

minimize, f(x)

subject to: Ax <b (linear inequality constraints)
A, x =b,, (linear equality constraints) (3.11)

C(x) <0 (nonlinear inequality constraints) ‘

C,,x=0 (nonlinear equality constraints)

Lypma <x<U,

bound — ound

The general aim is to transform the problem into an easier sub-problem that can
then be solved and used as the basis of an iterative process. A characteristic of a large
class of early methods is the translation of the constrained problem to a basic
unconstrained problem by using a penalty function for constraints, which are near or
beyond the constraint boundary. In this way the constrained problem is solved using a
sequence of parameterised unconstrained optimisations, which in the limit (of the
sequence) converge to the constrained problem. These methods are now considered
relatively inefficient and have been replaced by methods that have focused on the
solution of the Kuhn-Tucker (KT) equations. The KT equations are necessary
conditions for optimality for a constrained optimisation problem. If the problem is so
called convex programming problem, that is, f(x) and g,(x), i =1,....,m, are convex
functions, then the KT equations are both necessary and sufficient for a global
solution point. Referring to equation (3.11), the Kuhn-Tucker equation [79] can be

stated as:
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£+ A, Ve () =0
i=1

Vg (x)=0 i=1..m (3.12)

Z20 i=1,...,m

The first equation describes a cancelling of the gradients between the objective
function and the active constraints at the solution point. For the gradients to be
cancelled, Lagrange Multipliers (4,, i=1,.....m) [80] are necessary to balance the

deviations in the magnitude of the objective function and constraint gradients. Since
only active constraints are included in this cancelling operation, constraints that are
not active must be included in the operation and so are given Lagrange Multipliers

equal zero. This is stated implicitly in the last two equations of equation (3.12).

The solution of the KT equations forms the basis of many non-linear programming
algorithms. These algorithms attempt to compute directly the Lagrange Multipliers.
Many algorithms are available to compute the Lagrange Multipliers directly.
Constrained quasi-Newton methods guarantee super-linear convergence by
accumulating second order information regarding the KT equations using a quasi-

Newton updating procedure.

These methods are commonly referred as Sequential Quadratic Programming
(SQP) methods since a quadratic programming sub-problem is solved at each major
iteration. SQP methods represent state of the art in non-linear programming methods.
Schittowski [81] for example has implemented and tested a version that out-performs
every other method in terms of efficiency, accuracy, and percentage of successful
solutions over a large number of the test problems. The work of Biggs [82], Han [83],
and Powell [84,85] allows Newton’s method for constrained optimisation to be
closely emulated just as is done for unconstrained optimisation such that at each major
iteration an approximation is made of the Hessian of the Lagrangian function using a
quasi-Newton updating method. This is then used to guarantee a quadratic
programming sub-problem whose solution is used to form a search direction for a line
search procedure. For an overview of SQP methods see Fletcher [86], Gill et al [87],
Powell [88], and Hock and Schittowski [89].
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3.5. Application of the optimisation method
As a basis for comparison, the optimisation method is implemented along with the

coarse lumped parameter method of Lorenz and Masy [1]. The two methods were
applied to a high thermal capacity example space in a campus building at the
University of Northumbria. This building has been the subject of extensive research
into photovoltaic cladding [90] as shown in figure (3.6). The selected space is a south
facing corner space and it has a floor area of 63 m” and volume of 179.5 m’. It has
two external walls, an internal floor, internal ceiling and two partitions, and the
internal elements were treated as adiabatic. Details of the room model with
construction elements defined according to the Lorenz and Masy prescription can be
found in Gouda et al [91] and the properties of the various construction elements are

given in appendix A.

Figure (3.6): Northumberland building, south facing.

Figure (3.7) shows that, increasing the order level resolution of a monolithic
construction element (i.e. up to 300 layers for example) had little impact on the results
of the internal air temperature responses to a step change in external air temperature
above about 20 layers (i.e. produced “rapid convergence” of the step response with
model order). The thickness of each layer throughout the element domain was taken
to be the same. As an accuracy benchmark, each construction element of the space
was split into 20 layers as shown in figure (3.8). It is argued that this would yield a
sufficiently accurate outcome at least from a modelling point of view.
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In figure (3.8), ( R,.........., R,,) are the values of the layer thermal resistances and

(Cyseeeeennnns Coy ) are the values of the layer thermal capacities.

For the simplified case, the values of the thermal resistances ( R,,, R,,, ). and one
thermal capacity (C,., ), for the first order lumped parameter model of the

construction element can be calculated using the equations (3-3).

Following a preliminary trial-and-error approach, it was noted that a 2" order
model with parameters “tuned” from the 20" order benchmark case using the
optimisation method described above gave results which were very close to the high-
order model but differed considerably from a 1% order description. Thus parameters

of a 2™ order model template were set as the optimisation objective functions.
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Figure (3.7): Step response of the same construction element with different number of

layers.
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Figure (3.8): 20® order lumped parameter “benchmark”.

The values of the 2™ order model parameters (C,,C,, R, R, R; ), as shown in figure

(3.9), were arbitrarily initiated using the following two sets of lower and upper

boundary conditions respectively, and naturally the equality constraints given in set 3

and set 4:
Setl (lower): C,,C, = C,y / 100; R, Ry, Ry = R, /100

Set2 (upper): C,,C, =099C,,..;; R, R, Ry = 099R,
Set3 (equality): C, +C, = Cip

Set4 (equality): R, +R, +R; =R,

Tout | l Tins

Figure (3.9): 2™ order lumped parameter template.

The optimisation method described by Eqs (3.11,3.12) was applied to minimise the
square root of the sum-squared-error (SSE) between the step responses of the 20™
order benchmark model and the 2°¢ order template model by varying the 5 parameters
of the template model. Optimisations were carried out on individual construction
elements (external walls, internal partition, floor construction and ceiling
construction) for unit step disturbances in two excitation variable types: the external

temperature ( T, -step 1K); and internal surface heat transfer (O-step 1W).
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Figure (3.10): Unit step response of the high-order “benchmark™, tuned 2" order and
simple 1% order lumped parameter models for outdoor temperature excitation

(external construction element).

Results of the internal temperature (7)) responses to a step change in external

temperature ( T, ) for the case of one of the external wall elements (appendix A) are

1

shown in figure (3.10).

Tests were then conducted based on a step response to surface heat flux in which
simplified representations of the various model networks can be seen in figures (3.11
(a)-3.11(c)), and results shown in figure (3.12). Note that both figures represent unit
step responses thus the response of figure (3.12) is for 1 W excitation and,
consequently, the temperature response scale is very small (the response indicated can

be scaled to any input step magnitude desired).

An excellent agreement between all three-model types is evident for an external
temperature excitation. However, an excitation in heat flux at the surface of all

construction elements, whilst giving an excellent association between the benchmark
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and tuned 2™ order model case, gives a poor agreement in the case of the simple 1%

order model.

Figure (3.11): Simplified network representations for surface heat flow excitation ((a):
high-order “benchmark”; (b) 1* order; (c) 2" order)

Evidently, for surface flux, the 1*t order model capacitance charges slowly
resulting in a restricted build-up of construction element temperature and,
consequentially, limited surface convection back to the space (to 7). The quicker
charging of the inner capacitance, C,, for the 2% 5rder model on the other hand results
in a rapid rise in inner material temperature with increased convection and radiation
back to the space (hence a better tracking of T)). This has significant implications
when using low-order building models of this type in applications involving radiant

(i.e. surface) exchanges.

3.5.1. Room modelling high thermal capacity
A model was developed for the entire space of the essentially high thermal

capacity room described briefly earlier (and in detail in Gouda et al [70]). Each of the
construction elements of the room were represented using 27 grder descriptions with
parameters determined using the method applied above and, for comparison, simple
1% order prescriptions were also applied. Thus 6™ order (figure (3.13)) and 11™ order

(figure (3.14)) room models were arrived at based on two external wall elements, an
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internal partition element and internal floor and ceiling elements with the air capacity

(treated as a 1™ order entity) completing both model descriptions. The room has two
inputs; outdoor temperature and solar radiation and the problem was thus treated as a
“free float” case without any internal user/plant inputs. The solar radiation was

applied to the floor surface.
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Figure (3.12): Unit step response of the high-order “benchmark”, tuned 2™ order and
simple 1™ order lumped parameter models for surface heat flow excitation (external

construction element)
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Figure (3.13): 6™ order model realisation for the selected example space
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Re

Windows/ventilation

Figure (3.14): 11 order model realisation for the selected example space

The state equations for the 6% order thermal model of the selected example space,

can be written as follows:

CT=(T,-T)/ R+T-T)/R, (3.18)
G, T, =(T,~5)/ R+(T-T)/ R, (3.19)
C,T, = (Tl ~T;)/ Ry+ (T~ T;)/ Ry + Qs (3.20)
C, T, =(T22-T,) I R, + (L~ T,)/ Ry (3.21)
C,T, = (Tz5-T)/ Ry + (T~ T;)/ Ry (3.22)
C.T =(T-T)/ R +(T~T)/ Ry +(G-T)/ Ry 5.23)

+(L,—T)/ Ry +(L=T)/ Ry +(T, = T}/ Ry,
Because all zones air temperature are equal to the internal air temperature of the

space of interest (adiabatic case), so the state space model of the selected example
space can be written as following:

).( =AX+BU (3 2 4)
Y =CX+DU

Where X is the state vector [T} T, T, 7, T T71, U is the input vector [T, OsT, Y is

the output vector (i.e. in this case the internal air temperature, T;).
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The parameters (R---- R, and C

------ C,) of the 6% order thermal model are

calculated using the Lorenz & Masy method (equations 3.1 to 3.6). The internal air

mass C; is calculated as:

ngVolmneofﬂlemomeemityofﬂleair x Specific heat capcitance of the air (3.25)

and the thermal resistance of the windows R, can be calculated as:

R,, =1/ (total area of the windows x Thermal transmittance of the glass) (3.26)

The state equations for the 11™ order thermal model of the selected example space,

can be written as follow:

CT=(T,-T)/ R+ (T~ T)/ R,
C,T,=([~T)/ Ry +(,-T)/ R,
C,T,=(T,-T,)/ R+ (T~ L)/ R,

C, T, =(T,~T,)/ R +(L-T)/ R,

C, T, =(Ts1-T)/ R, + (T~ T;)/ Ry
C,T,=(G-T)/ Ry +(T,~T,)/ Ry +Os
C, T, =(I22—T)/ Ro+(G=T)/ Ry
C, Ty = (T~ T)/ Ry +(L ~B)/ Ry

C, T, =(T3-T,)/ Ry + (o= 1)/ Ryg

CIO ]Io = (T9 ‘ﬂo)/Ru +(Z: _]IO)/RIS

C\ T =(T,~T)/ R+ (T, ~T)/ Ry +(T, -

(3.27)
(3.28)
(3.29)
(3.30)
(3.31)
(3.32)
(3.33)
(3.34)
(3.35)

(3.36)

I/ Ry + (3.37)

(L =)/ Ry + (T~ 1)/ Ris + (T, ~ T}/ R

And the state vector X inthis case willbe [[ L, LT, s I, T, LT, 1T, T1 . Results

of the construction element parameter optimisations are given in Table (3.1) based on
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the following resistance and capacitance rationing for the k" resistor

(k=1,2,3; 1=outermost ) and 1" (1=1,2,3; 1=outermost ) capacitance in an element:

R, = fiRow (3.38)
CI = gl Ctotal (3 '3 9)

Note that in the case of the identical internal floor and ceiling constructions, values

of the element model parameters for the ceiling construction can be taken from the

corresponding values for the internal floor construction with the values f,, f,,f, and

g,,g, interchanged.

Elements fi £ /s g g
External Wall 1 0.3884 0.5059 0.1107 0.8138 0.1862
External Wall 2 0.4224 0.5593 0.0183 0.9186 0.0814
Internal Partitions  0.4696 0.4238 0.1066 0.9096 0.0904
Internal Floor 0.6463 0.2668 0.0869 0.8736 0.1264

Table (3.1): Results of the optimised 2™ order element parameters

Both the internal air mass C,, and the thermal resistance of the windows R, are

calculated using equation (3.25) and equation (3.26) respectively.

A preliminary model was implemented using the realisation shown in figure (3.15).
The building space model, which was expressed as a state-space block (either
equation (3.27) or equation (3.37)), was solved using a variable step Runga-Kutta

scheme selected from within the solver library of the MATLAB-SIMULINK software

package.

Tout
External Air
Temperature

X = Ax+Bu > —]
- MATLAB y=Cx+Du
1 ’ Function |
Building Thermal Intemal Air

Gl}(;i:;li aSt;J(l;I Solar Processor Model Temperature

Figure (3.15): Overall model for the building space using MATLAB-SIMULINK

packages.
41




gaf&nf mc&ﬁng Ar Cindrol ‘_ﬂnw#qa&au

Measurements of free float internal air temperatures for the room were available

Céaphr 3

for a 30-day period during a time when the space was unoccupied and corresponding

time series measurements of (15-minute) solar irradiances and external air

temperatures were also available as driving inputs (figure (3.16a) and (3.16b)). The

model was initially run for several days using the first time row values of the

measured input data until all element temperatures converged to steady values, prior

to submitting to full 30 day simulation.
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Figure (3.16): Measured climate data
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Results of measured and simulated internal air temperatures for a four-week period

are shown in figure (3.17a). A one-week period from this is also shown in figure
(3.17b) at higher resolution.

The tracking performance of both models in relation to measured data is good but
both models underpredict the internal temperature consistently. In the case of the
simple model based on Lorenz & Masy’s prescription [1] the degree of

underprediction is significant at 1-2K.

In the case of the higher order model based on “tuned” second order element
modelling as proposed in this study the degree of underprediction is much less
significant at typically less than 1K. Thus the model formulation proposed in this
study represents a significant improvement over the simple low order room modelling

method.

It is evident that the key uncertain variable in both models in the rate of external
ventilation air. Since the modelling problem explored here has concerned itself with
an unoccupied space, external ventilation is due solely to leakage infiltration. The
rate of external air assumed for modelling purposes was 0.5 air changes per hour.
Clearly, during free float conditions in mild weathér with solar radiation, the internal
temperature will be higher than the external temperature at all times. Thus it is likely
that the infiltration rate will actually have been lower than the latter value. To test for

this, a further modelling run was implemented but with the air change rate set at

0.25h°1.

Results have been included in the one-week graph of figure (3.17b). It is clear
from this that the degree of underprediction of the “tuned” model is now negligible
and certainly within the typically uncertainty of measurement of the internal air
temperature (0.2K). Though further study needs to be done on a satisfactory method
of representing ventilation air rates in this improved model, it is clear that the rate of
ventilation of external air is the dominant uncertain variable in the problem presented
here. Thus the improvement offered by the modelling approach recommended here

could be concluded with some confidence.
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Figure (3.17): Measured and simulated internal air temperatures
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In terms of computational effort, the 20" order “benchmark™ description of a

typical element required 3.986s of computer time whereas the proposed model
required 0.211s and the Lorenz & Masy [1] based model required 0.19s. These results
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were based on a computer equipped with a Pentium 650MHz processor. Thus the

increase in computational effort required by the proposed model is negligible when

compared with existing 1% order model descriptions.

3.5.2. Application to a low thermal capacity room

The building space considered above can be characterised as one of typically high

thermal capacity, with an indicative time constant (i.e. the time constant arising from
a step disturbance in external air temperature) of approximately 220 hours. To
investigate the impact of the element model fitting method applied to a building with
low thermal capacity characteristics, the previous room was adopted but all

construction elements were replaced using combinations of material choices with low

capacity.

The choices, though arbitrary, were based on typical constructions that might be
found in a “lightweight” building in practice in order to retain a degree of realism. To
ensure that the transmittances were identical (i.e. only the thermal capacitances were
allowed to vary) the thickness of the certain layers (i.e. insulating and finish layers)
were adjusted in order to ensure equivalent overall resistances of each element
between the high and low thermal capacity cases. Thus the indicative time constant in

this case is approximately 25 hours. Construction details are given appendix B.

Calculations of the optimised 2% rder element model parameters were carried out
using the method described in section (3.4.1) and section (3.6) and results for these

new constructions are given in Table (3.2).

Elements fi 1 /s & 2,

External Wall 1 0.5985 0.3795 0.0220 0.8120 0.1880
External Wall 2 0.7416 0.2401 0.0183 0.9389 0.0611
Internal Partitions  0.4127 0.4767 0.1106 0.8016 0.1984
Internal Floor 0.4181 0.4818 0.1001 0.7893 0.2107

Table (3.2): Results of the optimised 2™ order element parameters
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Simulation results using the same input data set as was used for the previous

construction types is given in figure (3.18) based on the original air infiltration rate

(i.e. 0.5h-1). Again the level of disagreement between the two modelling methods is
clear with the simple low order model underpredicting the model proposed in the
present study by typically 1-2K.

It is not possible to generalise the pattern of results neither between construction
element types, nor between the two cases considered above in terms of the rationing
of element resistances and capacitances. Nevertheless, there is a rough consistency
between the two sets of results. Specifically, the mean inner resistance share of the
overall value is under 10% whereas the average middle resistance share is about 40%
and the outer value 50%. As to capacitance rationing, an inner capacitance share of

about 15% and an outer share of 85% would appear to cover many applications.
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Figure (3.18): Simulated internal temperatures (low thermal capacity space)

3.6. Solar processing
In simulation modelling, weather data is based on measured data from weather

stations usually presented as fypical meteorological year (TMY) data. The solar
measurements from such stations tend to be global horizontal values (i.e. the sum of

direct and diffuse radiation measured on the horizontal plane at the site in question).
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To estimate the incident solar irradiance on a surface at any orientation,

estimations of the diffuse and direct fractions of incident radiation on the horizontal
plane are required. From these values, an estimate of incident radiation on a tilted
surface may be made. The diffuse and direct components may either be modelled or

based on a measurement of the total horizontal (global) radiation.

A combination of two algorithms was used for this purpose. The first algorithm
presented by Skartveit and Olseth (S&O) [91] was used to estimate the diffuse and
direct fraction from the measured global value. The second model, by Lui and Jordan
[92] used the estimated results of the S&O algorithm to determine the radiation
incident on a (potentially tilted) building surface [93].

A MATLAB function has been developed, which given the site longitude, latitude,

the surface azimuth; and elevation will give the effective incident radiation.

3.7. Conclusions
In this chapter an approach is described for the optimisation of reduced-order

Jumped capacity modelling of the dynamic thermal behaviour of building spaces. The
method is appropriate for simplified and computationally efficient building envelope
model descriptions of the type needed for short-term analysis of energy and

environment in buildings, such as plant and control system simulations.

