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ABSTRACT

This study examines the pedogenic processes and temporal changes occurring in soils
across six different aged plantations of Corsican pine (Pinus nigra), which were
otherwise similar in their environmental characteristics, including geology, slope
angle and aspect, altitude and land use history.

A representative soil profile was sampled, on a horizon basis, and a further 10 topsoil
samples were collected, on a grid basis, from each plantation. Properties determined
in the laboratory included pH, organic carbon content, particle size distribution,
exchangeable base content (Ca, Mg, K, Na), total free and organically-bound iron
content, and lead and zinc concentrations. Morphological and chemical changes
within the soil profiles were examined to shed light on the processes and pathways of
soil formation, and one-way analysis of variance (ANOVA) was used to compare
topsoil characteristics between the different plantations.

Morphological and chemical changes within the soil profiles indicated that organic
matter accumulation and mor humus formation, acidification, clay translocation
(lessivage) and incipient podzolisation were the dominant pedogenic processes. There
are very few systematic age-related changes in soil morphological or physical and
chemical characteristics, possibly due to a combination of young stand ages, high
topsoil variability, soil mixing due to drainage operations and silvicultural practices.
There are, however, a number of statistically significant but non-systematic
differences in soil properties between the different aged plantation blocks. Possible
associations between these differences and age-related litter production and root
growth, and silvicultural operations such as understory control, plantation thinning
and selective harvesting are explored.
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INTRODUCTION

About 1.5 million ha of land in Britain is covered by coniferous forest (Malcolm et

al., 2001), composed almost entirely of plantations of non-native species and

established since 1900 on previously un-wooded ground or, as at Chopwell Woodland

Park, on sites converted from ancient semi-natural woodland (Ferris et al., 2000).

McCarthy (2006) argues that of all land uses, conifer afforestation has had the biggest

visual impact on the British landscape. The acidifying effects of conifers on soils is

also well documented (e.g. Messenger, 1980; Miles, 1986; Howard and Howard,

1989; Peterken, 2001) and some studies have shown this to be age-related (e.g.

Birkeland, 1984; Mellor, 1987; Alriksson and Olsson, 1995). Stutzer (1998), for

example, found that top soil pH values decreased from 5.0 to 4.0 within 30 years of

planting in response to high rates of acid litter accumulation, whilst Griffiths and

Swanson (2001) found no significant stand age related differences in soil pH. Certini

et al., (1998) found that soil acidification was more rapid under Corsican pine than

under other species such as Douglas fir or Silver birch, although changes in soil pH

became less marked with increasing distance from the trunks. Soil acidity is closely

related to other properties including organic content, exchangeable base content and

metal contents such as iron, lead and zinc, which often show similar age-related trends

(Mellor, 1987; Ellis and Mellor, 1995).

Podzolisation is prevalent in soils under coniferous plantations on base-deficient

parent materials and can become evident through eluvial bleaching and corresponding

redistribution of humus and sesquioxides after only a few decades (Certini et al.,

1998; Stutzer, 1998; Peterken, 2001; Mokma et al., 2004). In some podzolised soils,

however, the eluvial horizon is absent due to masking by strong parent material

colours or anthropogenic mixing of soil horizons (Blaser et al., 1997; Stutzer, 1998).

Nevertheless, Mellor (1987) found decreases in total iron content in eluvial horizons

and corresponding increases in illuvial horizons, with surface age over a 250 year

period on wooded neoglacial moraines in Norway. Similarly, Alriksson and Olsson

(1995) and Mokma et al., (2004) found increases in topsoil organic carbon content

with stand age. In subsoils, however, changes in organic carbon content were found

to be less regular (Stutzer, 1998; Peichl and Arain, 2006).
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Relatively few studies of soil changes in relation to stand age exist within the UK,

perhaps due to the relatively young age of many forestry plantations, the complexity

of local soil variability and soil disturbance resulting from forestry operations.

However, detailed and accurate recording of species and planting dates on UK

forestry stock maps, consistency of management practices and the relatively small

size of plantation blocks ensure that variations in environmental influences on soil

development, such as parent material, topography, biota and climate are minimal.

