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ABSTRACT

The benefits of applying advanced coatings on both single point and multipoint cutting tools

such as improvement of productivity, tool life, machined surface quality etc. have been realised

by the surface engineering researchers [1], commercial coaters [2-4] and end users [5]. The

demand for advanced coatings in cutting tool industries is continually growing to meet the

challenges of high speed machining, dry machining, near net-shape machining, machining of

hard-to-cut materials etc.. Advance coatings with excellent properties on flat coupon in a

laboratory deposited by modern deposition technologies should not be taken for granted in

improving the performance of complex shaped cutting tools [6] in aggressive cutting

environments. This is because the end performance of coated cutting tools is not only dependant

on the coating itself but also on the substrate material, geometry, surface finish and cutting edge

conditions prior to coating deposition. The paper presents case studies with examples of

successes and failures of advanced coatings on different multipoint cutting tools (e.g., milling

cutters, bandsaws, circular saws, holesaws etc.). The future strategy for developing successful

coating technology for cutting tools should be directed towards adopting a systems approach to

bridge the communication gap amongst the cutting tool manufactures, tool coaters and end users.
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1. INTRODUCTION

At the beginning of 21st century, the cutting tool industry like other manufacturing industries,

faces the universal challenge of improving manufacturing economics through the improvement

of productivity (i.e., higher material removal rate) and reduction of machining costs (i.e., longer

tool life). At the same time, other challenges including machining of hard and difficult-to-cut

materials with improved product quality, reduction of environmental pollution from cutting

fluids and machining of small parts (micromachining) have further mounted the pressure on

cutting tool industries. To combat these challenges several new generation of machining

technologies have emerged, as shown in Fig. 1 [7-9].

Fig. 1. Challenges and advancements in metal cutting machining.
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coatings could play a major role in solving these problems as they improve the wear resistance of

cutting tools during machining by reducing friction, adhesion, diffusion, and oxidation in

addition to relieving thermal and mechanical stresses induced upon the tool substrate. It has been

estimated that approximately 80% of all cutting tools are currently coated [10] using mainly

Chemical Vapour Deposition (CVD) and Physical Vapour Deposition (PVD) technologies with

different coating materials such as Titanium Carbide (TiC), Titanium Nitride (TiN), Titanium

Carbonitride (TiCN), Aluminum Oxide (Al2O3) etc..

This paper aims to outline different aspects of developing advanced coating technologies for

metal cutting machining with some selected examples of machining tests conducted using

multipoint coated cutting tools.

2. EXPERIENCE WITH TiN COATED MULTIPOINT CUTTING TOOLS

Since 1970�s Titanium Nitride (TiN) has become a favourite coating on cutting tools as it

combines high hardness, high wear resistance, low coefficient of friction, low chemical affinity

and moderate thermal stability leading to improved cutting tool performance and product quality

in different machining applications. There are claims that 2-5 times improvement in tool life and

a 10-50% increase in productivity can be achieved depending on the workpiece material being

machined, type of machining, cutting conditions etc. [1]. TiN coating is still dominant in the

marketplace owing to its reliability in performing for most of the machining applications and

workpiece materials and affordable cost. The machining operation with multipoint cutting tools

such as bandsaw, circular saw, milling cutter, broach tool etc. is different from single point lathe

tool due to complex cutting edges, relatively poor sharpness of the cutting edges, complex

combination of chip formation mechanism, intermittent cutting action and difficulty in

accommodating chips in limited gullet sizes [11]. Again, relatively less accuracy and consistency

in manufacturing individual cutting edges of multipoint tools results in varying tool performance.

Majority of research work has been focused on single point tools while there are limited efforts

in evaluating the performance of coated multipoint tools [6, 12-14]. The following sections

present some of the machining test results experienced with TiN coated multipoint cutting tools.

Flank wear measurement, cutting time/section, and specific cutting energy were used to evaluate

the performance of coated tools.
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2.1 Milling Cutter

Fig. 2 shows the results of flank wear in TiN coated and uncoated teeth of a High Speed Steel

(HSS) milling cutter used for manufacturing bandsaws. It is evident that the coating has reduced

the flank wear up to 40% compared to the flank wear in uncoated teeth. However, the

performance of TiN coating in reducing the flank wear is not always consistent showing little or

no improvement in few teeth. Complex cutting action by the multipoint milling cutters, lack of

manufacturing accuracy and variation in coating thickness (2 µm - 4 µm) along the cutting edge

of individual tooth could be attributed to this kind of variation.

