An Investigation into Server-side Static and Dynamic
Web Content Survivability Using a Web Content

Verification and Recovery (WCVR) System

northumbria
UNIVERSITY

School of Computing, Engineering & Information Sciences

Northumbria University

A thesis submitted for the degree of
Doctor of Philosophy (PhD)

26th of June 2008

An Investigation into Server-side Static and Dynamic Web Content
Survivability Using a Web Content Verification and Recovery
(WCVR) System

Declaration

I declare that the work contained in this thesis has not been submitted for any

other award and that it is all my own work.

Name:

Signature:

Date:

I would first like to thank my GOD who give me the patience and

ability to write this thesis. As well as, I would like to dedicate this

thesis to my loving parents (Abu loui, and Om Loui) and my family
(Lina, and Ayshah), who offered me a great love and support

throughout the course of this thesis.

Acknowledgements

Firstly, I would like to sincerely thank my supervisors Dr. Christopher
Laing, Dr. Paul Vickers, and Prof. Maia Anglova for their constant
guidance, great friendship and for their unique and charming way of

support and assistance.

Much of the work in this thesis would have been impossible without
the generosity of Dr. Christopher Laing, and Dr. Paul Vickers. Dr.
Laing helped me identify for all elements in my research work from
the first stage to the final draft. In retrospect, I feel that I have been
very lucky to have someone who has such good insight in web security
research, and gives me the most crucial encouragement at the most
difficult times. Dr. Vickers learned me many things in the life besides
his academic advice. He has a far-reaching insight in the academic
research. [am grateful to Prof. Maia Anglova for her support and

assistance in data modelling.

A special thanks as well to the postgraduate director Dr. Nick Rossiter
who I am deeply grateful for the opportunity he gave to me to be a
member in family of Northumbria University. I would also like to
thank K, R, and J for running the experimental test. I acknowledge
Al-Asra University for their financial support. I thank all my friends

for their encouragement and friendship.

I would also like to take this opportunity to express my gratitude to
my family members (my parents, my wife, my daughter, my brother
Loui, my uncle Dr. Tbrahim, and all brothers and sisters) for their
love, unfailing encouragement and support. Finally, I would be remiss
without mentioning, whose extreme generosity will be remembered

always.

Abstract

A malicious web content manipulation software can be used to tam-
per with any type of web content (e.g., text, images, video, audio
and objects), and as a result, organisations are vulnerable to data
loss. In addition, several security incident reports from emergency re-
sponse teams such as CERT and AusCERT clearly demonstrate that
the available security mechanisms have not made system break-ins
impossible. Therefore, ensuring web content integrity against unau-
thorised tampering has become a major issue. This thesis investigates
the survivability of server-side static and dynamic web content using
the Web Content Verification and Recovery (WCVR) system. We
have developed a novel security system architecture which provides
mechanisms to address known security issues such as violation of data
integrity that arise in tampering attacks. We propose a real-time web
security framework consisting of a number of components that can
be used to verify the server-side static and dynamic web content, and
to recover the original web content if the requested web content has
been compromised. A conceptual model to extract the client interac-
tion elements, and a strategy to utilise the hashing performance have
been formulated in this research work. A prototype of the solution
has been implemented and experimental studies have been carried out
to address the security and the performance objectives. The results
indicate that the WCVR system can provide a tamper detection, and
recovery to server-side static and dynamic web content. We have also
shown that overhead for the verification and recovery processes are
relatively low and the WCVR system can efficiently and correctly

determine if the web content has been tampered with.

Contents

Publications

1 Introduction

1.1 An Overview
1.2 Research Problem

1.2.1 Notions of Integrity
1.3 Problem Motivation.
1.4 Aimof Thesis
1.5 Objectives
1.6 Contributions of Thesis
1.7 Organisation of Thesis

2 Background

2.1 Introduction
22 TheWeb
221 WebContent
222 HTML Legacy Language
2.23 HTTP Request-Response Model

CONTENTS

2.2.3.1 Multipurpose Internet Mail Extensions (MIME) .

2.2.3.2 Uniform Resource Locater (URL)

2.23.3 The HTTP Request

2.2.3.4 Behind the Scenes of a Web Page

2235 ResponseClasses

2.3 Web Security
23.1 Web Security Risks
2.3.2 Web Security Issues L.
2.3.3 Malicious Attack oL
234 Java Security
2.3.5 JavaScript Security
2.3.6 Common Gateway Interface (CGI) Security
2.3.7 Web Security Technologies
23.7.1 Hashing L.

2.3.7.2 Message Authentication Code (MAC)

2.4 Conclusion

Integrity Verification Systems and Related Work
3.1 Introduction

3.2 Data Tampering

3.3 Survivability

3.4 Integrity of Web Documents
341 SSL .
3.4.2 Digital Signatures

vi

20
21
21

22

24
25
26
27
28
31
32
34
34
36

36

CONTENTS

3.4.3 Form Field Validation Scheme

3.4.4 Network and Application Firewalls

3.5 Related Work

3.5.1 Web Engineering Security Approach

3.5.2 Integrity Verification Systems and Approaches

3.5.2.1 Client-side Encryption Approach

3.5.2.2 Dynamic Security Surveillance Agent (DSSA) Sys-
tem

3.5.2.3 Adaptive Intrusion-Tolerant Server System

3.5.2.4 Application-Level Gateway Approach

3.5.3 Section Summary and Conclusion

3.6 Conclusion

4 Design of WCVR System

4.1 Introduction

4.2 Web Content Verification and Recovery (WCVR) System

4.2.1 Work Assumptions

4.2.2 Overview of Web Security Framework Architecture

4.2.3 New Model of Interaction Elements

4.2.4 New Hashing Strategy

4.2.5 Functional Overview

4.2.6 Security Framework Components

4.2.6.1 Web Register Component

4.2.6.2 Integrity Verifier Component

4.2.6.3 Response Hashing Calculator

Vil

56
57
59
60
61

CONTENTS

4.2.6.4 Integrity Verifier Component at the Response Level 95

4.2.6.5 Recovery Component 96
4.3 Threat Model 97
4.4 Conceptual Comparison 99
45 Conclusion 102
Implementation of WCVR System and Initial Testing 104
5.1 Tools used for the Implementation 105

5.1.1 Programming Languages for Implementing the Prototype . 105

51.1.1 Java 105

5.1.1.2 Servlets 106

5.1.1.3 JavaFilters L. 107

5.2 Architecture Design of the Prototype 108
5.2.1 Web Register Mechanism 110
5.2.2 Response Hashing Mechanism 110
5.2.2.1 Deployment 112

5.2.3 HTTP Interface Mechanism 114

5.2.4 Registry and Integrity Verification using SHA-1 Checksums 117

5.3 Testing Strategy 119
5.3.1 Considerations, 120
5.3.2 Formal Experimental Statement 120
5.3.3 Security Testing Strategy 121

5.3.3.1 Network Layout 122
5.3.3.2 Experiment 1 124

viil

CONTENTS

5.3.3.3 Experiment2 126

5.3.4 Performance Testing Strategy 129
5.34.1 Experiment3 130

5.34.2 Experiment4 133

5.34.3 Experiment b 135

5.4 Initial Testing 138
55 Conclusion 152
System Evaluation 154
6.1 Introduction 154
6.2 Reflections on Methodology 155
6.3 System Evaluation: Security and Performance 156

6.3.1 Case Study - Security Objective (Detection and Recovery) 159

6.3.1.1 Section Conclusions 164

6.3.2 Case Study for Micro-benchmarking Performance 169

6.3.3 End-to-End Performance Evaluation 172
6.3.31 CaseStudy K. 173

6.3.32 CaseStudy R 180

6.3.33 CaseStudy J 184

6.4 TFurther Discussions and Conclusions 191
Conclusions and Future Work 194
7.1 Research Summary 194
7.2 Conclusions of Thesis 195
7.3 A Summary of Contributions 196

1x

CONTENTS

7.3.1

7.3.2

A novel approach to the verification of server-side dynamic

web content integrityo 196

Improved performance in the verification of static web content 198

7.3.3 The development of the WCVR system to ensure the sur-
vivability of web content 198

7.3.4 Experimental studies to evaluate the reliability and effec-
tiveness of the WCVR system 199
7.4 Limitations of Research Work and Future Work 200
A Case Study - Security Objective: Table 201
B Case Study for Micro-benchmarking Performance: Tables 202
References 218

List of Figures

1.1
1.2

1.3

2.1
2.2
2.3

2.4

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Snapshot of the requested static code “viewimage.html”.
Snapshot of the dynamic code “view.jsp” at the request level. . .

Snapshot of output response “view.jsp”

HTTP request-response model architecture

Request File
Response File

Java Program Architecture0

The end-to-end security model and gateway chain model of SSL, .

Schematic view of WCVR architecture

Interaction model of a web page
HTML form input element
Example of a web site with 3 web pages and 7 referenced objects .
Algorithm of registration static phase for web contents
Production of MAC value

Extracting of content element for hashing calculation

xi

67
72
74

77

LIST OF FIGURES

4.8

4.9

4.10
4.11
4.12

4.13

4.14
4.15

4.16

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

5.9

Producing hash value using SHA-1 hash function and private key

(MAC technology) 84
The finite automata of state protocol 87
Extraction of SP path 89
Extraction of original hash value. 89
Enforcing request availability policy 90

This function compares between the original checksum and the

re-calculated checksum for integrity verification of static web content 90
The process of the hashing calculation in our WCVR system . . . 92
Algorithm of response registration 94

This function compares between the original checksum and the

re-calculated checksum for integrity verification of dynamic web

content 95
Filter Process 107
High level architectural flowchart of WCVR prototype. 109
The “web.xml” for Response Hashing Deployment. 113
Structure of a HT'TPServer Class 118
The schematic of the network layout for testing purposes. 123

A list of measurements for the original hash values of web contents 141

Detecting tampering attacks 141
Static web content: Graphs for response time (request) curves
through DSSA and the WCVR on IIS and Tomcat servers, in sec-
onds, of all requests during the test. 146
Displays the distribution of page response time, in seconds, of all
pages during the test. oL 147

X1l

LIST OF FIGURES

5.10

0.11

6.1

6.2
6.3
6.4
6.5

6.6

6.7

6.8

6.9

6.10

Dynamic Web Content: Graphs for response time curves through
without verification system and the WCVR on Tomcat, in seconds,
of all requests during the test. 150
Displays the percentage of dynamic pages that were performed
within a given time range. Theses graphes help determine the
percentage of pages that meet a performance objective. 151
A sequence of static and dynamic web pages from JSP shopping
cart application have been requested. 165
Log file: Cart.jsp?itemID=0&count=15 166
Log file: Cart.jsp?itemID=2&count=17 167
Log file: Cart.jsp?itemID=6&count=19 168
A linear chart of registry Performance for both SHAl-extended
and SHA-1 as compared with file sizes., 171
Case Study K - Static Web Content: Graphs for the response

times (request) through the DSSA and WCVR systems on IIS and

Tomcat web servers, in seconds, of all requests during the test . . 175

Case Study K- Dynamic Web Content: Graphs for response time
curves through without verification system and the WCVR on

Tomcat, in seconds, of all requests during the test. 179
Case Study R - Static web content: Graphs for response time
(request) curves through the DSSA and the WCVR on IIS and
Tomcat servers, in seconds, of all requests during the test. 182
Case Study R~ Dynamic Web Content: Graphs for response time

curves through without verification system and the WCVR on

Tomcat, in seconds, of all requests during the test. 185

Case Study J - Static web content: Graphs for response time (re-
quest) curves through DSSA and the WCVR on IIS and Tomcat

servers, in seconds, of all requests during the test. 187

xiii

LIST OF FIGURES

6.11 Case Study J - Dynamic Web Content: Graphs for response time
curves through without verification system and the WCVR on

Tomcat, in seconds, of all requests during the test.

6.12 Average response time (seconds) on Tomcat and IIS web servers. . 192

X1v

Publications

We have published a number of conference and journal papers summarised as

follows:

e S. Aljawarneh, C. Laing, and P. Vickers, Verification of Web Content In-
tegrity: A New Approach to Protect Servers Against Tampering, in PGNET
2007 The 8th Annual Postgraduate Symposium on The Convergence of
Telecommunications, Networking and Broadcasting (M. Merabti, ed.), pp.
159-164, Liverpool John Moores University, 28-29 June 2007, ISBN: 1-9025-
6016-7.

e S. Aljawarneh, C. Laing, and P. Vickers, Security Policy Framework and
Algorithms for Web Server Content Protection, in Proc. ACSF 2007 2nd
Conference on Advances in Computer Security and Forensics (J. Haggerty
and M. Merabti, eds.), Liverpool John Moores University, July 2007,

e S. Aljawarneh, C. Laing, P. Vickers, and M. Angelova. Tamper Detection,
Prevention, and Recovery in Server-side static and dynamic web content
(poster), CEIS Symposium, CEIS , Northumbria University, 2008.

e S. Aljawarneh, C. Laing, P. Vickers, and M. Angelova. Tamper detection,
and recovery on server-side web content using a WCVR system: A design,
implementation, and experiential evaluation. Will be submitted to Journal

of Security and Communication Networks, WILEY.

e S. Aljawarneh, C. Laing, and P. Vickers, Design and experimental evalu-
ation of Web Content Verification and Recovery (WCVR) system: A sur-
vivable security system, in Proc. ACSF 2008 3rd Conference on Advances

XV

in Computer Security and Forensics (J. Haggerty and M. Merabti, eds.),
Liverpool John Moores University, July 2008.

XVl

Chapter 1

Introduction

1.1 An Overview

Ensuring the survivability of server-side web content and the control of the ex-
changed data has become a major issue. Indeed, a digital nature, web-based
textual and multimedia documents can be tampered with and distributed very
easily. Therefore, the integrity of server-side static and dynamic web

content against tampering is still in question.

I of server-side web content integrity is be-

In this context, the verification
coming more important because many web based-services are generated on the
fly. It is therefore important to develop systems for integrity verification that are
able to provide web content security, detection of malicious manipulation of web

content and recovery from tampering.

Cryptography and watermarking seem to be the alternative solutions for re-
inforcing the security of multimedia documents against tampering attacks (1; 2;
3; 4). When the hidden or encrypted information is exposed (illegally decrypted)
by an adversary, the purpose of cryptography and watermarking may be invalid

(5). Tt is difficult to employ end-to-end encryption or end-to-end watermarking

Verification is quality control in which we only take corrective actions. For more on veri-

fication, see www.blurtit.com/q252833.html

1.2 Research Problem

on all data to achieve end-to-end security because proxies, web servers, and web
browsers involve decrypting some or all data to read and even modify some of
them to provide client-server services such as executing client and server scripts,

transforming and filtering web pages (6).

1.2 Research Problem

Because much academic research focuses on developing a new hashing algorithm
or a new encryption algorithm, data integrity has received little attention in
information security research and technical security groups (7; &; 9). Furthermore,
there is little published research in methods for testing web content integrity (10).
The published research and technical communities in the web security area are
generally more concerned with cryptographic rules and algorithms. In an attempt
to remedy this, this thesis focuses on the integrity of data. If the integrity of data
is violated, its confidentiality and availability can be compromised. It should be
noted that data integrity refers to the trustworthiness of information resources,
thereby ensuring that only an authorised client can alter the data — unauthorised
tampering may result in incorrect or malicious web application behaviour behind
installed firewalls (11; 12; 13).

Adversaries can evade a server-side web content by using malicious web con-
tent manipulation software. Static and dynamic web server content can be tam-
pered with by changing (i) the style classes such as Cascading Style Sheet (CSS),
(ii) referenced objects (images, audio, video, and other objects) or (iii) the source
code of the web page itself through running malicious code on the server that
compromises a requested page before the client receives it (4; 7; 8; 9; 11; 14),
For example, it is possible to replace an original image by another image contain-
ing malicious code. A victim requests the altered image and then it can disrupt
the contents of a web server or client machine. In addition, the CSS object is
threatened through a visualization spoofing attack. The strategy of this attack
is to change any important information that is identified by a particular colour
to another colour. The objective of this attack is to manipulate the user into

making a decision that is based on incorrect information (9; L1; 14).

1.2 Research Problem

Users might notice the alteration of web content after the authentication
scheme? has been performed. However, at this stage the destruction of web
content has already taken place (7; 12). The integrity of web content can be vi-
olated on the server even though the communication channel between the server

and client is secure.

Ensuring static and dynamic web content integrity against unauthorised tam-
pering, even when the communication channel between client and server-sides is
protected, has become a major issue. The question this thesis addresses 1s
how the integrity of server-side static and dynamic web content can
be verified against the tampering attacks before the client receives the
requested page. As a part of problem, we have tried to solve the issue

of data recovery if web content has been tampered with.

The integrity of a web server environment depends on dynamic, unstructured
data that is generated by running server-side scripting dynamic web pages (15).
The key issue in this thesis is that even if the application knows that this data can
impact on applications integrity, the hashing measurement of static web content
on the repositories of a web server is useless because we cannot predict values
that would preserve integrity. In addition, even though the server-side scripting
dynamic web pages are verified, the integrity of generated dynamic web content

can be tampered with.

In a web server, the key dynamic data are (15):

1. The various types of requests from remote clients, administrators, and other
Servlets and
2. Database Management System (DBMS) tables.

To provide integrity verification services, we first examine the meaning of data

integrity, in general.

2The process of verifying the account credentials of systems or users.

1.3 Problem Motivation

1.2.1 Notions of Integrity

In the security context, an integrity objective is clearly defined as one which en-
sures that the sent and received data are identical. It means, ensuring that data
have not been modified, whereas modifications include deletion or alteration of
existing data and each addition of new data to existing data (16). This binary
definition (i.e. the data either has integrity or it does not (16)) can also be appli-
cable to any type of web content such as textual and multimedia content. Indeed,
in real life situations, web content can be transformed into different formats and
results. In other words, modifications to a web document may change its meaning
or visually degrade it. In order to provide verification of integrity for web content,
it is important to distinguish between malicious manipulations, which consist of
changing the content of the original web content, and manipulations related to
the use of an image or audio, such as format conversion, compression, filtering,
and so on. Unfortunately this distinction is not always clear, it partly depends

on the type of image or audio and its use (1; 2; 3; 11; 17; 18).

1.3 Problem Motivation

Our motivation for this thesis is sixfold:

1. Organisations that rely on information systems as the primary way to con-
duct sensitive transactions are increasingly concerned about their reputa-
tion when web systems are subverted (7; 19; 20; 21). The Computer Emer-
gency Response Team (CERT®) (22) has reported a dramatic increase in
the number of security vulnerabilities* which threaten web content (5990 in
2005 to over 7000 in 2007).

3A centre of Internet security expertise, located at the Software Engineering Institute, a

federally funded research and development centre operated by Carnegie Mellon University.
4Weaknesses in a computing system that can result in harm to the system or its operations,

especially when this weakness is exploited by a hostile person or organisation or when it is

presented in conjunction with particular events or circumstances.

1.3 Problem Motivation

2. The Secure Sockets Layer (SSL) protocol (23) was developed to support the
integrity of data transit (7; 8; 9; 12; 24) and can provide a secure point-
to-point channel. However, it has problems in the presence of application
gateways (6). This means that cryptographic security protocols, such as the
SSL protocol, do not provide a complete solution to tackle the tampering

attacks and must be complemented by additional protection mechanisms.

3. The current security technologies such as firewalls, Intrusion Detection Sys-
tems (IDSs), Intrusion Prevention Systems (IPSs), cryptography, and access
control are not capable of verifying the integrity of web content before a
request or response enters the secure communication channel (7; 12; 13; 25).
A technical mechanism alone does not provide a standard policy and can-
not distinguish between the original HTTP (Hyper Text Transfer Protocol)
conversation and the altered HTTP conversation (8). In addition, many
are designed at the network/host layer, not at the application layer level
(25). Furthermore, tampering attacks can take place behind firewalls (1; 8).
Therefore, there is no one-stop-shop security method that meets all the se-
curity requirements and design specifications of new or existing web appli-

cations.

4. HTTP is sessionless (24; 26; 27; 28). The integrity of web content relies
on the integrity of the HTTP Request-Response model. Therefore, if this
model fails, the data integrity may be violated (9; 29). This model can fail
because web servers and web browsers do not properly manage the state-
lessness of HT'TP, in which each client requests results in a new connection
between a web browser and a web server. The Common Gateway Interface
(CGI) supports the maintenance of state through the use of hidden vari-
ables or cookies that keep track of the current information for each request
(28; 30). However, it is possible to save the HTML form, modify the hidden
values of its fields, and then reload this altered form into a web browser for
rendering (28; 31; 32). Zhou (26) has identified some problems with web
server models including web server models cannot ensure the security of con-

tinuity of HT'TP conversations on a server — they are more concerned with

1.3 Problem Motivation

the implementation of the cryptographic rules than the implementation of

a security analysis of the system’s functions.

. Dynamic data is a critical issue. The generation of dynamic web content
depends on user interaction. Different user information leads to different
generated web content. Therefore, it is very difficult (even impossible)
to analyse the requested page of dynamic code before processing on a web
server (see Figure 1.1 and Figure 1.2). The dynamic code of server program-
ming languages needs to be processed on a web server before returning the
response to a web browser. As a result, we cannot guarantee that dynamic
code is not tampered with even if the static code is verified; therefore the

generated web content should also be verified.

<HTML><HEAD><TITLE> Preview </TITLE></HEAD><BODY>
<FORM><CENTER> Image 1

<INPUT TYPE=button VALUE=Close/></CENTER>
</FORM></BODY>

</HTML>

3 Ok W N

Figure 1.1: Snapshot of the requested static code “viewimage.html”.

In Figure 1.1, the web browser requests a static document such as an HTML
file “image.html”. The web server locates the resources in their designated
directories and serves the requested file back to the web browser. Requesting
a document and responding to a request are defined by HT'TP (23), which
forms the basis of client-server interactions on the Internet. The Web server
completely processes the request and there is no need for interaction with
a Servlet (33) container or any web application server because the static
HTML file does not generate dynamic web content. Therefore, it is easy to

understand the code of a static file at the request level.

1.3 Problem Motivation

In Figure 1.2, the web browser requests a web page containing a Java Server
Pages (JSP) page “view.asp”. The JSP pages generate dynamic contents
on the fly. The Web server forwards the request to the JSP web application
server and backend database to process and gets the value of fileName
(see line 9 in Figure 1.2). After that the web server returns a static HTML
file (see Figure 1.3) to the web browser for rendering. In Figure 1.2, it
is impossible to know the name of the resource (image file name) at the

request level before processing on the web application server and backend

database.

1
2

© W N O ;s W

:<\% String name=request.getParameter("customerName");

: DBConnection myDB= DBConnection.getDBConnection();

try o
myDB. createConnection();

Connection conn=myDB.getConnection();

String sql= "select filename from file_information where name=’" +

fullName + "’

PreparedStatement stmt = conn.prepareStatement(sql);
stmt . executeUpdate () ;
fileName=stmt.getString("filename")

10: stmt.close(); }

catch(Exception ex) { ex.printStackTrace(); }
finally {myDB.finalize(); }

11: write ("<HTML><HEAD>");

12: write("</HEAD><BODY");

13: write("<FORM ACTION=../Thank.jsp>");
14: write("/");
15: write("<INPUT TYPE=button/>");

16: write("</FORM>");

17: write("</BODY>");

18: write("</HTML>");

19: close();\%>

Figure 1.2: Snapshot of the dynamic code “view. jsp” at the request level.

1.3 Problem Motivation

1: <HTML>

2:<HEAD></HEAD>

3:<BODY>

4: <FORM ACTION=../Thank.jsp>
5:
6: <INPUT TYPE=button/>
7:</FCRM>

8:</BODY>

9:</HTML>

[4

Figure 1.3: Snapshot of output response “view.jsp”

6. Web applications® often have direct access to backend databases and, hence,
sensitive data is much more difficult to secure (37). If there is no direct ac-
cess to backend databases, attacks can use legitimate application protocols
such as HTTP, and Simple Object Access Protocol (SOAP) to capture data
and transmissions (25; 37; 3R8). Access to databases through Web browsers
is now common place with some form of web server being provided by all
major vendors of database software (39). e-Commerce, online banking, en-
terprise collaboration, and supply chain management sites have concluded
that at least 92% of web applications are vulnerable to some form of attack
(40). The Gartner® study found that 75% of Internet assaults are targeted
at the web application level (25).

Web applications such as shopping carts, login pages, dynamic content,

and other applications have been designed to allow web site visitors to

5A web application is a collection of integrated static and dynamic web pages on a web
system. The web application is run on a web browser, a web server, or both (34; 35). It is
organised into three tiers: a web browser tier, a web server tier, and a backend database tier.
The user interaction is proposed in a web browser tier, the program logic (such as ASP and JSP)
is run in a web server tier, and the data operations (such as addition, deletion, and updating)

are performed in a database server tier (33; 36).
8Gartner Group is an information and technology research and advisory firm headquarteres

in Stamford, Connecticut. It was known as The Gartner Group until 2001. The group consists
of Gartner Research, Gartner Executive Programs, Gartner Consulting and Gartner Events.

For more details, visit http://www.gartner.com/.

1.4 Aim of Thesis

retrieve and submit dynamic content including varying levels of personal

and sensitive data (37).

1.4 Aim of Thesis

The aim of this thesis is to investigate the survivability of server-side static and
dynamic web content using a Web Content Verification and Recovery (WCVR)
system. In this thesis, the survivability is the capability of a web content to con-
tinue its mission over the HTTP request-response model even in the presence of
illegitimate modifications to a web content. The question then arises, what hap-
pens when an altered web content has been detected? Our survivability strategy
in the proposed WCVR system can be set up in two steps:

1. Detection and response by integrity verification process.

2. Recovering from tampering attacks by recovery process.

Our approach is applicable to all kinds of tampering attacks and processing

of all data types on the server-side. For example:

¢ visualisation spoofing attack.

e textual spoofing attack.

e web application verify.

e tampering code manipulation (source code, path, and link).

e tampering object manipulation(audio, images, video, and other referenced

objects).

e defacement of web page.

1.5 Objectives

1.5 Objectives

1. Review the existing integrity verification systems and related work, and

consider their strengths, weakness, and limitations.
2. Develop work assumptions, web security policy framework, and models.

3. Develop a web security system architecture and supporting software system
to verify static and dynamic web content on the server before the client

receives the requested page.
4. Conduct a series of experimental studies and evaluation of the system.

5. Report experimental outcomes.

1.6 Contributions of Thesis

We have summarised the major contributions of thesis as follows:

e A novel approach to the verification of server-side dynamic web content

integrity.
e A novel approach to the recovery of server-side dynamic web content.
e Improved performance in the verification of server-side static web content.
e Improved performance in the recovery of server-side static web content.

e The development of the proposed WCVR system to assist in the survivabil-

ity of server-side static and dynamic web content.

e Experimental studies to evaluate the reliability and effectiveness of the
WCVR system.

10

1.7 Organisation of Thesis

1.7 Organisation of Thesis

This thesis is organised into seven chapters as follows:

e Chapter 2 describes the elements of web system, web content, and the data
flow over HTTP Request-Response model. It also identifies the web security

definitions, issues and technologies.

e Chapter 3 identifies the tampering attacks of static and dynamic web con-
tent, and presents the limitations, requirements, strengths and weaknesses

of existing systems and approaches.

e Chapter 4 describes the design of proposed integrity verification and recov-
ery system (threat model, work assumptions, models, and framework), and

compares the work in this dissertation to prior and related work.

e Chapter 5 presents the implementation of WCVR system and the proposed
mechanisms. The tools used in creating the prototype are discussed and
the architecture of the prototype is depicted. In addition, the components
of the prototype and their functions are explained and how the components
communicate each other is clarified. Chapter 5 also describes the experi-
mental design, and pilot study. We have designed five experiments to meet

the security and performance objectives.

o Chapter 6 shows and discusses results of experimental studies, and perfor-
mance evaluation. We have carried out five case studies for evaluations

purposes.

e Chapter 7 draws conclusions and discusses possible future work.

11

Chapter 2

Background

2.1 Introduction

Computer and web security are critical issues over HTTP request-response model
(21; 41; 42). The infrastructure of networks, routers, domain name servers, and
switches that glue these web systems together could fail, and as a result, web
systems will no longer be able to communicate accurately or reliably. A number
of critical questions arise, such as what exactly the infrastructure is, what threats
it must be secured against, and how protection can be provided on a cost-effective

basis. Underlying all these questions is how to define a secure web system (42).

Cryptography and watermarking seem to be the alternative solutions for re-
inforcing the security of multimedia documents against tampering attacks (1; 2;
3; 4). When the hidden or encrypted information is exposed by an adversary, the
purpose of cryptography and watermarking may be invalid (5). It is difficult to
employ end-to-end encryption or end-to-end watermarking on all data to achieve
end-to-end security because proxies, web servers, and web browsers involve de-
crypting some or all data to read and even modify some of them to provide
client-server services such as executing client and server scripts, transforming
and filtering web pages. However, if sensitive data is decrypted to untrustworthy
proxies,web servers, and web browsers for processing, it can result in information

leakage and tampering ().

12

2.2 The Web

This chapter will present the description of web content and the HTTP
request-response model in Section 2.2. In Section 2.3, it will discuss the web
security issues, objectives, and technologies. Placing web security in perspective
is important because it is a central issue and necessary to organisations, clients
and even home users now and in the future. Indeed, what is web security? But
few people realise it exactly. Core to web security are the issues of confidential-
ity, integrity and availability which refer to keeping data secret, ensuring data

remains intact and ensuring systems are responsive.

2.2 The Web

In the late 1960s, the Advanced Research Projects Agency (ARPA) sponsored a
project for implementing the ARPANET, the legacy of the Internet. The main
purpose of the ARPANET project was to allow multiple users to make request
and response messages simultaneously over the same communication channel via
phone lines. The information was divided into a number of packets and then
routed to their destinations. Each packet consisted of sender address, destination
address, additional information for checking the integrity of communication, and
part of the data. The communication protocol, which was used in ARPANET
project, is called Transmission Control Protocol (TCP). The aim of this protocol
is to ensure that the messages are correctly routed from sender to receiver over
the communication channel of the ARPANET system (30; 34).

However, some challenges arose such as how to communicate across a network
of networks. ARPANET improved the TCP protocol to be the Internet Proto-
col/Transmission Control Protocol (IP/TCP) protocols. Currently, they are the

basic architecture of the Internet (30; 34).

Subsequently, Berners Lee (43) developed World Wide Web (WWW) at the
CERN as a medium for the broadcast of read-only material in 1990, as well as
the concept of hypertext. The WWW is a distributed environment that allows
users to communicate and view multimedia-based documents over the Internet

(13). In 1993, web-based services were explored by the Mosaic browser, which

13

2.2 The Web

had a graphic Interface. Currently, most major web browsers (such as Microsoft
Internet Explorer, Netscape Navigator, and Firefox) are used to explore the web-

based services (27; 30).

The WWW Consortium (W3C) was founded in 1994 to make the web uni-
versally accessible and available regardless of ability, language, or culture (30).
W3C provides the automatic online validation service, which is free of charge and
enables web managers to test and correct their Hyper Text Markup Language
(HTML), Extensible Hyper Text Markup Language (XHTML), Cascading Style
Sheet (CSS) and Extensible Markup Language (XML) documents (30; 41).

Web technology has introduced a new distributed computing paradigm. This
is suitable for various web oriented applications, web administrative applications
and general web applications including e-Commerce, e-Banking, e-Shopping, e-
Ticketing, e-Finance, and e-Management (7). Web technology has incorporated
database connectivity to be able to access much information in an online state.
This information is stored on a server using DataBase Management Systems

(DBMS) database application for processing (30).

2.2.1 Web Content

Web content is a textual or multimedia content that is encountered as part of
the user experience on web sites. It includes text, images, sounds, videos, objects

and animations (7; 45; 46).

The use of hypertext concept, hyperlinks concept and a page-based model of
sharing information help to define web content, and to form the architecture of
web sites. Currently, the categorisation of web sites is based on a type of web
site where web content is dominated by the page concept (44). When an address
is requested, such as http://www.google.com, a range of web pages are viewed,
but each page could have embedded tools to view video clips or other data types
(30; 43; 46).

For example, e-Commerce sites could contain textual material and embedded

graphics displaying a picture of the item(s) for sale. However, there are few sites

14

2.2 The Web

that are composed page-by-page using some variant of HI'ML. Generally, web
pages are composed as they are being served from a database to a customer using
a web browser. However, a user sees the mainly text document arriving as a web

page to be rendered in a web browser (16).

Web content consists of dynamic and static data. Dynamic web content is
the content (text, images, form fields, etc.) that can change on a web page in
response to different conditions such as user interaction (30; 47). There are two

ways to create this kind of interactivity (48; 49):

1. Using client-side scripting to change interface behaviours within a web page,
in response to mouse or keyboard actions or at specified events. In this case

the dynamic behaviour occurs within the presentation of a web page.

2. Using server-side scripting to change the supplied page source between
pages, adjusting the sequence or reload of web pages or web content sup-
plied to a web browser. Web server responses may be determined by such
conditions as data in a posted HTML form, parameters in the (Uniform
Resource Locator) URL, the type of web browser being used, the passage

of time, or a database or server state.

The result of either technique is described as a dynamic web page, and both
may be used in parallel. In the first appraoch of interactivity, web pages must
use presentation technology called rich interfaced web pages. Client-side scripting
languages such as JavaScript used for Dynamic HTML (DHTML) and flash tech-
nologies, are normally used to activate media types (sound, animations, changing
text, etc.) of the presentation. The scripting also allows use of remote scripting,
a technique by which the DHTML page requests additional information from a

server, using a hidden frame, XMLHttpRequests object, or a web service (30; 47).

Web pages that adhere to the second approach are almost generated with the
help of server-side languages such as Active Server Page (ASP or ASP.NET), Java
Server Page (JSP), etc. These server-side languages typically use the Common

Gateway Interface (CGI) to generate dynamic web pages (30; 47).

15

2.2 The Web

The client-side dynamic content is generated on a client’s machine. A web
server retrieves the page and sends it as is. A web browser then processes the code
embedded in the page and displays the page to a user. However, some users have
scripting languages disabled in their web browsers due to possible security threats.
In addition, some web browsers do not support the client-scripting language or
they do not support all commands (such as write command and innerHTML

property) of the language (47; 50).

Server-side dynamic content is a little bit more complicated. The following

steps illustrate how the server-side dynamic web content is produced.

1. A web browser sends an HTTP request.
2. A web server retrieves the requested script or program.

3. A web server application executes the script or program which typically
outputs an HTML web page. The program usually obtains input from
the query string or standard input which may have been obtained from a

submitted web form.

4. A server sends the HTML output to a web browser.

Another type of content is referred to as static. A static web page is a web
page that always comprises the same information in response to all downloaded
requests from all users (48). The most obvious requests are the transmission of
images and blocks of text. This is the data that is found on virtually every first
page in a site and which forms the basis of virtually every page. This type of page
is usually called “static HTML”. In the next section, we describe the structure
of HITML web page.

2.2.2 HTML Legacy Language

HTML is a legacy language of web technology. Each electronic document (or
web document) contains a predefined set of HTML tags that might embed active

16

2.2 The Web

content modules. The page is accessed by URL. HTML technology supports
multimedia documents including video, sound, text and dynamic links as well as

the textual interface (13; 27; 30).

A web document is platform-independent, based on HTML language and its
successor is XML (13; 30). It can be viewed by various web browsers on various
operating systems. HTML is a content mark-up language that a web browser

uses to interpret and display web documents.

HTML analysers and Script analysers process web documents. The HTML
analyser is to process the HTML tags, while the Script analyser is to process the

embedded scripts either in the client-side or in the server-side (35).

HTML documents consist of two sections: head and body (51). Each sec-
tion includes HTML elements and HTML sub-elements to describe a web layout.
HTML supports form element <form> that permits user interaction. This ele-
ment contains sub elements such as <input>, <select>, <textarea> and others
(52). A HTML form has two fundamental functions (13; 53; 54):

1. Providing area on a web page to enter a particular data that is sent to a

web server for processing.

2. Allowing validation of input data by invoking script element which resides

on a web document.

HTML also includes script element that was provided by Netscape 2.1 and
beyond for data input validation. This element supports powerful scripting lan-
guages (such as JavaScript and Visual Basic script) to perform interactive tasks.
One of the main tasks of scripting language is to check the user input errors on
the client-side rather than on the server-side, because if a server finds any input
error, a server returns an error message to a web browser, therefore, the client-side

validation modules saves round-trips over a network (36; 51).

Furthermore, <applet> and <object> HTML elements provide a link to em-
bed Java Applets, multimedia objects, and ActiveX objects (30; 51). For example,

17

2.2 The Web

a web browser downloads an ActiveX object after rendering using <object> ele-
ment to run inside a web page. However, ActiveX presents a vulnerability to the
client because the ActiveX object is not restricted and can directly access operat-
ing system resources on a client machine. However, Microsoft Internet Explorer
verifies the ActiveX object using Authenticode technology (27). This technology
is supported by the digital signatures and the Public Key Infrastructure (PKI).
It can sign the ActiveX object, which is run in a machine code or in a Java

Bytecode.

Because it does not support specific HTML validation tags, HTML is not a
specific high level domain language to validate the user interaction. In addition,
HTML does not offer the extensibility of own user tags and attributes (52; 55).
HTML is not also suitable for complex data entry that consists of many forms
(56). Therefore, W3C has developed the XML language. It is a purely declarative
and high-level domain language (52). This means that XML supports extended
tags and attributes for validation modules without the need for any programming
skills.

2.2.3 HTTP Request-Response Model

HTTP request-response model is constructed from three parts: a web browser, a
web server and a communication channel between a client and a server (26; 27,
44; 57). Figure 2.1 illustrates the components of HTTP request-response model

architecture.

The web browser is a software application that is used to access WWW and

has three basic functions (30; 44):

e Obtaining information on the Internet using the URL and communicating
using HTTP.

e Rendering HTML source code that is receiving in the form of HTTP re-

sponse from a web server.

18

2.2 The Web

e Current web browsers provide Graphic User Interface (GUI) tool for per-

forming different tasks such as saving web documents, searching, and others.

Figure 2.1: HT'TP request-response model architecture

A web server is an independent platform (13) that is structured from software

and hardware. However, a web server has several basic functions (13; 44; 58):

e Logging activities.
e Authenticating users.

e Responding web documents to authorised users.

All HTTP operations are based on the HTTP request-response model. In a
web environment, a request is an operation to be performed on URL. Meanwhile,
a response is defined as web server answers or replies for request operation to a

web browser (44).

The data integrity relies on the integrity of the HT'TP request-response model.
Therefore, if this model fails, then the data integrity may be violated (9; 59). A
user can access a client through a web browser to make a request by clicking
on hyperlink text or hyperlink image, clicking on a submit button or command
button, redirecting using the action attribute of form element, or by setting the
requested URL at the address bar of a web browser (9; 44; 59).

Data is sent to a web server via the communication channel. Communication

channels are normally secure and controlled by some communication protocols

19

2.2 The Web

including TCP/IP, and SSL (27). The aim of a web server is to manage and
control all user requests, communicate with the correct user, save the request
information on a server database, and then control the access of user to web page
resources. For sensitive web content, a web server authenticates a request that

contains a username and a password and then:

e Accept the request, and then allow the connection if they are correct, oth-

erwise,

e Refuse the request and then close the connection.

This request is processed on a web server by an application written in a
server-side programming language. As a result, a data query may save data into
a backend database. Finally, a web server sends the appropriate web page to a

web browser, which renders it (27; 44).

2.2.3.1 Multipurpose Internet Mail Extensions (MIME)

Multipurpose Internet Mail Extensions (MIME) is a scheme that lets electronic
mail messages contain mixed media (sound, video, image, and text). The WWW
uses MIME content-types (text/html, application/html, text/html-external-parsed-
entity, image/gif, etc.) to specify the type of data contained in a file or being

sent from an HTTP server to a client (60).

Each web browser has a different configuration for mapping the types of data
to particular function. Major web browsers can process various types of HTML
documents, and CSS but other types are sent to various programs via the plug-in

mechanisms such as sound player, video player (27; 30; 51; 60).

The six MIME types defined by the RFC are as follows (60):

1. Text.
2. Message.

3. Application.

20

2.2 The Web

4. Tmage.
5. Audio.

6. Video.

2.2.3.2 Uniform Resource Locater (URL)

Uniform Resource locator (URL) is a method of addressing web documents in
the WWW. URL consists of (13; 14; 61):

1. Protocol (such as HTTP).

2. Host name.

3. Internet port number of service. If not specified, the default port number
(80 for HTTP) is used.

4. Location of resource on a server (path/query).

The URL components can be specified in HTML/XHTML form element
through action attribute. The URL can be specified in a Link element through
HREF attribute of A tag.

2.2.3.3 The HTTP Request

There are three parts of HT'TP request operation: a request line, request header
and request body (this part is optional depending on the form author) (27; 44; 51).
The request line starts with request method, followed by a resource identifier and

the protocol version, For Example:

e Get/default.htm! HTTP/1.0

e Post/index.html HTTP/1.0

21

2.2 The Web

The form element has a number of methods to send the user input from a

web browser to a web server as follows:

o GET: is the default request type, which notifies a web server to fetch a
document and send it back to a web browser. It is normally used to retrieve
data such as search engine or data query. This type appends the form
information directly to the end of the URL. The input field name and input
field value are represented as a pair of parameter name and its value at end
of URL after the question mark (44; 61; 62), as shown in Table 2.1.

e POST: is used to process any kind of data in various HTML form services
such as sorting, updating, ordering a product, sending e-mail, or responding

to a query (11).

e HEAD: is used to retrieve header information of a web document such as a

version of a document, and availability of hyperlinks (44; G1).

e DELETE: is used to delete a recourse identified by a URL during the need

of a web server (44; 61).

For utilization of request operation, a user can send additional information
about a web browser and user itself. This additional information are called request
header fields such as Accept, Encoding, Authorization, Authentication, Host and
User Agent (7; 44; 61).

2.2.3.4 Behind the Scenes of a Web Page

The example in Table 2.1 shows a simple web page that contains a list of hyper-
links of universities in United Kingdom. A web server responses and sends back
the HTML file and the header file to a web browser. A web browser parses this
URL http : //www. findaschool.org/index.php?Country = United + Kingdom.
Table 2.1 shows meaning of each part of URL (27; 61):

22

2.2 The Web

Table 2.1: Parts of URL

Content Meaning

http:// Hyper Text Transfer Protocol.
WWW World Wide Web
findaschool.org Host name.

index.php A document path in a server.

?Country=United+Kingdom A query path, which contains the parameter
names and their values. The values of param-
eters are URL-encoded: space becomes -+, non-
alphanumeric chars become %hexcode for encryp-

tion.

A web browser connects to findaschool.org using the HTTP protocol. The
default port for HTTP is 80 if it is not specified. Figure 2.2 shows the structure

of request message (62):

GET/ HTTP/1.0 (Request Get, HTTP protocol, Protocol version 1.0)
Connection: keep-Alive (TCP Connection is open until to disconnect)
User-Agent: Microsoft Internet Explorer 6.0 (Win XP)

Host: findaschool.org- (hostname on server)

Accept: image/gif, */* (>Media Type to be accepted)
If-Modified-Since: Friday, 10-Feb-06 11:12:30 GMT (last modified)

Figure 2.2: Request File

A web server returns the header file “header information” and HTML file to

a web browser as shown in Figure 2.3.

2.2.3.5 Response Classes

The response classes rely on the status code in a header file. In respect to the

first digit of status code, the type of response classes is determined as follows:

23

2.3 Web Security

(44):
1. 1xx: (Informational) request received, still in process.
2. 2xx: (Success) the operation is successfully received, parsed and accepted.
3. 3xx: (Redirection) further process required for competing the request.

4. 4xx: (Client Error) the header file of request contains syntax error and

cannot be performed well.

5. 4xx: (Server error) the server failed to perform a valid request.

HTTP/1.0 200 ok (Protocol version, status code)

Date: Sat, 10 Feb 2006 13:00:10 GMT (Current Time on the Server)

Server: Apache/1.1.1 (type of software running on server)

Content-Type: text/html (type of document that being sent to web browser)

Content-Length: 327(size of document-byte unit)

Last-modified: Sat, 10 Feb 2006 13:30:10 GMT ->the recent modification time

<!DOCTYPE html PUBLIC "~-//W3C//DTD XHTML 1.0 STRICT//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-strict.dtd">

<html><head>

<title>GED | Colleges and Universities | United Kingdom</title>

</head><body>

</body></html>

Figure 2.3: Response File

2.3 Web Security

Any discussion of web security necessarily starts from a statement of requirements
(i.e. what it really means to call a web system secure.). Generally, secure systems

will control, through use of specific security policies, access to information such

24

2.3 Web Security

that only properly authorised individuals, or processes operating on their behalf,

will have access to read, write, create, or delete information (63).

Organisations that have a web presence are increasingly worried for for their
reputations if the web system is subverted. This is because current security tools
may not prevent the web system vulnerabilities (8; 17). For example, with 7,247
vulnerabilities disclosed in 2006, total vulnerability count increased nearly 40%

over the previous year. This trend of increase is expected to continue (64).

Stein (31) outlines a number of definitions of web security from the user’s
perspective. For some, web security is the ability to view Internet content in
peace and safety. For others, it is the ability to conduct safe business and finan-
cial transactions. For web authors, it is the confidence that individuals will not

damage their web sites.

2.3.1 Web Security Risks

Users and organisations are suffering from a growing number of attacks that
abuse data on the Internet. These attacks become a source of threat for a web
system (8; 17; 65). Stein (31) explains that an organisation that has established
a strong reputation may suffer from persistent destruction to its reputation after

an attack.

Web security vulnerabilities result from poorly configured operating systems,
limitations of web servers and web browsers, weakness of web technologies and
weakness of software engineers (66). There are three types of security risk (26;
27: 31):

1. Source code problems in a web server that enable an adversary to :

e Read and copy confidential documents on a web server and this causes

loss of data confidentiality.

e Run malicious code on a server. This permits tampering with web

documents and subsequent loss of data integrity.