Such a high degree of environmental control means that UK forestry plantations may,

in fact, be well suited to studies of soil changes in relation to stand age. In this study,

we examine changes in soil profile and topsoil characteristics across six different aged

plantations of Corsican pine (Pinus nigra) at Chopwell Woodland Park in Gateshead,

UK.

STUDY AREA

Chopwell Woodland Park is an area of 360 ha of mixed conifer and broadleaved

woodland managed by the Forestry Commission (Fig. 1). The area is 150-200 m

above sea level and is dominated by sandstones, shales and mudstones of the

Carboniferous Coal Measures Series, also containing coal seams of varying

thicknesses. Although most of the site is drift free, deposits of glacial till occur on the

lower slopes and the River Derwent flows along its southern margin. Dominant soils

include surface water gleys, and forest brown earths (Cooke, 1987). Climate is cool,

humid and temperate in nature with relatively mild winters and cool summers. Mean

annual rainfall and temperature are 750 mm and 8.0 oC, respectively (Jarvis, 1977).

Figure 1 near here

Chopwell forest dates back to the 12th century when it consisted mainly of deciduous

trees dominated by oak. Many of these trees were felled in the 17th and 18th centuries

for ship building and bridge construction and the area was re-planted with oak and

larch; much of this was subsequently felled as part of the First World War effort. The

Forestry Commission took over management of the area in 1923 and began a major

replanting programme with emphasis on conifer species. During the 1930s and

1940s, the area was used for training purposes by a local drainage school and, despite

being freely drained, linear drains were cut at 5-6 m intervals rather than the more

usual spacing of 20 m; the drainage lines can be seen clearly in aerial photographs of
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the area. Drains were constructed manually by hand digging with a cutter and turning

the topsoil over; trees were then planted in the inverted turf. This was a very labour

intensive practice and is now largely mechanised. Following planting, the first

thinning phase takes place after about 20-25 years, with subsequent thinning phases

every 6-7 years. After the fourth thinning phase, only the final crop trees remain and

tree density is reduced from the original planting density of around 2700 trees per

hectare to 1200 trees per hectare. Clear-felling then takes place after about 50-55

years with another planting cycle following after 12-18 months. As soil quality in the

area is good and yield classes are relatively high (18-20 for Corsican pine), fertilisers

are not required. However, herbicides are sometimes used to remove competing

ground flora such as bracken, brambles and other weed species.

The area was recognised as a Woodland Park in 1993 and more recently as a

Plantation on Ancient Woodland (PAWS), with emphasis now being placed on

natural regeneration of broad-leaved species and thinning out of the conifer species.

Today the park is dominated by Corsican pine (Pinus nigra), Scots pine (Pinus

sylvestris), Japanese larch (Larix kaempferi) and Oak (Quercus robur) with some

mixed broadleaf and conifer plantations. Only a few remnants of the ancient

woodland survive on some of the steeper crags above the River Derwent. Whilst

relatively rural in character, Chopwell Woodland Park is only a few km away from

Gateshead and Newcastle upon Tyne, both major centres of urban and industrial

activity.

MATERIALS AND METHODS

As part of the site selection process, Forestry Commission stock maps were examined

with a view to finding a number of plantation blocks containing the same tree species

but with a range of planting dates. In addition, the plantation blocks should have the

same land use history and be in close proximity to each other in order to minimise

variations in soil parent material, slope steepness, aspect and altitude, and climatic

characteristics. Six plantation blocks consisting of Corsican pine (Pinus nigra),

planted between 1920 and 1990 were thus selected for investigation (Fig. 1). These

stands were first cycle Corsican pine plantations, planted on mixed oak and larch

woodland, located at altitudes of 165-180 m above sea level with slope angles of 0-3 o



6

and on parent materials consisting predominantly of weathered sandstone from the

Carboniferous Coal Measures Series. It proved difficult to find a suitable control site

under ancient, predominantly oak woodland because remnants of this vegetation type

exist only on steeper slopes adjacent to the River Derwent. Consequently, whilst

parent materials and altitudes are broadly similar, slope angles are steeper at around

15 o.