The method described is based on “tuning” the parameters of 2™ order construction
element model descriptions using nonlinear constrained optimisation adopting the
Kuhn-Tucker equations. The reference point for these optimisations is an equivalent
20" _order “benchmark” description. Results of these optimisations lead to an 1™
order lumped parameter building model. The proposed method results in three
resistances and two capacitances for each construction element making up the
building space. The values of these resistances and capacitances are fractions of the

overall calculated resistance and capacitance values.

Whilst it is not possible to derive general rules for the values of these fractions due

to the infinite range of construction element types likely in practice, the analysis of
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several construction types of mixed materials suggests that the innermost-to-

outermost resistance fractions to be typically 0.1; 0.4 and 0.5 respectively. The
corresponding innermost and outermost capacitance fractions are typically 0.15 and

0.85 respectively.

A solar algorithm has been included to estimate the incident solar irradiance on the
windows from the measurement of horizontal (global) solar irradiance. For whole
space simulations compared with measured data, the 11% order model developed in
this study was compared with a simpler 6 order model based on the prescriptions of
Lorenz & Masy [25] as has been used extensively in the past. Though both models
were found to consistently underpredict the measured trend of internal temperature
over a 30-day “free float” period of simulation, the 11% order model was found to give
substantial improvement over the simpler model. It was noted that the major
inadequacy with the simple model lies in its inability to adequately track the transient

effects of heat transfer received at internal building surfaces (i.e. radiation).

The main uncertain variable in all these model types was the rates of ventilation of
external air (i.e. the air change rate) which was an assumed value and taken to be
constant. Reducing this uncertain value improved the performance of the 11™ order
model such that its agreement with measured data was consistently within the

uncertainty of measurement.

The computer time needed to solve a typical element simulation using the proposed
2 order element modelling method was only 11% higher than that required by the
simpler 1% order element model. Both methods required considerably lower computer
time than a 20® order “benchmark™ test case (both requiring under 6% of the
computer time needed by the latter). Thus the method proposed in this study gives a
substantial improvement in modelling performance for a negligible increase in

computer effort.

In order to develop a control system for solar buildings, naturally the heating

system also has to be modelled. This is done in the next chapter.
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Chapter 4
Heating System Modelling

4.1. Introduction
r I Yhe control of heating, ventilation, and air conditioning (HVAC) systems is

difficult due to the nonlinear nature of its components, the wide range of

operating conditions under which they must operate, and the many interactions
between them. While many models already exist, their accuracy under closed Ioop
control and varied external parameters is often limited, compared with open loop

accuracy, due to more variables changing during a closed loop test.
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The reasons for intensified research in improved control for heat, ventilation and

air conditioning (HVAC) systems are increased energy costs together with higher
demands upon the indoor climate and air quality. Due to the fast progress in
computerised control, and also because research into control theory has resulted in
new advanced controllers coming onto the market, the use for more advanced

controllers in this fields has become possible.

To improve the performance of controllers and to benefit from the use of advanced
control algorithms the dynamics of the process have to be fairly well known. The best
and easiest way to acquire such knowledge is through the dynamic simulation of the
actual process. Many HVAC mathematical models exist which are very complex and
with a large number of parameters in the area of building design. In general, these are
not easy to use, in order to check the behaviour of control strategies, due to the many

parameters that are necessary to take into account [94].

Developments in HVAC simulation program have addressed problem-specificity;

the two most promising developments are TRNSYS [95] and HVACSIMT [96].

Underwood [97], for instance, has developed HVAC control component models for

TRNSYS that have general applicability, while HvACSIM™T has been used extensively for
investigating a wide range of HVAC control problems [98,99]. One restriction with
these programs is that many of the plant component models are steady state or quasi-
steady-state, making them suitable (and computationally efficient) for low frequency
dynamic analysis, but unsuitable for high frequency disturbances, which are important

in many instances for control design.

It is therefore argued that a modelling environment is needed, in which developed
models have a high degree of transportability and transparency, and the model itself
requires to be spectrally inclusive for wide applicability in control synthesis and
design. A modelling environment that has the potential to meet these needs in
MATLAB-SIMULINK [100], which has the added advantage of convenient access to a
very wide range of control system analysis and design tools. Hence this method has

been used in the present work.
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One component in particular, the hot-water radiator, is very nonlinear in practice
and attempts are often made to linearise these components using nonlinear control

valves and thus force a more linear control system response overall.

In this chapter, a detailed model of a hot water heating systems and related control

devices is developed and evaluated for the specific purpose of control simulation.

4.2. Heating system model

For certain types of problems such as long term energy usage, it is possible to treat
the plant as a quasi-steady-state problem. Conventional steady-state theory is
applicable, and the central assumption is that the plant variables assume steady-state
trajectories within the integration time interval of relevance, to the simulation of the

building envelope and room air energy balance.

For problems involving control system design, a quasi-steady-state approach fails
to capture all of the fast and slow dynamics that describe the coupled room space and
plant problem and the plant needs also to be described dynamically. The simplest
~ approach is the stirred tank methodology, which is, in effect, a lumped parameter
method for plant. Here, the plant is broken down into a series of inter-connected
components such that the properties of each component part can be assumed to be
entirely uniform. For example, in a hot water radiator, it would be assumed that the
water temperature is perfectly mixed and, thus, equal to the outlet water temperature
(i.e. system return temperature). This is an acceptable approximation so long as the

radiator or emitter is broken down into a number of smaller sub-systems.

The heat emitter is coupled to the space thermal environment through the space air
temperature and, if the emission is in part radiant, through the various space surface

temperatures.

The mathematical description of the hot water heating system is divided into two

parts. The first part is the description of the heat exchanger and its water connections,
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and the second part is a description of the control valve, also the temperature sensor

will be described as a part of the heating system. There are three possible control
strategies to control the heating emitted from the hot-water heating systems:

1. Variable flow-rate constant temperature (VFCT): In this case, the heat emitted
from the heating system is controlled via the hot water-flow rate, with constant
water flow temperature.

2. Constant flow-rate variable temperature (CFVT): In this case, the heat emitted
from the heating system is controlled via the temperature of the hot water, with
constant hot water flow rate.

3. Variable flow-rate variable temperature (VFVT): In this case, the heating
emitted from the heating system is controlled by a combination of water flow

rate and flow water temperature.

4.2.1. Hot water radiator
Other than in special industrial applications, the type of hot water heat emitter most
commonly used in current practice will provide natural convection or some

combination of natural convection and radiation.

Figures (4.1) and (4.2) depict the extremes of this range-the convector-radiator
(figure (4.1)) and the encased natural convector (figure (4.2)).
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Figure (4.1): Convector radiator
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Figure (4.2): Finned-tube convector
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Figure (4.3): Heat emitter model zoning

Referring to figure (4.3), an energy balance on the waterside gives:

C, T, =mec, (T,~T,)-0, (4.1)

w Two

0, =h, A (T, ~1) 4.2)
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An energy balance about the heat emitter material gives:

CT,=0,-9, 4.3)
In which the heat emitted from the convector is assumed instantaneous and given by:
Q,=hA,(L,-T) (4.4)

n is typically in the range 1.3—>1.7
In the above, it has been assumed that heat emission by convection and radiation

may be “lumped” as one which is acceptable so long as the space air temperature, 7,

and mean room surface temperatures are in reasonably close agreement.

Whilst the combined airside emission coefficient A, may be assumed constant, the
waterside convection coefficient A, , may not. The water flow conditions in the
emitter will, at certain positions of the control valve under VFCT or VFVT control
strategies be laminar. When the control valve is operating nearer full capacity, flow

conditions may be laminar or turbulent depending on the type of emitter. Thus A

will depend on whether the prevailing flow condition is laminar or turbulent.

For flow in tubes, the transition from laminar to turbulent flow occurs at [101]
Re, = Pu¥ad: (4.5)
Hy
(in which Req is the Reynolds number with respect to flow in tubes).

In practice, the transition is not quite so abrupt as implied by equation (4.5) and a
range of Reynolds numbers for transition may be observed. Depending on the pipe
roughness and smoothness of the flow, the generally accepted range for transition is

[101]:

2000 < Rey <4000 (4.6)
By continuity:
m, = P,V Aiross 4.7
So that the Reynolds number may also be written as:
Re, = md, (4.8)
AirossH
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Under turbulent flow conditions, the following empirical expression may be used

to obtain the waterside convection heat transfer coefficient [101]:

— hcwdi

Nu, =0.023Re%* Pr® (4.9)

w

(in which Nuy is the Nusselt number for flow in tubes).
For laminar flow (Req <2000) the Nusselt number can be shown to be a constant

value which for tubes is approximately 4.36, i.e.,

Nu, = h;:di =436 (4.10)

In the transition region (2000 <Re4 <4000) the Nusselt number (and, hence 4, ) is

obtained using a polynomial curve fitting with reference to the extremes defined by

equations (4.9) and (4.10), i.e.,

436< ﬁkld— <0.023Rel* Pr®® 4.11)

W

4.2.2. Control valve

Valves in a heating system are provided for two purposes: one is to enable parts of
the system to be isolated, and the second, to enable regulation to be carried out. These
two purposes are quite separate and distinct, and it is indeed a fact that a good
isolating valve usually makes a very poor regulating valve. For control applications,
control valves are used to regulate heat transfer through flow rather than to regulate

flow as such.

There are two types of control valves, two port valves and three port valves. Two
port valves are increasing in popularity especially in large networks where there is a
large number of zone control valves [102]. Three port valves are used extensively in
HVAC application. Mostly, these valves are designed as mixing valves having two
inlet ports and one outlet such that, with correct connection arrangements, variable-
flow constant-temperature or variable-temperature constant-flow control can be

realised with respect to emission [103].
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Mathematical models of control valves for liquids are generally based on

expressing the relationship between the flow rate passed by the valve and the position
of the valve stem; the valve characteristic [104]. Thus the valve can be expressed by
an “inherent characteristic”, Gy, (with the absence of connected system effects),
leading to an “installed characteristic”, Gy, (including connected system effects).
Usually G, referred to as the “let by” of the valve. This is the closure flow rate
arising from the need to maintain a small clearance between plug and port thereby
preventing the plug from “sticking” to its seat and requiring an inordinate force by the
positioning device to fit it. The “let by” for most control valves, though dependent on
valve differential pressure, is very low (usually less than 1% of the design rated flow
rate), and it may be obtained from the manufacturer.

There are two cases, to express the inherent characteristic, one is linear case, and
the other is equal-percentage case. For the linear case, it is thus clear that the inherent
characteristic can expressed as:

G,y =G, +u(1-G,) (4.12)

For the equal-percentage case, equal increments of valve position will be produce
equal ratios of flow, and can be expressed as:

Gy =G (4.13)

In practice, the very action of the valve in controlling flow results in pressure
changes in the controlled circuit so that the inherent characteristic is not physically
realisable and an installed characteristic which includes system effects becomes

applicable.

An installed characteristic can be derived from the inherent characteristic based on
the valve authority N =AP,/(AP, +AP,), where AP, and AP, are respectively, the
pressure drop across the fully open valve and controlled circuit at design condition.
The installed characteristic of the valve in terms of its inherent characteristic and the
valve authority can be written as follows:

G, =[1+ N1/ G, -D]™? (4.14)

As matters of good design practice the valve authority N, can be assumed to lie in

the range 05< N <0.7.
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Thus the non-linear characteristic of the valve (e.g. figure (4.4)) attempts to

compensate for the non-linear heat emission characteristic.
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Figure (4.4): Non-linear valve characteristic

The equal-percentage valve gives a good match with the required flow
characteristic at 05< N <0.7, though the higher value of N will result in a high
valve pressure drop requirement. In practice, N =05 gives a good compromise
between characteristic and pressure drop. Clearly therefore besides ensuring an
appropriate valve characteristic, a control valve must have a significant pressure drop

in relation to the controlled circuit if it is do its job correctly.

4.2.3. Temperature sensor model

In this work, the room air temperature sensor is relevant. In most applications
involving heating control, resistance temperature detectors (RTDs) are used.

Currently, these use thin film technology and so are precise and responsive.
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Measuring instruments (e.g. temperature detectors, pressure and flow detectors,

heat meters, power meters) usually take from a few seconds to a few minutes to
register and process the data they measure. For example, sensors mounted in fast-
moving liquid streams in pipes will tend to respond quickly (a fraction of one second
to a few seconds). On the other hand a sensor mounted on a room wall measuring air-
dry bulb temperature in relatively still air will respond more slowly (a fraction of one

minute to a few minutes).

It is common for such components to respond exponentially such that a first-order
lag characterised by a time constant is generally a good description. Thus for the

room air temperature detector:

e 4.15)

In which 7;,tzy are the temperature signal from the detector and detector time

constant respectively. Figure (4.5) shows a simple block—just a function block and an

integrator:

T

i

T, —output

fwy W
1,47, /dt

v |-

Figure (4.5): Measuring instrument SIMULINK block

4.3. Heating system model synthesis

The heating system model is summarised as shown in figure (4.6) in which a hot
water supply from central boiler is delivered at constant temperature T,; (i.. the heat
emitted from the heating system is controlled via the hot water-flow rate, with
constant water flow temperature). The valve controls the water flow-rate, which is

applied to the radiator to produce the heating. The simulation model was
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implemented using MATLAB-SIMULINK. A block diagram representation of the heating

system is shown in figure (4.7).

f(u)

Control signal
Radiator/Convector

Hot water supply
m;, T Valve m,, T,

m [%4 T wo
<

Figure (4.6): Heating system

control

Control outp »

Signal .

mput @ > Two [

valve Ti -
Hot-water »

flow-rate E} '

(W) Us (1) > Q »(_ 1)
T | 1.5! > Q
| 0.032 I Uw - turbulent n Convector
d; UwT D.E.
_a——_> f(u) P ReN  Outl
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Switch

Uw - laminar

Figure (4.7): Model realisation of the hot water heating system

In summary, the heating system model has 10 input parameters: Cy, , cpw> Cpn> 4w

4,, B, d;, my, h, Nand G, (appendix C). There are 2 boundary variables: control

signal u, and inlet water temperature T7,;, and 2 state variables: T,,,, T, .
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The heating system response due to unit step applied as a control signal to the

valve is shown in figure (4.8), obviously from the graph, the nominal time constant of

the given heating system is within one minute (c.f. appendix C).
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Figure (4.8): Step response of the heating system

Figure (4.9): Northumberland building, north facing

4.4. Model application
The combined building model (described in chapter 3), and heating system model

was applied to an example space in a campus building at the University of
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Northumbria. This building, as shown in figure (4.9), has been the subject of

extensive research into photovoltaic cladding [90].

The selected space is north facing with a floor area of 63m’ and volume of
179.5m?. It has two external walls, an internal floor, internal ceiling and two
partitions and the internal elements were treated as adiabatic, the model realisation of
the selected example space shown in figure (4.10), in which the model parameters

optimised using the technique outlined in section (3.4) in chapter 3.

O

Windows /\/R<6/\/ R7 T R8 T R9 TI
Floar

Qg Cs I Cs ]:

External Wall 1 ~ -

R R R R R

T 1 T R, T 3 T 10, T 11 T 12 T2
Ceiling

CJ C, I c, I Ca I

External Wall 2 i 0 - =

Air Partitions
L L
C3 I C4 :[ C11 ]:m“s C9 I C]oI

Figure (4.10): Model realisation for the selected example space

This north-facing room (i.e. the diffuse component of solar radiation is very small
and neglected) was selected at a period in which the room was known to be heated but
not in use, and it is selected to study the behaviour of the effect of the heating system
and the outdoor temperature only. This enabled a simpler validation test scenario than
would have been the case had casual heat gains and direct solar radiation been active.
The heating system consists of an encased finned natural convector which is
controlled from a room temperature sensor and a three-port diverting valve which
seeks to vary the hot water flow rate in response to room temperature (i.e. a VFCT

control strategy is in use), as shown in figure (4.11).

The state equations for the 11® order thermal model of the selected example space,

including the hot water heating system can be written as follows:
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GT=(T,-T)/ R+TG-T)/R, (4.18)
C,T,=(,-T)/ R +(T-T)/ R, (4.19)
C,T,=(T,-T)/ R, +(T,-T,)/ R, (4.20)
C.T,=(L,-T,)/ R+(T -T)/ R, @21)
C,T,=(TA-T)/ R, +(T,-T,)/ Ry 4.22)
CoTy = (T, ~T)/ Ry+ (T, =T,/ R, + O (4.23)
C T, =(T22-T,)/ Ry +(T,-T,)/ R, (4.24)
C T, =(T,-5)/ Ry +(G-T)/ R, (4.25)
C, T, =(T23-T,)/ Ry +(To=T5)/ Ry, (4.26)
CooToo = (T~ T} Ry +(5 - Tio) ! Ry 27)
Co T =(,-T)/ Ry +(T,=T)/ Re+(T,=T)/ Ry +

(,=T)/ Ry +(Tiy=T)/ Rg +(T,~T)/ Ry + (428)

Og+0Op

Figure (4.11): Finned-tube hot water heating system, room 302, NBB
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Because adjacent zone temperature (7,,,7,,,7,,) are taken to be equal the internal

air temperature of the space under test (adiabatic case), the state space model of the

selected example space can be written as follows:

X = AX+BU (4.29)
Y=CX+DU
where X is the state vector [, T, L, T, . T, , T, T,, 71", U is the input vector

[1,0.0,0, T, T, T,]", Y is the output vector (i.e. in this case the internal air

temperature, 7).

4.5. Model implementation and validation

Validation is essential for the improvement in the quality of a model [105], since it
increases confidence in the predicted result. Bowman & Lomas identify three-
validation methods [106]:

1. Analytical verification.

2. Inter-model comparison.

3. Empirical validation.

In analytical verification, the model predictions are compared with known exact
solutions. Within a limited scope of application, this technique is useful for
investigating errors in algorithms but generating exact solutions is highly

problematical.

In inter-model comparison, results from an identical problem are generated using
two or more programs and the results are compared. However, favourable
comparisons of results do not necessarily mean that these results are correct. Hence
this method’s usefulness is restricted to checking the consistency of predictive
algorithms.

Empirical validation on the other hand compares a program’s predictions with

experimental data usually based on field measurements. In principle, this method
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gives “real world” results, restricted only by the reliability and comprehensiveness of

the measurements.

The empirical method has been applied here based on a data sample for a period of
several consecutive days from the (north-facing) example space when the heating was
active but the room known to be unoccupied. This eliminated the following input
excitations which are not of particular interest for the present study, thus simplifying
the validation process:

1. Direct solar radiation, (in this case the model only needs the diffuse part of solar

irradiance, because the selected space is north-facing).