Fig. 2. Flank wear in TiN coated and uncoated teeth of a half-length coated milling cutter.

2.2 Bandsaw

Significant improvement in cutting performance has been realised with TiN coated bandsaw

blades (Fig. 3). However, TiN coating failed to contribute in improving the tool life of bandsaw.

The variation in geometry (e.g., back to tip height) produced during bandsaw manufacturing

could be responsible for inefficient cutting even with TiN coating.

2.3 Circular Saw

The improvement in performance with TiN coated HSS circular saw blades is highlighted in

Fig. 4, where a marked reduction in specific cutting energy with coated saw blades is noticed.

The lower specific cutting energy with the coated circular saw is due to a combination of flat

chip formation and easy chip flow over the rake face [12]. Furthermore, reduction in friction on
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the face/sides of the saws reduce forces, torque etc.. This improvement in performance has been

achieved with TiN coatings despite the poor surface of the edges prior to coating application.

Fig. 3. Comparison of performance between TiN coated and uncoated bandsaws.

Fig. 4. Performance of TiN coated and uncoated H.S.S. circular saws.
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2.4 Holesaws

Holesaws, which are becoming popular in the professional market for making accurate holes,

showed a considerable increase in life when coated with TiN coating (Fig. 5). However,

premature failure did occur in some cases and this was due to manufacturing faults such as poor

welding junction and geometrical error. There is clear evidence that the gullet-filling

phenomenon does not prematurely lead to a saw failure, the normal wear pattern occurs in the set

teeth and this wear can be reduced and hence the saw life increased by TiN coating.

Fig. 5. Performance of 20-mm holesaws.

3. CURRENT TRENDS OF ADVANCED COATINGS FOR CUTTING TOOLS
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pushed even further with superhard nanostructured composite coatings, a new branch of

materials that offer the opportunity to design unique physical and mechanical properties for

specific application areas. Nanocomposite coatings have proven to deliver high hardness of 40 to

50 GPa and high heat resistance of up to 1,100° C, making them suitable for dry and high speed

machining [17]. The nanocomposite coatings are becoming available in the commercial

production for machining applications. Hard-solid lubricant based coatings, which combine low

friction soft material (e.g., MoS2, WS2, diamond-like carbon) and wear resistant hard material

(e.g., TiN, TiAlN etc.) in the form of bilayer, multilayer or composite, are also promising for dry

machining. There is also considerable interest in developing crack-free, defect-free, smooth and

thin PVD Al2O3 coating to outperform thick CVD Al2O3 coatings [18].

A variety of superhard coating materials have also been developed such as cubic boron

nitride (c-BN), diamond-like carbon (DLC), carbon nitride (a-CNx) and polycrystalline diamond.

Despite having superhardness nature of these coatings, they have found limited machining

applications due to lack of thermodynamic stability, high internal stress leading to poor adhesion

and high chemical affinity in machining ferrous materials [19].

4. A SYSTEMS APPROACH FOR SURFACE ENGINEERING OF CUTTING EDGES

The common misconception among the wider industrial sector is that surface engineering

through the application of coatings is just an add-on process to enhance the performance and life

of the tool. Very often, no consideration is given to processes prior to or following surface

engineering. Surface engineering must be considered as more than an add on process to achieve

the best results. Again little consideration has been given to selecting the appropriate coating for

any particular tool material, machining application and workpiece material combination, as there

is no single universal coating for all applications. Tool manufacturers have often blamed the

coating companies for their product failures whereas in reality coating the tools may have done

nothing but highlight inadequacies in other manufacturing tasks. Lack of communication,

interdisciplinary training and skills has generally failed to isolate the real cause of tool weakness.

A scientific approach is required to understand and solve these problems to achieve the goal of

improved tool performance. In order to optimise performance from a surface engineering

treatment, a total systems approach is necessary by combining the knowledge of cutting tool

manufacturers, surface coaters and end users as shown in Fig. 6 [20].
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Fig. 6. A systems approach for the development of coated cutting tool.
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cutting tool�s performance is based on geometry and 30% on coating or substrate [11, 21].