Following preliminary exploration using a screw auger, a representative soil profile

was selected for description and sampling from within each stand, and from a nearby

area of ancient woodland; samples were collected from each identifiable soil horizon

(Mellor, 1987). In addition, 10 topsoil samples (0-10 cm) were collected, using a

systematic grid based approach, from each stand (Echeverria et al., 2004).

Soil samples were oven-dried at 105 oC, ground using a pestle and mortar and passed

through a 2 mm sieve prior to laboratory analysis. Soil properties determined

included reaction (pH), organic carbon, exchangeable base (Ca, Mg, K, Na) content,

texture, total and organically-bound iron contents and lead and zinc concentrations

(Avery and Bascomb, 1974; Rowell, 1994). Soil pH was determined in distilled water

using a 1:2.5 w/v ratio and organic carbon was determined using the Walkley-Black

digestion. Exchangeable base content was determined by flame emission and atomic

absorption spectrometry following ammonium acetate extraction. Texture was

determined by sieving and laser diffraction following treatment with hydrogen

peroxide and sodium hexa-meta phosphate (calgon). Total free iron and organically-

bound iron were determined by atomic absorption spectrometry following dithionite

and pyrophosphate extraction, respectively. Lead and zinc concentrations were

determined by atomic absorption spectrometry following aqua-regia digestion. These

properties have been used in other forest soil studies, thus enabling comparisons to be

made. They can also change rapidly over relatively short timescales and are useful

indicators of the operation of a range of pedogenic processes (Alriksson and Olsson,

1995; Dahlgren et al., 1997). Lead and zinc concentrations were determined with a

view to investigating the changing nature of urban and industrial pollution in the area.

One-way analysis of variance (ANOVA) was used to compare topsoil characteristics

between the different plantations and therefore to establish the significance of any
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age-related differences (Paul et al., 2002). Changes in soil profile morphology were

used to shed light on the processes and pathways of soil formation.

RESULTS

The first two sections will focus on findings from the soil profiles, whereas the third

section will focus largely on the topsoil analyses.

Soil physical characteristics

No systematic changes in soil profile morphology were observed in relation to stand

age. At all sites, soil profiles were characterised by a very dark brown to black Ah

horizon of about 10 cm in thickness containing abundant woody roots, bleached sand

grains and a sharp lower boundary. Below was a brown to yellowish brown Bw

horizon of about 20 cm in thickness, with a predominantly sandy texture, containing

few stones and with a diffuse lower boundary leading into the yellowish brown

weathered sandstone parent material. The soil profile from the control site, although

located on a steeper slope, was remarkably similar in morphology and colour to those

under the plantation stands, although the horizons were rather deeper with an Ah

horizon of 18 cm and a Bw horizon of 30 cm. In all cases, the soils are classified as

acid brown earths of the Rivington 1 series (Jarvis et al., 1984).

In all six soil profiles, organic carbon contents decrease with increasing depth,

ranging from about 4 % to 10 % in the surface Ah horizon to mostly less than 2 % in

the subsurface Bw and C horizons (Fig. 2a). Values were similar in the control site

profile ranging from 9.5 % in the Ah horizon to 5.8 % and 3.5 % in the Bw and C

horizons, respectively. There are no systematic variations in organic carbon contents

with stand age, with values in the Ah horizon being greatest in the youngest stand,

followed by a slight decrease, then a slight increase with increasing stand age and then

a marked decrease in the oldest stand. In the subsurface Bw and C horizons, organic

carbon contents appear to be greatest in the middle aged stands, with lowest values in

the youngest and oldest stands. The textural characteristics of all profiles are similar

being predominantly sandy loam, with medium and fine sand together comprising

approximately 50 % by weight of the soil mineral fraction. The Ah horizon has a
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slightly coarser sandy texture than the Bw and C horizons, with highest clay and fine

silt contents found mainly in the Bw horizon (Fig. 2b).

