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ABSTRACT

Research into the modelling and analysis of microstrip patch antenna have been
reported in many studies. These include Transmission Line Modelling, Cavity
Modelling, Coplanar Multiport Modelling and Full wave Modelling. Since the
electromagnetic field elements are time harmonic, the phasor-form of the Maxwell
field equations is used. In this thesis results are presented of the research that has been
carried out into the segmental approach for the analysis of the microwave patch
antennas. The segmental approach includes the “Segmentation” and the

“Desegmentation” methods.

In the segmentation method two distinct structural forms have been identified,
cascade and shunt types. In the cascade type all consecutive segment elements share a
common boundary, while for the shunt type, all appended segment elements have no
common boundary. In the case of the shunt type structure a generalised input
impedance matrix formula, for any number of appended segment elements, has been
obtained. For the desegmentation method a generalised input impedance for any

number of deleted segment elements, has been obtained.

The above research studies have been applied in the design of a circular polarised two
corner deleted square patch microstrip antenna with a single feed. For this structure
the design involves both square and triangular patch geometries. The overall patch
geometry for circular polarised is determined using perturbation analysis to determine

the size of the deleted triangular segment elements.



New computationally efficient impedance coupling expressions for the
interconnecting port impedances on a rectangle, and, on a right angled isosceles
triangle shaped antenna patch have been derived. In the determination of the input
impedance of the overall antenna structure the coupling impedances constitute the
elements of the individual segment coupling matrices. The matrices are used in a
general multiport matrix circuit analysis to obtain the input impedance formula. It is
established that, where applicable, the desegmentation method is computationally
more efficient than the segmentation method. The new results obtained have been
applied to the design of a corner deleted square patch antenna, and, the design

procedure is fully described.

The computer program implementation evaluates the perturbation quantity, and, the
antenna input impedance. The structural properties of the coupling matrices, which
are used for efficient computation, are described in detail. All the results from the
above work show close agreement with full-wave software simulation and practical

results.
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Both segmentation and desegmentation methods have been studied and it has been
shown that the desegmentation approach, when applicable, is in general
significantly more computationally efficient.

In the segmentation method two structural forms, cascade and shunt have been
identified. In the latter case a new generalised input impedance matrix formula has
been obtained for any number of appended segment elements.

A new generalised input impedance matrix formula has been obtained for any
number of deleted segment elements in the desegmentation method.

New computationally efficient expressions for the coupling impedances have been
derived and used in test applications.

New computationally efficient expressions for the offset input impedance of a
linear polarised rectangular patch, and, an isosceles right-angled triangular patch
have been derived and experimentally verified.

A program implementing the design procedure for the corner-deleted truncated
square patch circular polarised microstrip antenna has been constructed using

MATHCAD programming,.
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ABBREVIATIONS

AVA Automatic Vehicle Access
RSU Road Side Unit

OBU On Board Unit

ASK Amplitude Phase keying
PSK Phase Shift Keying

IRM Image Rejection Mixer

TLM Transmission Line Model

c 3x10° m/s

Uy 4z x 107

& 8.854x 1072

o, Conductivity of Copper 5.7 x 10’ S/M
A 2.45 GHz Design Frequency
g, Dielectric Constant

& Effective Dielectric Constant
h Thickness of Substrate

k, Wave Number in Free Space

0 Unloaded (- factor

W Widthof the Feed Line

T Offset Feed Line Position

N Number of Ports

N1 Upper Summation Limit of Infinite Series

M1 Upper Summation Limit of Infinite Series
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CHAPTER 1

INTRODUCTION AND OVERVIEW OF THESIS

1.1 Introduction

The Centre for Communication System Research at the University of Northumbria at
Newecastle is involved in the research and development of a microwave digital system
to be used in a variety of traffic management systems. The main focus of the centre is

in automatic tolling and automatic access for the vehicle to restricted areas.

In response to the integrated transport White Paper 2000, there is also a requirement
for local authorities to restrict traffic in urban areas, and produce more pedestrianised
city centres [1,2]. However, Automatic Vehicle Access (AVA) is still required for
emergency vehicles, public transport, taxis and commercial deliveries. Consequently,
there is a need for automatic control of vehicle access involving reliable and accurate
vehicle identification, which is needed by universities, hotels, private businesses and

local authorities.

As part of this research several detailed studies of the system and the antenna design
have been carried out by the members of the Research Group. This research has
included (a) the design of a short range digital data communication system between a
| moving vehicle and a Road-Side Unit(RSU) [3], (b) investigation into the integration
of microwave patch antennas on vehicle windscreens[4], (c) the modelling of single
feed slot antennas to be used in the vehicle On-Board Unit(OBU)[5] ,and, (d) the

modelling of a cross-aperture coupled single feed patch antenna[6].



For vehicle to RSU communication the OBU normally is placed behind the vehicle
windscreen. It is important that the antenna is small in profile and inexpensive to
manufacture. These requirements are best achieved using a microstrip patch antenna
structure in each of the above applications. The total unit consists of a microstrip
antenna and the associated circuitry which is required for ASK demodulation and
PSK modulation. Further, and, importantly, circular polarisation is essential so that

the OBU can be placed in any orientation behind the vehicie’s windscreen.

This thesis presents research carried out using perturbation analysis to determine the
area of perturbation to achieve circular polarisation. Further the segmental approach is
used to evaluate the input impedance of a composite microstrip antenna structure. In
the segmental approach a coplanar multiport analysis is used to connect the
impedances of the segments composing the structure with the overall impedance of

the antenna.

New computationally efficient expressions have been derived for the elements of the
interport coupling matrices in respect of both the rectangular patch and the right-

angled isosceles triangle patch.

For both the segmentation and desegmentation methods new generalised input
impedance expressions have been obtained for any number of appended/deleted

segments.

The research presented covers the theoretical design analysis and practical

measurements for a single feed truncated corners square patch circular polarised



antenna. An operation frequency of 2.45GHz has been used in the design of the
microwave circuitry throughout this thesis. This operational frequency is used in the

design of short range digital communication systems such as in traffic application.

The overview of the research carried out is presented in the following section.

1.2 Overview of thesis

In chapter two the basis of the short-range prototype microwave system developed for
automatic debiting application in vehicle tolling and car park access is discussed. The
operation of a microwave system to be used in traffic applications is described with
block diagrams showing the communications operation between the RSU and the
OBU. The circuit diagram of the wake-up tag is presented. A listing illustrating the

possibilities with different remote identification technologies is tabulated.

In chapter three various modelling approaches and methods of analysis for the
microstrip antenna are described. A new computationally efficient expression for the
input impedance of the rectangle patch with offset feed is derived and applied to
obtain impedance-frequency graphs, and, the variation of impedance with respect to
feed location. A new computationally efficient expression for the input impedance of
a microstrip right angled isosceles triangular patch antenna is derived and applied to
obtain impedance values in respect of feed locations on both a vertical edge, and, on
the hypotenuse edge. The electric field conditions for circular polarisation are given
and possible feed arrangements required to generate circular polarised radiation are

described.



In chapter four the perturbation analysis and the equivalent circuit model of Haneishi
[7] are employed to determine the proportional amount of perturbation necessary for
circular polarisation in respect of a truncated corner square patch antenna. The
eigenvalues and eigenfunctions for a square patch are obtained. These are then
applied in a variational analysis to obtain the dominant eigenvalues and normalised
eigenfunctions of the corner truncated patch from which the dominant components of
electric voltage are obtained. By means of an equivalent circuit of the antenna model
the voltage amplitude and phase conditions necessary for circular polarisation are

applied to obtain the amount of corner deleted perturbation required.

In chapter five a microstrip antenna patch is treated as a planar circuit on which the
voltage at any point satisfies a non-homogeneous wave equation. The solution of the
associated boundary value problem giving the voltage in terms of a probe feed current
density is obtained using the eigenfunction expansion method. This introduces the
Green’s function of the patch geometry. It is shown that a perimeter microstrip feed is
equivalent to a probe feed with the same line current density. The coupling impedance
between two perimeter ports is defined and the general formula for the coupling

impedance in terms of the associated Green’s function is derived.

In chapter six the role of the multiport structure in preserving the overall surface
current distribution on the antenna is discussed and it is shown that when the patch
geometry is constructed from a combination of regular shapes, such as rectangles and
some triangles, it is possible to determine the antenna input impedance analytically.
This is possible because the Green’s functions of the regular shaped component

geometries are known analytically. The ‘segmentation method’ and ‘desegmentation



method’ are the two segmental methods, using the multiport modelling structure,
which may be employed to obtained the feed input impedance of the antenna. In these
methods connecting ports are introduced between the regular shaped segments and a
multiport analysis applied to obtain the overall characteristic of the combined
structure. Both methods and their analysis for the input impedance are presented in
this chapter. In the segmentation method two distinct structural forms have been
identified, cascade and shunt types. In the cascade-type all consecutive segment
elements share a common boundary, while for the shunt-type, all appended segment
elements have no common boundary. . In respect of the segmentation method explicit
formulas for combining two and three cascade-type segments are derived. In the case
of the shunt-type structure a generalised input impedance matrix formula, for any
number of appended segment elements, has been obtained. For the desegmentation
method a generalised input impedance for any number of deleted segment elements,
has been obtained. These are an important new results. It is established that the
‘desegmentation’ approach, when applicable is computationally more efficient than

the ‘segmentation’ approach.

In chapter seven closed forms of infinite series are used to obtain efficient impedance
coupling expressions between the perimeter ports on a rectangular patch. Three cases
are considered: (a) two ports on the same side (b) two ports on adjacent sides (c) two
ports on opposite sides. In the derivation, the required term by term double integration
of the Green’s function gives, initially, an impedance formula which consists of a
single term, two single infinite series, and, one double infinite series. The single
infinite series are summed to closed form, while the double infinite series is reduced

to a single infinite series. Numerical trials using the new expressions have shown that



in all the cases considered only one term of the series is required to give convergence
to three significant figures. In the worst case convergence to five significant figures
requires at most 4 terms of the series, and, for convergence to seven significant
figures 10 terms at most are required. The result of test applications for each of the
three configurations considered are given in this chapter, and, are found to be in good

agreement with Ensemble™ (Full wave analysis software).

In chapter eight efficient impedance coupling expressions between the perimeter ports
on a right angled isosceles triangle patch are obtained. Four cases are considered: (a)
two ports on a vertical side, (b) two ports on adjacent vertical horizontal sides, (c) one
port on a vertical side and one port on the hypotenuse, and (d) two ports on the
hypotenuse. In the derivation, the required term by term double integration of the
Green’s function produces, initially, an impedance formula which consists of a
constant term, and, several single and double infinite series. The single infinite series
are summed to close form, while, for coupling ports not involving the hypotenuse the
double series is reduces to a single infinite series. For coupling ports involving the
hypotenuse the double infinite series cannot be reduced to a single infinite series.
However, the double series can be economised by extracting the diagonal terms which
can be summed to closed form. The remaining terms, by symmetry, can then be
expressed in the form of semi-infinite double series for which the summation indices
are m>1,n>m+1. Numerical trials show that in the worst case convergence to
seven significant figures an upper summation index of 9 at most, is required. The
results of test applications for each of the four configurations considered are given in

this chapter, and, are found to be in good agreement with Ensemble™.



In chapter nine a design procedure for a circular polarised microstrip antenna is
described. A program for the desegmentation method applied to the corner deleted
square patch is constructed to evaluate the perturbation (AS/S), and, the antenna
input impedance (Zin). The structural properties of the coupling matrices involved

are described and results are used to produce a computationally efficient program.



CHAPTER 2

REVIEW OF A TWO WAY COMMUNICATION

SYSTEM FOR TRAFFIC APPLICATION

2.1 Introduction

The Centre for Communication System Research at the University of Northumbria at
Newcastle is involved in the research and development of the microwave data-link for
vehicle tolling and car park access. The main requirements in implementing a two-
way short range communication system are the efficiency, reliability and size of the
system. It is also necessary to satisfy the requirements of both the range and region of
communication. Also in respect of above applications the system must be capable of
checking on every vehicle to ensure that the appropriate fees are charged and it must

also provide a method by which traffic violators may be identified.

2.2 System Requirements

For security reasons expensive control equipment, such as the host computer, could
need to be housed remotely.

The user identification tag must be of reasonable size (50x40x50mm, approximately
the size of a credit card) with acceptable battery life of about five years.

The system must be capable of interfacing with existing technologies and allowing for
the possibility of retrofitting. For example in applications to vehicle barrier control

systems.

The systems must be capable of supporting a variety of user and operator displays

(monitor and LED display).



The control panel needs to inform the operator of the systems status as well as fault
and alarm conditions. This panel must also provide an override facility capability. The
system design must be adaptable to increases in both the number of uses, and , user

activity.

The system may be required to control the flow of traffic both entering and leaving a
restricted area. Physical entry and exit of vehicles to this area is controlled by various
types of barriers including hydraulic bollards or sleeping policemen. User
identification is achieved with the use of a tag from within the confines of the vehicle.
This tag can be either manually operated with the use of a ‘push button tag’ or

operated automatically with no user intervention, using a * wake up tag’.

User authorisation must be obtained before access is granted. This will depend on the
correct user identification and the fee-credit standing of the user. The system must be
capable of integrating with other technologies to aid correct vehicle identification. In
future the system may be required to cross check the On-Board-Unit (OBU) identifier

with the vehicle number-plate.

The vehicle is controlled by traffic lights and by driver information shown on an LED
dot display mounted above the road. This allows comprehensive information to be

passed to the user. Such information includes:

Please wait for the barrier to open

Please proceed

Access denied

Car park full



If a vehicle approach speed is not controlled this could lead to a dangerous situation if
access was unexpectedly denied. Therefore traffic calming measures, such as speed
ramps, should be used to ensure that a safe approach speed is always maintained.

A typical scenario is illustrated in figure 2.2.1 below:

@]

: !
=) :ﬁ
]ﬂ Dot Display

PROXIMITY
SENSOR 1
®
BARRIER
®
TRAFFIC
LIGHTS

Vehicle Vehicle
ENTRY EXIT

o 2
Cm—

Figure 2.2.1: Typical layout for a car park Entrance/ Exit

To maintain safe operation the vehicle must wait for the barrier to have opened
completely before passing. Therefore the traffic light must remain red until the barrier
is fully open. Once green the traffic light must return to red as soon as the vehicle
leaves the first entry sensor (sensor 1) to stop the vehicle behind from proceeding.
Furthermore the vehicle must have fully passed over the barrier before it begins to

close. This sequence must only recommence once the barrier has fully closed.
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Consequently, for peak periods and emergencies, an override must be available to

keep the barrier permanently open and the traffic lights green.

In respect of car parking the system must be able to record the immediate occupancy,
the ID of each vehicle, and, the arrival and departure times. For general traffic
movement the system must be able to log the traffic density and the total volume of
traffic over given period. This information should be available to an operator both on
screen and in the form of a hardcopy and hence it is proposed to use a PC rather than
PLC as the host computer. The advantages of a PC also include:

- Interfacing with external data source

- Driving user display such as dot signs

~ Maintaining comprehensive on site log/records

- The flexibility to offer optional operator-on-site control ( display and keyboard)

- Can be remotely located up to 100m from site with a standard cable.

2.3 Operation of the microwave system

The microwave communication link between the vehicle and the reader is designed to
produce an error free communication zone so that an ID number which is stored in the
OBU can be received at the roadside-unit (RSU). It is essential that the OBU has a
low profile so that it can be conveniently located behind the windscreen of the
vehicle. Further it must be inexpensive and this is achieved by transferring the need
for “OBU transmission power” from the OBU to the RSU. That is the RSU
transmission both alerts the OBU, and, enables the OBU to re-radiate its

communication signal up to the RSU as shown in figures 2.3.1.

11



CW CARRIER
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SIDE < BOARD
UNIT PSK MODULATED UNIT
CARRIER

Figures 2.3.1: Operation of the microwave system

2.4 Design of the Road-Side Unit (RSU)

A block diagram of the RSU is shown in figure 2.4.1.