2. Casual heat gains due to lighting, people and computer equipment.

3. Natural ventilation due to open windows.
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Figure (4.12): External air temperature with and without Butterworth lowpass filter

The measured data sample consisted of a one-week (approximate) time series at
15-minute intervals of space dry bulb temperatures and heating control valve signals.
The external temperature time-series was applied directly, and then filtered using a

third-order Butterworth lowpass filter with 11 mHz cut-off frequency in order to
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smooth out some unacceptable noise spikes. The external temperature with and

without filter is shown in figure (4.12).

The final model was implemented using the realisation shown in figure (4.13) in
which the model of the temperature sensor was included for the data comparison
purpose. The building space model, which was expressed as a state-space block, was
solved with the essentially nonlinear differential equations forming the heating system

model using a variable step Runge-Kutta scheme selected from within the solver

library of the software used.
T, | 7o
Qs (diffase) —} SR
pli ]
Outdoor n Blin Out P
climate o Temperature Ti
— Sensor
t+——Pp{control
~P|0g
Control Outpuy |,
Signal input Q Building
> |Tin
m valve
Heating
Hot-water System
flow rate
Casual
Heat Gains

Figure (4.13): Overall model for the building space and its heating system

In figure (4.14), the response to several cycles of heating is compared with field
measurement data. The initial period represents a weekend whilst the 5 cycles of
heating and cooling represent Monday-Friday. Results based on the model and field-
measurements compare very favourably after the external temperature time series had

been filtered to remove noise from the data.

Figure (4.15) shows the error between the model predictions and field
measurements, the overall root-mean-square error being approximately 0.1K. Though
the 2™-order heating system model is simple, it seems clear from figure (4.12) that it
captures the essential dynamics of the problem as far as control system analysis is

concerned.
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For long-term investigations, the building envelope mass clearly dominates

Chapter 4

whereas for short-term investigations the room air mass dominates. The dynamics of

the room air mass are much closer to the heating system dynamics than to building

envelope mass.
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Figure (4.15): Error between model predictions and field measurements
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Hence it is argued that a simple heating system model which captures the key low

frequency dynamics (i.e. neglects such high frequency effects as measurement noise)

is in harmony with the dominant air thermal capacity effect of the space.

4.6. Conclusions

The goal of this chapter was to develop a suitable model of a hot water heating
system which, when couple to the room space model of chapter 3, could facilitate the

study of nonlinear control laws.

The model developed in this chapter represents a lumped-parameter non-linear
heating system description. Excellent agreement has been found between the model
and results from field monitoring of a building. However, these results apply to a
building with a high thermal capacity facing north (with, consequently, low solar
radiation).  Nevertheless, it may be concluded that the model is simple,
computationally efficient and sufficiently accurate to have potential for applications to

short time-scale simulations appropriate to control system analysis.

Using the building space model developed in chapter 3 and the heating system
model developed in this chapter, as a test bed for analysing strategies, the next chapter
will demonstrate the comparison between fuzzy logic control and a benchmarking
PID controller.
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Chapter S

Static Fuzzy Logic and PID Controllers

5.1. Introduction

here are many different controllers for heating systems. The type of control
Taction may classify controllers or the variable used for the control signal.
Control techniques applied to heating systems may be two position (On/Off), in which
the controller output is either “on” or “off’, modulating (utilising proportional,
integral and differential modes or some combination of these) [107] or more advanced

techniques such as predictive control [108].
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Presently, most of the controllers used in industry are based on PID control. It is
often very difficult to obtain an exact mathematical model of a nonlinear dynamical
process. Therefore, the fact that PID controllers utilise the error, the integral and the
derivative of the error, rather than an explicit model of the process, has made them
quite popular. However, the proportional, integral and derivative gain constants
determined by tuning the controller heavily depend on system parameters. Changes in

these parameters require retuning of the controller.

An alternative to conventional control is fuzzy logic control (FLC). Fuzzy logic
control is based on the fact that an experienced human operator can control a process
without knowledge of its dynamics [109]. Developing FLC is usually easier and
cheaper than PID controller and FLCs are more robust in that they can cover a wider

operation range.

FLCs are becoming increasingly popular [110-117] because of their ability to deal
with processes which are ill defined, do not lend themselves to mathematical
modelling, and hence difficult to control by conventional methods. The power of
FLCs for dynamical systems is based on the ease of design of control rules, the
understandable nature of the resulting control signal, non-dependency on accurate
process model, and their ability to deal with nonlinear systems. Today the success of
fuzzy logic controllers can be found in diverse areas such as consumer electronics
[110,118], home appliances [119-121], industrial process [122-124], financial systems
[125] and transportation systems [126,127].

In this chapter, PI-based fuzzy logic controller and conventional PID (proportional,
integral and derivative) controllers were developed in which the error between the
internal air temperature and the user set point temperature was used as the controller
input. The output of the controller was applied to the heating system to bring the
internal air temperature to the user setpoint temperature. The controller’s parameters
were set to values that result in the best performance under likely disturbances and

changes in set point.
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This chapter presents the architecture and the principles in the design of the static
FLC developed for the control of the internal air temperature. The chapter starts with
the basic structure of a simple fuzzy logic controller in section 5.2. The design details
of each of the principal components of a fuzzy logic controller are discussed in
general in section 5.3. A closed loop system based alternately on PID and FLC are
developed in section 5.4 and a comparison between the performance of the two

controllers is given in section 3.5.

5.2. Basic structure of a fuzzy logic controller

The basic structure of a simple FLC is shown in figure (5.1). There are four
principal components: a fuzzification interface, a knowledge base, decision-making
logic, and a defuzzification interface [114].

A) Fuzzification interface: performs the following functions:

(1) Measure the values of input variables, which are the outputs of the system to be

controlled,

(2) Scale mapping that transfers the range of values of input variables on to a

corresponding universe of discourse, and

(3) Fuzzification that converts input data into suitable linguistic values, which may

be viewed as labels of fuzzy sets.
e et e e e e St e L
y Fuzzy Logic Controller |
Knowledge
1 e |
1 4 |
I I
I |
i Fuzzy Fuzzy, e " |
I Fuzzification L Decision Making Defuzzification I
" Interface Logic Interface |
1 I
I |
L---- — §F §F FR ¥ B 0 & & B 0 B 0B B OB B | ---J
Crisp Input Crisp Output

Figure (5.1): Block diagram of the basic fuzzy logic controller
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B) Knowledge base: comprises a knowledge of the application domain and the desired

control goals. It consists of a data base and a linguistic (fuzzy) control rule base or

simply a rule base.

(1) The data base provides the necessary definitions, which are used to define
linguistic control rules and fuzzy data manipulation, and

(2) The rule base characterises the control goals and control policy of the domain

experts by means of a set of linguistic control rules.

Q) Decision making logic: this is the kernel of a fuzzy logic controller. It has the

capability of simulating human decision-making based on fuzzy concepts and of
inferring fuzzy control actions employing fuzzy implication with rules of

inference.

D) Defuzzification interface: Defuzzification is a mapping from a space of fuzzy

control actions defined over an output universe of discourse into a space of non-

fuzzy (crisp) control actions.

A detailed description and the design of each of these components is given in the

following sections.

5.3. Design issues of fuzzy legic controllers

5.3.1. Methodology

In this section, a detailed description of the methodology used in the design of
fuzzy logic controllers is presented. Before going into the design details, it is
appropriate to mention the five basic assumptions, which are commonly made. They
are listed below [128]:

(1) The plant is observable and controllable: State, input and output variables are
usually available for observation and measurement or computation.
(2) There exists a body of knowledge comprised individually, or combination of, a

set of expert production linguistic rules, engineering common sense, intuition, a
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set of input/output measurement data, or an analytical model that can be fuzzified
and from which rules can be extracted.

(3) A solution exists.

(4) The control engineer is looking for an acceptable solution, not necessarily the
optimum one.

(5) The controller is designed to the best of available knowledge and within an

acceptable range of precision.

With the awareness of the above assumptions, the design methodology of a fuzzy

logic controller can be divided into the following stages [114]:

1. Design of the fuzzification process,

2. Design of the data base, involving:
= Discretization of the universe of discourse,
= Fuzzy partition of the input and output spaces, and
= Choice of the membership function linguistic terms.

3. Design of the rule base, using either: expert experience and control engineering
knowledge, model of an operator's control actions, a fuzzy model, or learning or
self-organising process.

4. Design of decision making logic, using either: Mamdani's method, Larsen's
method, Tsuhamoto's method, or Sugeno's (or TSK) method.

5. Design of defuzzification process, using either: height method, centroid method,

weighted average method, mean of maximum method, or centre of sum method.

5.3.2. Specification of the fuzzification process

Fuzzification is related to the vagueness and imprecision in a natural language and
is defined as a mapping from an observed input space to fuzzy sets in a certain input
universe of discourse. In fuzzy control applications, the observed data are usually
crisp data. Since the data manipulation in a fuzzy logic controller is based on fuzzy
set theory, fuzzification is necessary during an earlier stage. Fuzzification is dealt

with by a fuzzification operator, which is defined as follows.
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A fuzzification operator has the effect of transforming crisp data into fuzzy sets.

Symbolically,
x = fuzzifier(x,) 5.1

where x, is a crisp input value from a process; x is a fuzzy set; and fuzzifier
represents a fuzzification operator. A fuzzification operator conceptually converts a
crisp value into a fuzzy singleton within a certain universe of discourse (UOD). This
strategy has been widely used in fuzzy control applications, as it is natural and easy to
implement. Other ways of fuzzification can be found in [129-131].

5.3.3. Design of the data base

The knowledge base of a fuzzy logic controller comprises of two components; a
data base and a rule base. The data base is used to characterise fuzzy data
manipulation and its design includes the following stages:

» Discretization of UOD: Discretization of a UOD is frequently reffered to as

quantisation. In effect, quantisation discretises a universe into a certain number of
segments (quantisation levels). Each element is labelled as a generic element and
forms a discrete universe. A fuzzy set is then defined by assigning grades of
membership values to each generic element of the new discrete universe. For the
purpose of discretisation, a scale mapping is needed which will serve to transform
measured variables into values in the discretised universe. The mapping can be
uniform (linear), nonuniform (nonlinear), or both. The choice of quantisation
levels reflects some a priori knowledge. For example, course resolution could be
used for large errors and fine resolution for small errors. Thus, in a three input one
output fuzzy system, the control rule may be of the form:
“R;: If error (e) is A, sum of errors (se) is B and change of error (de) is C

Then output is D”

« Fuzzy partition of input and output spaces: A linguistic variable in the antecedent

of a fuzzy control rule forms a fuzzy output space. In general, a linguistic variable
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is associated with a term set, with each term defined on the same UOD. A fuzzy
partition then determines how many terms should exist in a term set. A typical
example is shown in figure (5.2a and 5.2b), depicting two fuzzy partitions of the
same universe [-1, +1]. It should be noted that the fuzzy partition of the fuzzy
input/output space is not deterministic and has no unique solution. A heuristic trial
and error procedure is usually employed to find the optimal fuzzy partition and

expert experience plays an important role in this process.

Degree of membership

Degree of membership

Figure (5.2): Diagrammatic representation of fuzzy partitioning:

Three terms, (b) Seven terms

» Membership function of a linguistic term: The membership function (MF) of a

fuzzy set is usually represented in the form of a function. Some popular MFs
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include, a triangular—shaped function, a bell-shaped function, a trapezoid-shape
function, etc, and a characteristic equation for some of these can be written as
follows. A triangular membership function is specified by three parameters

{a,b,c} as follows:

0 x<da
Z_a a<x<b
triangle(x,a,b,c) =3¢ (5.2)
cC—X
b<x<c
c-b
\O c<x

By using min max, we have an alternative expression for the preceeding equation

X—a ¢c—x
M
b—a c-b

The parameters {a,b,c} (with a <b <c) determine the x co-ordinates of the three

),0) (5.3)

triangle(x,a,b,c) = max(min(

corners of the underlying triangular membership function. Similarly a trapezoidal
membership function is specified by four parameters {a,b,c,d } as follows:

d—-x

e ),0) 54

trapeziod(x,a,b,c,d) = max(min(—;)ﬁ—_—a 1,
—-a

The parameters {a,b,c,d} (with a <b <c<d) determine the x co-ordinates of

the four corners of the underlying trapezoidal membership function. Based on
these equations, the membership values or grades of membership are based on the
subjective criteria of the decision. One important criterion for the selection of
MFs, is that they should be sufficiently wide to reduce the sensitivity to noise.
This raises the issue of the fuzziness or, more accurately, the specificity of a
membership function, which in turn affects the robustness of a fuzzy logic

controller.

5.3.4. Design of the rule base

A fuzzy system is characterised by a set of linguistic statements based on expert
knowledge. The expert knowledge is usually in the form of if-then rules, which are
easily implemented by fuzzy conditional statements in fuzzy logic. A collection of

fuzzy control rules that are expressed as fuzzy conditional statements forms the rule
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base or rule set of a fuzzy logic controller. The issues related to the design of the rule

base are discussed below.

Fuzzy control rule generation plays an important role in the design of a fuzzy logic
controller. There are four methods for the generation of fuzzy control rules [132, 114,
133] and these methods are not mutually exclusive. A combination of them may be

necessary to construct an effective method for the derivation of fuzzy control rules.

1. Expert experience and control engineering knowledge: In this method the fuzzy

control rules are designed by verbalisation of a human operator's and/or a control
engineer's knowledge in controlling the process/plant. This type of formalisation
of fuzzy control rules can be achieved by means of two heuristic approaches. The
most common one involves an introspective verbalisation of human expertise. A
typical example of such verbalisation in case of a cement kiln [134] is as follows:
“if the air flow is increased then the temperature in the smoke chamber
will increase, while the kiln drive load and the oxygen percentage will
decrease”.
From this verbal statement, the following fuzzy control rule can be derived.
“If drive load gradient is normal, AND drive load is slightly high AND
smoke chamber temperature is low THEN change percentage is positive

AND change airflow is positive”.

Another approach involves interrogating of experienced experts or operators using
a carefully organised questionnaire. Using this approach, prototypical of fuzzy
control rules can be formed. Finally, a heuristic cut-and-try procedure is used to fine

tune the rules.

This method is the least structured of the four methods, and yet it is the most
widely used one. The disadvantages are that (i) an operator may not be able to
verbalise his or her knowledge, and (ii) it may be difficult for a control engineer to

write down control rules because the process is too complex.

2. Modelling an operator's control actions: The operator's skilled actions or control

behaviour can be modelled in terms of fuzzy implication using the input-output
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data and the obtained input-output model can be used as a fuzzy controller. The
idea behind this mode of derivation is that it is easier to model an operator's actions
than to model a process since the input variables of the model are likely found by
analysing the control actions. A typical example is Sugeno's fuzzy car [135]. This
model car has successfully followed a crank-shaped track and parked itself in a
garage. The training process involves a skilled operator guiding the fuzzy model
car under different driving conditions. The control policy incorporated is
represented by a set of state-evaluation fuzzy control rules of the following form:

”

“Ri; If x is A and....and y is B, Then z=a,+a;x+....... +a y (5.5)

where x,...., y are linguistic variables representing the distance and orientation in

relation to the boundaries of the track, z is the next steering angle decided by the ith
control rules, and a,,....,a, are the parameters entering in the identification process
of skilled driver's actions. Besides modelling an operator's action, this method is also
used to model (identify) controlled processes according to their input-output data,
which involves parameter learning as well as structure learning [136]. These are

called linguistic control rule approaches to fuzzy modelling or identification.
The design of a fuzzy logic controller based on the derived fuzzy model is called a
model based fuzzy logic controller design and is representative of the third method of

design described next.

3. Based on a fuzzy model or behaviour analysis of a controlled process: In this

method, fuzzy control rules are derived or justified based on either the fuzzy model
or the behaviour analysis of a controlled process. In this context, fuzzy modelling
means the representation of the dynamic characteristics of the process by a set of

fuzzy implications with inputs, state variables, and outputs.

4, Based on learning (or self-organising): Many fuzzy logic controllers have been

built to emulate human-decision making behaviour. Currently, many research
efforts are focused on emulating human learning, that is, the ability to create fuzzy
control rules and to modify them based on experiences. Procyk and Mamdani

[137] proposed the first self-organising controller (SOC).
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5.3.5. Design of the decision making logic

This is the kernel of the fuzzy logic controller in modelling human decision
making within the conceptual framework of fuzzy logic and approximate reasoning.
In on line processes, the states of a control system play an essential role in control
actions. The inputs to the controller are measured by sensors and are crisp. These
inputs are fuzzified using the techniques discussed in section (5.3.2). Then the
necessary data-base and rule-base are derived for desired control action using the
methods discussed in sections (5.3.3) and (5.3.4). Then using the rule base, the
conclusion or the appropriate control actions have to be derived depending on the
input conditions or states. This process of computing a result or conclusion from a set
of fuzzy rules is called fuzzy inference. Approximate reasoning or fuzzy reasoning is
such an inference procedure. In general, there are four types of fuzzy reasoning
currently employed in fuzzy control applications, as mentioned in section (5.3.1). For
explanatory purposes, assume a two input single output fuzzy system with fuzzy

control rules Ry and R as follows:

Input: xis Aand y is B

Output: z is C

Rj:  ifxis 4 and y is B, then z is C|
Ry: ifxis Ayand y is B, then z is C,

zis C

where 4,, B, and C, are linguistic values of the linguistic variables x, y and z in
the UODs U, V , and W respectively, with i =1,2,...... ,n; and Cis the consequence.
Then the fuzzy control rule “if (x is A, and y is B,) then (z is C;)” is implemented
as a fuzzy implication (relation) R and is defined as
=1, (@) and g1, ()] — 1, (%) (5.6)

where 4, and B, are fuzzy sets 4,xB, in UxV ; R=(4, and B,)->C, is a fuzzy
implication (relation) in U xV xW ; and > denotes a fuzzy implication function. If
the firing strengths of the first and second rules are «, and «, then:
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a, = p, (%) A g (¥) (5.7)
ay = py (X0) A g, (Vo) |

where u, (x,) and pg (y,) play the role of the degree of partial match between

the user-supplied data and the data in the rule-base and “ A” represents min operation.
Because it is computationally very efficient and saves a lot of memory, the method

used in this work (Mamdani’s method), can be described as follows.

F reasoning of first type- Mamdani's minimum operation rule, R__as a fuzzy
Fuzzy reas c

.

implication function: In this method of reasoning, the i rule leads to the control

decision as given below.

M (W) =a, A pi, (W) (5.8)

the final inferred consequence C is given by:

pe(w) = p, v p, =[a, Ap (W]vie, ap, (W) (5.9)
To obtain a deterministic control action, a defuzzification strategy is required, as

will be discussed in section 5.3.6. This fuzzy reasoning process is illustrated in figure

(5.3).