Figures 2 and 3 near here

Soil chemical characteristics

Total exchangeable base contents are highest in the Ah horizon of each profile with

the exception of the 1970 and 1920 stands where they are highest in the C and Bw

horizons, respectively (Fig. 2c). This pattern was mirrored in the control profile

although total exchangeable base contents were somewhat higher, ranging from 2.1

me/100g in the Ah horizon to 1.2 me/100g and 1.0 me/100g in the Bw and C

horizons, respectively. In the Ah horizon, variations in total exchangeable base

content with stand age appear to mirror those of organic carbon. This is not the case

in the subsurface Bw and C horizons, however, where total exchangeable base

contents show no clear association with stand age. In all stand profiles, soil pH values

are acidic and decrease with increasing depth, ranging from about 2.9 in the Ah

horizon to about 4.3 in the C horizon (Fig. 2d). Values in the control profile,

however, are higher in the Ah horizon with a value of 3.8 but similar in the subsurface

horizons. Although variations are small, pH values in the Ah horizons appear to

mirror those of organic carbon and total exchangeable base contents. In the Bw and C

horizons, pH values decrease with stand age in the three youngest stands but then

appear to level out with further increases in stand age.

In all but the two oldest stands, organically-bound iron (Fep) contents decrease with

increasing depth in the soil (Fig. 3a). Conversely, in all but the youngest stand, total

free iron (Fed) contents increase with increasing depth (Fig 3b). Inorganic iron

contents (Fed – Fep) are about three to six times higher than organically-bound iron

contents. Only Fe(d) contents were determined in the control profile where values

increase from 0.51 % in the Ah horizon to 0.70 % and 0.76 % in the Bw and C

horizons, respectively; this pattern is remarkably similar to the stand profiles. In the

Ah horizons, variations in organically bound iron content with stand age appear to

mirror those of organic carbon and total exchangeable bases; in the Bw and C

horizons contents are greatest in the youngest and oldest stands. Total free iron

contents in the Ah horizon are consistently low in all but the youngest stand, while
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contents in the Bw horizon increase systematically with stand age in all but the two

oldest stands; C horizon contents are similar across all but the oldest stand where the

highest content of 1.5 % is found. In all profiles, lead and zinc concentrations are

relatively low with generally lower values in the Ah horizons than in the subsoil Bw

and C horizons (Figs. 3c and d). Although no clear variations in metal content with

stand age were observed, for either metal, concentrations appeared to be somewhat

lower in soils of the oldest stands.

Statistical analyses

Descriptive statistics for the 10 topsoil samples collected from each stand are shown

in Table I. All samples are characteristically acidic with high organic carbon contents

and generally low exchangeable base contents. Total free iron contents are relatively

high, whilst lead and zinc contents are mostly low. Organic carbon, lead and zinc

contents show particularly high variability.

Table I near here

One-way ANOVA was carried out to test for significance of difference in topsoil

properties between the six stands (Table II). With the exception of organically-bound

iron, all properties displayed statistically significant differences, although like the soil

profile results, these were not systematically related to age. For topsoil pH, the two

oldest stands had noticeably lower values than the remaining four stands. Lead

concentrations were highest in the middle of the age range, whilst total free iron

contents were highest at the oldest and youngest stands. Organic carbon,

exchangeable base and zinc contents all showed the same pattern with noticeably

lower values in the 1940 and 1990 stands than in the other stands, all of which had

similar values.

Table II near here

DISCUSSION

Pedogenic processes

Despite disturbance resulting from drainage and thinning operations, there is clear

morphological evidence for soil formation within the soil profiles, and whilst some of

this may be inherited from the woodland soils prior to planting, particularly in the

subsoil, changes in the topsoil are likely to have occurred following planting of the
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Corsican pine stands. The key pedogenic processes identified are organic matter

accumulation and decomposition, acidification, lessivage and, with the exception of

the control site, incipient podzolisation. These processes operate together and should

not be seen as mutually exclusive (Ellis and Mellor, 1995). Evidence of organic

matter accumulation can be seen from the extensive litter cover and dark brown to

black topsoil Ah horizons, present in all six profiles, and the high organic carbon

contents in these horizons. The dark colour and sharp lower boundary, characteristic

of these Ah horizons, suggests a degree of decomposition to form an acidic mor

humus with limited bioturbation (Alriksson and Olsson, 1995; Lilienfein et al., 2003).