10dB

Microwave
Oscillator Coupler Switch TX Antenna
= OOooOono
J RP looono
L ﬁ oooo
IF Amplifier Image Q LHP | OO0
And DPSK Rejection Low Noise RHP OoOoodod
Demadulator Mixer Amplifier rOOo0oad
é OodoonO
RX Antenna
Manchester
Encoder
\ | I
Data Out Data In

Figure 2.4.1: A block diagram of the RSU

A stable, low phase noise dielectric resonator oscillator is used as a microwave source

at the RSU in order to meet the European standards so as not to cause interference to

12



other systems using nearby frequencies. The RSU antenna consists of two, four by

four microstrip antennas having a beam width of 16°.

Two antennas are required at the RSU, as one is used to transmit a Continuous carrier
Wave (CW) carrier while the other is used to receive the PSK(Phase Shift Keying)
modulated signal from the OBU. Circular polarisation is used to minimise the effects
of multi-path reflections from the vehicle bonnet and to ensure that the physical
orientation of the OBU behind the windscreen in not critical. Left-hand polarisation is
used for both the CW signal and the PSK signal and this simplifies the design of the
OBU antenna. In normal operation the microwave switch is closed so that the RSU
transmits a CW signal which is PSK modulated at the OBU using a DPSK 1 MHz
sub-carrier, before being re-radiated back to the RSU. The 1 MHz sub-carrier is used
to reduce the effect of ‘1/f” flicker noise. At the RSU, the receivers PSK signal is
initially amplified by a low-noise amplifier before been fed it to an Image Rejection
Mixer (IRM). It is not possible to use a conventional mixer at the RSU as the phase of
the incoming signal is constantly changing due to the movement of the vehicle. The
IRM mixer rejects one of the side-bands and converts the other side-band to an IF
frequency of 1 MHz which is then amplified and limited by the IF amplifier. The data

is then coherently recovered with a squaring loop.
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2.5 Design of the On Board Unit (OBU)

A block diagram of the OBU is in figure 2.5.1.

TX/RX Antenna

Manchester <] DPSK
e___
Encoder : <
Data Out Video Modulator 'y, o TIn
Amplifier
Subcarrier
Oscillator

Figure 2.5.1: A block diagram of the OBU

The complexity of the OBU can be kept to a minimum using a single polarised
TX/RX microstrip square patch antenna and a single diode for PSK modulation.
Circular polarisation is currently achieved by feeding the square patch antenna with
two signals 90° out of phase to generate two orthogonal modes in the patch. In this
design the 90° phase shift is produced by a power splitter in which the length of lines
differ by A/4 as shown in figure 2.5.2. In the future, this antenna design will be
replaced by a single fed two corner-deleted circular polarised microstrip square patch
antenna as shown in figure 2.5.3. This antenna design can effectively reduce the

dimension of the antenna and hence reduce the size of the OBU.
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Figure 2.5.2: Current OBU antenna

Figure 2.5.3: New OBU antenna

2.6 Design of the Wake-up Tag

The circuits diagram of the wake-up tag is shown in figure 2.6.1 where the wake-up
CW signal received from the RSU is detected by one of the diodes, while the other
diode provides a reference voltage. The difference in the voltages across the two
diodes is then fed into an operation amplifier. The second reference diode is used to
overcome the problems of variation of temperature. Normally the Tag is in the sleep
mode using only a standby current of 10mA. When the tag receives a signal from
RSU, the voltage difference across the diode drops by 20mV, and the 3V CMOS

voltage level is generated by the operation amplifier comparator, and this wakes up



the PIC processor. The Tag also contains a manual wakeup switch as an alternative or

a back up process.

TX/RX Antenna

0

r'<£,>”

L

| 2

PIC 7
12C508

|-ve
Figure 2.6.1: Circuit diagram of the wake-up tag

2.7 Contactless identification technologies
The following table illustrates a comparison of the possibilities with different remote

identification technologies. It should be noted that all manufacturers do not provide

every function.
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Contactiess ID technologies |high low bar code |infrared
frequency |frequency (Code 39) {("TV
(2.45 (125 kHz, remote
GHz) 13.5 MHz) control")
Parameter
Reading range very good| moderate | moderate |very good
Passage speed very high low moderate high
Read-write data carriers yes yes no yes
Directional readers yes no yes yes
Reads through glass, clothes, yes yes no no
wood etc
Resistance against dirt good good low low
Resistance against wear good good moderate good
Resistance against good low good good
interference
Reading of multiple data yes yes no yes
carriers
Readers close to each other yes no yes no
Insensitive to metal mounting yes no yes yes
Reader cost moderate low low moderate
Data carrier cost moderate low very low high

Table 2.7.1: Comparison of the different remote identification technologies

Summary

The basis of the short-range prototype microwave system developed for automatic

debiting application in the vehicle tolling and car park access has been discussed. The

operation of a microwave system to be used in traffic applications is described. Block

diagrams showing the communications operation between the RSU and OBU have

been presented. The circuit diagram of the wake-up tag has been described. A listing

illustrating the possibilities with different remote identification technologies has been

tabulated.
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CHAPTER 3

REVIEW FOR THE DESIGN AND MODELLING OF
RECTANGULAR AND TRIANGULAR MICROSTRIP

PATCH ANTENNAS

3.1 Introduction

A microstrip antenna is different from conventional antennas such as wire aerials and the
waveguide configurations. The patch antenna consists of a metalised deposit on a plane

dielectric substrate which allows for a very thin printed-conductor topology of any shape.

Microstrip antennas have several advantages compared to conventional microwave

antennas and therefore are used in many applications over the broad frequency range.

Some of the principal advantages of microstrip antennas compared to conventional

microwave antennas are[1]:

- lightweight, compact, low profile planar configurations which can be made conformal

- low fabrication cost and amenable to mass production

- can be made ultra-thin, and hence, they do not perturb the aerodynamics of host
aerospace vehicles

- the antennas may be easily mounted on missiles, rockets and satellites without major
alterations

- linear, circular (left hand or right hand) polarisations are possible with simple changes

in feed position
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- simultaneous dual frequency antennas are easily made

- microstrip antennas are compatible with modular designs (solid state devices such as
oscillators, amplifiers, variable attenuators, switches, modulators, mixers, phase
shifters etc. which can be added directly to the antenna substrate board)

- feed lines and matching networks are fabricated simultaneously with the antenna

structure

However, microstrip antennas also have some disadvantages compared to conventional

microwave antennas including:

narrow bandwidth ( high Q factor)

- losses due to copper and dielectric, hence somewhat lower gain

- most microstrip antennas radiate into a half -plane

- practical limitations on the maximum gain ( ~ 20dB)

- poor isolation between the feed and the radiating elements which can be reduced
using slot feed arrangement

- possibility of excitation of surface waves

- lower power handling capability

In this chapter, various modelling approaches and methods of analysis for the microstrip
antenna are described in section 3.2. A new computationally efficient expression for the
input impedance of the rectangle patch with offset feed is derived in section 3.3.1 and
applied to obtain impedance-frequency graphs, and, the variation of impedance with
respect to feed location. A new computationally efficient expression for the input

impedance of a microstrip right angled isosceles triangular patch antenna is derived in
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section 3.3.2 and applied to obtain impedance values in respect of feed locations on both
a vertical edge, and, on the hypotenuse edge. In section 3.4 the electric field condition for
circular polarisation is described together with possible feed arrangements required to

generate circular polarised radiation.

3.2 Antenna Modelling and Analysis

Various approaches, of varying complexity, for the analysis of microstrip patch antennas
have been reported and are discussed in the following sections. In the modelling analysis
involving the electromagnetic field structure of the antenna, since all the field elements
are time harmonic, the phasor-form of the Maxwell field equations is used throughout the

thesis.

3.2.1 Transmission Line Modelling

The basic Transmission line model(TLM) [2] is used for a rectangular antenna patch
structure with a microstrip feed restricted to a centre position on one of the sides as
shown in figure 3.2.1. The radiating function of the antenna is modelled by two slots on
opposite edges of the antenna, radiating into half-space and separated by a transmission
line of low characteristic impedance. The radiating slots are represented by self-
conductance (G ) and self-susceptance (B) connected in parallel. Modifications to the
basic TLM have improved its accuracy and versatility [3] by taking into consideration

factors such as the mutual coupling (G,,) between the radiating edges, the surface

roughness of the copper, and, the width of the microstrip feed line. For the transmission

line model a closed form expression has been derived [4,5] for the total input impedance
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of a rectangular patch antenna which includes the effect of radiation loss and mutual

coupling between the radiation slots.

Aa a Aa

(a)
}’i'nﬁ Giz

J"] :GI +_j'B a’:ﬂd_.-".z FI _G] ; J'E

Figure 3.2 1: Transmission line equivalent circuit

The resonant frequency of the microstrip antenna is a function of its length. Usually the
length “a’ is made slightly less than A,/2, where A, is the wavelength in the substrate,
hence

Y .=G-jB {3:.&.1.1)
The conductance of a single slot,GG,, can be obtained by using the field expression
derived by the cavity model. In general, the conductance is defined as

BB
%l

G, (3.2.1.4)

where, V, is the voltage across slot and P, is the radiated power [6].

Therefore the conductance G, in equation (3.2.1.4) can put into the form [6]
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=1 3215
112072 ( )

where

2
sin (»’f‘-’z—b— cos 0)
L={ sin® 6d6
0

3.2.1.6
cos@ ( )

The mutual coupling between the radiating edges is modelled as a mutual conductance

G,, given by [6]

| = sin (4’2—- cos 9)
G = 12072 -! cosf J, (k, asinf)sin’ 6 d6 (3.2.1.7)

The total input impedance at resonance is then given by

1
Zin T ATA N
2(G,£G,)

(3.2.1.8)
where the plus (+) sign is used for modes with an odd (antisymmetric) resonant voltage
distribution beneath the patch and between the slots, while, the minus (-) sign is used for

modes with an even (symmetric) resonant voltage distribution. The above expressions for

I, and G, must be evaluated numerically.

The effect of copper and dielectric losses on the input impedance are not taken into
account which results in impedance values with errors of the order ten-per-cent. The
input impedance for the dominant mode can be modelled by an equivalent parallel R-L-C

circuit. In the present of the further modes then the input impedance is modelled by a
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sequence of model parallel R-L-C circuit all connected in series as discussed in the next

section.

3.2.2 Cavity Modelling

The rectangular microstrip patch is shown in figure 3.2.2.1 can be considered as a
resonant cavity. In the model the microstrip antenna structure is considered as a resonant
cavity bounded by electric conductors above and below, with the four side walls
modelled as magnetic walls where the tangential components of the magnetic field

vanish.

i

y b
Figure 3.2.2.1: Rectangular microstrip patch geometry

The solution of the field equations in the cavity is obtained by expanding the fields under
the patch in terms of the resonant modes[7]. The patch boundary is required to be
extended outwards in order to account for the fringing fields so that the effective
dimensions are greater than the physical dimensions of the patch. An effective loss
tangent which is introduced to account for a conductor loss, a dielectric loss, and, a
radiation loss is used in the calculation of input impedance. The resonant frequencies of

the antenna are determined by the natural resonant frequencies of the cavity [6].
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The cavity model is only accurate for a thin substrate [8] because the high Q resonance of
the patch means that the surface current on the patch is not greatly perturbed by details of

the feed current. For a microstrip antenna structure with a thin substrate (2<A4,) the

dielectric field lines are assumed to be normal to the patch and ground plane so that these

is no variation in the z direction within cavity.

Solving the wave equation for the potential in the cavity under the magnetic wall

" . mzx nw
boundary conditions gives the wavenumber components, k£, =—, and, k, = 5 so that
a

2 2
mrx nz
K +k; = (——) +(—) =kl =0’ Uy &y £,y (3.2.2.6)

Thus the resonant frequencies for the cavity are given by

_ 1 mz Y nm 2
S = 2t ey J( , j +( P j (3.2.2.7)

Based on the cavity model an equivalent network for the microstrip antenna is shown in

figure 3.2.2.2
™,, ™,,
ROO RIO R()l
— —— ™,
Ll T SACT TN~
I _()"‘l I 01 ' l
Z in L"m
9 ¢

Figure 3.2.2.2: Equivalent network model for microstrip antenna

The rectangular patch is probably the most commonly used microstrip antenna. The

electric-field and magnetic-surface-current distributions on the side walls for
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the TM,,, TM,, and TM,, modes are illustrated in figure 3.2.2.3 For the TM,, mode,
the magnetic currents along ‘b’ are constant and in phase while those along ‘a’ vary
sinusoidally and are out of phase. For this reason , the ‘b’ edge is known as the radiating
edge since it contributes predominantly to the radiation. The ‘a’ edge is known as the
non-radiating edge. Similarly, for the TM, mode, the magnetic currents are constant and
in phase along ‘a’ and are out of phase and vary sinusoidally along ‘b’. The ‘a’ edge is
thus the radiating edge for the TM,, mode.

For circular polarisation design the modes of greatest interest are the TM,, and TM,

modes [9]. These two modes all have broadside radiation patterns.

« > —>

(a) TM,, Mode (b) TM,, Mode
< > <«

E —»> < »

RN A
0 \__/ a
(c) TM,, Mode

Figure 3.2.2.3: Electric field and magnetic-surface-current distribution in walls for

several modes of a rectangular microstrip patch antenna
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3.2.3 Coplanar Multiport Modelling

Coplanar multiport modelling [9] may be considered as an extension, or, generalisation of
the cavity model [8] to antennas of composite geometry. Coplanar analysis is used for
thin substrates (2<«A) and is based an relating the voltage at a point on the patch
perimeter to the normal current density at another point on the perimeter by means of the
Green’s function of the patch geometry. For a patch with a known Green’s function the

input impedance can be obtained directly from the analysis.

For an antenna geometry composed of regular segments having known Green’s functions
the coplanar analysis is extended to establish multiport perimeter connections between
the segments (figure 3.2.3.1). A multiport coplanar matrix circuit analysis [10] can then
used to determine the input impedance formula of the composite antenna structure. A full

discussion of the analysis and applications is given in chapters 5 and 6.

Feed

Figure 3.2.3.1: Illustration of multiport segment interconnections
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3.2.4 Full Wave Modelling

Full wave modelling assumes an infinite substrate so that no fringe field approximation is
employed. Also there is no restriction on the substrate thickness. Both electric and
magnetic fields are used in the constitutive Maxwell system of equations. Full wave
techniques provide the most accurate solution for the impedance and radiation

characteristics [1,9].

Full wave solutions include the effect of dielectric loss, conductors loss, space wave
radiation, surface waves, and external coupling. The computational requirements are

numerically very intensive and costly.

In full wave analysis Maxwell’s equations are solved for the electric current distributions
on the conducting elements and once this has been determined all the other parameters of
interest can be derived. The currents produce electromagnetic fields which must satisfy
certain boundary conditions determined by the antenna structure. The fields must satisfy
Maxwell’s equations which relate the fields, current sources and charges. Maxwell’s
equations can be expressed in either differential or integral form. In the differential form
the vector wave equations for the electric fields, and, for the magnetic fields within and
outside the substrate are expressed in terms of their vector potentials. The vector potential

field equations are then solved.

In the integral equation approach the problem is formulated in terms of integral equations

in which the unknowns are the surface currents on the metalised conductors. On the
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antenna patch, which is assumed to be a perfect electrical conductor, the tangential
electric field is everywhere zero. At the patch the field is due to the incident field from
the feed line, and the field scattered by the patch. These fields are expressed in term of

Green’s functions which relate the current sources to the electrical fields.

By mapping the constitutive equations and the boundary conditions onto the Fourier
transform (spectral) domain the problem of finding the Green’s function is considerably
simplified. For a regular shape the spectral Green’s function is obtained in closed form.

The equations are usually solved for the current distribution by a moment method.