Therefore, application of coatings on cutting tool can deliver the desired machining results when

cutting tool macro- (e.g., rake angle, clearance angle, chip breaker, helix angle etc.) and micro-

geometry (e.g., edge radius) are appropriately designed depending on the cutter material,

machining applications and workpiece materials.

The edge conditions (e.g., edge sharpness, burr, edge damage, edge burning etc.) of cutting

tools after its manufacturing are also critical to their stability, reliability and life expectancy in

use. Cutting edges produced by grinding have an estimated edge radius 5 µm - 20 µm, whereas

milling produces typical edge radius of 30 µm - 70 µm. The initial breakdown of a coated edge

owing to a burr would expose the substrate and hence, not show the full benefits of coating.

Furthermore, the handling of the sharp cutting tools, particularly multipoint cutting tools is very

critical, because damaged cutting edges will not be able to take the full advantage of coatings.

Aggressive grinding practices, such as rough or dry grinding that leave damaged surface layers

on the tool, must be avoided. The use of appropriate manufacturing tools (grinding wheel or

milling cutter), optimum manufacturing process parameters and appropriate handling tools could

eliminate these manufacturing faults prior to the application of coatings. Fig. 7 shows the cutting

edges as produced by a manufacturer highlighting the conditions of the cutting edges prior to the

surface treatment.

Fig. 7. Cutting edge characteristics of (a) a circular saw tooth and (b) a bandsaw tooth.

It is clear from the SEM pictures that cutting edges produced in multipoint cutting tools such

as bandsaws or circular saw blades are inferior in quality compared with those on single point

tools. This reflects the higher level of control on cutting edge geometry associated with powder
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metallurgy techniques. It is not surprising that manufacturers of multipoint cutting edge tools

have not had the same level of improvement in the product as single point lathe tools.

Another key factor in improving machining performance with coated tool is the preparation

of tool substrate and cutting edges prior to application of coating. Microblasting or water peening

of tool substrate before coating application removes manufacturing defects (e.g., grinding marks)

or loose superficial layers, changes the subsurface characteristics (e.g., compressive stress) with

positive effects and improves surface finish [11, 22-23]. All of these factors contribute to the

growth of fine-grained and dense coating microstructure on the tool, increased coating adhesion

and thickness uniformity, which lead to enhancement in machining performance. Cutting tool

manufacturers and surface coaters are also quickly realising that it is difficult to coat sharp edges

and furthermore, once coated, the edges are not retained. Therefore, there is need to modify and

redesign the edges, which would retain the strength suitable for the advanced coatings. Cutting

edge treatment prior to coating application such as honing produces easy-to-coat radiused edge

with improved edge stability. This also improves coating uniformity and mechanical properties

at the cutting edges, which means higher metal removal parameters can be used to boost the

productivity [24]. Typical edge radius of 10 µm - 25 µm is beneficial for improving machining

performance. Cutting tools need to be prepared to stringent quality standards before coating and

important parameters need to be measured in each stage of manufacturing process starting from

raw material to finished tool ready for coating. Large cutting tool manufacturers are currently

focusing on integration of coating technology in tool manufacturing processes to eliminate issues

related to quality of coated tools. To the best knowledge of authors, there is no complete

standard specification of tool cutting edges and surface characteristics prior to coating

application. There is a need for better specification based on scientific evidences.

4.2 Surface Coaters

Surface coaters should be careful about selecting the coating material (e.g., TiN, AlTiN) and

design of coating architecture (single layer or multilayer) to match with the machining

application (continuous or interrupted). As substrate cleanliness plays a major role in the

coating�s adhesion, strict control of tool cleaning procedure and clean environment are essential.