Miax

]

Figure (5.3): Diagrammatic representation of fuzzy reasoning (Mamdani)
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5.3.6. Defuzzification Design

Defuzzification is defined as a mapping from a space of fuzzy control actions
defined over an output UOD into a space of non-fuzzy (crisp) control actions. A
defuzzification strategy is aimed at producing a non-fuzzy control action that best
represents the possibility distribution of an inferred fuzzy control action. Though,
there is no systematic procedure for choosing a defuzzification strategy, some of the
established methods can be found in [123, 114, 138, 139], the defuzzification method

used in this work is discussed below.

Centroid, Centre of Area (COA) or Centre of Gravity (COG) method: This procedure
is the most prevalent and physically appealing of all the defuzzification methods. In

the case of a continuous UOD, it is given by the following expression:

J-yt.(w}wdw
% (5.15)

zl:l = -
J 1wy
This method is shown graphically in Figure (5.4).

He
A

1

e

>
o W

Figure (5.4): Centroid defuzzification method

The whole process of designing a fuzzy logic controller can be summarised [123]
into the following steps:
¢ Identify the variables (inputs, states and outputs) of the plant.
e Partition the UOD or the interval spanned by each variables into a number of
fuzzy subsets, assigning each a linguistic label,
e  Assign or determine a membership function for each fuzzy subset,
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Assign the fuzzy relationships between the input fuzzy subsets and output

fuzzy subsets, thus forming the required rule base,

¢ Choose appropriate scaling factors for the input and the output variables in
order to normalise the variables to the [0,1] or [-1,1] interval,

e  Fuzzify the inputs to the controller,

e Use appropriate inference mechanism to aggregate the fuzzy outputs

recommended by each rule, and

e  Apply appropriate defuzzification to form a crisp output.

So far, the construction of fuzzy logic controllers and the principles involved have
been discussed in general. Now, the following sections will discuss how these
principles have been applied in designing a Pl-based fuzzy logic controller for solar

buildings, and comparison with a conventional PID controller.

5.4. Closed loop results

A controller and feedback path were added in order to close the open loop system
(i.e. the building and its heating system) described in chapter 3 and chapter 4. The

controlled variable (7j) is compared with the user reference temperature and the

resulting temperature error is applied to the controller. Outdoor temperature, solar

radiation and casual heat gains act as disturbances, as shown in figure (5.5).

Disturbance

Setpoint
~(fe e

T

Figure (5.5): Closed loop system
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5.4.1. PID Controller

PID control is commonly used in heating systems [107,140]. Although a PID
controller is reliable and efficient, its parameters require precise adjustment to obtain
optimal performance, and they are heavily dependent on system parameters. The
output of a PID is given by:

de(t)
dt

u(t) = k,e(t) +k j e()dt +k, (5.19)

in which e, k,, k, and k, are the error, proportional gain, integral gain and

p’
derivative gain for the controller respectively. The three gain values are tunable
control parameters (i.e. are adjusted in practice to give “good” control — usually

amounting to a stable response with favourable set-point tracking criteria).

The control error, e=T. —T, where T is in this case the reference value or ser

r i r

point in room temperature.

When a PID controller experiences an input error signal which is both large and
sustained the integral term gradually accumulates a very large output value. This will
occur for example during early morning preheating when the error is large to start
with but it also takes some time (sometimes a few hours) for the heating operating at
full capacity to bring the control error to within its proportional band. By the end of
the preheat period therefore, the integral term will have forced the control signal to a
very large value causing actuator saturation (i.e. the valve actuator is stuck at the
fully open position even when the error has reduced to zero or near-zero). The control
variable then overshoots causing the sign of the error to change. This sign change
then ensures that the integral signal de-accumulates but it takes time for the signal
value to come down sufficiently for the actuator to de-saturate. This “stickiness”
problem is called integral wind-up and an anti-wind-up mechanism is needed on most
PID controllers likely to experience such periods of operation in order to prevent this

from happening.

There are a few anti-wind-up strategies but they are all based on the same idea —

that of retarding the integral term in some way when the actuator reaches saturation.
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The simplest thing to do is to saturate the integral term to the upper and lower limits
of the control signal that correspond to actuator saturation (i.e. 1 and 0 in this case).
This can easily be done in SIMULINK because the integrator block has a “limit output”

facility that allows us to fix upper and lower saturation limits on integration.

Also a saturation block should be added on the overall control signal output value
leaving the controller and limit the signal to 0 (minimum); 1 (maximum). This is
because the valve model equations are based on a control signal in the fractional range
0->1. Thus any value outside this range is likely to lead to a mass flow rate from the
control valve subsystem which is outside the design range hence we adopt a fractional

control signal convention accordingly.

The PID controller described by equation (5.19) was applied to the system. The
actual parameters of the controller in the sample building space (kp, k;, kg) are 0.1K",

0.01K's™, and 0.5sK™ respectively and these were initially applied. This produced a
reasonable response but with overshoot (figure (5.9)), leading to more energy

consumption and thermal discomfort for the occupants.

A tuning algorithm was adopted to adjust the controller parameters in order to
eliminate this overshoot. In practice, Ziegler Nichols rules [141] or similar tuning
rules are used for predicting PID controller settings. These are based on achieving
favourable response criteria of a hypothetical linear low-order system and, thus, have
limited utility other than in the precise region of plant operation in which the tuning

was carried out.

It is possible to obtain optimum PID settings using norminal values as a starting

point by minimising a cost function attached to the target variables 7,. This process is

more or less equivalent to using an automated self-tuner on site. In practice, tuning

will normally take place in the off-.design phase when the plant is operating around

the required set point but with higher entering air temperatures, simply' because it will

rarely be convenient to wait for design conditions to prevail before commissioning is

carried out. The optimisation was therefore carried out using a nonlinear control

design (NCD) blockset available from within the extended program library used at
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arbitrarily chosen mid-session conditions corresponding to an entering air temperature

[142].

The NCD block works as follows. A constraint envelope is defined that defines
upper and lower bounds of the controlled variable, together with one or more tunable
variables. A cost function is generated consisting of a weighted maximum constraint
violation. At each iteration, each tunable variable is perturbed in twrn and the
resulting constraint values and cost function are evaluated. A gradient search
direction is determined from these results and a line search along the gradient is
performed in order to minimise the cost function while simultaneously satisfying the

constraint envelop criteria.

Hence the NCD block setup involved the following:

= A constraint envelope was defined for the controlled variable 7;. This consisted
of an arbitrary but “desirable” response to a step change in the setpoint from
“0°C”to “20°C™.

= The controllers’ parameters were set as tunable variables. The initial values

used were the actual values of the manufacturers’ settings.

To give initial estimates of the controller parameters, an error mapping method was
used as shown in figures (5.6, 5.7, 5.8). In which, the simulation model of the
building, heating system and PID controller was running with fixed one of the
controller parameters and varied the other two parameters to get a minimum a
performance index. The square root of the sum-squared-error (normalised error)
between reference temperature and the internal air temperature is used as a system
performance index. Using the initial mapped values to initiate the tuning algorithm,
tuned controller parameters of 1.527K", 0.005K's™, and 0.050sK™ respectively were
obtained for k, k; ks The response of the system under tuned PID controller is
shown in figure (5.9).

The tuned PID controller gives good results at the precise conditions for which it
has been designed. However, as will be seen later, when these conditions change
performance is less favourable unless the controller is re-tuned.
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Figure (5.6): Normalised error vs kp, kj
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Figure (5.7): Normalised error vs kg, k;

Figure (5.8): Normalised error vs kp, kg
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= Ref Temperaurc
x=r | meme Indoor Temp. (B setting PID)
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Figure (5.9): Closed loop response with tuned and untuned PID control

5.4.2. Static fuzzy logic control

Good tracking and more robustness to change in the building and climate

parameters are the objectives of design with the static fuzzy logic controller.

Although the choice of the number, range and shape of membership functions for a
variable is ultimately based on the subjective design choice and evaluation of the
resulting system performance, there are some guidelines were kept in mind during this
work and were presented by [112,114]. These guidelines are:

1. Symmetrical distribute the fuzzy sets across the defined universe of discourse,

2. Use an odd number of fuzzy sets of each variable-this ensures that some fuzzy set
will be in the middle, five or seven fuzzy sets for each system variable is fairly
typical,

3. Overlap adjacent fuzzy sets to ensure that no crisp values fails to correspond to any
set, and to help ensure that more than one rule is involved in determining the
output.

4, The membership function should allow a variable to have a membership value of

unity for at least one specific value of the variable in question.
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5. Use triangular or trapezoidal membership functions: these two choices can be
explained by the ease with which a parametric, functional description of the
membership function can be obtained, stored with minimal use of memory, and
manipulated efficiently, in terms of real-time requirements, by the inference

engine.

A fuzzy control algorithm was developed after some trials in order to verify the
fuzzy control rules, membership functions, scaling factors and defuzzification

strategy.

The input variables were normalised using different scaling factors of error and
change of error (E, =g, xE, and CE, =g, xCE) to bring all values of the error
and change of error within the corresponding UOD. In this application, fuzzy sets are
defined by assigning the membership functions to seven fuzzy sets (negative big
(NB), negative medium (NM), negative small (NS), zero (ZE), positive small (PS),
positive medium (PM), positive big (PB)) as shown in figure (5.10a,b,c) for the inputs
and output to simplify the design problem.

Overlapping triangular membership functions were used for inputs (fuzzification)
and output (defuzzification), the difference between these being the corresponding
scaling factors. The fuzzy control rules were derived by referring to human operator
experience and knowledge. There are two selected fuzzy sets each for error and
change of error. Therefore, four rules only were fired, represented by the intersection

of two rows and two columns in Table (5.1).

Change of error
Error | NB NM NS ZE PS PM PB
NB NB NB NB NB NM NS ZE
NM NB NB NB NM NS ZE PS
NS NB NB NM NS ZE PS PM
ZE NB NM NS ZE PS PM PB
PS NM NS ZE PS PM PB PB
PM NS ZE PS PM PB PB PB
PM PB PB

Table (5.1): Applied fuzzy control rules
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To make the fuzzy controller more sensitive to the error and change of error, and to
get fine resolution of the controller around the setpoint, the membership functions of
both inputs and output were narrowed around zero and widen elsewhere as shown in
figure (5.10).
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Figure (5.10): (@) Membership functions of the error, (b) Membership functions of the
change of error, (¢) Membership functions of the control signal
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A scaling factor (g,) was used to convert the crisp control signal from the
normalised discourse to the applied range of actual control signals (U, =g, xU),

which was then applied to the nonlinear valve. The relationship between the inputs
and the outputs of the controller (or the controller surface) is shown in figure (5.11).

Ch 0.5

Figure (5.11): Fuzzy controller output surface

Also a saturation block should be added on the overall control signal output value
leaving the controller and limit the signal to 0 (minimum); 1 (maximum). This is
because the valve model equations are based on a control signal in the fractional range
0->1. Thus any value outside this range is likely to lead to a mass flow rate from the
control valve subsystem which is outside the design range hence we adopt a fractional

control signal convention accordingly.

5.5. Comparison of controllers

The resulting FLC was applied to the building space and its heating system. Figure
(5.12), shows the system response under tuned PID and FLC. As can be seen, the
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performance of the FLC is superior to PID controller in terms of tracking of the

reference point, and hence, system energy usage and comfort criteria.

In order to test the controllers’ performance when system parameters change, the
building construction data were changed to those representing a very low thermal
capacity structure while keeping the overall thermal transmittance of each element
constant. This would have the effect of making the system much more responsive

(and, hence control more “difficult™). The controller specifications remained
unchanged.

Figure (5.13) reveals that the fuzzy controller maintains excellent tracking of the
reference condition whereas the tuned PID gives a reasonable response but with
overshoot. Thus a certain amount of robustness of the PID controller is lost requiring

it to be re-tuned whereas the robustness characteristic of the FLC is maintained.

fry | = Ref Temperaun: L
meme [pdoor Temp. (tuned PIDY
» | | ndoor Temp. (FLC) J

Internal air temperature (*C)

7 10 13 16 19 2 25 B 31 3 37 40 43 46 49
Time (Hour)

Figure (5.12): Comparison of tuned PID and FLC
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Figure (5.13): Low thermal capacity building’s space with tuned PID and FLC

5.6. Conclusions

Most current space heating system controllers continue to be based on the
conventional PID regulator. These controllers require 3 tuning parameters which are
difficult to optimise a priori and which, in any event, are only suited to a finite range

of plant response when the plant has nonlinear characteristics.

A fuzzy logic controller has been developed based on a 49-rule rulebase. The FLC
was found to give better tracking of the reference control condition than a
comparative tuned PID controller as well as better robustness properties when the
parameters of the system under control were changed. The FLC has the advantage of
requiring no mathematical model of the plant or measurements of plant response as

would be required to achieve satisfactory tuning of the PID controller.

Whereas the controllers in this chapter are designed for room air temperature
control, on a more fundamental level what is important is comfort, which depends on
other factors such as radiant temperature, relative humidity etc. In the next chapter,
comfort indices are discussed and a comfort based control system investigated.

91




CL@P&P 6 jﬁerma/ Comﬁrf gaéecl j II»ZZy JD?I:C Contro/&r

Chapter 6
Thermal Comfort based Fuzzy Logic Controller
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Chapter 6
Thermal Comfort based Fuzzy Logic Controller

6.1. Introduction
Building space comfort control is a multidimensional problem having no unique

solution, particularly in a solar building [143]. Also, the definition of comfort

is obscure and depends considerably on the psychosynthesis of the individuals living
in the space and on the type of activity they are engaged in [144]. In addition, the
same result can be achieved by employing different subsystems, such as ventilation,
cooling auxiliary heating thermal stores, etc., and consequently the problem of

correcting the environmental conditions corresponds initially to a twofold problem:
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(a) the interpretation of the comfort requirement, and (b) the making of a decision on

which subsystem or subsystems to use at a particular moment.

Also, most heating, ventilation and air conditioning (HVAC) control systems are
considered as temperature control problems. For this reasons the application of the
optimal control theory has not resulted in a single, widely applicable solution, but
only in sub-optimal systems, operating well only under a certain set of predefined
conditions [145-148]. By contrast, the implementation of a fuzzy logic expert system
fits the problem well, since it handles naturally the fuzzy comfort concepts and is well
suited to provide real-time decisions [149-152]. This approach captures the
architéct’s operation design rules in the form of a knowledge base, i. €. a set of logic
rules that would be applied if a human were operating the building controls
intuitively. According to Fanger’s theory, thermal comfort is determined by personal-
dependent and environmental-dependent variables. Thus, the comfort index PMV
(predicted mean vote) can be considered as a new indoor climate high-level
performance variable [149,152]. This is the main reason behind the necessity to
regulate the thermal comfort index rather than the internal air temperature.

The present chapter investigates the problem of designing a widely applicable
fuzzy logic system, focusing on the design of the rule base, the fuzzification interface,
defuzzification interface and the inference engine [114,153-155]. It should be noted
that the expert system works well only if the knowledge embedded in its rule base is
sound. An expert system with poor understanding of the requirements will make poor
utilisation of resources, just as a poorly trained human operator would. Consequently
the more complex the buildings are, with many spaces and many subsystems, so the
fuzzy logic system is more appropriate, since the number of comfort requirements and

the number of usable subsystems increase [149].

In this chapter, the predicted mean vote (PMV) is used to control the indoor
temperature of a space by setting it at a point where the PMV index becomes zero and
the predicted percentage of persons dissatisfied (PPD) achieves a maximum threshold
of 5%. This is achieved through the use of a fuzzy logic controller that takes into
account a range of human comfort criteria in the formulation of the control action that

should be applied to the heating system to bring the space to comfort conditions. The
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resulting controller is free of the set up and tuning problems that hinder conventional

HVAC controllers.

The PMV-based fuzzy logic controller investigated in this chapter starts with the
evaluation of the predicted mean vote level and compares this with the required
comfort range in order to arrive at a linguistic definition of the comfort sensation.
The controller then adjusts the air temperature set point in order to satisfy the required
comfort level given the prevailing values of other comfort variables contributing to

the comfort sensation.

The objectives of this chapter are thus:

e To further develop the previous model for investigating the comfort sensation
control of the heating system in a building space.

e To develop a control strategy which responds to the essentially subjective basis
of comfort sensation.

e To compare the developed control strategy with a conventional method of

building space heating control.

6.2. Thermal comfort variables
The thermal comfort sensation is expressed using Fanger’s predicted mean vote

(PMV) and percentage persons dissatisfied (PPD) [156] in which the environmental
factors of influence are room air temperature, relative humidity, mean radiant
temperature, and air velocity. In this work, for simplicity (besides being difficult to
evaluate dynamically) a constant mean was used for the air velocity. In addition,
there are human factors associated with activity level, and the thermal resistance of
clothing.
According to Fanger’s theory [156], PMV and PPD can be defined as follows:

“PMYV, is an estimation of the average vote of a large group of

persons submitted to a given thermal environment. The range

of PMV is =3(too cold) < PMV < +3(too warm) .

“PPD is an estimation of the percentage of persons who would

be dissatisfied by a thermal environment (i.e. the number of

potential complainers)”.
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The relationship between PMV, PPD and the thermal sensation of the occupant is
summarised in Table (6.1) [156] based on a neutrality at zero PMV (positive when the
thermal sensation is “warm” or “hot” and negative when “cool” or “cold”). The PPD

is estimated to be 5% when the PMV is zero and the target indoor temperature is set

with respect to this point.
PMV Thermal Sensation PPD (%)
+3 Hot 100
+2 Warm 75
+1 Slightly warm 25
0 Neutral 5
-1 Slightly cool 25
-2 Cool 75
-3 Cold 100

Table (6.1): Relationship between PMV, PPD and thermal sensation

ASHRAE Standard 55-81 for thermal comfort gives a psychrometric chart that

defines the winter and summer comfort zones. The comfort zone of the 55-81
Standard sets the effective temperature limits of 20 and 23 °C for winter and 23 and
26°C for summer. Lines of constant dew point temperature bound the upper and
lower limits of the comfort zone with 2°C as the lower limit and 17°C as the upper
limit [143]. These boundaries should be interpreted as fuzzy limits, since small
deviations in the borders of a zone do not have a dramatic effect on the comfort felt by

the space user [152].