The control site profile is somewhat different from the conifer stand profiles, being

located under mature deciduous woodland. Here, whilst organic matter accumulation

and decomposition, acidification and lessivage are evident, incipient podzolisation

and mor humus formation are not. Podzolisation fails to occur due to greater faunal

mixing, microbial degradation and adsorption of chelating organic substances onto

clay surfaces thus preventing iron movement (Payton and Rimmer, 1992). These

authors also suggest that increased faunal mixing and bacterial decay lead to mull

rather than mor humus formation in soils under well established deciduous woodland.

Acidification is common in acid brown soils on freely draining, sandy and base-

deficient parent materials such as those found at Chopwell Woodland Park (Jarvis et

al. 1984). Acidification is particularly evident in the topsoil Ah horizons, where pH

values are 3.1 or less, due to high rates of acidic litter supply from conifer plantations

(Alriksson and Olsson, 1995). Even in the control profile, under well established

deciduous woodland, the Ah horizon has a pH value of 3.8. In all six stand profiles,

pH values increase with increasing depth, often by more than 0.5 of a pH unit, a trend

that is characteristic of leached, acidified soils (Stutzer, 1998; White, 2006). As

expected in such acidic soils, exchangeable base contents are relatively low but are

greatest in the upper soil horizons due to their association with organic matter

(Rosberg et al., 2006). There is little evidence of downward translocation of

exchangeable bases into the Bw horizons, although it is possible that they could be

leached out of the profile altogether in such coarse, freely drained parent materials

(Franzmeier and Whiteside, 1963; Alriksson and Olsson, 1995).
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In all six stand profiles, and in the control profile, clay content increases markedly

with depth from the Ah to the Bw horizon. In four of the stand profiles clay content

in the Bw horizon is also noticeably greater than in the C horizon. Maximum clay

content in the Bw horizon is indicative of clay translocation or lessivage, a common

process in acidified brown soils (Ellis and Mellor, 1995; Gardiner and Miller, 2004).

Organically-bound iron contents are greatest in topsoil Ah horizons due to the

abundance of organic matter (Lilienfein et al., 2003). However, the presence of

bleached quartz grains in the Ah horizon and evidence of downward translocation of

both organically-bound and total free iron, but only in the older soil profiles, indicates

incipient podzolisation. This finding is supported in other studies of young soils

including Mellor (1987), Stutzer (1998) and Munroe et al. (2007).

Both lead and zinc contents are low, corresponding with background concentrations

found elsewhere in the UK (Thornton, 1991). Lowest concentrations are found in

topsoil Ah horizons indicating low levels of atmospheric deposition from urban and

industrial sources in the region. This is not surprising given that Chopwell Woodland

Park is located to the southwest, and therefore up-wind, of the major sources of

pollution in Tyneside, prevailing winds being mainly from the west or southwest.

Highest metal concentrations are in fact found in the subsoil mineral horizons,

suggesting that lead and zinc are derived either from weathering of coal bearing soil

parent materials or from downward translocation, both of which have been reported

from elsewhere in the region (Mellor and Bevan, 1999; Mellor, 2001).