3.3 THE RECTANGULAR AND TRIANGULAR PATCH ANTENNA

The microstrip patch antenna (radiating element) and the feed lines are usually
photoetched on the dielectric substrate. The antenna patch may be square, rectangular,
thin strip(dipole), circular, elliptical, triangular or some other configuration. In the
present study of the deleted corner square patch antenna only the rectangular and

triangular geometries are involved.
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3.3.1 An Efficient Expression for the Input Impedance of a Rectangular Microstrip
Patch Antenna with a microstrip Offset Feed.

The rectangular patch geometry is the most common form in use today. Characteristics
such as input impedance, circular polarisation, dual-frequency operation, frequency
agility, broad bandwidth, and feedline flexibility, have been extensively studied [1,6,8,9].
From coplanar analysis applied to a rectangular antenna patch a formula for the input
impedance, with offset feed, is obtained. This involves a double infinite series, and, in
this section it is shown that the series can be expressed as a single term, together with a
single infinite series. Input impedance values, calculated using the new computationally
efficient expression are compared with practical results and a simulation based on full-

wave analysis.

A rectangular patch antenna having dimensions ‘a’ and ‘b’ is shown in figure 3.3.1.1.
where, W is the feed width of the microstrip line and T is the offset distance of the feed

center from the edge of the antenna.

y

A

Zin

<T->
O rX
ule
Feed

Figure 3.3.1.1: Input impedance of the rectangular patch
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The input impedance for a rectangular patch antenna with a single microstrip feed has
been derived by Okoshi[10] using the coplanar analysis and involves the evaluation of a
double infinite series in terms of the resonant modes m and n. The “m’ and ‘n’ modes
are associated with the ‘x” and ‘y’ dimensions respectively. The Okoshi equation can be
put in the following form.

a’b glg T
zin = 227 J%"h 3 cos{ el Jsinz{man (33.11)

=0 n—0 m[m2b2+na DZ] a 2a

where, £ = 1(m = 0) € = 1(n = 0)

=2 (m = 0) =2 (n % 0)

h is the dielectric thickness, D* = k*a’b*/n*, k* = w*ue,e,(1- j/Q), and,
Q is the total quality loss factor, which includes, copper(Q,), dielectric(Q,),

radiation(Q, )and surface wave((Q,,)losses of the structure. The loss factors are

connected by the relation

1 1 1 1 1
T S N T 3312
0 0. 0,0 0. G312

For thin substrates the losses due to the surface waves are very small and consequently

can be neglected[1]. The loss factors are given as follows[1]:
0. =hfuzxfo, (33.1.3)
where, o _is the conductivity of the metal used.

1

Qi=— (3.3.1.4)

where tan d is the loss tangent of the dielectric.

T
- (3.3.1.5)
4GZ,

r
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where, G is the total conductance due to the radiation lossG, and mutual coupling

conductance G, between the radiation slots (G =G, +G, 2) [6]. Z,is the characteristic
impedance of the patch.
The double infinite series in equation (3.3.1.1) can be arranged into the four modal

groups,(m=n=0),(m>1,n=0),(m=0,n >1),and,(m=1,n > 1) to give,

‘ouh 1 8a* =2 |cosm@ sin m@ 26 & 1
zin = T |:—— + > ( 1 2)2 + >
ab k* *W? mz[m2 — AZ] x> ., n* -B?
16 272 o ©
a“b Z:(c:osmé’ sin mo. ) Z 1 (3.3.1.6)
4w2 2_2 2
n=1 mn 2 b
n +( 3 —k j*-z—
a V3
where, 4 = ka/n, B = kbjn, 6, =nT[a, 0, = x W/2a.
Equation (3.3.1.6) can then be put in the form
_ Jouh| 1 8a* 2b* 16a°b*
Zin poy [ k2 WSm —7t—2Sn+W—Smn (3317)
. 2
where, szz(cosmal sin m6,) (3.3.1.8)
par mz[mz_A2]
Sn=3—" (3.3.1.9)
—~ n2 _B2
6, smm@) 1
d, S (cosm 3.3.1.10
and, mn = Z ;n e ( )
2
where, C? = (m2 - Az)
a2
Since, Gradshteyn [11],
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© 1 V4 a’
> = coth #C — (3.3.1.11)
=t eCt 2C 26*(m* - 4%)

therefore,

16ar2b2 8a%h? & (cosmH smm0) 8a*

el 22 coth 7 C —— s Sm (3.3.1.12)

which results in the elimination of the Sm infinite series in equation (3.3.1.7).

Substituting from equation (3.3.1.12)into equation (3.3.1.7), then gives

. jou h| 1 2° 8a’h* & (oosm@ smmB )
Zin=———|——+—8Sn+ cothz C 33.1.13
b { P njwzz 4 ( )
Further since, Gradshteyn [11],
° 1 1 /4
2 = ~ — cot zB (33.1.14)
m n’ — B’ 2B’ 2B
therefore,
2b? 1 b
._;[_E_Sn = k—z—— -k—cotkb (33115)

which results in the elimination of the mode m = 0, » = 0 in equation (3.3.1.13).

Substituting from equation (3.3.1.15) into equation (3.3.1.13), then give a compact

equation for Zin

. jouh| 1 8a° cosm9 sinm@ )
Zin="——| ——cotkb+ cothzC 3.3.1.16
a { k 7°W? ; m*m? — A2 ( )

From the above equation (3.3.1.16) numerical evaluation shows that for a centre feed at,
T =af2, the first term is dominant and gives the input impedance to four significant

figures. Thus the formula
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(3.3.1.17)

is a good analytic approximation which can safely be used for practical impedance
matching design requirements.

It is also to be observed that for the centre feed position the impedance is virtually
independent of the width, ¥, of the feed line.

In the offset feed positions convergence of Zin to 5, 6 and 8 significant figures is
obtained with the upper limit of summation m =1, 4 and 40 respectively.

Equation (3.3.1.16) has been evaluated for a square patch of side, a = 39.5mm, with

& = 233(Duroid 5870), h = 0.79mm, Q=83 for the center feed position
T = 19.75mm and the resonant frequency, 2.45GHz. The layout of the antenna for the

practical experiment to determine the Zin at resonant frequency is illustrated in figure

3312

4—— Short Circuit

The results for the variation of input impedance with respect to the center feed position
using equation (3.3.1.16), Ensemble™ (full wave analysis software), and, practical

measurement, are shown in figure 3.3.1.3(a). Figure 3.3.1.3(b) shows the results for an
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offset feed position for 7" = 11.75mm . As can be seen in both cases there is a good

agreement between predicted, simulation(Ensemble™) and practical measurement.

e T T T T T
m b-
g 100 |~
E
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g e
E ]
P o
- I 1 L I I
23 10" 234 40" 24 " 345 10" 250" 288 a* 14 -10*
Frequency

—— Real part of equation (3.3.1.16)
= Imaginary part of cquation {3.3.1.16)
= ° Heal part of measurement
— = lmagmary part of measurement
Feal part of simulation
- lmaginary part of simulation

(a) Input impedance of center feed position (19.75mm)

L | | II;I\III | I i
) : I;'fl II"'.I
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1l ,/ ]
; -:'—:"—j #_d _J_,'./Ili_ '\\ \‘“‘-~—- = o
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13 10" 135 10" 1418 a3 0" 230* FET T 140"
Fremay
Real part of equation (3.3.1.16)

——  Imaginsry part of equation (3.3.1,16)
Real part of measurenment

= = Imaginary part of measurement
Real part of simulation
Inuaginary part of simulation

(b) Input impedance of offset feed posifion (11.75mm)

L

Figure 3.3.1.3: Input impedance of a 2.45Ghz microstrip square patch antenna fed with a
microstrip line along the non-radiating edge of the patch.
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It was found that the input impedance variation for a sequence of seven rectangular
patches is most significant when the rectangle approaches a square (figure 3.3.1.4). This

result is relevant to the design of a single feed circular polarized antenna.

L T T T T T T T

mp ~ _

|=pret Empedance (Ohms)
&
!
|

— 35mmiddenm

— = 36 8mm/d0mm
3% 4mm/40mm ¥
39 2mm/40mm Patch size ab
“ 39.6mm /40mm
3% Bmm./40mm

the distance of fed point from the edge of the side

3.3.2 An Efficient Expression for the Input Impedance of a Microstrip Right-angled
Isosceles Triangular Patch Antenna.

Several triangular patch shapes are amenable to coplanar analysis. These include the
45° —45°-90° , 30°-60°—90" , and the 60°—60° —60°triangular patches, for which
the necessary Green’s functions have been derived by Chada and Gupta[12]. They derive
the Green’s function by constructing a set of specially selected line sources, the potential
from which, is expanded in an infinite series to obtain expansion functions satisfying the

associated homogeneous wave equation boundary value problem. These functions are
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then applied to the nonhomogeneous wave equation to determine the required Green’s
function expansion coefficients. There have been few investigation on the triangular

patch [1].

Using coplanar analysis the following general expression for the input impedance of a

single feed microstrip antenna has been derived by Okoshi [10]

1

Zin=

[ [GGslsy) ds as, (3.3.2.1)

s S W Wro
where, G(s|s,) is the Green’s function of the patch, and, s,s, are running perimeter
coordinates. The integrations are taken over the feed to patch interface, and, W, W, < 1,

A being the wave length in the substrate. Included are the effects of radiation, copper

and, dielectric losses [1,14,15].

The above equation is applied to a feed position on the vertical side of the triangle
(section 3.3.2.1a) and to a feed position on the hypotenuse (section 3.3.2.1b). in each case
the initial numerical results obtained are economised by introducing closed forms of
infinite series{11]. These new formulas are verified by comparison with practical results

and a simulation based on full wave analysis.

3.3.2.1(a) Patch with feed on vertical side

The geometry with the feed on vertical side is shown in figure 3.3.2.1(a).
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Figure 3.3.2.1(a) : Patch with feed on vertical side

The initial expression for the input impedance involves one constant term, three single
infinite series and two double infinite series in terms of the resonant mode contributions
(m, n). Introducing closed forms results in the total elimination of two of the three
single infinite series while the closed form applied to the remaining single series

eliminates the contribution of the (0,0 ) mode. Closed forms of the inner summations of

each of the two double infinite series reduces each to a single infinite series. These

procedures are outlined below.
From Chada and Gupta [12] the Green’s functionG(0, y |0, y,) for the triangle can be

arranged in the form

GO,y 10,)

[1 + (=D cos- % yIl + (=D cos % yo)

1 a a

1
Ko

=j2ohui-

m - 4H

cos 1% y + (-1)” cos mz yJ[cos nr y. + (D" cos mzo

+12ii( a a ’

yo]
4 = (3322
T (m* + n* — 4%)

m=1 n=1
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where, A = k a/ 7 ; h is the dielectric thickness, k2 = w?u £,6,(1- j/O) and, Q is

the total quality loss factor .

From equations (3.3.2.1) and (3.3.2.2), by integration (Appendix 3A)

Zin = ohy | w? . Wt i 1 N 2aW i (-D"(sin m@, — sinmé,)
w? k202 e ~ m? — A2 =~ = m(m2 _Az)
@ . . 2 © @ . . 2
. a* Z (sinm@, —sinmd,)) . 2a° (sin m@, — sin m6,)
P AN m? (m2 - Az) at o mim® +nt - 4%)
? &, (D™ (sin m@, — sin m@,) (sin nf - sin nd
y 20 g OO Gnmd, ) o 2) (3.3.2.3)
= o mn (m* +n® - 4%)
where, 6, = —”—(T+—W-}; 6, =—’—r—( ——W—j.
a 2 a 2

Summing the first of the above double series with respect to the inner summation results
in the total elimination of the third single series. Summing the second double infinite
series eliminates the second of the above single series. Summing the first of the above
single series eliminates the - W?/k%a’ term. The final result of the economisation is the

new input impedance formula

«©

- . M . 3 2
Zin = johy {— W cot k W(sin 46, — sin 46,) + 24 Z (sinmf — sinm6,)

coth Bx

w? ka - Klasin Ax P m’B

m=1

(3.3.2.4)

2a> < (-D"(sin m@, — sin m@) (sinh BO, — sinh BY,)
Mara)
= m (m®> — A*) sinh Bz

where, B = Vm? — 47 .
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From the above equation (3.3.2.4) numerical evaluation shows that for a centre feed at,
T =af2, the first term is dominant and gives the input impedance to four significant
figures. Thus the formula

z, =—J2#hcotka (3.3.2.5)
ka
is a good analytic approximation which can safely be used for practical impedance

matching design requirements.

For the offset feed position, 7 = 24mm , convergence to 5, 6 and 8 significant figures is
obtained with the upper sum limits m = 2, 5 and 24 respectively.
It is also to be observed that for the centre feed position the impedance is virtually

independent of the width, W, of the feed line.

Numerical calculations show for an offset feed position the impedance has a relatively
low value at the right-angled corner but increases rapidly as the offset feed length, T, is

increased.

The resonant frequency of the triangular patch antenna is given by[16]

fo=— (3.3.2.6)
2a,[¢ 5
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3.3.2.1(b) Patch with feed on hypotenuse

The geometry with the feed on hypotenuse is shown in figure 3.3.2.1(b).
y

+

0 > x

Figure 3.3.2.1(b) : Patch with feed on hypotenuse

The initial expression for the input impedance consists of one constant term, one single
infinite series and one double series. The single series reduces to a closed form but the
double series cannot be reduced to closed form. Some economisation is obtained by
extracting the diagonal modal terms(m > 1, » = m ) which take the form of three single
infinite series, two of which reduce to closed form. Application of economisation to the
third series involves eight single infinite series each one reducing to one of four possible
closed forms, which are related to convergence conditions. In term of computationally
efficiency it is preferable to directly sum the third series. By symmetry, the remaining

double sum reduces to a semi-infinite double series (m >1n=m+1). These

procedures are outlined below.
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The Green’s function G(x,a — x x,a- xo)can be arranged in the form

Gx,a-x|x,a—-x)

os ™7 x + D" cos % (a - x)Icosﬂ x + D cos- % (a - xO)J

C
iw[ a a a a
Ep)

=2whus-

(" —4)

oosﬁxoosﬂ(a—m) +(_1)m+n cos xoos«”z(a——x))

gyl

2 2
m=1 n=1 ' (m +n _A)

(cos~m—”xo cos — (a X,) +(=)™H cos?% X, cosﬂ(a—xo)j (3327
a a a

From equations (3.3.2.1) and (3.3.2.7), by integration (Appendix 3A)

© . . 2
gin= JOBR | WA | 8a° z (s1nm¢91 - smmHz)
2Wia Ka' = m(m’ — A7)

m=1

| 2P & 1 |:(sm( m+m, —sin( m+n),) (sin( m—n)6, —sin( m—n)az)}2 } (3.3.2.8)
; 3.2

Yl (Y (m+n) N (m—n)

V4 /4 V4
here, O, =—|T+—= |; 6,=—| T -
v ‘ a( 2x/5j a( 2[)

In the above formula the single series can be summed to closed form making a

contribution to the — W 222 /k2a’ term. The diagonal term n = m from the double sum is

extracted and is in the form of three single infinite series, two of which is expressed in
closed form. By symmetry the remaining term in the double series are expressed in the

form of a semi-infinite double series (m > Ln = m +1).
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The final result for the input impedance is given below

Zin= zjawh{W(SW_L‘ﬁ”z) PR (Sin 2m@, - sin 2mé, )2

w? 2 ka * 2 1,2 2
dr” m*(m® — A%/2)
#*(cos Az — cos Alx - 6, — 8 )cos Alg, - 6,) + 2 sin A(x - 6,) sin 406,)
k*a sin ka

4 (z-20)-sn
2 1 p)

V2 K asin ka/\2 4k a

72 W | sin
( :

2 2
_ 72 W*J2 cot
¢4 202)J

+

2

‘i“z i {[(m 2+n? J '

o0
7T m=l n=m+l

[(sin(m +n)6, —sin(m +n)8,) s (sin(m —n)6, —sin(m — n)ez)ﬂ (3.3.2.9)

(m+n) (m-n)

Using a centre feed only the leading term in equation (3.3.2.9) gives 4 significant figure
accuracy. For the offset feed position, 7' = 24mm , convergence to 5, 6 and 8 significant

figures is obtained with the upper sum limits m = 2, 5 and 35 respectively.