Thermal comfort is expressed in terms of the thermal comfort PMV (predictive
mean vote). This thermal sensation ranges between the seven points of the
psychophysical scale [from -3 (cold), through O (neutral), to +3 (hot)]. Thermal
comfort influencing variables are classified in two categories [144]:

(a) Environment-dependent variables, such as air temperature, mean radiant

temperature, relative air speed and air humidity. An equivalent representation,

with a rather statistical definition, is the predicted percentage of dissatisfied
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(PPD). PMV and PPD are related through a one to one correspondence. The
comfort zone is defined as the zone in which the PPD is <10% or the zone in
which is PMV lies between + 0.5 units.

(b) Personal-dependent variables, such as activity (metabolism) and thermal

resistance of clothing.

6.3. Environmental-dependent variables
A model, which addresses the thermal response of a building space and its heating

system, was described in chapter 3 and chapter 4. In principle, three further
developments of this model are needed in order to prosecute a full thermal comfort
sensation analysis but only two of these were incorporated. The three developments
are mean radiant temperature; relative humidity and mean relative air velocity. Only
the first two were incorporated in the model developed previously since it was
assumed that, for the heated and naturally ventilated case of interest in this work mean

relative air velocity would be insignificant in most applications.

6.3.1. Mean radiant temperature

The mean radiant temperature 7, can be formally defined as follows:
T = 2 (BT (6.1)

where T, is the mean radiant temperature of a body in an enclosing space; F, is the
shape or configuration factor between the body and any one surface and 7, is the

temperature of that surface. The mean radiant temperature has a significant influence
on the body's rate of heat loss and thus its comfort state as defined by the Fanger
PMV [156]. Calculation of the mean radiant temperature is complicated by the non-
uniform "view" that the body has of the various surfaces making up a room space.
Consequently, equation (6.1) was not used to calculate the mean radiant temperature.
Thus an approximation has been used in this work, and the mean radiant temperature

has been calculated by the following equation based on an area-weighted mean:
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$a7
7;'1)1 = lnc (6‘2)

2.4,

1

in which nc is the number of enclosing surfaces of the space and 4;, T, are the area

and the temperature of the ™ surface respectively.

In practice, most building spaces experience asymmetry in the radiant field at least
to some extent. This is particularly evident when the following prevail (either
individually or in combination):

e Large spaces.

Irregularly shaped spaces.
Where there is a high degree of glazing.

Where bare heating surfaces form the main method of space heating.

Accounting for these conditions in the assessment of mean radiant temperature
(T;ns) is feasible in theory but not easy in a practical situation, in which a single point
measurement is generally used to inform control. Part of the problem is concerned
with the point of measurement since the occupant sensation of comfort is spatially
dependent. In small spaces this is not significant and in a large or more complex
spaces it can be dealt with by dividing the space into a number of rectilinear sub-
spaces with a point of measurement in each. The present work is confined to a single
zone approach for the calculation of the mean radiant temperature (7,) but clearly
this assumption could be refined when dealing with more complex room space

geometries.

6.3.2. Relative humidity

At high temperatures when comfort becomes shortly influenced by perspiration
loos from the skin, the relative humidity becomes an important factor. In fact
perspiration loss is governed partly by the moisture content or vapour pressure of the

air in a space (both of which are functions of relative humidity and dry bulb
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temperature). Hence a model of comfort will require a knowledge of the prevailing

space relative humidity.

Relative humidity in the space is calculated using standard psychrometric
properties of air [157,158]. The uniformity of this parameter within the space is again
an issue (see above concerning 7T,,,) however in most cases the air moisture content
(on which the relative humidity is dependent together with prevailing air temperature)
will be well mixed unless the space is very large. In any case the relative humidity is
less influential on overall comfort sensation than in the case with temperature
variables. Again, non-uniformity in relative humidity is not considered in the present
work. To calculate the relative humidity of a building space, the internal air enthalpy

(H.,) is first calculated from a room air total heat balance as follows:

MH, =Q +m,(H,~H) (6.3)

The outdoor air enthalpy ( H, ) is calculated using the procedure detailed in appendix

D. The mass of water vapour in ( kg / kg ) the internal air is given by:
&) =(H; ~CT;)/ h (6.4)

Hence the percentage saturation (to which the relative humidity may be taken as a

close approximation) is obtained:
¢, =100g(Z)/ g..(T) (6.5)
In which g (7)) is obtained in a similar manner as that of g, (7)) as given in

appendix D.

6.4. Person-dependent variables
These can be defined as the variables associated with the building occupants

themselves that have an effect on an individuals comfort.
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6.4.1. Activity (metabolic rate)

The metabolic rate is the rate of energy production of the body and is dependent
on the activity level of the occupant. As the metabolic rate varies, the environmental
conditions in which the occupant feels comfortable will change. With respect to
temperature, the higher the activity rate of the person, i.e. metabolic rate, the lower the

temperature required for human comfort [156].

The SI unit commonly used for metabolic rate is the met (1 met = 58.2 W/m?® of

body area). Metabolic rates for typical tasks are listed in Table (6.2).

Activity met W/m
Recliming 0.8 46.6
Seated and quiet 1.0 58.2
Sedentary activity 1.2 69.8
Standing, relaxed 1.2 69.8
Light activity, standing 1.6 93.1
Medium activity, standing 2.0 114.4
High activity (sustained) 3.0 174.6

Table (6.2): Metabolic Rates for typical activity levels [159].
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6.4.2. Clothing thermal resistance
Occupants can regulate their thermal comfort by the addition or removal of

clothing items. Different types of clothing possess different values of thermal
resistance, some examples of which are given in Table (6.3). A commonly used unit

for clothing thermal resistance is the Clo (1 Clo = 0.155 m’K/W).

A detailed methodology for the estimation of thermal insulation of clothing is
given in ISO 9920 [160]. For calculation purposes it is assumed that a piece of
clothing adds thermal resistance uniformly to the whole body surface. This is not the
case but seems to work well in practice [161]. Chair upholstery may contribute as
much as 0.2-0.4 Clo to that of an occupant total clothing thermal resistance which is
not included in any of the standard methods for estimating clothing thermal insulation
[161]. However, in recent years it has become common practice to include a chair’s
thermal resistance into calculations. An example of the relationship between clothing

thermal resistance and comfort temperature is given in [156].

Clothing Ensemble Clothing Resistance (Clo)
Nude 0o |
Light Summer Clothing 0.5
Typical business suit 1
Typical business suit and cotton overcoat 1.5
Heavy wool pile ensemble 3-4

Table (6.3): Typical thermal resistances of clothing ensembles [156].

6.5. Thermal comfort indices (PMV & PPD)
The thermal comfort indices (PMV and PPD) are calculated as follows [156]:

PMV = (0352 exp(—0.42 Met) +0.032) x ( Met — 0.35(43~ 0.061 Met — pv)
— 042( Met —50) — 0.0023 Met(44 — pv) — 0.0014 Met(34 —T) (6.6)

=34 x107 £,(T, ~273)" = (L, —273)") — fuh (T, = T))
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Where T, is calculated iteratively from the following equation:

T, = 357 —0032 Met - 0181,,(34x 10 £, (T, -273)' = (T,,, -273)Y 6.7)
+ {.I'ht'{T:.f e Tr-} .

PPD =1-095exp(—0.003353PMV* —02179 PMV?) (6.8)

6.6. Conventional comfort-based control
In order to identify a reference performance for a comfort-based control strategy, a

conventional approach was first developed based on a proportional-plus-integral-plus-
derivative (PID) controller, a method commonly used in space heating control
[162,163]. The resulting controller and feedback path were added to the system
model (including the developments described in section (6.3)) as summarised in

Figwe (e h Disturbance

Setpoint PMV
~{ -1

T

Figure (6.1): Closed Loop System

The controlled variable (PMV) is calculated at each time step from prevailing
values of room air temperature, relative humidity and mean radiant temperature with
the room air velocity, activity and clothing levels treated as constants. This is
compared with a reference value of PMV and the resulting error is applied to the
controller. External temperature, solar radiation and casual heat gains act as

disturbances, as shown in Figure (6.1). The output of the PID controller is given by:
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(1) = k,e(t)+ k,.j—e(t)dt + kdjde / dt (6.9)
0 0

The initial parameters of the controller were based on those actually in use in the
building space to which the model was applied (see section 2.3), these values being
0.1K™, 0.01K™'s", and 0.5sK™" (representing kp, ki, kq respectively). This produced a
reasonable response but with overshoot as shown in figure (6.2), leading to sub-

optimal thermal comfort and unnecessary use of energy.

A tuning algorithm was adopted to adjust the controller parameters in order to
eliminate this overshoot. The MATLAB NON-LINEAR CONTROL DESIGN (NCD) Blockset
was used [142] — a gradient-descent based method designed to minimise a cost
function (i.e. a weighted maximum constraint violation of the constrained (control)
variable) with reference to perturbed values of certain tunable variables (in this case

Icp k;, k3). To give initial estimates of the controller parameters, an error mapping

method, which described in section (5.4) was used. Using the initial mapped values
from within the planes of minimum normalised error to initiate the tuning algorithm,
tuned controller parameters of 1.527K, 0.005K s, and 0.050sK™ were obtained for
ky, ki, kq respectively. In this way, the initial mapping resulted in substantial
reductions in computational effort needed by the tuning algorithm. The response of
the system under tuned PID controller is shown in figure (6.2) showing an

improvement over the existing case.

6.7. PMV-based fuzzy logic controller
The PMV-based fuzzy logic controller proposed here evaluates the predicted mean

vote (PMV) level and, if this level is out of the comfort range, provides the air
temperature set point that should be used by the plant in order to create indoor thermal
comfort. The controller uses a linguistic description of the thermal comfort sensation
making it easy to apply and generic to a wide range of heating control problems.
Overlapping triangular membership functions were used for input (fuzzification) and
output (defuzzification) of the fuzzy system.
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Figure (6.2): Closed Loop Response with PID Control (February)
(a): PMV, (b): External air temperature, (c): Solar radiation
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The input membership functions were defined by assigning seven fuzzy input sets
to the variables; (COLD, COOL, slightly cool (SCOOL), neutral (NEUT), slightly
warm (SWARM), WARM, and HOT), as shown in figure (6.3).

COLD i CO0L SC00L NELUT SWARM  WARM i HOT

=
a0
T

=
=

Degree of membership
=]
(=8

=
%]

0

3 25 -2 <15 -1 D5 o 05 1 1.5 2 25 3
PMV

Figure (6.3): Membership functions of the fuzzy controller input

Seven fuzzy sets were ascribed to the output variables; (full closed (FC), closed
(CL), slightly closed (SCL), medium (MDL), slightly opened (SOP), open OP, full
open (FO)) to form the output membership functions as shown in figure (6.4).

FC cL SCL  MDL  SOP op FO

[

=
o

Degree of membership
=] =]
PO

=
=]

ol 02 03 04 05 U5 AOr 08 0% ]
VP

Figure (6.4): Membership functions of the fuzzy controller output

According to the number of the fuzzy sets of the input and the output, seven fuzzy
rules were defined as follows:
R1: If PMV is ‘COLD’ Then Vp is ‘FO’
R2: IfPMV is ‘COOL’ Then Vp is ‘OP’
R3: If PMV is ‘SCOOL’ Then Vp is ‘SOP’

R4: IFPMV is ‘NEUT” Then Vp is ‘MDL’
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R5: If PMV is ‘SWARM’ Then Vp is ‘SCL’

R6: If PMV is “WARM’ Then Vp is ‘CL’

R7: If PMV is ‘HOT’ Then Vpis ‘FC’

The relationship between the input and the output of the controller according to
these fuzzy rules is shown in figure (6.5). Figure (6.5), shows that when the PMV is
in the range of —3 >PMV>-1 (cold area) the valve is open, when PMV is in the range

of =1>PMV> +1, the valve in the middle, when the range of PMV is +1>PMV>+3 the

valve is closed.

1
09r
08T
07T
0.6 [

& (VR
04F
03 F
02 r
01y

0—3 -2 -1 0 1 2 3

PMV
Figure (6.5): Input/output relationship for the fuzzy controller

Using Mamdani’s minimum operator method for inference, the control action was
a fuzzy set, requiring a defuzzification strategy to obtain a crisp control signal. The
COG method was used to convert from fuzzy values to crisp values, forming the

actual control signal, which was then be applied to the heating valve.

The overall system (building, heating system, and outdoor climate files) with the
PMV based fuzzy logic controller and, for comparison, the PID-based comfort
controller is shown in figure (6.6). In which the model of the temperature sensor was
included for the data comparison purpose. A switch was added to the model, before
the non-linear valve, to select between PID and fuzzy logic control actions. Two
different outdoor climate files were prepared and used one in February (winter month,
low external air temperature and solar radiation i.e. cloudy sky) and the second in

April (spring month, clear sky and significant external air temperature).
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Figure (6.6): Overall model of the building, its heating system, and the controllers

The calculation of the predicted mean vote (PMV) and the predicted percentage of
dissatisfied (PPD) was determined using a MATLAB function based on three inputs
from the simulation model; the internal air temperature, the mean radiant temperature,
and the relative humidity of the internal air. Because the activity and clothing levels

are application-dependent, these values were entered as constants (c.f. appendix D).

The resulting PMV based fuzzy logic controller was applied to the building space
and its heating system. Figure (6.7), shows the system response under the tuned PID
(method described in section (6.6)) and PMV-based FLC. As can be seen, the
performance of the PMV based FLC is superior to PID controller in terms of

reference point tracking.

In order to test the robustness properties of the two control systems, the building
construction data were changed to those representing a very low thermal capacity
structure while keeping the overall thermal transmittance of each element the same
and the controller specifications unchanged. As described in section (5.5), this would
have the effect of making the system more responsive, thus challenging the PID

controller originally tuned for a high thermal capacity application. Results, shown in
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figure (6.8), reveal that the fuzzy controller maintains excellent tracking of the

reference condition whereas the tuned PID controller gives a reasonable response but
with significant overshoot. Thus the robustness characteristic of the PMV-based FLC

is superior to that of the PID controller. In practice, the PID controller would either

have to be tuned for each individual application, or tuned for an expected least-

damped case (in which case it would behave sub-optimally in all other applications)

whereas the PMV-based FLC would not require this.

0.5 s PMY based FLC 4

= Tuned PID¥

-
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Figure (6.7): Comparison of tuned PID and PMV-based FLC
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Figure (6.8): Low thermal capacity building with PID control and PMV-based FLC.
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Figure (6.9): Comparison of Tuned PID Control and PMV based FLC (April)
(a): PMV, (b): External air temperature, (c): Solar radiation
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In order to test the behaviour of the two control systems when the outdoor climate

changes. The outdoor climate data was changed from winter conditions (February) to
spring conditions (April) in which the solar radiation and external air temperature
were increased. Results, shown in figure (6.9), reveal that both conventional PID and
PMV based FLC were not able to adequately compensate for changes in solar

radiation inputs.

6.8. Conclusions
In this chapter, a control strategy has been developed for the space heating of a

building space in which the comfort sensation as quantified by predicted mean vote
forms the control variable. Difficulties associated with the lack of generality inherent
in PID control of this problem are identified and an alternative strategy based on a
fuzzy logic controller (FLC) is developed. There is a natural appeal in this in that the
essentially subjective comfort control problem can be easily mapped onto a universe
of discourse of input fuzzy sets and the associated inference which ultimately forms a
required control action can be carried out qualitatively. The resulting FLC was
compared with a PID controller tuned to give optimal performance for a given case,
consisting of a building spacé with high thermal capacity. A further comparison was
then made using the same controller specifications but with a low thermal capacity
building space. Results show that the FLC gives better control tracking and
robustness than the PID controller for both applications.

This work has addressed the extremes of building space thermal capacity in
arriving at these conclusions and further work needs to be done on the applicability of
the results to a wider range of construction types, heating system types (and modes)

and microclimate conditions.

Whereas it was shown that the thermal comfort based controller worked well, at
times of the year when solar gains do not cause overheating, it was clear that some
sort of predictive technique would be needed for the spring and autumn heating
seasons. It was furthermore decided that in order to simplify the predictive control
problem that temperature would be used as a proxy variable for thermal comfort, as
real time implementation of the thermal comfort based controller is very difficult to

achieve.
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Chapter 7

Adaptive Fuzzy Logic Control

7.1. Introduction

case for the further development of the static comfort based fuzzy logic control
Awas made in chapter 6. Specifically, there is a need for the controller to adapt
the adventitious heat gains received by space under control. Instantaneous heat gains
(i.e. those arising from internal casual sources) can easily be dealt with by direct
feedback but the lagging source due to solar radiation is much less responsive and
requires the controller to take on an adaptive role. An adaptive controller form is
addressed in this chapter, but first, a brief review of the literature related to adaptive

fuzzy logic control of HVAC plant is considered.
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Neural networks have been applied in different engineering cases in the fields of
the control systems, classification and in modelling complex process transformations
[164,165]. Reviews of a number of applications of ANNs in energy systems are
presented in [166]. Artificial neural networks (ANNs) have also been investigated for
system identification of building specific parameters such as U-values and thermal
capacitance [167]. In an investigation by [168], a neural network was trained to
determine Z-transfer function coefficients of a building envelope from experimental
data. ANNs were used for the estimation of building heating loads using a minimum
of input data [169]. ANNs were also used to predict energy use in commercial

buildings [38].

The using of a fuzzy controller to create an adaptive controller for use with a home
heating system is described by [41]. The controller ensures optimal adaptation to

customer heating demands while using one sensor less than a conventional control

system.

SO et al. [44] applied FLC to the control of air handling plant VAV systems.
Using error and error rate, FLC signals are generated for the air handling plant fresh
air damped, fan control, cooling coil, humidifier and reheat coil. In later work, they
developed a self-learning FLC using artificial neural networks (ANN) based on the
same air handling control problem as their earlier work [45]. The ANN is used to
monitor the plant and update the parameters of the FLC, which permits robustness in

spite of changes in operating conditions and nonlinearities.

Egilegor et. al. [46] described the results of simulations using a neuro fuzzy
controller to adjust the airflow rate through fan coils for three zones of a dwelling to
improve thermal comfort. The input variables of zone temperature and humidity are
used to calculate the value of Fanger’s PMV thermal comfort index, which is then
used as a comfort variable. Fuzzy proportional derivative control is used to provide
the desired zone conditions while a neural network is trained to tune the fuzzy
controller to optimise the fuzzy tuning parameters and improve the control
performance for different situations. The simulations carried out for the neuro fuzzy
controller, indicate an improvement in the PMV compared to the benchmark

simulations using thermostatic control.

111



Clwpter 7 JdJaph’ue juzzy o[)oyic Contro/

7.2. Artificial neural networks, Over-fitting and Generalisation

Artificial neural networks have been adopted in this chapter for modelling the
thermal behaviour of the building and its heating system to predict the internal air
temperature due to the fact that these are widely accepted as a new technology
offering an alternative way to tackle complex mapping problems. They are able to
learn from examples, are fault tolerant, can handle noisy and incomplete data, can
deal with non-linear problems, and once they are trained can perform prediction and

generalisation at high speed [170].