Coating performance in metal cutting tools still varies widely depending upon coating processes

(e.g., arc evaporation, sputtering etc.) and deposition parameters. Therefore, it is critical to

determine coating composition and specific process technology, which are best suited to any
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particular tool under specific operating conditions. PVD technology is gaining increasing market

share owing to its ability to deposit thin coating (micrometre to nanometre), low deposition

temperature (450 oC and below) and better coating properties [25-26]. It has been estimated that

in 2007 globally 56% of cutting tools are coated by PVD technology as compared to 20% in

2000 [27]. The control of deposition parameters such as gas pressure, deposition temperature,

bias voltage etc. is also very critical to achieve the optimum coating properties [15, 28]. With the

advent of computer technology, it has become easier to operate and control vacuum coating

equipment, however, discipline is required in the area of preventative maintenance and operating

procedures to avoid any hidden process instability [29]. Coating properties and thickness could

also vary depending on the size and shape of the cutting tool [29]. This is particularly critical for

complex shaped multipoint cutters (e.g., milling cutter). Therefore, coating properties must be

optimised for a particular shape and size of cutter and different shaped and sized cutters

shouldn�t be coated in the same batch to avoid any variation in coating properties. Coating

companies are also considering the post-treatment (e.g., polishing, microblasting) of coated

cutting edge to improve smoothness and to reduce residual stress by removing defects in the

coating, but post treatment could cause local removal of coating in case of rougher substrate

leading to poor cutting performance [23].

From the metal cutting machining point of view, maximum benefit in terms of machining

performance and tool life can be achieved when the coating possess a favourable combination of

intrinsic properties (e.g., hardness, toughness, chemical inertness, adhesion etc.) [16, 28], as they

determine the tribological properties (e.g., wear, coefficient of friction etc.) at the tool-workpiece

contact point [15]. Hence, urgent attention is required in accurately evaluating both intrinsic and

tribological properties using specified test equipments, as the coating is quite thin (3 µm - 5 µm).

There exists a lack in certified methods of testing which needs to be standardised to compare

different published results [29-30]. Above all, integration of a well-defined quality control

system in every steps of coating deposition and evaluation processes will ensure the desired

quality of coating.

4.3 Cutting Tool End Users

It is well established that the properties of workpiece material particularly yield stress

dictates the chip formation mechanism, which also influences the cutting forces, tool tip

temperature, cutter performance and finally the cutter life [31]. The end users of cutting tools
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should assess workpiece properties beforehand to select the compatible coating for optimum

machining.

Surface coatings are clearly valuable in extending the life of cutting tool by arresting or

slowing down wear and in improving the quality of the machined surface. The extension of tool

life with coatings even when operated at the conventional machining parameters reduces cost

associated with tool and tool changing time, but it has very little contribution in increasing the

productivity or reducing the machining cost, as cutting tool cost is only 3-5% of total machining

cost [16]. A user of coated tools will financially benefit (lower the cost of the operation by

reducing cycle times) only when the coated tool is used at high feeds and speeds. As a rule of

thumb, cutting parameters can be increased from 20% to 50% with a coated tool [32] depending

on the type of machining and workpiece material to be machined. Improved machine tool

stability is vital to fully exploit the potential of coated tools by operating at high metal removal

rates. Wear modes (crater, flank and notch wear) and mechanisms (abrasive, adhesive and

diffusive wear) in cutting tools for a particular application need to be evaluated to select the

appropriate coating. Ideally, the coating on the cutting tool should fail by gradual wear

associated with predictable and reliable tool performance, but not by adhesive or cohesive

failures, macro-/micro-chipping etc., which rapidly raises cutting forces and tool tip temperatures

leading to a premature tool failure. Finite element modeling could be used as a potential

supplementary tool in addition to the experimental investigation to simulate stress and heat

generation in coated cutting tools [33].

5. CONCLUDING REMARKS

Examples of machining test results demonstrated that TiN coating applied on multipoint

cutting tools (milling cutter, bandsaw, circular saw, holesaw etc.) could deliver considerable

improvement in machining performance and product quality. However, it is apparent that

manufacturing method and quality control of multipoint cutting edges must be fine-tuned before

realising substantial improvement in performance and reliability with advanced coating applied

onto them. Undoubtedly, TiN coating on cutting tool will continue to be a choice in the cutting

tool industry, while the other more advanced coatings such as AlTiN, AlCrN, TiSiN etc. will

slowly enter into the cutting tool industry where high wear and oxidation resistance are primary

concerns. Current trends suggest that in the next few years the cutting tool industry will see
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widespread application of advanced nanocomposite coatings, which offer the possibility of

tailored made multifunctional properties (e.g., super-hardness, toughness and oxidation

resistance) for particular applications. In order to gain maximum benefit from surface engineered

tools, a total systems approach based on substrate materials, tool design, manufacturing

processes and quality control are absolute vital.
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