From the above equation (3.3.2.9) numerical evaluations show that, for a feed position on
the hypotenuse, the input impedance is a maximum at the ends of the hypotenuse while

falling uniformly to near zero at the centre.

Consequently there is a feed location on the hypotenuse giving an input impedance of

50Q2 thus allows for simple matching implementation.
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The impedance expressions (3.3.2.4) and (3.3.2.9) were verified by application to the
patch antennas shown in figures 3.3.2.1(a) and 3.3.2.1(b), having a resonant frequency of
2.45GHz, a = 40mm , substrate(Duroid 5870) thickness h = 0.79mm, & = 233,

(=120, and, the loss tangent of 0.0012. The layout of the antenna for the practical

experiment to determine the Zin at resonant frequency is illustrated in figure 3.3.2.2.

¥

Short Circuit—

Figure 3.3.2.2: Experimental feed on the vertical and hypotenuse triangle patch antenna

Graphs of the impedance values for two feed positions using the new formulas equation
(3.3.2.4) and equation (3.3.2.9), Ensemble™, and, practical measurement, are shown in
figures 3.3.2.3(a), 3.3.2.3(b), 3.3.2.4(a) and 3.3.2.4(b).

In all the above cases the graphs show good agreement between the new formulas,

practical measurement and Ensemble™ results.
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(b) Input impedance of offset feed position ( 7" = 24mm)

Figure 3.3.2.3.: Feed on vertical side of isosceles triangular patch antenna.
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(b) Input impedance of offset feed position (7= 24mm)

Figure 3.3.2 4: Feed on the hypotenuse of isosceles triangular patch antenna.
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3.4 Antenna Feed Structures for Circular Polarisation

A number of methods of achieving circular polarisation in conjunction with microstrip
patch antennas have been developed. The two main approaches use either a single feed,

or, a dual feed to the antenna.

3.4.1 Linear and Circular Polarisation

Consider a plane wave travelling in a positive z-direction, as shown in Figure 3.4.1(a),
with the electric field at all times orientated in the y-direction. This type of wave is
termed linearly polarised in the y-direction. As a function of time and position the electric
field of such a wave (travelling in the positive z-direction) is given by[17]

E, = E,.sin(wt - Bz) (3.4.1.1)

Y

E <E, E =E,
(a) Linear Polarisation (b) Elliptical Polarisation (c) Circular Polarisation

Figure 3.4.1: Various States of Wave Polarisation

In genéral, the electric field has components in both the x and y-directions, as shown in
Figure 3.4.1(b). This type of wave is termed elliptically polarised and may be resolved
into two linearly polarised components in the x and y-directions. In this case, for a wave
travelling in the positive z-direction, the field components in the x and y-directions are

given by equation (3.4.1.2a) and (3.4.1.2b) respectively[17].
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E = E sin(wt - f) (3.4.1.2a)

E = E,sin(ot - fz + 6) (3.4.1.2b)
where, £ and E are the amplitude of the fields in the x and y directions respectively; 8
is the phase angle by which E leads E .

The conditions for circular Polarisation, as shown in Figure 3.4.1(c), are met when the
amplitudes of x and y-directed electric field components are equal in magnitude and
orthogonal in phase (Ex =Ey and o] =90°). Circular Polarisation is defined as being in
one of two states, depending upon the polarity of the phase difference (0). If 6 = -90° this
corresponds to left hand circular polarisation (LHCP). while, if 6 = +90° this is defined as

right hand circularly polarised (RHCP).

3.4.2 Two feed arrangement patch

In a dual feed system the patch element is symmetrical in shape and requires an external
polarising feed network in order to generate circular polarisation. The input signals are
applied to adjacent edges of the patch and are 90° out of phase and produce circular

polarisation. Typical example of two feed arrangements used to produce circular

polarisation are shown in figure 3.4.2 [18,19].

Patch
A2 Matching Element
—> Network
Patch 3dB Coupler
Feed Line Element
/ LHCP

Mode2 7 Mode2
[Mode RHCP ><Modcl

a) Incorporating a Reactive Tee Junction  b) Utilising a 3dB Coupler

Figure 3.4.2: Dual Feed Circularly Polarised Patch Antennas
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3.4.3 Single feed arrangement patch
The single feed is able to excite two electric field modes on the patch, one mode to
resonate above and the other mode to resonates below the desired operating frequency.

Example of circularly polarised single feed structures are shown in figure 3.4.3 [20].
L L

—— D ——>
a>b b H L R L
a)Nearly square b)Square Patch with Slot ¢) Truncated Square Patch

Figure 3.4.3: Single Feed Circularly Polarised Microstrip Patch Antennas

The singly-fed type is especially useful because it requires no external circular polariser
such as the 90° hybrid. The wider bandwidth can be archived by using single slot feed but
not with the manufacture factor is concerned. The two corner-deleted truncated square
patch is preferred because of the lower input impedance in the case of the centre feed and

it can be easily match to 50Q by using a single 1/4 transformer.

Summary

In this chapter various modeling approaches and methods of analysis for the rectangular
and triangular microstrip antenna were discussed. New computationally efficient
expressions for the input impedance with the offset feed of a rectangular and a triangular
patch antenna were derived and applied to obtain impedance-frequency graphs with
respect to feed position. Good agreement between the new formulas, practical
measurement and Ensemble™ results are obtained. The electric field condition for
circular polarisation was described together with possible feed arrangements required to

generate circular polarised radiation.
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CHAPTER 4

APPLICATION OF PERTURBATION ANALYSIS FOR A
TRUNCATED SQUARE PATCH ANTENNA TO

PRODUCE CIRCULAR POLARISATION

4.1 Introduction

Haneishi and Yoshida [1] obtained a formula of the perturbation quantities required
for a single feed patch antenna with deleted segments in order to produce circular
polarisation. Similar analyses are given in [2,3]. In this chapter the perturbation
analysis and the equivalent circuit model of Haneishi [1] are employed to determine
the proportional amount of perturbation necessary for circular polarisation in respect

of a truncated corner square patch antenna.

A variational expression for the eigenvalues of the square patch, correct to first order
terms in the variation of electric potential, is derived in section 4.2. Assuming the
dominant mode of the perturbed potential is a linear combination of the unperturbed
modes, an expression for the perturbed dominant eigenvalue in terms of the dominant
unperturbed potential functions, is derived in section 4.3. The result obtained in
section 4.3 is then applied to the corner truncated square patch to determine the
associated dominant eigenvalues and hence the dominant modal frequencies (section
4.4). In section 4.5 the dominant perturbed orthonormalised eigenfunctions are

derived.

In order to use the eigensystem obtained in sections 4.4 and 4.5, to obtain the

perturbation condition for circular polarisation, it is necessary to introduce the
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equivalent circuit of the antenna model. The circuit, described in section 4.6 is
employed to determine the admittances on the antenna due to the dominant x, and y
modal voltages, in terms of the modal frequencies obtained in section 4.4. In section
4.7 the voltage amplitude and phase conditions, required for circular polarisation, are
then applied, using the results of the previous sections, to obtain the required amount

of perturbation.

4.2 Derivation of a Variational Expression for the Eigenvalues of a

Square Patch

The coordinate system used in the following analysis is shown in Figure 4.2.1, where

‘a’ is the length of the side of the square patch.

Patch
antenna

\ \ Dielectric

Ground plane substrate

Figure 4.2.1: Coordinate system

In respect of the antenna under consideration the thickness ‘h’ of the substrate in the
‘2’ direction is small compared to the wavelength of the fields in the dielectric for
frequency at 2.45GHz. Thus field variations in the ‘z’ direction are neglected and the

two dimensional wave equation for the potential, ¢ , within the dielectric is
V+k’¢=0 ,0<z<h “4.21)
In the thin cavity of the patch, magnetic wall boundary conditions are assumed, so

that
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0p _
== (4.2.2)

along the periphery of the patch.
It is shown in Appendix 4A that the dominant normalised eigenfunctions,

(m=1,n=0,and,m=0,n=1), of the above problem in the x, and y direction are

V2 oz V2o oz
¢ = sin — x,and, ¢, = sin — y.
¢ a a a a

Multiplying (4.2.1) by ¢ and integrating over the area S, of the patch, gives

[Joveds = —k*[[ g%ds (4.2.3)
Since (Appendix 4B)
¢ Vig=V(p V§)-VoVg (4.2.4)

the left hand side of equation (4.2.3) can be written as

H¢V¢ds jjv ¢ V§)ds Hw Véds . (4.2.5)

In the first term of the RHS of equation (4.2.5) let

pVop=-Qi+Pj (4.2.6)
then,
V(¢ V¢)=(ii+j3 (-Qi+Pj)
ox "oy}
__%0_ or 4.2.7)
x Oy
and thus first term an the RHS of (4.2.5) can be written in the form
6Q oP
ﬂv ¢ V§)ds ﬂ( - ay] (4.2.8)
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By Green's theorem in the plane relating a surface integral to an equivalent line

integral
H(—%+%§J:—C§de+Qdy

=_<§(-Qi+Pj) ( % - j%}dl

-(j}¢ Vo, (,@ - Jg’;)dl (4.2.9)

Further, for any point r on the boundary of the patch
r =ix +jy
hence,

or B oy
X iE ;2 (4.2.10)
ol ol ol

and this is a vector tangential to the boundary.

Then, from (4.2.9) and (4.2.10)

{i & — axj{i o +j @]:(ay o o ay):o (4.2.11)
ol ol ol ol ol al ol al

which shows the vector

oy Ox
i— - jJ— =n

ol ol

in the equation (4.2.9) is normal to the boundary curve '/' .Therefore in equation
.0y .Ox . . o
(4.2.9), the term V¢ |i——j— |=V.n is the component of V¢ in the direction

normal to the curve “/°, which by the magnetic boundary wall condition is zero.

Hence equation (4.2.8) becomes

[v(g vg)=0 (4.2.12)

whence from equation (4.2.5)
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[[¢ V¢ ds=—[[(V§).(V$) ds
S N
=—[[(vg) ds (4.2.13)
N
substituting this latter result in equation (4.2.3). Then gives

o) (o)
CT e

which is a variational expression for the eigenvalues. That is if ¢ is changed by a

(4.2.14)

small variationto ¢ + &9 then k> becomes k> + 2, and , up to first order terms

in 8¢ and V¢ , 5 is zero. This is easily seen by writing (4.2.14) as,

K [[¢2ds = [[(Vo) ds (4.2.15)
whence, S S

ok* [[¢*ds +i* [[ 24 o9 ds = [[2(V4).(Vg)ds (4.2.16)
so that, ) ) )

2[[[(v,9).(V,09)- K¢ 5¢ ] ds

i

which is zero to the first order variations 5¢ Vg .

Sk? ==

(4.2.17)

Equation (4.2.14) is the variational expression for the eigenvalues of an unperturbed
patch and it is employed in the following section to determine the eigenvalues

required for the perturbed patch antenna.

4.3 The Dominant Eigenvalues of a Perturbed Square Patch

In this section the dominant eigenvalues of a perturbed system are obtained in term of
the eigenvalues of the corresponding unperturbed system. This result is then applied

to obtain the modal resonant frequencies for the truncated square patch antenna in
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section 4.4 and the eigenfunctions associated with each of the antennas are then

obtained in section 4.5.

Let the dominant eigenfunction and eigenvalue of the perturbed planar circuit be

denoted by ¢' and k'z, respectively. Considering only the dominant modes required

for circular polarisation, ¢' is taken to be of the form [1, 2],
¢ = Pp + Q4 “43.1)

The perturbed eigenvalues, k'z( equation 4.2.14), are then given by

L J(#)(ve s
k=58 (4.3.2)

J] 9°as

S+AS

where AS is the perturbation element.

Substituting (4.3.1) into equation (4.3.2) gives,

, [[ (v, +0Qvs,) . (PV4,+0V4,)ds
k= (43.3)
[[ (Ps,+09,) as

S+AS

1
The dominant eigenfunction relates to the smallest eigenvalue so that k2 is to be
minimised with respect to the parameters P,Q . That is P,Q must satisfy the two

conditions
ok2foP=0, and, ok2[50=0 (4.3.4)

For this purpose it is convenient to write equation (4.3.3) in the form,

k* [[(Pg, + 08, Fds = [[ (PV4,+QV4,).(PV4, +QV4,) ds  (43.5)

S+AS S+AS

Differentiating partially with respect to P, gives
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%i [[ (P, +00,)ds + k* [[ 2(Pg, +08, . ds

S+AS S+AS

so the condition, 9k > / OP =0 gives

k* [[ (P2 +0p9.) ds= [[ (PV4,V,+0OV4,V9,) ds (4.3.6)

S+AS S+AS

Dividing the integration domain S + ASinto the two separate domain § and AS,

equation (4.3.6) can be rewritten as,

k*P[[gds+kQ[ 4,9.ds+ k*P[[ p2ds+ k Q[ g9,
=P([V$,V4,ds+0([V4,Vo.ds+P[[V,Vpds+Q[[V$,Vd,ds (43.7)

Since ¢ , ¢, have been orthonormalised therefore

([ 8.8,d5s = 0 ifg * g,

[

JSI V.4,Véds =0 ifg = ¢ (4.3.8)
[ V0,56 = &

and hence equation (4.3.7) simplifies to
K*P+k*P[[g2ds +k*Q[[4,9.ds = PK* + P[[V9,Vp,ds +Q[[ V4,V ,ds (43.9)
AS AS AS AS
It is convenient to adopt the following notation for the above integrals:
[l#2as=p,
AS
Ij'¢a¢bdg = p12
AS
[[(v4.v4,) ds=g, (4.3.10)
AS
[[(v4.v4,) ds=gq,
AS
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Equation (4.3.9) then becomes

k2P +k*Pp +k’Qp, = Pk’ +Pq, +Qq, 4.3.11)

hence, P[k'2 + k'zp1 -k - ql} + Q[k'zp12 — qu] =0 (4.3.12)
being a linear algebraic equation for P and Q.

Similarly from equation (4.3.5), with ok / 00 = 0, a second linear algebraic

equation for ' P ' and ' QO ', namely,

P[‘Iu - k'zl’u} + Q[kz v, -k + pz)} =0 (4.3.13)
is obtained, where

p, = [[#2ds, and, ¢, = [[(v9, ] ds

Equation (4.3.12) and (4.3.13) are two homogeneous linear algebraic equation
in the unknown constants, P and Q .
For non-trivial solutions for P,Q it is necessary that the determinant of coefficients is

zero . That is

' '
k2+q1*k2(1+p1) qlz_k2p12

'

: =0 (4.3.14)
a, —k’p, K +q, —k2(1+P2)

The solution of which gives the values of dominant values of k*for a general

perturbation.

4.4 Dominant Eigenvalues and Modal Frequencies for a Corner
Truncated Square Patch

The double integrations (4.3.10) over the deleted triangles, for the evaluation of

p,>P,> 4,> 4,> P,, andq,, , are given in appendix 4C. The values obtained are
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Dy =P, ZZ(AS/S)
9, =9, =49, =0 (4.4.1)
Dy, :_Z(AS/S)

The evaluations take place over the triangles AS1 as shown in figure 4.4.1.

y
d ] a2
d |ast
y=x+d-a
al2
y=x+a-d 0 X
as1 d
d
AS =d?, and , the unperturbed patch area , S =a”.

Figure 4.4.1 : The unperturbed square patch antenna

Substituting the results (4.4.1) into equation (4.3.14), gives

K —k? (1 +LAS—) g2 2AS
S S Y

K2 288 K-k’ (1+3A—SJ
S S

so that,

[kz - k'z[l + 4§S JJ.(kZ - k'z) =0

Therefore,
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On using the binomial expansion,

a

' 4AS '
k'’ =k2(1 - T],and, k' =k (4.4.2)

where k is the resonant wave number of the unperturbed structure.