Artificial neural networks (ANNS) or simply Neural Networks (NNs) have been
devised as an attempt electronically to model the networks of biological neurons of
the human brains. NNs have a large number of highly interconnected processing
elements, representing biological neurons, called artificial neurons or simply neurons
that operate in parallel and are configured in regular architectures. The collective
behaviour of the NN demonstrates the ability to learn, recall and generalise from

training data in analogy to human brain [170].

Learning, the fundamental trait of intelligence, is the most important entity in
specifying an ANN. A learning algorithm refers to the procedure in which learning

rules are used for adjusting the weights and biases of the considered neural network.

One major problem that occurs during neural network training is called overfitting
[170]. The error on the training set is driven to a small value, but when new data is
presented to the network the error is large. The network has memorised the training

examples, but it has not learned to generalised to new situations.

There are many methods for improving the generalisation and overcome the
problem of overfitting, one of them is the early stopping method. In this method, the
available data were divided into three subsets. The first subset was the training set,
used for computing the gradient and updating the network weights and biases. The
second subset was used as the validation set. The error on the validation set was
monitored during the training process. The validation error will normally decrease

during the initial phase of training, as does the training set error. However, when the
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network begins to overfit the data, the error on the validation set will typically begin

to rise. When the validation error increased for a specified number of iterations, the
training was stopped, and the weights and biases at the minimum of the validation

error returned.

The test set error generated by the third subset was not used during the training, but
was used to compare different models. It was also useful to plot the test set error
during the training process. If the error in the test set reached a minimum at a
significantly different iteration number than the validation set error, this was taken to

indicate a poor division of the data set.

7.3. Singular value decomposition (SVD)

Singular value decomposition (SVD) represents a numerical technique for the
analysis of multivariate data [171,172]. SVD can be used as a preliminary stage in
most types of multivariate analysis, and can greatly increase the computational
efficiency of linear techniques such as key vector analysis, and non-linear techniques
such as cluster analysis and neural network analysis. SVD is also an extremely

effective technique for the reduction of white noise.

A summary of the principles of SVD follows:

Let the matrix O (of sizemxn, which contains both the current values and the
past history) be an observation matrix. The SVD method decomposes this O matrix
into three matrices W, L, and V. The SVD of O is defined as:

O =WLV (7.3)

where W and V are pseudo-unitary containing the first n column eigenvectors of
OO0 and row eigenvectors OO" respectively. The L matrix contains the
corresponding eigenvalues, in decreasing order of significance, on the leading

diagonal. In many cases it is useful to partition the matrices as follows:
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0 =(W,W,) Lo 0V (7.4)
0 L,\V,

where W, contains the first £ columns of W, L,, the first £ rows and columns
of L and V, the first £ rows of V. The O matrix can then be decomposed into two

terms:

L 0
0=0,+0, = wl( Ol)vl +W, (L )Vz (7.5)
2

where the subscript “s” denotes signal space and “N” noise space. As the value of

k increases O, becomes a closer approximation to O and the values in Oy become
smaller. The closeness of the approximation is given by I(k) defined by the
following equation:

i=k
ZLi,i

k) =5— (7.6)

=n

2L,
i=1
The value of I(k) will increase monotonically to one. If significant correlation is

present in the data (the rows and or columns of the O matrix) the series will rapidly

approach the value one. It is this property that is used for dimensional reduction.

7.4. An artificial neural network predictor for indoor temperature

An artificial neural network has been used to model the thermal behaviour of the
building and its heating system in open loop mode. The model predicts future internal
air temperature as a function of past and present external air temperature, solar
irradiance, heating valve position and internal air temperature. These variables were
chosen to avoid too much information increasing the network training and preventing
the network from learning adequately. Both the input and output data were sampled

at 15 minute intervals.

Inputs to neural networks need to be scaled to the range of the non-linear activation
function used (such as amplitude one). The scaling, or representation, of data can also
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. affect the learning speed of a network; a good choice of scaling or data manipulation
can dramatically improve learning speed. This could include providing additional
information in the form of products of features [173].

o

Meteorological data was used for 7, and SR but the valve position, V,, was

cycled through a predetermined sequence. As building plant is designed for “worst
case” conditions, in normal circumstances this will produce significant overheating in
open loop mode. Because of the need to supply historic data, not only the current
values inputs(k) were used but also, inputs(k—1), inputs(k—2), ..., inputs(k —i).
The value of i was increased by trial and error and it was found that a minimum value
of i =48 was needed to successfully capture the building dynamics. This effectively
provided 12 hours of historic data to the network, but led the unwelcome effect of

increasing the number of effective inputs to 196.

These inputs were presented as an observation matrix O (of sizemxn, which
contained both the current values and the past history over twelve hours, with a 15
minute sampling time) for each of the 4 variables in each row. Thus there were 48

values associated with each parameter, hence »=196. The SVD was calculated using

weekly blocks hence m = 4x24x7 = 672.

The SVD technique as described before was used to decrease these inputs to 10, as
this value was sufficient to keep nearly all the important information in the data. It is
found in this application with k=10, X(k)>0.95 as illustrated in figure (7.1). This
indicates that more than 95% of the observation signal is contained within the first 10
dimensions. To simplify the neural network structure, information contained in the

dimensions higher than 10 has justifiably been ignored.

Various network architectures were investigated, and a number of different
network sizes and learning parameters have been tested. The architecture that was
ultimately selected is shown in figure (7.2). It is a conventional feed forward multiple
layer perceptron type and consists of three layers; an input layer with 10 neurons, 7

neurons in hidden layer, and one neuron for the output layer.
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Figure (7.2): Multilayer feed forward neural network with SVD algorithm

In this case the number of hidden neurons was estimated by running the network

with different number of hidden neurons and calculating the mean square error using

testing data set. Based on this, the number of hidden

d
neurons arrived at was seven as shown in figure (7.3).

the training, validation an
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The proposed ANN was trained by back-propagation based on the Levenberg-
Marquardt (BPLM) algorithm [170]. The activation function used with the input and

output neurons was linear, whereas in the hidden neurons a Sigmoid form was used.

The network was trained every weekend, using a data set consisting of the two
previous weeks of observation data during a four-month period during the heating
season (January-April) to take different heating seasons and different solar angle
positions. The training set was the second week of data and the validation set was the
data from the first week. These two weeks of data were changed every weekend as
shown in figure (7.4). This methodology was chosen in order to capture the slowly
varying solar position and consequent solar irradiance profile and any long term

seasonal weather effects.
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Load the collected data
(external, internal air temperature,
global solar radiation,
and valve position)

v

Divide the data into three sets
(training, validation and testing)

| Apply the SVD algorithm |

Set the number of epochs, training-MSE,
testing-MSE, and number of neurons of
hidden & output layers,
Initialize the counter

Fﬁ

I Form a network I

*4

Train the network using the training
data, with Early stopping using
validation data

Is
the validation
MSE starting to
increase?

Test the network using the
testing data

Is
MSE less than
testing- MSE?

Save the current network,
test-MSE=MSE

I Counter=Counter+1 ]

Is
Counter=100?

Load the best network,
Generate the simulink medel of this
network

Figure (7.5): Flowchart of the neural network predictor with SVD algorithm
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The network was trained using 100 different random starting values for the weights

and biases and the one with the lowest mean square error was chosen. This
minimised the likelihood of being trapped at a local minimum. The early stopping
method was used to overcome the problem of over-fitting and the MATLAB NEURAL
NETWORKS TOOLBOX package was used for training, validation and testing [142].
Once a satisfactory degree of input-output mapping was reached, the network training
was frozen and a set of test data was applied for verification. The network training
procedure is illustrated in figure (7.5). Finally, the trained network was used to
predict the indoor temperature of the solar building up to two hours ahead (i.e. 8 time
steps ahead).

Excellent agreements were obtained when using this network to predict the internal
air temperature of a low thermal capacity building up to one-hour ahead, during a four
month period during the heating season (January-April). The results were in excellent
agreement during totally clear and overcast days. On days of intermediate solar
irradiance, the results were less good due to the stochastic nature of cloud cover and
the consequent effect on solar irradiation. Figure (7.6a) and figure (7.7a) show the
behaviour over a typical week (week 7) in this period for 30 minute and one hour
ahead respectively. A stacked histogram of error during the complete heating season
is shown in figure (7.6b) and figure (7.7b) period for 30 minute and one hour ahead
respectively (the first week being colour coded in darkest blue and the last week
colour coded in darkest red). Most of the error is located in the range +0.2K — within
what might be regarded as a typical measurement uncertainty for practical commercial

temperature sensors used in this application.

Results for a 90 minute and a two-hour time horizon (6,8 steps prediction) are also
reasonable as shown in figure (7.8a) and figure (7.9a) over the same week but at
greater time horizons the error increased significantly. A significant contributor to
this error is the stochastic nature of cloud cover during the winter months in northern
England with a subsequent stochastic element to the solar irradiance input. Figures
(7.8b, and 7.9b) show a stacked histogram of the error during complete heating season
(14 weeks) with the start of the heating season (the first week being colour coded in

darkest blue and the last week colour coded in darkest red).
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Figure (7.6): (a) Predicted internal air temperature (30 min. ahead).

(b) Error distribution (30 min. ahead)

120




_,Ac!apﬁ'w .?uzzy c-fﬂfic C)nntmt

§0 £
F
<< % 1 - "
 LE L S S SN - Ti-o @ T T T T T T T e
m.m.mlﬂ_. i e 5 ' i I I I 1 i
2R g P i 3 i | i i 1 i I
. . ' 1 1 i 1 i | I 1
== § g Vol = ' i 1 1 i 1 i
ErE g l-v-am-r-r- q ===t —t-42 = keaa- i e e P S — I
o B .3 [ i - i I 1 i I 1 i
.m.m B 1 g 1 1 I 1 1 ] 1 1
um i 1 F [ 1 i i I i i
LR 5. i £ = i i i i i i '
1= I I i I I
m.m o A :“ 1 b IS S A e e PR PR TS
= I ] 1 | i 1 I i
I I i i i I i I I
i i = i 1 I 1 1 I 1
T g r-t=1 & i i I 1 1 I
] [ ] - ] ] ] 1 ] I
1 A 1 I . -ll.l.ll-lllllrﬁlll.llJ.ll.l.ll- ||||| 1"--1.‘-- —
'] o ar i [ ] i " "
]
- dobd i-18 S .
Tl =4
o [ 1 i ] i
1o [ [ ..uull.r-:uu_.luu.:n "
.= deok L g = i i i b
i . 1 1 § = i 1 i
o o ! E
I 1 T |
P P s 2 = o
e [ e -k=3-4 7 =
1 ] et
! “ z Pt = S
1 ] = = ] [ 1
L F=a bt C - S I S | vy
] ] =
;S i = i i i
[ I 1 1 ] 1
T N = I i I __
et r 8 A R (S I R e B
TR | 1 1 I 1 1 I 1 !
o 1 i I i I ] ]
“. 1_1 L_i_a2 1 I 1 1 I 1 1
FF=1" 3 r-t g i ] i I I [ ]
[ [ - 1 I o I I | P "
A O [ e LG TR Py e | -4 "
t L1 1] s I A &
e |
u_.|L_||“r|T =f=1-1 2 ] 1 i 1 I 1 I
oo " b “l 1 1 " 1 1 I
1 | T T B I o L e N R T e L L T e R E
“ “ [ r 1 1. T o “. ._ [} nu ._. ._ 3
BT JERHT e = “L-d=-d B i 1 | ] i | '
T ] [ ] - | ] I I i i ]
e i o 13 - I I i I 1 | ]
[ T T R T T o 1 I I 1 | I i ] 1
i | I R I | 1 ] = i i i L i M H wy
M T N B T N -] i L i = - _ - = = =y = ey e
B A - . O T - d L] i i L - -
o Ll Lo T o] (& ] 4 ~ =] -— -— — —_

(24) Aouanbad,

temperature. (60 min. ahead)

Error (°C)
(b)
(b) Error distribution (60 min. ahead)
121

Figure (7.7): (a) Predicted internal air




jJﬂpﬂw .?uzzy nfﬂgic C:mfmf

Chapler 7

=
-

[ %) Lol I L L . L L Y- 2 [
W._.F. }_."m [ " “ [ _r " “ 1_N -
& a o [ ]

E ﬂ. g W T T - 1 =
& B e T A e s s G 2E B - Tl SEl ot ke = = ﬁ
o Sl v v TR =
= m S5 I T T T T T T R I o |

EE gl v 0 o0 oo L I

- .ﬂ. 5 ] ] [ i | 1 ] ] 1 ] =
.m 7 B k=== =F-t=d4==F A==t ===F-g-4 Z

m -0 L R B T R | -
B E gl v v o 11k [ roroagh
m ) g= 11 "1 [ - ._. 1 1 nu I =

sbhsdaseabad- sdadamh- . T | R
R N A 5 o et 2 e o B
(R R R | N T T R O S I =
"I R | T T T T T . T |
1 ¢ L T I R T i =
=y e e e A T o - w -k
1 = I T T T T [ )

=1 ¢ { 1 1 b1 Bkl i
i T T T T O T T O D NN S B | 1
i 1 I, ] (I | | I | I LI | =

N i T T e Bk T D e e ab e Bl oo B I

[ I T T T | = o [ | =

I T R A | 1o O I T |

(R T I [ . | |" 1 | un [ | =

alsd== o sbedadaabad-P-bolodabat-o

il + _. [} _. ._. o I“ T m

1 I R T N I T N N T R L

- - ] “ 1 “ “ " “ o " “ “

o i ] o

1Tlr|L1ITIJ”fJ gl =4 = == = === - === m

R B i ~— o R B L W S o

I 1 [} i ) I 1 i i I I 1 I ] I

[ | (R T [ TR T T TR

[ [ T S e e | [ -

R - sy o o] PeTR ey mriwel e Nome e r=1""r-f= " 8
— = N T R R T [ R T P -

1=y [ D O T ™ o T I | I

o = U N D T R B | [ n“ 1 =
||||| - . . cshaladachaa-

ia 1~ ] S e | = = r 148

[ T T R ol T T | Py -

I T T T | T T

[ T I T I [ T ] =

- dmdemb—dodecbadadbababedanbodod &

] =l N R T R T I I [ (] ]

o L I I B T e O R |

O T O N B i — - I T O T | T (]

T T I T | Tt 11 1 [ =

- =T =9==F=F=7===p~= - = q==p=pim==m=t=d &

[ | o [ | [ O | ] -+

' I | - I T T | R

TR I T T " aulL N T T I R | B |

+ [ e T SO N U NN IO T I I“ 1 =

-r=q= T ey e B i i St o s " e i ]
I . (. et (| [N [ ] -
[ O T O T o T O I | T (]
e~ — R

- -] ~ O
T M RExXARE=E=EZZICE o Q-

Time (15 min)

(a)

Wy
1 1 1 ] ] (=]
I i I i ]
] 1 1 1 ]
| i i 1 I
I i I i 1
o v = I - - [ - [ P i
| I | i 1
I I 1 1 i
I ] I 1 ]
I I I i I
I I | | i
b = === = ———— o ———— e o ———— = M
1 I I I ]
1 i ] I i
] 1 ] 1
1 1 I
] ] ]
SRR qesm== q=m———— e =
] ] ]
] i 1
]
1
llllll i [ —— "
[ o
J
]
[— =
T T
i
. l
| ——— A P i |
]
i b
i ] i ] ]
| 1 ]
l i ]
oslasg L N —— A — i i
I 1 1 .
| i I
i | I 1 ]
| “ I i I
| i ] ]
|||||| e CEE T CEEE Rl bbbt o “
] ] I i i v
i ] } i i
] I I 1 i
.“ ¥ I 1 1
lllllllllllllllll [ T —— N ———— A ———
I I 4 ] |_ .n 4
] i I I i
] ] ] ] 1
] ] ] ]
] ] I | I
L L i i i [
o - = s = i =5
L] 4 La ] L —
() Aouanbai.g

Error (°C)

(b)

(a) Predicted internal air temperature (90 min. ahead)

£3

Figure (7.8)

(b) Error distribution (90 min. ahead)

122




_/Jc&phw ?mg o{:?ft'ﬂ lﬁmfmf

r 7

Cha

2 &
[.W. m._;.Wm
(-9
m.m L
F T 4 =
L Iy
='a | &
(- TR W (U NI N W S
== 2R
BT e
5 e
FRE
$ERZ
T T L]
1 .
1 ey
L] I
=i = &
i ]
1 ]
1 ]
I 1
e | = = -
I [}
1 ]
I 1
I ]
= = ¢ == =
] [ I
I 1 I
] I ¥
] 1 I
=== == -
] I
] i I
] e
] I L] ]
o I R Pl o
1 [ |
[} I L} [}
] I i [}
Lll.“-l._
[}
o1 S
i ] 1 [}
i ] I [}
e e b d m e b md = d= =L
] 1 © 1
1 [} I L} 1
i ] I 1 1
| [ I | o ]
B TR W - . L L
I [} I L] I I i
1 I B | e 1 I ]
I L} I ] 1 I 1
I [} | L} 1 ] |
A L L i i 'l 't i 'l
o - MO WO W oM@ W WD

———m = -

4200 4250 4300 4350 4400 4450 4500 4550 4600 4650

4150

Time (15 min)

(a)

"
T T T T e
i i [ i
1 i I I
i i i
i i i
|||||||| L ol e "
1 1 i
1 i i
i i I
i i )
[ i
|||||||| becccasmmdemee b e e i
i i 1
[ i i
[ i
[ i
[ '
TR, M i —
I 1
i I
i 1
i
L .
S F---- )
i
1
||||||| =
L
'
i
|||||||| bee "
1 =
'
' I
i i
1 i
e SR, Frm————— L N — -
i i
i i
i i ]
i i I
1 i 1 5l "
b e i P q=mmmmm- F--- b
i i I %
i i i
i ' 1 i
i ] 1 i
|||||||| Lesmmemadeccecmecbaneeaaal
[l I ] [ o
i 1 1 i
i 1 1 1
i i i [
i 1 1 i
y 3 M i wy
-y = " = w =t
~ ~ - -
{84) Aouanbaug

Error (°C)

)

(b

internal air temperature. (120 min. ahead)

Figure (7.9): (a) Predicted

(b) Error distribution (120 min. ahead)

123




C/Lapter 7 Jd&ph’l/e guzzy o[)ogic Contro/

7.5. Proposed quasi-adaptive fuzzy logic controller

A quasi-adaptive fuzzy logic controller is considered in this section. The controller
is divided into two main modules; the fuzzy controller and feedforward neural
network with SVD algorithm as shown in figure (7.10). The inputs needed for this
controller are the setpoint temperature expressed by the user, and the current and past

values of external air temperature, solar radiation and the internal air temperature.