25

2.3 Web Security

e Obtain header response information from a web server that will permit
breaking into web system recourses. As a result, there is a loss of data
availability.

e Activate denial-of-service attacks that might break into the web sys-

tem.
2. Browser-side risks including:
e Enable active content vulnerabilities on a web browser such as mali-
cious Java Applet attack, and script attacks.
e Loss of data integrity at the form level.
3. Network-side risks that cause the eavesdropping problem (i.e. listening to
someone else’s conversation (67)) from any point including:
e A web browser connection.
e A web server connection.

e Communication channel of a web system.

2.3.2 Web Security Issues

Studies and surveys indicate that web security objectives are easily violated in a
web environment (8; 17; 68). There are three basic security issues (%; 17; 69; 70;

71):

1. Data integrity: The data integrity objective ensures that the data can only
legally be altered by an authorised client. Data integrity is considered in

this thesis.

2. Data confidentiality: The data confidentiality objective refers to limiting in-
formation access and disclosure to authorised users. Confidentiality involves
limiting the disclosure of data by ensuring that it only becomes known to
authorised users. A common method to ensure confidentiality is to encrypt

data (known as plaintext) with a secret key known only to the authorised

26

2.3 Web Security

users to produce encrypted text known as the ciphertext. A good encryp-
tion scheme will make it difficult or impossible to recover the original data
from the encrypted data without knowledge of the key. Data confidentiality

is not considered in this thesis.

3. Data availability: The data availability objective refers to information sys-
tem that is not available when you need it. Data availability is not consid-

ered in this thesis.

In information security, data integrity refers to the validity of data. Data

integrity can be compromised through (7; & 17; 70):

1. Malicious modification, such as an adversary altering an account number

in a bank transaction, or forgery of an identity document.

2. Accidental modification, such as crashing hard disk of a web server.

The privacy and security issues (confidentiality, integrity, and availability) are
exploited for the lack of a web browser and limitation of web technologies (66).
For example, Java is the safest security model because it supports sandbox class
model to protect the Java Applet from some potential security vulnerabilities.
Furthermore, Java Applets do not support direct or indirect connection to the
operating system environment. On the other hand, JavaScript and ActiveX is
the least secure model. Indeed, JavaScript supports methods to capture user
details (confidentiality issue) by reading the user files. Integrity problems might
result from JavaScript methods that alter or destroy user details. While data
availability problems result from JavaScript methods that destroying the user
session by reading the cookie details or running an infinite loop to open infinite

number of windows and then crash the operating system (606).

2.3.3 Malicious Attack

A malicious attack in the web context is any code launched to disrupt or harm an

intended request-response conversation on a web system, including attack scripts,

27

2.3 Web Security

Java Applet attack, input validation attacks and ActiveX control attack (72). A
malicious attack causes disruption to the HTTP request-response operations, or

causes eavesdropping problems (72; 73).

Due to the insecurities of the TCP/IP communication protocol, the open
architecture of the Internet and the lack of web security mechanisms, the web

environment is vulnerable to security risks (34).

e Analyse the server architecture, server type, operation system types and

limitations of web browsers.

e Study the web environment architecture such as studying the HTTP Re-
quest type (GET, POST, and DELETE) and user input interaction. A
criminal searches for security holes in a feedback form, an inquiry form or

a login form.

e Study input validation modules. These modules determine whether a cer-
tain form data is safe or unsafe data is rejected during the validation pro-

cessing.

In data integrity, malicious data corruption is more difficult to counter. A
simple hash function such as MD5 is insufficient because hash functions are as-
sumed to be public knowledge and easy to compute. An adversary would still
be able to corrupt the data provided they also recomputed the corresponding
hash. An alternative is to encrypt the hash value with a secret key to form a
Message Authentication Code (MAC). Only authorised parties own the key and
can generate and verify matching MACs. It is possible to use a hash function to
build a MAC using an algorithm such as HMAC (74; 75). In this thesis, we have
attempted to address only the data integrity issue.

2.3.4 Java Security

Much research (7; 61; 76; 77; 78) has proved that the Java and JavaScript lan-

guages are the most popular implementation of Applets and scripts respectively.

28

2.3 Web Security

Java was designed to work in a network-computing environment such as down-
loading Applets over networks. Currently, Java is a safe programming language
that protects users from some security vulnerabilities. In addition, Java supports

the code signing using JDK 1.6 for securing the integrity of Java Applets (27).

The existing Java security policy contains a number of classes to limit what
a downloaded web page can do, including the Sandbox class, SecurityManager
class, Bytecode Verifier, and Loader class (27). When Java programs are
launched, a Bytecode Verifier is run to validate for any unauthorised opera-
tions. Bytecode is a name given to machine code for compiling a Java program
in the Java Virtual Machine (JVM) and then interpreted on the running machine
(73; 79). Figure 2.4 illustrates how to compile Java program and then download

on a web system.

1-Computer Phase

Java Byte
3| Code

< Java Compiler

T

ava Byte Code on Web
Server for Downlead

Web browser downloads
.| Java Interpreter

2-Web Server

3-Web Browser

Figure 2.4: Java Program Architecture

Java includes JVM platform to provide a trusted environment for running
the Applets, which are embedded in a web page. However, JVM cannot secure
a web page against a malicious Applet (20). McGraw and Felten (81) define
a malicious applet as “Any applet that performs an action against the will of

the user who invoked it should be considered malicious”. It is important to

29

2.3 Web Security

understand the architecture of java security model to know how to detect the Java
Applet vulnerabilities (82). The Java policy in JVM does not prevent untrusted
Applets from disrupting the users (79).

The default security policy of the Applet sandbox prevents from (79):

reading and writing files on the client file system.

making network connections except to the original host.

creating listening sockets.

e starting other programs on the client system.

loading a new dynamic library.

There are two attack techniques that cause to loss of data integrity as follows

(79):

1. Through type confusion: Because Java is a type safe language, any con-
version between data items of a different type must be performed in an
implicity way. This type occurs in a result of a flaw in one of the JVM
components, which creates the possibility to perform the cast operations
from one type to any unrelated type in a way that violates the Java type
casting rules. In a result of this attack, Java language security can be cir-
cumvented. For example, private, public and protected access is no more

important.

2. Through bad implementation of system classes: Any flaw in the implemen-
tation of a system might expose some restricted functionality of the native

operation system to the untrusted code.

Java supports a Servlet application to work over a web system. Servlet is used
to generate dynamic web pages on demand (each time the page is requested)
(27). The contents of a dynamic web page can be different each time at each

request, because the construction of dynamic page relies on a user interaction.

30

2.3 Web Security

The Servlet includes HTTPservlet class that manages the multiple requests. This
feature solves the sessionless HTTP drawback (28).

A Servlet was developed instead of CGI for better scalability and security
(36; 38). A Servlet structure contains HT'ML tags that are embedded in the Java
source code. It has full access to HTTP Layer and has the ability to trace each
request-response conversation (61). However, the change of web page needs to
change in Java code rather than HTML code. As a result, a designer needs to be

familiar with Servlet structure or Java Programming language (3R).

2.3.5 JavaScript Security

JavaScript is an object-oriented language that was developed to make anima-
tion, form field validation and other interactive features (27; 83). JavaScript
programs reside in HTML files, usually surrounded by <script> </script>in a
web document. A web browser can render JavaScript commands in a HTML file.

JavaScript supplies additional objects (83):

e Client-side JavaScript: JavaScript supplies objects to control a web browser
and a Document Object Model (DOM). For example, an object can be
extended to have some user-defined methods. This object is invoked by an

event-handler on a form element including on click and on mouse over.

e Server-side JavaScript: extends by supplying objects to run on a server. For
example, the request information could be stored on a backend database
after communicating the application to a web server. Another example,
the JavaScript might incorporate with Active Server Page (ASP) to apply

validation modules on the server-side.

JavaScript has introduced several security problems including Denial-of-Service
attacks, input validation attacks, script attacks, and privacy violations. For exam-
ple, JavaScript methods can launch Denial-of-Service attacks on a client machine

through a web page or electronic mail. A simple JavaScript Denial-of-Service is

31

2.3 Web Security

to invoke alert () method inside a loop statement. Each time, the loop is exe-
cuted a message window appears on the screen of a web browser. An adversary
could construct a particular alert message to consume CPU resources. If a large

number of these messages were sent, it could lead to Denial-of-Service (27; 80).

In addition, JavaScript has indirect access to operating system resources and
user data through a set of JavaScript methods and objects such as the “history”,
“navigator”, and “cookie”. For example, “history” object allows a user to discover
the URL of all of the other web pages that have been visited during a session.
This feature could be combined with the above feature to perform a form of

automated eavesdropping attack (27; 80).

However, the HTML form content might be faked by cancelling the validation
modules on the client-side. The server is fooled and then accepts the faked form.
This is possible, because any user can display HTML and JavaScript code using
web browser tools. Microsoft Internet Explorer can display the HTML source
code for web pages but it cannot display encrypted scripts or compiled modules

such as ActiveX controls (7; 67).

Safe-type programming language (such as Java) can explicitly declare the
type of user inputs during program writing and then this gives less error and
fewer security risks. JavaScript considers all user inputs have the same type and
it is possible to apply any operation (such as mathematical addition or string
concatenation) on any type of user input. Consequently, this leads to escape
harmful meta-characters via user inputs. However, JavaScript form inputs are

vulnerable to validation attacks (27; 30; 73; 84; 85).

2.3.6 Common Gateway Interface (CGI) Security

CGI is a communication protocol between a web page and a program that is
executed on a web server (17). It permits the input data of HTML forms to
be sent to a server, which runs a CGI script and passes this data to it through
the standard input or standard query. The CGI program can then process the
data, and return it in HTML form format through the standard output to a web

32

2.3 Web Security

browser. CGI can be written in any language (such as JavaScript, C, C++ and
Perl) and can be run on various types of operating systems such as Mac, NT,

UNIX or any operation system that runs on a web server (13; 35; 54).

One advantage of CGI is that it is used to generate dynamic web pages in
relation to user interaction. For example, the creation of a web search engine,
which reads a search string from a user, searches a database of web pages, and
returns HTML data listing the matching sites (13; 24; 27; 51).

CGI returns the output data as part of the URL, and then output data is en-
coded to binary format. The blanks are represented by “+”, and the other special
characters are represented as “%XX” where XX is the ASCII value of a character
in hexadecimal format. A CONTENT_LENGTH environment variable determines the
number of bytes to be read on standard input or standard output. However,
data tampering could be taken place when data has been altered either on the
client-side or the server-side (80). For example, an adversary might bypass the
data validation modules in a client, alter data input, and then the CGI scripts
are tampered with. A tampered CGI script can disrupt a server, and might be

exploited to gain access to a back-end database (¥; 27).

CGI scripts only run on a server, and hence provide more opportunities to
abuse data on a server. Many web sites adopt double-checking of data validation
modules to ensure the integrity of a web system (%0). However, the generated
dynamic web content is an issue because the double-checking validation scheme

is not able to ensure the data integrity against tampering.

Another security risk is that the HTTP is sessionless (24; 26; 27; 28). HTTP
only provides once the type of request/response communication. Therefore, each
time, there is a new connection between a web browser and a web server. CGI
supports the maintenance of state through the use of hidden variables or cookies
that keep track of the current information for each request (28; 30). However,
this possible solution may be invalid through saving the HTML form to a disk,
tampering the hidden values, and then reloading this altered form into a web

browser for rendering (28; 31; 32).

33

2.3 Web Security

2.3.7 Web Security Technologies

We have described the two basic technologies of web security: hashing and Mes-
sage Authentication Code (MAC).

2.3.7.1 Hashing

Hashing is a web security technology that might assist to ensure the integrity of
data. The hash function generates computationally unique hash values similar
to fingerprint signature. The hash value is called a message-digest or a checksum

that is expressed in hexadecimal or binary format (86).

The form of hash function is h = H(p) where h is the checksum in binary
or hexadecimal form, and p is the variable length of a web document. The
checksum is compared to the previous calculated hash value of a web document
for checking the web document integrity (27; 86). The hash function is an effective

cryptographic hash method for the following features (27; 86; 87):
e One-way hash function: the adversary cannot decrypt the checksum because
it is one way function.

e Random values: it gives different checksums even though the binary string

inputs are similar.
e No collision: it computationally finds the values of two binary strings z and

y in different locations, even though the h(z) and h(y) are similar.

Table 2.2 shows a comparison between a set of hash functions (27; 86). Al-
though a variety of hash functions are available, only MD5 and SHA-1 are in
wide use (88; 89).

34

2.3 Web Security

Table 2.2: A list of hash functions

Hash Function

Hash sum size (bits)

MD4

MD5
RIPEMD-128
RIPEMD-160
SHA-1
SHA-256
SHA-384
SHA-512
Tiger / Tiger2

128
128
128
160
160
256
384
012
192

35

2.4 Conclusion

2.3.7.2 Message Authentication Code (MAC)

MAC is a very small code to ensure the integrity of data beside the cryptography
techniques. It is a one-way hash function that involves a private key (86; 90).
Only the parties that know the private key can compute the MAC value (90).
Therefore, a private key can be produced by one of the parties, and then sent
in an encrypted format to other using the public key encryption method (%6).
A sender computationally generates a number (fixed-length data item) that is
formulated from a combination of the key and the message. On the other hand,
a receiver uses the same key with a computational procedure to re-compute this
number, and this is called authentication code. If the matching is true then the

message is not altered (86; 91).

2.4 Conclusion

This chapter has discussed the data flow over the HT'TP request-response model.
Data integrity relies on the integrity of the HTTP request-response model, if this

model fails, then the data integrity may be violated.

We have explained that the strengths, and limitations of the current web
technologies (HTML/XHTML, Java, JavaScript, and CGI) referring to a number
of reasons: the bad implementation of a web system might expose some restricted
functionality of the native operation system, and the limitations of web servers

and browsers such as the transparency of a code on a web browser.

We have offered a review of web security issues and the related problems at the
different levels of a web system including the main supporting web technologies
such as Java, JavaScript and CGI. For example, we have identified the vulner-
abilities of JavaScript validation modules. There are three basic security issues:
confidentiality, availability, and integrity of data. In this thesis, we have focused
on one of these issues, data integrity, because it has received little attention in

the information security research.

36

2.4 Conclusion

In the next chapter, we will look in more detail on the integrity of web con-
tent by identifying the tampering attacks on a server-side static and dynamic
web content. We will also discuss the limitations, requirements, strengths and
weaknesses of existing systems and approaches such as integrity verification sys-
tems and web engineering approach. In addition, we will propose our solution to

tackle the research problem.

37

Chapter 3

Integrity Verification Systems
and Related Work

3.1 Introduction

The recent advances in textual and multimedia technologies have made the ma-
nipulation of web content (such as text, images, videos or audio objects) very
easy (21; 41; 42). The broad availability of these new capabilities have enabled
numerous new applications. Web content can easily be tampered with by almost
anyone. Therefore, investigating web content survivability (i.e. detection and
recovery) and the control of the exchanged data have become a major issue. To
counteract this risk, a number of traditional security technologies have been pro-
posed to ensure the integrity of web content but they fail to provide any provable

security guarantee against malicious modification attempts (41).

In the previous chapter, we outlined a general background of web content,
HTTP request-response model, and web security, and we have tried to place web
security in perspective. Although many of the verification and security mech-
anisms have been adopted to ensure web content over HT'TP request-response
model, a number of web security issues are still unresolved. Security problems
are discovered on browsers and servers, while important security policies and

technological questions have yet to be answered in a meaningful way (21; 11).

38

3.2 Data Tampering

In this chapter, issues of server-side data tampering will be described in Sec-
tion 3.2. Section 3.3 will define the survivability elements in Internet security
research. We review the problems associated with unauthorised data manipu-
lation of static and dynamic web content in Section 3.4. We also survey the
existing integrity verification systems and other approaches such as the web en-
gineering security approach in Section 3.5. The main finding in this chapter is
that unauthorised tampering is still a potential problem because dynamic web
content is not verified and not recovered. Therefore, we will propose a systematic
web security system (framework and model) that could ensure the survivability of
web content to internal and external users, even though a web data manipulation

problem may have occurred in Section ?77.

3.2 Data Tampering

In this thesis, we have focused on the server-side security because the server is
the central system and the repository of data resources (21). Regardless of which
web server application is running, many issues are common, such as web server

configuration, access issues and of data integrity.

A poor web server configuration can lead to disaster. Many web sites are
installed in the cgi-bin scripts and accept the standard configuration of a web
server application without question. A web server has two roots: the server root
which includes the control information and the document root which contains

content and web resources of web sites and web applications (21; 54).

Web servers must deal with some type of active content such as CGI. As dis-
cussed in the previous chapter CGI scripts are usually written in Perl, Java, or C
(21). However, CGI scripts run on a server and hence provide more opportunities

to abuse data (80), as shown in Section 2.3.6.

For example, a criminal might also bypass the data validation modules in a
client, alter data input, and then the CGI scripts are altered (see Section 3.4.3).
An altered CGI script can disrupt a server, and might be exploited to gain access
to a backend database (8; 27).

39

3.2 Data Tampering

In our proposed web environment, an integrity objective is clearly defined
as ensuring static and dynamic web content has not been tampered with (i.e.
illegitimate modifications). Modifications include deletion or alteration of existing

web content and each addition of new data to existing web content.

One of the issue of security exposure is the server-side data tampering (3; 27;

80). Some results of data tampering are:

e Modification or destruction of data on the server.
e Data theft which is an extreme to end of data tampering.
e A web server application integrity is compromised.

e A client integrity is compromised.

One suggested way to eliminate data tampering is tamper resistance. Tamper
resistance is the manner by which normal users of a product, package, or system
(or others with physical access to it) are prevented from tampering with the
product, packages or system. There are a number of ways for employing tamper-
resistance such as a secure cryptoprocessors, the IBM 4758 and chips used in
smart cards (15). However, there is no one solution can be considered as “tamper
proof”. Often multiple levels of security need to be addressed to reduce the risk

of data tampering such as (92):

e Identify who a potential tamperer might be.

e Reduce the risk of data tampering by using the appropriate knowledge,

materials, tools and others.

e Describe all suggested feasible methods of unauthorised access into a prod-
uct, package, or system. In addition to the primary means of entry, also

consider secondary or “back door” methods.

e Inhance the tamper resistance to make tampering more difficult, and time-

consuming.

40

3.2 Data Tampering

e Add tamper-evident features to help indicate the existence of data tamper-

ing.

e Educate people to watch and monitor for evidence of tampering.

The tampering of dynamic web content is a real-time issue because the gener-
ation of dynamic web content depends on user interaction (32; 91). Different user
information leads to different generated web content. Therefore, it is very diffi-
cult to analyse automatically and even manually the requested page of dynamic
code before processing on a web server. The dynamic code of server programming
languages needs to be processed on a web server before returning the response to
a web browser. As a result, we cannot guarantee that dynamic code is not tam-
pered with even if the static code is verified; therefore the generated web content
should also be verified. Currently the dynamic web content can be tampered with
using malicious web manipulation software (14). This software listens, monitors,
and analyses the generated server-side web content. Therefore, the verification of
dynamic web content is a challenge because the web developers, users, and others

cannot predict the output of response.

The integrity of a web server environment depends on dynamic, unstructured
data that is generated by running server-side scripting dynamic web pages (15).
The key issue in this thesis is that even if the application knows that this data can
impact on application integrity, the hashing measurement of static web contents
on the repositories of a web server is useless because we cannot predict values
that would preserve integrity. In addition, even though the server-side scripting
dynamic web pages are verified, the integrity of generated dynamic web content

can be tampered with.

In a web server, the key dynamic data are (15):

1. The various types of requests from remote clients, administrators, and other

Servlets and

2. DBMS tables.

41

3.3 Survivability

3.3 Survivability

The definitions of survivability have been stated by a number of researchers in
(93; 94; 95). They have defined survivability as the capability of an entity to
continue its mission even in the presence of damage to the entity. The damage
caused by web attacks, system failures, or accidents, and whether a system can
recover from this damage, determines the survivability characteristics of a system.
A survivability strategy or scheme might be constructed from three elements:

protection, detection, and recovery (95).

In this thesis, the high level strategy underlying for the proposed approach
to designing a survivable system is to strategically combine elements of detection
and adaptive reaction of in the architecture of the system. Individually, each
element is not sufficient to secure the system from any possible damage, such

that:

1. Detection provides awareness to the status of the system and allows the

system to detect attack.

2. Adaptive reaction enables the system to cope with undesirable modifications

caused by adversaries through supporting recovery.

Therefore, the need to combine the elements of survivability (i.e. detection,
and adaptive reaction) is based on the understanding that protection cannot be
fully sufficient, some attacks will succeed or partially succeed, and some of the

attacks will not be detected in time (41).

In this thesis, we have assumed that all manipulation components are suscep-
tible to malicious attacks. These attacks may involve tampering with the existing
source code or content of referenced objects to include undesired functionality, or
replacing a genuine web content with a malicious one. When using such compo-
nents in the web system, or illegitimately installed by malicious scripts, it must
check to see if a web content has not been modified in an unauthorised manner
since it was created. Therefore, we have proposed a novel approach to satisfy the

requirements by checking the integrity of web content.

42

3.4 Integrity of Web Documents

3.4 Integrity of Web Documents

Below, a number of basic protocols and schemes are reviewed in order to give
a more detailed overview of web document integrity. There are four established
methods in common usage for ensuring the integrity of web content: the SSL pro-
tocol to secure the communication channel, digital signatures to provide security
by verifying the authenticity of the web document, form-field validation modules
to validate user inputs against harmful data at the client and server-sides, and
firewalls to protect against malicious codes and other attack strategies such as IP

spoofing and DNS spoofing.

3.4.1 SSL

There are three basic levels of communication channel. FEach one consists of

several protocols as follows:

1. Network Layer: contains the basic protocols such as IPv4, IPv6, and IPSec
(96). The standard protocol is IP. These protocols are used to provide the
integrity of data at the network layer of Open Systems Interconnections
(OSI) model (96). They control packets by routing them to the correct
destination. However, CERT (65) outlines that the IP-based network is

vulnerable to threats such as IP spoofing.

2. Transport Layer: contains the SSL, and Transport Layer Security (TLS)
protocols (23). SSL and TLS are used to secure the transit over a commu-
nication channel against eavesdropping and tampering and to authenticate
a web server (13; 96). They are designed to support the authenticity and
non-repudiation (i.e. ensuring that neither the sender nor the receiver are
able to deny the transmission (67)) for communications through TCP/IP
connections (97; 98; 99). However, authentication techniques (user identifi-
cation and password) or public key certificates are not sufficient to protect
web sites against web spoofing. SSL and TLS do not provide an absolute
solution although they are cryptographic security protocols (96).

43

3.4 Integrity of Web Documents

Readers should note that this thesis does not deal with integrity of data in
transit. We deal with the integrity of data stored on web servers and the
generation of dynamic web content during the HTTP request end response

mode.

3. Application Layer: contains protocols such as HT'TP, and SHTTP (44).
These protocols specify some tasks such as security policies, cryptographic
algorithms over the communication channel, and negotiation of key man-

agement mechanisms (13).

SSL protocol is located between the transport layer protocol and the applica-
tion layer protocol and composed of two layers: the SSL record layer to provide
secure connections and the SSL handshake layer to allow client-server authenti-

cation (97; 98; 99).

SSL controls the communication channel between a client and a server. Each
server should have an SSL server certificate such as X.509 v3 digital certificate.
A user interacts via a web browser to make a request to a web server. The web
server sends its public key and digital certificate to a web browser. The aim is to
authenticate the identity of a server and to encrypt the user data using a public
key. Subsequently, a web browser checks the validity period field on the digital

certificate to make a correct connection (86).

The main problem of SSL is that the security is only effective from a single
point to another (100). Guest (100) outlines SSL is no longer applicable when
the data reaches to end point over the SSL. communication channel. For example,
if we send a message from Client C to Server S, we can use SSL to secure the
link between of the two. But if we send a message from Client C to another
Server SS and it has to go via Server S — we cannot guarantee message security
using SSL through this intermediary. Therefore, SSL is only designed to provide
point-to-point security (6).

SSL has a number of limitations including (6):

1. SSL cannot help applications prevent information leakage and imperson-

ation at an application gateway (such as proxy, web server application, web

44

3.4 Integrity of Web Documents

browser, antivirus, interceptor and others) when an application gateway is

required.
2. Tt only supports one type of cipher suit inside a connection.

3. It only supports one simplex channel, in which data is transmitted only in

one direction.

4. It does not have sufficient negotiation mechanisms to enhance and provide

end-to-end security.

A more complicated situation occurs when one or more intermediaries are
present in the request-response chain. There are three common forms of inter-
mediary: proxy, gateway, and tunnel (44). Figure 3.1 shows a finite number of
intermediaries (Gy...G,) between the Client C and Server S. A request or re-
sponse message that travels the whole chain will pass through n intermediaries

separate connections.

SSL - Disabled SSL - Disabled SSL - Disabled SSl. - Disabled

C: Client
G: Gateway

S: Server

Figure 3.1: The end-to-end security model and gateway chain model of SSL

The end-to-end security of SSL is shown in Figure 3.1, in which there is
a number of application gateways between Client(C) and and Server(S). In this
model, SSL can protect the communication between any two neighbouring entities
but cannot prevent a gateway in the chain from reading and modifying sensitive
data (6). Therefore, these application gateways are able to tamper with the
static and dynamic web content because the encrypted data could be exposed

(decrypted) for processing either in a web server application or a web browser. As

45

3.4 Integrity of Web Documents

can be seen in Figure 3.1 while SSL can provide a secure point-to-point channel,
it has problems in the presence of application gateways: if an application gateway
G is involved, client C normally sets up an SSL connection with G, and G acts

as the delegate of C and sets up another SSL connection with server S (6).

3.4.2 Digital Signatures

Signature schemes normally consist of two algorithms including: a signing algo-
rithm which requires the private key and another for verifying signatures which
requires the public key of user. As a result, the output of the signature pro-
cess is a digital signature (7; 12; 86). Digital signatures can provide security
by verifying the authenticity of a document. However, a criminal may replace
the current web page by an expired original web page through circumvention of
digital signature (7; 12). Therefore, it is necessary to indicate when the docu-
ment was signhed because if the private key of the signer was lost or compromised,
we cannot trust this signed document. This type of attack cannot be detected
even if the web browser has enabled SSL digital certificates (101). To avoid this
problem, the time-stamp signature should be provided. This time-stamp signa-
ture provides relative temporal authentication that every document is related to
a relative time-stamp which positions the document at a particular point in time

relative to documents stamped before and after it.

Time-stamp signature help to detect two types of forgery (7; 12; 101):

1. backward forgery (i.e. stamping a “past” time-stamp on the “present”

document), and

2. forward forgery (i.e. stamping a “present” time-stamp on a “past” docu-
ment or even “future” time-stamp on a “present” document by an unau-

thorized adversary).
However, the verification computation is proportional to the number of the

issued time-stamps where the producing a time-stamp signature computationally

is more demanding than producing a digital signature and this will increase the

46

3.4 Integrity of Web Documents

server overhead. Readers should note that even though the time-stamp
signature can secure the originality of a document it is impractical
to secure dynamic web content such as the shares and prices because
dynamic data involves higher calculation costs than static data (7; 12;
101).

We suggest using the hash functions in our proposed approach rather than
the digital signature because the hash functions are faster by 1000 times than the
RSA algorithm and they are 100 times faster than the RSA signature verification
system (102).

3.4.3 Form Field Validation Scheme

Currently, when initiating user and organisation transactions and conducting
their business, e-Commerce applications rely on HTML forms including enrol-
ment, authentication, order entry, payment, and profiling, rather than XML
forms, because of a lack of security mechanisms supported by SOAP (29). In
addition, the XML form is not supported by the major web browsers because
it needs additional installations on the client and server-sides (29; 52). Further-
more, the Gartner group has reported that the HTML events such as mouse and
keyboard actions in the HTML/XHTML forms have become very widely used in
business applications during 2004 through 2008 (25).

A form field validation scheme is the first defence against data tampering
at the application level. Web developers have adopted a number of validation

approaches to prevent loss of web content integrity:

e Server-side validation: this approach can be used to validate sensitive data
on a server before processing them by an application server. Depending
upon the application and network traffic, the time taken between the sub-
mitted form on a web browser and the error message that is returned from a
web server can be considerable. In addition, it makes excess network traffic
to enter the correct data format. Furthermore, it needs to define explicit

server-side programming languages (52; 103).

47

3.4 Integrity of Web Documents

e (Client-side validation: this is effective for minimizing the number of nec-
essary communication hits between the submitted form and received error
message (52; 104). However, the form validation modules of this approach
can be cancelled or removed. In addition, this approach cannot ensure that
the client and server are authentic. Brabrand and others (50; 52) suggest
validating the field input on a client-side before clicking on the submit but-

ton for more efficiency.

e The double-checking validation: this approach duplicates the form valida-
tion modules on both client and server sides. This approach adopts alterna-
tive validation scheme on a server-side, even though the validation scheme
is bypassed at the client-side. However, this approach is expensive and

involves high latency (52; 101).

e Honkala and Vuorimaa (29; 59) propose extending the XForm form to a
digital signature XForm. They adopt the digital signature for XForm forms
rather than HTML forms because it is hard to apply a digital signature
to an HTML form. They advocate the “what you see is what you sign”
approach to secure web form components at the client-side. Therefore,
XForms is a new standard for better graphical interfaces and specified to
input validation rather than the embedded scripts (103). However, XForm
is only supported by the <XSmile> browser.

e Brabrand and others (50; 52) introduce a PowerForms form for input vali-
dation. PowerForms form is implemented by the XML language to define a
rich form that includes input validations without using a scripting language.
PowerForms is only supported by the <bigwig> browser. However, unlike
Firefox and IE, this browser is not free. In addition, it requires additional
installations to interpret PowerForms forms on a web server because the
MAWAL language is used in the <bigwig> system for domain of interactive
web services. This language is designed to protect the client sessions as
extended to SSL technology.

e Formatta organisation defines a Portable Form Files (PFF) form model

that is not related to the HTML language. This form allows the user to

48

3.4 Integrity of Web Documents

encrypt and lock its form data before submitting it to a web server. How-
ever, the PFF form needs special software to install a web document on
a web browser. In addition, the submitted data is sent by E-mail ser-
vice to an organisation web server (7). Full details have been described in

<www.formatta.com/>.

Many online book re-sales (such as Amazon) advocate checking inputs with
JavaScript as a mechanism to reduce network traffic; modern books applications
usually advocate doing input validation on the server for security purposes. Nev-
ertheless, major e-Commerce and e-Service sites still use client-side validation and
hidden fields (105). Authors (105) found client-side validation on amazon. com and
netflix.com, and the use of hidden form fields to store sensitive information on

fastlane.nsf.com.

A validation scheme is necessary for both client and server-sides, but is not
sufficient to protect web content integrity against tampering, because fundamen-
tally a form validation scheme is designed to validate basic properties of the input
data: length, range, format, default value, and type. In addition, data valida-
tion can be used to enhance resistance to injection attacks such as SQL injection
attack because SQL injection vulnerabilities result from insufficient data (input)
validation (106). However, a validation scheme is useless if any malicious script

or listener is already installed on a server (4; 32; 52).

Furthermore, web developers assume if the validation modules are properly
managed then the static and dynamic web content will be secured. Unfortunately
the attacks could come from inside the orgranisation and this approach cannot
validate the data on the fly. HTTP provides the REFERER header to help in
the detection of a tampered form. A REFERER contains the URL of the original
form. However, this header is not sufficient to alert a web server and web browser
because it is possible to tamper with the URL information of the header (7; 41).
As a result of the transparency of code at the web browser level, the following

approaches can cause loss of content integrity at the HTML form level:

e Hidden fields manipulation: an adversary saves the HTML form to a disk,

49

3.4 Integrity of Web Documents

modifies a hidden field value (such as the price of a product), and then

reloads this tampered form into a web browser for rendering (32).

e Script manipulation: an adversary removes the client validation modules
from a web browser to submit illegal data to a web server. A web server
accepts the tampered form and then the data is saved in a backend database.
Many web application security vulnerabilities come from input validation
problems including Cross-Site Scripting (XSS) and SQL injection (4; 7; 12;
73). This approach is made possible by removing all script modules between
the <script> and </script> tags, removing the event-handler that invokes
the validation modules, or turning off the script and Java Applet options

via web browser settings.

e Modules of validation analysis manipulation: an adversary applies reverse

engineering techniques on the validation modules (4; 7; 73).

e Session information manipulation (67): an adversary might access session
information, which is saved in cookies. This is possible because a web
browser is not fully secured by SSL. In addition, some client-side program-
ming languages provide direct or indirect commands to access user machine
resources. However, the cookie-securing mechanism of Park and Sandhu
(28) can be adopted to avoid or reduce the danger of tampering the cookie
information but it needs to declare the explicit modification to the existing
web environment. This mechanism is implemented using CGI and Pretty
Good Privacy (PGP) to verify secure cookie cryptography on the client.
The encryption scheme is conducted by the server. Therefore, the cookie-
securing mechanism is used to secure the session information on the cookies

for continuing the Request-Response conversations.

3.4.4 Network and Application Firewalls

Network firewalls provide protection at the host and network level (& 31; 32).
There are, however, four reasons why these security defences cannot be used to

detect data tampering attacks (&; 37):

20

3.4 Integrity of Web Documents

1. They cannot stop malicious attacks that perform illegal transactions, be-
cause they are designed to prevent vulnerabilities of signatures and specific

ports.

2. They cannot manipulate form operations such as asking the user to submit
certain information or validate false data because they cannot distinguish
between the original request-response conversation and the tampered con-

versation.

3. They do not track conversations and do not secure the session informa-
tion. For example, they cannot track when session information in cookies

is exchanged over an HTTP request-response model.

4. They provide no protection against web application attacks since these are
launched on port 80 (default for web sites) which has to remain open to

allow normal operations of the business.

There are some general approaches that are adopted to protect the web envi-
ronment in most commercial security products such as application and network
firewalls (72). These are detailed below:

e Analysis Approach: analyse code and reject it if it could harm a web en-
vironment. Analysis approaches include scanner techniques that scan a file
and reject it if contains any known virus and compilers that can determine

previously known malicious code or detect the code bugs.

e Rewriting Approach: rewrite code before running it. This includes a rewrit-
ing tool that adds extra code to perform dynamic checks that ensure bad
things such as destructions or disruption of data do not occur. For exam-
ple, a Java compiler adds extra code to check that every array index is
in bounds - otherwise, the code throws an exception, thereby avoiding the

buffer overrun attacks.

e Monitoring Approach: monitor code during the execution and catch it be-
fore it does anything bad. Monitoring approaches include a reference moni-

tor which is used to ensure programs do not do anything bad. For example,

o1

3.5 Related Work

an operating system uses the page-translation hardware to monitor the set
of addresses that an application attempts to read, write, or execute. So
that, if the application attempts to access outside of its address range then

the kernel makes an action (e.g. by signaling a segmentation fault.).

e Auditing Approach: audit code during execution. Commercial auditing

tools create an audit trail that captures program behavior.

Firewalls are necessary, but they are not sufficient to ensure web content
integrity against tampering because fundamentally they are designed to provide
protection at the host and network levels. Therefore, they are useless if any
malicious script or listener is already installed on a server behind them because

they do not prevent the installation of scripts at the application level.

For example, once inside the network and running on a user’s machine, the
firewall offers no protection against the mobile code accessing sensitive internal
data and may be leaking it to outside of organisation. The security must happen
at the user’s machine rather than at the firewall. Previously, a firewall could
suppose that an adversary could only be on the outside. Currently, with mobile
environment, an attack might originate from the inside as well, where a firewall

can offer no protection (107).

3.5 Related Work

In this section, we present the related work in the area of integrity verification
systems and the area of web engineering security. Below, a number of existing
approaches and systems have been reviewed in order to give a more detailed
overview of integrity verification. In this thesis, we have surveyed existing ap-
proaches, considered their strengths, weakness, and limitations. Some of these
critical solutions are summarised in Table 3.1, which shows the source of the
problem (client, server), the position of the solution (client, server) and the mod-
ifications necessary on the client and server. We start with web engineering

approach.

52

3.5 Related Work

Solution: Client
Modification: (Smart Card)

Solution: Server
Modification: Server

Solution: Server
Modification: Server

o JavaScript that calls applet functions
and Java Applet can be cancelled or
tampered with.

o It fails to assess an existing web
application.

o Tampering is still potential problem
because this system does not verify
the integrity of dynamic and static
web content on the server.

integrity of dynamic web server
content.

Type of web content: User input| Type of web content: Static web content | Type of web content: Static web

+Session information on the server. content on the server.

Technique: Technique: Technique:

o Cryptography scheme on the Client- | o This system uses a timestamp o This system comprises redundant
side. signature and hash function. servers running on diverse operating

o Use smart card for generating the o If DSSA detects any modification, it systems, intrusion-tolerant proxies
private key. signals the Web server to block their and client machines to verify the

o Use hash function. transmission and take the preventive behaviour of servers and other

action. proxies, and monitoring and alert
management components.
o Use hash function.

Drawbacks: Drawbacks: Drawbacks:

o Generated key might be violated or | o Tampering is stili potential problem o Tampering is still potential problem
lost. because DSSA does not verify the because the adaptive intrusion-

tolerant server system does not verify
the integrity of dynamic web server
content.

o Performance is too slow if more than
three application servers are needed.

Table 3.1: This table shows the current solutions, the source of the problem

(client, server), the position of the solution (client, server) and the modifications

necessary on the client and server.

93

3.5 Related Work

3.5.1 Web Engineering Security Approach

Glisson et al. (108) suggest that security should be visible in all steps of the
development process if it is to be implemented with any success. In other words,
web engineering principles, such as design, implementation and testing, should
be integrated into web security to identify what a user and an organisation need
for every stage of the software engineering principles. Therefore, Glisson and
Welland (17) propose a Web Engineering Security (WES) methodology. The
WES methodology serves to detect the vulnerabilities at each stage instead of
processing them at the implementation stage. They conclude that technical tools
alone will not solve current security issues and so it will be effective to incorporate
security component upfront into the development methodology of web engineer-
ing phases. Glisson and Welland (17) take the advantage of existing security tools
within the organisation. However, this integration may require the rebuilding of
existing web applications as some consist of complex structures, comprising mul-
tiple programming languages and imported binary components with little or no
documentation. Consequently, it may be difficult to define security vulnerabilities
for legacy web applications at every stage of the software engineering life-cycle

all the web policies that maintain security vulnerabilities.

Success comes to organisations that build security into all phases of their ap-
plication development lifecycle (109). Vulnerabilities typically find their way into
applications during each major phase of development — requirements collection,
application design and application implementation. Every development team’s
goal should be to identify all relevant security requirements at the same time
that functional and performance requirements are collected. Once good security
requirements are in place, the team should strive to identify vulnerabilities dur-
ing the design, rather than discovering issues during implementation and going
back to re-design pieces of the application. Therefore, security practices should
be in place during requirements planning, design, implementation and testing in
order to catch the majority of problems as early in the cycle as possible. Proper
training on how to integrate security into each of these phases will provide consis-

tency across the organisation. It is less expensive and less disruptive to discover

54

3.5 Related Work

design-level vulnerabilities during the design rather than discovering them during

implementation or testing (109).

3.5.2 Integrity Verification Systems and Approaches
3.5.2.1 Client-side Encryption Approach

Hassinen and Mussalo (9) have proposed a client-side encryption system to pro-
tect confidentiality, data integrity, and user trust. They encrypt data inputs
using a client encryption key before submitting the content of an HTML Form.
The client encryption key is stored on the server and transferred over an HTTP
connection. A downloaded web page includes a signed Applet which handles the
encryption and decryption values. This applet also reads the encryption key from
alocal file. In addition, a downloaded web page includes JavaScript methods that
invoke the Applet methods for encryption and decryption. This approach uses
a one-way hash function. It computes the hash value which is inserted into the
main data input before encryption. After a new request, the JavaScript function
invokes the Applet decryption method to decrypt the parameter value and places
the returned value in the corresponding input field. The message validation in-
cludes finding a new hash value from the decrypted message and comparing it to
the hash value which is received with the message. If they are the same, the data
is accepted, otherwise, the data is deemed to have been altered and the validation

will fail. This system has two main requirements (9):

1. It must be able to run on any major web browser.

2. Without the need to install additional hardware or software.

However, data integrity could be lost if this approach is adopted because the
Java Applets can access the client’s local file system. Thus, a criminal can replace
the original signed Applet with a faked Applet to access the client’s web content.
Moreover, if a smart card is used to store the client encryption key, then the client

machine requires a card reader and necessary drivers, which fails the second of the

95

3.5 Related Work

above requirements. This encryption system can use the Java Card technology

for two aims:

1. storing the generated key on the card so that it can be read only with a

PIN to control authorization of the user.

2. storing the Applets that executed on the card.

Another potential weakness is the potential loss of the client’s smart card with
its Personal Identification Number (PIN), in which case the whole web-based
system would be compromised. In addition, the Applet and JavaScript methods
can be bypassed. If this happens, the submitted values will be in plain text.
Furthermore, in order to implement this technique, existing web applications will
require modification. Finally, it does not include a risk analyser to protect user

information on the web server if the web server has been tampered with.

3.5.2.2 Dynamic Security Surveillance Agent (DSSA) System

Sedaghat, Pieprzyk, and Vossough (7; 12) have proposed a Dynamic Security
Surveillance Agent (DSSA) system on the server-side that automatically inter-
cepts an HTTP request to verify the integrity of the requested page before the
web server responds to the client. This system is positioned between the web
server and the client’s machine where the DSSA uses a timestamp signature and
hash function to verify the integrity of the full content of a requested web page
including all of its embedded objects. If the hash value of the requested web page
and its referenced objects equals the original hash value, which is registered in a
secure database, the web server accepts the HTTP request and can respond to
the client. If DSSA detects any modification, it signals the web server to block
their transmission and take the preventive action such as DSSA sends an email
message to alert the web site administrator. At the same time, DSSA attempts
to send the requested page from a secure server to the user. In this situation,
DSSA automatically rejects any further communication from the clients to the

Web server until the problem is resolved.

596

3.5 Related Work

However, as the DSSA does not verify dynamic web content which is gener-
ated on the fly, tampering is still a potential problem. Therefore, verificition of
dynamic web pages are still a significant challenge. Furthermore, DSSA considers
a tree scheme of digital signatures — which provides that a different message (hash
value) be signed for each node (such as a web page) in a tree. If two or more
nodes (such as web pages) reference the same object (such as an audio object)
in a node, then the signature of that web page will be different from other web
page. It assumes that every web page is independent from every other web page,
even though some referenced objects are shared by more than one web page.

Therefore, the performance is decreased during the verification of a web page.

Furthermore, DSSA supports a recovery component to recover the whole web
page with its referenced objects, so that if any referenced object has been tam-
pered with the DSSA recovers the whole web page and its referenced objects.
Consequently, the system overhead is relatively high.

Readers should note that the notation of dynamism in this system does not

apply to generation of web content.

3.5.2.3 Adaptive Intrusion-Tolerant Server System

Valdes et al. (110) propose an adaptive intrusion-tolerant server system for fully
static web server content. The adaptive intrusion-tolerant server system (110)
comprises redundant servers running on diverse operating systems, intrusion-
tolerant proxies that position between web servers and client machines and verify
the behaviour of servers and other proxies, and monitoring and alert management
components based on the EMERALD (111) intrusion-detection system. How-
ever, the system adapts its configuration dynamically in response to intrusions
or other faults. The adaptive intrusion-tolerant server system does not employ
fault-tolerant replication protocols, but has a range of adaptive responses to iso-
late compromised parts of the system. This approach addresses the data integrity
and data availability on a server: the system must be capable of servicing requests

from correct clients even though one component of architecture is compromised.

o7

3.5 Related Work

When a client request arrives, the main proxy (leader) accepts client requests,
forwards them to a number of application servers, and compares the hash values
of the content returned by the application servers. If they match, the main proxy
(leader) sends a response to the user, otherwise, a report is sent to a monitoring
component for the correct action to be taken. The main proxy and application
servers communicate over a private network that is monitored by an Intrusion
Detection System (IDS). The IDS provides detection for any compromised ap-
plication servers, so that compromises are likely to remain limited to a small
number of application servers. An agreement policy determines which and how
many application servers are involved by the main proxy for each client request.

Therefore, a single client request will be served by one, two, or more web servers.

Valdes et al. (110) have identified three assumptions to design the architecture

of adaptive intrusion-tolerant server system as follows:

1. The main proxy (leader) implements an agreement policy that serves correct

content.
2. The leader is secure.

3. Only one critical component (such as application server and monitoring

proxy) is compromised at the same time if intrusions occur.

However, because the adaptive intrusion-tolerant server system does not verity
the integrity of dynamic web server content that is generated on the fly tampering
remains a potential problem. Moreover, it cannot detect tampering attacks such
as visual spoofing attack on static web content. It only tends to detect security
vulnerabilities such as worms (e.g. code red virus). In addition, it does not
support recovery if all the application servers are compromised. As stated in

(110), the updates or the new modifications must be done offline.

Furthermore, the performance is too slow if more than three application
servers are needed to check the integrity of web server content where this system
requires redundant diverse web servers and various operating systems on diverse

platforms to be able to provide a greater assurance of availability and integrity.

58

3.5 Related Work

3.5.2.4 Application-Level Gateway Approach

Scott and Sharp (32; 112; 113) propose a gateway model which is an application-
level firewall on a server for checking invalid user inputs and detecting malicious
script (e.g. SQL injection attack and cross-site scripting attack). They have
developed a security policy description language (SPDL) based on XML to de-
scribe a set of validation constraints and transformation rules. This language is
translated into code by a policy compiler, which is sent to a security gateway
on a server. The gateway analyses the request and augments it with a Message
Authentication Code (MAC).

The MAC is used to protect the data integrity. For example, The MAC is used
to secure session information in a cookie at the client-side. There are many ways
to compute a MAC such as one-way hash algorithms (MD5, SHA-1) to create an
unique fingerprint for data within the cookie. Further details regarding MACs

are described in (86).