That is, kK =2z/A, where Ais the modal wavelength which in terms of the modal
frequency.

The values of k; , kb' are the resonant wave number of the resonant modes produced
by perturbed system.

Thus, &, =27/A, ,and, k, =27/4,

where 1, A, are the modal wavelength.

Therefore from equation(4.4.2),

ck ck[ 4ASJ7 ck( 2AS]
fi=—t=—|l-—-| =—|1-—

27 2n S 27 S
and ,
ckb ck
fb = P p—
2r 2r

Thus, in terms of the unperturbed modal frequency, f,,

f.=1 (1 —%S—) (4.43)

Two resonant frequencies, f,, f, are shown on the impedance-frequency graphs in

figure 4.4.2 below
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Impedance (ochms)

fo S 4

Frequency (GHz)

Figure 4.4.2: Two mode resonant frequencies

4.5 The Dominant Orthonormalised Eigenfunctions

A
The eigenfunction for the perturbed structure corresponding to an eigenvalue & is

¢ =Py + 04, (4.5.1)
Using the first equation for P and ( in system of equation (4.3.14), and, putting

g =0,q9, =0,and p, = —p, from equation (4.4.1), gives

P(k i+ p,) ) Ok’p, =0 (4.5.2)
There are two cases to consider, one in respect of the eigenpair £, , ¢, with
associated values P, O , and the, eigenpair &, , ¢, and associated values P, and O, .
In the first case, with, ¢, = P, ¢, + (.4, , equation (4.5.2) gives,

P (k*-k*(1+p))+0.k"p, =
where ,

2
2 k

a (1+2p,)
Therefore,
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PaLkz——]ii—(l+pl)j+Qa ———k—z———:o

I+ 2p
which reduces to,
Pp +0p =0
Therefore,

P +Q =0,and, P = -0

a

hence, ¢, =P, ¢, +0,4,=P (¢a - ¢b)

On squaring and integrating over S , gives

([ acdy=[[(¢7 +4; - 24,8, ) dc dy

= PX(1+1-0) = 2P’
The orthonormal condition requires, P, = 1/ V2
Therefore,

¢; =V],/«/§(sinkax—sinkay) (4.5.3)
In the second case, with, ¢b' =P ¢ + 0,9, ,equation (4.5.2) gives,
2 "2 !
B(k* -5+ p))+ 08 P, = 0

where, ka'2 = k?
Therefore,

- Pp, +pr1 =0
sothat, b, — O, = 0,and, P, = O,

and the orthonormal condition gives

P =12

60



hence, ¢; =V, /N2 (sink,x+sink,y) 4.5.9)

4.6 The Equivalent Circuit Model and Admittances for the Dominant

Model Voltages

The equivalent circuit of a single feed circularly polarised patch antenna is shown in

figure 4.6.1.1 [1,4] while figure 4.4.2 is the two resonant frequencies of the circuit.
The ¢; potential is modelled by a voltage V_ across an R L C_ resonant circuit and
the ¢; potential correspondingly modelled, by a voltage V, across an R L,C,
resonant circuit. Excitation by the feed is modelled by a voltage V° . which generates

both V and ¥, by means of transformers 7, 7, connecting the feed voltage to the

individual R-L-C resonant circuits. The turns ratios are N L 1and N , - 1.

The conditions for circular polarisation are that the feed position must be correctly

located and that at resonance, the mode amplitudes are equal ( ‘Val = lVbl j, and, the

phase difference of the two modes is +7/2 (arg(V,/V,)= 7r/2). Hence the turns
ratios N_, N, are also equal in magnitude.
The turns ratio
N, <V, = K¢, =K (sinkx—sin ky)
while,
N, <V, =K@, = K (sinkx+sinky)

where the X is a constant at proportionality.
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For N, N, to be of equal magnitude, either

a a
(@y=0, - —<x< —.
2 2
a a
b)x=0, -— < y< —.
2 2

That is the feed must either be located on the x-axis ( case (a)), or , on the y-axis

(case(b)) .

N :1

“jaT ¢ mode
. - l
30— L,3C =G, V.

2N M)
V. T
L

¢ —  L3c %Gb§ v,

@—j Yb
¢, mode

N 1

b

Figure 4.6.1.1: Equivalent circuit of a truncated patch antenna

For this case G, =G, =G.

For a parallel circuit ,
G =wC/Q (4.6.1)

The admittances Ya and Yb of the RLC circuits are

Y. =G+ jwC +— =G+j(wC _ 1 ] (4.6.2)
a WLa
and,
Y, =G+ jwC +— =G+j(wC —L) (4.6.3)
wi,
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where () is the unloaded Q-factor

Substituting equation (4.6.1) into equation (4.6.2) and (4.6.3) gives

Y,=22C [g—:H(f—fT"ZD (4.6.4)
similarly,
Y =2z C Sy +j(f— Sy J (4.6.5)
Q, f

where O and ), are the unloaded Q-factors of the ¢; and ¢; modes respectively.

The frequency shift of the two mode ¢; and ¢; is small and it can be assumed that

0, =0 =0
where, O is the unloaded Q-factor at the design frequency , f,. Equations 4.6.4 and

4.6.5 are used in the conditions for the circular polarisation in the following section.

4.7 Application of Modal Admittance System to Circular Polarisation

Conditions
From the equivalent circuit as shown in figure 4.6.1 , assuming the currents flowing

in each R-L-C circuit are equal then the ratio of the voltages V ,V, is given by

(Appendix 4D)

HE/AIPA
08

substituting equations 4.6.1 and 4.6.2 into the equation 4.7.1 gives

L.f.j[f_ﬁ)

Y

14

a

% _ [%j Jff ffz 4.7.2)
silr-%)
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The algebraic sign of N,/N, is determined by the location of the feed line as

discussed above. Thus equation 4.7.2 can now be written as,

L.{.j[f_f_az]

0 I
VN
Q“(f f]

Substituting the modal frequencies,

oo a1 2] g
S

where, f, = f ,and, M =1-2AS/S

into equation 4.7.3 gives

L&H(f_f:w)

Ve 4| 2 /
v, . 2
ZZ =+ ] ( f — Lf.;_.J
Q f
For circular polarisation conditions, requires that
Ve .
v tJ

a

(4.7.3)

(4.7.4)

(4.7.5)

(4.7.6)

where + sign is used for right-hand circular polarisation and the — sign is used for left-

hand circular polarisation.
For the magnitude condition as shown in Appendix 4E,

M?+1
L2_2-{'( D )

where,

a=f/1,

o’ =(M* +1)/(é—2]

S0,
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For the phase condition +7/2, requires that
argV, ~argV, =arg (7, /V,) = +7/2

Rationalising V, [V, , gives (Appendix 4E)

_f_{ fM)fM[ _f_]
f f
9 J 9 A :tan(ig—jzioo

fon —j;ZMZ ~f02
0’ {f f J(f fJ

which requires,

ﬂ-*_(f—-—f;&{ij[f“ﬂzj:o

o’ f f
hence,
2
gmz -M? —1+M2-=0 (4.7.9)
a

From equations (4.7.8) and (4.7.9) it is shown that (Appendix 4E)

(l~26+§5~2—5—3)
05 = 2 2

5+
1-—+—
2 4

where, § =2AS/S.

(4.7.10)

Since in the perturbation analysis AS/Sis small compare to unity, therefore equation

4.7.10 gives,
AS 1
22 .0 (4.7.11)
S 20

which is the perturbation requirement to produce circular polarisation.
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SUMMARY

In this chapter the eigenvalues and eigenfunctions of the dominant field modes for a
corner deleted square patch antenna have been derived. The eigensystem has been
applied in a perturbation analysis to obtain the corresponding eigenvalues,
eigenfunctions and resonant modal frequencies of a square patch with two truncated
corners. Using an equivalent circuit model, and, the conditions on the dominant modal
voltages for circular polarisation, a formula for the fractional perturbation area in

terms of the unloaded Q-factor, has been obtained.
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CHAPTER $§

COPLANAR MULTIPORT CIRCUIT ANALYSIS

5.1 Introduction

A microstrip antenna patch is a planar circuit on which the voltage at any point due to
a probe feed can be determined in term of the probe feed current density. The voltage
satisfies a nonhomogeneous boundary value problem which is solved in section 5.2
using the eigenfunction expansion method which introduces the Green’s function of
the patch. In section 5.3 it is shown that a perimeter microstrip feed is equivalent to a
corresponding probe feed at the same location.

A general formula for the coupling impedance between a perimeter port and a
microstrip feed at a second port is obtained in terms of the interport impedance and

the Green’s function of the patch (section 5.4).

5.2 Patch Voltage for a Probe Feed

An arbitrary shaped patch antenna using a probe feed is shown in figure 5.2.1

z
A

Probe feed
Antenna
patch

n Outward
normal

Magnetic
Wall ®(x,,y o)

Periphery /

™

Substrate Ground Plane

Figure 5.2.1: Antenna structure with probe feed
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The microstrip antenna structure with the origin of coordinates located on the ground

plane is illustrated in figure 5.2.1. In practice the substrate is electrically thin (7 <4,).

Therefore, only the z component of electric field, and, the x and y components of the
magnetic field, exist in the region bounded by the patch and ground plane. To account
for the fringing electric field the geometry of the patch is extended outwards to obtain
a model with a magnetic wall, thus making the outward normal voltage gradient on
the patch perimeter zero. That is the field structure is based on the “cavity model”.
In the above model the voltage, V' =V (x,y), at any point on the patch satisfies the
two dimensional non-homogenous wave equation [1].

VYV +kV =—jouhl, (5.2.1)

where, J is the current density, at a point (xo, yo), of an external feed current

injected perpendicular to the patch plane, and, & :w@ is the free space wave

number.
The voltage satisfies the magnetic wall boundary condition,

4
—=0 522
o (52.2)

along the patch perimeter.

Equation (5.2.1) , (5.2.2) constitute a non-homogeneous wave equation boundary
value problem.

The solution of this problem can be obtained through the solution of the associated

homogeneous boundary value problem.

Vi +A%¢=0 (5.2.3)
o9 _
= =0 (5.2.4)
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For patch geometries such as rectangles, circles, and, some triangles, the

homogeneous problem can be solved analytically as an eigenvalue problem, in which,

for each value of A>=4),, m,n>0 , there is a solution ¢, (x,y). These are the

eigenvalues and eigenfunctions of the boundary value problem and can be derived by

the method of separation of variables.

Thus, the voltage modes, ¢, ,(x, y) satisfy the homogeneous wave equation

V2¢m,n +ﬂ‘:z,n ¢m,n =0 (525)

The modal fucntions ¢, can be scaled to an orthonormalised form, such that
[[#nn(e2) 8,5, 3) =81 (5.2.6)
D

where, D is the domain of the patch, and,
o =1, both m=r, and,n=s5%#0 (5.2.7)
=0, otherwise

A solution of the non-homogeneous problem (5.2.1), (5.2.2) can then be obtained, by

the eigenfunction expansion method, in the form

V) =3 ey, o) (5.2.8)

m=0 n=0

where, @ are constants obtained as follows.

Substituting the above expression for V(x,y)into the non-homogeneous wave

equation (5.2.1), gives

3 S0, Vo, kS S a4, b, = — jauhl, (5.2.9)

m=0 n=0 m=0 n=0

69



Substituting,
Vol =2mn P (5.2.10)

from equation (5.2.5), into equation (5.2.9) , gives

_izamn ﬂ’:ln ¢m,n +k2iiam,n ¢m,n = _]w,UhJZ

m=0 n=0 m=0 n=0
or,
iiam,n (k2 —A’tfl,n) ¢m,n :_ja):uh‘]z (5211)
m=0 n=0

Multiplying equation (5.2.11), on both sides, by ¢  and integrating over the patch

domain, D, gives
[ @ns (8 = 20.)80 8., didy =—jouh([J. 4,, iy (5.2.12)
Applying the orthonomalisation condition (5.2.6) then gives,
a,, (K -2.,)=—jouh ([ J, 4, dcdy (52.13)
D
hence,

e L | PR 5214
Q,., (kz—/l,f,,,,)'g ; O dXAY ( )

which, on substitution into equation (5.2.8) gives the modal expansion solution

Ve y)=—jouh 3y (¢ 3 (:zy)

m=0 n=0

,”J (xo’yO) ¢mn( >yo) dxodyo (5215)

where the coordinates x , y are introduced to distinguish between the function
9. n(x, y) outside the double integration, from the function ¢_ n(xo, ya) under the

integration sign.
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The above equation (5.2.15) can be written in the form
V(x2)=[[Gyix,.5,) J.(x..5,) de,d, (5.2.16)
D

where,

G(x,»1x,,y,)= jouh ZZ¢'”"( x,y)

2.2 (32— i) Pon (52) (5217)

The function, G(x, yix,, yo) , 1s called the Green’s function of the patch geometry.

To evaluate equation 5.2.16 it is necessary to obtain an analytical form for the Green’s
function of each patch geometry. For a rectangular (appendix 4A), or, circular patch,
- the analytic Green’s function can be obtained, in terms of an infinite series, by the
method of separation of variables. Schelkunoff S.A [2] gives the result for an

equilateral triangle but without a derivation.

Chada and Gupta [3] have derived Green’s functions for several triangular geometries
by the method of images, using specially selected sets of line sources. The line source
potentials are expanded in infinite series to obtain expansion functions satisfying the
homogenous boundary value problem. These functions are then used in an infinite
series representation of the non-homogenous wave equation which is substituted into
the wave equation to determine the unknown expansion coefficients. In this way
Green’s functions have been obtained for the following triangle geometries.

a) A 30°-60° Right-angle Triangle

b) An Equilateral Triangle

c¢) An Isosceles Right-angled Triangle
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It can be seen from inspection that the Green’s function for the isosceles right-angled
triangle satisfies the homogenous wave equation and the boundary conditions on the
perpendicular sides. The boundary condition on the hypotenuse is verified in appendix

5A.

The Green’s functions for the above three triangle geometries cannot be obtained by
the method of separation of variables. At this time analytic forms of Green’s functions

for patch geometries other than listed above have not been found.

A generalised mathematical discussion of Green’s functions in “Abstract Operator
Form”, which includes the Helmholtz wave equation, is to be found in Morse &

Feszhback [4].

5.3 Microstrip Feed Equivalence to Probe Feed

It is convenient for fabrication and matching to use a microstrip feed line at the

perimeter. Consequently it is necessary to show that on the perimeter, the effect of

microstrip feed of line density J, (s,) is equivalent to the probe feed of line density

A

From the Maxwell’s equation the magnetic field ‘H’ in the substrate figure 5.3.2 is

1
H=-——VXE (5.3.1)
jwu

The electric field ‘E’ for the planar structure is
E=2%E(x ) (5.3.2)

where, E_isa function of ‘x” and ‘ y ” only,

72



so that,

1
H = -———inEz(x,y)
vy

1 { E aEz}
X— -y
Jwu %y Ox

i
'

But, since £ = 0, then the voltage ‘v’ between the antenna and the ground plane
Oz
is given by
v=-Eh (5.3.3)

z

The equation 5.3.1 for “H’ can thus be expressed in the form

1 {Aé‘v Aav}
H - i ¥ s (53.4)

Swuh | Oy Ox
Using Maxwell’s equation for the surface current density J _ on the antenna patch

J =ixH (5.3.5)

5

then

1, {Aav Aav}
J, =— ZX{X—~y—
Jwuh dy " ox

1 (.ov .ov
SRR - S R (5.3.6)
Jwyh{ ox @v}

In order to apply the magnetic wall boundary condition (6V/6n = 0) to the above
expression for the current density vector J it is necessary to convert the Cartesian

form into the form with tangential and normal components (as shown in Appendix
5B) and this results in the following equation

1 {év . v }
J = s — n (5.3.7)
jwuh | s on
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where n is the outward normal.

On a given segment of the perimeter when a uniform current source is applied there is
no variation in ‘v’ over that segment. Thus (0v/0s=0), so that equation 5.3.7

reduces to
J,=—"h (5.3.8)

Further, at all points on the perimeter of the segment where an external source of
current is absent, (dv/dn =0).