Using this neural network model of the building space, the heating controller was
able to reduce the heating energy consumption while maintaining acceptable internal
temperature tracking by anticipating solar and other heat gains to the space. The error
between the internal air temperature and the setpoint temperature was applied as a
first input of the fuzzy controller to instantaneously adjust the internal air temperature
to the setpoint value. The second input to the fuzzy controller was the predicted
future internal air temperature and this enabled the controller to adjust to lagging

influences of heat gain sources.

Error

Setpoint user temperature : - R . C ontrolier

Control signal

Predicted Int. air temperature

Internal air temperature
External air temperature

Solar radiation

Figure (7.10): A quasi-adaptive fuzzy logic controller
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Because the MATLAB NEURAL NETWORK TOOLBOX uses different initial values for

the weights and biases each time the network trained, a “best” neural network
structure which gives the minimum mean square error using the testing data was
chosen from 100 structures with different initial values of weights and biases of the

neurons.

Adjustments were needed to the fuzzy control rules, membership functions, and the
defuzzification strategy developed earlier. In this application, a fuzzy set was defined
by assigning its membership function to five fuzzy sets for both input variables and

then seven fuzzy sets for both input variables were chosen.

In the case of five nonlinear membership functions, the controller gai/e reasonable
results but an improvement was obtained when seven membership functions were
used. The fuzzy sets of the error were defined as NB (negative big), NM (negative
medium), NS (negative small), ZE (zero), PS (positive small), PM (positive medium),
and PB (positive big), as shown in figure (7.11a). |

The fuzzy sets of the predicted temperature were defined as LW (low), ML
(medium low), SL (slightly low), MD (medium), SH (slightly high), MH (medium
high), and HG (high), as shown in figure (7.11b).

Overlapping triangular membership functions were used for input (fuzzification)
and output (defuzzification) of the fuzzy system. Seven fuzzy sets for the output
variable were defined as NB (negative big), NM (negative medium), NS (negative
small), ZE (zero), PS (positive small), PM (positive medium), and PB (positive big), as
shown in figure (7.11c).

Thus according to the number of the fuzzy sets of the inputs and the output, there
are 49 fuzzy rules. There are two selected fuzzy sets each for error and predicted
internal air temperature. Therefore, four rules were applied, represented by the

interaction of two rows and two columns in Table (7.1).
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Figure (7.11): (@) Membership functions of the error, () Membership functions of
the predicted internal air temperature, (¢c) Membership functions of the control signal
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Predicted internal air temperature
Error | LW ML SL MD SH MH HG
NB NB NB NB NB NB NB NB
NM NB NB NB NB NB NB NB
NS ZE NM NM NM NB NB NB
ZE PS ZE NM NM NM NB NB
PS PM PS ZE NM NM NM NM
PM PM PM PS ZE NS NS NS
PB PB PM PS PS

Table (7.1): Applied fuzzy control rules

The relation between the inputs and the output of the controller according to the
fuzzy rules is shown in figure (7.12).

Mamdani’s minimum operator method was operated for inference, resulting in a
control action as a fuzzy set. This was defuzzified to a crisp control signal using the
method of center of gravity (COG).

The overall system (building space, hot-water heating system, temperature sensor
and outdoor climate files which contain the external air temperature and solar

radiation data) with the quasi-adaptive fuzzy logic controller is shown in figure (7.13).

Figure (7.12): Fuzzy controller output surface
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Figure (7.13): The overall system including the quasi-adaptive fuzzy logic controller

7.6. Results

The resulting quasi-adaptive fuzzy logic control (QAFLC) was applied to the
building space described in section (3.5) and its heating system described in section

4.3).

Figure (7.14), shows internal air temperature of the building using, conventional
PID control (described in section (5.4)) and the proposed controller. As can be seen,
the performance of the tuned PID controller is unable to accommodate the lagging
heat gain influence of solar radiation (especially evident on day 1, day2). However
the quasi-adaptive fuzzy logic controller achieves excellent heating, stability and

eliminates solar overheating influences.

7.7. Conclusion

In this chapter, a quasi-adaptive fuzzy logic controller was developed to overcome
the problem of the overheating due to the lagging influence of solar heat gain in a

space.
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Figure (7.14): (a) Internal air temperature, (b) External air temperature, (c) Solar

radiation
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The development of the proposed quasi-adaptive fuzzy logic controller was carried

out according to a combination of the following steps:

1. Development of a thermal model of the building and its heating system using
feedforward neural network to predict future values of internal air temperature,

2. Development of a fuzzy controller with two inputs: the error between the setpoint
temperature and the current internal air temperature; and the predicted future

internal air temperatures.

Results show that the energy demands in both cases (conventional PID and
proposed quasi-adaptive fuzzy logic controller) were integrated to reveal energy
saving of approximately 20% due to the quasi-adaptive fuzzy logic controller when

compared with conventional tuned PID control.

An artificial neural network was used as the predictive model of the building space
and its heating system. Good accuracy for a time horizon of up to two hours has been
demonstrated thus the predictive model can be used for providing control intelligence

for early shut down of heating plant with resulting energy saving.

The results show that artificial neural networks can be successfully used for
predicting the indoor temperature of buildings for several time steps ahead based on
only a small number of input variables. The proposed quasi-adaptive fuzzy logic
controller has the advantages over conventional PID controller in that it is able to
avoid the overheating arising from solar heat gain particularly towards the end of the
heating season and, thereby, generate saving in energy use as well as improve thermal

comfort.

In simulation it has been shown that the controller works well, however the acid
test is whether the controller works in a real situation. This is developed in the next

chapter.
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Chapter 8
Controller Testing

8.1. Introduction
ﬁ n experimental test was conducted to evaluate the proposed quasi-adaptive

fuzzy logic controller under practical conditions. Again, a comparison between

the proposed quasi-adaptive fuzzy logic controller and a conventional PID controller
formed the basis of the experiment. In this chapter, the experimental equipment for
the developed algorithm is described together with the experimental procedure
adopted. Then a comparison of results between the proposed controller and the

conventional PID controller are presented.
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8.2. Cranfield test cell

Controller testing took place at a remote test site at Cranfield University. The test
site is situated on the edge of Cranfield airfield, in Bedfordshire. The site location is:

latitude=52.07°N, longitude=0.639W, and altitude=100 m.

An approximately cubical test cell with internal dimensions 3.550m (east west) x
2.995m (north-south) x 2.270m (high), was used, with its glazed wall facing due south
as shown in figure (8.1a). Figure (8.1b), shows the internal view of the test room in
which air temperature sensors and an oil-filler electric radiator were installed. Due to
the fact that, this test cell is a light building, its thermal weight is very responsive
compared to the high thermal capacity building (Northumberland building).

Solar
pyranometer

South facing test
cell

Internal air

temperature Oil-filled
SENsSors electric
radiator

(b)
Figure (8.1): (a) South facing external view of the test cell. (b) Internal view of the

test room

132



C/Lapfer 8 Confw/&r j&ting

The internal volume of the test room was 24.135 m3, and the window dimensions
of 1.200 x 2.000 m. The internal floor surface of the test room was approximately

0.90 m above the ground level.

The tables in appendix “E” give the thermal properties of the east, north, west
walls, the ceiling, the floor and the south wall of the test room. The convention
adopted for listing the components of the multi-layer construction was to work from
the outside inwards. For the purpose of simulation modelling, the model realisation of
the test cell is shown in figure (8.2) in which the model parameters optimised using
the technique outlined in section (3.4) and are given in appendix “E”. The state space

model of the test cell can be written as follows:

X = AX +BU (8.1)
Y=CX+DU

where X is the state vector [[ L LT, T, LT LT, T, T, T 71", U is the input
vector [T, O, Qp]T, Y is the output vector (i.e. in this case the internal air

temperature, I;).

Qs
RI? RIZ RII RM
Windows /\/\/\F Ty T
C C Hoor
South Wall
R R R R R R
T 1 T 2 T, 3 T, 5, T, 1 T, 13 <_To
Ceiling
Cl I CZ ]: Cw I C9
North Wall - - Qp al
R R R R R R
4 T3 5 T4 6 18 le 17 Tll 16
C3 Cl l Cu I C” I West Wall
East Wall
B, R 1 K

(of C6I (o8 I Air Mass

Figure (8.2): Model realisation for the test cell
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8.3. Modelling the test cell heating system

The tests described here used an oil-filled electrical radiator, controlled form a

personal computer which implemented the proposed control strategy.  The

mathematical description of the oil-filled electric radiator can be written as follows:

T, =[up~ k(T - T,)"V/ 3 C (82)
where: T, is the radiator surface temperature (°C), T, is the room air temperature
(°C), u is the power controller signal, p is the maximum power emitted from the
radiator (kW), Z C is combined thermal capacitance of the oil and the radiator metal,

k and n are constants.

At design, the p and T, should be known, so the value of the constant & can be

calculated from the following expression:

p=kT-T)" (8.3)

To calculate the heating needed for the test room (and, hence, p) the external air

temperature was taken to be ~1°C and the designed internal air temperature 20°C.
The ventilation rate was set at 0.5 air change/hour. Note that it was possible to

precisely control the ventilation rate in the test cell. Hence:

Wall U=(0.12+0.06+0.18+0.05/0.035)" = 056 W/m’K
Floor U=(1/0.56+0.05/1.4)" =0549 W/m’K

2
Ventilation loss coefficient = 0.5 3'36 x3.0 =54 W/K

Wall loss coefficient= (2 x 3.55x2.995+2 x 3°)x 056 =2218 W/K

Floor loss coefficient=3.55x2.995+0549 =593 W/K
Glass loss coefficient=28x2.00x12=708 W/K
.. Steady state heat loss= (20— (-1))(54 +22.18+5.93+7.08) = 8808 W

Allow 25 % preheat margin=880.8+0.25x 8808=1100 W

8.3.1. Ventilation

The test room features a mechanical ventilation system, which allows a controlled

and metered airflow to be directed to the space. For this work incoming air was
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drawn into the room through the ventilated window system. The temperature of the

air as it entered the room was measured.

Inside the room, ventilated air was extracted through a duct, located vertically
midway along the north wall. There were a total of 55 holes in the pipe, each of
diameter 10 mm. The pipe was positioned at the centre of the rear wall. This

arrangement assisted in ensuring uniformity of air movement in the space.

The ventilation system was designed to maintain a constant volumetric flow at the
outlet from the room. Thus the recorded mass flow varied slightly (by about +0.5%)

as the air temperature in the test room varied.

8.4. Data acquisition
A dSPACE DS1102 data acquisition card was used for analogue (control) inputs
and the single analogue output required to position the heater. The DS1102 is a single

board system, which is specifically designed for development of high-speed

multivariable digital controllers and real time simulations in various fields.

It is based on a Texas Instruments TMS320C31 third generation floating-point
Digital Signal Processor (DSP), which builds the main processing unit, providing fast
instruction cycle time for numeric intensive algorithms. The TMS320C31 is object-
code compatible to the TMS320C30 [174].

The DSP contained 128K words of memory (fast enough to allow zero wait state

operation). Several peripheral subsystems were implemented to support digital signal
processing. Figure (8.3) summaries of the DS1102°s hardware [174].

8.4.1. Power control circuit

The power control circuit was designed during the course of the project consisting
of two main parts: a pulse width modulator (PWM) and a semiconductor relay
(switching circuit) as shown in figure (8.4). The PWM unit consisted of two parts:
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(1) A ramp waveform generator operating at constant frequency.

(2) A comparator, for detecting when the ramp voltage exceeds the control signal.
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Figure (8.3): Block diagram of the DS1102 [174]

P AC 240V

Semiconductor
Relay

[
Control Voltage

Oil-filled
Electric Radiator

Figure (8.4): Basic organisation of the pulse-width modulation power control

system

The ramp generator was implemented by a timer and a transistor. By choosing an
appropriate value of RC network, it was possible to set the frequency of the ramp

waveform. An operational amplifier to compare between the reference ramp voltage
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and the control signal from the data acquisition card was used to generate a modulated

pulse applied to the switching device as shown in figure (8.5).

JFET
. vee iPsr
| "i—'TRIGGER 3 Ramp waveforms + FlM
S{RESET_OuTRUT
CONTROL i g )
| n—?-a THRESHOLD T 1000 7]
= » Dz — DISCHARGE Contral Volage
GND
%m

IF

15Vde

| %8 Eé

l
3

Figure (8.5): Circuit diagram of the pulse width modulation (PWM)

At the moment the ramp began its run-up, the positive control voltage V..,
exceeded V,,,,. Therefore the comparator produced positive saturation, hence turning

the semiconductor relay on giving full supply voltage across the oil-filled electric

radiator.

For example if ¥, =3V the ramp oscillator, producing an overall load voltage

waveform with a 30% duty cycle. This situation is repeated every cycle until the
control voltage changed as shown clearly in figure (8.6a). Therefore the average load
voltage in figure (8.6a) is given by:

Vo) = 030% Vg (8.4)

A larger control voltage is shown in figure (8.6b). So, with a small value of
control voltage, the load’s duty cycle is low (pulse width is narrow), with a larger
value of control voltage the load’s duty cycle is higher (pulse width is wider). This
delivered greater average electrical power, so the load produced a greater amount of
its output product. By varying the control voltage to the PWM, the pulse width to the

load was modulated.
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Since the rated power of the oil-filled electric heater was 2500W, the duty cycle
needed to produce an average power equal to 1100W (i.e. the required design duty),
was 44% of the periodic time of the ramp waveform. To get this duty cycle, the

output of the data acquisition card (control signal) was fixed at a maximum of 0.44V.
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Figure (8.6): Pulse width modulation waveforms

(a): Small voltage (b): Large voltage
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8.4.2. Sensors

Two temperature sensors were used the first measured the internal air temperature and
the second measured the external air temperature. The internal air temperature sensor
was an integrated circuit based active output temperature sensor, with a 4-20mA

output and an uncertainty of +0.1°C. The internal air temperature sensor was located

in the middle of the test cell.

The external air temperature sensor was similar to the internal air temperature
sensor but was in a weatherproof enclosure. The external air temperature sensor was

located on the top of the north side of the test cell.

Since the data acquisition card inputs were voltages, a high precision resistor
(500Q) was connected in series with the sensors, and a 2200uf capacitor was
connected in parallel with this resistor to act as a low pass filter ( £,=0.57 Hz). Both
the internal air temperature and external air temperature sensors required a 24V DC

supply voltage. The installation circuit is shown in figure (8.7).

-
[]
wn 3
5
n
QE
o
+
--_-—‘:\— 24V Vout
3 5
583 § =< to the data acquisition
el card

Figure (8.7): The installation circuit of the temperature sensors

The temperature sensors were scaled using the indoor test cell in the school of
Built Environment at University of Northumbria. Figure (8.8) shows the relation
between the output voltage and the measure temperature by the temperature sensor, it

is clearly linear. Therefore, the equation which describe this relation can be written as

following:
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V., =016Temp+36 (8.6)

This equation was used to reproduce the actual measured temperature in the test

cell, as a function of incoming signal.
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Figure (8.8): Voltage versus temperature of a temperature sensor

A Kip and Zonen LI-200SA pyranometer was used to measure the vertical solar
radiation incident on the window. This featured a silicon photovoltaic detector
mounted in a fully cosine-corrected miniature head. Current output was calibrated
under natural daylight conditions in unit of Watts per square meter (Wm™). It was
found that the pyranometer gave 10uV per Wm™, so a high precision amplifier was
used to amplify this signal to 10 mV per Wm?>.

A local data logging system was used to monitor a full range of variables besides
those required for the control system. The data logger and the control system are

shown in the figure (8.9).

8.5. Controller implementation
Two controllers were tested in the test cell. The first controller was a PID

controller as a benchmark for the proposed controller and also to collect two weeks of

140



Cfmpfar 8 C,?anb-omr jﬂhﬂg

regulated internal air temperature used for training the network in the second

controller. The second controller was the quasi-adaptive fuzzy logic controller

(described in section (7.6)).

Control
system

Figure (8.9): Data logger and Control system

8.5.1. PID controller
Although PID controllers are well established, parameters require precise
adjustment to obtain optimal performance, and they are heavily dependent on system

parameters thus optimality is conditional. The output of a PID was defined in section
(5.4).

To avoid the problem of wind-up, there are a few anti-wind-up strategies but they
are all based on the same idea — that of retarding the integral term in some way when
the actuator reaches saturation. The simplest thing to do is to saturate the integral
term to the upper and lower limits of the control signal that correspond to actuator

saturation (i.e. 1 and 0 in this case). This strategy was adopted in the present work.
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Also a saturation block required to added on the overall control signal output value
to limit the signal to 0 (minimum); 1 (maximum). This was because the valve model
equations were based on a control signal in the fractional range 0->1. Thus any value
outside this range was likely to lead to a mass flow rate from the control valve

subsystem outside the design range.

To establish values for the test case PID parameters, a simple test was done using a
step change in the reference set point temperature thereby a controller response. The
internal air temperature was oscillated around the set point temperature. A maximum
overshoot of 1.6 and a periodic time of 12 minutes at a sampling time of one minute
were obtained. Hence, Ziegler Nichols method [141] led to: k,=0.8, integration time

7,=10 minutes; (integral gain k,=k,/7,=0.08 /minute), and D-term was set at zero

because the test cell is damped system and for simplicity as well.

8.5.2. Proposed quasi-adaptive fuzzy logic controller

The proposed controller was implemented and tested using the test cell. Some
modifications were neceésary to meet the memory limitation of the data acquisition
card:

(1) The number of membership functions representing each variable was reduced

to 5 instead of 7 (in simulation there was a little difference, between 5
membership and 7 membership functions).

(2) The number of neural networks formed to choose optimality was reduced to 50

(from100).

These have quite minor implications regarding original controller design in section

(1.6).

The sampling time was set at 15 minutes for training and control signal generation.
Two weeks of external air temperature, solar radiation and internal air temperature
from the corresponding sensor, and control signal generated by the controller, were
collected and stored in a matrix to act as a stack. Using the principle of a stack, the

data matrix had two weeks of data at each sampling time. The network was trained
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and validated using these data after applying the SVD algorithm to generate a one-
hour-ahead prediction of the internal air temperature. The SIMULINK representation of
the quasi-adaptive fuzzy logic controller using DS1102 real-time workshop is shown
in figure (8.10).
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Figure (8.10): SIMULINK model of the quasi-adaptive fuzzy logic controller using
DS1102 real-time workshop

The predicted internal air temperature and the error (between the current internal
air temperature and the set point reference temperature) were applied to fuzzy logic
controller to generate a control signal. This signal was modulated by PWM and then
applied to the switching device, which was applied to the oil-filled electric radiator.
A flowchart of the implementation is shown in figure (8.11).