However, this approach has a number of limitations. One of these is that
tampering is still a potential problem because dynamic web content that is gen-
erated on fly is not verified. Therefore, if referenced objects are tampered with
the gateway cannot alert the web administrator and clients. Furthermore, the
policies of validation constraints and transformation rules are enforced manually

and need an engineer to write and check them by hand.

Further limitations of this approach are that it enables protection through the
enforcement of strictly defined security polices but does not address tampering
problems for referenced objects. In addition, it is difficult to define all the poli-
cies and rules of a legacy web application for every single data entry point, URL
entry, and cookie unit because these can consist of complex structures of multiple
programming languages and imported binary components with little or no doc-
umentation. Therefore, it is not practical for a web administrator or publisher
to be familiar with all of the data entry points for an existing web application
that contains many static and dynamic web pages. Finally, it is difficult to adopt

this approach where web applications are implemented via a large number of web

59

3.5 Related Work

technologies because the policies and transformation rules are enforced manually,

and need an engineer to write and check them by hand.

3.5.3 Section Summary and Conclusion

Because of the statelessness of HT'TP and the limitations of SSL, data integrity
can be violated. Static and dynamic web server content can be tampered with
through running malicious code behind the firewalls on the server. This code can
compromise a requested page before the client receives it (4; 7; 8; 9; 11; 14). En-
suring static and dynamic web content integrity against unauthorised tampering,
even when the communication channel between client and server is protected has
therefore become a major challenge. The question this thesis addresses is how
the integrity of server-side static and dynamic web content can be verified before
the client receives the requested page and then to provide continued reliable and
correct services to users, even though a tampering problem has occurred. In-
deed, this chapter has reviewed the problems associated with unauthorised data
manipulation of static and dynamic web content and the existing approaches,

considered their strengths, weakness, and limitations.

We conclude that the above existing solutions are not sufficient to tackle
our research question. For example, SSL is a cryptographic protocol to secure
the data in transit against eavesdropping problems. Therefore, the ends of web-
based system (such as web browser and web server) remain unprotected. The user
information, source code of web pages, code of web applications, and reference

objects remain unprotected against tampering problems.

We also suggest using the form validation modules. They can validate the user
information from harmful characters that cause input attacks such as XSS and
SQL injection. We recommend that these modules be operated on the client and
server because if the client validation modules is subverted, the server validation
modules can still work. Some developers suppose that if user information has been
properly validated, the static web content (source code of web pages, reference

objects, code of web application) will be secure. However, malicious code might

60

3.6 Conclusion

be installed on a server either inside or outside organisation. Furthermore, as

seen above, the form validation modules can be bypassed.

Network and application firewalls are necessary but they are not sufficient
to protect the ends of web system. Firewalls can be used to protect against
DNS spoofing attacks and penetration of ports at the network and host levels.
Furthermore, firewalls do not understand the HTTP conversations between clients
and servers. In this thesis, we have distinguished between the network level and
application level because the security vulnerabilities of a network level is different

from an application level.

Client-side encryption approach is used to protect user information. Even if
the client validation modules is enhanced by an encryption approach, the static
and dynamic web server content can be tampered with because moving the en-
cryption to a client-side is vulnerable to security risks. The encryption can be
exposed through applying penetration strategies such as reverse engineering tech-

niques.

DSSA system and an adaptive intrusion-tolerant server system cannot ensure
the survivability of server-side dynamic web content. However, even if the static

web server content is verified, the dynamic server data can be tampered.

3.6 Conclusion

In this chapter, we have discussed data tampering and the definition of the sur-
vivability. In addition, we have reviewed the existing approaches and considered
their strengths, weakness, and limitations. This thesis focuses on the integrity
of data. We have shown, that given the limitations of the SSL protocol, a loss
of data integrity is made possible by the statelessness of HT'TP. In an attempt
to overcome this problem, we propose the WCVR system that can provide con-
tinued reliable and correct services to internal and external users, even though a

web data manipulation problem may have occurred.

In the previous chapters, we have discussed the statistics from CERT that have

61

3.6 Conclusion

shown a large year on year increase in reported security incidents and vulnera-
bilities. We have also shown that traditional approaches to security - specifically
network firewalls and the SSL protocol - are insufficient to deal with tampering
attacks arising due to the increased logical and physical accessability to organi-

sations.

In the next chapter, we will describe the design of the proposed WCVR system
to tackle the research question. In addition, we will compare the proposed solution

with the existing approaches, systems and schemes.

62

Chapter 4

Design of WCVR System

4.1 Introduction

This chapter presents a novel system architecture to investigate the survivability
of server-side static and dynamic web content against tampering attacks. Chap-
ters 1-3 have surveyed the critical factors and challenges that underpin this thesis.
A significant challenge to identify tampering problems is a difficult analysis of dy-
namic web pages (32; 91). Adversaries can evade server-side web content by using
malicious web content manipulation software to produce malicious web content
at the run-time (14). Chapter 2 and 3 have included a summary of the HTTP
request-response model and how to follow the data flow over this model, web
security issues, limitations of web technologies and an overview of related work

and existing integrity verification systems and approaches.

To design a software system, several architecture styles have to be combined to
construct the overall architecture of the system (114). The various architecture
styles or architectural approaches relies on the fact of what kind of functional
or non-functional quality requirements the system should satisfy. In this study,
the satisfaction level of system requirements is evaluated through estimation the
technical parts of architectural approach. Our system architecture relies on a
number of work assumptions that derive from the literature review in chapters 2

and 3. The proposed framework architecture consists of five components: a web

63

4.1 Introduction

register, a response hashing calculator, an integrity verifier, a recovery component
and DBMS tables. Readers should note this thesis focuses on an integrity system

and does not focus on developing or deploying a new hashing algorithm.

It should be noted that the current recommendation for newly designed ap-
plications is SHA-256 because SHA-1 may be broken (115). However, we have

continued to use SHA-1, because:

e SHALI has been tested in many applications and can be implemented using
Java, C#, and C++; while the SHA-256 has not been fully tested yet
(125 74; 110).

e Although a variety of hash functions are available, only MD5 and SHA-1

are in wide use (88; 89).

64

4.2 Web Content Verification and Recovery (WCVR) System

4.2 'Web Content Verification and Recovery (WCVR)
System

As discussed in chapters 1-3, the problem to be addressed is that the integrity
of the dynamic and static web content on a server can be compromised even
though the communication channel between the client and server-sides is secured.
Therefore, we have developed a novel system called the Web Content Verification
and Recovery (WCVR) system for investigating survivability of server-side static
and dynamic web content against tampering attacks before the client receives
the requested resource. The WCVR system consists of a web security framework

that executes a state protocol to enforce a set of web policies.

In this research work, a conceptual model called the Client Interaction Ele-
ments (CIE) model is formulated with the aim of understanding how to dynami-
cally produce units of web content. Another important aim is to devise a simple
method for automatically and manually analysing a web site that contains a large
number of elements and where each web page includes a large number of interac-

tion elements (e.g. forms, frames, links, and HTML and non-HTML objects).

As there is always a trade-off between security and performance (110; 116),
we have then developed a new hashing strategy to utilise the hashing calculations

for static and dynamic web content.

An evaluation of the proposed CIE model and new hashing strategy by the

experimental work are presented in chapter 6.

4.2.1 Work Assumptions

Before we describe the components of our framework architecture, we have es-
tablished four work assumptions because without such restrictions, there would
always be adversaries (inside or outside organisation) that are able to fool remote

clients and server.

65

4.2 Web Content Verification and Recovery (WCVR) System

1. The SSL protocol secures data in transit (7; 8; 9; 12); it provides digi-
tal certificates to encrypt the data in transit against malicious coding and

eavesdropping attacks. Further details can be found in Section 3.4.1.

2. We assume that a data validation scheme should operate on both sides
(client and server) to validate the user inputs of a request before it is pro-
cessed on a web server. This means that if the client validation scheme
is subverted, there is another validation scheme still running on the server
before the request is processed. This is because the data resulting from
user interaction on the client is inherently untrustworthy; user input may
contain malicious code (such as SQL injection code) that could harm a web
server or a backend database; or the client validation scheme can be vio-
lated (32). As a result, all user data that is sent as a request to a server is

untrustworthy. Further details can be found in Section 3.4.3.

3. We also assume that the authentication scheme, authorisation scheme and
Access Control List? (ACL) are correctly configured across a network (20;

21).

4. DataBase Management System (DBMS) is created, maintained and oper-
ated in a secure manner for ensuring the correctness of the internal state of
the DBMS. Therefore, the protection of the hash value database is assumed.

4.2.2 Overview of Web Security Framework Architecture

An illustration of WCVR system architecture is presented in Figure 4.1. This

framework consists of a number of components (117):

e DBMS tables: the DBMS contains two tables; offline-transaction table for

mapping the hash values of static web contents to their specific repositories

2A list of all user accounts and groups that have been granted access for the file or directory
on an NTFS partition or volume, as well as the type of access they have been granted. When
a user attempts to gain access to a web resource, the ACL must contain an entry, called an
access control entry(ACE), for the user account or group to which the user belongs. Further
details can be found in http://www.iexbeta.com/wiki/index.php/Tech_Dictionary.

66

4.2 Web Content Verification and Recovery (WCVR) System

Database

-

Response
. Hashing
: Calculator 1

« Web register

—————w Al web site elements transterred
----------- » : Oniy applied when codo of wob pago conlaing sorver scripl

—— e WhHen lampering datected

Figure 4.1: Schematic view of WCVR architecture

of web servers and online-transaction table for mapping the hash value of
current dynamic web content to its server scripting web page. As well as
the DBMS online-transaction table, any dynamic web content has be sent
to a client, DBMS deletes the record of this web content because it contains

only the current online transaction that is process.

The DBMS can maintain details about web contents in the background by
rendering a specified relation as an online-transaction table, and offline-
transaction table. In the DBMS offline-transaction table, an important
property of all static web contents are stored is that it is append-only;
modifications only add information with no information deleted. Hence, if

old information is changed in any way then tampering has occurred.

The property of online-transaction table is append-edited; modifications

add information and delete information.

The WCVR system supports DBMS tables to store and maintain every

67

4.2 Web Content Verification and Recovery (WCVR) System

detail about web content. Current approaches such as the client-side en-
cryption approach (9) and application-level gateway approach (74) add the
original hash value between the tags (such as Meta tag) of a HIML or XML
response, and as a result, the malicious web content manipulation software
could intercept and analyse the output response to obtain the original hash
value so it is easy to evade the web system by tampering the original hash

value of web content.

Web register component: manages the hashing calculations for all static
web content that have been developed for use in the secure environment.
In this stage, the hashing calculations are done offline. If any static web
content undergoes any add-on (new code that is added to the original web
content (93)) , it is released. The updated web content must be regenerated
by producing a new hash value. In addition, a web register sends the
list of hashing values to DBMS offline-transaction table for storing and
maintaining.

It also monitors all resources of the web site and web application in their
secure repositories for any authorised change that occurs. A repository

constructs a list from static web content that have been developed for use.

Integrity verifier (manager): mediates between the server and client ma-
chines by managing the HTTP requests and responses via a state protocol,
which enforces a set of web policies that apply to the elements of the web
system and to communicate between the other components of the WCVR
system. The web policy specifies the next action or decision to be taken
and when the policy should be enforced. In this thesis, we have defined four
web polices, including request availability policy (policy 1), integrity fail-
ure policy (policy 2), integrity passing policy (policy 3) andrecovery policy
(policy 4).

When DBMS sends the hash value (checksum) of a request or response to
the verification process, the verification process checks to see if the web
content has been modified since it was used. The cryptographically original
checksum is obtainable through the DBMS. The checksum of the requested

63

4.2 Web Content Verification and Recovery (WCVR) System

content is calculated and compared with the one retrieved from the DBMS
table. Any tampering causes the content integrity check to fail. If there
is a mismatch between the calculated checksum and the original checksum,
the content integrity check will fail. Based on whether the test passes or
fails, the integrity verifier component executes the state protocol to enforce
the policy that makes the decision about the next step in the process. If
the integrity check passes, the web content is sent to the running process

straight away. If it fails, it is sent to the recovery component.

Response hashing calculator: aims to do hashing calculations and backup
for the generated dynamic web content before response sends it back to the

manager.

Recovery component: recovers the tampered web content if the action of
the enforced web policy from the integrity verifier is satisfied. In other
words, if the integrity verification process fails, it is sent to the recovery
component, which tries to extract the original web content that is known to
be safe. Once it is determined that the web content has been modified in an
unauthorised manner, the system will try to recover the original web content
through restoring it from the secure backup, put it in a new assembly and
discard the tampered web content. When the new assembly is generated,
the recovered assembly is sent to its direction and execution continues as

normal.

Figure 4.1 illustrates how the proposed framework is separate from a web

server. Note that the components of the framework do not need to run on a

dedicated machine, they can be run as separate processes on the server.

It is suggested that the WCVR offers integrity of data, and a higher level of

trustworthiness to organisations and the users. The proposed framework should

be capable of verifying web pages and referenced objects in the designated di-

rectories of the web server and dynamic web content against tampering. To

investigate survivability of web content, the WCVR system is able to detect web

content against tampering and recover the original copy of the compromised ob-

ject. Furthermore, at the monitoring stage, if a web system has been tampered

69

4.2 Web Content Verification and Recovery (WCVR) System

with, it provides alerts to the web server administrator. The WCVR, system has

a number of advantages over other approaches:

1. It does not require modifications to existing web application architectures.
2. It does not require any additional changes on the client and server.
3. It is compatible with all major web browsers.

4. Tt does not rely on a database of known tampering attacks.

It should be noted that we compute a SHA-1 hash with a changeable private
key over the complete contents of the web resources. The resulting 160 bit hash
value identifies the resource’s contents. Different resource types, versions and

extensions can be distinguished by their unique checksums.

Further, an essential part of our architecture is the ability of web administrator

to ensure that the hashing list in a secure DBMS tables is:

e fresh and complete, i.e., includes all hash values up to the point in time

when web contents are updated or modified legitimately.

e unchanged, i.e., the original hash values (original checksums) represent the
original static and dynamic web content and have not been tampered with
in a secure DBMS tables. Note that the operating system’s web policy
indicates that the access to this hash list is only permissable to web admin-
istrator or master of web server (refer to assumptions 3 and 4 in Section
4.2.1).

4.2.3 New Model of Interaction Elements

We have formulated a new model to deal with every interaction element (both
HTML and non-HTML objects) in a web page called Client Interaction Elements
(CIE) model. A CIE model extends Offutt et al.’s (4) HTML Input Units (IU)
model which is only used to HTML input units to create tests on the client for

web applications that violate checks on user inputs.

70

4.2 Web Content Verification and Recovery (WCVR) System

A CIE model is formulated to provide the automatic extraction of param-
eters (e.g. HTTP transfer mode, user, data, type of interaction element, and
server page) of the client interaction element. The automatic extraction method
provides a simple method for automatically analysing a web site that contains
a large number of elements and where each web page includes a large number
of interaction elements (e.g. forms, frames, links, and HTML and non-HTML

objects).

Offutt et al.’s (4) also propose Input Validation Testing (IVT) that checks
user inputs to ensure that they conform to the requirements of web applications.
A common scheme in web applications is to perform input validation on the
client-side with scripting languages such as JavaScript. Bypassing input valida-
tion modules on the client-side can cause faults in a web browser and can also
break the security on web applications, leading to unauthorised access to data,
system failures, invalid purchases and entry of malicious data. Therefore, the

data integrity can be violated.

Note that, our Client Interaction Elements (CIE) model is used for server

purposes whereas the HTML Input Units model is used for client purposes.

Ricca and Tonella (105) propose an analysis model and corresponding testing
strategies for fully static web page analysis. Our proposed model can be used for
static and dynamic web pages analysis. This is because the recent developments
in web technologies and web applications are currently are being built on dynamic
content, and therefore our model is proposed to deal with these static and dynamic

web pages.

As discussed previously, web applications contain static web files and pro-
grams that dynamically generate HTML or XHTML pages (4; 7; 14). Each web
page, whether a static web file or dynamically generated, may have either no in-
teraction elements, one interaction element or more than one interaction elements
that make users interact with a web server via a web browser. An interaction
element [is characterized by five parameters: [= (IT,SP,D,T,U). IT is the
type of interaction element that can be used for interacting with a web server.

The data inputs D are sent to a server page SP for processing user requests.

71

4.2 Web Content Verification and Recovery (WCVR) System

D (user input) is a set of ordered parameter-value pairs (p;,v;), where p; is a
parameter name, and v; is the value of a data item (e.g. text box, selection list,
etc.) that can be assigned to p;. T is the HTTP transfer mode (viz. GET,
POST, DELETE, PUT and HEAD). Each HTTP transfer mode T" has a differ-
ent method to transfer data to SP (44). U is a user who interacts via a web
browser to conduct HTTP conversations. A user U can legitimately access web
content on designated directories of a web server through secure authentication

and authorization schemes.

Figure 4.2 shows the interaction model of a generic web page structure. In this
Figure, a web page is the main entity that contains different types of interaction
elements /. The web page can be dynamic or static. A dynamic web page
generates different web contents depending on the information provided by the

user.

v Web Page
Dynamic Page
HTML Form
Use: <Var>
Input: <Var>

\ HTML Link
: Input: <Var>
\ Non-HTML

abject

| Dynamic Page

Static Page

Input: <Var>

Figure 4.2: Interaction model of a web page

The basic interaction element is a form, which is specified in the HTML
<Form> tag. This tag includes two attributes: the action attribute specifies the
SP of a form element, while the transfer mode T is specified within the method
attribute of the <Form> tag. Another type of interaction element is a link, which
is represented using the <A> tag. SP is specified in the HREF attribute within the

<A> tag, while the transfer mode T of a link is GET because a link only has one

72

4.2 Web Content Verification and Recovery (WCVR) System

value. Therefore, GET is specified by default (4; 7). Definition (4.1) is used to
simplify the analysis of a web page through extracting the parameter values (the
user input data (7, SP,D,T,U)) of the interaction elements in the target web
page by the integrity verifier component of the proposed framework (see Figure

4.1) before processing a request.

(4.1) 1= (IT,SP,D,T,U),D = {(p;,v;)|j=0,...,n}

We donate a zero entry with (pg,vy) where py = vy = 0. A generation of
web content units involve interaction elements of the three basic parameters: [T,
SP, and T. Therefore, we are interested to extract the values of IT, 5P, and
T because we focus on the integrity of the data and not on whether the user
U is authorised or not (see assumption 2 in Section 4.2.1), and sent data D is

validated or not (see assumption 2 in Section 4.2.1).

The injection attacks such as SQL and scripting attacks are not example of
data tampering attacks. Injection attacks are a specific type of input validation
problem so that data validation can be used to enhance resistance to injection
attacks (84; 106). Therefore, we are not focused on user input D is validated or

not.

Therefore, Definition (4.1) is used to extract the parameter values of the
interaction elements for every requested element (see Function extractRequeste-
dResource() in Figure 4.10) before processing a request. Figure 4.3 illustrates an
example of the HTML <Form> tag that contains a number of data items. It is
assumed that user (UserX) types “schools in UK” in the input box of the search

engine.

In accordance with Definition (4.1), we obtain from Figure 4.3 the interac-
tion element I = (Form, search.asp, D, POST, UserX) where for example D =
{(search_value, “schools in UK”)}. The integrity verifier component extracts only

the following values to take the next action: (Form, search.asp,POST).

73

4.2 Web Content Verification and Recovery (WCVR) System

<Form method="POST" action="//search.asp">
<P>Enter Data </P>
<Input id="search_value" type="text"/>

<Input type="submit"/> </Form>

Figure 4.3: HTML form input element

4.2.4 New Hashing Strategy

We have developed a new hashing strategy to describe hashing calculations for
the referenced objects that are shared among the web pages of the target web site
or the web application. This strategy applies for all web referenced objects that
have been developed before use over the secure HTTP request-response model.
This new hashing strategy to improve the hashing performance and minimise

overhead times of the proposed WCVR system.

We have set a number of assumptions and specifications to develop our new

hashing strategy. We have started with three assumptions (118):
1. (A1) a web site is a collection of web pages that generate units of web
content.

2. (A2) a web page is a tree of referenced objects and each web page, whether
static or dynamically generated, can have zero or more referenced objects

in addition to the code of the web page itself.

3. (A3) a referenced object is any object that has a link within the web page

such as image, audio, video and other objects.
Moreover, this strategy has four specifications (118):

1. (S1) a web site includes a finite set of referenced objects.

2. (S2) external Cascading Style Sheet (CSS) objects and external codes are

treated as referenced objects.

74

4.2 Web Content Verification and Recovery (WCVR) System

3. (S3) links to web pages and referenced objects for different host servers are

not specified in the range of referenced objects.

4. (S4) it is possible to have one or more referenced object shared among the

web pages of the target web site or the web application.

Let WS denote a target web site, WPi,i = 1,2,...,n be a web page, O be a
referenced object and C denote the source code of a WP, VC € WP, , where n is

the number of web pages, and m is the number of referenced objects in WS.

From assumptions Al, A2 and specification S1 we obtain:

(4.2)
WS = {WP,|i=1,...,n}

From (A3) we obtain
0={0;|j=1,...,m}
From (A2, A2, S1-S4) we obtain:

(4.3)
WP]Z:\:J{(O],OJ]j=1,...,m,i:1,...,n}

Substituting (4.3) into (4.2), where WP;; = {(0;,C;)} denotes a web content
related to O; and C;

(4.4)

g{(O],Ol)Q]ZL,WLZ:l,?’L}

To analyse this strategy, an example is presented in Figure 4.4. WS which
is a web site that contains three web page: WS = {WP,, WP,, WP;} and seven
referenced objects O = {O; | j=1,...,7}.

75

4.2 Web Content Verification and Recovery (WCVR) System

From (4.3) we get:

WP = {(0;,C1) | j = 1,2,3}
WP, = {(0;,C,) | j = 1,4,5}
WP3 = {(0.7703) l]: 176,7}

And from (4.4) we get:
WS = {WP;;|j=1,...7,i=1,...,3}
So, from (Specification 4) we get:
Z = WP, O WP, N WP, = {0}

Where Z is the interaction of referenced objects.

As seen in Iigure 4.4, the hash value of O, is the same in all shared web pages
at the registry level (hashing measurement

Hash(01 € Wpl) = Hash(01 € WPQ) = Hash(01 S WPg)

Merkle (119) proposed a tree scheme of digital signatures. This scheme pro-
vides a different message to be signed for each node in a tree. If two or more trees
reference the same object in a node then the signature of that node will be differ-
ent in each tree. Therefore, our strategy is different from Merkle’s in that shared
referenced objects have the same signature even though they belong to different
web pages. This could achieve fair balance between performance (minimising the
number of calculated signatures of each referenced object in the repositories of
web servers) and security. Theoretically, our new hashing strategy helps to in-
crease the hashing performance compared with the Merkle scheme which involves
the computation of the hash value for every web content attributed to a web page
even though it is the same web content but it is attributed to a different web page.

We have conducted a set of experimental studies to test our system which are

76

4.2 Web Content Verification and Recovery (WCVR) System

discussed in Chapter 6. We have found out that the new hashing strategy can
utilise the performance of WCVR system.

The tables of DBMS offline-transaction table only includes one hash value for
O:. In contrast, the existing approaches calculate unique hash value for every
referenced object-related to a web page in the target web site or web application.
This means the hash value of O; which belongs to WP, is not equal to the
hash value of Oy which belongs to WF,. Similarly, this applies for each shared
referenced object. Therefore, the proposed hashing strategy increases the hashing

performance.

Figure 4.4: Example of a web site with 3 web pages and 7 referenced objects

Those approaches, because of their redundancy (recalculating the hash value
of each referenced object even though it is shared) are more expensive and less
effective in terms of the signing (hashing calculations) process than our pro-
posed approach (93). Therefore, unlike traditional code-signing techniques, our

approach allows integration a web page with other pages.

4.2.5 Functional Overview

We propose the functionality steps of the suggested solution. Before the web

contents is published, the following steps are performed:

1. DBMS creates two tables to store additional details about the server-side

static and dynamic web contents as a secure history. Table one is an offline-

77

4.2 Web Content Verification and Recovery (WCVR) System

transaction table for mapping the hash values of static web contents to
their specific repositories of web servers and an online-transaction table for
mapping the hash value of dynamic web content to its name of dynamic
web page. Note that we have assumed that the DBMS transaction tables

remain a secure.

2. A publisher or web administrator retains the original backup of all web
content that have been developed for use in a secure manner for recovery
purposes. Note that this type of backup is conducted offline only for all
static web content, whereas we cannot make a backup for dynamic web
content because we cannot predict the generated dynamic web content that
relies on the user interaction. Therefore, online backup is managed by the

response hashing calculator component.

3. The web register component manages the hashing calculations for all static
web contents that have been developed in the repositories of target web
servers for use in the secure environment. In addition, the web register
sends the list of hashing values to the DBMS offline-transaction table for

storing.
When a client request arrives, the following steps are performed:

1. The integrity verifier (manager) component intercepts the HTTP request
(such as web page, audio, video, images, and others), checks it, analyses
it, extracts the hash value of the original copy of the static web content
from DBMS offine-transaction table, re-calculates the hash value of the
web content, and compares the two hash values for integrity verification
process. If they match, then the integrity of the requested web content is
valid; otherwise, the the requested web content has been tampered with.
The integrity verifier (manager) forwards the request to a web server if the
enforced web policy is satisfied. If it is not satisfied, the integrity veri-
fier sends the request to the recovery component to identify the tampering

problem and reports this attack to web administrator.

78

4.2 Web Content Verification and Recovery (WCVR) System

2. Once a web server application has processed the request, the response hash-
ing calculator component calculates the hash value of output response and
makes a backup for the output response. The hash value of the response
(dynamic web content) is appended to DBMS online-transaction table.

3. The response is intercepted by the integrity verifier component. The man-
ager analyses the response, extracts its original hash value (this value is
appended to the secured online-transaction table), re-calculates it and com-
pares the two hash values for integrity verification process. If they match,
then the integrity of the response is valid; otherwise, the response has been
tampered with. Therefore, if it is not valid, the manager sends the response
to the recovery component to identify the tampering problem and reports

this to the web administrator.

4. The integrity verifier component forwards the correct response to the target

client.

4.2.6 Security Framework Components
4.2.6.1 Web Register Component

Web register component manages the hashing measurements (calculations) for
all static web contents that have been developed in the repositories of target
web servers for use in the secure web environment. In addition, the web register
sends the list of hashing values (checksums) to DBMS offline-transaction table for
storing and maintaining. Note that modifications to the DBMS offline-transaction
table are not permissible as that would enable an adversary to hide integrity-

relevant actions.

If any static web content undergoes any add-ons (new modifications that are
added to the original web content (93)), it is released. The updated web content
must be regenerated by producing a new hash value. In addition, web register
sends the list of hashing values to DBMS offline-transaction table for storing.

Therefore, the web register component monitors all static web contents for any

79

4.2 Web Content Verification and Recovery (WCVR) System

authorised change that occurs. This requires a new measurement for every web
content that is legally updated. The hashing calculation process in a web register

component can take place where one of three conditions is satisfied:

1. when a new static web content is developed for use.
2. when a used element is legally changed.

3. when the digital certificate of a used element has expired.

On each modification, the DBMS obtains a checksum and computes a cryp-
tographically strong one-way hash SHA-1 function of the (new) data of a web
resource. However, some web developers may not take into account the digi-
tal certificate expiration of (used) published elements because they rely on web
browsers and operating system settings. Therefore, an adversary can replace an
original element with an expired original element to evade the web content of
a web server or client machine (7; 12). To counteract this risk, we compute
the checksum using SHA-1 hashing function in concatenation with private key,
transaction id, issue date, expiration time and IP address, as shown in Figure
4.6.

To utilise the performance of a web register component, this component uses a
new hashing strategy to describe how to do hashing calculations for the referenced
objects that shared among the web pages of the target web site or the web
application. This strategy applies for all web referenced objects that have been
developed before use over the secure HT'TP request-response model. For example,
it is important to register a page code when there is any change, either in the
viewed content, the structure of the web page or both. This is because this change

causes a change in the presentation of the web page.

As regards the Notations 4.2-4.4, the process of this registration technique
applies to the referenced objects and code of requested pages. Therefore, we
have developed an algorithm (see Figure 4.5) that describes the functions and

steps required to register a web content. The proposed algorithm can be applied

80

4.2 Web Content Verification and Recovery (WCVR) System

to all referenced objects and any page code regardless of the type of client or

server-scripting language, and size of page code.

The algorithm in Figure 4.5 consists of steps and functions to perform hashing
calculations and storage in the DBMS offline-transaction table. As shown in lines

1-7, we present the inputs of this algorithm:

1. element set £;: each element is a web content and the element set contains
three description items including identification number (ID), hash value
of element (element HashV alue) and element path on the repositories of a

web server (elementName).

2. secret key SK: where secret key is used to sign the registered web content
element. The secret key can be distributed from secure certificate authority
or it results from some mathematical equation that is conducted on the
web content element. In this thesis, the secret key relies on the web content
element and on other factors such as the time factor, which specifies the

expiry of a secret key to identify tampering attacks.

81

4.2 Web Content Verification and Recovery (WCVR) System

1: algorithm registeredElement(E; € WS, SK € CharacterSet) return

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

element Recordset

E : Elementset /* E = {E | 0 < 1 < =n}E
(ID, element HashV alue, element Name)*/
ID : LongIntegerSet /* ldentification number*/
elementContentBuf fer : CharacterSet /* element content */
elementHashV alue : CharacterSet /* Element Hash Value*/
elementName : CharacterSet /*Path of Element on a web server*/
E—0
foreach F; ¢ WS do

elementContent Buf fer « extractElementContent(£;)

J* extractElementContent(elementName) extracts the content of £;*/

if (not Register(elementName) or Changed(elementName)) then

elementHashV alue — Sign(elementContent Buf fer element Name)

Path «— extractPath(E;)
backup Copy(elementContent Buf fer,element Name,Path)
E; — E; U(ID,elementHashV alue, element N ame)
end if
end for
DB € DatabaseSet
/*To store the code details in DBMS offline-transaction table*/
DB «-connectDatabase()
element Recordset « ()
foreach E;, ¢ WS do
element Recordset «— element Recordset U Put(E)
end for

Output(element Recordset)

26: end algorithm

Figure 4.5: Algorithm of registration static phase for web contents

82

4.2 Web Content Verification and Recovery (WCVR) System

We have also developed two basic functions that are invoked for the registra-

tion algorithm (see Lines 8-16):

1. extract ElementContent(element Name) function to extract streaming con-
tent element in web site W.S set. Figure 4.7 includes an algorithm which

describes how to extract content element.

2. Sign(elementContentBuf fer, element Name) function to calculate the hash
value and extract digitally unique fingerprint for this element, as illustrated
in Figure 4.8. In this thesis, a Message Authentication Code (MAC) has
been used in our secure web environment to ensure the data integrity. MAC
is used to compute the checksum of a web content in the repositories of web
server. We compute a MAC using one-way hash functions (SHA-1) and a
changeable secret key SK to create a special fingerprint for web content.
The function in Figure 4.6 shows how to compute the MAC value using
SHA-1 hash function.

MAC= SHA-1 ("secret key" +SHA-1 ("Transaction ID" + "issue date" +
"expiration time" + "IP address" + "secret key")).

(Combined all transaction fields to private key and then hashed).

Figure 4.6: Production of MAC value

In line 14, the backup process has been established by backupCopy. This
function makes a backup of the data files to a directory, disk or computer across
the network. Web register component then monitors the source files and keeps
the backup updated with new or changed files. It runs in the background with

no user interaction.

Finally, as shown in lines 16- 24 in Figure 4.5, the results are stored in DBMS
offline-transaction table using Put(F;) function. Table 4.1 shows a sample of
expected results for the registered element in element Recocdset. The schema of
this elementeRecordset contains four elements: IDx (I D is the primary key of

this schema), element HashV alue, and elementName.

83

4.2 Web Content Verification and Recovery (WCVR) System

1. Input(elementName € CharacterSet)
2: function extractElementContent(Input) return content Buf fer
3. contentBuf fer € CharacterSet
binaryBuf fer € CharacterSet
connect FileInput Stream
foreach binaryBuf fer € E; do
contentBuf fer < content Buf fer UreadBinary(binaryBuf fer)

/*readBinary(binaryBuffer): is a function to read the content of element
in binary format */

9: end for

10: Output(contentBuf fer)

11: end function

Figure 4.7: Extracting of content element for hashing calculation

Input(elementContent Buf fer € CharacterSet,key € CharacterSet)
function Sign(Input) return hashValue
hashValue € CharacterSet
hashValue — MAC(SHA — 1, Key, elementContent Buf fer)
// MAC is Message Authentication Code function which use hash function
(SHA-1)
6: // To produce an unique hash value
7. Output(hashValue)

8: end function

Figure 4.8: Producing hash value using SHA-1 hash function and private key
(MAC technology)

84

4.2 Web Content Verification and Recovery (WCVR) System

Table 4

1332

.1: Expected results in the DBMS offline-transaction table.

EO526E

25619C866BEEEGA195A2B41A71236DD9158 F:\ShoppingCart\defaultroot\arrow_rm.cur
D5D4A

333

1937E

DE78CF892345444F 0BEDO56A2F FA20665342 F\ShoppingCart\defaultroot\Cartjsp

334

C5AB00CBD0515C3199D0250B3A4202AEB22 ’5 F:AShoppingCart\defaultrooticookie.js
E9C2D]

335

BASEBC53317BD4A6E684F63F8CEQ7EG3ECS ' F:\ShoppingCart\defaultroot\CookieformBean.

|A1659 class

7336

1479BBA3E9A97F2C0544F 8DBA34B5AD6446 |F\ShoppingCartidefaultrootiCopy of stuff.js
B20DD

337

6720DD40EC32AA46BB7A24F022AC9A77AFS F\ShoppingCart\defaultroot\Copy of
4024D ThankYou.jsp

- 338

88202B9818COABEGCI98A5437BEE467008EF F:\ShoppingCart\defauitroot\fpdbform.inc
F77E0

339

8751D4DAF5939E807FFF93769CB827CES5369 F:\ShoppingCart\defaultrootifrm_inevrit.png
53AD :

340

176984926A7808D2A6C38F 3F 1DBBAGEE2818 F\ShoppingCartidefaultrootimages\books. gif .
1CBS]

341

ECOF58F638BCF42DFE7066B94B8CC9109C9 F:\ShoppingCart\defaultrootiimages\dollar.gif ‘
A5997

“3i5

807FC2A1BOF280E60A1AES11812376AF2A1C F:\ShoppingCart\defaultrootimages\greenpap
F954 -er.gif

343

653836D6DEA43191EES2F7D4882554C9D493 F:\ShoppingCart\defaultroofiimages\iarrow. gif
ABF4

344

BBD863C902184F1D04D6317DA451C1AAS74 F:\ShoppingCart\defaultroot\images\rarrow.gif
01A2E i

345

D510D5D5E6812962625CD363DFD4FC85847 (F:\ShoppingCart\defaultrootiimages\Thumbs. :
TAT75 db

346

A389151D2DF6DFE1A764BB4C4ECBB887296 F\ShoppingCartidefaultrootiPurchase jsp
DAB5A |

347

BBBE71E3635BF BF0333604F72F316E44A76A F\ShoppingCartidefaultrootirmic.exe

{948C

85

4.2 Web Content Verification and Recovery (WCVR) System

4.2.6.2 Integrity Verifier Component

The integrity verification aims to detect the alterations in the verification data,
which should be significantly much smaller than the multimedia data, can be
stored in secure DBMS tables.

The integrity verifier component (manager) is positioned between the client
machines and the target web server. This component manages the HTTP requests
and responses via a state protocol that enforces a number of web policies that
apply to the elements of the web-based system. The web policy specifies the next
action or decision to be taken whether the request or response is valid or not and
when the policy should be enforced. This component executes a state protocol

to dynamically generate a collection of enforced web policies.

The integrity verifier component launches an online state protocol to enforce
a set of web polices, as shown in Figure 4.9. The web policy specifies the next
action or decision to be taken whether the request or response is valid or not and
when the policy should be enforced. In this thesis, we have four web polices as

follows:
e request availability policy (policy 1): is used when the requested resource
is available at the repositories of target web server(s).

e integrity failure policy (policy 2): is used when a tampering attack is de-

tected during integrity verification process.

e integrity passing policy (policy 3): is used when the web content has not

been tampered with.
e recovery policy (policy 4): is used when the tampered web content has been
recovered.
Note that the outputs of web servers, as well as requests are examined in our
integrity verification process, as shown in Figure 4.9.

As an integrity check, this state protocol is similar to adaptive intrusion-

tolerant server systems (110). Figure 4.9 shows the finite automata of the state

86

4.2 Web Content Verification and Recovery (WCVR) System

protocol that contains a number of steps to generate the enforced web policies.

The manager comprises the following stages when enforcing the correct web pol-
icy.

Invalid Request

Identify
Suspicious
Static Web
Content

Forward
Request to
Web Server

Request

Invalid
Tampering ldentified

Element
Recovery

Calculate
Hash Value for
Response

Invalid

Tampering Identified
invalid

Send
Response to
Client

Identify
Suspicious

Forward
Response to
Manager

Valid
Content

Figure 4.9: The finite automata of state protocol

We have proposed two levels of integrity verification:

1. The integrity verification at the request level for verifying a static web
content.

2. The integrity verification at the request level for verifying a dynamic web
content.

The integrity verification at the request level has two phases where each phase
has a number of tasks.

1. The integrity verifier (manager) component intercepts the HTTP request.
Function extractRequestedResource() in Figure 4.10 illustrates how to ex-

tract the requested resource SP, based on the derived Definition (4.1). For

87

4.2 Web Content Verification and Recovery (WCVR) System

example, in a web form, we extract the path of a requested resource from

the Action attribute.

. At this point, the state protocol enforces the request availability policy
which is used when the requested resource is available at the repositories
resources. Figure 4.12 illustrates how to check whether or not the requested
resource SP is available at the repositories of web servers. If this policy
is satisfied, the integrity verifier passes to integrity verification process.
Otherwise, the integrity verifier sends back a message to target user that

this requested resource does not exist.

. The next web policy is the integrity failure policy (policy 2) which is used
when a tampering attack is detected during the integrity verification pro-

cess. The verification process contains the following steps:

(a) re-calculating the hash value of a requested resource SP. The following
algorithm in Figure 4.7 shows how to extract the content of SP and
then sign computationally the content of SP to retrieve an unique

checksum, as shown in Sign function in Figure 4.8.

(b) extracting the hash value of the original copy of the static web content
from DBMS offline-transaction table.
The function extractRegisteredHashValue in Figure 4.11 illustrates how
to extract a checksum of registered content element from DBMS offline-
transaction table. Line 12 outputs original HashV alue, which speci-

fies a a checksum of registered element.

(c) comparing the two hash values for integrity verification process. If they
match (policy 3 is satisfied) then the integrity of the requested web
content is valid and the integrity verifier then forwards the request to a
web server. Otherwise, the requested web content has been tampered
with (policy 2 is satisfied) and the integrity verifier then sends the
request to the recovery component to identify the tampering problem
and reports this attack to a web administrator. The function shown
in Figure 4.13 illustrates a comparison of two elements to produce the

correct, policy.

88

4.2 Web Content Verification and Recovery (WCVR) System

1: Input(/; € I)/*1 is the interaction element*/

2: function extractRequested Resource(Input) return requestedPath
3: requestedPath € CharacterSet

4 I; < (IT,SP,D,T,U)

5. requestedPath «— I;(SP)

6: Output(requtestedPath)
7

- end function

Figure 4.10: Extraction of SP path

. Input(requested Element € CharacterSet)

. function extractRegistered Hash Value(Input) return original HashV alue
ortginal HashV alue € CharacterSet
original HashValue — @

1

2

3

4

5. DB « connectDatabase
6: foreach record € Recordset do

7 if (requestedElement € recordset) then

8 original HashV alue < record(element HashV alue)
9 Exit loop

10: end if

11: end for

12: Output(original HashV alue)

13: end function

Figure 4.11: Extraction of original hash value

89

4.2 Web Content Verification and Recovery (WCVR) System

1: Input(requestedPath € CharacterSet)
2: function extractrequest Availability Policy(Input) return
request Availability Policy
request Availability Policy € CharacterSet
foreach WP, ¢ WS do
if (requestedPath € W P;) then
request Availability Policy «— “Valid”
Exit Loop

else

request Availability Policy <+ “Invalid”
10: end if

11: end for

12: Output(request Availability Policy)

13: end function

Figure 4.12: Enforcing request availability policy

1. Input(requestedHV € CharacterSet,original HV € CharacterSet)
2. function matchHV(Input) return integrity Request
3. ntegrityRequest € CharacterSet
if (requestedHV = original HV') then
integrity Request «— integrity PassingPolicy
else
integrity Request «— integrityFailure Policy
end if
9: Output(integrityRequest)

10: end function

Figure 4.13: This function compares between the original checksum and the re-

calculated checksum for integrity verification of static web content

90

4.2 Web Content Verification and Recovery (WCVR) System

To minimize the performance overhead for hashing calculations at the request
level, we eliminate future measurement computations as long as the web content
has not been altered. The process of our integrity verification (including the
hashing calculations) is based on the principle of HTTP request-response model
which declares the statelessness of HI'TP (each client request results in a new
connection between a web browser and a web server). In other words, our integrity
verification takes into account how the HT'TP requests are processed where each
explicit or implicit request is served separately. To analyse this, Figure 4.14
takes for example which is presented in Figure 4.4. This Figure illustrates how

the hashing calculation in our system works.

We use the RFC of HTTP protocol (44). Therefore, there is no waiting to
calculate the hash values for referenced objects of requested page. Each implicit
or explicit request has been verified separately and then it sends to a web browser
without waiting other objects of the target web page. As a result the performance
overhead of integrity verification process is minimised. In contrast, existing sys-
tems such as DSSA identifies waiting to calculate the final hash value for the
requested web page and all their referenced objects for integrity verification pur-

poses.

91

4.2 Web Content Verification and Recovery (WCVR) System

Start

g

Request WP, (This is an explicit request

.| Request O; of WP, { This is an implicit

by user) request by web browser }
3 <
Calculate hash value of Calculate hash value of
WP, content O3 of WPy
4
Response the output HTML
of WP, Response O3 of WP
Request O4 of WPy (This is an implicit End

request by web browser)

Calculate hash value of
O of WP4

i

Response O of WPy

Request O, of WP, { This is an implicit
request by web browser)

k4

Calculate hash value of
0, of WP,

Response O, of WP,

Figure 4.14: The process of the hashing calculation in our WCVR system

92

4.2 Web Content Verification and Recovery (WCVR) System

4.2.6.3 Response Hashing Calculator

A response hashing calculator is an extension to the web server application. When
the web server application processes a request, response hashing calculator is
invoked. Once the response hashing calculator is invoked, it makes a backup for
each output response if a web resource is a server-side dynamic page. In addition
this component calculates the hash value of an output response before sending it
back to the manager. The hash value of the response (dynamic web content) is

appended to DBMS online-transaction table.

If policy 4 is satisfied, a response is sent back to the client. The following
algorithm in figure 4.15 shows how to extract the content element of a responded

web page. This algorithm takes place after processing a request on a web server.

In line 15, the backup process has been established by onlineBackupCopy.
This function offers an online backup of HTTP generated responses to a directory,
disk or computer across the network. The backup function helps to protect data
by restoring files on the designated directories of the web server. In this way, if
the server-side web content crashes or is infected by a malicious application that

results in loss of data, access to data on the backup disks is still possible.

Table 4.2 shows a sample of expected results for the registered response
in a responseRecordset. The schema of this responseRecordset contains four
elements: IDx (ID is the primary key of this schema), responseName, and

responseHashV alue.

Table 4.2: Expected result in the response table

| /StartHere.jsp A337E22716EEF3D503192A07743E4B484189CEFE
467/Store.jsp G8OEBEB9373FEB4313634F5E7932146D5SEC94B4E
468|/Cart.jsp?num=2&count=6 [1920D455AFE02BE62487757AB6054E339A364775
469 /Purchase,jsbﬂ 7ABF34DD52A4B6C21099D8A114710446F344D7CC
i 470)/Cart. jsp?num=4&count=6 {1920D455AFE02BE62487757AB6054E339A435677
|_471{ThankYou jsp 14487CA7216AF5021E195C7BB48943DB42895B527

93

4.2 Web Content Verification and Recovery (WCVR) System

1: algorithm registeredResponse(response € CharacterSet, SK €

10:
11
12:
13:
14:
15:
16:
17
18:
19:
20:
21
22:
23:
24:

CharacterSet) return responseRecordset

R : Responseset /* R = {R, | 0 < 4 < n},R =
(ID, responseHashV alue, response Name)* /
ID : LongIntegerSet /* Identification number*/
responseContent Buf fer : CharacterSet /* response content */
responseHashV alue : CharacterSet /* Response Hash Value*/
responseName : CharacterSet /* Response Name*/
R0
foreach R, € WS do
responseContent Buf fer «— extractElementContent(R;)
Check type of responseContentBuf fer
/* extractElementContent(responseName) extracts the content of R;*/
response HashV alue « Sign(responseContent Buf fer responseName)
responseName «— extractResponseName(R;)
R, — R; U (ID,responseHashV alue, response Name)
onlineBackupCopy(responseContent Buf fer ,response Name)
end for
DB € DatabaseSet
/*To store the response details in DBMS online-transaction table*/
DB «—connectDatabase()
response Recordset «— ()
foreach R, ¢ WS do
responseRecordset « responseRecordset U Put(R;)
end for

Output(response Recordset)

25: end algorithm

Figure 4.15: Algorithm of response registration

94

4.2 Web Content Verification and Recovery (WCVR) System

4.2.6.4 Integrity Verifier Component at the Response Level

The response is intercepted by the integrity verifier component. The manager
analyses the response, extracts its original hash value original HV (this value is
appended to the secured online-transaction table), re-calculates its response HV ,
and compares the two hash values in the integrity verification process (see Figure
4.16). If they match, then the integrity of the response is satisfied; otherwise, the
response has been tampered with. Therefore, if policy 2 is satisfied, the manager
sends the response to the recovery component to identify the tampering problem

and reports this to the web administrator.