That is a microstrip feed line on the perimeter generates an equivalent feed current
normal to the plane of the patch. So that current density J,(x,y)applied on the
perimeter can be replaced by an equivalent microstrip current density J,(s)normal to
the perimeter.

For the microstrip feed as shown in figure 5.3.2 the effect of the feed is to produce a

z directed current J_ in the dielectric of the same magnitude as the microstrip feed

current J _ at the feed port.

b
Feedline
Patch
/ a= /2
h¢ Substrate
J, A
—>
1
Feedline Patch
H T J
O z

Figure 5.3.2 : Surface current flowing on a microstrip feed line
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5.4 Formula for Perimeter Port Coupling Impedances
Let s=s(x,y), and, s, =5,(x,,¥,) be the running coordinates of the i-th, and, j-th

perimeter ports respectively, as shown in figure 5.4.1. let the current source,

Sy, (%0, ¥0) = J, (8,), be distributed along a length, W, of the perimeter. It is
recommended by [5] that the width of a port should always be less then A, /20,

where, A, is the wave length of the field in the substrate.

s=(x,y)

[

8o = (X4, Y,)

Figure 5.4.1: Microstrip ports with perimeter coordinates

Equation 5.2.16 then takes the form

V(s)= [ Glsls,) J,(s,) s, (5.4.1)

A terminal voltage, V,, on the segment, W,, is now defined as the average voltage

over W,, so that

1
Vo= — j V(s) ds (5.4.2)
W

P,

which, on substitution V' (s) from equation 5.4.1, gives

V= [ [GGsls) J,6,) dsas, (5.43)

A

For a multiport system, j=1273......... , equation 5.4.3 becomes
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V.=

, ﬁlf— ” G(sls,) J, (s,) dsds, (5.4.4)

Let I, be the average current density over the j -th port, so that

J 0 dsO
I, = j—(iW)—— (5.4.5)

W; J

then, for sufficiently small port widths, ¥, , equation 5.4.4 can be approximated by

1
V":W, iijs) ds ds,

W; J

__L j [Gsls,) dsds, (5.4.6)

Az

ﬁ
ﬁ

The coupling impedance between the i -th, and j -th ports is define as
z =0 (5.4.7)
1

Therefore, from equation 5.4.6

Z,= Z [ [ Gsls,) ds,ds (5.4.8)

JWW

In particular when there is only a single port (i = j) then the patch input impedance is
given by

zZ =7,-,,1—;Z [ [Gls1sy) ds, ds (5.4.9)
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Summary

For a probe feed the voltage at any point in the perimeter has been obtained in term of
the Green’s function of the patch, and, the current density injected normal to the plane
of the patch. It has been shown that the same result is obtained by a corresponding
microstrip feed. A formula connecting the voltage at one port on the perimeter to the
total normal microstrip current at a second port has been derived and the interport

coupling impedance defined.

77



CHAPTER 6

MULTIPORT SEGMENTATION AND
DESEGMENTATION MODELLING OF COMPOSITE

STRUCTURES

6.1 Introduction

For a patch antenna with a single direct feed whose geometry is either, a rectangle, one
of three specific triangles, or a circular sector it is possible to determine the input
impedance analytically from planar circuit analysis. This is possible because the Green’s
functions of the above geometries are known analytically and thus the impedance is

determined analytically.

For other geometries, the Green’s functions are not available. However in the case that a
geometry can be made up of a combination of the above geometries it is possible to
determine the input impedance of the combined structure by segmenting the antenna
geometry into regular shaped segments for which the Green’s function of each individual

segment is known.

The physical basis of multiport modelling is illustrated in figure 6.1.1 below
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p

Connecting B
ports >
Current sheet (X, }) == P i, =1
i : ip T

Figure 6.1.1: Current sheet on antenna

where the two regular segments, ¢ and £, of the complete structure are separated but

joined by a series of connecting ports. The continuous current sheet distribution across
the boundary between the two segments is approximated by the port currents at the
connecting ports. This discretization is used in the multiport analysis where the matrix
circuit equations conserve the original current distribution on each segment, as this

determines the antenna input impedance.

Two methods, segmentation and desegmentation can be used to obtain the multiport
modelling structure of the patch antenna. The segmentation method can be applied to
planar structures whose segments combine in cascade, or, in a shunt configuration where
the segments are attached to a base segment but do not share any common boundary.

Separate analyses are required for each of these structures.

The desegmentation method can be applied to planar structures where the deleted

segments do not share any common boundary. Published material on the segmentation

method is to be found in [1-10], and, for the desegmentation method, [3,4,9,11,12,13].
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The segmentation method is applied to a two segment, and, a three segment cascade-type
structure in sections 6.2.1 and 6.2.2 respectively, to obtain the input impedance matrix
formula. In section 6.3 a new generalised input impedance matrix formula is derived for a

shunt-type segmentation structure with any number of attached segments.

The desegmentation analysis for a single deleted segment is given in sections 6.4. A new
generalised result for the case of any number of deleted segments is obtained in section
6.5. In section 6.6 a comparison is made between the segmentation method and the

desegmentation method as applied to a two corner deleted square patch antenna.

6.2 Multiport Segmentation Modelling for Cascade-type Segmental
Structures

Decomposition of a patch geometry into regular shapes is illustrated below in figure 6.2.1

Figure 6.2.1 : The T shape geometry

The above geometry can be segmented as shown in figure 6.2.2
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Y
Figure 6.2.2: Segmentation

6.2.1 Input Impedance for a Two Segment Cascade-type Structure

Figure 6.2.1.1 shows the port current and voltage system for two segments.

B
V a Vc —%4——)&—— Vd
__ D |
lp e
S £ o3 e
y— segment

Figure 6.2.1.1 : Connecting port replacement

where, V.=V, Vs Vi) 5 1.=( 4,0y ,iy),and, similarly for V, , i,.

Continuity of current and voltage across the partition interface requires that, V. =V, and,

The current vectors i , i, and voltages V, , V, are related by the following matrix
circuit equations

V,=Z,i +Z,i, (62.1.1)
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V =272 i
4 cp
Vd = de
where,
ch:(chD
T
va"ch
—chll
chZl
ch:
_ch\ll

and similarly for Z ,

(6.2.1.2)

(6.2.1.3)

Since V. =V, i, = —i_, the above equations, (6.2.1.1, 6.2.1.2, 6.2.1.3) may be put in

the matrix form
VP ZPI’
I/c = Z cp
V. 0
Note that Z_, Z,

e O IF
cc O ic
0 Z,| -

(6.2.1.4)
(6.2.1.5)
(6.2.1.6)

are symmetric matrices. The elements in the impedance matrices

represent the coupling impedances between each combination of any two of the

associated segment ports. From the matrix system of equations 6.2.1.4 to 6.2.1.6, the

current i is obtained in terms of ip by equating the matrix equations 6.2.1.5 and 6.2.1.6

to obtain

cp

whence,

Z i +Z i +Z i =0
? cc ¢ dd "¢
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i =z, +z,) -2 (6.2.1.7)

Substituting for i, from equation 6.2.1.7 into equation 6.2.1.4 gives

vV, = [Z,,,, -z, (z, + Zd)’Zc,,]i,, (6.2.1.8)
or,

V,=2,1, (6.2.1.9)
whence,

Z, = [pr -Z, 2, + Zd)lzc,,] (6.2.1.10)

which is the impedance of the overall structure, y .
VA e has dimension (N x 1). The matrix, (Z .t Z, )1 VA w has dimension (N x N) x (N X
1)=Nx 1, and, so, ch(Zw + deylZcp has dimension (1 x N) x (N X 1) =(1 x 1). That

is, the right hand side of equation 6.2.1.10 is a single complex number, namely, the

complex input impedance of the antenna.

6.2.2 Input Impedance for a Three Segment Cascade-type Structure

For the antenna patch geometry shown in figure 6.2.2.1 below

Figure 6.2.2.1: Antenna Patch
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the segmentation structure is shown in figure 6.2.2.2 below

S
v | a v
p v e e e d
P : € l— «—» —|1
‘p Io f— > —|
<« —

Figure 6.2.2.2: Connecting port replacement.

The matrix circuit equations for the port voltage and currents, shown in figure 6.2.2.2,

are.
v =272 i +7Z i
p pp p pec
v =272 i +7Z i
4 cp [
v, = —delc+stls
v =72 i +7Z i
5 sd ¢ ss 5
v =7 i
5 it s

Equating equation 6.2.2.4 and 6.2.2.5 gives,
i, =(Z +2) 2
Equating equation 6.2.2.2 and 6.2.2.3 gives,
Zq)ip +Zji =-Z i +Z
hence from equation 6.2.2.6

Z"PiP = [st(Zss + Zl‘t)_1 st - ch - de]l

<
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(6.2.2.2)

(6.2.2.3)

(6.2.2.4)

(6.2.2.5)

(6.2.2.6)

(6.2.2.7)



substitute equation (6.2.2.7) into (6.2.2.1) then gives,

— -1 1
z - [pra + cha[deﬂ(Zssﬂ + th5) stﬁ - cha - de/?} Zcp(z] (6228)

ey

This is a new result.

6.3 Multiport Segmentation for Shunt-type Structures

A Shunt-attached segment type structure is illustrated in figure 6.3.1 below.

I

N

|
Figure 6.3.1: A shunt-type structure

The segmentation multiport structure is shown in figure 6.3.2 below

V. Va
7 le—eNlports @—> Bl
V i 1 irl
P q
o—>—
'p vV Va
q2 -60' *—> ﬂ 2
: 1 r2
Ve
I/qn <@ Nnports  @—>- ﬁn
iqn im

n = number of segments
Nn = number of ports per segment

Figure 6.3.2: Segmentation shunt-type multiport structure
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Where each segment S, has Nk connecting ports, for, £ =1,n. The following circuit

equations apply to the above segmentation structure.

. . . ) . - T
V,=Zj,+Z,d, ; 1, :[qu, Loy o , zqn} (6.3.1)
: . 7
V=Zyi,+Zpiy s Vo=V, Vo s V] (6.3.2)
where, Z_ =27},
V.=2_,i, , fori=1n (6.3.3)
V.=V, ; i, =—i, , fori=1n (6.3.4)
From (6.3.3) and (6.3.4):
Vi=—Z,i; , fori=1,n (6.3.5)
That is from (6.3.1) and (6.3.2):
Z, 0 0 O
0 Z, 0 0|
V==l o 4 o |k (6.3.6)
0o 0 0 Z,
or, V,=-Z,1, 6.3.7
where
Z, 0 0 0
;|0 Zn O
0 0 0°2Z

Each sub-matrix Z_,has dimension Nkx Nk, and, Z_ has dimension

(N1+N2+.....+ Nn)x (N1+N2+.....+ Nn).

From (6.3.7) and (6.3.2):
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i,=~(2,+2,) Z,i, (63.8)

From (6.3.8) and (6.3.1), therefore the input impedance , V, /ip , is given by

-1
Z,=Z2-Zu(24+2,) Z, (6.3.9)

This is a new result.

6.4 Multiport Desegmentation Modelling for a Single Deleted Segment
Structure

In contrast to a segmentation form of partitioning into segments the desegmentation
method augments an antenna geometry to achieve a resulting geometry for which the
associated Green’s function is known. For example the rectangular patch with slot in

figure 6.4.1 below,

0w

Figure 6.4.1: Slot segment

is augmented by a metalised cover segment over the slot whereby the combination results

in a complete rectangle as illustrated below, with labelled segments, in figure 6.4.2.
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o — Segment SLOT
c
N o
5 + v = y — Segment
7 E
R
B — Segment

Figure 6.4.2 : Augmentation of slot-segment

Here the a -segment has been augmented with a f -segment to give the y -segment. The

input impedance of the ¥ -segment is required.

For the purpose of the matrix analysis the multiport structure is displayed as in figure

6.4.3, below. It is convenient to have same number of ports in each of the ¢, d, and q sets

of ports.
a — segment p — segment
Y pa Vc Vd -
—< > 9B
P cl ' q
*-—> —< > <@

vl i c2 d2 iq A
Input Port —< > 7 Input Port
en . dn
Connecting

y — segment

Figure 6.4.3: Multiport desegmentation network
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The complete y -segment is shown below in figure 6.4.4.

VP}’ Vq}’
P q
*——>— —<0
P g 7
Input Port Input Port

y — segment

Figure 6.4.4: Complete y-segment

The segmentation port coupling matrix of the y-segment is
ZPPY ZP‘]J’
Z, = Z V4
qry qqy
each matrix element of which can be calculated.
The segmentation port coupling matrix of the [ -segment is
/ quﬂ quﬂ
where each matrix element can be calculated.
The segmentation port coupling matrix of the «-segment must be determined by the

desegmentation matrix analysis technique, and has the form,

where each element can be obtained in terms of elements of the above two matrices, Z,

and Z;. Z . is the input impedance as seen at port- p .

89



A formula for the input impedance, Z

pa » 18 derived in the following analysis and consist

of five main steps. For clarity, an overview of the steps used in the solution of the matrix

circuit equations is described below.

Procedures in the Matrix Circuit Analysis

The following are used in deriving the matrix input impedance formula:

(a) The voltage-current matrix equations in respect of Vlm, V 5 V.,V, and the

interconnecting boundary conditions are set up. This system of matrix equations is

formed into a single matrix display.
(b) The matrix formulation obtained in procedure (a) is then partitioned so as to combine

the equations in respect of Vpa, vV 5 into a form where external port elements are

partitioned separately from the interconnecting port elements. The individual
partitions are then assigned their individual compact notation and the original matrix
system of order 4 reduces to a more convenient system of order 3.

(c) The overall matrix system of order 3 obtained in (b) is then replaced by the equivalent
set of 3 individual equations which are then solved for the external port voltage-

current matrix relation.
(d) The compact notation introduced in (b) is then used in the matrix equations in (c) to

eventually obtain the characteristic impedance Zy of the ¥ -segment in terms of the

impedance of the « and § segment.

(e) By equating components of the Zy matrix with the expression obtained in (d), the

four expressions for 2, ,Z ,Z  ,and Z_ interms of thea, § impedance element
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are obtained. A back substitution through these equations then gives the required

formulasfor Z 7 7 7

ppoa >~ pea > ™ cpa > coa >

and, hence the characteristic impedance of the a -

segment.