Temporal patterns and pathways

There are no systematic changes in profile morphology with plantation age in the soils

at Chopwell Woodland Park. Despite the apparent lack of systematic temporal trends,

however, ANOVA reveals that almost all topsoil properties show statistically

significant but non-systematic differences with plantation age. Such non-systematic

or irregular, age-related changes in soil properties have also been reported in a

number of other similar studies (Certini et al., 1998; Stutzer, 1998; Griffiths and

Swanson, 2001; Paul et al., 2002; Zinn et al., 2002; Lilienfein et al., 2003; Peichl and

Arain, 2006).
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The irregular age-related changes might be explained by the young plantation ages,

soil disturbance due to drainage operations and silvicultural practices. Mokma et al.,

(2004) estimated that podzols require between a few hundred and a few thousand

years to develop, a time span that is considerably greater than that available in the

soils of this study. Moreover, Certini et al., (1998) indicated that chemical evidence

of eluviation is not evident in young soils under Corsican pine. Morphological and

chemical evidence for soil development may be further masked by profile

homogenisation resulting from ground preparation and ploughing prior to planting

(Stutzer, 1998). Profile disturbance is likely to be particularly significant at Chopwell

Woodland Park as a result of the intensive drainage operations practiced as part of the

drainage school training programmes. The young surface ages and profile mixing

may also account for the high degree of spatial variability observed in relation to most

of the topsoil properties determined.

Irregular age-related changes in topsoil properties, particularly organic carbon, may

also be explained by age-related changes in litter production, root growth and organic

matter decomposition rates, and silvicultural practices, particularly thinning

operations (Paul et al., 2002). At Chopwell Woodland Park, highest organic carbon

contents are found in topsoils from the second youngest (1980) and oldest (1920)

stands, with lowest contents in the second oldest (1940) and youngest (1990) stands

(Table I). Although one might expect highest and lowest organic carbon contents in

the oldest and youngest stands, respectively, in response to age-related changes in

litter supply, decomposition and root development (Paul et al., 2002), it is more

difficult to account for the progressive decline in topsoil organic carbon contents

between the 1980 and 1940 stands. One possible explanation for the decline is

reduced litter supply in response to thinning operations (Henderson, 1995), which

began about 20 years after planting and every 6-7 years thereafter until the fourth and

final thinning phase. Consequently, the 1990 stand has not yet been subjected to

thinning, the 1980 stand has only recently experienced its second thinning phase,

whilst the remaining stands have all experienced four thinning phases. The oldest

stand, however, has had almost 50 years to recover from its last phase of thinning.

Interestingly, temporal changes in total exchangeable base contents and pH closely

follow the changes in organic carbon contents, indicating a strong association between
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these properties. In the subsoil horizons (Fig. 2), particularly the C horizon, soil pH

shows a regular decrease with increasing stand age reflecting progressive leaching and

acidification (Mellor, 1987; Alriksson and Olsson, 1995; Certini et al., 1998).

The longer term pathway of soil formation in Chopwell Woodland Park might be

viewed as follows: Prior to the 18th century, the dominant vegetation was semi-

natural, mixed oak woodland, documented as far back as the 12th century. Dominant

soils under this type of woodland, relicts of which still exist elsewhere in the region,

are brown forest soils, which are slightly acidified with well mixed mull humus in the

topsoil and evidence of clay translocation in illuvial Bt horizons (Jarvis et al., 1984).

Large scale re-planting with oak and larch in the 19th century is likely to have

enhanced the process of acidification, favouring mor humus formation. It is also

likely that re-planting allowed lessivage to continue and led to the initiation of

podzolisation. In 1923 the Forestry Commission took over management of the area

and implemented wholesale harvesting and drainage programmes. Consequent site

disturbance probably obliterated earlier phases of soil development and horizonation,

and caused extensive mixing of the acidified soil materials (Stutzer, 1998).

Subsequent planting of conifers then led to the re-establishment of organic matter

accumulation with mor humus formation, lessivage and podzolisation. The latter two

processes, however, are very much in the early stages of their development (Certini et

al., 1998). Management at Chopwell Woodland Park now favours a gradual

replacement of conifer species with more native broadleaved species such as oak,

which is likely to allow soils to revert back to their original pathway of development

towards the brown forest soils found at the control site and elsewhere in northern

England under this woodland regime (Payton and Rimmer, 1992).