The integrity verifier component forwards the correct response to the target

client if the policy 3 is satisfied.

1: Input(response HV € CharacterSet,original HV € CharacterSet)
2: function matchResponseH V(Input) return integrity Response
3. integrityResponse € CharacterSet
if (responseHV = original HV') then
integrity Response «— integrity Passing Policy

wmtegrityResponse « integrity Failure Policy”

end if

4
5
6: else
7
8:
9. Output(integrity Response)

10: end function

Figure 4.16: This function compares between the original checksum and the re-

calculated checksum for integrity verification of dynamic web content

95

4.2 Web Content Verification and Recovery (WCVR) System

4.2.6.5 Recovery Component

The Recovery component recovers the tampered web content if the action of
the enforced web policy 2 from the integrity verifier is satisfied. If the integrity
verification check fails, it is sent to the recovery component, which tries to extract
the original web content that is known to be safe. Once it is determined that
the web content has since been modified in an unauthorised manner, the system
will try to recover the original web content, put it in a new assembly and discard
the tampered web content. When the new assembly is generated, the recovered
assembly is sent to its direction, which accesses the functionality it needs and

execution continues as normal.

In this thesis, it is important to back up of the data. The backing up of
data is the ability to recover that same data and recover it in a timely state to
keep a service up and running. It should be noted that each backup copy (at
the request and response levels) has unique name for searching purposes. In the
case of static content, the web register component makes a backup copy for every
static content that has been registered (i.e. register a backup copy in the offline-
transaction table by generating a new assembly of hash value). This backup copy

stores in the secure server backup for recovery purposes.

In the case of dynamic content, the response hashing calculator makes a
backup copy for every generated web content on the fly before it is served to
a client. This backup copy stores in the secure server backup for recovery pur-
poses. In addition, the generated web content is hashed and the hash value stores
in the DBMS online-transaction database (i.e. registering a backup copy in the

online-transaction table by generating a new assembly of hash value).

The steps of recovery process for a web content are as follows:

1. If the detection of altered web content happens at the request level,

(a) get backupCopy (Extract request details, get the request name, search
using the unique name in the secure server backup) as as shown in line
14 - Figure 4.5;

96

4.3 Threat Model

(b) verify backupCopy from tampering (by the integrity verification pro-

cess as shown in Section 4.2.6.2)
(c) forward backupCopy to a web server; and

(d) store backupCopy in the web server root.
2. If the detection of altered web content happens at the response level,

(a) get onlineBackupCopy (Extract response details, get the response name,
search using the unique name in the secure server backup) as shown

in line 15 - Figure 4.15;

(b) verify onlineBackupCopy from tampering (by the integrity verification

process as shown in Section 4.2.6.2); and

(c) forward onlineBackupCopy to a client.
3. Discard the tampered web content.

4. Generate a log file (This file contains details such as the request information;
the response information; the original hash value; the re-calculated hash
value; the state of database; the state of verification process; and the state

of the recovery process).

4.3 Threat Model

We have supposed that all network communication is performed through secure
protocols such as SSL, as shown in Section 3.4.1. An adversary can penetrate the
web system in many forms (120; 121). An insider adversary who gains physical
access to a web server is able to to destroy any type of static content in the
root of a web server. It is not only physical access to a server that can corrupt
a web system. A malicious web content manipulation software can penetrate
a server machine and once located on the server such malicious software can
monitor, intercept, and tamper online transactions in a trusted organisation.
The result typically allows the adversary full root access to server data and web

server application. Once such access has been established, the integrity of any

97

4.3 Threat Model

data or software on a server is in question: the source code of web applications
and web sites, the data in the database and the log files could all have been
tampered with. It should be noted that the information of hash values and other
details are stored in secure DBMS tables and to remain secure and unaltered (see
Section 4.2.6.1).

Even though adversaries gain access to static or dynamic web content, and
they change the data of particular web content, they cannot manipulate the hash
value (checksum) which is stored in secure DBMS tables so the web content
remains valid. This is because the WCVR system uses a cryptography hash
function where the hash function is one-way (only forward) (86; 87; 122). Note
this can hold even when adversary has access to the hash function itself and the
hash value of original web content which is assumed to be stored in secure DBMS
tables. The adversary can instead compute a new hash value for the altered web
content but that hash value will not match the one that was requested. Therefore,
the proposed recovery component in WCVR system sends the original requested

web content to a client.

As an integrity check, the proposed state protocol is similar to adaptive
intrusion-tolerant server system (110). For each web resource whose integrity
is to be checked, a checksum (hash value) is computed from a private key. To
resist possible guesses by an adversary, the checksum is computed by applying
a one-way SHA-1 hash function to the concatenation of the private key and the
content to be checked. The resulting checksum is then compared with a pre-
computed one. This is sufficient to check if a web content has been tampered

with.

However, we must also consider the possibility that an adversary with com-
plete control of a web server modifies the web server application to return a correct
response for a web content incorrectly modified. In particular, if the private key
is always the same, it is easy for the adversary to pre-compute all responses, store
the results in a hidden part of the memory and then modify the web content. An
adversary would then be able to return correct responses for incorrect web con-

tent. Mihgak et al. (123) describe that using the same secret key for a number

98

4.4 Conceptual Comparison

of different items such as audio items may compromise security since each item

may leak partial information about the hash value.

Therefore, we could guarantee the freshness of the request and response com-
putations by using a changeable private key. The integrity verifier component
could check that each response corresponds to the specified private key by keep-
ing a local copy of all sensitive files and running the same computation as the
server but this imposes an extra administrative and computational load on the

manager.

In this thesis, we compute a SHA-1 hash with changeable private key over
the complete contents of the web resources. The resulting 160 bit hash value un-
ambiguously identifies the resource’s contents. Different resource types, versions

and extensions can be distinguished by their unique checksums.

4.4 Conceptual Comparison

In order to address the limitations and weakness of the existing approaches, the

proposed WCVR system needs to consider the following:

1. To ensure the integrity of a static web content against unauthorised tam-
pering. The WCVR system should be able to detect all kinds of tampering
problems such as defacement of web page and reference objects and visual

spoofing attacks at the request level.

2. To ensure the integrity of a dynamic web content against unauthorised tam-
pering. The WCVR system should be able to detect all kinds of tampering

problems at the response level.

3. To provide a recovery component that should be able to recover any altered
static and dynamic web content. Therefore, the survivability of web content

can be achieved.

In addition, the WCVR system shows a number of advantages over other

approaches:

99

4.4 Conceptual Comparison

. Unlike adaptive intrusion-tolerant server architecture, the WCVR architec-
ture is not complex. The WCVR architecture does not involve redundant

servers running on diverse operating systems and various operating systems.

. Unlike the performance of Dynamic Security Surveillance Agent (DSSA)
and adaptive intrusion-tolerant server system, the WCVR increases the
end-of-end performance by utilising a model for hashing strategy that could

minimise the latency for online verification.

. Unlike other existing approaches, the WCVR system does not require mod-
ifications to existing web application architectures. It does not also require
any additional changes on the client and server and it is compatible with

all major web browsers.

. Unlike all existing approaches, the WCVR system would be able to analyse
the code at the request and response level. This analysis will be able to
verify the integrity of dynamic web content. Therefore, the WCVR system
would not be a blind system that is unable to understand the HT'TP request

and response across a network.

. Unlike all existing approaches, the WVCR system would also verify the

dynamic web server content as well as the static web content.

. Unlike all existing approaches such as DSSA, the WCVR system supports
a recovery component to recover only the altered web content so it does not
need to recover the whole generated static and dynamic web content for a

requested web page.

. Our proposed system does not rely on a database of known tampering

attacks.

. Unlike client-side encryption approach and application-level gateway ap-
proach, the WCVR system supports DBMS tables to store and maintain
for every details about web content instead of adding the hash value be-
tween the tags (such as Meta tag) of HTML or XML response, and as result,

the malicious web content software could intercept and analyse to obtain

100

4.4 Conceptual Comparison

the original hash value from the output response so it is easy to evade the

web system by tampering the original hash value of web content.
Furthermore, it should be noted:

1. The WCVR system does not validate the user information either on the
client or server because we would use the form validation scheme to validate
the user information. Therefore, we recommend that the validation modules
to be operated on the client and server because if the client validation

modules is subverted and the server validation modules are still in work.

2. As described above, ensuring the integrity of user information is not suffi-
cient to ensure survivability of the whole web system. Therefore, WCVR
system would also use the SSL protocol, form validation modules and fire-

walls.

There is always a tradeoff between the security and performance. We focus on
the integrity check on the original element to detect malicious codes added in an
unauthorised manner. The proposed WCVR system could detect the page code
and every referenced object on the designated directories of web server and web
content that is generated on the fly against tampering problems. The attackers
are interested in targeting the referenced objects and page code on the fly. For

example:

e [t is possible to replace any original image by another image that contains
malicious code where a victim requests the altered image and then it can

destroy a web server or client machine.

e For example, it is possible to create a Java utility that can listen, intercept,
monitor and capture both client request and server response this because
communication channel between a client and a web server is conducted with

streams and sockets (124).

101

4.5 Conclusion

e The Cascading Style Sheet (CSS) object is threatened through a visualisa-
tion spoofing attack. The strategy of this attack is to change any important
information that is identified by a particular colour to another colour. The
objective is to manipulate the user into making a decision that is based on

incorrect information.
WCVR automatically checks for the following vulnerabilities:

e visualisation spoofing attack.

e textual spoofing attack.

e web application verify.

e tampering code manipulation (source code, path, and link).

e tampering object manipulation(audio, images, video, and other referenced

objects).

e defacement of the web page.

4.5 Conclusion

The current solutions are not sufficient for ensuring the survivability of server-
side static and dynamic web content. For instance, the SSL protocol is unable
to ensure the data integrity at the ends of web system (such as web browser and
web server) (125). In addition, the current technologies such as input validation
schemes, firewalls, cryptography and access control are not capable of verifying
the integrity of web content before a request or response enters the secure com-

munication channel because a malicious code can be installed behind firewalls.

In an attempt to overcome the research problem, we have proposed a novel
survivable system that could provide continued and correct services to internal
and external users, even though a web data manipulation problem may have

occurred. The proposed framework includes a new state protocol to enforce a

102

4.5 Conclusion

set of web policies, and a supporting software system to verify server-side static
and dynamic web content before the client receives the requested page. This
approach would add confidence in terms of users correctly accessing web services

and displaying electronic materials on their web browsers.

We have also compared our WCVR system to prior and related work. In this
thesis we have described how our proposed system can continue to function in

case of an attack on a web content it is trying to use.

In the next chapter, we present the implementation of WCVR system and its
proposed mechanisms. The tools used in creating the prototype are discussed and
the architecture of the prototype are depicted. In addition, chapter 5 will describe
the experimental design and pilot study. Thus, we design five experiments to meet

the security and performance objectives.

103

Chapter 5

Implementation of WCVR
System and Initial Testing

Chapter 4 has described the design of WCVR system for investigating survivabil-
ity of server-side static and dynamic web content against tampering attacks. The
WCVR system has been constructed from a web policy framework of a number of
components, the client interaction elements model, the new hashing strategy and
work assumptions. In addition, chapter 4 has explained the steps of the proposed
state protocol to enforce the appropriate web policy at the response and request
levels. Furthermore, we have compared the WCVR system with other existing

systems, approaches and protocols.

In this chapter, we will describe the implementation of our proposed system.
The WCVR system is implemented in Java, Servlets and Filters. The DBMS
Microsoft Access 2007 Database is selected as the repository for storing and re-
trieving details about static and dynamic web contents. In order to demonstrate
that our WCVR system is able to ensure the survivability of server-side web
content against tampering, we have undertaken some experimental testing. For
experimental design, we have used a local network of two HP server machines:
web server and database server, two routers, two switches and four client ma-
chines. The web servers used are Apache 1.3.20 running on MS Windows Server

2003, Microsoft IIS 6.0 running on MS Windows Server 2003 and Apache Tomcat

104

5.1 Tools used for the Implementation

5.01 on MS Windows Server 2003.

Section 5.1 will describe the tools used for the implementation of WCVR pro-
totype. Section 5.2 will illustrate a high level architectural design showing the
main components and modules of the prototype. In addition, it will describe com-
ponents of the main modules of the prototype and explain how the components
work and communicate with each other. In Section 5.3, we will define a testing
strategy to evaluate the WCVR system to meet the security and performance

objectives. Section 5.4 will discuss the pilot study in some detail.

We will show with an implementation and a pilot study, that the overhead for
verification and recovery process are relatively low and that the WCVR system
can efficiently and correctly determine if the server-side static and/or dynamic
web content has been compromised. Section 5.5 will offer conclusions on the

implementation of WCVR system, testing strategy and results of a pilot study:.

5.1 Tools used for the Implementation

A number of tools are involved with the implementation of the WCVR prototype
as follows: Java, Servlets and Filters. The reasons for choosing these tools are

given below.

5.1.1 Programming Languages for Implementing the Pro-

totype
5.1.1.1 Java

Currently, several programming languages are used, we have selected Java to

implement the prototype of our WCVR system since (see Section 2.3.4):
e Java is a platform independent and several benchmarks (78) has shown

that Java has acceptable performance compared with other programming
languages such as C and C++ (126).

105

5.1 Tools used for the Implementation

e Java was designed to work in a network-computing environment (see Section
2.3.4).

e Java supports the code signing using JDK 1.1 for securing the integrity of
Java Applets (24; 27).

e Java includes Java Virtual Machine (JVM) platform to provide a trusted
environment for running the Applets, which are embedded in a web page.

However, JVM cannot secure a web page against a malicious Applet (20).

e Java supports multi-threaded applications!.

5.1.1.2 Servlets

We have used Servlets in our implementation. Servlets can be written in some
programming languages such as Java, and C#. In this thesis, a Servlet is a Java
program that runs on a web server. We have chosen the Servlets in Java for the

following reasons:

e Java supports a Servlet application that works over a web system. Servlet
is used to generate dynamic web pages on demand (each time, the page is

requested) (27).

e The Java Servlets includes HTTPservlet class that manages the multiple
requests. This feature solves the sessionless HTTP drawback (28). There-
fore Servlet is developed instead of CGI for better scalability and security
(36; 38).

e Java Servlets is a standard extension to the Java platform for writing reliable

and portable web applications (40; 127).

e Along came Java Server Pages (JSPs) introducing an easier way to generate
HTML (127).

Multi-threaded applications allows different parts of a application to run concurrently.
Further details can be found in www.intel.com/products/glossary/body.htm.

106

5.1 Tools used for the Implementation

5.1.1.3 Java Filters

The Servlet 2.3 Application Program Interface (API?), now a proposed final draft,
has been released and it brings with it another powerful feature called Filters.

The Filters are implemented by Servlet containers (127).

Java Filters permit a declarative pre- and post-processing of requests and
responses handled by web resources such as Servlets, JSP, HTML files and even
other Filters in a web application (127). Where declarative means the Filter can
be applied in a deployment descriptor of a web application or applied in a web
adminstration tool rather than programmatically in a Servlet or JSP. Figure 5.1
show how the Java Filters which positioned between the requested recourses to

monitor, and intercept each request and response for various purposes.

Filter

) request g

i
! I

| response|
|
|

Forward |- 001 4
finclude |7

o Web
Resource

Figure 5.1: Filter Process
Java Filters have several capabilities as follows (127):

e They are able to intercept requests to one or more web resources to perform

some actions,
e Modify the request header, and

e Pass a request to the next Filter in the chain or to the requested resource

such as a server application or a web browser.

2A set of calling conventions defining how a service is invoked through a software package.
Further details can be found in www.epcc.ed.ac.uk/other-information/glossary/.

107

5.2 Architecture Design of the Prototype

e They are also able to intercept the response, perform some action, modify
the response, pass it on and block it. In this thesis, we have used the
Java Filters for this beneficial capability in implementing response hashing

mechanism.
Other potential capabilities of Filters include (127):

e Authentication - if not logged in, Filters are directed to a login page.
e Logging - logs the URL and request parameters and/or all HTML output.

e Content screening - checks for disallowed content in request parameter’s
values and/or response output. The request or response could be blocked

or the malicious content could be deleted.

e Browser cache blocking - prevents pages from being cached in the browser
by modifying the settings of response headers or adding the appropriate
HTML.

e Compression or encryption - response can be compressed or encrypted.

5.2 Architecture Design of the Prototype

The WCVR prototype consists of three mechanisms: Web register, HT'TP inter-
face, and response hashing mechanism. The high level architectural flowchart in
Figure 5.2 depicts components of the main modules of the prototype and explains

how the components work and communicate with each other.

108

5.2 Architecture Design of the Prototype

- Reguest niot
found

Caleulste B e

Start

'

initiate Request

v

Intercept Request

:

Repositorias of Analyse Requast
Web Server Header
__/(-\ T
H
i
Web eques
Rﬁi?,i’m: in —— availability
Binary Type Check
Yes
kA
Calculate
Regource Analyse Request
Checksum Body
i T Yeos
|
¥
Send Checksum Calculate Request
Checksum
: !
DBMS Offling- | Extract Original
Tranzaction Checksum
Table i
4
[Integrity Check
Yos
Recovered No ®
Process Reguest by Web
Server Appfication
T
¥
Recovery
Component | -
!

e ¢
Checksum

}

Store Checksum =

\

Make Response
Backup

!

Intercept Response

}
i

¥

Analyse Response
Content

H
i

¥

Re-calculate
Responge Checksum

I

Extract Original

DBMS Online-

Transaction

Tablg

Response Checksum

¥

Integrity Chack

Yas
A

Send Response to Client

l

o3

overed

Figure 5.2: High level architectural flowchart of WCVR prototype

109

5.2 Architecture Design of the Prototype

5.2.1 Web Register Mechanism

The functionalities of the web register mechanism are summarized into the fol-

lowing:

e Reading in binary format for every static web content in the secure reposi-

tories.

e Calculating the hash value for every static web content using SHA-1 func-

tion.

e Requesting Microsoft Access DBMS to store details for every static web

content.

e Checking the modification status for every static web content, if modified,
recalculate the hash value with taking into account the new assembly of a

private key which is used in SHA-1 hashing function.

5.2.2 Response Hashing Mechanism

We have implemented the response hashing mechanism by Filters and Servlets
in Java. This mechanism aims to calculate the hash value of the output response
(dynamic web content) which is generated by server scripting language such as
JSP, ASP, PERL, and others, and to make online backup for the output response
(the produced dynamic web content) in a secure server repositories. The hash
value of dynamic content is stored in the DBMS online-transaction table for

integrity check before the client receives the requested page.

The main classes and interfaces that have used in the response hashing mech-

anism include:

1. Filter - the main interface to implement.

2. FilterChain - it passed to the Filter in its doFilter () method. It is used

to call the next Filter (or target resource) in the chain.

110

5.2 Architecture Design of the Prototype

3. FilterConfig - it passed to the Filter in its init () method. It is used to
retrieve Filter initialization parameters and to retrieve the ServletContext

object for the web application.

4. ServletResponseWrapper - generic wrapper allowing interception and mod-

ification of the response.

5. HttpServletResponseWrapper - HT'TP specific response wrapper.

When a Filter is loaded, the init () method is invoked. We have saved a ref-
erence to the FilterConfig object to retrieve an instance of the ServletContext
object. It could also have been specified as a Filter initialization parameter in
the deployment descriptor of web application (a listing of web.xml in Figure 5.3).
Once a Filiter is loaded and the init () method is invoked, the Filter can pro-

cess requests. Fach request that should be filtered calls the doFilter () method.

The doFilter() method first extracts the request object. This class only
handles HTTP requests, so the next step checks whether the request coming in is
an HTTP request by checking the type of the response object (HttpFilter inter-
face). In each check, it must also explicitly cast the response to an HttpServletRe
sponse type because the custom response wrapper in this class OutputCaptureRe
sponseWrapper extends HttpServletResponseWrapper, which wraps an HttpSer
vletResponse. An instance of OutputCaptureResponseWrapper is then created

so that it can be passed along in place of the regular response object.

In this FilterChain object, there is only one Filter that calls doFilter()
method so that the target web resource is invoked. The target resource emulates
producing dynamic content. This means it just forwards a request to a static

HTML file containing the target web content.

The OutputCaptureResponseWrapper class uses a custom ServletOutputStr
eam invoked ByteArrayServletOutputStream. These two classes allow the cap-

ture and retrieval of the response output.

Then, we have invoked the doFilter () method and have captured the content

produced by the resources, thus we can retrieve the content and calculate the hash

111

5.2 Architecture Design of the Prototype

value of this content by SHA-1. The buffer is flushed to make sure that all the
output as a String or byte array when it is retrieved. If the content type is

“text/html”, we will perform three actions:

1. online backup of the output response.
2. calculating the hash value of output response.

3. storing details (such as hash value) in a secure DBMS online-transaction
table.

Otherwise, it just lets the content pass through.

Wrapper classes are used when the Filter must modify what the request or
response returns. For example, in our OutputCaptureResponseWrapper, we have
needed to override the methods related to the OutputStream and Writer used
for outputting content. It should be noted that the getOutputStream() and
getWriter () methods have returned our custom classes (which captured output),
rather than the standard. The target resource can then be using our custom

OutputSream and Writer.

5.2.2.1 Deployment

To invoke the main Filter class in our response hashing prototype, we have needed
to deploy this through the deployment descriptor (web.xml) (128). Figure 5.3

shows a listing of the deployment descriptor (web.zml) for this Filter example.

The client’s web browser requests the URL as follows:
http : //192.168.10.1/test.html

And the Apache Tomcat web server looks up “192.168.10.1/test.html” using
configuration data provided in the web.xml file for this application, as shown
in Figure 5.3. Once a Filiter is loaded, the Filter can process requests. This

configuration data gives the complete package and class name.

112

5.2 Architecture Design of the Prototype

<?xml version="1.0" encoding="IS0-8859-1"7>
<t--

Copyright 2004 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the '"License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema~instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

version="2.4">

<display-name>Welcome to Tomcat</display-name>
<description>Welcome to Tomcat </description>

<!-- JSPC servlet mappings start -->

<filter>
<filter-name>responseHashingCalculator</filter-name>

<filter-class>shoppingcart.responseHashingCalculator</filter-class>

</filter>

<filter-mapping>
<filter-name>responseHashingCalculator</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

<!-- JSPC servlet mappings end —-->

</web~app>

Figure 5.3: The “web.xml” for Response Hashing Deployment.

113

5.2 Architecture Design of the Prototype

5.2.3 HTTP Interface Mechanism

The HTTP interface mechanism is the manager of the WCVR system based on
the integrity verifier component. This component launches a state protocol to
enforce the target web policy. The value of web policy determines the action(s)
that should be taken by the HT'TP interface mechanism. All the web policies have
been implemented in this mechanism. The goals of HTTP interface mechanisms

are:

Online verification of integrity of server-side static web content.

Online verification of integrity of server-side dynamic web content.

Online recovery of server-side static web content if the static web content

has been tampered with.

e Online recovery of server-side dynamic web content if the dynamic web

content has been tampered with.

The HTTP interface prototype takes advantage of the fact that web browser
requests are directed at both a specific host and a specific port. In this thesis, the
Apache Tomcat and Microsoft IIS web servers listen on port 8081. The HTTP
interface mechanism listens for browser requests on a default port 80 and redirects
to Tomcat and to IIS. Responses coming to this mechanism are both sent to the

client on port 80 and copied to a secure repository for recovery purposes.

In this thesis, we have developed a multi-threaded java application for han-
dling concurrent connections (requests in parallel) using multiple threads that
increase the power and flexibility of a web server and client programs signifi-

cantly.

The HTTP interface mechanism is a multi-threaded server application that
creates a new thread for every client request and another thread for every server
response because this mechanism aims to intercept, analyse and monitor every
request and response to investigate tampering attacks on server-side static and

dynamic web content. Each client has its own TCP connection to a web server

114

5.2 Architecture Design of the Prototype

for passing data back and forth. We have used the implementation of a version
1.0 of HTTP (44), where separate HTTP requests are sent for each web resource
in a web page. Therefore, the HTTP interface mechanism establishes a TCP
connection to a web server on a particular host and port number in its httpServer
class. The httpServer class creates a Socket object with a computer name (the
IP address of a server: 192.168.10.1) and port number (such as 8081) where the
HTTP interface program is listening for client connection requests. After that,
it creates a PrintWriter object to send data over a socket connection to a web
server. It also creates a BufferedReader object to read the text sent by a server
back to a client. It receives the text sent back to it by a server and prints the
text out. The httpServer class loops on the server and accept call waiting for
a client connections and creates an instance of the ClientWorker class for each

client connection it accepts.

Therefore, there are two aims:

1. To make a client multi-threaded, so that it runs the user interface with one

thread and handles the I/O with a server in a separate thread.

2. To make a server multi-threaded.

We have handled the user interface with one thread. A second thread listens
on a well-known port for client TCP connections. A third thread is started when
a client connection is made to handle that client’s requests. After launching the
thread to handle a client’s connection, a server continues listening for additional
client connections. If another connection comes in while an earlier client is being
served, a fourth thread is started to handle the new client’s requests, and so on.
Thus, a server includes at least three threads but it may start additional threads

for multiple simultaneous connections.

To simplify this programming task, the system is developed the code of HT'TP
interface mechanism in two stages. In the first stage, we have written a multi-
threaded program that simply listens, intercepts, and analyse to display the con-

tents of the HTTP request for verification purposes at the request level. After

115

5.2 Architecture Design of the Prototype

this program is running properly, we forward the request to a web server for gen-
erating an appropriate response. We have next developed another multi-threaded
program that listens, intercepts, and analyses before displaying the contents of
the HTTP response for verification purposes at the response level. We forward

the response to end user.

The end user can test the TCP connection to a target web server from his/her
a web browser where the serving through the standard port 80 so that it is not
important to specify this port number within the URL in a web browser. For
example, if a server machine name or the the IP address of a server machine is
192.168.10.1, a server is listening to port 80, and we need to retrieve the web
file test.html, then it is important to specify the following URL within a web

browser:
http = //192.168.10.1/test.html

When a web server encounters an error, it sends a response message with the
appropriate HTML source so that the error information is displayed in a web

browser window.

HTTP interface prototype has contained 8 classes and we have summarised

as follows:

1. HTTPServer class: extends from thread class. Therefore, two separate
classes are defined in the HTTPServer class including HTTPServerWorkerReq,
and HTTPServerWorkerRes. The structure of our own HTTPServer class is

shown in Figure 5.4.

2. HTTPServerWorkerReq class: a thread class to listen for each requests on
port number 80. We have analysed a request (we have analysed the informa-
tion in the header lines such as name, size, type of requested web resource
and the name of web server) for verification purposes at the request level

and forward it to a web sever.

3. HTTPServerWorkerRes class: a thread class to listen for each response on

port number is 8081.

116

5.2 Architecture Design of the Prototype

4. dbConnection class: is defined to connect with DBMS Microsoft Access

2007 for storing and retrieving the details for every web content.

5. Singature class: is defined to compute the MAC value using SHA-1 hash

function and a private key for every web content.

6. HTTPLog class: is defined to report the result of the integrity verification

process.

7. originalObject class: is defined to connect the dbConnection class and

Singature class.

8. Main class: 1s defined to make the main socket and invoke HTTPServer class.

There are three parts to the response message: the status line, the response
headers and the entity body. The status line and response headers are terminated
by the character sequence CRLF. In the case of a request for a nonexistent file, we
return “404 Not Found” in the status line of the response message, and include

an error message in the form of an HTML document in the entity body.

5.2.4 Registry and Integrity Verification using SHA-1 Check-

sSums

A basic function performed by the integrity verifier component is checking that
the requested web resources returned by application server match. To improve the
efficiency of this process, we use SHA-1 checksum to compute each web resource
served. This checksum is cryptographically strong (74; 88; 89; 110): given current
computing technologies, the production of a fake web resource that matches a

given SHA-1 checksum is currently impossible.

When comparing content of requested or responded web resources, we need to
compute the SHA-1 checksum and compare it with the original one. The integrity
verifier component compares the checksums and ensures that they match; if so,

the client receives the correct requested web resources; otherwise, the integrity

117

5.2 Architecture Design of the Prototype

import java.io.* ;
import java.net.* ;

import java.util.* ;

public class HTTPServer extends Thread

{
public HTTPServer(String wsip, int wsp, int clp)
{ ... }

public void run(){

while(true){
try{

HTTPServerWorkerReq httpwswReq = new
HTTPServerWorkerReq(clSocket, wsSocket);
httpwswReq.start();

HTTPServerWorkerRes httpwswRes = new
HTTPServerWorkerRes(clSocket, wsSocket);
httpwswRes.start();

}
catch(I0OException ioe){

HTTPUtil.log(ioe.toString());
}

Figure 5.4: Structure of a HTTPServer Class

118

5.3 Testing Strategy

verifier forwards this web resource to recovery component to recover it and send

it back to integrity verifier for further process.

It should be noted that the current recommendation for newly designed ap-
plications is SHA-256 because SHA-1 may be broken (115). However, we have

continued to use SHA-1, because:

e SHAI has been tested in many applications and can be implemented using
Java, C#, and C++; while the SHA-256 has not been tested yet (12; 74;
110).

e Although a variety of hash functions are available, MD5 and SHA-1 are in
wide use (88; 89).

Readers should note this thesis focuses on an integrity system and does not

focus on developing or deploying a new hashing algorithm.

5.3 Testing Strategy

The aim of this testing strategy is to tackle the central points of this thesis:
How does WCVR system assist in survivability of server-side static
and dynamic web content? and How does WCVR system meet the
performance objective in case of static web content and in case of
dynamic web content? This chapter has described a number of experiments

designed to explore these questions.

To evaluate the proposed WCVR system, we have suggested two kinds of test-
ing strategy including security testing strategy and performance testing strategy.
Therefore, five experiments have been conducted to find out the behaviour of
WCVR system compared with the existing systems such as DSSA and without
any verification system in two trends: security (detection and recovery) and per-

formance.

119

5.3 Testing Strategy

5.3.1 Considerations

Theoretically, the WCVR system can provide a tamper detection and recovery to
server-side static and dynamic web content. The WCVR is not confined to a spe-
cific web server and web application and it does not involve additional resources
and platforms. In the testing design, we have provided JSP web application to
generate dynamic web content on Apache Tomcat web server because we have
used the powerful features of Java Servlets and Filters. Apache Tomcat service
supports the Servlets and Filters technologies but Microsft IIS does not. Cur-
rently, there are some commercial products such as JspISAPI® to run the JSP
features on Microsfot IIS which supports Active Server Page (ASP) to generate
dynamic web content. Therefore, the proposed WCVR can be scalable to various

web servers, platforms, and operating systems.

Note that our response hashing mechanism is implemented by Servlets and
Filters in Java for powerful features of Servlets and Filters technologies as ex-

plained in Sections 5.1 and 5.2.2.

We believe the WCVR system might offer advantages over the existing systems
that the WCVR system can verify, and recover the dynamic web server content
as well without the need to restructure the existing web applications (see Section
4.4).

5.3.2 Formal Experimental Statement

The WCVR system can ensure server-side static and dynamic web

content survivability (tamper detection, and recovery).

This statement has been tested for two trends: security and performance. We

have identified five questions to be answered by this thesis:

1. How does WCVR system provide tamper detection and recovery in the

3http://www.neurospeech.com/Products/JspISAPLaspx

120

5.3 Testing Strategy

server-side static and dynamic web content on Apache Tomcat web server

over wired client-server network?

. How does WCVR system provide tamper detection and recovery in the
server-side static web content on Microsoft I1IS web server over wired client-

server network?

. How does WCVR system meet the performance objective compared with

DSSA mechanism on IIS web server in the case of static web content?

. How does WCVR system meet the performance objective compared with

DSSA mechanism on Tomcat web server in thecase of static web content?

. How does WCVR system meet the performance objective compared without
any verification system or mechanism (on Tomcat web server) in the case

of dynamic web content?

To answer these questions, we have designed the following testing strategy.

5.3.3 Security Testing Strategy

We have tested the proposed WCVR system to detect and recover the server-side

web content from the tampering attacks. In other words, we have tackled this

question (How does WCVR system provide tamper detection, and re-

covery in the server-side static and dynamic web content on Apache

Tomcat and Microsoft IIS web servers over wired client-server net-

work?) by conducting two experiments with taking into account the following
Table 5.1:

Therefore, we have carried out two experiments to test the security of the

proposed WCVR system:

1. Experiment 1: To investigate the tamper detection and recovery in a server-

side static and dynamic web content on Apache Tomcat web server

121

5.3 Testing Strategy

2. Experiment 2: To investigate the tamper detection and recovery in a server-

side static web content on Microsoft IIS web server.

. Web Servers
Type of Server-side Web Content
Tomcat Web Server IIS Web Server
Static Web Content |)
Dynamic Web Content | [X]

Table 5.1: Table of the used web servers in the experimental design

It should be noted that we have not carried out an experiment to investigate
the tamper detection and recovery in a server-side dynamic web content on IS
web server because the proposed response hashing mechanism is implemented by
Java Servlet and Filters and consequently, the IIS web server does not support

Java Servlet and Filters.

5.3.3.1 Network Layout

We have constructed a local are a network consisting of two HP server machines:
web server and database server, four client machines (2GHZ CEN 1GB RAM
OS Windows XP), two routers (CISCO 2800 series) and two switches (Catalyst
2960 series). The Configuration of IP addresses is static for every machine in this
LAN.

The network has been used to test the proposed system for security and per-

formance objectives. The Figure 5.5 shows the schematic of the network layout.

122

5.3 Testing Strategy

‘sasodand 3ur)se) I0] IMOAR] YIOMISU oY) JO JIIRUWILYDS 9 [, GG 2InS1]

e - ——
p e ot o —— e

NNITIL

yrompy - wdwdinbyg Sunsag

PLUN

123

5.3 Testing Strategy

5.3.3.2 Experiment 1

Experiment 1: Tamper detection, and recovery in the server-side static and
dynamic web content using the WCVR system on Apache Tomcat web server

over local network.
Participants: Three undergraduate computing students.
Objective:

1. To verify the server-side static and dynamic web content on Tomcat web

server using the WCVR system.

2. To recover the server-side static and dynamic web content on Tomcat web

server using WCVR system.

3. To illustrate how such attacks can be detected on a Tomcat web server
using WCVR system.

4. To illustrate how the modified static and dynamic web content can be re-
covered on a Tomcat web server using WCVR system.
OS component: Windows server 2003 for server machine, and any windows-
type for client’s machines.
Other component: Tomcat Apache Server (v5.0.28).

Network Architecture: Server machines, two switches, two routers, and four
client machines (2GHZ CEN 1GB RAM OS Windows XP) over wired network.

Tools (Required tools for the experiment):

1. WCVR system.
2. Apache Tomcat web server.

3. Request capture tool to automatically launch various tampering attacks to

web content.

124

5.3 Testing Strategy

4. Paint tool to manually tamper any static image.
5. Notepad tool to manually tamper any static web content.

6. MS Internet Explorer (IE) or Mozilla Firefox.
Data:

1. Given Borland JBuilder JSP shopping cart* and UK Hillside Primary school

web site®
Setup:

1. Construct LAN network which contains a server machine, three client’s
machines and two routers using TCP protocol.

2. Pick every client machine and check connectivity with server.

3. Install Apache Tomcat service on a server. This service will be listening on
every request and response with port number 8081 where the default port

number is 80.

4. Make two copies of the target web site. One on a web server and one in

secured directory for recovery purposes.

Procedure: The following procedures take place on the server and client sides.

Server-side

1. Run Web Register mechanism.

[N}

. Copy the target web site to Tomcat root.
3. Run Tomcat web server.

4. Run the HTTP interface mechanism.

“http://www.borland.com/uk/products/jbuilder/
Shttp://hillside.needham.k12.ma.us/cyberventues/st_proj.html

125

5.3 Testing Strategy

5. Run the response hashing mechanism.

6. Launch a number of tampering attacks by (i) change manually any web
content on the root of Tomcat web server, (ii) run the request capture tool

for automatic modification.

7. Repeat step 6.
Client-side

1. Run the IE web browser in a client machine (Start-Programs-Internet Ex-
plorer)
2. Enter the following URL (HTTP://192.168.10.1/test.html) in address bar.

3. Check the requested web resources.

4. Is it the original one or the tampered one? If the original file, this mean the
WCVR system does detect this tampering attack and recover the requested

web resource.

5. repeat step 4.

5.3.3.3 Experiment 2

Experiment 2: Tamper detection, and recovery in the server-side static web
content using WCVR system on Microsoft IIS web server.

Participants: Three undergraduate computing students.

Objective:

1. To verify the server-side static web content on IIS web server using the
WCVR system.

2. Torecover the server-side static web content on IIS web server using WCVR

system.

126

5.3 Testing Strategy

3. To illustrate how such attacks can be detected on IIS web server using
WCVR system.

4. To illustrate how the modified static web content can be recovered on on

IS web server using WCVR system.

OS component: Windows server 2003 for server machine, and any windows-

type for client’s machines.
Other component: IIS web server (v6.0).

Network Architecture: Server machines, two switches, two routers, and four
client machines (2GHZ CEN 1GB RAM OS Windows XP) over wired network.

Tools (Required tools for the experiment):

1. WCVR system consisting of Web Register mechanism and HTTP Interface

mechanism.
2. 1IS web server.

3. Request capture tool to automatically launch various tampering attacks to

static web content.
4. Paint tool to manually tamper any static image.
5. Notepad tool to manually tamper any static web content.

6. MS Internet Explorer (IE) or Mozilla Firefox.
Data:

1. Given UK Hillside Primary school web site.
Setup:

1. Construct LAN network which contains a server machine, three client’s

machines and two routers using TCP protocol.

127

5.3 Testing Strategy

2. Pick every client machine and check connectivity with server.

3. Install IIS service on a server. This service will be listening on every request

and response with port number 80.

4. Make two copies of the target web site. One on a web server and one in

secured directory for recovery purposes.

Procedure: The following procedures take place on the server and client sides.

Server-side

1. Run Web Register mechanism.

2. Copy the target web site to the root (wwwroot) of IIS folder.
3. Run IIS service.

4. Run the HTTP interface mechanism.

5. Launch a number of tampering attacks by (i) change manually any static
web content on the root of IIS web server, or (ii) run the request capture

tool for automatic modification.

6. Repeat step 5.
Client-side

1. Run the IE web browser in a client machine (Start-Programs-Internet Ex-

plorer)
2. Enter the following URL (HTTP://192.168.10.1/test.html) in address bar.
3. Check the requested web resources.

4. Is it the original one or the tampered one? If the original file, this mean the
WCVR system does detect this tampering attack and recover the requested

web resource.

5. repeat step 4.

128

5.3 Testing Strategy

5.3.4 Performance Testing Strategy

To test the performance of the WCVR system, we have used Neoload® application
to find out the end-to-end performance measurement over a wired network. In
case of static web content, there is a comparison between the proposed WCVR

system with DSSA mechanism on the both web servers: Tomcat and IIS.

It should be noted that in the case of dynamic web content, the comparison
focuses on the differences between using the WCVR and not using the WCVR -
currently there is no verification system able to detect and recover dynamic web

content.

A load test can be used to test an application’s robustness and performance,
as well as its hardware and bandwidth capacities (129). Therefore, we used the

Neoload application which is a stress and load testing tool to:

1. test a web site’s vulnerability to crashing under load.
2. check response times under the predicted load.
3. determine the number of simultaneous users supported by the application.

4. define hardware and bandwidth requirements.

The NeoLoad application has a number of features that motivate us to use it

in our testing as follows:

1. Recording HTTP traffic between browser and server

2. Defining virtual user behavior and setting scenario parameters such as load
policy (constant, ramp-up, peak) or the number of virtual users to be sim-
ulated in the test.

3. Setting performance monitors (CPU, memory, disk usage and others) for

yOur Servers.

Shttp://www.neotys.com/

129

5.3 Testing Strategy

4. Monitoring the ongoing test with the aid of real-time graphs and states.

5. Obtaining a summary of the test and then examining its details using the

graphs and statistical tables.

5.3.4.1 Experiment 3

Experiment 3: To measure end-to-end performance of static web content on
Microsoft IIS.

Participants: Three undergraduate computing students.

Objectives:

1. To find out the response time (i.e. the running time between a request
and the reception of its answer including web server response time, commu-
nication response time, and browser response time) for the following two

cases:

(a) With the DSSA system.
(b) With the WCVR system.

2. To compare the results in accordance to the response time and overhead

times among them and then evaluate the performance of WCVR system.

3. To find out the statistics summary such as average and standard deviation
of response time for request and page, average throughout, and number of
hits.

OS component: Windows server 2003 for server machine, and any windows-

type for client’s machines.
Other component: [IS.

Network Architecture: Server machines, two switches, two routers, and four
client machines (2GHZ CEN 1GB RAM OS Windows XP) over wired network.

Tools(Required tools for the experiment):

130

5.3 Testing Strategy

1. WCVR system.
2. 1IS web server.

3. Request capture tool to automatically launch various tampering attacks to

static web content.
4. Paint tool to manually tamper any static image.
5. Notepad tool to manually tamper any static web content.
6. MS Internet Explorer (IE) or Mozilla Firefox.
7. DSSA mechanism.

8. Neoload application.
Data:

1. Given UK Hillside Primary school web site.
Setup:

1. Install IIS service on a server. This service will be listening on every request

and response with port 80.

2. Construct LAN network which contains a server machine, three client’s

machines and two routers using TCP protocol.
3. Pick every client machine and check connectivity with server.

4. Make two copies of the target web site. One on a web server and one in

secured directory for recovery purposes.
5. Install DSSA mechanism.

6. install Neoload application.

131

5.3 Testing Strategy

Procedure: The following procedures take place on the server and client sides.

Case (a)

Server-side

1. Run Web Register mechanism.
2. Run IIS service.

3. Run the DSSA system.
Client-side

1. Run Neoload tool.
2. Request the following URL (HTTP://192.168.10.1/test.html).

3. Generate a separate report.

Case (b)

Server-side

1. Run Web Register mechanism.
2. Run IIS service.

3. Run the HTTP interface mechanism.
Client-side

1. Run Neoload tool.
2. Request the following URL (HTTP://192.168.10.1/test.html).

3. Generate a separate report.

132

5.3 Testing Strategy

5.3.4.2 Experiment 4

Experiment 4: To measure end-to-end performance of static web content on
Apache Tomcat.

Participants: Three undergraduate computing students.

Objectives:

1. To find out the response time for the following two cases:

(a) With the WCVR system.
(b) With the DSSA system.

2. To compare the results in accordance to the response time and overhead

times among them and then evaluate the performance of WCVR system.

3. To find out the statistics summary such as average and standard deviation
of response time, number of hits, average throughput, and number of errors

and maximum and minimum user load.

OS component: Windows server 2003 for server machine, and any windows-

type for client’s machines.
Other component: Apache Tomcat web server.

Network Architecture: Server machines, two switches, two routers, and four
client machines (2GHZ CEN 1GB RAM OS Windows XP) over wired network.

Tools(Required tools for the experiment):

1. WCVR system consisting of Web Register mechanism and HTTP Interface

mechanism.
2. Apache tomcat web server.

3. Request capture tool to automatically launch various tampering attacks to

static web content.

133

5.3 Testing Strategy

4. Paint tool to manually tamper any static image.

5. Notepad tool to manually tamper any static web content.
6. MS Internet Explorer (IE) or Mozilla Firefox.

7. DSSA system.

8. Neoload application.
Data:

1. UK Hillside Primary school web site.
Setup:

1. Install Apache Tomcat service on a server. This service will be listening on
every request and response with port number 8081 where the default port

number is 80.

2. Construct LAN network which contains a server machine, three client’s

machines and two routers using TCP protocol.
3. Pick every client machine and check connectivity with server.

4. Make two copies of the target web site. One on a web server and one in a

secured directory for recovery purposes.
5. Install DSSA mechanism.

6. install Neoload tool.

Procedure: The following procedures take place on the server and client sides.
Case (a)

Server-side

1. Run Web Register mechanism.

134

5.3 Testing Strategy

2. Run Tomcat web server.

3. Run the HTTP interface mechanism.
Client-side

1. Run Neoload tool.
2. Request the following URL (HTTP://192.168.10.1/test.html).

3. Generate a separate report.

Case (b)

Server-side

1. Run Web Register mechanism.
2. Run Tomcat web server.

3. Run the DSSA mechanism.
Client-side

1. Run Neoload tool.
2. Request the following URL (HTTP://192.168.10.1/test.html).

3. Generate a separate report.

5.3.4.3 Experiment 5

Experiment 5: To measure end-to-end performance of dynamic web content on
Apache Tomcat.

Participants: Three undergraduate computing students.

Objectives:

135

5.3 Testing Strategy

1. To find out the response time for the following two cases:

(a) Without any mechanism or system for tamper detection and recovery.

(b) With the WCVR system.

2. To compare the results in accordance to the response time and overhead

times among them and then evaluate the performance of WCVR system.

3. To find out the statistics summary such as average and standard deviation
of response time, number of hist, average throughout, and number of errors

and maximum and minimum user load.

OS component: Windows server 2003 for server machine, and any windows-

type for client’s machines.
Other component: Tomcat.

Network Architecture: Server machines, two switches, two routers, and four
client machines (2GHZ CEN 1GB RAM OS Windows XP) over wired network.

Tools(Required tools for the experiment):

1. WCVR system consisting of Web Register mechanism, HTTP Interface

mechanism and Response Hashing Calculator mechanism.
2. Apache tomcat web server.

3. Request capture tool to automatically launch various tampering attacks to

static web content.
4. Paint tool to manually tamper any static image.
5. Notepad tool to manually tamper any static web content.
6. MS Internet Explorer (IE) or Mozilla Firefox.
7. Tomcat service.

8. javac command.