Matrix Circuit Analysis

Step (a)

The basic circuit equations for the a and S -segment are

V=Z i, +0li,+7 i +li,
vV, = [O]zpa +Z it [o]i ~+ Z G4
v,=2Zj, +bli,+z i, +[oli,
v,=[li +zi +Dli, +Zz,,
with V, =V, , and, i +i,=[0] (6.4.2)
which on substituting equation (6.4.2) in (6.4.1) can be written in the matrix form
Vpa pra 0 me 0 ipcz
Vs _ 0 Z., 0 Z, z?ﬂ 6.4.3)
vV, Zcp 0 Z,.. 0 i
v, 0 Z, O Zgl-i
Step (b

Grouping of the external coupling matrix terms together, and, grouping the
interconnecting coupling matrix terms together is achieved by the following partitioning

of the system (6.4.3).
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pa ppe pea | L
Ves 0 Zygp 0 Zug|;
............... - e
v,| |2, 0 Z., 0|7
V| |0 Zy, 0 0 Zy |l

Step (c)

(6.4.4)

It is convenient to introduce the following compact notation for the above partitioning:

Zpe O
pr{ff z }

ZC(Z
=5

qq
Ve " g
and Z_, =2} ,, Z, =2,

With the above notation in place, system (6.4.4) becomes,

VP pr ch Z qd ip
Vc = Zcp cha 0 ic
v, Z 4 0 Zy,l|l—i,
or,
V,=Z i, +Z,d,—Z i, @)
V.=2 oyt Z, i (i)
V,=Z i, ~Z 4, (iii)

Equating 6.4.7(ii), (iii) gives
ic = [ch +de]-1[qu *Zcp]i

p

Substituting for 7 _, in (6.4.7), gives

v, = [pr iz, -z.z. v 2a] |2 - ZCP]] i,
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0

qdp

|

(6.4.5)

(6.4.6)

(6.4.7)

(6.4.8)

(6.4.9)



V. =Z,i (6.4.10)

ow, =z, = - =
! ? 0 z qdB ~Z qdp

and, Zy,~Z,={~Zo Zyp ]
whence, in (6.4.9)

[ch —qu][ch +de]vI[qu _Zcp]

:l: pea [Z + de ]_1 ZCP"Z pCﬂ [Z T de ]_1 quﬂ :l (64 1 1)
Z

qd/f[ch+de]_IZcpa qdﬁ’[ch—i_de]-lquﬁ

Thus from (6.4.9) and (6.4.11) the impedance matrix of the y segment is given by

Z Z
N Py

qpy 4y

— |:ZPP'Z 0 } _’_{ poa [Z + de ]_1 Zcpa cha [ch + de ]—1 quﬂ

b § (6.4.12)
0 Z qdﬂ[ch+de]IZcpa _quB[ch+de] 1quﬂjl

qqp

Expressions for Z . Z and Z,, are obtained form (6.4.11)by equating the

ppy> T pqy? P‘D”

elements on each side of the equation, as in procedure (¢)

Step (e
Z Z pca [Z cca + Z dd ]_1 Z cpa (1)
Zp =Z ol Zo+Z ' Z ii
pc:z[ cca ddr () (6413)
Z qpﬂ [Z cea + Z dd ] Z ocpu (111)
Zoyy = Zap ~Zaap|Zeea + Zia ] Z oy (iv)
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The element of the characteristic impedance matrix of the a -segment,

Z Z
_ pra pea
Z,= liZ 7 :I (6.4.14)

cpa ceer

can now be obtained from equations(6.4.13; 1, ii, iii, iv) by back substitution as follows.
From equation (6.4.13; iv):

Zon=Zaia+ Zag\Zap~Zuy | Zos (6.4.15)
From equation (6.4.13; iii):

Zoig Zoy Zon =2

ary

+ de]‘1

:[quﬂ [quﬂ _qur}l quﬁ]-l
:Z;}iﬂ [quﬂ _qur] Z;«;ﬂ
therefore Z_, =Z ., [quﬂ ~Z,. }' Z o (6.4.16)

T
now, Z,,=72

opar
therefore, Z ., =72, [quﬁ ~Z }1 Z . (6.4.17)
From equation (6.4.13;1) Z ,, of set (6.4.13):

Z e = Zoy ¥ Z o oo+ Zag | Z (6.4.18)
From equation (6.4.15)

[Zon+Zal=Zupl2s -2, 1 2.0
therefore,

[Zow+Za =252, -2, ] 22, (6.4.19)
substituting (6.4.19) into (6.4.18) , gives

ZI’I’“ = ZPP}’ + ZP"'IZ‘;‘;;H [ZPPﬁ - quy ]Z;‘;ﬂzc]’“ (6420)
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Substituting for Z ,,, from equation (6.4.17) into equation (6.4.20), gives

Zopa = Loy T2 gy [quﬂ ~Zogy }lzqdﬁzr;lﬂ [quﬂ - quy]Z;qﬂZcpa
=7, +Z 0 Zig Zore (6.4.21)
Substituting for Z_,, from equation (6.4.16) into equation (6.4.21), gives
Ze=2p +Z V2212, (6.4.22)
Z . gives the input impedance of the a -segment.
The above result is for a single deleted segment only. In the following sections 6.5 this

result is generalised to structures with multiple deleted segments.

6.5 The Generalised Multiport Desegmentation Modelling for an ‘n’
Deleted Segment Structure

The previous results obtained for one deleted segment suggests that the methodology
employed will apply to the general case of ‘n’ deleted segments.
The following circuit equation analysis yields the new generalised input impedance

formula.

In figure 6.5.1 the o - segment represents the antenna patch geometry which in
desegmentation analysis is constructed by deleting the f§ - segments from y - segment.

The dimension of each deleted segment and the voltages and currents on the connecting

ports are also shown in figure 6.5.1.
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O - Segment [ - Segments Yy - Segment

p1
el 2 IV
e N1 ports dl.é— @ a iy an
‘1 ‘a1 ‘a1
v v
~—>— _ e
ip + - )
g
pn
-GOV
%4 -€—@ Nn ports d".a— -(—-.an i o
cn i on i dn iqn qn

n = number of segments
Nn = number of ports per segment

Figure 6.5.1: n — segment structure with connecting port

For each of the ‘n” deleted segments there are Ni connecting ports (i = 1,2,...,Ni ), so
that between the o and P structures there are a total off M=N1+N2+. .+ Nn,

connecting ports. On the o - segment the vector connecting port voltage and current

systems are,

_ T
Vo=V Ve -0 VawlT . i=1,2,.,n

. T, . , T .
L —[’cﬂ» feiz> oo ’ciNi] ’ i=1,2,..,n

and, similarly, on the f3 - segments,
— T .
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. . . . T -
‘@ Ly imze o iawl” > i=1,2,.m,
Each ’Bi segment has external ports with voltages, V, (i =1,2,...,n). On the y - segment

the assoctated external port voltages and currents are

V, i, Ve, iy (i=1,2, ..., n)

P p 2 q
For the a - structure the voltage — current equations are

Voe=Z i)+ Z i (6.5.1)

ppax " p pea !

where, the structure of me i, with dimensions, is

Zpnd =2 | Zp o Z ] 12 $ MONTANZ 5N (6.5.2)
" > [
and,
o=l i e 2=l 1 2| [ 2] 653)

The voltage-current circuit equations between the external and connecting ports on the -

segments are

Vasr = Zgapr it + Z gapr Lapn
Viogr =Zogrlogs +Z ougr by
qfiz 9982 “qB2 qdp2 *df2 (6.5.4)

-

qpn =Z

+quﬁnidﬁn

9qpn iqﬂn
At this point, for the B-segments, it is important to separate the coupling impedances
between the connecting ports themselves, and, the coupling impedances between the

external ports themselves. This is shown in the following arrangement of the matrix

circuit equations.
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_q/ﬂ
ap2
Vq/n quﬁ] 0 ... o Z, 0 .. 0 ,
Vqﬂz _ 0 quﬂZ ..... O O quﬁZ ..... O qﬁn (6 5 5)
0 0 0 0 0 ™. 0 |; al
0 0 7 0 0 7 .dﬁl
Vq P T [ U N am 00 aon ] iy
L idﬁ" i
The matrix equation (6.6.5) is now put in the form
qu,m o ... 0 o quﬁl o ... 0 l:d,Bl
) gy 0 Jiga| | O Zyp oo 0 ||i,, 656
ap 0 0 0 0 0 - 0 e
0 0 ... quﬂn opn 0 o ... quﬂn .
where,
T
V=WV Vi Vol
Introducing the following compact notation:
Zoy 0 L 0 i |
0 Z . i
_ qqpz T N
Z,= 0 0 0 , i, = (6.5.7)
0 0 .. Z o |
Zo O . 0 i |
0 Z 0 i
B2 e ' B2
Z,= 0 "O 0 , i, = (6.5.8)
0 0 ... Z i |
the matrix system (6.6.5) can be written as
Vqﬁ = qu i+ qu i, (6.5.9)
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where, V_; , i
N.

i, ,eachhave dimension Nx1,and, Z ,,Z_, each have dimension N x

q? qq

Similarly the voltage-current circuit equations between the connecting and external ports

on the [ - segments are

Vi =2 id+quiq (6.5.10)
where,
_ T
Vdﬂ - V dp1 Vdﬂz """ Vdﬂn]
dem o ... 0 .
; deﬂz ..... 0 . I oo
dd 0 0 . 0 > d ‘
] 0 0o ... deﬁn Lidﬁn
qum 0o ... 0 !
;- 0 quﬂz ..... 0 o s
dq 0 0 - 0 ’ q :
0 o ... quﬂn _iq"wn

The a - structure connecting port circuit equations are obtained in the form

V =72 i +7Z i
cp

c cc c

(6.5.11)

P

where,
V.=l Vi .o Vo l”
Z,.w O .. 0 i

0 Z.., - 0 i,

%= o 0 = 0 ’ =l
o 0 .. Zn i
MXNI MXN2 M XNn
<> : <> [

Zo iy =|Zopi Zopai oo Zoma | 1]
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From equation (6.5.1), (6.5.9), (6.5.10), and, (6.5.11) the full circuit equation system is

Ve = Zopady + Z o

pra p pea ¢

Vqﬂ = quﬂ It qu 1a
Vca = ZCC[Z ic + Zcpa l

(6.5.12)

The matrix system (6.5.12) can now be presented in the following partitioned form:

V i
pe pra pea : .pa
v, _ 0 Z .0 Z Il
I/ca cpa ZCCLZ O ica
_Vdﬂ_ L 0 quﬁ 0 de,B_ _ldﬂ

Vo = i:Vpa} . 7 = pra 0
g Vqﬂ ” L 0 qu/f
, _{Zm] , _‘o}

c ) d >

P O q _qu;B

where,
_ T . _ T
ZCP - ch ? qu - qu

and, introducing the interconnection constraints

V o= Vtw ,and, i = —i

ca

ap

the matrix system (6.5.13) takes the form

V Z Z Z i

P rr pe qd P
Vca = Zcp ch O ica
chz Z dq O Z dd — 1 ca
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The matrix system (6.5.16) is precisely of the form in the desegmentation analysis [9, 12,

13] and so by the same methodology the solution for the input impedance of the o -

segment is given by

ppx

where,

Z =2Z" | and,

nqy

a9

Z ., inequation (6.5.17) then represents the input impedance.

qqp1

qaB2

Z = Zm - ZW[ZW - quﬂ]"l ZW

qqfn |

(6.5.17)

(6.5.18)

Equation (6.5.17) is the new “Generalised Desegmentation Input Impedance Formula®.
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6.6 The Corner-deleted Square Patch Antenna with Segmental

Structures

Segmentation structure

Y — segment
Figure 6.6.1: Segmentation

Desegmentation structure

a d -port
< > q -po
_I L1 N
¢,-port o g, -port 4 Var V >>>>V(cl a
N 7/ Va1 B Vp
‘ b — (xp , yp)
p -port i V“# @: v, PPt Vea
g -port - /<<<<
4 N
IRER
q4—pon

Figure 6.6.2. Desegmentation

From the analyses presented in sections 6.2, 6.3 6.4, 6.5, it is evident that for the deleted-
corner structure the desegmentation approach would avoid the calculation of the coupling

matrix involving ports on the hypotenuse of the deleted triangles. In the segmentation
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approach  for  this  structure there are seven coupling  matrices,

Z

pra

VA Z zZ ,Z, .2, ,Z, 5 1O be evaluated.

4 pea’ dsp’ ssp? T us? cca

In contrast in the desegmentation approach there are only four coupling matrices

Z ,Z ,Z ,and,Z _ tobe evaluated.
ey pay qqy qqp

The desegmentation method will therefore be used in the computational work to
determine the input impedance of this structure. Expressive for the elements of the

coupling matrices are derived in the following chapter.

Summary

The basis of multiport modelling in a segmental approach has been described in terms of
the conservation of current sheet distributions across the interfaces between segments. A
new “Generalised Segmentation input impedance formula” for any number of appended
segments in a shunt-type segment structrure has been obtained. A new “Generalised
Desegmentation Input Impedance Formula™ for any number of deleted segments has been
obtained. Matrix input impedance formulas for both segmentation and desegmentation
methods have been obtained for computational comparison. In the segmentation approach
to the two corner-deleted patch antenna design coupling matrices involving the
hypotenuse of the deleted segments are required but are not needed in the desegmentation
approach. It has been shown, for the corner deleted antenna design, that the

desegmentation method is computationally more efficient.
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CHAPTER 7

DERIVATION OF EFFICIENT IMPEDANCE COUPLING
EXPRESSIONS BETWEEN PORTS ON A RECTANGULAR

PATCH

7.1 Introduction

In this chapter efficient impedance coupling expressions between the perimeter ports on a

rectangular patch are obtained using closed form summations of infinite series.

There are three cases to consider (a) two ports on the same side (b) two ports on adjacent
sides (c) two ports on opposite sides, as shown in section 7.2, figure 7.2.1. The general
form of the infinite series Green’s function used in the analysis is expressed in terms of

the four modal sets,(m =0, n =0), (m>1,n=0), m=0,n21), (m=1,n=1).

The new impedance coupling expressions for each of the above three cases, (a), (b), and,
(c) are derived in sections 7.2.1, 7.2.2, and 7.2.3 respectively. In the derivation, term by
term double integration of the Green’s function gives, initially, an impedance formula
which consist of a single term, two single infinite series, and, one double infinite series.
The single infinite series are summed to closed form, while the double infinite series are

reduced to a single infinite series.
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In case (a) the closed form summations result in the elimination of the constant term and

the modal set m=0,n>1. In cases (b) and (c) the closed form summations result in the

elimination of the constant term and the modal set m>1,n=0.

The infinite series closed form summation formulas used are given in Gradshtyn [1] apart
from the formula used in equation (7.2.2.5) which was derived (Appendix7A).

The initial formulas, obtained by integration of the Green’s function, require the
evaluation of M?+2M +1 terms, where M is the upper summation limit for numerical
convergence. By comparison the economised expressions obtained by using closed forms
of infinite series require M +1 terms in respect of the formulas in sections 7.2.1, and,

7.2.3. The formulas in sections 7.2.2 require M +2 terms.

Numerical trials using the new expressions have shown that in all the cases considered
only one term of the series is required to give convergence to three significant figures. In
the worst case convergence to five significant figures requires at most 4 terms of the
series, and, for convergence to seven significant figures 10 terms at most are required.

The result of a test application, for each of the three configurations considered, are given

in section 7.3, and, are found to be in good agreement with Ensemble™.

In the following analysis the detail involved in the double integrations, and, the series

summations, are omitted, but are outlined in appendices.
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7.2 Computational Analysis

The three port configurations in this section are shown in figure 7.2.1.

y y \Y
b b b
1P
; —+* ; =P 9=
149
q
X l I X X
0 a 0 {1 a 0 a -
(@ (b) ©

Figure 7.2.1: Three port configurations

For the rectangular patch, 0 < x < a, 0 < y < b the Green’s function [2] must first be

arranged in the following form:

‘ o c0s % x cos 7 x o 05y cos Ty
G(xP,yP|xq,yq)=M{"l—+2azz b * b q+2bzz b * b ¢
ab S S m - 4 2 n - B
4o, oS z x, cos ”;” x, cos nb” y, cos _”b”— Y,
= > — (7.2.1)
m=1 n=1 e + b2 - p

where the two ports, p and gare located at (xp, y p), and, (xq, y q); A = ak/r,

B = bk/z; h is the dielectric thickness, k> =w’ue,e,(1-j/Q) and, Q is the total
quality loss factor, which includes, copper(Q,), dielectric(Q,), radiation(Q,)and
surface wave(Q,,)losses of the structure [3]. The loss factors are connected by the

relation 1/Q =1/0, +1/0, +1/0, +1/Q,, . For thin substrates the losses due to the surface
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waves are very small and consequently can be neglected[3]. The ports p, ¢ have widths
W,, W, respectively.

In the following sections coupling impedance formulas are derived for each of the three

cases.