CONCLUSIONS

This study aimed to investigate the pedogenic processes and temporal changes

occurring in soils beneath six Corsican pine (Pinus nigra) stands ranging in age from

17 to 87 years. The key pedogenic processes operating within the soils studied were

found to be a combination of organic matter accumulation and mor humus formation,

acidification, clay translocation (lessivage) and incipient podzolisation. Lead and zinc

contents were found to be low and to be derived principally from natural weathering
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of coal-bearing soil parent materials or downward translocation, rather than from

airborne urban and industrial pollution.

Very few systematic, age related changes in soil properties were observed, although

ANOVA revealed a number of statistically significant but non-systematic differences

with stand age. These non-systematic differences were argued to result from the

young plantation ages and short time-scale available for soil formation, soil profile

mixing resulting from drainage operations prior to planting, and silvicultural

operations such as understory control, plantation thinning and selective harvesting.

A longer term pathway of soil formation in Chopwell Woodland Park was suggested

in relation to historical changes in vegetation cover and land management,

highlighting periods of stability, with associated phases of soil development,

interspersed with short phases of instability brought about by the drainage operations

and silvicultural practices outlined above. This study, however, focuses on changes in

soil characteristics following the most recent phase of ground preparation and

replanting commencing in the early 1920s.
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1920 1940 1960 1970 1980 1990

pH 3.0 (0.13) 2.9 (0.04) 3.1 (0.28) 3.2 (0.10) 3.1 (0.16) 3.1 (0.14)

OC (%) 15.3 (4.70) 10.2 (2.89) 13.5 (3.18) 13.8 (4.22) 15.5 (3.34) 10.6 (3.58)

Ca (me/100g) 1.04 (0.54) 0.32 (0.15) 0.99 (0.41) 0.80 (0.39) 1.16 (0.63) 0.55 (0.18)

Mg (me/100g) 0.22 (0.03) 0.16 (0.04) 0.22 (0.02) 0.23 (0.07) 0.23 (0.03) 0.19 (0.02)

K (me/100g) 0.39 (0.15) 0.19 (0.09) 0.36 (0.07) 0.44 (0.16) 0.56 (0.27) 0.32 (0.07)

Na (me/100g) 0.63 (0.30) 0.47 (0.17) 0.59 (0.25) 0.63 (0.23) 0.56 (0.12) 0.32 (0.07)

Fep (%) 0.12 (0.03) 0.15 (0.03) 0.16 (0.05) 0.14 (0.04) 0.14 (0.05) 0.16 (0.04)

Fed (%) 0.85 (0.23) 0.69 (0.17) 0.70 (0.25) 0.77 (0.23) 0.90 (0.34) 1.18 (0.61)

Pb (mg/kg) 42.0 (30.11) 58.1 (24.55) 71.4 (49.3) 76.0 (20.11) 49.6 (26.45) 30.1 (23.38)

Zn(mg/kg) 29.5 (7.84) 20.7 (10.24) 33.4 (5.70) 26.4 (10.95) 33.9 (8.80) 20.2 (13.46)

Table 1. Means and standard deviations (in parentheses) for topsoil samples collected from each dated stand (n = 10). OC = organic carbon;
Fep = pyrophosphate-extractable (organically-bound) iron; Fed = dithionite-extractable (total free) iron.



Soil property F ratio p value

pH 4.35 0.002 **

OC 3.74 0.006 **

Ca 5.86 < 0.001 ***

Mg 5.13 0.001 ***

K 8.06 < 0.001 ***

Na 3.58 0.007 **

Fep 1.59 0.180 NS

Fed 2.96 0.020 *

Pb 3.30 0.011 *

Zn 3.75 0.005 **

Table 2. One-way ANOVA results for topsoils (n = 10 from each stand). OC =

organic carbon; Fep = pyrophosphate-extractable (organically-bound) iron; Fed =

dithionite-extractable (total free) iron.



Figure 1. Map showing location of study area with sampled plantation blocks
(all Corsican Pine) and their planting dates
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Figure 2. Soil property variations in profiles from the different aged plantations at Chopwell Woodland Park.
Graph (b) shows variations in texture within the 1920 soil profile
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Figure 3. Soil property variations in profiles from the different aged plantations at Chopwell Woodland Park.
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