136

5.3 Testing Strategy

9. Neoload tool.
Data:

1. Borland JBuilder JSP shopping cart.
Setup:

1. Install Apache Tomcat service on a server. This service will be listening on
every request and response with port number 8081 where the default port

number is 80.

2. Construct LAN network which contains a server machine, three client’s

machines and two routers using TCP protocol.
3. Pick every client machine and check connectivity with server.

4. Make two copies of the target web site. One on a web server and one in

secured directory for recovery purposes.

5. Install Neoload tool.

Procedure: The following procedures take place on the server and client sides.
Case (a)

Server-side
1. Run Apache Tomcat web server.
Client-side

1. Run Neoload tool.
2. Request the following URL (HTTP://192.168.10.1:8081 /test.html).

3. Generate a separate report.

137

5.4 Initial Testing

Case (b)

Server-side

1. Run Web Register mechanism.

2. Copy the java classes to WEB-INF of Tomcat root.
3. Run Tomcat web server.

4. Run the HTTP interface mechanism.

5. Run the response hashing mechanism.
Client-side

1. Run Neoload tool.

2. Request the following URL (HTTP://192.168.10.1/test.html).

3. Generate a separate report.

5.4 Initial Testing

We carried out a pilot study to evaluate the reliability and effectiveness of our
proposed system. The objective of the initial test is to evaluate the proposed
approach in term of both reliability and performance of the tamper detection
and recovery processes. The reliability of the approach is its ability to correctly
detect the tampering attacks and perform recovery if any tampering has been
detected.

In this Section, we detail the phase of the evaluation process. The reliabil-
ity is evaluated by launching manually tampering attacks against the generated

dynamic and static web content on IIS and Tomcat web servers.

In the pilot study, we carried out these experiments to illustrate the two main

objectives:

138

5.4 Initial Testing

1. Security Objective: How does WCVR system provide tamper detec-
tion, and recovery in server-side static and dynamic web content

on Apache Tomcat and IIS web servers?

2. Performance Objective: How does WCVR system meet the perfor-
mance objective in case of static web content and in case of

dynamic web content?

We carried out experiments le, and 2 to meet the security objective, whereas,

we carried out experiments 3, 4, and 5 to meet the performance objective.

Experiment 1 was carried out on MS Windows environment and Apache
Tomcat web server. After running this experiment we had manually and/or au-
tomatically launched 45 tampering attacks (such as visualisation spoofing attack,
textual spoofing attack, tampering code manipulation tampering object manipu-
lation, and defacement of web page), and as a result, we obtained a set of results
as shown in Table 5.2. This results has shown that that our proposed WCVR
system provides tamper detection, and recovery in server-side static and dynamic
web content. Table 5.2 illustrates how such attacks can be detected using the
proposed WCVR system.

139

5.4 Initial Testing

- Aimages/greenpaper;gif.

1

5

3 /1mages/dollar gif

4 /book&glf

5

[lSmre Jjsp e

7. /lmag&s/ran'cw gxf

8§ Canjsp

9 /lmages/lanow gnf YES

b YES'
11 YES

12 /Storejsp YES

13 /Cantj _|sp YES

i YES

15 YES

16 ;/Store s YES§

17 [Cartjsp YES

18 /Sworedsp- YES

19 " /Cartjsp YES

207 [Storejsp YES

21 /Cartjsp YES

22 /Purchasejs YES

23 /ThankYo YES

24 frreeDia;g cyberveritios/Hachett troes(7/trecs htm SYES:
235 YES

26 /TreeDnagrams/cyberventucs/l-!schen treas07/amandahtmllnatal = YES:
27 /T‘reeDnagrams/cybervemues/l—Iachen treesO?/amandahmﬂ/nalal YES

28 ! YES

29 YES

30 YES
31 YES

32 YES
33 YES

5 ©ovEs

35 YES

36 YES

37 YES

38: ﬁff[‘reeDlagrams/cyberventu&s/Hacheﬁ trm(l?/amk ‘YES

39 /TreeDiagrams/cyt /Hachett_trees07/; YES

40’/ TreeDiagramsleyberventiies/Hachett trees0%/amandahtmi/andre” - YES

41 /TreeDiagrams/cyberventues/Hachelt_trees07/amandahtml/andre YES

Table 5.2: Table of the static and dynamic web content in Tomcat web server

Figure 5.6 shows a (partial) list of measurements for the original hash values of
web contents which is shown in Table 5.2. The measurements in Figure 5.6 have
been taken by the web register mechanism. Figure 5.7 shows the corresponding
list of the same web contents that were compromised. The entries in Figure 5.7
have illustrated that after the attack, the signature of the arbres-07.gif was
different, indicating that the attack replaced the original arbres-07.gif with a
faked copy.

Experiment 2 was carried out in MS Windows environment and IIS web
server. After running this experiment we had manually and/or automatically

launched 45 tampering attacks, and as a result, we obtained a set of results as

140

5.4 Initial Testing

shown in Table 5.3. This results has shown that that our proposed WCVR system
provides tamper detection and recovery in server-side static web content. Table
5.3 illustrates how such attacks can be detected using the WCVR system.

#001: 6FDO8BCO91E77FD867CI6D86E64C1095620E69D29 vivian.htm
#002: 150E93F8C29EC534178DA0647251807BDC12BFF2 vivian_1.GIF
#003: ODC2F919A3BBBC6554A462ADS0AES7679BOC6969 Thumbs.db
#004: 1E7707F952FCBFO627076FAE387C1E6685FAG6192 trees.htm

#040: OB81CE4C28596973C97ED109C3A44DAF8D41F105 arbres-07.gif

Figure 5.6: A list of measurements for the original hash values of web contents

#040: EB81CE4CT77796973C97ED10SC3A44DAF8D41FDES arbres-07.gif

#400: 1FB659F0535DAAD725FFB79C6C0458C75685128A andrew.html

Figure 5.7: Detecting tampering attacks

141

5.4 Initial Testing

IT reeDmgrams/cyberventues/I—!achett trees07/trees.htm

O 90 <3 O W G W R e

/T reeDmgrams/cybervemues/I—Iachen treesO?/amandahnnl/damy
i fTreeDiagram/éyberventues/Hachett trees07/amandahtmi/danny - -
/T reeDlagrams/cybervenmes/Hachett tree507/ﬂmandah1mllglenn

i/ TreeDiagrams/cyl :
/T reeDlagramslcyberventues/Hachett treas07/amandahtrrﬂ/skye
. ',:,/TreeDlagramslcybew' tues/Hachiett mm/amandahmﬂlserge g
/T reeDlagrams/cyberveutues/Hachett trees()7/amandahtml/serge
: fTreeDlagrams/cybervenmeslﬂachett tre&s07/amm ahtml/]ared ”
/TreeDiagrams/cyberventues/Hachett_trees07/amandahtinl/jared
T reeDlagrams/cyberventues/l—lachen_trees07/axnandahtrnllben b

Table 5.3: Table of the static web content in IS web server

142

5.4 Initial Testing

Experiment 3 and 4 were individually carried out using MS Windows envi-
ronment (i.e. MS Windows XP Professional for client machines and MS Windows
Server 2003) with 1IS and Tomcat web servers. Experiment 3 is designed to show
end-to-end performance (i.e. verification of the integrity of server-side static
web content, recovery response if a web content has been tampered with, net-
work speed, web server response and web browser response) via (i) the proposed
WCVR system and (ii) the existing DSSA system on IIS web server. Experiment
4 is designed to show end-to-end performance via (i) the proposed WCVR system

and (ii) the existing DSSA system on Tomcat web server.

In this pilot study, the duration of the test was almost exactly 5 minutes where
the generating a number of virtual users was almost 5 that increased throughout

the test. The virtual users were connecting at 100Mbps through a local network.

We have summarised the results in Table 5.4. All these measurements were
performed from the client point of view (i.e. all durations show the time between
a request and the reception of its answer). Each row in the table displays the
average response time (request) maximum response time (request), and minimum
response time (request) in seconds of all requests during the test and average page
response time for all pages where each page may contain a number of requests.
Note that the average response time is the mean-time necessary to process a
request by each web server when the proxy, browser and the WCVR system
are active. The activation of the WCVR implies that HTTP request-response
communication has changed. The activation of the of the recovery component
implies that the server-side static and/or dynamic web content has been tampered
with. The communications (network response time) are parts of the measured

duration.

A comparison of the WCVR and DSSA systems indicates that the end-to-end
performance of the WCVR, (on IIS and Tomcat web servers) is better than that
on the DSSA as illustrated in Table 5.4. The average response time (request)
through the WCVR was 0.574 seconds on IS and was 1.05 seconds on Tomcat,
while the average response time (request) through DSSA was 0.648 seconds on

1IS and was 2.42 seconds on Tomcat.

143

5.4 Initial Testing

Table 5.4: Comparison between the response times through DSSA and WCVR

systems, in seconds, of all requests during the test on IIS and Tomcat web servers.

The running time increased close to a linear state as the number of users
increased as shown in Figure 5.8. The curves in Figure 5.8 show the average
response time in seconds of all requests and the number of virtual users as the
vertical axis during the ramp-up (increasing) load test. Note that we used the Ne-
oload product to measure the performance, where the Neoload generates number

of virtual users after recording all requests and responses during the test.

The WCVR is less costly in performance terms when verifying the server-side
static web content against tampering attacks. This is understandable, because
we utilised the WCVR system by formulating a new hashing strategy. It is
anticipated that our system can give better results for security and performance
compared with other existing systems. In this study, we can see the overhead is

acceptable and is adapted to a real-time use.

Figure 5.9 displays the percentage of pages that were performed within a
given time range. These graphs help determine the percentage of pages that
meet a performance objective. For example, graph (a) in Figure 5.9 presents the
distribution of response page time for DSSA on IIS web server within 4 seconds. It
indicates that 90% of the requested pages had a response time under 3.5 seconds.
Where as graph (b) in Figure 5.9 presents the distribution of response page time
for WCVR on 1IS web server within 4 seconds. It indicates that 90% of the
requested pages had a response time under 2.0 seconds. This suggests that the

WCVR takes less response time as a percentage to verify a static web content on

144

5.4 Initial Testing

IIS than DSSA.

Graph (c) in Figure 5.9 presents the distribution of response page time for
DSSA on Tomcat web server over 4 seconds. It demonstrates that about 25% of
the requested pages had a response time under 0.5 second. Graph (d) in Figure
5.9 presents the distribution of response page time for WCVR on Tomcat web
server within 4 seconds. This indicates that 70% of the requested pages had a
response time under 0.5 seconds. This suggests that the WCVR takes much less
response time as percentage to verify a static web content on Tomcat than DSSA.
In this study, the WCVR (when compared with DSSA) satisfies the performance

objective as seen in Section 5.4.

145

5.4 Initial Testing

1597 oY} SurInp s3senbar (e Jo ‘SPu0dss Ul ‘SIOAISS JROUIQ], PUR

QIT U0 YADM oYUt pue S YSnoryy searmo (3senbar) euarg esuodser 103 sydein) :juojuod qom d1jelS :g°C 9InGLg

el
4y
og0
sro

oo'L

Usars

raly

oG

541

ao'e

Users

YeOWO], U0 YADM YSnoiys suary asuodsor oferoay qu

SIBS(Y {ENMIA — SISBNDSHJO BWg BRUCcHs Ay - M

EETY

oD3{r 00 DE00:00

00:00'00

oa

00'20°0Q 084000

T

!

!

|

m

“

|

—_
{sysanbai} swmy ssuodsal abeiaay

SII U0 HADM YSnoiyy swry osuodsol o8erony AQV

Mﬂmmn jeniig - — S1Sanbal Jo S esucdsay *

B

go
43
-G
134
&
- D'e

g€

0+

.mwmmsvo_v awi asuodsal abeiaAy

=]
oL
- F
oz
gT
oe
ge

[+h:3

{s) uogeing

(s) uogeing

Jeowo], uo ySS(d ydnoxyy swty asuodsal adelony AUV

_Bmmn fenLiA - — SISENDA! 0 SLUG 35ULESEY — _

B
Q0:20:00 08300 DOLO00 QL0000 000000

ogo - I = oD

520 ! | g0

0§ ,m _ oL

SL0 ! | L

£ 0oL m oe
2

= oy | iz

ogk | o€

St ~ e

002 i S — id

{sysanbai} swy asuodsal aberaay
Q1 U0 y¥8SJ ySnoayy oty asuodsar a8eroay A.mv
T_mwp EAA - - SISANDAI 0 BT ASUCHEAY - _
auny
S0:00 fyaded £600 TG00 L300 o000

o . A R A Py oo

v ; ; &0

! b5 o

i B ,,m ¥l

Se . oz

v - ¥e3]

B _ - oe

IR _ §€

a e e e o

(sisanbal} awg ssuodsai abriaay

(s} uogesnQ

{s) uogesng

146

5.4 Initial Testing

"1s0% o1} Surmp seded (e Jo ‘spuooes ul ‘eurr) asuodsor o8ed Jo uornquysip oy} sAeidsi(] :6°G 2InIT

“JeOWOY, U0 YADAM 10] swny osuodsor afed jo worinquuisip sy J, AUV

sheusxued uoEnguaio

" awiy asuodsay abed jo uonnqusig
“STT 40 YADM atary asuodses oSed jo uonnqiusip oy, Aﬂv

slgualied uognasIq

asw] asuodsay abed jo uonnqinsiqg

ook fusd o8 aL &e &3 o oE 0c 13
. _—__ —.. TR TR R IR S R R A R G R o

o001 08 og ar] o o of oz oi

(s) swip-asuodsel sbesany

(s) swip 8suodsal abelany

‘yedway, uo yS8S(o] owrg asuodser ofed jo uonnquisip oYy, AOV

IhEjus g UOENQUIRIO
0

AT T O AT T VT AN A A

oot o8 [<:3 (273 o8 o5 o ot o oL
........... —_————- S 0 YR NS R o s s e

aunt uw:ommmm abed jo uognaLysia
‘SIT U0 ySS(103 owiny asuodsar oFed jo uonnqusip oy J, Aﬁv

afequsned UORNUASIQ
o

aw} ssuodsay abed jo uognquysiq

oo

)

Q

o

w

o

4

bl

4

=

€

o

€

o+

oc

oo w g g o 0
L N - |

2
+

(s) swn ssU0dsa) abelamy

{s) awp asuodsal abelaay

147

5.4 Initial Testing

Experiment 5 was carried out in a MS Windows environment (i.e. MS
Windows XP Professional for clients machines and MS Windows Server 2003)
using a Tomcat web server. This experiment is designed to show end-to-end
performance (i.e. verification of the integrity of server-side dynamic web content,
recovery response if a web content has been tampered with, network speed, web
server response, and web browser response) via (i) the proposed WCVR system
and (ii) without any verification system on Tomcat web server. In this study,
the response times for Scenario A (without any mechanism or system for tamper

detection and recovery) and Scenario B (with the WCVR system) were collected.

Table 5.5 shows the statistics summary such as the HTTP requests, the mini-
mum response time, average response time, and maximum response time. In Sce-
nario A, the minimum request response time was 0.01 second, average response
time as 0.021 seconds, maximum response time was 0.126 seconds, standard de-
viation was 0.031 seconds. whereas in Scenario B, the minimum request response
time was 0.149 second, average response time as 0.212 seconds, maximum re-

sponse time was 0.297 seconds, standard deviation was 0.051 seconds.

Table 5.5: Comparison between the response times without verification system
and WCVR systems, in seconds, of all requests during the test on Tomcat web

server.

As shown in Table 5.5, the end-to-end performance of WCVR system is rela-
tively acceptable because the overhead of WCVR system on Tomcat web server
is minimal in comparison with Scenario A. The average response time (request)
through WCVR was 0.212 seconds on Tomcat, whereas the average response time
(request) when using without any verification system was 0.021 seconds on Tom-
cat. The running times of WCVR system is more time than the running times

without any verification system.

148

5.4 Initial Testing

The curve (a) in Figure 5.11 shows the percentage of pages (distribution of
page response time)that were performed within a given time range. it indicated
that 90% of the pages had a response time under 0.125 seconds. The curve (b)
in Figure 5.11 indicates that 90% of the pages had a response time under 0.55

seconds.

149

5.4 Initial Testing

"1899 9} SunImp s3senbal [[B Jo ‘Spu0dss Ul ‘“yeouWo], U0 YADM

oY} PuUe WYSAS UOTIROYLIOA JNOYIIM [SNOIY] SeAmd oy ssuodsar 10] syderr) :qJuejuoy) qop| OMRuA(:(T'G 9IndL]

Usars

ogg
gz
[¢fe3+3
SL0

oo

og'h
gLt

00z

180W0Y, U0 YADA UYSnoayy owry asuodsol oFereay AQV

mﬂwma {ENHA - — S)sanbai JO 8N asUdSay ,3_

suni
$0:00 OO0 000 oo o0

e s e

I
!
M
!

Y

i
;
m

{sysanbai) sawp asuodsas abelany

o
|
“
*
|
“

4
o
(s) uoyeing

1eOWO], U0 WSTUEYDOW UOIFEIYLI9A JNoYm YI3noay) autly asuodsar a8erany Adv

mew: {BIRA - — $5158nha 0 BWn FSUCdSey -

suay
o009 sxoa FOG0 £500 favdel] 1000 00:00

.j[tlJL
i

Users
=t

g i P IO § S
° I
B ——

{sysanbai} aw asuodsai abelany

0000

S20'0

9200

{s) uogeing

[io]88]

10

150

5.4 Initial Testing

"0A1300[q0 @oururIo}Iad ® Jeow Jey) soged Jo ofrjuedniod oY) duruwiejop diey seydeid
sosoy], -oBuel owil} UWAAIS ' UMM pourioped olem jey) sefed omreudp jo ofejuoored oy sAerdsiq :11°G ongig

“PROWOT, UG YADM 10] “}BOWO], U0 WD)ISAS UOIIROYLIDA INOYHM
owiry osuodsar 98ed dsrureudp Jo UCIINQIIYSIP OY], AQV awl} asuodsar o8ed oteudp JO UOINQLIASIP YT, Adv
ofiejuaniad uouNGWISI 2BRIS1I8 4 UORNTUISIG
ook o3 o8 az 08 o5 o ae oz 513 o ool o5 o8 o o3 o oF o oz o 5]
—) [~ 000 B B Y T O o S e b o . i v e~ -000D
soc gZO0
040 2 0500 ¥
o0 S z
2 SL00 M
oza ® oovo ©
520 @]
L oe0 o 02
2 0sl'0 3
seo 2 k4
3 ‘y = S0
[5
oo 2 0020 3
os0 sz B
950 0570

awny osuodsoy abed Jo uonnqunsia s} asuodsay abed jo vopnqiysiq

151

5.5 Conclusion

5.5 Conclusion

The WCVR prototype is implemented into three mechanisms: web register, re-
sponse hashing and HTTP interface mechanism. We carried out a set of exper-
iments to address the security objective (detection, and recovery) and the per-
formance objective. The results of a pilot study have shown that the proposed

system (WCVR) provides a high coverage of detection and recovery.

The performance evaluation of a pilot study is limited and does not show a
significant enhancement. Thus, our pilot study is not sufficient to evaluate the

proposed WCVR system for the following four reasons:

1. The test duration in the pilot study was only 5 minutes. The duration of
the test should change depending on the testing goals. The performance
information can be obtained for a test that takes a few minutes long. How-
ever, we will try to stress a web site/application to know if anything breaks
using the WCVR, and DSSA. In addition, we will gain more useful perfor-
mance information and hence we will run the test over a longer period of

time.

2. The number of virtual users started with 5 and reached up to 30. The
virtual user traffic to load test a web site/application should nearly be to
real traffic, and hence we will run the test using a greater number of virtual

users.

3. The number of tampering attacks was 45. We will run three experimental
studies. Each one will launch 45 tampering attacks. This will be stronger

evidence that the WCVR is able to detect and recover tampering attacks.

4. The experimental studies have been conducted by one user.

To achieve more reality in our system evaluation, the next chapter will present
further evaluation to the experimental results depending on a number of evalu-
ation criteria such as response times and error rate. The objective of the tests

that have been conducted is to evaluate the proposed approach in terms of both

152

5.5 Conclusion

reliability of the tamper detection and recovery processes. The reliability of the
approach is its ability to detect correctly the tampering attacks and recover them

if any tampering has been detected.

153

Chapter 6

System Evaluation

6.1 Introduction

In the previous chapter, the implementation of the prototype and design of the
experiments have been explained. To test our approach, we implement the WCVR
system to verify real-world web applications. We conducted a pilot study to test
the reliability and performance of WCVR system and the results obtained appear
to demonstrate that the overhead time for the verification process and recovery
process are relatively low and that the WCVR system can efficiently and correctly

determine if a web content has been compromised.

The findings in (121; 130) have shown how easy and effective for an adver-
sary to automatically find potentially vulnerable web sites. An adversary could
probably create a list containing several hundred vulnerable web sites using ma-
licious web content manipulation software run on high-performance servers, a

high-bandwidth uplink and several weeks of scanning.

In this chapter, we present five experimental studies to evaluate the reliability

and performance of WCVR as follows:

1. Case study - Security objective to evaluate whether the WCOVR is able to

detect and recover from the tampering attacks.

154

6.2 Reflections on Methodology

2. Case study for micro-benchmarking' performance to measure offline the per-

formance of the web register mechanism (using SHA-1 and SHA1-extended)

3. Case study K to measure the end-to-end performance with (i) the proposed
WCVR system, (ii) the existing DSSA system, and (iii) without any verifi-

cation system.

4. Case study R to measure the end-to-end performance through (i) the pro-
posed WCVR system, (ii) the existing DSSA system and (iii) without any

verification system.

5. Case study J to measure the end-to-end performance through (i) the pro-
posed WCVR system, (ii) the existing DSSA system, and (iii) without any

verification system.

It should be noted that in each of the above case studies, inputs such as

bandwidth, throughput and number of hits, etc. are varied.

6.2 Reflections on Methodology

There are several research methodologies in computing and software engineering
areas such as simulation, mathematical or/and logical proof and experimental
study (126). Our thesis has used the experimental study to test the hypotheses

related to conceptual design and to system reliability and performance.

This methodology has helped to answer the research question which is used
to develop the hypothesis verified by the experimental study. The conclusion

derived from the experimental results supports the hypothesis as follows:

e By confirming the conceptual approach to find a solution through imple-

mentation and testing.

!Benchmarking is a process to measure, assess and describe performance of a mech-
anism or a certain function against agreed criteria. Further details can be found in

www.cltywestwater.com.au/about/glossary. htm.

155

6.3 System Evaluation: Security and Performance

e By showing that the performance of WCVR is relatively effective.

e By illustrating how tampering attacks can be discovered, and how tam-
pered web content can be detected and recovered reliably using the WCVR

system.

6.3 System Evaluation: Security and Performance

To verify the accuracy and reliability of WCVR in detecting tampering attacks,
three computing students at the Computer Forensics lab at Northumbira Uni-
versity picked over five hundred web requests from the (i) UK Hillside Primary
school web site? and (ii) Borland JBuilder JSP shopping cart®. The students
identified a potential victim list of target web resources and manually confirmed

exploitable flaws in the identified web resources.

In order to evaluate the security objective, the students performed the follow-

ing two experiments:

e Case study 1 (see Section 6.2.1)

— Experiment 1: To investigate the tamper detection and recovery in
a server-side static and dynamic web content on Apache Tomcat web

server.

— Experiment 2: To investigate the tamper detection and recovery in a

server-side static web content on Microsoft 1IS web server.

To measure the runtime performance of the web register mechanism using

SHA-1 and SHA1-extended, we will present the following case study:

e Case study 2 (see Section 6.2.2)

2http://hillside.needham.k12.ma.us/cyberventues/st_proj.html
3http://www.borland.com/uk/products/jbuilder/

156

6.3 System Evaluation: Security and Performance

To evaluate the effectiveness of the WCVR system, the students individually

conducted the following experiments:

e Case study 3, 4, and 5 (see Section 6.2.3)

— Experiment 3: To measure end-to-end performance of static web con-

tent on Microsoft 11IS.

— Experiment 4: To measure end-to-end performance of static web con-

tent on Apache Tomecat.

— Experiment 5: To measure end-to-end performance of dynamic web

content on Apache Tomcat.

It should be noted that we have not carried out an experiment to investigate
the tamper detection and recovery in a server-side dynamic web content on 1IS
web server because the proposed response hashing mechanism is implemented by
Java Servlet and Filters and consequently, the IIS web server does not support

Java Serviet and Filters.

Defining the success or failure criteria is a prerequisite to any experimental
test. Therefore, before testing a web application, we have defined a number of
the acceptable levels for robustness and performance. These criteria are defined
in terms of response time as follows:

e Average response time per page (may be different from one page to another).

e Maximum response time per request.

e Minimum response time per request.

e Average response time per request.

Standard deviation of response time per request.

A web page contains one or more HTTP requests. Wherever web pages or

containers are concerned:

157

6.3 System Evaluation: Security and Performance

e The response time is the time taken to respond to all the requests contained

in the page or container.

e The size is the sum of the sizes of all the requests contained in the page or

container.

e A page or container is flagged as containing an error if one of its sub-requests

contains an error.

158

6.3 System Evaluation: Security and Performance

6.3.1 Case Study - Security Objective (Detection and Re-

covery)

As stated in (131), the security objective is difficult to measure. There is no stan-
dard accepted methodology by which to evaluate it. To assess how successful the
WCVR system is able to detect and recover from the unknown tampering attacks
students (K, R, and J) started to run the proposed web register mechanism. This
mechanism takes the hashing measurements for every server-side static web con-
tent stored in the designated directories of the suggested web sites/applications
hosted on Tomcat and IIS web servers.The response hashing mechanism takes
the hashing measurement for the generated dynamic web content during online
transactions (when a user request a web resource). Over 70 tampering attacks
were launched against the designated directories of the suggested web sites hosted
on Tomcat and IIS web servers. Measurements were taken after the tampering

attacks for integrity verification purposes (see Table 6.1).

Table 6.1 shows a partial list of measurements for the web content and Table
6.2 shows the corresponding list of the same web content that has been compro-
mised by the tampering attacks. The entries in Table 6.2 illustrates that after the
attack, the checksum of the requested resource "/cyberventues/st_proj.html"
is different, indicating that the malicious software replaced the original version.
The WCVR, system uses the difference in the hash value to detect whether mali-
cious software has replaced the original resource. The verification process checks
to see if the web content has been modified since it was used. Based on whether
the test passes or fails, the HTTP interface mechanism executes the state pro-
tocol to enforce the policy that makes the decision about the next step in the
process. If the integrity check passes, the web content is sent to the running

process straight away. If it fails, it is sent to the recovery component.

159

6.3 System Evaluation: Security and Performance

N Hash Value (Signature) Requested Resource
1 D35C729762B3FC8795FB90631BCF64DEAO61E33B /cyberventues/st_proj.html
2 S8AEEED714BACDTAECB74A054A5BES4A185CC9C52 /Hachett_trees07/trees.htm
3 D90FB8C0A13CEAT7C87CD515E2277E299195A1436 /Hachett_trees07/amandahtml/kiana.htm
4 1E7707F952FCBF 9627076 FAE387C1E6685FA6192 /Hachett_trees07/amandahtml/natalie.htm
5 32CE36ED9039D3C2951350CFC5843BC145998CDA /Hachett_trees07/amandahtm!/nf/nat.1.GIF
2941 56236652C0E32364638C5294B501E786BD0F4B91 /StartHere.jsp
2942 (0709306 BA800150FB58C6520F3310AEBD759AA16 /Store.jsp
2961 8C967D27FB403E39848F46563070046EDA501529 /travel-styles.css
2962 DF9F21A89CB51BDFCADAFD6AODET28AA2E152808 /tree2/backblue.gif
2963 14D5F457E32810A1D95D21FFE398AB39D110D177 /tree2/fade.gif
2064 B532E95DA8926D183002CA56BF26245EF49BD7E2 /rodman_guerriero/beginning.html
Table 6.1: A partial list of original hashing measurement.
1 9D354FF4B0SDDBOFESBD0656692AE895C6F 36887 /cyberventues/st_proj.html
2 83AC2737TD5DBAEBA408E3513AF402158ACEQA4BE7 /Hachett_trees07/trees.htm
3 45A9CF81C355F5383E9CD18C3F7BDDFDB1062003 /Hachett_trees07/amandahtml/kiana.htm
4 0887CBC41B81A9C418EF1ED91C5AC4D4FA93D14A /Hachett_trees07/amandahtml/natalie. htm

F688117B8752340851B89ECASECC853915815FB8 /Hachett_trees07/amandahtml/nf/nat.1.GIF

Table 6.2: A partial list of hashing measurement after running malicious web

content manipulation software.

160

6.3 System Evaluation: Security and Performance

Table 6.3 illustrates that a partial list of alerted web content has been compro-
mised by running malicious web content manipulation software. For example, the
requested page "/cyberventues/st_proj.html" had been altered by changing
the following:

1. The value of HTML Title element "<title>Student Web Projects</titl

e>" was altered to "<title>This is a different name</title>".

2. The colour of letters in the the linked image "stweb.gif" in Img element
was altered. K, R, and J analysed the HTML source code of "/cyberventues
/st_proj.html" by extracting the name of image element in this tag "" and then altered the

contents of this image object.

3. The white background of "/cyberventues/st_proj.html" was altered to

yellow.

The original hash values of "/cyberventues/st_proj.html" are shown in
Table 6.1. The altered hash values after running tampering are shown in Table
6.2. As can seen from Table 6.3 all alerted web content had been detected and
recovered using the proposed WCVR system. It is suggested that the WCVR sys-
tem has the capability to detect and recover web content that has been tampered
with, and hence, the WCVR system satisfies the security objective as defined

above.

Readers should note that Appendix A contains the following table:

1. Table 1: The whole list of alerted web content that are compromised by

running malicious web content manipulation software.

161

6.3 System Evaluation: Security and Performance

N HTTP Request

Altered Data (Actions)

Detection Recovery

1 /cyberventues/st_proj.htmi o Title changed to ‘This is a different name’. YES YES
o stweb.gif altered in paint, colour of letters
changed.
o Changed Background to Yellow.
2 /eyberventues/Hachett_trees07/trees.ht o Amanda.html/Kiana htm was deleted. YES YES
m o Amandahtml/vanessa.htm was deleted.
o Amandahtml/micheal. htm was deleted.
3 /cyberventues/Hachett_treesO7/amand o Deleted everything between Html tags. YES YES
ahtml/kiana. htm
4 /cyberventues/rodpen07/penguins_rod o penline.jpg swapped around with YES YES
man07.htm hobopenguin.jpg
o Underlined and altered colour of Miss Rodman’s
Third Graders
5 /cyberventues/rodman_about_both/rod o Deleted CSS from this file. YES YES
man_about_both.htm
6 /cyberventues/dummett_penguins06/ o Deleted the entire table. YES YES
main.htm
7 /lcyberventues/teeth_riddles_duw/conten o Replaced the multiple images titled tooth5. gif, YES YES
ts.htm teethnn.gif and tttt. gif with a comment
displaying the following characters, 'There is no
picture'.
8 /cyberventues/give mrs_early/htm]_gi o Editing the four images sky colour to black. YES YES
ve/olivia htm o Changing overall background colour to pink.
9 J/cyberventues/early treeO6/tree.htm o Deleted Hyperlinks and altered images so they YES YES
have a big black line going through the middle
10 /cyberventues/pollution_movies05/ma o Changed the following link YES YES
in.htm 'http://www.apple.com/quicktime/products/qt/" to
' www.northumbria.ac.uk'.
11 Jcyberventues/Hachett treesO7/amand o Changing centre image to a red circle. YES YES

ahtml/natalie htm

Table 6.3: A partial list of alerted web content that are compromised by running

malicious web content manipulation software.

The following example will be used to explain how the integrity verifica-
tion and recovery processes work. When K, R, and J students requested the
"Cart.jsp?itemID=2&count=17" (see Figure 6.1 - d), the HTTP interface mech-
anism intercepted the HTTP request and analysed details of the request header
(such as request name and URL parameters), as shown in Figure 6.3. After that,
the mechanism extracted the request path to compare the hash value of origi-
nal request (which is calculated by web register mechanism) with the one on a
web server. In Figure 6.3, the log message "Static Web Content (Cart.jsp)
Integrity at the Server-Side has been successfully verified" indicates
that the integrity verification was successful. The HTTP interface mechanism

generated log files, which includes a sequence of messages such as details of re-

162

6.3 System Evaluation: Security and Performance

quest header, the verification message (either for static or dynamic web content),
hash value of response output, the state of online transaction database and re-

covery messages if the web content is tampered with.

In the next stage of verification, the http interface mechanism also intercepted,
and analysed the output HTTP response of "Cart. jsp?itemID=2&count=17", as
shown in Figure 6.3. The HTTP interface mechanism analysed the output HTTP
response and extracted the following information: the state of connection, con-
tent type, content length, date, type of web server and response body. After
that, this mechanism compared the original hash value of the generated dynamic
web content (which was calculated by response hashing mechanism) with the hash
value of the output HT'TP response. In Figure 6.3, the log message "Dynamic Web
Content Cart.jsp?itemID=2&count=17 Integrity at the Server-Side has
been successfully verified" indicates that the integrity verification was suc-

cessful.

In this context, the last log message ("Row is deleted" in Figure 6.3) de-
notes that the generated dynamic web content had been served to a target client.
The details about this request are deleted from the DBMS online-transaction
table.

K, R, and J focused on the generated dynamic web content from the JSP
shopping cart application. For example, the Store.jsp web page (see Fig-
ure 6.1-presentation (b))includes the list of seven books. K, R, and J selected
Moby Dick book (price: $5.80) by requesting URL presents in the follow-
ing: "Cart.jsp?itemID=0&count=15" (Figure 6.1-presentation (c)). This kind
of web content is dynamic because the HTTP request includes those URL pa-
rameters. K, R, and J then requested "Cart.jsp?itemID=2&count=17" (Figure
6.1-presentation (d)) and also requested "Cart.jsp?itemID=6&count=19" (Fig-

ure 6.1-presentation (e)).

It can be seen from Figure 6.1 that K, R, and J generated three different
dynamic web contents from the same source page "Cart.jsp" and that each
generated HTTP response has a different hash value, as shown in the section

"Response value of hash" in Figures 6.2, 6.3, and 6.4.

163

6.3 System Evaluation: Security and Performance

6.3.1.1 Section Conclusions

We have carried out the following two experiments to test the security objective
(How does WCVR system provide tamper detection and recovery in
the server-side static and dynamic web content on Apache Tomcat
and Microsoft IIS web servers) of the proposed WCVR system:

e BExperiment 1: To investigate the tamper detection and recovery in a server-

side static and dynamic web content on Apache Tomcat web server.

e Experiment 2: To investigate the tamper detection and recovery in a server-

side static web content on Microsoft 1IS web server.

Three computing students at the Computer Forensics lab at Northumbira
University picked over five hundred web requests from the (i) UK Hillside Pri-
mary school web site and (ii) Borland JBuilder JSP shopping cart. The students
identified a potential victim list of target web resources and manually confirmed
exploitable flaws in the identified web resources. Over 70 tampering attacks were
launched against the designated directories of the suggested web sites hosted on
Tomcat and IIS web servers. The results of this experimental study have shown
that the proposed system (WCVR) may provide a high coverage of detection and

recovery and a low level of overhead times.

164

6.3 System Evaluation: Security and Performance

nu1p:7192,188.15. 1/StanHere jsp

g Vitang Qhv T RS v B v . 12 Socknaisr G ibhoed | P ek v o %

Thank you for shopping at Betty s Bargain Books!!

Your order is on its way.

(a) Presentation of StartHere.jsp

nitp//192.168.10.1/Can jsp?itemiD=0&count=15

Select ahook o place in your cart

Available Books

Moby Dick, $580
Treasure Island $4.80
Catcher in the Rye $7.99
Gulliver s Travels $12.95
Traveller s Guide to Kaui $9.99
Caught Inside $15.50
The Masked Rider $5.95
View cart

Coogle Lyw

Yes) Div Qv G~ @ v LF Sockmarksn 1 bocked | “F Check v o Aokik, v

Cart Contents

Remave checked books

Moby Dick $580

Total: $5.80

Retura to the store Proceed to the cash register

A -

(C) Presentation of Cart.jsp?itemID=0&count=15

hitp #7192 168 10.1/Cart sp?nemiD=B&couni=19
v € v RS~ B~ TY Bookadsw 5 1bocked 9 Chetk » - Aukolink v

Sovgle (v

Cart Contents

o Catcher i the Rye £7.99
i} The Masked Rider $595
Total: $19.74

Return to the store Proceed to the cash register

(e) Presentation of Cart.jsp?itemID=6&count=19

-

(b) Presentation of Sore.jsp
sages W90 160 10 1 jspPiomiD=dhcout=i7

Google v Vwogt Ghe G- RS-

5 - | 07 sockmates B (o | Check < Mot

Cart Contents
Femova checked boaks

Moby Dick
Catcher in the Rye £7.99

Totak $13.79

Retum to the store Proceed to the cash register

(d) Presentation of Cart.jsp?itemID=2&count=17

e MIIN92 16810 Puichase s
Corogle v oo, gt B v RS v v fF tcomakew B)boced F Chak v

Purchase Items

i} Maby Dick
al Catcher in the Ryz $799
The Masked Rider $595
Bocks £19.74
Shppng $6.50
Total $26.24

Creds Card sumber. Espiration daie Wame on card
2345677756 <7272008 Jock smith
Retum 1o the stors Protass my order

(f) Presentation of Purchase.jsp

Figure 6.1: A sequence of static and dynamic web pages from JSP shopping cart

application have been requested.

165

6.3 System Evaluation: Security and Performance

Request Details
Request: GET /Cartjsp?itemID=0&count=15 HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-excel,
application/vnd.ms-powerpoint, application/msword, application/x-shockwave-flash, */*

Referer: http://phdmachine/Store jsp

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Host: phdmachine

Connection: Keep-Alive

Cookie: JSESSIONID=326ADA5C45E7B5D4C752E7597E83FES2DB

Static Web Content (Cart.jsp) Integrity at the Server-Side has been successfully verified
Response Details

HTTP/1.1 200 OK

Content-Type: text/htmi

Content-Length: 1345

Date: Tue, 18 Dec 2007 19:09:01 GMT

Server: Apache-Coyote/1.1

<HTML><!--ShoppingCartappCart.jsp--
><BODYBACKGROUND="images/greenpaper.gif'><FORMMETHOD=POST><H3>CartContents</
H3><INPUTTYPE=HIDDENNAME="pageCount"VALUE="15"><INPUTTYPE=submitNAME="Re
move"VALUE="Removecheckedbooks"><TABLEWIDTH="60%"CELLSPACING="0"CELLPADDI
NG="1"><THALIGN="CENTER"BGCOLOR="#808080">Remove</TH><THALIGN="LEFT"BGC
OLOR="#808080">Title</TH><THBGCOLOR="#808080">Price</TH><TR><TDALIGN="CENTE
R"><INPUTTYPE=CHECKBOXNAME=REMOVE_BOOK0></TD><TD>MobyDick</TD><TDAL
IGN="RIGHT">85.80</TD></TR><TR><TDALIGN="CENTER"><INPUTTYPE=CHECKBOXNA
ME=REMOVE_BOOK 1></TD></TABLE>

</FORM>

<HR><TABLEC
ELLPADDING=30><TR><TDALIGN="CENTER ">Returntothestore
<AHREF="Store jsp"><I
MGSRC="images/larrow.gif" ALT="goback"BORDER=0></TD><TDALIGN="CENTER">Proc
eedtothecashregister
<AHREF="Purchase jsp"><IMGSRC="images/rarrow.gif" ALT="proceed"
BORDER=0></TD></TR></TABLE></BODY></HTML>

Response value of hash value:832C12713636C6545666C42E8DDD50283562EABBDE2

Dynamic Web Content(Cart.jsp?itemID=0&count=13) Integrity at the Server-Side has been
successfully verified

Row is deleted

Figure 6.2: Log file: Cart.jsp?itemID=0&count=15

166

6.3 System Evaluation: Security and Performance

Request Details
Request: GET /Cart.jsp?itemID=2&count=17 HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vind.ms-excel,
application/vnd. ms-powerpoint, application/msword, application/x-shockwave-flash, */*

Referer: http://phdmachine/Store.jsp

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Host: phdmachine

Connection: Keep-Alive

Cookie: JSESSIONID=2AA545E7B5D4C752797E3FE5SSE02F36C

Static Web Content (Cart.jsp) Integrity at the Server-Side has been successfuily verified
Response Details

HTTP/1.1 200 OK

Content-Type: text/htm]

Content-Length: 1345

Date: Tue, 18 Dec 2007 19:09:21 GMT

Server: Apache-Coyote/1.1

<HTML><!--ShoppingCartappCart.jsp--
><BODYBACKGROUND="images/greenpaper.gif'><FORMMETHOD=POST><H3>CartContents</
H3><INPUTTYPE=HIDDENNAME="pageCount"VALUE="17"><INPUTT YPE=submitNAME="Re
move"VALUE="Removecheckedbooks"><TABLEWIDTH="60%"CELLSPACING="0"CELLPADDI
NG="1"><THALIGN="CENTER"BGCOLOR="#808080">Remove</TH><THALIGN="LEFT"BGC
OLOR="#808080">Title</TH><THBGCOLOR="#808080">Price</TH><TR><TDALIGN="CENTE
R"><INPUTTYPE=CHECKBOXNAME=REMOVE_BOOK0></TD><TD>MobyDick</TD><TDAL
IGN="RIGHT">85.80</TD></TR><TR><TDALIGN="CENTER"><INPUTTYPE=CHECKBOXNA
ME=REMOVE_BOOK 1></TD><TD>CatcherintheRye</TD><TDALIGN="RIGHT">$7.99</TD><
[TR><TR><TD></TD><TD><HR></TD><TD><HR></TD></TR><TR><TD></TD><TDALIGN="
RIGHT">Total:</TD><TDALIGN="RIGHT">$13.79</TD></TABLE>

</FORM>
<
BR>
<HR><TABLECELLPADDING=30><TR><TDALIGN="CENTER">Returntothestore
<AHREF="Store. jsp"><IMGSRC="images/larrow.gif" ALT="goback"BORDER=0></TD><TD
ALIGN="CENTER">Proceedtothecashregister
<AHREF="Purchase jsp"><IMGSRC="images/ra
rrow.gif" ALT="proceed"BORDER=0></TD></TR></TABLE></BODY></HTML>

Response value of hash value:903E12713636C8646C42F9E6150283562E48ACF8

Dynamic Web Content(Cart.jsp?itemID=2&count=17) Integrity at the Server-Side has been
successfully verified

Row is deleted

Figure 6.3: Log file: Cart.jsp?itemID=2&count=17

167

6.3 System Evaluation: Security and Performance

Request Details

Request: GET /Cart.jsp?itemID=6&count=19 HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd. ms-excel,
application/vnd.ms-powerpoint, application/msword, application/x-shockwave-flash, */*
Referer: http://phdmachine/Store. jsp

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Host: phdmachine

Connection: Keep-Alive

Cookie: JSESSIONID=2AA545E7B5D4C752797E3FESSE02F36C

Static Web Content (Cart.jsp) Integrity at the Server-Side has been successfully verified
Response Details

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 1473

Date: Tue, 18 Dec 2007 19:09:24 GMT

Server: Apache-Coyote/l.1

Response value:<HTML><!--ShoppingCartappCart.jsp--
><BODYBACKGROUND="images/greenpaper.gif"><FORMMETHOD=POST><H3>CartContents</
H3><INPUTTYPE=HIDDENNAME="pageCount"VALUE="19"><INPUTTYPE=submitNAME="Re
move"VALUE="Removecheckedbooks"><TABLEWIDTH="60%"CELLSPACING="0"CELLPADD]I
NG="1"><THALIGN="CENTER"BGCOLOR="#808080">Remove</TH><THALIGN="LEFT"BGC
OLOR="#808080">Title</TH><THBGCOLOR="#808080">Price</TH><TR><TDALIGN="CENTE
R"><INPUTTYPE=CHECKBOXNAME=REMOVE_BOOK0></TD><TD>MobyDick</TD><TDAL
IGN="RIGHT">$5.80</TD></TR><TR><TDALIGN="CENTER"><INPUTTYPE=CHECKBOXNA
ME=REMOVE_BOOKI1></TD><TD>CatcherintheRye</TD><TDALIGN="RIGHT">$7.99</TD><
/TR><TR><TDALIGN="CENTER"><INPUTTYPE=CHECKBOXNAME=REMOVE_BOOK2></T
D><TD>TheMaskedRider</TD><TDALIGN="RIGHT">$5.95</TD></TR><TR><TD></TD><TD
><HR></TD><TD><HR></TD></TR><TR><TD></TD><TDALIGN="RIGHT">Total:</TD><TD
ALIGN="RIGHT">819.74</TD></TABLE>

</FORM>

<HR><TABLE
CELLPADDING=30><TR><TDALIGN="CENTER">Returntothestore
<AHREF="Store.jsp"><
IMGSRC="images/larrow.gif"ALT="goback"BORDER=0></TD><TDALIGN="CENTER">Pro
ceedtothecashregister
<AHREF="Purchase jsp"><IMGSRC="images/rarrow.gif" ALT="proceed"
BORDER=0></TD></TR></TABLE></BODY></HTML>

Response value of hash value:4922DD4563B0E377356163FB3026 E4F4AC414E02
Dynamic Web Content(Cart.jsp?itemID=6&count=19) Integrity at the Server-Side has been
successfully verified

Row is deleted

Figure 6.4: Log file: Cart.jsp7itemID=6&count=19

168

6.3 System Evaluation: Security and Performance

6.3.2 Case Study for Micro-benchmarking Performance

We measured the runtime performance of the web register mechanism with a set of
micro-benchmarks. We measured the latencies of web register mechanism in two
different cases, namely, SHA-1 (10 digits) and SHA1-extended (16 digits). In the
SHA-1 case, we calculated the hash value of a web content using SHA-1 function
(10 digits). The SHAI-extended represented the case when we calculated the hash
value of a web content by SHA-1 function where number of digits was 16. Since
the goal is to measure the latency, we ran the web register mechanism 15 times
over 200 entries of different sizes for every case (SHA-1 and SHA1-extended) using
MS Windows XP Professional. The implementation of the micro-benchmarks is

based on the HBench framework industrial standard (1:32).