8.6. Results
To compare the quasi-adaptive fuzzy logic controller with the benchmark PID

controller, two test cells should be used with the same indoor and outdoor climate
conditions. Unfortunately there is only one test cell, so a simulation model of the test
cell and the oil-filled electric radiator with conventional PID controller was first

developed and tested using test cell results. The intention was that the validated
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conventional control simulation be used as means of evaluation the practical

performance of the proposed quasi-adaptive fuzzy logic controller (QAFLC).

Solarrad Intair temp. Intair temp.
sensor sensor seisor
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1
Hardware D/A Converter

!

To the control circuit

Figure (8.11): Implementation of the proposed controller

Figure (8.12), shows the result of the PID controller (the D-term was set at zero) in

real-time compared with a SIMULINK model of the test cell using the same controller.
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Results based on the model and the filed measurements compare very favourably and

gave a significant agreement.
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Figure (8.12): Real Time and simulated results of the test cell using PID controller

(a): Solar radiation, (b): Internal air temperature, (c): Electric power consumption

The validated model of the test cell with the oil-filled electric radiator was used to
compare the conventional PID with the real-time quasi-adaptive fuzzy logic
controller. Figure (8.13), shows the real time results using the quasi-adaptive fuzzy
logic controller and the simulation results of the conventional PID controller. Quasi-
adaptive fuzzy logic controller gave good tracking to the set point reference

temperature, reduce the overheating risk and then save a significant amount of energy.

8.7. Conclusions
In this chapter, the quasi-adaptive fuzzy logic controller was implemented using a

test cell to be evaluated and compared with benchmarking conventional PID.
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The quasi-adaptive fuzzy logic controller was carried out based on a combination

between an artificial neural network and fuzzy logic control. A feedforward neural
network used to predict future values of internal air temperature. A fuzzy controller
had two inputs: the error between the setpoint temperature and the current internal air
temperature; and the predicted future internal air temperatures.

The methodology of performance comparison by combining simulation and
experiments was applied successfully to the test cell. On this test cell, the proposed
controller gave good tracking to the set point reference temperature and reduced the
overheating risk as shown in figure (8.13b) and then saves a significant amount of
energy. Results shown in figure (8.13¢) confirmed that the energy demands in both
cases (conventional PID and proposed quasi-adaptive fuzzy logic controller) were
integrated in the limited time horizon used to reveal energy saving of approximately
20% for this particular day, due to the quasi-adaptive fuzzy logic controller when
compared with conventional PID control, with an improved thermal comfort and

reduced overheating risk.
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Figure (8.13): Real Time and simulated results of the test cell using PID controller

(a): Solar radiation, (b): Internal air temperature, (c): Electric power consumption
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Chapter 9

Conclusions and Future work

9.1. Conclusions
The aims of this thesis were to develop and test an adaptive control method for

space heating in buildings with significant solar input. The proposed control strategy
have many properties such as consideration of solar radiation in the control strategy,
self-adaptation of the controller to building and climate parameter changes (through
using on-line learning neural network predictor), robust and reduced commissioning

over the conventional controller.
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The following main contributions have been made:

e As, the method of Lorenze & Masy [1] was not suitable for building control
investigation, so an approach for the optimisation of reduced-order lumped
capacity modelling of the dynamic thermal behaviour of building spaces was
presented. The method was appropriate for simplified and computationally
efficient building envelope model descriptions of the type needed for short-term
analysis of energy and environment in buildings, such as plant and control system

simulations.

e The analysis of several construction types of mixed materials according to apply
the above method, suggests that the innermost-to-outermost resistance fractions
for the optimised second-order model to be typically 0.1, 0.4 and 0.5 of the total
thermal resistance of the construction element respectively. The corresponding
innermost and outermost capacitance fractions are typically 0.15 and 0.85 of the

total thermal capacitance of the construction element respectively respectively.

e A suitable model of a hot water heating system which, when coupled to the room
space model developed above, could facilitate the study of nonlinear control laws
was developed. Nevertheless, it may be concluded that the model was simple,
computationally efficient and sufficiently accurate to have potential for

applications to short time-scale simulations appropriate to control system analysis.

e PID controllers require three tuning parameters which are difficult to optimise a
priori and which, in any event, are only suited to a finite range of plant response
when the plant has nonlinear characteristics. Since, the architecture and the
principles in the design of the static fuzzy logic controller (FLC) was developed
for the control of the internal air temperature. The FLC was found to give better
tracking of the reference control condition than a comparative tuned PID
controller as well as better robustness properties, when the parameters of the

system under control were changed.

e A control strategy for the space heating of a building space in which the comfort

sensation, as quantified by predicted mean vote, forms the control variable was
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developed. There was a natural appeal in this in that the essentially subjective
‘comfort: control problem can be easily mapped onto a universe of discourse of
input fuzzy sets and the associated inference which ultimately forms a required
control action can be carried out qualitatively. The resulting FLC was compared
with a PID controller tuned to give optimal performance for a given case,
consisting of a building space with high thermal capacity and low thermal

capacity, but did not cope with the overheating risk.

e A quasi-adaptive fuzzy logic controller was developed to overcome the problem
of the overheating due to the lagging influence of solar heat gain in a space. The
development of the proposed quasi-adaptive fuzzy logic controller was carried out
based on a combination of artificial neural network and fuzzy logic control. A
feedforward neural network was used to predict future values of internal air
temperature. A fuzzy controller with two inputs: the error between the setpoint
temperature and the current internal air temperature and the predicted future
internal air temperatures. The quasi-adaptive fuzzy logic controller has the
advantages over conventional PID controller in that it is able to avoid the
overheating arising from solar heat gain and, thereby, generate saving in energy

use as well as improve thermal comfort.

e The quasi-adaptive fuzzy logic controller was implemented using a test cell to be
evaluated and compared with benchmarking conventional PID. The methodology
of performance comparison by combining simulation and experiments was applied
successfully to the test cell. On this test cell, the proposed controller gave good
tracking to the set point reference temperature and reduced the overheating risk
and then saves a significant amount of energy. Results confirmed that the energy
demands in both cases (conventional PID and proposed quasi-adaptive fuzzy logic
controller) were integrated in the limited time horizon used to reveal energy
saving of approximately 20% due to the quasi-adaptive fuzzy logic controller
when compared with conventional PID control, with an improved thermal comfort

and reduced overheating risk.
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To give direct figures to justify a substantial energy saving (KWh) of the adaptive
fuzzy logic controller over conventional PID' controller, the integration of the power
curve (as shown in figure (8.13c¢)) has been done for different five days. Table (9.1)
gives a quantitative data of the energy saving (KWh).

As can be seen from table (9.1), the energy savings of around 20% was achieved

using adaptive fuzzy logic controller over the conventional PID control.

Dayl Day2 Day3 Day4 Day5
Simulated PID 1.2 1.1 1.15 1.0 1.18
Real-time QAFLC 0.96 0.902 0.9315 0.82 0.944

Table (9.1): Quantitative data of energy saving

9.2. Recommendations for further works
A further possibility for those spaces exhibiting one or more of the features

mentioned above is to implement a model-assisted strategy in which a thermal model
of the space is used to offset measurements made at a single point. None of these
avenues have been explored in the present work and form the basis of further work in

the field.

e Further work needs to be done to adapt the modelling method based on the
optimization technique to whole space simulations, the treatment of building
ventilation rates, an analysis of the model performance when applied to occupied
spaces with plant, introduction of a library of surface convection coefficients, and

introduction of a method to treat longwave and shortwave radiation.

e For practical application in HVAC (Heating, Ventilating and Air Conditioning)
control, further work needs to be done to address the wide range of training cases

and diversity of building construction types.
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For more saving in energy, further work needs to be done to increase the predicted
time horizon for internal air temperature using the neural network with small

amount of data.

To increase the applicability of the proposed controller, further work needs to be
done to expand the application of the proposed controller to control the cooling

systems and storage room.

Another important research area needing attention is to design a fault diagnosis
system for building energy management system via a simulation environment
since air dynamics in rooms can be known from simulation models. A possible
way of implementing this could be to apply a set of input and output related data
from a normally operating system as a reference and then training a neural
network using faulty input/output data. This trained neural network can actually
predict the system outputs under normal and failed conditions, and hence can be
used to detect a variety of faults. This can be further extended to designing a
control reconfiguration system in the case of system failure so that the overall

system remains functional.
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Appendix A: High thermal capacity building’s elements properties

Two rooms have been selected to demonstrate and validate the modelling and
control methods through this thesis. Room 302, in the third floor of “Northumberland

Building” in the city campus of University of Northumbria at Newcastle, it is a south

facing room. Room 301, in the same floor in the same building, but it is a north
facing room. Both rooms have the same areas, the same construction element
properties, and they are computer laboratories as shown in the third floor plane.
Northumberland building is a high thermal capacity building, it has been the subject
of extensive research into photovoltaic cladding. The properties of various

construction elements of the selected spaces are given in Table Al.

Element Layering Thickness Thermal Specific heat Density
Conductivity Capacity
(m) (Wm'K™) KJkg'K™) (kgm™)

External Brick 0.122 0.84 800 1700
Wall 1 Insulation 0.05 0.03 1764 30
(1791 m?) C-Block 0.112 0.510 1000 1400

Plaster 0.013 0.160 1000 600
External Aluminium 0.003 0.160 896 2800
Wall 2 Air space 0.100 mmm 1025 1.2
(7.36 m?) Insulation 0.075 0.035 1000 30

Cast concrete 0.185 1.130 1000 2000

Plaster 0.013 0.160 1000 600
Internal Plaster 0.013 0.160 1000 600
partitions C-Block 0.122 0.510 1000 1400
(43.10 m?) Plaster 0.013 0.160 1000 600
Internal Carpet 0.009 0.060 2500 160
floor/ceiling Screed 0.065 0410 840 1200
(63.00 m?) Concrete 0.125 1.130 1000 2000

Table Al: Construction element properties (high thermal capacity building)

The parameters of the 6™ order model of the high thermal capacity building space

based on Lorenze & Mesy method are given in Table A2.

R= 0.060731 (W'K) R~  0.003211 (W'K) Cr= 2853468 JK)
R= 0.067285 (W'K) Re=  0.009007 (W'K) Cy= 35854560 OJK™)
Ry= 0.335941 (W'K) Rs=  0.007444 (W'K) Cs~= 35854560 0K
R~ 0.037407 (W’'K) Rie=  0.007444 (W'K) Cs= 8033840 (JK™)
Rs=  0.009007 (W'K) R;y=  0.010834 (W'K) Ce= 1104000 JK™)
Re  0.003211 (W'K) C= 5967003 JK)

Table A2: Parameters of 6™ order model (high thermal capacity building)
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Figure (A1): Part of the third floor in Northumberland Building at University of

Northumbria at Newcastle
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Appendix B: Low thermal capacity building’s elements properties
The above room was adopted to be a low thermal capacity building space but all

construction elements were replaced using combinations of material choices with low

capacity. Table B1, shows the construction element properties of low thermal

capacity building.
Element Layering Thickness Thermal Specific heat Density
conductivity Capacity
(m) (Wm'K™ KIkg'K™) (kgm™)

External Aluminium 0.0030 160 896 2800
Wall 1 Air gap 0.0250 - 1025 1.2
(17.91 m?) Min. Wood 0.0433 0.04 1000 16

L/w block 0.1120 0.19 1000 600

Air gap 0.0100 - 1025 1.2

Plaster 0.0130 0.16 840 950
External
Wall 2 As external wall 1 but with mineral wood insulation thickness 0of 0.0615 m
(7.36 m?)
Internal Plaster 0.0177 0.16 840 950
partitions Air gap 0.1000 1025 1.2
(43.10 m%) Plaster 0.0177 0.16 840 950
Internal Timber 0.025 0.14 1200 650
floor/ceiling Air gap 0200 - 1025 1.2
(63.00 m%) Plaster 0.027 0.16 840 950

Table B1: Construction element properties (low thermal capacity building)

The parameters of the 6™ order model of the high thermal capacity building space

based on Lorenz & Masy method are given in Table A2.

R=  0.087900 (W'K) R=  0.005861 (W'K) C= 6149515 JK™)
R=  0.040116 (W'K) Re=  0.006358 (W'K) Cs= 2621506 JK™)
Rs=  0.269425 (W'K) Rs=  0.007444 (W'K) Cs= 2621506 JKM
Rs= 0.103923 (W'K) Ri=  0.007444 (W'K) Cs= 1225249 JKH
Rs=  0.006358 (W'K) Ri= 0.010834 (W'K) Ce= 1104000 (JKP)
Re  0.005861 (W'K) C= 1491221 (JK™)

Table B2: Parameters of 6™ order model (low thermal capacity building)
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Appendix C: Hot-water heating system parameters
The fin and tube natural convector consists of mild steel tube of 32mm and

35.52mm inside and outside diameter, respectively. The length of the tube is 9.2m.

The thermal properties of the tube materials are as follows:

Density (o) 7860 kgm™
Specific heat capacity (C,)  0.42 klkg 'K

Thermal conductivity (k) 63 Wm'K™

Each of the aluminium fins are 90mm long and 83mm wide, with a thickness of
0.28mm and there are 90 fins per meter. The thermal properties of aluminum are

taken to be as follows:

Density ( p) 2710 kgm™
Specific heat capacity (C,)  0.913 klkg 'K!

Thermal conductivity (k) 201 Wm'K*

Boundary conditions and design parameters of the convector are as follows:

Twi 80°C

Tyo 70°C
Ay 0.925 m?
4y 25.039m’
Pr 2.53
Hw 0.0004 kgm ™5™
ke 0.662 Wm'K™
My 0.28 kgs™!
n 1.5
158 wm 2K}
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Appendix D: Calculation of relative humidity
To calculate the relative humidity of the internal air of the selected building's

space, firstly the internal air enthalpy (H,) have been calculated from the room

energy balance as following:

mH, =0, +m,(H, - H,) D.1

The outdoor air enthalpy ( H, ) is calculated using the following set of equations:

0.624Pw_ (T,
101.325-1.004 Pw,,(T,)

D.2

g8.(T,) =

where Pw_, can calculate from the following two equations (D.3,D.4):

The saturation pressure Pw_, over ice for the temperature range of —100°C to 0°C is

5

lin(Pwg,) =Y .aT" +adin(T) D.3
i=0

where

a, = —5674.5359 a, = 63925247 a, =—09677843¢”  a, =0.622157¢°

a, = 020748 a, =0948402¢™  a;,=4.1635019

The saturation pressure over liquid water for temperature range of 0°C to 2000C is

3

lin(Pw,,) =Y BT +b,lin(T) D.4
j=~1

where:

b, =~-58002206 b, =1.3914993 b, = —0.048640239

b, =041764768¢™ b, =—014452093¢” b, = 65459673

From the measured outdoor air relative humidity ( ¢, ), the mass of water vapour of

the mixture ( g) of the outdoor air can be calculated from the following equation:

_100&(7,) D5

e (%)
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And then the enthalpy of the outdoor air ( H,) can be calculated from the following

equation:

H =h*g(I)+C*T, D.6

The mass of water vapour of the mixture ( g ) of the internal air can be calculated from

the following equation:

_C*
g(I) = 5% D.7

Then the relative humidity of the internal air calculated form the following equation:

Pint = 100(%) ' D.8
8s(T)
=
Subsystem
w Foncion
MATLAB Fen1
gz( "
n SwAC
wo/c Dis
1.0
c .
g(Ti}
Figure (D.1): Model realisation of the relative humidity
The constants used to calculate PMV and PPD are given in the following table:
Constant Value
Metr (Specific metabolic activity in met) 1.2 met
pv (air velocity in m/s) i 0.2 m/s
Clomin (minimal closing thermal resistance in clo) 0.75 clo
Clomax (maximal closing thermal resistance in clo) 1.25clo
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Appendix E: Cranfield test cell’s elements properties
The construction elements properties of the test cell at Cranfield University as

fellows:
Element Layering Thickness Thermal Specific heat Density
Conductivity Capacity
(m) (Wm'K™) (kg 'K™) (kgm™)
East, West walls MDF 0.0090 0.080 1000 750
(6.79865 mz) Styrofoam 0.0504 0.033 1400 028
North wall Plasterboard 0.0126 0.160 0840 950
(8.0585 m?)
External Ceiling MDF 0.0090 0.080 1000 750
(10.6323 mz) Styrofoam 0.0504 0.033 1400 028
Plasterboard 0.0126 0.160 0840 950
External Floor MDF 0.0120 0.080 1000 0750
(10.6323 mz) Styrofoam 0.0504 0.033 1400 0028
Slab 0.0360 1.280 0920 2100
Vinyl 0.0020 0.220 1.260 1600
South wall Cladding 0.003 0.170 1300 1300
(5.6585 m%) Styrofoam  0.010 0.027 1400 0028
Cladding 0.003 0.170 1300 1300
Window Glass 0.004 0.105 750 2500
(2.4 m%) Air Gap 0.012 — e e
Glass 0.004 0.105 750 2500

Table E1: Construction element properties of Cranfield test cell

The parameters of the optimized model of Cranfield test cell as shown in the

following table:

Ri= 0.0103502 (W'K) Ri7= 0.11170000 (W'K)
R,= 0.0517151 (W'K) Rig= 0.02792500 (W’K)
Ry= 0.0414008 (W'K) Rie= 1.08333333 (W'K)
= 0.1177965 (W'K) C= 8939.29800 (JK™
Rs= 0.0942372 (W'K) Cr= 50656.0220 (JK™)
= 0.0235593 (W'K) Cy= 128641.125 0K
R= 0.1396250 (W'K) Ce= 22701.3750 (JK?
Rg= 0.1117000 (W'K) Cs= 108259.615 (JK™)
Re= 0.0279250 (W'K) Ce= 19152.2850 (JKH
Ri= 0.0890910 (W'K) Cr= 727178.825 (JK™)
Ri= 0.0712728 (W'K) Cs= 128325.675 (JK™")
Ri= 0.0178182 (W'K) Co= 169582.480 (JK™)
Ris= 0.0892810 (W'K) Cie= 29926.3200 (JK™)
Ri= 0.0714248 (W'K) Ci= 108529.615 (JK™
Ris= 0.0178562 (W'K) Cp= 19152.2850 (JK™)
Rie= 0.1396250 (W'K) Cii= 29686.3052 (JK
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