An illustration of results is presented in Table 6.4. It should be noted from
this table that the web register overhead in the case of SHA-1 (10 digits) is low
— the average running time was 1.4274 seconds (representing the average of time
taken to run 15 trails), which is less time when using SHAl-extended (2.2176
seconds). These cases do not only measure the overhead of the hash value itself,
it also measured all functions in a web register mechanism for both cases (SHA-1
and SHA1-extended).

We have concluded that the SHA1-extended is the most costly in performance
terms. This is understandable, because the SHAl-extended contains 16 digits
instead of 10 digits. Readers should note that this work as detailed in this thesis

is more concerned with security than performance.

It is anticipated that performance gains can be expected from an industrial
standard web server. In the case of static content, the web register is able to hash
the web content before a request is responded to, however in the case of dynamic
content, the hashing is required at the time of delivery and hence requires more

computerised effort.

We have also presented the registry performance of a web content as a function
of file sizes. We measured the web register mechanism running time for both:

SHA-1 and SHAl-extended, varying the input file sizes. The results are shown

169

6.3 System Evaluation: Security and Performance

in Table 6.5. When the file size is large, the difference in the hashing overhead
can be significant. For example, a 64 Kilobytes file when using SHA1-extended
takes about 12.47 milliseconds, where it takes about 3.2 milliseconds for SHA-
1. Furthermore, when using SHAl-extended, a 13 Megabytes file records 1531
milliseconds performance overhead, but when using SHA-1, the same file records

620.067 milliseconds performance overhead.

In Figure 6.5, the performance overhead (ms) with the SHA1-extended case is
represented by an unbroken curve, while the performance overhead (ms) with the
SHAT1 case is represented by a dashed line. The horizontal axis represents the file
sizes in byte, and the left vertical axis represents the overhead running time in
milliseconds. As expected, the performance overhead has a direct correspondence

to the file size, i.e. the larger file size is the greater performance overhead.

Table 6.4: Overhead of a web register mechanism

Web Register Call Overhead (ms)
SHAl-extended (16 digits) 2217.6 (2.2176s)
SHA-1 (10 digits) 1427.4 (1.4274s)

Table 6.5: Registry Performance for both SHAl-extended and SHA-1 as com-

pared with file sizes.

File Size Overhead (ms) Overhead (ms)
(Byte) with SHA1-extended with SHA-1

1IKB 0.64 0.627
16KB 5.13 2.13
64KB 12.47 3.2
2MB 163.73 118.73
5MB 348 251.97
13MB 1531 620.067

170

6.3 System Evaluation: Security and Performance

Registry Performance for both SHA1-extended and SHA1 as
compared with File Sizes.

2500
2000 -
n -@~ Overhead (ms) with;
£ 1500 SHA1 1
£ 1000 —e— Overhead (ms) with|
£ - |
500 SHA1-extended
0

1KB 16KB 64KB 2MB 5MB 13MB

File Size

Figure 6.5: A linear chart of registry Performance for both SHA1-extended and
SHA-1 as compared with file sizes.

As shown in Figure 6.5, longer keys take much more computing resource to
decrypt, and hence make them less vulnerable to attack. However, the SHA1-
extended is also more costly in performance terms, but this is the cost that legiti-
mate users pay for higher levels of security. The impact of hashing and encryption
are issues that increase the overhead and they are rarely considered in the area
of web engineering and design. When using the encryption and hashing, some
users have observed that the CPU overhead of sending and receiving encrypted
requests, and the hashing verification to be as high as 100 to 200 milliseconds
per request, easily overwhelming any other processing (48). This overhead varies
widely by implementation, key length and other factors, but it is always costly
in performance terms. In this experimental study, we measured the performance
for two cases: SHA-1 (10 digits), and SHAI-extended (16 digits).

It should also be noted that Appendix B contains the following two tables:

1. Table 1: List of all entries that were measured using SHA-1 function.

2. Table 2: List of all entries that had been measured using SHAI-extended

function.

171

6.3 System Evaluation: Security and Performance

6.3.3 End-to-End Performance Evaluation

The testing environment is composed of two web servers: Apache 1.3.29 with
Tomcat container 5.01 on MS Windows Server 2003 and IS 6.0 on MS Windows
Server 2003. The two web servers contain a copy of target web site and shopping
cart application. Over 70 attacks were performed against the server-side gener-
ated static and dynamic web content security properties. These attacks exploited
different types of vulnerabilities that allowed for the modification of files in the
designated directories of a web server. As a result, all the known attacks launched

against the web content were detected and recovered by the WCVR system.

A load test can be used to test an application’s robustness and performance,
as well as its hardware and bandwidth capacities. In these experiments, we used
the Neoload application which is a stress and load testing tool to (i) test a web
site’s vulnerability to crashing under load and (ii) check response times under the

predicted load.

As the verification and recovery processes are performed online in real-time,
it should induce a time overhead in the service. The results presented in this
section have been obtained on the same set of requests, using the same network

architecture.

Three undergraduate computing students individually conducted three ex-
perimental studies (including case study K, case study R, and case study J) to
measure the end-to-end performance with the (i) proposed WCVR system, (ii)

DSSA system, and (iii) without any verification system.

The duration of the test was dedicated by the requirements of the Neoload
testing. The run-time policy was ramped-up (i.e. generating a number of virtual
users that increases throughout the test until it reaches the specified maximum)
from 2 users (initial user number at the same time) adding 2 users every 2 minutes.
This is useful for checking the server’s behaviour under an increasing load. The

virtual users were connecting at 100Mbps through a local network.

All these measurements were performed from the client point of view (i.e. all

durations show the time between a request and the reception of its answer). Fach

172

6.3 System Evaluation: Security and Performance

row in the below tables displays the average response time (request), maximum
response time (request), and minimum response time (request) in seconds, of all
requests during the test and average page response time for all pages where each
page may contain a number of requests. The average response time is the mean-
time necessary to process a request by each web server when the proxy, browser,
and the WCVR system are active. The activation of the WCVR implies that
HTTP request-response communication has changed. The activation of the of
the recovery component implies that the server-side static and/or dynamic web
content has been tampered with. The communications (network response time)

are parts of the measured times.

6.3.3.1 Case Study K

This study consisted of two parts: static web content, and dynamic web content.

We have summarised the results in Table 6.6 and Table 6.7, respectively.
Case Study K- Static Web Content

Experiment 3 and 4 were carried out using MS Windows environment (i.e. MS
Windows XP Professional for clients machines, and MS Windows Server 2003 for
a server) with IIS and Tomcat web servers. Experiment 3 is designed to show
end-to-end performance (i.e. verification of the integrity of server-side static web
content; the recovery response if the web content has been tampered with; the
network speed; the web server response; and the web browser response) via (i) the
proposed WCVR system and (ii) the existing DSSA system on IIS web server.
Experiment 4 is designed to show end-to-end performance (i.e. verification of
the integrity of server-side static web content; the recovery response if the web
content has been tampered with; the network speed; the web server response;
and the web browser response) via (i) the proposed WCVR system and (ii) the

existing DSSA system on Tomcat web server.

In experiment 3, 54645 requests were created, 2575 web pages were served and
572.29MB (total throughput) were received by the client. The number of virtual
users launched was between 108 and 221. In experiment 4, 20626 requests were

created, 10482 web pages were served, and 211.73MB (total throughput) were

173

6.3 System Evaluation: Security and Performance

received by the client. The number of virtual users launched was between 30 and
93.

WCVR | WIS | 0084
DSSA | Tomca 0106 |

ol

;‘WéVR~’~' Tomcat | 0046 | - 0.68

Table 6.6: Case Study K- Static Web Content: Comparison between the response
times through DSSA and WCVR systems, in seconds, of all requests during the

test on IIS and Tomcat web servers.

A comparison of the WCVR and DSSA systems indicates that the end-to-end
performance of the WCVR (on IIS and Tomcat web servers) is better than the
end-to-end performance of the DSSA. As illustrated in Table 6.6, the average
response time (request) through WCVR was 0.307 seconds on IIS and was 0.66
seconds on Tomcat, whereas the average response time (request) through DSSA

was 0.357 seconds on IIS and was 0.833 seconds on Tomecat.

In Figure 6.6, the average response times (request) are represented by an
unbroken curve, while the number of virtual users is represented by a dashed
line. The horizontal axis represents the duration of test in minutes, the left
vertical axis represents the running time in seconds and the right vertical axis
shows the number of virtual users. In the four graphes the number of virtual
users increases closing to a linear state as the duration of test increases as the
test adds 2 users every 2 minutes. These graph indicate how the number of users

changes with time during the test.

As shown in Figure 6.6 : graph (a-DSSA), the maximum response through the
DSSA system (on IIS web server) was at 1 minute, 5 minutes, 6.5 minutes, and
8 minutes (with a maximum response time of 4.14 seconds). Whereas in Figure
6.6 : graph (b-WCVR), the maximum response through the WCVR system (on
IIS web server) was only at 8 minutes (with a maximum response time of 4.39

seconds).

174

1599 a1 SulInp s3senbal [[B JO ‘SPUOILS Ul ‘SISAISS (oM ROWO], Pue QI U0 Swasds YADM
pue YSS(oYl ydnoayy (3senbar) sewry esuodsor oy) 10j syders) :uejuol) (opy O11eIS - 3 Apn)g oser) 99 oangi

yeOwO], U0 YADM USnoryy swry osuodsar afetony A.@v 180WO], U0 YS§(T YySnoayy auig asuodsar s8eieay AOV

6.3 System Evaluation: Security and Performance

100 ZL oo 00 FO00 o0 QUon o o0
/ 5 £y sz
'z [+13 B
s [¢-4 o o H — L..l og m
w B i I . =
2 s oe 5 5 s i : I i s 8
@ g > — ; 3
2 oo \.m_! Lo @ oz —— oo &
e h
g - — el
0z 4 —
oSk m .'\ﬁ\. 1
— . 09 e I i oGk
{s1senbaJ) awp asuodsoas sbeiaay {sebed} awm asuodsal abersay
SII U0 YADM YSnoays swy esuodsal o8erony Am: GII U0 VSS(ysSnoayy suity esuodsol afeiony A@v
T&mb {enuiA - ~ §ISanhal 10 sum Fsucdsay - m Ww;mwb 1A - — SISAnbal jo awg Asuodsay w
Bl iy
0e-00 52400 fidss] 3°00 0200 ST00 Q200 100 002
o N - - oo o 8 - - - e [}s)
s 50 . - 50
L ot
o st g a ! sio
mﬁ T 02 & £ 61 i 0T 8
— - ; EY
= i 73 3 [sz 3
oz - M 6e B 0z i . 1 %
S | ; N | oe
52 o ! g€ 5z I ! -
I i o 1 ' | i
S i v ! I . ot

T»mms Enp, - - sjsenhal jo sl sSUDdssy - m

{sysonbai} own asuodsar abeioay

mm_mwb erana - — sabed io awsg asundsay - M

s
Q800 Q00 LT00 S350 0100

{s3senbai) awp asuodsai abeiaay :

175

6.3 System Evaluation: Security and Performance

The graph (c-DSSA) in Figure 6.6 shows the minimum response time was 0.106
seconds at the first minute; where there was a sharp increase of response times
to reach the maximum value (15.4 seconds) at the 18th minute. The standard
deviation was low (1.09 seconds) indicating that the response times showed little
variation. Whereas, the graph (d-WCVR) in Figure 6.6 shows the minimum
response time is 0.046 seconds at the first minute; where there is a sharp increase
of response times to reach the maximum value (60.7 seconds) at the 9th minute

because:

e There was insufficient memory on the server, which caused a disconnection

of the communication between the server and client.

After that, the response time decreases dramatically closing to a constant
state. The standard deviation was high (3.72 seconds) indicating that the re-
sponse times varied widely (see graph (d-WCVR) in Figure 6.6).

It would appear that the WCVR, is less costly in performance terms when
verifying the server-side static web content against tampering attacks on IIS and

Tomcat web servers.
Case Study K- Dynamic Web Content

Experiment 5 was carried out on MS Windows environment (i.e. MS Win-
dows XP Professional for clients machines and MS Windows Server 2003) using a
Tomcat web servers. This experiment is designed to show end-to-end performance
(i.e. verification of the integrity of server-side static web content; the recovery
response if the web content has been tampered with; the network speed; the web
server response; and the web browser response) via (i) the proposed WCVR sys-
tem and (ii) without any verification system on Tomcat web server. In this study,
the response times for Scenario A (without any verification system) and Scenario
B (with the WCVR system) were collected.

Readers should note that the testing of dynamic web applications relies on
HTTP requests that can include parameters which are specific for each user. The

values of such parameters can be different for different users of the same type and

176

6.3 System Evaluation: Security and Performance

can change throughout the session. For example, a web server can send a session
variable in response to the first request from a user. This variable is inserted to

the subsequent requests and is used to identify that user.

In this case study, 16396 hits were created, 14136 web pages were served, and
29.29MB (total throughput) were received by the client. Number of virtual users
launched was between 150 and 474.

- Withoutany - | Tomcat g 527 8 | 0634
verification system1 f Al U N
WCVR Tomeat | 0011 | ~ 0437 -~ | 529 ‘| 0505

Table 6.7: Case Study K - Dynamic Web Content: Comparison between the

response times in seconds, of all requests during the test on Tomcat web server.

Table 6.7 illustrates that the average response time (request) through WCVR
was 0.437 seconds on Tomcat. In Scenario A (without any verification system),
the average response time (request) was 0.527 seconds on Tomcat. Therefore, the
WCVR satisfies the performance objective for verification of integrity of dynamic

web content.

The results indicate that the average response time when using the WCVR
system is better than when not using any verification system - it is suggested

that the reason for this is as follows:

e The HTTP connection problem: For example, at the first 3 minutes during
the test (see graph (a) in Figure 6.7), student K requested the wrong URL
(GET http://192.168.10.1/StartHere.jsp HTTP/1.1) indicating the com-
munication between the client and the server was disconnected. Conse-
quently this led to an increase in the average response time. However,
the correct URL was (GET http://192.168.10.1:8081/StartHere. jsp
HTTP/1.1). Note, K did not add the port number (8081) of connection
in the URL request.

177

6.3 System Evaluation: Security and Performance

The graph (a) in Figure 6.7 represents the curve of response times throughout
this test without any verification system on Tomcat. As shown in graph (a), the
minimum response time was 0.032 seconds and, the variation of response times

was relatively low.

The graph (b) in Figure 6.7 shows the minimum response time through WCVR

was 0.011 seconds on Tomcat. In addition, the response times did not vary widely.

178

1899 9} SunImp $389nbol [[R JO ‘SPU0dss Ul ‘1ROWOT, U0 YADA 2} PUR WISAS
UOT}BOYLISA JNOYIIM [FNOIY) SeAInd awil) asuodsar 10] syders) :quejuol) oA\ OTWRUA(T -3 Apnig ose)) :L°9 oInslq

1e0UI0], U0 WIISAS YADM YSnoxy; sui asuodsod oeioay An—v 1ROWQ], UO WIP)SAS UOIIRdYLIoA 1noyim yInorys swg asuodsol ofrioay A.m.v

6.3 System Evaluation: Security and Performance

m\m&ws fEMA - — SISINDAL 0 FG BSUUSEY - m

ﬁ,&mwavm._w awm owcmawﬂ wmﬁm><

mwumma 1BNA - — SISanbai 0 awig asusdsay W

;.:w,uwm:cm: g ;mw:oamo. obeioay

ity WL
o&00 sTog 2 sL00 0406 50:00 0000 0£:00 ST 60 ©za0 100 GL00
o - e e . 0 0 - o0
T. $0
g L s
d oL
o { 2D o =]
) 5 7] c
5.9 o E1 oz 8
@ 5 3
o &5 =3 - 5
0z @ 0z | 5
24 e 2
9z s e 5 F SE
s o
og — ; ot N i ot

179

6.3 System Evaluation: Security and Performance

6.3.3.2 Case Study R

This study consisted of two parts: static web content, and dynamic web content.

We have summarised the results in Table 6.8 and Table 6.9, respectively.
Case Study R- Static web content

Experiment 3 and 4 were carried out on MS Windows environment (i.e. MS
Windows XP Professional for clients machines and MS Windows Server 2003)
using IIS and Tomcat web servers. In experiment 3, 9130 hits were created,
6096 web pages were served, and 57.22MB (total throughput) were received by
the client. The number of virtual users launched was between 36 and 44. In
experiment 4, 9023 hits were created, h882 web pages were served, and 34.75MB
(total throughput) were received by the client. The number of virtual users

launched was over 45.

T : . Cas 3.56
"WCVR IS | 008 | 156 | 598 | 149 2.33
DSSA | Tomcat| 0097 | 19 | 557 | 18 | - 29
WCVR | Tomeat | 0401 | 378 | 544 | 394 3.94

Table 6.8: Case Study R - Static web content: Comparison between the response
times through DSSA or WCVR systems, in seconds, of all requests during the

test on IIS and Tomcat web servers.

Table 6.8 demonstrates that the average response time (request) of the WCVR
on IIS web server was 1.56 seconds and on Tomcat was 3.78 seconds. Whereas,
the average response time (request) of the DSSA on IIS was 2.77 seconds and on
Tomcat was 1.90 seconds. Therefore, the average response time of the WCVR
system was less than the overhead times of the DSSA on IIS web server. However,
the average response time (request) of the WCVR on Tomcat was higher than a
DSSA. The total errors that occurred in the HTTP conversation via the WCVR
on Tomcat during 30 minutes was much higher than the total errors that occurred
in the DSSA on Tomcat.

180

6.3 System Evaluation: Security and Performance

If number of errors increases, then the average response time increases and
hence the overhead time increases. The results indicate that the end-to-end
performance when using the DSSA system on Tomcat is better than when using

the WCVR system - it is suggested that this occurs because the following reasons:

1. Miscellaneous 1/O error when connecting to the server.

2. Error when connecting to the server for insufficient memory. Indicates a

server-side error occurring when attempting to bind a socket.

The graph (¢ - DSSA) in Figure 6.8 illustrates the maximum response time
(request) through the DSSA system on Tomcat web server was 5.57 seconds at
the 26th minute. There were small variations in the response times throughout
this test. Whereas, the graph (d - WCVR) in Figure 6.8 shows the variations of
response times through the WCVR system (on Tomcat web server) were highly
variable from the first minute to the 9th minute closing to a constant state from
the 9th minute to the 30th minute.

181

6.3 System Evaluation: Security and Performance

pue ySS(I 9yt ySnoIy) seamd (1senbal) awir) asuodsel 10§ sydeir) :juajuod (om d1jeIg - Y ApNig ase) :g'g oIndrj

"189} oY} SULINp s3senbal [e JO ‘SPU0Ids Ul ‘SISAISS JeOWI0], PUR SIT UO YADAM oY

Users

Users

gl

Sk

4

e

oL

Sl -

0z

T

og

1R0WO], U0 HADM YSnorys owry osuodsor 03vIoAY A@v

Mmmwma femna - - Sisanbay jb Bwg asucdsay ‘g

sy

0£:00 ST00 060 00

o4 SO0 [sloas]

{sysanbai} owy ssuodsal abesaay
ST U0 HADM YSnoiyy sy asuodsor oelony Aﬁv

Tmmms [ENBIA - — SIS8nhal §o Bwg sucdsay ,i~

sy
08’00 $Z00 fectsli] Bisti o 0100

{s) uogeing

{sisenbai) swy asuodsai mme><

{s) uopeing

Users

Users

0l 4

gl

(14

-4

o

s13

S

07

gz

e

DE0O

Jeowo], uo ySS§(d ysunoayl owry osuodsor aSeioay on

{s1asp) fenguA - - S1Senbao suwg esUSay - M

sy
cT 6o 2500 4100

I
{s1senbai) swg asuodsai sbrioay
SII U0 YSSA ysSnoryy owgy esuodsol aSeisny Adv

T‘_mwj N - - SJSanba Jo sl ASUBsEY — 4_

sl
e} 5300 o000 G100 000

r
{s1senbai) swp asuodsos sbeiaay

(s) uopeing

Ege8ERRRe2OC
() uogeIng

182

6.3 System Evaluation: Security and Performance

Case Study R- Dynamic Web Content

Experiment 5 was carried out on MS Windows environment using a Tomcat
web server. This experiment is designed to show end-to-end performance (i.e.
verification of the integrity of server-side static web content; the recovery response
if the web content has been tampered with; the network speed; the web server
response; the web browser response) via (i) the proposed WCVR system and
(i1) without any verification system on Tomcat web server. In this study, the
response times for Scenario A (with the WCVR system) and Scenario B (without

any verification system) were collected.

In case study, 2941 hits were created, 2832 web pages were served, and 1.81MB
(total throughput) were received by the client. The number of virtual users
launched was between 107 and 158.

Withoutany ~ iTomcat | 0014 = | = 349 468 382
verification system) SEon EE e N ST e
WCVR |Tomeat | 0118 | - 117 2086 | 1241

Table 6.9: Case Study R- Dynamic Web Content: Graphs for response time curves
through without verification system and the WCVR on Tomcat, in seconds, of

all requests during the test.

The results indicate that the average response time when not using any verifi-
cation system is better than when using the WCVR system. Table 6.9 illustrates
that the average response time (request) through the WCVR was 11.7 seconds
on Tomcat. In Scenario B (when not using any verification system), the average

response time (request) was 3.49 seconds on Tomcat.

The graph (a) in Figure 6.9 shows the maximum response time when not
using any verification system (on Tomcat web server) was 4.68 seconds at the
Ist minute. The graph (b) in Figure 6.9 shows the the maximum response time

when using the WCVR system was 208.6 seconds at the 8th minute, because the

183

6.3 System Evaluation: Security and Performance

WCVR system was disconnected, the actual test started from the 4th minute.

This kind of error would tend to increase the average response time.

6.3.3.3 Case Study J

This study consisted of two parts: static web content and dynamic web content.

We have summarised the results in Table 6.10 and Table 6.11, respectively.
Case Study J - Static web content

Experiment 3 and 4 were carried out using MS Windows environment (i.e.
MS Windows XP Professional for clients machines and MS Windows Server 2003)
with IIS and Tomcat web servers. Experiment 3 is designed to show end-to-end
performance (i.e. verification of the integrity of server-side static web content;
the recovery response if the web content has been tampered with; the network
speed; the web server response; the web browser response) via (i) the proposed
WCVR system and (ii) the existing DSSA system on IIS web server. Experiment
4 is designed to show end-to-end performance via (i) the proposed WCVR system

and (ii) the existing DSSA system on Tomcat web server.

In experiment 3, 9130 hits were created, 6096 web pages were served and
57.22MB (total throughput) were received by the client. The number of virtual
users launched was between 114 and 207. In experiment 4, 11041 hits were cre-
ated, 6116 web pages were served, and 89.84MB (total throughput) were received

by the client. The number of virtual users was between 88 and 89.

A comparison of the WCVR and DSSA systems indicates that the end-to-
end performance of the WCVR (on both web servers: IIS, and Tomcat) is much
better than that on the DSSA. As illustrated in Table 6.10, the average response
time (request) through WCVR was 1.06 seconds on IIS and was 1.93 seconds on
Tomcat, whereas the average response time (request) through DSSA was 4.03

seconds on IIS and was 3.86 seconds on Tomcat.

In Figure 6.10, the average response times (request) are represented by an
unbroken curve, whilst the number of virtual users is represented by a dashed

line. The horizontal axis represents the duration of test in minutes, the left

184

6.3 System Evaluation: Security and Performance

"1593 oY} SuLmp s3senbaI [JO ‘SPU0des Ul “}BIUWO], U0 YADAM U} pue WaIsAs

UOIJBOTIISA NOTHM YSNOIY} SeAIND o) asuodser 10] sydeir) :uejuoy) (op\ dTureui(] -y Apnig ase)) :6°9 am3Lg

1R0WOY, U0 HADA YSnorys swng asuodsal oFeisay AQV

oL

gk

Users

oz

o€

Wm,wmﬁ emas - — sisenbal jo swy asuadsay - m

swing

05:00 ST00 o700 S100 01:00 50:00 og:00

{sysenbai) owy asuodsai abelany

2 o Q v e v o u o
RESESFRERN

{s) uogemng

1ROUIQT, UO WISIURYDSW UOITBOYLISA INOY3lm YInoly) aswiny asuodsal a8eloay Aﬁv

ETT T
000 5Z:00 oTae si:a0 at-00
] i o0
.50
]

ot

o — s
o
© - 0T &
5 st I— =
3 - 52 &
> e — ae o
E —_ fre
oz o oo @

3
4 B L.;\ B N ob
0E « —_ I_I E i St

mw.mmv by - — safed jo sun asucdsey w
i

{sabed) sy asuodsai afiviony

185

6.3 System Evaluation: Security and Performance

Table 6.10: Case Study J - Static web content: Comparison between the response
times through DSSA or WCVR systems, in seconds, of all requests during the

test on 1IS and Tomcat web servers

vertical axis represents the running time in seconds and the right vertical axis
shows the number of virtual users. In the four graphes, the number of virtual
users increases closing to a linear state as the duration of test increases. The
test adds 2 users every 2 minutes. These graph indicate how the number of users

changes with time during the test.

The graph (a-DSSA) in Figure 6.10 illustrates that the maximum response
through the DSSA system (on IIS web server) was at 90 seconds (with a maximum
response time of 4.48 seconds). After the maximum response time at the 90th
seconds, the response time closed to a constant state. The graph (b-WCVR) in
Figure 6.10 illustrates the maximum response through the WCVR system (on 1IS
web server) was only at the 17th minute (with a maximum response time of 4.12

seconds).

The graph (¢-DSSA) in Figure 6.10 shows the maximum response time was
4.71 seconds at the 2nd minute. The response times showed little variation.
Whereas, the graph (d-WCVR) in Figure 6.10 illustrates the maximum response
time was 90.3 seconds at the 8th minute. The end-to-end performance obtained
is highly variable; factors such as insufficient memory and not requesting the
correct URL can severely limit the performance through the WCVR, system, and

therefore, the response times showed much variation.

It would appear that the WCVR is less costly in performance terms when

verifying the server-side static web content against tampering attacks on IIS and

186

6.3 System Evaluation: Security and Performance

"1597 o3 Sunnp sjsenbal [e Jo ‘Spu0dss Ul ‘SIOAISS JROWOT, pue G U0 YADM

oY) pue yYSS(ySnoiyy searnd (jsenbei) sy esuodsor 10} sydeir) :juejuod qom d13elS - [ARG 98B 0T°9 gL,

Users

Users

180WOT, U0 YADM USnoIys oy ssuodsol oFeIony AUV

T.Bma A — - S1Senhal o sy ssucdsay — w

288

0€:00 8200 sy] 1% SO0-00 00:00

o A et P -

1 . [R
g i | [[

: w FY
ak) i — [

i : g i
13 i |m.|

I
% Nl
% r I :
el — f
{s3sanboi) sun) asuodsal abeiaay
SII U0 YADM USnoayy awty asuodsar aferony An—v
TEmD IBTIHA - — S159nba) 10 dwn Bsubdsay - m
auy
Q00 frode] aTas 500 oL00

g
ak
=13
0Z -
8T+
Qe o A

.m«mwawﬂw awn asuodsai aberoay B

o

ae

- 09

[e22)

{s} uopeing

{(s) uoneing

Users

Usears

ot

Sh

0z

8T

ae

04

St

02

s

o

JeOWIO], U0 YSS(YSnoays owry ssuodsor o8RIOAY AOV

T,_m_ma fernA - - S15anhal e B SSuUnUSaN M

g
og0g 3200 s8] fU00 oLog 5000 00:00
Tt
I
—
IR
—
ik |
e L.L!J s -
R
{sjsonbai) awm asuodsas abeloay
SIT U0 YSS(y3noayy awny asuodsar oferoay A@v
T.mwn BRBIA - — SiSanDEs o sy ssusdsay #
swiy
0E00 ST00 8Z00 SL00 o460 G000 00:00
v =
AT
I ;
—_r
- |
—
— —
—~- i

.mumkosvo: awg ww:oamﬂ abesany

00
¢0
oL
Sk
oz
x4
0e
g
or
13-4

S0

L O'L

g

.0
- 9T

oE
5E

g

gt

{s) uoyeing

(s) uoeing

187

6.3 System Evaluation: Security and Performance

Tomcat web servers.
Case Study J - Dynamic Web Content

Experiment 5 was carried out on MS Windows environment (i.e. MS Win-
dows XP Professional for clients machines and MS Windows Server 2003) using a
Tomcat web server. This experiment is designed to show end-to-end performance
via (i) the proposed WCVR system and (ii) without any verification system on
Tomcat web server. In this study, the response times for Scenario A (without any

verification system) and Scenario B (with the WCVR system) were collected.

In case study, 5421 hits were created, 5397 web pages were served and 1.55MB
(total throughput) were received by client. the number of virtual users launched
was between 198 and 204.

Withoutany | 48 | a2 |
Lverificationsystem * = o b R L T L
| WCVR |Tomeat | 0219 | 395 | s0r | 397

Table 6.11: Case Study J - Dynamic Web Content: Comparison between the
response times through without verification system or WCVR systems, in seconds,

of all requests during the test on Tomcat web server.

Table 6.11 illustrates that the average response time (request) through WCVR
was 3.95 seconds on Tomcat. In Scenario A (without any verification system),
the average response time (request) was 3.14 seconds on Tomcat. Therefore, the
WCVR satisfies the performance objective for verification of integrity of dynamic

web content.

The results indicate that the average response time when not using any verifi-
cation system (Scenario A) is better than when using the WCVR system (Scenario
B).

The graph (a) in Figure 6.9 represents the curve of response times without any

verification system on Tomcat. As shown in graph (a), the maximum response

188

6.3 System Evaluation: Security and Performance

time was 4.86 seconds with the variation of response times was relatively low. The
graph (b) in Figure 6.9 shows the maximum response time through WCVR was
6.01 seconds on Tomcat. The response times do not vary widely. As the WCVR
system was disconnected, the actual test through the WCVR started from the

4th minute. This kind of error would tend to increase the average response time.

189

*189} oY} Sunmp s3senbol [[e JO ‘SpU0das Ul “YedWO], U0 HAODA\) PUR WIPSAS

UOTYBOYLIoA JNOYIM YSNOIY) S9AIND WM} asuodsor 10] sydels) Juojto)) oA\ JTWRUA(- [APNYG 98 [[°g 0INn31]

6.3 System Evaluation: Security and Performance

JeOWO], U0 YADAM USnoiy) awiy asuodsel afeiony AQV YROUIO], U0 UWISTURYDIUI UOIJROULISA JNOYIIM YSnoly) sung asuodsal sderoay Aﬁv
mmmb {erang - - 818a9nhal o g ssuodsay - m mmvmmg oA ~ - Si5endal jo sun asuodsay M
swif s
ge:00 ST 0z:00 100 [u%] Ses 00:00 e §2.00 oTpe 5300
a : 0 o oo
S0
g v g
.04
-
o T a8 4 o
" s » oz g
5 St e5 5 S gz 5
@ g @ 5
2 > o ot 3
ford i e e o r m o< -
@ lge &
o = i 9 sz ot
o — :] 0g oo

{sysanbai} swin asuodsai sbeloay {sisenbai) swn asuodsas abeioay

190

6.4 Further Discussions and Conclusions

6.4 Further Discussions and Conclusions

The experimental results indicate that not only is the WCVR able to ensure the
survivability of dynamic web content, it is also able to ensure the survivability of

static content at a faster and more reliable rate.

In the case of static web content, the results of experiential studies (K, R,
and J) appear to indicate that the average end-to-end performance when using
the WCVR system (on IIS and Tomcat web servers) is better than when using
the DSSA system. As shown Figure 6.12 the average response time through
the WCVR was 2.12 seconds on Tomcat and 0.977 seconds on IIS, whilst the
average of response time through DSSA was 2.198 seconds on Tomcat and was
2.39 seconds on IIS. The WCVR results (through the WCVR) are lower than the

response times through the DSSA on both web server applications.

In case of dynamic web content, the results of experiential studies (K, R, and
J) appear to indicate that the average end-to-end performance when not using
verification system on Tomcat is better than when using the WCVR system. As
shown in Figure 6.12 the average response time through the WCVR, was 5.362
seconds on Tomcat, while the average of response time when not using verification
system was 2.386 seconds on Tomcat. When using the WCVR system to verify
the dynamic web content, it degrades the overall performance with respect to the

type of web content.

We also observe that the overall performance through the WCVR, (on IIS and
Tomcat web servers) is considerably improved as compared to that obtained when
using the DSSA. This is understandable because we have utilised the performance

of a WCVR using a new hashing strategy.

However, some common bottlenecks (such as network bandwidth, CPU, mem-
ory and I/O) occurred in our experimental studies, this led to an increase in the
overhead of our proposed system. If the CPU utilization is over 80%, it will
increase exponentially rather than linearly. In addition, our experimental results
indicate that the importance of memory : the memory in our experiments was

insufficient and this led to the disconnection of the IIS and Tomcat web server.

191

6.4 Further Discussions and Conclusions

Average response time (seconds) on IS and
Tomcat web servers

Without any
system on Tomcat
(Dynaric)

WCVR on Tomcat
{Dynamic)

DSSA on IS
{Static)

DSSA on Tomcat
(Static)

WCVR on IS
{Static)

WCVR on Tomcat
(Static)

o] 1 2 3 4 5 6
Times (seconds)

Average response time (second)

Figure 6.12: Average response time (seconds) on Tomcat and 1IS web servers.

The content type, static or dynamic, will also have in impact on overhead. For
example, server-side dynamic content, such as CGI or Servlets, make it difficult
to size the processor. The processing costs of this dynamic content will be high
enough so that the web server processing cost is not significant. This assumes
that the web server has been correctly configured (133). Therefore, given more
memory on a large scale web server, it is unlikely that the WCVR system would

crash.

A comparison? of different web servers performance when generating dynamic

“http://www.pcmag.com/topic/0,2944,t=John%20Clyman,00.asp.

192

6.4 Further Discussions and Conclusions

pages (using a Common Gateway Interface), illustrates dramatic decreases in a

web server performance when generating dynamic pages.

Readers should note that longer keys in hashing take much more computing
resource to decrypt, and hence make them less vulnerable to attack. However, the
SHA1-extended is also more costly in performance terms (see Table 6.4 and Table
6.5), but this is the cost that legitimate users pay for higher levels of security.

In this chapter, five case studies are presented to evaluate the reliability and
performance of the proposed WCVR system: case study - security objective (de-
tection and recovery), case study for micro-benchmarking performance (SHA-1,
and SHA 1-extended) and case studies K, R, and J to measure the end-to-end per-
formance through (i) the WCVR system, (ii) the DSSA system and (iii) without

any verification system.

We have tested our system in an environment which is composed of two web
servers: Apache 1.3.29 with Tomcat container 5.01 on MS Windows Server 2003
and 1IS 6.0 on MS Windows Server 2003. The two web servers contain a copy of
the target web site and a shopping cart application. Over 70 attacks were per-
formed against the server-side generated static and dynamic web content security
properties. We exploited different types of vulnerabilities that allowed for the
modification of files in the designated directories of a web server. During testing,
all the attacks launched against the web servers were detected and recovered by
the WCVR system.

To conclude, results from a series of experimental tests (K, R, and J case
studies) appear to suggest that the WCVR satisfies the performance objective for
verification of integrity of server-side web content. We believe that the overhead
of WCVR system can be significantly decreased, if the server technical speculation
follows the current industry standards. The experimental studies indicate that the
performance of the WCVR is dependent upon the CPU processing capabilities,

the memory size and network bandwidth.

In the next chapter, we will summerise the contributions in this thesis and
highlight the future work.

193

Chapter 7

Conclusions and Future Work

7.1 Research Summary

Chapter 1 has described the thesis problem, motivation, aims, objectives and con-
tributions. Although current security mechanisms could provide security against
unauthorised access to system resources, several security incident reports from
emergency response teams such as CERT and AusCERT clearly demonstrate
that the available security mechanisms have not made system break-ins impos-
sible. In chapter 2, we presented the description of web content and the HTTP
request-response model. We also concentrated on definitions and objectives of
web security. As mentioned in chapters 1 and 2, data integrity has received lit-
tle attention in information security research and technical security groups and

communities.

In chapter 3, we identified tampering attacks on server-side static and dynamic
web content. Furthermore, we surveyed the limitations, requirements, strengths
and weaknesses of basic security technologies (e.g., SSL, firewall, digital signa-
ture and data validation schemes) and existing integrity verification systems. Our
investigation has indicated that because server-side dynamic web content is not
verified unauthorised tampering is a potential issue . To address this issue, we pro-
pose a novel system, called the Web Content Verification and Recovery (WCVR)

system (see chapter 4). In chapter 5, this proposed system has been implemented

194

7.2 Conclusions of Thesis

into three mechanisms: web register, response hashing and HTTP interface, using

tools such as Java, Servlet and Filters and DBMS Microsoft Database.

In chapter 6, we conducted a set of experiential studies to address the security
and performance objectives. The results of the experimental studies have demon-
strated that the proposed system (WCVR) provides a high coverage of detection

and recovery.

The reminder of this chapter is organised into the following sections: Section
7.2 provids conclusions of this thesis. In Section 7.3, the contributions of this
research work are summarised. Section 7.4 discusses several avenues for further

work, and indicates the limitations of our research.

7.2 Conclusions of Thesis

In this research work, we have focused on tampering attacks on server-side static
and dynamic web content. Server-side web content can be tampered with by
altering the style classes such as Cascading Style Sheet (CSS) and referenced
objects (images, audio, video and other objects). In addition, source code of the
web page can be tampered with by running malicious code that compromises a

requested page before the client receives it.

Our investigation indicates that data integrity has received little attention in
information security research. Furthermore, there is little published research in
methods for testing web content integrity. The published research and techni-
cal communities in web security area are generally more concerned with crypto-
graphic rules and algorithms. In an attempt to address this, our thesis focuses
on the integrity of data. Data integrity refers to the trustworthiness of informa-
tion resources, thereby ensuring that only an authorised client can alter the data
— unauthorised tampering may result in incorrect or malicious web application
behaviour. The main finding in our literature review is that unauthorised tam-
pering is still a potential problem because dynamic web content is not verified.

The question this thesis addresses is how the integrity of server-side static and

195

7.3 A Summary of Contributions

dynamic web content can be verified to detect and recover from tampering attacks

before the client receives the requested page.

We have presented a novel security system called Web Content Verification
and Recovery (WCVR) system, which attempts to address the security issues
(violation of data integrity) that arise in tampering attacks. We have developed
a client interaction model and a new hashing strategy. Furthermore, we propose
a real-time web security framework consisting of a state protocol of web security
policies and a number of components that can be used to verify the static and
dynamic web content. Our solution is implemented as a prototype. This proto-
type consists of three mechanisms: web register, HTTP interface and response
hashing. In this thesis, we have conducted a set of experiential studies to meet
the security (detection and recovery) and performance objectives. As a result,
tests indicate that the WCVR is able to reliably and accurately detect and recover

from tampering attacks on the server-side static and dynamic web content.

It should be noted that our approach is applicable to many common kinds
tampering attacks such as visualisation spoofing attacks and processing of all

data types on the server-side.

7.3 A Summary of Contributions

The main aim of this thesis is to investigate server-side static and dynamic web
content survivability using a WCVR, system. The main contributions of this

thesis are as follows:

7.3.1 A novel approach to the verification of server-side

dynamic web content integrity

In an attempt to overcome the research problem, we have proposed a novel sur-

vivable system that could provide continued and correct services to internal and

196

7.3 A Summary of Contributions

external users, even though a web data manipulation problem may have occurred.
The proposed framework includes a new state protocol to enforce a set of web
policies, and a supporting software system to verify server-side static and dynamic
web content before the client receives the requested page. This approach would
add confidence in terms of users correctly accessing web services and displaying

electronic materials on their web browsers.

As an integrity check, the proposed state protocol is similar to adaptive
intrusion-tolerant server system (110). For each web resource whose integrity
is to be checked, a checksum (hash value) is computed from a private key. To
resist possible guesses by an adversary, the checksum is computed by applying
a one-way SHA-1 hash function to the concatenation of the private key and the
content to be checked. The resulting checksum is then compared with a pre-
computed one. This is sufficient to check if a web content has been tampered

with.

We have also formulated a new model to deal with every interaction element
(both HTML and non-HTML objects) in a web page called Client Interaction
Elements (CIE) model. A CIE model extends Offutt et al.’s (1) HTML Input
Units (IU) model which is only used to HI'ML input units to create tests on the

client for web applications that violate checks on user inputs.

A CIE model is formulated to provide the automatic extraction of param-
eters (e.g. HTTP transfer mode, user, data, type of interaction element, and
server page) of the client interaction element. The automatic extraction method
provides a simple method for automatically analysing a web site that contains
a large number of elements and where each web page includes a large number
of interaction elements (e.g. forms, frames, links, and HTML and non-HTML

objects).

197

7.3 A Summary of Contributions

7.3.2 Improved performance in the verification of static

web content

In the case of static web content, the results of experiential studies (K, R, and
J) appear to indicate that the average end-to-end performance when using the
WCVR system (on IIS and Tomcat web servers) is better than when using the
DSSA system. As shown Figure 6.12 the average response time through the
WCVR was 2.12 seconds on Tomcat and 0.977 seconds on IIS, whilst the aver-
age of response time through DSSA was 2.198 seconds on Tomcat and was 2.39
seconds on IIS. The WCVR results (through the WCVR) are lower than the

response times through the DSSA on both web server applications.

We also observe that the overall performance through the WCVR. (on 1IS and
Tomcat web servers) is considerably improved as compared to that obtained when
using the DSSA. This is understandable because we have utilised the performance

of a WCVR using a new hashing strategy.

Therefore, we have developed a new hashing strategy to describe hashing
calculations for the referenced objects that are shared among the web pages of
the target web site or the web application. This strategy applies for all web
referenced objects that have been developed before use over the secure HTTP
request-response model. This new hashing strategy to improve the hashing per-

formance and minimise overhead times of the proposed WCVR system.

7.3.3 The development of the WCVR system to ensure

the survivability of web content

The WCVR prototype is implemented into three mechanisms: web register, re-
sponse hashing and HTTP interface mechanism. We carried out a set of exper-
iments to address the security objective (detection, and recovery) and the per-
formance objective. The results of a pilot study have shown that the proposed

system (WCVR) provides a high coverage of detection and recovery.

198

7.3 A Summary of Contributions

7.3.4 Experimental studies to evaluate the reliability and

effectiveness of the WCVR system

In this thesis, five case studies are presented to evaluate the reliability and per-
formance of the proposed WCVR system: case study - security objective (detec-
tion and recovery), case study for micro-benchmarking performance (SHA-1, and
SHA1-extended) and case studies K, R, and J to measure the end-to-end perfor-
mance through (i) the WCVR system, (ii) the DSSA system and (iii) without

any verification system.

We have tested our system in an environment which is composed of two web
servers: Apache 1.3.29 with Tomcat container 5.01 on MS Windows Server 2003
and IIS 6.0 on MS Windows Server 2003. The two web servers contain a copy of
the target web site and a shopping cart application. Over 70 attacks were per-
formed against the server-side generated static and dynamic web content security
properties. We exploited different types of vulnerabilities that allowed for the
modification of files in the designated directories of a web server. During testing,
all the attacks launched against the web servers were detected and recovered by
the WCVR system.

To conclude, results from a series of experimental tests (K, R, and J case
studies) appear to suggest that the WCVR satisfies the performance objective for
verification of integrity of server-side web content. We believe that the overhead
of WCVR system can be significantly decreased, if the server technical speculation
follows the current industry standards. The experimental studies indicate that the
performance of the WCVR is dependent upon the CPU processing capabilities,

the memory size and network bandwidth.

199

7.4 Limitations of Research Work and Future Work

7.4 Limitations of Research Work and Future

Work

It should be noted that the WCVR system has some limitations. These limita-

tions are related directly to our solution design and implementation.

In the solution design, we have used a set of work assumptions that may
limit the functionality of our solution. For example, we have assumed that SSL
protocol is confined to secure the communication channel between the client and
server sides. However, this assumption may be invalid if the integrity of data in
transfer is violated. To address this issue, we believe that our approach can be
extended to derive all tampering attacks over the HTTP request-response model
include data integrity in communication channel. Such an extension is planned

as future work.

Another work assumption is that the data validation modules should be op-
erated in the client and server sides. But this assumption may be invalid if an
existing web application does not have a data validation modules on the server-
side. Therefore, future work to develop a data validation module on a server is

related to our solution would help to address this issue.

Optimisation of our solution implementation is another issue for future work.
The WCVR system tested is not optimised. We believe that the optimisation
of the conceptual design is possible. Such an optimisation would increase the
effectiveness of the WCVR system.

200

Appendix A

Case Study - Security Objective:
Table

The following table contains the the whole list of alerted web content that are

compromised by running malicious web content manipulation software.

To assess how successful the WCVR system is able to detect, and recover
from the unknown tampering attacks; students (K, R, and J) started to run the
proposed web register mechanism. This mechanism takes the hashing measure-
ments for every server-side static web content stored in the designated directories
of the suggested web sites/applications hosted on Tomcat and IIS web servers.
Note, the response hashing mechanism takes the hashing measurement for the
generated dynamic web content during online transactions (when a user request

a web resource).

Over 70 tampering attacks were launched against the designated directories of
the suggested web sites hosted on Tomcat and IIS web servers. During the testing,
all the attacks launched against the web servers were detected and recovered by
the WCVR system.

201

Test1 Tomcat
Number jURL Altered Data Result Detection Recovery
http://192.168.10.1/tree2/hillside.needh [Title changed to 'This is a different name' [Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/st proj.html|. succesful
stweb.gif altered in paint, colour of
letters changed
1 Changed Background to Yellow
http://192.168.10.1/tree2/hillside. needh [2007-2008 now equals 'This’ Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/st proj.html|2005-2006 now equals 'ls' succesful
2 2003-2004 now equals 'A’
http://192.168.10.1/tree2/hiliside.needh [Amanda.htmi/Kiana.htm has been Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/Hachett tre|Deleted succesful
es07/trees.htm Amandahtmi/vanessa.htm has been
deleted
Amandahtml/micheal.htm has been
3 deleted
http://192.168.10.1/tree2/hillside.needh |Deleted everything between Htmltags |Unaltered web page, recovery Yes Yes
4 am.k12.ma.us/cyberventues/Hachett tre succesful
http://192.168.10.1/tree2/hillside.needh [penline.jpg swapped around with Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/rodpen07/pthobopenguin.jpg succesful
enguins_rodman07.htm Underlined and altered colour of Miss
5 Rodmans Third Graders
http://192.168.10.1/tree2/hillside.needh [Delted CSS from this file Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/rodman_ab succesful
out both/rodman_about both.htm
6
http://192.168.10.1/tree2/hiliside.needh |Deleted all of the table Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/dummett p succesful
7 enguins06/main.htm

202

hitp://192.168.10.1/tree2/hillside.needh |Replaced the multiple images titied Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/teeth riddle|toothS.gif, teethnn.gif and tttt.gif with a |succesful
s_du/contents.htm comment displaying the following
characters, 'There is no picture'.
8
http://192.168.10.1/tree2/hillside.needh |Font altered from style 3 to ariel Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/teeth riddletBackground changed to pink succesful
s du/trevor/index.html 'Mind boggling teeth riddles' was
9 changed to testing static content
http://192.168.10.1/tree2/hillside.needh iChanging table width from 700 to 900 Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/give mrs e |Changing border colour to blue succesful
10 arly/main.htm Changing table alignment to left
http://192.168.10.1/tree2/hiliside.needh |Editing the four images sky colour to Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/give mrs e |black. succesful
arly/htmi_give/olivia.htm Changing overall background colour to
11 pink
http://192.168.10.1/tree2/hillside.needh |Deleted Hyperlinks and altered images so |Unaltered web page, recovery No Yes
am.k12.ma.us/cyberventues/early treeQ [they have a big black line going through |succesful
5 6/tree.htm the middle
1
http://192.168.10.1/tree2/hillside.needh |Changed the following link Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/poliution mi'http://www.apple.com/quicktime/produsuccesful
ovies05/main.htm cts/qt/' to 'www.northumbria.ac.uk'
13
http://192.168.10.1/tree2/hillside.needh [Changing centre image to a red circle Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/Hachett tre succesful
esQ7/amandahtml/natalie.htm
14
http://192.168.10.1/tree2/hillside.needh |Deleted all chain images Unaltered web page, recovery Yes Yes
am.k12.ma.us/cyberventues/st proj.html succesful
15

203

Test 2 1)
Number [URL Altered Data Result Detection Recovery
Delete created by Mrs Rodman third Unaltered web page, recovery
http://192.168.10.1/tree2/hillside.needh |graders, plus link, Change date of 2004~ |succesful
1 am.k12.ma.us/cyberventues/st_proj.html]2005 to 2012-2005 Yes Yes
Unaltered web page, recovery
http://192.168.10.1/tree?/hillside. needh succesful
am.k12.ma.us/cyberventues/road to rev|Put simly face on image, Changed image
2 students/timeline indexvertiical.htm size width to 700 Yes Yes
http://192.168.10.1/tree2/hillside.needh {Changing Johnathon to Shearer, Changed |Unaltered web page, recovery
am.k12.ma.us/cyberventues/animals ma |table to 700, Edit animals on the football |succesful
3 rgolis06/main.htm picth Yes Yes
http://192.168.10.1/tree2/hillside.needh Unaltered web page, recovery
am.k12.ma.us/cyberventues/na webs m succesful
4 ckenna/main.htm Delete titie, Delete beaded.gif Yes Yes
Unaltered web page, recovery
http://192.168.10.1/tree?/hillside.needh |Backgroung color to vilote, Delete 2007- |succesful
S am.k12.ma.us/cyberventues/st proj.htmi{2008 Yes Yes
http://192.168.10.1/tree2/hillside.needh |Edit image tttt.gif background to grey, Unaltered web page, recovery
am.k12.ma.us/cyberventues/teeth riddle|delete the toothbrushes, Changed table [succesful
6 s du/contents.htm width to 1000 Yes Yes
http://192.168.10.1/tree2/hiliside.needh Unaltered web page, recovery
am.k12.ma.us/cyberventues/Hachett tre{Changed arbres07.gif by spraypainting [succesful
7 esQ7/trees.htm over the file, Delete trees by Denise Yes Yes
Unaltered web page, recovery
http://192.168.10.1/tree?/hillside.needh |Changed back?2.gif by making pencil pink, |succesful
am.k12.ma.us/cyberventues/rodman ab |{Changed Charles link too
8 out hoth/rodman_about both.htm norhumbria.ac.uk Yes Yes
http://192.168.10.1/tree2/hillside.needh |Changed a.gif so the man has a beard, Unaltered web page, recovery
am.k12.ma.us/cyberventues/rodman ab }and mad light in the windows and had a |succesful
9 out both/a/letter.htm red door Yes Yes

204

http://192.168.10.1/iree2/hillside.needh
am.k12.ma.us/cyberventues/guer pen p

Unaltered web page, recovery
succesful

10 oems/penguins_main.htm Delete all links and CSS Yes Yes
bitp://192.168.10.1/tree2/hillside.needh Unaltered web page, recovery
am.k12.ma.us/cyberventues/early treeQ [Changed alligment for Samatha to left succesful

11 6/tree.htm and changed font size to 24px Yes Yes
http://192.168.10.1/tree2/hiliside.needh [|Changed hobopenguin.gif so penguin has {Unaltered web page, recovery
am.k12 ma.us/cyberventues/dummett p |a baseball hat and delete the massive succesful

12 enguins06/main.htm penguin logo Yes Yes

Unaltered web page, recovery
http://192.168.10.1/tree2/hillside.needh |Changed crispus_attucks.jpeg size too succesful
am.k12.ma.us/cyberventues/am rev tim|[100 and delete the image source

13 eline sample/sampler.htm james_armistead.jpeg Yes Yes
http://192.168.10.1/tree2/hillside.needh Unaitered web page, recovery
arm.k12.ma.us/cyberventues/pollution _miChanged background color to blue and [succesful

14 ovies05/main.htm changed Everglades to monitor Yes Yes
http://192.168.10.1/tree2/hillside.needh Unaltered web page, recovery
am.k12.ma.us/cyberventues/rodpen07/h |Changed the direction of the arrows in |succesful

15 tml/jutiachinstrap.htm juliachinstrap_1 Yes Yes

205

Appendix B

Case Study for
Micro-benchmarking

Performance: Tables

This appendix contains the following two tables:

1. Table 1: List of all entries that had been measured using SHA-1 function.

2. Table 2: List of all entries that had been measured using SHA1-extended

function.

206

0 0 0 0 0 0 0 0 0 0 JoL Jo 0o Jo Jo 6EY9/7699L- |229 dslsjunoooe
0 0 0 9L |0 o o o 0 0o o 0 0o Jo o 26999969 029 dsl'sjajoHpuiy
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5£6.078961- |666 dsl'noyueyyl
0 0 0 0 0 0 0 0 0 0 |o 0 0 Jo o 0r9106£85- |085 dslajdwex3s|dung
0 0 0 0 0 0 Jo o 0 0 Jo 0 0 Jo Jo e8vLLLYS- |66 SindinOieiniesial)i
0 0 0 0 0 0 0 0 0 0 |0 0 o o o 68/S€S06L- |19S SSejo’ | ueag
0 0 0 0 0 0 0 0 0 0 |o 0 0 |0 |o 6009¥6.L |6GS dsl'ajeyuels
0 0 0 0 0 0 o o 0 o |o 0 0 Jo o £€6990LELL |9G6 sse|o'noAduey]
0 0 0 0 0 0 0 0 0 0 o 0 0 o o 9£5862€00L [95G dslsanbay|ebayy|
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9608/.¥658- /1S Is-ouidoj podaiyiopn
0 0 0 0 0 0 0 0 0 0 |0 0 0 Jo o 990/2216L- |00S Lionensibayiawoisny
0 0 0 0 0 0 0 9 9 0 |0 0 0 o o 0¥ES960VS- |061 22gan|eASIMO0OMOYS
0 0 9. |o 0 0 |0 0 0 0 |0 0 0o 0 |o 92/6556561- |08Y SE[0"UBagUII0IoN00D
0 0 0 0 0 0 0 0 0 0 o 0 0 Jo Jo a190v€S//1L- [8.¢ SSE[0’'UBDEaD|000}0g
0 0 0 0 0 9L |o 0 0 0 |0 0 0 Jo Jo 06€/€L92GL [9/¥ sse|o ueag|iendsr
0 0 0 0 0 0 0 0 0 0 |0 0 0 Jo Jo Z.511680v- [0/v SSe|2 ueagqgiel |
0 0 0 0 0 0o o 0 0 0 |0 0 o o o Z8LYSLI/LL [89Y sse[o'ueagLdx]
0 0 0 0 0 0 0 0 0 0 |0 0 0 0o Jo vi212rL0vL [99v ssejo'ueaghl|
0 0 0 0 0 0 0 0 0 0 |o 0 o o o 6508.880L¢ |[8GY dslourdojuiep
0 0 0 0 0 0 0 |0 0 0 o 0 0o {0 1o Z95086.L- [vev $50°sajlis-{anen
0 0 0 9. Jo gL |o 9 9 0 |0 L gL oL |o 0£9£191L/8 [60% enel’ | ueag
9l 0 0 0 0 0 0 0 0 0 |o 0 0o Jo o L PEBGOEPEL- [99€ eaelnojuey}
0 0 0 0 0 0 0 0 0 0 |o 0 0 [0 o GEL9ESELEL [L9E dsl"ouruoissaguibo
0 0 0 0 0 0 0 0 0 0 |0 0 0 Jo ol 91G0SEPSLL |8SE Lonensibayewoisn)
0 9l 0 gL o 0 0 0 0 0 o 9 0 Jo Jo G1/876686- |£SE ©8g2N|EABI000MOYS
0 0 0 0 0 o Jo o 0 0 |0 0 0o Jo o 6¥60LEZYYL [8PE eAel" UBSgUIIOIONI00D
0 0 0 0 0 o fo o 0 0o |o 0 0 o o 6VEL2E2Y0T- |LVE enel ueagsan00}eg
0 0 0 0 0 0 0 |o 0 gL |0 0 0 o o 82v.06..91- |9vE eael‘uesgjlendsr
0 0 0 0 0 o o o 0 0 [0 0 0 Jo o £42025v0Z |eve enelueagzies |
0 0 0 0 0 0 0 0 0 0 |o 0 0 Jsi o LE086/2EC- |2ve eaelueeg|dxg
0 0 0 0 0 0 0 0 0 0 o 0 0 (o ot 9571590091~ [LvE eael'ueaghi|
0 0 0 0 0 0 0 0 0 0 [o 0 o [0 o 9£6CL61788 |€€) wyy'ipey
0 0 0 0 0 0 |o 0 0 0 [0 0 0 {0 Jo zZvziseleL |ve wy'Ipeys
0 0 0 0 0 91 |o 0 0 0 |o 0 0 Jo Jo 0 0 Xy’ ainjeubis
Gl 145 €Lt ZL | LL | OL G (1) awip | wnsydoayo |(e3hq) azis apig swen o4

LVHS Buisn 1| a|qel

207

0 0 0 0 0 0 0 0 0 0 |0 0 o Jo }o S15/v2/102- {8EEL ~] ~eaelusingep
Gl 0 0 0 0 0 0 0 gl Jo |o 0 9, |91 |o G8/¥2/LlEL- |ZEEL b mouse|
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 106668981 |/LEl eaelJusi0dnH
0 0 0 0 0 0 0 0 0 0 |0 0 gL {0 |0 1989€v60.L- [9Z21 uusuoDUOda IO M
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 £€91€10Z64L |£021 dslsjdwex3)|
0 0 0 0 0 0 0 9, {0 0 o 0 0 o |o 8LYeGZSY6- (v/LL dsl'sjybi|4yo0g
0 0 0 0 9 o o o 0 0 |0 0 0o 0 [0 GZ06¥202YL- [1pLL }1b71e0 jo AdoD
9l 0 0 0 0 0 0 0 0 0 |0 0 0 (0 o GZ06¥Z0ZYL- [LyLL 1bies
0 0 0 0 0 0 0 0 9L [0 |0 0 0 {0 o 608£78.6 00LL Hib iejjop
0 0 0 0 g 0 9 0 0 0 |0 0 0 (0 |9 6.£8/6V6E1L- |660L foulruipyele|eqojuy
0 0 0 0 0 0 0 0 0 0 o 0 0 Jo o £1128965.- |/60L Upye1ajaquodaniopm
0 0 0 0 0 0 0 0 0 0 |0 0 0 (0 |o 9985680LS |/60L dsT'maipueiy
0 0 0 0 0 0 0 0 0 0 o 0 0 o o ¥958cCLEL |S/6 nb-auejdie
0 0 0 0 0 9 |o 0 0 0 o 0 0o o Jo 88EL666VE |06 our uiwpyabedpleog
0 0 0 0 0 0 0 0 0 0 |o 0 0 0 |0 88C1666VE 0.6 dslourebedpieog
0 0 0 0 0 0 0 0 0 0 |0 0 0 {0 |0 8G2S1S90L L- (806 S$SB|0°19|AJ9S0118Us)
0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 /62998268~ |06 dsl'sjawex3bngeaQ
0 0 0 0 0 0 0 0 0 0 [0 0 0 [0 o 00//S77981- (888 $50°'91A1S-dSI
0 0 0 0 0 0 0 0 0 0 o 0 0 o o 0/8990£59 .- {088 ur'e19[8aoNONpIEOY
0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 ¥905220./8. {958 dslsjdwex3ieadey
0 0 0 0 0 0 0 0 0 0 |9 0 0 o o 86898€2G6L- [128 SSE|D’|}N18%00S
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ZrlLoc9lol- |[/62 dwexzbuipesHebay)|
0 0 0 0 0 0 0 0 0 0 |0 0 0 Jo o ¥88Y¥G9Z1L9- [S9/ dslai01
0 0 0 0 0 0 0 0 0 0 |o 0 0 10 |0 Z0££598201- |59/ dsTinoboT
0 0 0 0 0 0 0 0 0 0 [0 0 0 [0 |o ¥168V6969 |E€¥/ dsl"a|dwex3zewid
0 0 0 0 0 0 0 0 0 0 |0 0 0o [0 Jo S¥62889801L- [0CL A RETINEISOIETVETS)
0 0 0 0 0 0 0 0 0 0 |0 0 0 {0 1lo 01186/88L [v0L mSindinoisuasia|i
0 0 0 0 0 0 0 0 0 0 |o 0 0 {0 |0 Z.0€9¥5602 [689 plidwex3awudsidus
0 0 0 0 9 0 0 0 0 0 o 0 0 [o }o 98G906.GV- €89 eael|1N19x20S
0 0 0 0 0 0 0 P 0 o 0 0o o 1o 6185988091 [059 S NERRIEDED)
0 0 0 0 0 0 0 gl o 0 |o 0 0 o o $£2959000¢ [0€9 dsl'siegjusy
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/9/€806¥¢ |529 dsl's)unooowiip3

208

0 0 0 0 0 0 9l |o 0 0 Jo 0 o Jo 1o 9290LESEY |6102 ssejo-ainjeubls
0 0 0 0 0 0 0 0 0 0 |0 0 0 0o Jo G£0228229 |L¥02 dsl'utor
0 0 0 0 0 0 0 0 0 0 st o 0 [o o ¥/1GZELSYL- [GZ0¢ sse|o'aseyoind
0 0 0 0 0 0 0 0 0 0 o 0 0 (o Jo €1796€06LL |6002 dsl maipa0noNpIeCY
0 0 0 0 0 0 0 0 0 0 |o 0 0 [0 |s 629.G€6L.LL [0/6) odsayaimdenindinQ
0 0 0 0 0 0 0 0 0 0 o 0 0 0 o 916/8v9v¢ [9961 sse|0"uoo8UU0Dgd
0 0 0 0 0 0 0 0 0 0 |0 g 0 [0 o LvZ.6ELYIL- [6G6L Jwiy yoseas-yoinb
0 9 g 9 0 0 0 9 0 9L |[sL |o 0 o o LZYSLEZOYL |8L61 b/ ULIUODBOIONP.IBOY
0 0 0 0 0 0 0 0 0 0 |o 0 0 o o Zev88LL/- |6061 ssejojuLlodnH
0 0 0 0 0 0 0 0 0 0 o 0 0 0 o LEV161729 |9¥8l Xy ey yAlbajul
0 0 0 9) g 9L |o S 0 |o 0 gL [9L o ZS0Ev8YS6- [218l Hb-abiel-aueidie
0 0 0 0 0 0 0 0 0 0 |0 0 0o 1o 1o 66585652~ [2811 enel"oseqoing
0 0 0 0 0 0 0 0 0 0 |o 0 0 o o £1/22080LL- [09.1 eAelusl|DM}IoMeN
9 0 0 0 0 0 0 0 0 0 |o 0 0 (0 o 16/8GvE0LL- [09/1 I'oursjsiagauriplecd
0 0 0 0 0 0 0 0 0 0 |0 0 0 Jjo |o 979956509 [9v./l SSE|0°JUBIIDMIOMIBN
0 0 0 0 0 0 0 0 0 0 |0 0 0 o o /680€5886- [6991 ['our ulupynuspyureiy
0 0 0 0 0 0 0 0 0 0 |o 0 0 o Jo 9/9/891ZL |8991L J1b'peq
0 0 0 0 0 0 0 0 0 0 |o 0 0 0 0 161856086 [0L9l dsl a|dwex3ay4
0 0 0 0 0 9 0 0 0 0 |o 0 0 o L 99902850/ [68G1L dsluen
0 0 0 0 0 0 0 0 0 0 |o 0 0 o Jo 9990Z850.L [68G1 dslue
0 0 0 0 0 0 9l |0 0 0 |0 0 0 0 0 8£888865Z |6G51 pinQlejnagiellyalig
0 0 0 0 0 0 0 0 S 0 0 0 5 G 0 0L/8G91/8- [/GSL b uodssed
0 G 0 0 0 0 0 0 0 9L |0 0 0 0 0 €/68L18/LL- |66V dsl-oul'nuspjuiepy
0 0 0 0 0 0 0 0 0 0 |0 0 0 0 0 192092288 |9lvL dsl"Apjpiodantiop
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80G./8Y¥LZ |0StL our Ajipojyiiodalyio pp
0 0 0 0 0 0 0 0 0 0 |0 0 0 [0 o LEBBZZSIYL- [OFPL dsl-uipyabueydoyu)
0 0 0 0 0 0 0 0 0 0 |0 0 0 {0 Jo \¥262v62- [0SVl R
0 0 0 0 0 0 0 0 0 0 |o 0 0 Jo o G0S96vSC- |08€El Hb'molel
0 0 0 0 0 0 0 0 0 0 |0 0 0 [0 o /8€68€T.8 [19€l "OUF MBIABONONP.IEOY
0 0 0 0 0 0 0 0 0 0 |0 0 0 Jo 1o G/80296€L- [SSEL 1 MOSUOASaYONBURD)
0 0 0 0 9 0 0 0 0 0 |o 0 0 o o 9v81699/9 |[ZvEL ~G~eneljual|Dge M
9 0 0 0 0 0 0 0 0 0 |0 0 0 o |o S¥669LLYL- [ZvEl ~p~ereMusi0gqapm
0 0 0 0 0 0 0 0 0 0 o 0 0 o Jo 9981699/9 [2vEl ~E~eAel'jusliDga
0 0 0 0 0 0 0 0 0 0 |0 9 0 0 Jo 9¥81699/9 [zvEl eAeljualDga M
0 0 0 0 0 0 0 0 0 0 |0 0 91 [0 o 1121166/0L [LvEL SEEINEIREE
0 0) 0 0 0 0 0 0 0 |0 0 o Jo o G/L8E06E9L [O¥El ~9~eAelusiiDga
0 0 0 0 0 G 0 0 0 0o |o 0 0o o Jo 8€88Y6/8¢ |0VEL ~g~enelusiiDge

209

0 0 9. |o 0 0 0 0 0 0 |0 0 0 e o ¥88/EL/6V- 1162 ~¢ | ~eAelioydsoiaul
0 0 gl |o sL Jo 0 0 ie [0 o 0 0 |0 Jol 8peegsleol /€62 ~Z\~eAelojdecisiul
GlL 0 0 0 0 0 0 0 0 0 |o 0 0 o Jo €61¥€L2SLL- [9E6¢ ~ L ~eaelioydadiaui
0 0 0 0 0 0 0 0 0 0 |o 0 0 o Jo 65LZLGPE- [8262 ~6~eAel1o1dsoseu
0 0 0 0 0 0 0 0 0 0 |o 0 0 o o L¥0G8S9L9 |8262 ~0l~eAelj01dsdia)ul
0 0 0 0 0 0 0 0 0 0 o 0 0 o o 168LG6v¥8/- |LL6Z dsl-ouruior
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ¥6/916.081- |2682 ~g~eAel iojdeosaju
0 0 0 0 0 0 0 0 0 0 |0 0 o lo |o 11961128 |168¢2 ~/~enel" 101dadsaul
0 0 0 0 0 0 0 |0 0 0 |o 0 0 o |0 8000S6EVEL [SE8C dsl'xepui
0 0 0 0 0 0 0 0 0 0 |o 0 0 o o 8061002291~ |£28Z ~9~eael"101daoia)ul
0 0 0 0 0 0 0 0 0 0 |o 0 0 o {0 8069126ES [16/C ~G~eael" 101080101
0 0 0 0 0 0 0 0 0 0 |o 0 0 o Jo 9686£690LC [04.2 16" 11e0wo)
Gl 0 0 0 GL g 9 G 0 0 o 0 0 |91 o €G/S/PYESL |29/2 16 180W0)
0 0 0 0 9L 10 0 0 0 0 |0 0 0 o o 099¢vLZ/EL- |6€22 SRR
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 056799058~ [L09Z dsl ulupyAlpooju|
Gl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22/809188L [99G¢ dsl uiupyiivou
0 0 0 0 0 0 0 0 0 SL |0 0 0 o o 820vL0Z.L |€262 "UIWIPYANIIOTOINIO M
0 0 0 0 0 0 0 0 0 0 |o 0 sL [0 o 0€€185666L [1L0SZ SEREEES
0 0 0 0 0 0 0 |o 5L jo o 0 0 [o o 80¥90.€.¢- [08te L' sS800iJHodonIop
0 0 0 0 0 0 0 |0 0 0 |o 0 0 [0 Jo 9€6G/l2ve [geve odsayaimdeQinding
0 0 0 0 0 0 0 |0 0 0 |o 0 0 Jo o 9c6G/leve [seve odsayaindednding
0 0 0 0 0 0 0 0 0 0 o 0 0 o o 9e65/Leve [SEVE NSINAINOIBIAIRS IS
0 0 0 0 0 0 0 0 0 0 |9 9 0 o o 82v06Z156 [86E2 q'o|Npeay
0 0 0 0 0 0 0 g 0 0 |o 0 0 o o 1E08V16L.- |6¥€C eael’810)S
0 0 0 0 0 0 S 0 0 0 o 0 0 Jo [si LBILGIYSIL |PEEZ sl'ulpyaooNpIeog
0 0 0 0 0 0 0 0 0 0 |0 0 0 o o 9£686628¢ |veee 11D Jemod-1eawo}
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 918126/~ |vvee dsl-eoljonp.eog
0 0 0 0 0 0 0 0 0 0 o 0 0 Jo Jo £68Y./08GE- |8€ZZ 001" UODIAB}
0 0 0 0 0 0 0 0 0 0 |o 0 0 lo o 821618~ [s2ee ej0"esuodsel [euibuo
0 0 0 0 0 0 0 0 0 0 |0 0 0 [o o £08e8vZr8 (8122 Ael"@suodsal [euibuo
0 0 SL |0 0 0 0 0 0 0 o 0 o0 [o o 05.668/9€L [902¢ dslaseyoing
0 0 Gl [0 0 0 0 0 0 0 |o 0 0 j0 o 8€1¥09150L¢ |06L¢ sse|o"J01dediajul
0 9 0) 0 0 0 9 0 0 |0 0 0 (o 1o 1/166¥59¢- 1212 Ael'esuodsal Jeuibuo
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ¥8./£¥8202 |[2/1¢2 dsl"Ajipopypodenjiopn
0 0 0 0 0 0 0 0 0 0 |0 0 0 |0 |o 0268/6850L [0212 Ael"esuodsal [euibuo
0 0 0 0 0 0 G 0 0 0 Jo 0 0 o o 02v0v/8GL |- [8912 Ael'asuodsal” jeuibuo
0 0 0 0 0 0 0 |o 0 0 o 0 0o |0 Jo ZE966V9v0L |12ie I'WLIUOD8oNONpIeog

210

¥6912lce-

0 0 0 0 0 0 0 0 0 0 |0 0 o Jo Jo 9/9608/82L [98.¥ VoL ~erel sl uAuboul
0 0 0 0 0 0 0 0 0 0o |o 0 0o o o 1Z6V.€91G- |0SLY 16°sx00q
0 0 0 0 0 0 0 0 0 0 o 0 0 o |o 6208090+0¢2- |vELp D0 | ~erel 1ayAubeiul
0 0 0 0 0 0 0 |o 0 0 Jo 0 o o 1o 1166€//28\- [2€lv £01 ~eael ey nAubaul
0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 §9Z9v185¢ |86%Y bdl;adedusalb

168¢

eael"ainjeubig

0 0 0 0 0 0 0 |0 0 0 |0 0 0 |0 |0
0 0 9L |0 0 0 0 o 0 0 5L |o 0 Jo |o 018G2€61EL [/68€ sse|o1eyAIIbaul
0 0 0 0 0 0 0 |0 0 0 |0 0 0 0o |o ¥6912L2¢- [/68¢€ | ~eaelaj1e50U8US0)
0 0 0 0 0 0 0 0 0 0 |0 0 0 [o |o ¥69LZ128- [/68¢ el'ainjeubis jo AdoD
9] 0 0 0 0 0 0 0 0 0 o 0 0 |91 |o 8¥9667825- |€L8E ppoys-qiiber-dsleso
0 0 9L |0 0 0 0 0 0 0 0 0 0 0 0 1662060 |00.¢€ dsi"Apjojuj
0 0 0 0 0 0 0 |o 0 0 |o 0 0 o |o 2.26€096€- [195¢€ eaelue)
0 0 0 0 0 0 0 0 0 0 |0 0 9, |0 |0 ¥/$598929- |[/16¢ dslourxspu
0 0 0 0 0 0 0 |0 0 0 |0 0 0 o |o 0ySESE88TL |/6VE dslouraurpieog
0 0 0 0 0 0 0 0] 0 |0 0 0 |0 o €E6/9vSe. |LLYE dsl"uipyrodaniop
0 0 0 0 0 0 0 0 0 0 o 0 0 o o 1682298802 |[yoce Ael'asuodsal |euiblo
0 0 0 0 0 0 0o o 0 o |0 0 0 o Jo £€£8860L¢ |8LEE Ael'asucdsal” [euibuo
gl 0 0 0 0 0 10 |o 0 0 Jo 0 0 o Jo £££8860LC |8LEE el asuodsal” jeulbuo]
Gl 0 0 0 S 0 0 0 0 g 0 0 9 0 0 01100£825- |692¢ Ael-osuodsel jeuibiio
0 0 0 0 0 0 0 0 0 0 |o 0 0 9. |o 7005200291 |L6LE ~y 1 ~enel 10jd80.8)ul
0 0 0 0 0 0 0 |0 0 0 |0 0 0 o Jo Y¥E68e0vZL- [981€ eAel10idadiol
0 0 0 0 0 0 0 Jo 0 0 |o 0 0 o Jo 18PEGE8E0T- [ELLE ~g~eneliajjjuiew
0 0 0 0 0 0 0 |o 0 0 |0 0 0 [0 Jo 1¥S18L2LL |2LLE eAel1g)jjulew
0 0 0 0 0 0 0 o 0 0 |0 0 0 o Jo 627566766l |89lE ~z~enelJgjurew
0 0 0 0 0 0 0 0 0 0 |0 0 0 |0 o LZ1¥9866GL- [GELE Ael osuodsal Jeuibuo
0 0 0 0 0 0 0 0 0 0 0 0 0 0o |o Z206¥01829L- |vELE Ael-asuodsal |euibuo
0 0 0 0 0 0 Jo o 0 0 |0 0 0 o o 206¥0L829L- [vELE Ael"asuodsal jeutbiio
0 0 0 0 0 0 0 |0 0 0 |0 0 0 o 1o 206¥018291- |vELE 1 A\OSUOdSaYOLoUS)
0 0 0 0 0 0 0 |o 0 0 |o 0 0 [0 Jo GGLEBYZOEL- |S80€E enel uonosuuodgQq
0 0 0 0 0 0 0 |0 0 1e o 0 0o o o 1096/v/vv- |LL0€ SSE[OHED
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80¥2991€2 |8¥0€ I"ouruiwpyAipoolU|
0 0 0 GL |o 0 0 0 0 0 0 0 0 0 |o L912866%8L |¥L0E dsl-ourApoju

211

€ |0 10 |91 {0 {o 10 10 988£266G5 - -qpisquinyj
0 0 9l 0 0 0 0 965€2€59/. - gqp'squinyt
0 0 0 0 velLeELLELS-

Jeyleyswib

0 0 0 0 0 0 0 0 |o gl o Jo |o $08859V¥ .- Jib"1adedussib
0 9l 0 0 0 0 0 0 9. |o 0 0 [sL oL 08859 ./- ‘1ededusalb jo AdoD
0 Gl 0 0 0 0 0 Gl SL o 0 0 o o 29/189¥6¢C1 dsl"xepul
0 0 0 0 0 0 0 0 0 |s1 o 0o o 1o v86/76.6V |- X}'S3LON-3ISYI 1T
0 0 0 0 0 G 0 0 0 o sl o jo |o LYY6G9/GL- b 1euueq-eyexel
0 0 0 0 0 0 SL o 0 0 0 0 0 0 €/8/0216¢ pi¥ qiber-dsleso
9 0 0 9 9 g 9l |0 0 |0 0 GL [sL o G/968€969- psl-ourysiqpodenio g
0 0 0 0 0 0 0 0 0 0 0 0 0 0 6¥0L0LLL6- eAefJayfiubajul
0 0 0 0 0 0 0 0 0 |o 0 0 [o Jo 02¥2102¢2.1 | L L~eael 18y Aubajun
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0ZyLEBLYLL- DL L ~eael 1e)uAjuba)us
0 0 0 9 0 0 G 0 0 o 0 al |0 |[o 6€129/9%/1 50| ~eAel1a)yubajul
0 9 0 0 0 g 0 0 9 0 9L Jie |9t o €1.6102502 B0 L ~eAel 1oy Aubajul

212

1889€4905683V¢6995900€8330800804dY44¥5€0A6
039vZe8092.yvOve8da80080052€80Vera0yeorio

4/0¢ve330¥81560va20a4v991a4ay30841¢31€00ad

—

—

ay608VY1 L9V1Y55¢09¢8642039¥839€€0.0V3880H6

£/49603¥36..0034969230G¢90081908+¥8900€8.C

—

val€e19¢016418048.03v8ve3403856€.3893vd4LE

168¥4004998/31059¥62508£9¥9£2£3002599¢€295

8900086£v812¢6¢2/83GLLVPS6£0.L0V6£58V6959.

148908¢/£2€£90£91606020009V60506.40831 1980

6000¥150€8.0V1320VE6056946vIL6¢16900£618

¢00003ae¥30006.4vY5€601000411802,090382930

§00¢s50009/.£3048080001206.€0218/.0V04v4310

(9436249381 26v80vereay4s£40a08v4€3401049a

6£v30£8406823¥3968385008¥530896.49.6950.

Ovv(aQ999908.£4€99v20€303498€891900663€€2

£39vS1val .agsev634v602£3699069903£89£490¢€

6v¥v3£906030¢4de2dv4012/£8009616063v1828.9

1060381 2802vP36903/2VS8Y998Ev4€£.8580VYea

-~

6VVv88668v9803002919v859.1.020410£3064440

6251 0Svd3a9¥00.0€959v48¥86£3£0¥84.20.29608

-—

38090295905449¢v452808915€34/v/9-421 569806

V80601 0dv8(dr0860.4vAVYA6402594vHO9a1vZ498

3690€5135308491.290980943190%2£0.2.5288090

S6v891EL491VYL496€610€2996104£0394939461

§62806vICLLVADITA6IVLIH6654V0VIO43408LYE

€2€061v0215/.3329849400303€93.409.0910980

4v€4085.2€09633v8.000134€A58v8.AQvvc./82C1

286080EYd9a¥vY38606£3328200¢6610.33536/40

402v0.0983¥0190651880109V5014816€£03€L081

¢544¢83v84v6av3018.vo0¥98y004909aicdev3.Lg

(=] [o] [o] [a] o] (o] jo] jo] o] (o] [a] o] [} (o} (o] ja] [e] (o] (o] (o] (o] (o] (o] jo] o] o] [o] [Te] (] fe]

2ve43691 ,9€v40584vaS/510.039€423L0E8E LYY

(o] je] (o] (o] [a] (o] (o] o] (o] [o] (o] o] {o] (o] [e] [{s] [a] (o] (o] (o] [a] [a] [o} (o] (o] {o] [e] (o] [{o} (o] [a] [o] (o]

(=] je] (o] o} [o] (o] jo] la] (o] [e] [e] [a] [a] [lp] o] [o] [a] (o] Ja] (o] [o] (o] [o] o] [e] fa] (o] (o] [a] [} [To] {a] []

[=][=] (o] o} [a] (o] Jo] o] (o] jo] (o] (o] (o] [a] (o] (o] ja] | Io] (o] {e] (o] (o] [e] (o] Je] (o] [o] o] o] o] (o] (o] fef)

(=] o] o] o] [o] o) [o] o] (o] [o] (o] (o} (o] {To} |e] {e] [o] [a] [e] (] [o] (o] (o] (o] (o] (o] Jo] (o] o] jo] (o] (o] [a])

(o] [o] [o) {o] [o] fo] (o} (] (o] (o} o] [o] (o] [o] (o] (o] (o] (o] [e] [o] jo] jo) (o] je] lo] o] [} o] (o] o] o] fe] le])

(=] I{¢] [elle] [a]{a] (o] o] (o] (o] (o] (o] (o] |e] [e] [a] {a] [a] [a] [a] o] (o] (o] jol jo] o] [o] (o] (o] o] (o] [e] ()

(=] o] (o] fa] [{o} (o] [o] o] (o] [o] (o] (o] (o] o] [o] o] [a] [} [o] (o] [o] o] [o] jo] (o] (o] jo] (o] (e} (o] le] o] le]

(=] [e] ol [o] (o) o) fe] o] (o] o] (o] (o] (o] (o] [a] o] (o] [a] [{c] (] [a] [a] (o] e] (o] (o] (o] {e] (o] (o] jo] {o] a) (\

(o] ie] fa] o] lo) (o] {o] o] [a] jo} Jo] o] (o] (o] je] o] (] [a] [a] [e] [a] o] [a] [a] o] (o] (o] [o] {a] (o] Jo] [o] fe] O\

[elle])a]ie] [a] o] lio] (o] (o] lo} (o} (o] (o] (o] (e} [a] (e} [a] (e} (] [l [e] [e] (o] (o] (o] (o] (o] lo] (o} [l fed el (]

(=] 1] [o] o) fa] jo] (o] [o] {u] (o] (a] (o] (] [(o] [e] o] [«] o] o] [a] {e] je] e} [a] (o] (] [e] [e] [a] (o] [e] [ef [e] O\

(o}l el o] e} o] la] (o] (e} (o] jo] (o] (o] [{(c] o] (o] (o] [o] =] (o] (e} {e] le] (o] [e] (o] (o] (o] [e] [(o] (o] (o)

[=] [e]le] (o] (o] (o] jo] o] (o] o] (o] (a] [o] {a] [e] [e] [«] [] o] [a] le] [a] lo] [{c] [o] [a] {w] o] (o] o] (o] [a] [e) O\

0 860191 109¥2003¥AA8082003316935/62105vA0A
9l 80V36805000084S.va3053090V063V666915/195
9l 44v0036¥¥va 16634002800V209008993800€0363
SL | vL | €L | 2 1L 0l 8 9 14 A DEM wnsyo9y9

papusixa-|YHS buisn :z s|qe .

213

«—

~—

04836£9£059849¥88vVAA008004€90QDYO¥ELACOE9E

L31v£014801188286409316V80€E.L8041.6456410

—

—

-~

980VA0LY4VYECYZ.LLIVAdYEEFE63E00344V.L.09.00

-

10/958vE095499490481¥583€069905€1298.2501L ¥

—

8v3¢v49¥8¢00.08018463040891 v1.SG.dvaOvava

— |

9992Av./68/2/0V.13885€0249.6VZ4331900.046

882030A¢01V¥6010v96816££05€15143.40033960

88¢0300€0LVY6010V969362£05€15143.90039960

~—

—

~—

—

fuusst

9002¢9v944/9€0.9¢Y /L 2SVSEIYAYYaS60v0c639Vd

—| =

£89060309¢0v0AC0CACY.ISVYA08VYVYLLVYETELYS

1/928€1£63.000v9805v653422.3€92€£8421 1804

(o] (o} le] [{e] [o] {o] (o] (o] o] (e} [] [

(=] (] (o] [{e] o] (o] [a] o] o] {a] [«] ()

~

(o] [o] [a] [{s] [o] [a] jo] (] o] ja] o] je)

(@] [} [} [{o] o] [o] fan) [{o] jo] fan] [en] Leo)

~

(@] [e] {e] (o] [o] (o] ITo] [{e] fo] fer] o] lie}

(=] [e] {a] (o] [o] (] [e] [{s] o] {e] o] jo)

(o} |} o] [{o] {a] (o] {e} {e] ja] [(s] [e] =]

(@] [e] [} [{e]] (o]] (o]] fer] o] [}

~

(@] le] o] Iie] (o] [o] (o] [a] jo] (o] [o) (o)

[=] [e] fa] [{o] [o] [o] (o] o] (o] [(s} [a] (o]

[=] [=] K] [{o] [o] [a] (o] jo] ITe] [o] o] {a]

(=] [} fal I 1o] (o] (o] [a] [Te] [o} (o]} (o) fa]

-

[w] lo] [a] [{+] [o] [Is] [o] (o] ja] o] e} o]
x

(@] [e] ja] [{] [a] (o] (o] o] la] [{s] jo} je]

(o] o] jo] {is] (o] (o] (o} lo] (el le] o] (o]

060.24044€014981v093084¥A0A9600DLSLYLLLS

€002901904009.4€081L0063€8£5455€018406VSY

¥5084085648YV3.26229980889¢9909£0£63864,L

¥508404S5648YV3.2622998099929909€0£63964.L

-

Qldvee6eaiev.ioa/arsivo0a684€€3.24/£629vd

3€46680029450€902908Y 1 210VISEALLALPOEBOY

3Y565000VISVY4VYEDILECZEa0IS8CY L 9P89558LG6ve

L¥€£193€410828449896€498€00v9840€€C 1922023

yO4a0v68v| 196883/82vV4/419390490000L56V6G0

0£00631499¥080/80492003661 1£51382085v4592 /.

a0908003¢€¢5846V61868609v0€2E8Y2000233488

<

9lvVv65.0d3v01£€40259085940G1008vE30£60L0

8/3/v£44604¢VV600562Y4008y¥12A00V6.95990

§00-4623V64v6¥19.920090931 1 AV6990.804849-8

V06V48980v¥Pa4/vveEQL/10534899139.69€0886

v8041+Ad38024d951/9v2898020V002.39032¢EDEE

€6VPZ0v4rz80£08Y6AE L 34060424€96€0vQ44256

40V6Q54.0v05€£.290829€.8649VEIV L 423966EY

88¢£632¢40v3300€2.09552403064£9.931 £629000Y

033081 ¢6€£4.9900v0635£€¥9204909V41094129¢€

[{o] [=] [e] [] [To] [o} jo o] (o} jo] (o] (o] [a] (o] (o] [o] (a] {a] o] L]

(o] [o] [a] [e] [a] (o] (o] o] o] (o] (o] [e] o] (a] [e] [o] (o] [a] =]]

(o] |} (o] (o] [a] (o] o] o] (o] [a] (o] (o] [a] je] (o] (o] [e] [a] o] L]

(o] [} [e] o] [o] o] o] o] (o] (o] (] jo] o] [a] (o] [a] [«] (o] [e] lTs]

(o] [o] (o] (o] (o] (o] [lo)] [a] (o] (o] (o] [o] (o] [a] [a] (=] (o] (o] (o]

(o] (o] (o] (o] (o] [To] ja] (o] (o] o] [o] o] o] (o] (o] (o] (o} [e] (o] (=]

(o] (o] (o] [o] o] la] ja] lo] (o] (o] (o] o] o] (o] (o] [e] [a] (o] [a] {=)

(o] [} (o] (o] [«] (o] [o] [a] (o] [o] (] (o] [a] [a] o] o] (o] [a] [a] [Te]

(o] (o] (o] (o] [a] [T} ja] [o] (o] (o] (o] o] lo] o] (o] [o] [e] [a] [e] {e]

[e] [o] [a] (o] [o] [u] o] [} (o] o] (o] (o] [of [a] (o] Je] [{c] [a] [a] [«

(o] [o} o] [o] [} {e] (o] jo] (o] e} (o] jo] [a] (o] o] (o] (] [e] {e] ()

o] o} o] (o] o] [a] o] (o] jo) (o] [o] o] (o] (e} [e] [o] (o] o] [e] {{

ol o} o] (o] o] o] lo] (o] (o] (o] [o] [a] [{c] (o} o] [a] o] (o] (o] [}

(o] o] (o] (o] (o] [a] [af o] (o} (o] (o] o] lo] je] (o} o] o] [e] [e] (o]

o] o} {e]le] (o] o] (o] (o] [a] (e} [{} o] [o] jo] (e} jo] [a] (o] [e] (o]

800138vZ18699€49801944v2vA841.68Q00L€428E

214

—

352Q4V1Er8494€vA0693vV.L25EG488.Y0LVEDLES

uid

-—

SA€10256£A09¥29839018vY.30030/.¢28085003Y

—

oot

0600/38229140/.vS524894SVSE05/v0a.G51598Evd

6019v8¥030543/901411AC0AL6VVYVAOZ8S.VYYE0T

V439908v81LV¥S9L0vEZD1 10881 1A¥895488v8A

8¢1EV492€4400655066000S55098vE.606.3VES0D

£286206491£G€/86V0/¥8603035CVY6L.LVVYPLOVALE

—

02600.4032¥0041£0L4076£992VEEEVSAAI64356

040.49.49€90¢5v8C¥96¢836€3¢AVL3VL6€0E8S5LO

Sv¥/986£5¢08.699¥0050V.80v43£0VVY90038YS

238vv030v8S 1 20v4veELGE380Yvaavadsa.LeLcOveE

£20524.83190910/240v€94Av0060Z9VI6Y3L90093

V.V.3YerS039€903L1LEVY8YL L 3PZAvdL /6460310

3€638/v303269080.39/.9v03941 9849024963340

-—

—

~

£0€69..4189/5v400606v694V04V3P633906V1L 2860

Yva894a.LyOe1L0L0r495€9048AVA61982.06.706D L

-~

884518516€580035v036891580v€25/89.1 18894

6VOVer.946260/42¥05200A0S22383v0L024.0¢8h

V1aeev4rarovso1ied3i4381¥06v1 84080880

~—

YriQeev4rayrovsoL6a3L4381v06v1i881¥080/880

0902892941 6V0V1a6ErV93vVeyed.d0A0008g1Ed

—

ovS§eQvyvesdd13631v.L1L 1906599100891 2£832091L

6¢009€Qv0PY168056.006330QA29902351 0259008

2696¥5089.950v8.807.40¥10£68800vA0902V63

gvededseasol 1 .y039€348426£€309299584A5Y

(o] o] o] [a] |o] [o] [} {a] [a] o] (o] {a] (] (o] jo] (o} (] [a] [a] (s} o] (] (o] (o] [a] (o]

~—

§£9164988v1094YL 1 399AV891 LL0VIAYEYSIYSIYQ

Pt

3803149€3vy9308504545590-49630.6/3AVLLLS

~—

20¢2065039v098YA4raa2¢608Ev08SEVEQYEIDIS

385¥Q0.£860£9318210305802¢0023812.0v039606

~—

§049891896.0ev06305495V6900056vy83va4L1A8D

56¥88900490602¢0658988VAEI0VAVZH04048VI6L

881V05610416V9dv3arv440829648r002/834542S

§6¥889004906020658988VALI0VAVZE04048V961

—

§6v889004806020658988vVALI0VAVZH0-4048VI6 L

—

3136030€.920284095VA32ASLSYEY06208423ri

ySveL/9v/8945181/£4£69Y8Y6063929. 440162

(=] [e] o) o] lo] le] (o] (o] [{e] }{o] [{e}
hanll B anll & ol

(o] (o] [e] (e} (o] [o] (o] (o] (o] (e} (o] [a] [o] (o] (o] (o] [o] (o] [«] (o] [o] [o] [a] (o] (o] [a] (o] (o] [o] (o] [o] (o] (o] [o] (o] (o] (o)

(@] [«] [a] [lo] {a] [a] Jo] le] [o] (] [a] o] [o] [e] [o] (o] (o] o] [{s] (o] (o] [a] [(¢] (o] o] (o] [e] (o] [a] o] [a] [a] (o] (o] [o] [To] [}
A

(=] [=] {e] [o] (o] [e] (o] jo] [a} (o] (o] [a] [e] [e] [o] (a] {a] [o] (o] (o] {e] [o} (o] (o] [o] [a] [o) (o] [a] [a] [a] (o] o] (o] [o] {a]]

(=] (e} {e] (o] {«] (o] (o] (o] [o] [o] (o] [{o] [a] [«] o] [{p] [o] o] (o] (o] [o] (o] [o] o] (o] o] (o} (o] [o] (o] o] (o] [e] [a] [T)] o] o)

(@] [«] [o] [o] [o] [a] jo] lo] [e] (o] [o] [o] (o] (e} (o] (o] (a] [{s] [«] [e] [a] [a] [Ts] o] jo] (o] [e] (o] jo] (] [e] [a] (o] [e] (o] [a] [e]

(=] [o] ITe] [o] o] (o] [a] o] (o] o] jo] (o] o] (o] (o] (o] (o] [a] (o] (o]] [a]{s] (w] la] [{s] (o] [e] ja] [e] je] (o] (o] (o] e} (] [

(] {e] [{e] o] (o] (o] jo] lo} {a] (o] (o] (o] [e] jo] o] (o] [e] (o] [o] (] [o] [e] (o] [«] el {e] [a] [a] (o] [o] (o] (o] o] {a] [e] (o] (o)

(o] (] [o] (o] lo] [a] [o] o] [} o] o] [} |e] (o] (o] (o] (] [a] (o} {a] [o} (o] (o] [a] [of [a] (o] {a] (a] (e (o] (o] (o] o] (o] o] (e

[e] [} [o] [o] (o] [a] [o] [a] (o] (o] [a] [} je] (] (e} (e} [e] [a] o] [a] [{s] la] (e} {a] [e] [Ts] [e] [} (o] (o] (] (o] [e] o] (o] {e] (o)

(=] {e] o] lo] [a] (o) (o] [To] [e] {o} (o] [e] (o] [o) je} je] [} (o] [e] o} 1o} o] [o] o] o] (o] [a] [o] (o] (o] (o] e} (o] (o] je] o] o]

(@] [} o] [o] ITo] Ja] fao] [0] loo] (o} o] fo] feo] (o] o] (o] (o] [} (o] o) {e] (o] (] (o] [(c] o] [} (o] (o] (o] [e] [e] o] (o] o] (e}

(o] [o] [{s] =] fu] (o] [o] }Io] [e] [{o} (o] (o] o] (o] (o] jo] [a] [a] (o] {a] [e] {e] [«] (o] (o] [a] [e] (e} (o] [(o] [a] (o] [e] [a] (o] [{s] (e}

[foo] [w] [{o] [o] [w] [&] [&} o] [] [r) fou]] [o] [=] (&) fo) [en] [en] @] [{e] [w] [w] [o] [} {To] [en] [u] ITo] f o] [w]) [en] [en] o] o] fan) Yol

(o] o] (o] [a] (o] (o] o] je] o] (o] [{o} o] [a] (o] (o] o] jo] [a] [To] (o] [a] la] (o] (o] [e] [a] [e] (o] (o] (o] (e} (o (o] (] [a] [a] i}
A

G8d3962829€V1O486v9¢4100£626438€009VIra3

215

e

—

03¥5952.00€669Vr00058059299.2944v0001 044

-

068661 9¢052Y8SIVSY80£Y9919¥0d30085328€9.L

-—

031931 dvvari0dv46¥6Aryd64vad30v 1 339070¢€

€40¢SvP43v0Vv80caLye3LLLLS410/9vi¥0553398

(s039QVvs08639¥2v 130,069 081 /86.0354€52S

00941€£890.99v9168135/82£46901690218£30¢.00

eds600€34€v82./vavvYI2d26180.,8AVA8LEZLOLY

9€90¢9900€1L¢2eSedv /84561 /92vAEL 80005803 L

~

~—

€0001880.4521 12800v0295v£02vI385A8010v694

|~

304.00+029308003009.99321A429eVAL88VESED

48281023660V6£AZOVLDLOV.LEY408QL0A0VYYLIELL

¥9343¢€31/083¢€V120999942£80491089.98v01A3L

ad31599e60v84vPv0OEL63EVZY8E9/4/986V8936€

9€/530495¢006..4€£6400012860£09€68920530

gr8600049€30€1 8085085YIACL8PVSYIEVSL 90

Q420082546081 03¥89-40£8.€500£85095830955Y

84003/¥906¥109€Q22230VAV63VLLLAVALLYPLOSY

480vev62v08698.5004000€20A L Ly 4936052v4€9

8v869196149€508YVIVV4YLO.593v498Y 1 VAVEET

6€£G86VE410429v6/£290D.7695806096VA058D L

~—

6£6861Vv€410d429vS6.£2900/2¥695806296V30580L

6£6861VE41L0429v5/£2900.$695806096V30590.

-—

2Lyde8de36499902632/9v6030695063£0820.00

96¢39vav0v2es01 959612690V 1 02V8607YIraVOV

et

0033€0328000vayY203085290e0C6959.0537869

4v63.2/1V1899€€030008LVEAELYILL6L8EDZZRL

VvEQV(110020528vyvavyL38.6av493930561v08a503

9431¥69838/9vd.V¥9069V0V988330V4495QVV68E

ASVYZ656600£8Y188161£04.82258VAP650985€99

AEr09520vVYLI6£d0900+Leay6v1L/91ALLG€93Z3

£8€020€800Sv400004VAZoLESL98€9L 4008160V

8€2¢19904d/806/+v020£A0986290.2.529¥939051

¢80v¥6caVvLELB532aac898iery93rO8YLOeea408

££0498¥353089394/vvAVeva.0913vAcos4eaiz33

YoLYVYVYV60008488691005.98+006/£08845£QH4ES

404004615925060/590.44€6/3360/231A0£53A0L

(@] [o] (o] o] [o] {a] (o] (o] [o] (o] jo] o} o] (o] [o] [o] [a] [a] (o] [e] [o] [e] [e] [a] [{c] [a] (o] (o] (o] [{c] [a] (o] (a] (o] [e] (o] [}

[} le] (o] o] (o] [a] [o] {e] (o] [a] [e] o] (o] (e} (o] o] o] [e] [o] (] [e] [a] [e] le] (o} (o] [e] } o] [{«] jo] (o] [e} (o] (o] lad [a]) o]

(o] {e] (o] o] [a] {a] [} (o] [o] [o] [e] (e} (o] [e] [e] (o] (] [{c] (o] (o] [a] |} ja] (o] [o] (o] (] (o] (o]] (o} [o] [a] ja] [a] o] fe]

(=] [a] o] [o] [o] o] (o) (o] [o] (o] ja] [o] [o] [a] IT] ja] [e] o] [a) {e] o] |o] [e] lo] (o] (o] [a] (o} (o] (o] [o] [o] (o] (o] la] [{o} (=]

(=] [o] (o] (o] [a] (o] (o] le] o] (o] jo] (o] (o} (o] [o] {e] [o] [o] (o] [e] [a] (o] (o] [e] (o] je] {e] lo] [a] [o] (o] [o] [a] (o] o] [o] lo]

(e} o] o] (o] [o] [a] jo] lo] [o] (o] [o] [a] o] [a] [] [o] [a] jo] o] (] lo] [a] (] o] [o] (o] [a] (o] [{s] (o] [e] [e] [e] [o] {a] (=] Ke]

(=] (] o] o] [} [o] [a] (o] [a] [=)] (o] (o] (o] [e] (o] [o] [o] ja] (o] (o] [e] (] [o] (o] (o] (o] (o] (o} (o] (o] [o] (o] [w] (] [}] (o]

(o] {e] (o] [a] [a] (o] (o] {o] [o] (o] [o] [o] (o] [o] [e] [a] [{e] o] [a] {e] o] [e] (o] je] [o] (o] [a] [a] [{o} [o] (o] o] (o] (o] (o] o] (o)

(=] lo] o] (o] [a] [o] (o] (o] (o] (o} o] (o] (o] (o] jo] (o] (o] [e] (o] lo] (o] Lol o] [a] lie] je] =] lo] [e] (o] (o] (o] jo] o] fa] La] ol

[=]{=] (o] [a] (o} (o] [a] (o] [o] o] (o] (o] (o] [o] (o] (o} [{(c] [a] [o] [o] (o] (o] [e] (o] (o] (o] (o] (o] [{s] fe] (o] (o] (o] (o] [e] fe] ja)

(=] [} [o] [o] {e] (o] je] (o] (] [a] (o] (o] (o] (o] (=] (o] (o] [Ts] {o] [o} o] (o] (o] (o] (o] [o] [o] [o] [{] (e {o] (o] (o] (] o] (o} o]

(=] fo) (o] [a] (o] o] o] (o] (o] (o] (o] (o] (] (o] (o] (o] [o] (o] (o} (o] (o] [«] [a] (e] (] (o] {Te] [e] (o] (o] {e] o] lo] (o] [e] o] (]

(o o]] (o] [o] (o] o) (o} o] (o] o] jo] (e} (o] (=] (o] [} (o] (o] (o] [Tp] o] (o] (o] [o] o] (o] [{c] (o] (o] (o] (o] (o] (o] (=] [o])]

(=] foo] o) (] [e] (o] {o) (] o] [w] [[To] (o] (o] (o] [«] [{e] (=] (o] (=] (o] [{o] [e] (] [a] [=] [a) [e] [{e] =] (o] (o] [«] [e] [o] (o] o]

(=] [o] [o] [a] [a] (o] (o] (o] [o] [o] (o] [e] {{+] [e] (o] [} (o] [«] (o] [«] (o] (] [«] [a] (o] [o] (o] [«] [« [+] (o) [=] (o] [«] [} (o] =]

Vi/Q2vvicd304980522¥/6v6063ALE420€ALTYE

216

$050/¥42968.06V.003€AV61/8590VAVIYLOELY

9./3v80€30455580.5V58vALa06v69916.42V8CL

808945804949.40952939996¥3.381 L038VYETILYSL

884010€9€.04¥0624£av4rO00v9060YP VS L V40Ed

oneloAe

(@] [o] le] o] (o)

~

(@} lo) o] [} {a)

(o] fand fen] [[}

(] fen) fen] [av] fuv)

(o] jo] o]] (o)

[} [} L] o] (o)

(@] [l feu]) [en] L]

(=] [o) lo] o] la)

(o] o) o] (=] [

QOO0 |O

(o] (o] la] [e] (e

WIOIOO|O

03¢9€2820396820VSC006Y9r8OYY039¢L09PveV .

L43v80534€0060402£00929.065£6080104V09€L

~—

SVv6.0456¥22dceL2q€e18098£660809202.0869090¢

—

143¥80534€0060402€009¢9.065£6090¥04v09€ L

143¥80$34€0060402€009292.065€6090704Y09¢€L

—

£€04510840/30¥648224VPPeee300..09VIZVSIL0

Z5peSv461£0030492vO£8565084(08€2.94009vH

—|—

036660..10/5EV940058303€0£££9629385€¥09D

008436190£9200.£192109662€H/50£89€£00093Y

6v9036.4¥090VYorc3dcayvy.5£8921 39949096

—

22058€9b21 59¥198392.210€39¥06VEEYD61 6349

Q901 9¢805.8€.0666565YPYO32C091980E6LEIVE

—

$85.08860334/.,0451¥89544599263/904V.03V0

¥€6.094960339..0451v89544599¢632904V.03V0

6192./366¥¥032.085605005309v4.82645153806

—

CY06v0daSySe0.LLVOye/331LL525VELE6D484631LD

804€906636£06¥300¥6964/69€405288500v49IV

a0a4104052006362039¢2£8€48.810294€230842

9228¢14¢0943¢/91/261388590508/8./003399Y

§.51v4.0/9801030¢2299896v61v00.8900949.6

—

5106¥89dveEPes4026/.06698v884996¥.2££A2€09.

V93ASVE0VIVE2SSSEEIVEELSYLGE9L8VOLGZ0L06

V93Q5V60VIVEZSSSEEIVEELSYL5E918V0LSZ0L06

V930SV60v3V6ZSSSECIVEELSPLSE918V0LGZ0L06

0€9113/441906/.£58088-415069v£0668.v/99049 1

1££089Vv61£ar0¥aAd68655545465960984.v4440

12G¢5935v089vS0vvA0ELL3900349169102004¥26

(o] [o] la] [a] (o] [a] (o] jo] [a] {e] [«] [e] [{s] [a] [o] o] (o] (o] [e] [o] (o] e} (] o] o] [a] [{c]

(o] o] o] (] lo] (o] o] jo] (o} (o] o] o] la] o] |o] (o] lo] [o] (o] (o] (o] (o] (o] (o] [ad le] L)

(e} {o] [o] (o] lo] (o] (o] jo] (o] {a] (o] (o] [e] (o] (o] [of (o] o] [e] (o] (o] [e] [o] [a] (o] {o) (o]

(o] le] (o] (o] (o] IT] (o] jo] (o] jo] (o] (o] [a] (o] [} [a] o] [eo] (] o] (] la] (o] [a] [o] (o] []

o] (e} {la]{e] fa] {{s] (o] {e] [} o] (o] (o] [a] (o] {o] [o] (o] [o] (o] ja] fo] (o) (o] jo] {e] fe] L]

(o] [e] o] [o] (o] (o] (o] [o] [o] (o] (o] jo] o] [o] (o] (o] (o] {e] (o] [a] (o] o] o] (o] o] [a])

(o] [e] o] [o] (o] [o] [o} jo] [o] [o] (] {{c] [la] [a] [e] (o] [e] {a] [«] ls] (] o] o} [e] [o] (o] [e)

(o] [o] ol [o} (o] o] [o] (o] o] jo] (o] (o] [a] (] je] [o] (o] [a] [a] o] (o] le] (o] {a] (o] (o] o)

(o] [e] o] o] lo] jo} [o] o] [a] [o} (o] (o] (o} (o] jo] [{s] (o] [e] (o] o] (o] je] [(o} (o] [a] (] (o]

(o} {a] [o] (o] (o] [a] (o] (o] (o} (o] (o] o] (o] (o] o] [o] (o] [o] (o] [o] (o] (o] o] jo] (o] [a] (o)

(e} {e] jo] [a] {e] (o] (o] [{cl{e] {o] (o] (o] o] [e] (o] lo] [a] (o] [e] (o] [a] (o] l{c]{e] [{c] {e] (]

(o} (o] |} (o] o] [a] (o] [a] jo] (o] (o] o] (o] [o] o] [o] (o] [a] (o] [{c] [} jo] [a] (a] [e] (o] [e]

(o] [o) o} o] [o] o} (o] o] [o} (o] (o] lo] o} (o] [a] o] [o] (o] [e] (o] (o] (o] jo] [e] o] [a] =]

(o] [e] o] [} o] {a] (o] [a] (o] [a] (e] [o] [a] (] [e] [a] [a] [Is] {e] (=] [o] (o] o] [e] [e] [{e] [

(o] [o] [a] [o] o] [a] [a] (o] lo] lo] [} o] [a] (o] o] [of (o) jo] (] [a] [To] [{o] jo] (o] o] [a] (]

V6520¢95661Q052469Y0¢Z2390696809410315189

217

88l¢

019s1
JovzL 10 Jo |0 st |0 9L . [Le |5t [9) e e ot o gL .0 - 0d14£€2402/3/600833612/24201 105088822940
0 Gl [0 GL 10 0 0 0 0 0 0 0 0 0 0 Z195v453v310800080VO083/£20080€235 1 O66E6
gL |0 0 gl |0 0 0 0 0 gL o 0 0 0 0 €8105£98896Q v/ 130550281 92808121 0€6681

«—

9.625465¥39953£083988662343AIEVZIEIDLEYI

—

~—

-—

—

~—

9/625455v39953£093988562 3430 IEVZIEGD.LEVY

— i

— i

—f—

9£248429V1£¥08SZ01 L860YVYA8YI0OIE606EL893

843040.2.£0014v¥/8v650885953402,3339398100

—

-

—

-~

1896€£980504980/2vEALVYV.LA46V440ESVSHZSETO

3¢5631105.02416086V12vS6ZE60VI6006509V08

9311940¥3240€10906.£0v629€vO9¥36VIF3.L8AY

—

00.9509655¢08YSE9V696285936186QY.£39€804

4¢/2.4.03090/v8¥9/394000006456090V61 5002

8v31d40612.vSA9%.034641 39V 1658v8.6EGYVISS

032 160484904523981 €221 0€01352A2Y¥IVIS0L

(@] (=] {e][e] [e] [«] (o] (o] (o] (o] [e] o]

[o] [e] (o] (o] [a] [a] [o] [(o] (o] (o] ja]

[«] [} [e] {e] [a] [a] (o] o] o] (o] (o] [

(o] [a] e} o] (o] (o] Jo] o] o] [e] (o] (o]

(o] felie] (o] fo] le] {o] (o] o] [a] (o] {{o}

[e] [eo] [=] o) o] [o] fa] [To] o] (o] [To] fal

[=]ie]{e] e} (o] o] (o] jo] [a] [(o] ITo] fo

(=] [e] =] [[Tp] [] [w] L] [ar) JTo] {{o] Fou’

(=] [a][a] fe] [=] [a) (o] [{o] [e) fo] o] e

[=} o] la) [e] (o] (o] o] o] jo] (o] [T} o)

(@] [w] [o] [a] {a] {o] =] [T¢] {e] [w] [{c] {w]

(=] e} {e] (a] (o] [} (o] [a] o] [{e] [{s] =

(o] (o] (o} (o] o] o] fe] fa] (o] [a] [a] o]

[=] [o] [e] (o] [a] [w] (o] o] jod e} [To] [a]

(w] [{o] [@] (=] [a] (o] [} [a] o] (] (o] (o]

400€90509.LV9Lrse4500a961 12810€55423.21€80

218

References

[1]

Chang, C.C., Hu, Y.S., Lu, T.C.: A watermarking-based image ownership
and tampering authentication scheme. Pattern Recognition Letters 27(5)
(2006) 439-446 1, 4, 13

Wu, H.C., Chang, C.C.: A novel digital image watermarking scheme based
on the vector quantization technique. Computers & Security 24(6) (2005)
460-471 1, 4, 13

Rey, C., Dugelay, J.: A Survey of Watermarking Algorithms for Image
Authentication. EURASIP Journal on Applied Signal Processing 6 (2002)
613-621 1, 4, 13

Oftutt, J., Wu, Y., Du, X., Huang, H.: Bypass testing of web applications.
In: ISSRE 2004 15th International Symposium on Software Reliability En-
gineering. IEEE Computer Society, Los Alamitos, CA (2004) 187-197 1, 2,
5, 13, 50, 51, 61, 64, 71, 72, 74

Calabrese, T.: Information Security Intelligence: Cryptographic Principles
& Applications. Formely Thomson Learning (2004) 1, 13

Song, Y., Beznosov, K., Leung, V.: Multiple-channel security architecture
and its implementation over SSL. EURASIP J. Wirel. Commun. Netw.
2006(2) (2006) 78-78 Hindawi Publishing Corp., New York, NY, United
States. 2, 5, 13, 45, 46, 47

219

REFERENCES

[7]

[12]

[13]

Sedaghat, S.: Web authenticity. Master’s thesis, University of Western
Sydney, Australia (2002) 2, 3, 4, 5, 15, 23, 28, 29, 33, 47, 48, 50, 51, 57,
61, 64, 67, 72, 74, 81

Gehling, B., Stankard, D.: eCommerce security. In: Proceedings of In-
formation Security Curriculum Development (InfoSecCD) Conference 05,
Kennesaw, GA, USA (2005) 32-37 2, 5, 26, 27, 28, 34, 40, 41, 51, 61, 64,
67

Hassinen, M., Mussalo, P.: Client controlled security for web applications.
In Wener, B., ed.: The IEEE Conference on Local Computer Networks 30th
Anniversary, Australia, IEEE Computer Society Press (2005) 810-816 2,
5, 20, 56, 61, 64, 67, 69

Probert, R., Stepien, B., Xiong, P.: Formal testing of web content using
TTCN-3. In: TTCN-3 User Conference 2005. (2005) 2

Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation
of a TCG-based integrity measurement architecture. In: USENIX Security
Symposium. (2004) 223-238 2, 4, 61, 64

Sedaghat, S., Pieprzyk, J., Vossough, E.: On-the-fly web content integrity
check boosts users’ confidence. Commun. ACM 45(11) (2002) 33-37 2, 3,
5,47, 48, 51, 57, 64, 65, 67, 81, 120

Gritzalis, S., Spinellis, D.: Addressing threats and security issues in World
Wide Web technology. In: Proceedings CMS ’97 3rd IFIP TC6/TC11
International joint working Conference on Communications and Multimedia
Security, IFIP, Chapman & Hall (1997) 33-46 2, 5, 14, 18, 20, 22, 34, 44,

45

Reis, C., Dunagan, J., Wang, H., Dubrovsky, O., Esmair, S.: Browser-
shield: Vulnerability-driven filtering of dynamic HTML. In: Proceedings
OSDI 06 7th USENIX Symposium on Operating Systems Design and Im-
plementation. USENIX Association (2006) 61-74 2, 42, 61, 64, 72

220

REFERENCES

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

Sailer, R., Zhang, X., Jaeger, T., Doorn, L.: Design and implementation of
a tcg-based integrity measurement architecture. In: SSYM’04: Proceedings
of the 13th conference on USENIX Security Symposium, Berkeley, CA,
USA, USENIX Association (2004) 16-16 3, 41, 42

Stekelenburg, M.V.: Integrity: using the undefined. In: BILETA ’21:
Proceedings of the 21st British & Irish Law, Education and Technology
Association. (2006) 1-15 4

Glisson, W., Welland, R.: Web development evolution: The assimilation of
web engineering security. In: LA-WEB ’05: Proceedings of the Third Latin
American Web Congress, Washington, DC, USA, IEEE Computer Society
(2005) 49 4, 26, 27, 28, 33, 55

Ye, E., Yuan, Y., Smith, S.: Web Spoofing Revisited: SSL and Be-
yond. Technical Report TR2002-417, Dartmouth College, Computer Sci-
ence, Hanover, NH (2002) 4

Awad, E.: Electronic Commerce: From Vision to Fulfillment (3rd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (2006) 4

Rubin, A.: White-hat security arsenal: tackling the threats. Addison-
Wesley Longman Ltd., Essex, UK, UK (2001) 4, 67

Rubin, A., Geer, D.: A survey of web security. IEEE Computer 31(9)
(1998) 34-41 4, 13, 39, 40, 67

CERT: CERT statistics 1988-2006. http://www.cert.org/stats (2006) 4

Dierks, T., Allen, C.: The TLS Protocol Version 1.0 (1999) RFC Editor,
United States. 5, 6, 44

Oppliger, R., Gajek, S.: Effective Protection Against Phishing and Web
Spoofing. In: Communications and Multimedia Security. (2005) 32-41 5,
34, 107

221

REFERENCES

[25] Bass, T. CEP and SOA: An open event-driven architecture
for risk management. IT Financial Services ’07, Portugal (2007)
www.idc.pt/resources/PPTs/2007/Financial_Services/7_T1
BCO.pdf. 5, 7, 48

[26] Bingyang, Z.: An Integrated Web Security System. In: DEXA '03: Pro-
ceedings of the 14th International Workshop on Database and Expert Sys-
tems Applications, Washington, DC, USA, IEEE Computer Society (2003)
204 5, 19, 26, 34

[27] Oppliger, R.: Security Technologies for the World Wide Web. Artech
House, Inc., Norwood, MA, USA (2002) 5, 15, 18, 19, 21, 22, 23, 26, 30,
31, 32, 33, 34, 35, 40, 41, 107

[28] Park, J., Sandhu, R.: Secure cookies on the web. IEEE Internet Computing
4(4) (2000) 36-44 5, 32, 34, 51, 107

[29] Mikko, H., Vuorimaa, P.: Secure Web Forms with Client-Side Signatures.
In: ICWE. (2005) 340-351 5, 48, 49

[30] Deitel, H., Deitel, P., Nieto, T.: Internet and World Wide Web How to
Program. Prentice Hall PTR, Upper Saddle River, NJ, USA (2004) 5, 14,
15, 16, 18, 19, 21, 33, 34

[31] Stein, L.: Web Security: A Step-by-Step Reference Guide. Addison-Wesley,
Reading (1998) 5, 26, 34, 51

[32] Scott, D., Sharp, R.: Specifying and Enforcing Application-Level Web
Security Policies. IEEE. Knowl. Data Eng 15(4) (2003) 771-783 5, 34, 42,
50, 51, 60, 64, 67

[33] Kirkegaard, C., Moller, A.: Static analysis for Java Servlets and JSP. In:
Proc. 13th International Static Analysis Symposium, SAS "06. Volume 4134
of LNCS., Springer-Verlag (2006) Full version available as BRICS RS-06-10.
6

222

REFERENCES

[34]

[35]

[37]

(39]

[40]

[41]

Acunetix: The importance of web application scanning (2005)
http://www.sql-server-performance.com /wpaper_web_app_scanning.asp,
Accessed Date: 20/4/2005. 7, 14, 29

Tzay, J., Huang, J., Wang, F., Chu, W.: Constructing an Object-Oriented
Architecture for Web Application Testing. IJ. Information Science and Eng.
18(1) (2002) 59-84 7, 18, 34

Boston Consulting Group: Report of the KE-Business Opportuni-
ties Roundtable. Fast Forward: Accelerating Canada’s Leadership in
the Internet Economy (2000) http://www.e-com.ic.gc.ca/epic/site/ecic-
ceac.nsf/en/h_gv00222e.html, Canada, Accessed Data: 5/12/2005. 7, 18,
32, 107

Acunetix: Web applications: What are they? what of them?. (2007)
http://www.acunetix.com/websitesecurity /web-applications.htm, Ac-
cessed Data: 15/2/2007. 7, 51

Cardone, R., Soroker, D., Tiwari, A.: Using XForms to simplify web pro-
gramming. In: WWW ’05: Proceedings of the 14th international conference
on World Wide Web, New York, NY, USA, ACM Press (2005) 215-224 7,
32, 107

Erni, A., Norrie, M.: Approaches to accessing databases through web
browsers (1998) A. Erni and M. C. Norrie. Approaches to Accessing
Databases through Web Browsers. INFORMATIK, Journal of the Swiss
Informaticians Society, October 1998. 7

Lam, M.S., Martin, M., Livshits, B., Whaley, J.: Securing web applications
with static and dynamic information flow tracking. In: PEPM ’08: Pro-
ceedings of the 2008 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, New York, NY, USA, ACM (2008)
3-12 7,107

Chong, J., Pal, P., Atigetchi, M., Rubel, P., Webber, F.: Survivability ar-
chitecture of a mission critical system: The DPASA example. In: ACSAC

223

REFERENCES

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

'05: Proceedings of the 21st Annual Computer Security Applications Con-
ference, IEEE Computer Society, Washington, DC, USA, IEEE Computer
Society (2005) 495-504 13, 39, 43

Bishop, M.: What is computer security? IEEE Security and Privacy 1(1)
(2003) 67-69 IEEE Educational Activities Department, Piscataway, NJ,
USA. 13, 39

Berners-Lee, T.: WWW: past, present,
and future. Computer 29(10) (1996) 69-77
http://ieeexplore.iece.org/xpls/abs_all.jsp?arnumber=539724. 14, 15

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,
Berners-Lee, T.: Hypertext Transfer Protocol — HTTP/1.1 (1999) cite-
seer.ist.psu.edu/fielding97hypertext.html. 15, 19, 20, 21, 22, 23, 25, 45, 46,
50, 73, 92, 116

Rosenfeld, L., Morville, P.: Information Architecture for the World Wide
Web. O’Reilly & Associates, Inc., Sebastopol, CA, USA (2002) 15

Wikipedia: Web content (2008) http://en.wikipedia.org/wiki/ Web_content,
Accessed Date: 5/1/2008. 15, 16

Wikipedia: Dynamic web page (2008)
http://en.wikipedia.org/wiki/Dynamic_web_page, Accessed Date:
5/1/2008. 16, 17

Wong, B.: Sizing up Your Web Server. Sun World On-
line (1997) http://sunsite.uakom.sk /sunworldonline/swol-10-1997 /swol-10-
sizeserver.html. 16, 17, 172

Kalbach, J.: Designing Web Navigation. O’Reilly Media, Inc, Sebastopol
(2007) 16

Brabrand, C., Moller, A., Schwartzbach, M.: The bigwig project. ACM
Trans. Inter. Tech. 2(2) (2002) 79-114 17, 49

224

REFERENCES

[51]

[52]

[53]

[54]

[55]

(56

[58]

[59]

Steel, W.: Hints for web authors (2003) Mississippi Centre for
Supercomputing Research (MCSR), University of Mississippi, USA,
http://www.mcsr.olemiss.edu/ mudws/webhints.html. 18, 21, 22

Brabrand, C., Moller, A., Ricky, M., Schwartzbach, M.l.: PowerForms:
Declarative client-side form field validation. World Wide Web Journal 3(4)
(2000) 205-314 Kluwer. 18, 19, 48, 49, 50

Thistlewaite, P., Ball, S.: Active FORMs. Computer Networks 28(7-11)
(1996) 1355-1364 18

Liddle, S., Embley, D., Scott, D., Yau, S.: FExtracting data behind web
forms. In Proceedings of the Joint Workshop on Conceptual Modeling
Approaches for E-business: A Web Service Perspective (eCOMO 2002),
pages 38-49, Tampere, Finland, October 2002. (2002) 18, 34, 40

Bosak, J.: XML, Java, and the future of the web. World Wide Web Journal
2(4) (1997) 219-227 19

Girgensohn, A., Lee, A.: Seamless integration of interactive forms into the
Web. In: Selected papers from the sixth international conference on World
Wide Web, Essex, UK, Elsevier Science Publishers Ltd. (1997) 1531-1542
19

Dustin, E.; Rashka, J., McDiarmid, D.: Quality web systems: perfor-
mance, security, and usability. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2002) 19

Alameldeen, A., Martin, M., Mauer, C., Moore, K., Xu, M., Hill, M., Wood,
D., Sorin, D.: Simulating a $2M commercial server on a $2K PC. Computer
36(2) (2003) 50-57 20

Honkala, M.: Web User Interaction a Declarative Approach Based on

XForms. Technology, Department of Computer Science and Engineering
- Helsinki University of Technology, Espoo, Finland (2007) ISBN 978-951-
22-8566-2. 20, 49

225

REFERENCES

601

[61]

[62]

[65]

66]

[67]

[68]

Borenstein, N., Freed, N.: Mime — Multipurpose Internet Mail Extensions
(1993) RFC 1521 and RFC 1522. 21

Moller, A., Schwartzbach, M.: Interactive Web services with Java (2002)
BRICS, Department of Computer Science, University of Aarhus, Notes Se-
ries NS-02-1. Available from http://www.brics.dk/ amoeller/WwwW/. 22, 23,
29, 32

Prosise, J. Microsoft. NET ~ Web Forms (2002)
http://www.informit.com/articles/article.asp?p=25939, Accessed Date:
12/12/2005. 23, 24

DOD: Trusted Computer System Evaluation Criteria (TCSEC) (1985) De-
partment of Defense Standard 5200.28-STD, (The Orange Book.). 26

IBM: X-Force 2006 Trend Statistics (2007)
http://www.iss.net/documents/whitepapers/X_Force_Exec_Brief.pdf,
Accessed Date: 7/8/2007. 26

CERT: CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in
Client Web Requests. http://www.cert.org/stats (2002) 26, 44

Cooke, W.: Stupid JavaScript Security Tricks. In: Proc. 20th Na-
tional Information Systems Security, Conference, sponsored by NIST and
the National Computer Security Center, Baltimore, MD (1997) 116-127
http://csre.nist.gov /nissc/1997 /proceedings/116.pdf. 26, 28

Sengupta, A., Mazumdar, C., Barik, M.S.: e-Commerce security - A life
cycle approach. In: Commerce Security; Threats And Vulnerabilities; Se-
curity Engineering LifeCycle; Security Standards; I'T Act. Volume vol.30.,
SADHANA (2005) p.119-140 27, 33, 44, 51

Anderson, R., Lee, J.: Jikzi - a new framework for security policy, trusted

publishing and electronic commerce. Computer Communications 23(17)
(2000) 1621-1626 27

226

REFERENCES

[69]

[70]

[71]

[72]

[73]

[74]

[75]

176

[77]

Anderson, R., Lee, J.: Jikzi: A new framework for secure publishing.
In: Proceedings of the 7th International Workshop on Security Protocols,
London, UK, Springer-Verlag (2000) 21-47 27

Ye, E., Yuan, Y., Smith, S.: Web Spoofing Revisited: SSL and Be-
yond. Technical Report TR2002-417, Dartmouth College, Computer Sci-
ence, Hanover, NH (2002) This TR supercedes TR2001-409. 27, 28

Zhou, X., Huang, H.K., Lou, S.L..: Authenticity and integrity of digital
mammography images. IEEE Trans. Med. Imaging 20(8) (2001) 784-791
27

McGraw, G., Morrisett, G.: Attacking malicious code: A report to the
infosec research council. IEEE Software 17(5) (2000) 33-41 29, 52

Open Web Application Security Project: The Ten Most Critical Web Ap-
plication Security Vulnerabilities. Version 1.1 (2003) 29, 30, 33, 51

Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message
authentication. In: CRYPTO ’96: Proceedings of the 16th Annual Inter-
national Cryptology Conference on Advances in Cryptology, London, UK,
Springer-Verlag (1996) 1-15 29

Scott, D.: Abstracting Application-Level Security Policy for Ubig-
uitous Computing. PhD thesis, University of Cambridge (2004)
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-613.html. 29, 64, 65,
69, 118, 120

Core: Netscape = Communications Corporation: Core
JavaScript guide (1998) Mountain View, CA.,
http://developer.netscape.com/docs/javascript.html. 29

Spinellis, D.: Book review: Securing Java: Getting down to business with
mobile code. ACM Computing Reviews 40(8) (1999) 378-379 29

227

REFERENCES

(78]

[79]

[80]

[31]

[82]

[83]

[84]

[85]

[36]

Lewis, J.P., Neumann, U.: Performance of Java versus C++.
Technical report, Computer Graphics and Immersive Technol-
ogy Lab, University of Southern California (2003) Updated 2004,
http://www.idiom.com/ zilla/Computer/javaCbenchmark.html. 29, 106

The last Stage of Delirium Research Group-Poland: Java and
Java Virtual machine security vulnerabilities and their exploita-
tion techniques (2002) Poland, Black Hat Briefings, Singapore,
http://www.blackhat.com/presentations/bh-asia-02/LSD/bh-asia-02-
Isd.pdf. 30, 31

Paul, N., Evans, D.: .NET security: Lessons learned and missed from Java.
In: ACSAC '04: Proceedings of the 20th Annual Computer Security Appli-
cations Conference (ACSAC’04), Washington, DC, USA, IEEE Computer
Society (2004) 272-281 30, 33, 34, 40, 41, 107

McGraw, G., Felten, E.: Securing Java: getting down to business with
mobile code. John Wiley & Sons, Inc., New York, NY, USA (1999) 30

Chen, E.: Poison Java. (1999) IEEE Spectrum. 31

Netscape DevEdge: Client-Side JavaScript
Guide: Electronic Book (1999) http://devedge-
temp.mozilla.org/library /manuals/2000/javascript/1.3/guide/intro.html.
32

Huang, Y., Huang, S., Lin, T., Tsai, C.: Web application security assess-
ment by fault injection and behavior monitoring. In: WWW ’03: Proceed-
ings of the 12th international conference on World Wide Web, New York,
NY, USA, ACM Press (2003) 148-159 33, 74

Corsaire: A modular approach to data validation in web applications (2006)

white paper. 33

Yuen, P.: Practical Cryptology and Web Security. Pearson Education
(2005) 35, 37, 45, 47, 60, 99

228

REFERENCES

[87]

[94]

Pavlou, K., Snodgrass, R.: Forensic analysis of database tampering. In:
SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international con-
ference on Management of data, New York, NY, USA, ACM (2006) 109-120
35, 99

National Institute of Standards: Secure hash standard. U.S. Department
of Commerce FIPS PUB 180-2 (2002) 35, 65, 118, 120

Bellovin, S.M., Rescorla, E.: Deploying a new hash algorithm. In: Proceed-
ings of the Network and Distributed System Security Symposium, NDSS
2006, San Diego, California, USA, The Internet Society (2006) 35, 65, 118,
120

Dittmann, J., Wohlmacher, P., Nahrstedt, K.: Using cryptographic and
watermarking algorithms. IEEE MultiMedia 8(4) (2001) 54-65 37

Ricca, F.: Analysis, Testing and Re-Structuring of Web Applications. In:
ICSM ’04: Proceedings of the 20th IEEE International Conference on Soft-
ware Maintenance, Washington, DC, USA, IEEE Computer Society (2004)
474-478 37, 42, 64

Smith, S.: Outbound authentication for programmable secure coproces-
sors. In: ESORICS ’02: Proceedings of the 7th European Symposium on
Research in Computer Security, Springer-Verlag, London, UK, Springer-
Verlag (2002) 72-89 41

Park, J., Jayaprakash, G., Giordano, J.: Component integrity check and
recovery against malicious codes. In: AINA ’06: Proceedings of the 20th
International Conference on Advanced Information Networking and Appli-
cations - Volume 2 (AINA’06), Washington, DC, USA, IEEE Computer
Society (2006) 466-470 43, 69, 78, 80

Knight, J., Sullivan, K.: Towards a definition of survivability. In: ISW
2000. Information Survivability Workshop. Third Information Survivability
Workshop - ISW-2000. ‘Research Directions and Research Collaborations
to Protect the Global Information Society’, Boston, MA (2000) 85-90 43

229

REFERENCES

[95] Lipson, H., Fisher, D.: Survivabilitya new technical and business perspec-
tive on security. In: NSPW ’99: Proceedings of the 1999 workshop on New
security paradigms for ACM, New York, NY, USA, ACM (2000) 33-39 43

[96] Kent, S., Atkinson, R.: Security architecture for the internet protocol
(1998) RFC Editor. 44

[97] McLeod, S., Cohen, M.: SSL vulnerabilities. (2002) In Australian Computer
Emergency Response Team AusCERT conference. 44, 45

(98] Fu, K., Sit, E., Smith, K., Feamster, N.: Dos and don’ts of client authen-
tication on the web. In: SSYM’01: Proceedings of the 10th conference on
USENIX Security Symposium, Berkeley, CA, USA, USENIX Association
(2001) 9-19 44, 45

[99] WANGHAN, M., LUNG, L., WESTPHALL, C., RAGA, J.: Integrat-
ing SSL to jacoweb security framework: Project and implementation.
IEEE/IFIP International Symposium on Integrated Network Management
(2001) 779792 44, 45

[100] Guest, S., Schnitzenbaumer, John, C.: Web Ser-
vices Enhancements 1.0 and Java Interoperability. (2003)
Microsoft working draft. http://msdn2.microsoft.com/en-
us/library /ms996947. aspx#wsejavainterop2_topic2#wsejavainterop2 _topic2.
45

[101] Shao, Z.: Security of the design of time-stamped signatures. J. Comput.
Syst. Sci. 72(4) (2006) 690-705 47, 48

[102] Rivest, R., Shamir, A.: Payword and micromint: Two simple micropay-
ment schemes. In: Proceedings of the International Workshop on Security
Protocols, London, UK, Springer-Verlag (1997) 69-87 48

[103] Wusteman, J.: Web forms: the next generation. Library Hi Tech 21(3)
(2003) 367 - 381 48, 49

230

REFERENCES

[104]

[105]

[106]

[107]

108]

[109]

[110]

[111)

[112]

Ghosh, A., Swaminatha, T.: Software security and privacy risks in mobile
e-commerce. Commun. ACM 44(2) (2001) 51-57 49

Ricca, F., Tonella, P.: Analysis and testing of web applications. In: ICSE
'01: Proceedings of the 23rd International Conference on Software Engi-
neering, Washington, DC, USA, IEEE Computer Society (2001) 25-34 50,
72

Halfond, G., Orso, A.: Preventing SQL injection attacks using AMNESIA.
In: ICSE ’06: Proceedings of the 28th international conference on Software
engineering, ACM, New York, NY, USA, ACM (2006) 795-798 50, 74

Wallach, D.: A New Approach to Mobile Code Security. PhD the-
sis, Princeton University, Department of Computer Science (1999) cite-

seer.ist.psu.edu/wallach99new.html. 53

Glisson, W., McDonald, A., Welland, R.: Web engineering security: a prac-
titioner’s perspective. In: ICWE ’06: Proceedings of the 6th international
conference on Web engineering, New York, NY, USA, ACM Press (2006)
257-264 55

SearchAppSecurity: Keep the bad guys out: Build security into the SDLC
(2006) SearchAppSecurity.com. 55, 56

Valdes, A., Almgren, M., Cheung, S., Deswarte, Y., Dutertre, B., Levy,
J., Saidi, H., Stavridou, V., Uribe, E.: An architecture for an adaptive
intrusion-tolerant server. In Christianson, B., Malcolm, J.A., Roe, M.,
eds.: Security Protocols Workshop. Volume 2845 of LNCS. Springer Verlag
(2002) 158-178 58, 59, 65, 66, 87, 99, 118, 120

Porras, P., Neumann, P.. EMERALD: Event monitoring enabling responses
to anomalous live disturbances. In: Proc. 20th NIST-NCSC National In-
formation Systems Security Conference. (1997) 353-365 58

Scott, D., Sharp, R.: Abstracting application-level web security. In: WWW
'02: Proceedings of the 11th international conference on World Wide Web,
New York, NY, USA, ACM Press (2002) 396-407 60

231

REFERENCES

[113]

[114)

[115]

[116)

(117]

118]

[119]

[120]

[121)

Scott, D., Sharp, R.: Developing Secure Web Applications. IEEE Internet
Computing 6(6) (2002) 38-45 60

Brogden, B.: Java Developer’s Guide to Servlets and JSP. Sybex; Pap/Cdr
edition (2000) 64, 65, 102

Koh, H., Kung, S., Park, J.: The method to choose architectural approaches
in the software architecture design phase. icita 01 (2005) 103-106 65

X. Wang, Y.Y., Yu, H.: Finding collisions in the full SHA1l. In: In
CRYPTO’05. (2005) 65, 120

Haleem, M.A., Mathur, C.N., Chandramouli, R., Subbalakshmi, K.: Op-
portunistic encryption: A trade-off between security and throughput in

wireless networks. IEEE Transactions on Dependable and Secure Comput-
ing 4(4) (2007) 313-324 66

Aljawarneh, S., Laing, C., Vickers, P.: Security policy framework and
algorithms for web server content protection. In: ACSF ’07, Liverpool,
UK, Liverpool John Moores University (2007) 67

Aljawarneh, S., Laing, C., Vickers, P.: Verification of web content integrity:
A new approach to protecting servers against tampering. In Merabti, M.,
ed.: PGNET 2007 The 8th Annual Postgraduate Symposium on The Con-
vergence of Telecommunications, Networking and Broadcasting, Liverpool,
UK, Liverpool John Moores University (2007) 75

Merkle, R.: A certified digital signature. In: CRYPTO ’89: Proceedings on
Advances in cryptology, New York, NY, USA, Springer-Verlag New York,
Inc. (1989) 218-238 77

Snodgrass, R.T., Yao, S.S., Collberg, C.: Tamper detection in audit logs.
In: VLDB '04: Proceedings of the Thirtieth international conference on
Very large data bases, VLDB Endowment (2004) 504-515 98

232

REFERENCES

[122)

123)

[124]

[125]

1126]

[127)

[128]

129

[130]

Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.:
The ghost in the browser analysis of web-based malware. In: HotBots’07:
Proceedings of the first conference on First Workshop on Hot Topics in
Understanding Botnets, Berkeley, CA, USA, USENIX Association (2007)
4-4 98, 155

Wang, P.F., Li, JJP.. The one-way function based on computational
uncertainty principle. The Computing Research Repository (CoRR)
abs/0711.3663 (2007) 99

Mihgak, M., Venkatesan, R.: A perceptual audio hashing algorithm: A tool
for robust audio identification and information hiding. In: IHW ’01: Pro-

ceedings of the 4th International Workshop on Information Hiding, London,
UK, Springer-Verlag (2001) 51-65 99

Zoysa, K.D., Muftic, S.: Bi-directional web document protection system
for serious e-commerce applications. IEEE/ICPPW 00 (2002) 11 103

Amornsinlaphachai, P.: Updating Semi-Structured Data. PhD thesis, Uni-
versity of Northumbria, Newcastle, UK (2007) 106, 156

Troesser, D.: Filters in the Servlet 2.3 API. Java News Brief Year
2001 Issues (2001) OCI Educational Services, Sun Authorized Java Cen-
ter, http://www.ociweb.com/jnb/archive/jnbMay2001.html. 107, 108, 109

Apache: The Apache Software Foundation, Apache Tomcat (1999-2007)
http://tomcat.apache.org/. 113

Mosberger, D., Jin, T.: httperfa tool for measuring web server performance.
SIGMETRICS Perform. Eval. Rev. 26(3) (1998) 31-37 130

G, T., Abbott, Lai, K.J., Lieberman, M.R., Price, E.C.: Browser-based
attacks on tor. In Borisov, N., Golle, P., eds.: Proceedings of the Sev-
enth Workshop on Privacy Enhancing Technologies (PET 2007), Ottawa,
Canada, Springer (2007) 155

233

REFERENCES

[131] Razmov, V., Simon, D.: Practical automated filter generation to explicitly
enforce implicit input assumptions. In: ACSAC ’'01: Proceedings of the
17th Annual Computer Security Applications Conference, IEEE Computer
Society, Washington, DC, USA, IEEE Computer Society (2001) 347 160

[132] Brown, A.B., Seltzer, M.: Operating System Bench-marking in the
Wake of Lmbench: A Case Study of the Performance of NetBSD on the
Intel x86 Architecture. In: the 1997 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems. (1997) 214-224
http://www.eecs.harvard.edu/vino/perf/hbench/sigmetrics/hbench.pdf.
170

[133] Graham, J.: Web server sizing. Dell Power Solutions (2001) Issue 3,
http://www.dell.com/content /topics/global.aspx /power/en/ps3q01_graham.
193

234