7.2.1 Two Ports on the Same Side
The two ports p, g have centers (0,,),(0,y,).

The Green’s function becomes

— R . o cos -y cos 5,
w
GO,y 10,y) = L2EL -~ 2% + 25 b b
ab k ' - m — 4 e o n - B
nx nm
© @ Cos 12—y cos 2y
4 b “F p 4
I 2 Iy B i N (72.1.1)
m=1 n=1 YT T3
a b 4

The coupling impedance between these ports is [2]

_ 1
Pq WP Wq

IWF J.wq GO, y, 1 0,p)dy, dy, (7.2.1.2)

From equation (7.2.1.2), by integration (Appendix 7A)

j -W W, 2a°W W 2 2p?
- Jenh o S Sm, + 2b4 Sn, + da 4b Smn, (7.2.1.3)
Mooabw W, k T z T
where, using the closed form summations,
Sm. = i_lb
1 — mZ _AZ
”2 72_2
EEyETE Ry cot ka (7.2.1.4)
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s, :i F(n:6,,6,,0,,0,)

72.1.5
2 B ( )
> F(n:6,0,,0,,0) S 1
Sm 1
s = ; mzﬂm +D?
F;(nﬁﬁﬁﬁ)mthD”_ zzil*;(n 0,,099)
2n—1 h D B )
o0 . 2
:zzﬁ(n.ﬁl,fz,%,@;) comDﬁ_%Snz (7.2.1.6)
2n=1 n D 2a

where, A=ak/n , B=bk/n , D* =(n*-B*) a’/b*,

F@n:6,0,0,0,) = (sinnd —sinnd,) (sinnb, - sinnd,),

1?72

w w w w
6 =Ly -—2|,6,=2 Lo =L | and, 6, = L )
oo e 2 PR b7 2 b 2 S

Using equations (7.2.1.4) and (7.2.1.6) in equation (7.2.1.3) eliminates both of the terms

ww, / k* and Sn,, to give the coupling impedance

7 = jo uh { cot ka + 2422 Z (sinn@ —sinnd) (sinnf, — sinnd))
k

coth Drr | (7.2.1.7)
" ab wwz o n'D

7.2.2 Two Ports on Adjacent Sides
The two ports p, g have centers (0,y,),(x,,0).

The Green’s function becomes
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' , , © COS——Xx , = cos %y
GOy |xo=2220 L AW~ a2 b
P ab [ S S ¢ ~ o on-B
¥4 nmw
«  COS X COS ——
a 1 b 7
m? n’ k?
m=1 n= + -
b a® b? t
The coupling impedance between these ports is [2]
_ 1
AT pr _[Wa GO.y, | x,0)dy, dx,
P
From equation (7.2.2.2), by integration (Appendix 7A)
wuh W W, 2aW 263w 3
__Jou p"q _ P g . _4ab
qu = ) 3 Sm1 3 Sn2 Smn3
where,
Sm, = Z“’: (sin m#6, —Zsin r;sz)
o m (m” =A%)
Z (sm n9 —-sinn @,)
-B%)
W, lsin Ber - 6,) - sin Br - 0,)]
= +
2k%b* 2k’b* sin Bz
Smn,

Z (sin mf, — sin mo, )z (sin ng, —sin nb,)

I

oy m o on@E+CH

7z'aw (smm@ sian) na

(72.2.1)

(7.2.2.2)

(7.2.2.3)

(72.2.4)

(7.2.2.5)

(sin 6, —sin mf, ) (sinh C (7 —6,) —sinh C (7 -6 ))

Z Z

= m(m )2 m(mz—Az)sinhCn'
_—n’azW Z( sin m@, —sin mé, )[sth(fr 6,)-sinh C(z -6,)]
T » m(m*—A%)sinh Cr
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where, C* = (m* - 4*) b*/d*,

r 74 T /4 7 W, r /4
6, :;(ant?q) ,6, :;(xq ——2—‘1—],93 :;(yp +7”) ,and, 6, :;(yp—fj.

Using equations (7.2.2.5) and (7.2.2.6) in equation (7.2.2.3) eliminates both of the terms

ww, / k* and Sm, , to give the coupling impedance

; _ Jouh v, [SinB(ﬂ -0,) - sin B(z - 03)]
oooww ak” sin kb

, 2 - (sinmg —sin m){sinh C (r - 6) - sinh C (r = 6) |
7 m@t - A)sinhC 7

m=1

(7.2.2.7)

7.2.3 Two Ports on Opposite Sides
The two ports p, g have centers (0,y,),(a,y,).

The Green’s function becomes

ouh[ 1 o ey
a) —

GO.y, |ay)=L2E0 - 2 20N I - b
ab ¥ 72 m-4 7 nw - B

n=1

m nnw nmw
(-1)" cos , Yy, cos b Y,

Ay — (723.1)

w m n

m=1 n=1 )

a b? 7’
The coupling impedance between these ports is [2]

_ 1
qu = WPWq J‘Wp IWq G(, Y, | a, yq) dyp dxq (7.23.2)

From equation (7.2.3.2), by integration (Appendix 7A)
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wouh|W,W, 2a°W W 2b* 4a°b?
Z”:]a/; { I’;zq— ﬂzp LSm, - —3 Sn, — 3 Smn{l (7.23.3)
where,
Z”: =D"
m=1m ~A2
1 .4
= - 7234
24* 24 sin Az ( )
E@n:0,.,6,,0,,6,)
Sn, = ! 122732 4 7235
2 Z]: nZ(nZ_BZ) ( )
F(n:6,,6,,0,,0,) (-)"
Sm 1 2 3
"= Zl n Z_lm +D?
ni F(n:6,,0,,6,,6,) b’ ZF(n01,92,93,0)
2% DsinhDzr 2885 n’(n*-BY)
STy B0i6.0,6,.0) b, (71.2.3.6)
2 Dsinh Drx 2a

where, F(n:6,,6,,0,,6,) , 6,, 9,, 6,, 0, are as defined in case (a).
Using equations (7.2.3.4) and (7.2.3.6) in equation (7.2.3.3) eliminates both of the terms

wW, / k* and S, , to give the coupling impedance

7 = jo uh WPWq ~ 2ab2 Z“’: (sin n6, - sin nd,) (sinnd, - sin nd )
7 ew W | ksinka - D sinh Dz

(7.23.7)
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7.3 Test Applications

The new expressions for the coupling impedances were tested on a square patch of side
a = 40mm at a frequency of 2.45GHz on a substrate(Duroid 5870) where & = 2.33,
thickness # = 0.79mm , and, a loss tangent of 0.0012.

A square patch was chosen since, for ports on the same side, this geometry produces a
variation of coupling impedance depending on the separation between the two ports in
contrast to the rectangular patch case when the coupling impedance is essentially
independent of the separation. The quality factor of 87 was used which takes into account
copper, dielectric and radiation losses.

Results for two different separations between the paired ports were obtained for each of
the three cases and compared with those predicted by a full wave analysis software
(Ensemble™). These result s are shown in the graphs in figures 7.3.1,7.3.2 and 7.3.3.

As can be seen in figure 7.3.1(a) and 7.3.1(b) for case (a), the coupling impedances
decrease with separation of the two ports. Figure 7.3.2(a) and 7.3.2(b) show the
comparison of results for case (b) as expected, the mutual impedance increase as the two
ports are brought closer together. Finally figure 7.3.3(a) and 7.3.3(b) shows the results for
case (c). For all three cases there is an excellent agreement between the results obtained

from the new efficient computational expressions with that predicted by the Ensemble™.,
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Figure 7.3.1: Coupling impedances of two ports located on the same edge at (0, y p:' :

(0, yq}-
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— Imaginary part of the equation (7.2.2.7)
“==~ Real part of the simulation
""" Imaginary part of the simulation

(b) Coupling impedances for y p =% = 14mm

Figure 7.3.2: Coupling impedances of two ports located on adjacent edges at (0, y P:' -

0).
G,
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Impedance { Chms )

| | | | 1
2.35 2.4 2.45 2.3 235 26
Frequency { GHz )
“ Real part of the equation (7.2.3.7)
" lmaginary part of the equation (7.2.3.7)
“~" Real part of the simulation
Imaginary part of the simulation

(a) Coupling impedances for y p = 18mm and Yq = 22mm

=200

| | | | |
235 2.4 2.43 2.3 255 2.6
Frequency ( GHz )
— Real part of the equation (7.2.3.7)
— Imaginary part of the equation (7.2.3.7)
Real part of the simulation
""" Imaginary part of the simulation

=200

(b) Coupling impedances for yp =4mm y, = 26mm

Figure 7.3.3: Coupling impedances of two ports located on opposite edges at (0, y P] 3

(@, yq)
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7.4 Summary

In this chapter efficient computational expressions for each of the three possible
rectangular patch coupling impedance configurations, has been obtained. The number of
terms in the series formulas for a required accuracy is given. A test application using

Ensemble™ showed good agreement.
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CHAPTER 8

DERIVATION OF EFFICIENT IMPEDANCE COUPLING
EXPRESSIONS BETWEEN PORTS ON A RIGHT-ANGLED

ISOSCELES TRIANGULAR PATCH

8.1 Introduction

In this chapter efficient impedance coupling expressions between the perimeter ports on a
right angled isosceles triangle patch are obtained using closed form summations of
infinite series. There are four cases to consider (a) two ports on a vertical side, (b) two
ports on adjacent vertical horizontal sides, (c) one port on a vertical side, and, one port on
the hypotenuse, and (d) two ports on the hypotenuse, as shown in section 8.2, figure
8.2.1. The general form of the Green’s function used in the analysis is given in this

section, and, is expressed in terms of the four modal sets, (m =0,n= O),

(mzl,n-—-O),(mzl,nzl).

The new impedance coupling expressions for each of the above four cases (a), (b), (¢),
and, (d) are derived in sections 8.2.1, 8.2.2, 8.2.3, and, 824 respectively. In the
derivation, term by term double integration of the Green’s function produces, initially, an
impedance formula which consists of a constant term, and, several single and double

infinite series.
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The single infinite series are summed to a closed form and for the coupling ports not on
the hypotenuse the double series reduces to a single infinite series. The reduction of the

double series results in the constant term and the modal set which m=0,n>1, to be

eliminated in each of the cases (a) and (b).

For coupling ports involving the hypotenuse the double infinite series cannot be reduced
to a single infinite series. However, the double series can be economised by extracting the
diagonal terms which can be summed to closed form. The remaining terms, by symmetry,
can then be expressed in the form of semi-infinite double series for

whichm>1 , n>m+1.

The infinite series closed form summation formulas used are either given, or, have been
derived from results in Gradshtyn[1]. Derived expressions (Appendix 8A) are used in
equations (8.2.1.4), (8.2.1.8), (8.2.2.6), (8.2.3.4), (8.2.3.5), (8.2.3.7), (8.2.4.6), and,

(8.2.4.7).

The initial expressions obtained by integration of the Green’s function require the
evaluation of M? + M +1 terms, where M is the upper summation limit for numerical
convergence.By comparison the economised expressions obtained by using closed forms

of infinite series require 2(M + 1) terms in respect of the formulas in sections 8.2.1, and,

8.2.2. The formulas in sections 8.2.3, and, 8.2.4 require (M 24+ M + 8)/2 terms.

Numerical trials show that in the worst case, for convergence to seven significant figures
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an upper summation index of 9, at most, is required. The results of a test application, for
each of the four configurations considered, are given in section 8.3, and, are found to be
in good agreement with Ensemble™. In the following analysis the details involved in the
double integrations, and, the series summations, are omitted, but are outlined in

Appendices 8A.

8.2 Computational Analysis

The four p and g port configurations in this section are shown in figure 8.2.1 below.

A\ Y

(0,5,)

(0,y,) =

(b)

Figure 8.2.1: Four port configurations
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The Green’s function for an isosceles right angled triangle is given by [2]

j o L,y )T, (x,5)
G(x,,y, l x,y,) = i:“"zz (8.2.1)

m* + nPHn* - a*k?

—® -

where T (x, y) = cos MA_ xcos 2 y + ()™ cos 2% x cos 2%y (822)
a a a a

and a is the length of a perpendicular side, and, h is the dielectric thickness;
2 . . .
k2 = 0?p £,6,(1 - j/Q), and, O is the total quality loss factor [3].

The above expression for the Green’s function must first be arranged in the following

form

«w

G(x,y | ,y)__ szﬂh {_ Z mO(x’ )4 mO(x y) Zz mn P’yp) mn ’y)}(823)

71"2 m=1 m=l n=i A
where 4 = ak/x .
The ports p, ¢ have widths W,, W, respectively. In the following analysis coupling

impedance formulas are derived for each of the four cases.

8.2.1 Two Ports on the Same Vertical Side.

The two ports p, g have centers 0,y ),0,y ).
P q

The Green’s function becomes

. - (l + (1" cos-T%. yle + (D" cos- % yq)
GO.,10,3,) = ’QZ’Z"” - ;‘; £y a a

(o — £)

m=1

o - (cosﬂ ¥, + cos 7% ypIcos—”Z’— y, D cos- 7% 5,
a a

Sy a a J(8.2.1.1)

m=l n=l

wt +nt -4
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The coupling impedance between these ports is [4]

— 1
qu - Wqu J‘WP J‘Wq G, Yo 10, yq) dyp ayq (8.2.1.2)

From equations (8.2.1.1) and (8.2.1.2), by integration (Appendix 8A)

Rouh| WW, 1 aw, a’ 2a°
o = p— { k;) ;+”2 Sml-i——f—zb—"?Sm2+ﬂ_—4Sm3 + — . s]p (8.2.1.3)
ra

where,

i W, ( l)maWp(sinm03——sinm94)

=1 m’ - m;z'(m2 - A2)

2 2, . .
) Wp Wqﬂ WquirOOtﬂ'A + /4 Wp(smAH4 —sin 46;) (82.1.4)
K 24 ak’sinAz -

=, (-1)" (sin mf, —sin m, )

82.15
,,,z:: m*(m* — 4%) ( )
= F(m:8.,60,,6.,0,)
Sm, = ! 1.2 3279 8216
my mzﬂ mz(mz—Az) ( )
Smn, = ZZF(m 01,62,03,04)
=E mrmt +nt - 4%
zgiﬁ(mzﬂl,ﬂz,%,&‘)cothnﬂ_liE(m:01,02,03,94)
2 m*B 2m mz(mz—Az)
=ZZ Fl(m:491,62,6’23,6’4)coth7tB_lSm3 (82.1.7)
2m=1 m°B 2
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- (—1)m+”F;(m,n:01s02s93,94)
S =
s ,,,_Z_,ZI: mn(m* +n* - 4%)

7 & (1) (sin m, —sin md, )(sinh BY, —sinh B,) W, & (-1)" (sinmb, —sinmé), )
B Tu

m(m* — A*)sinh Br 2a = m*(m” — A%)

_ 7§ (V" in b, —sinmb) inh B0, —siah 56,) o
Y= m(m* — A*)sinh Brc 2a

Sm, (8.2.1.8)

where, B> =m” - 4%, F,(m:8,,6,,0,,0,) = (sin mf, —sin mP,) (sin m@, —sin mf,),

E,(m,n:86,,6,,0,,0,) = (sin mb, —sin mb,) (sinnB, -sinnb,), and,

w 4 w w
_ 7 r . = __P I - q_i- = __ 4

Using equations (8.2.1.4), (8.2.1.7) and (8.2.1.8) in equation (8.2.1.3) eliminates in turn

the three terms w 17, /k2 a*, Sm,and Sm,, to give the economised form of the coupling

impedance
, jouh | ww cotrd 4 W (sindf, - sind6) .\ 7 i (sinmé) — sinm6),) (simé, — sinmd,) coth 7 B
Toww ka k asinka P 5 n B

(8.2.1.9)

=, (~1)"(sin m6, — sin m@, )(sinh B, — sinh BO,) }
V4

2
+ 2a Z
A mB* sinh 7B

8.2.2 Two Ports on Adjacent Vertical-horizontal Sides

The two ports p, g have centers (0, y ),(x ,0).
r q

The Green’s function becomes
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o p . (1 + (<D™ cos 2. ypI(—-l)"’ + cos xq)
GOy, | x 0 = L2 1- ¥ 4 <
P q 2 Z (”12 _Az)

. (cosE ¥, + (" cos T ypIcosM x +( " cos & qJ
Py @ a a a J1(8.22.1)
—— of +i —4)
The coupling impedance between these ports is given by
z, =—1 _[W IW GO, y, | x,0) dy, dx, (8.2.2.2)

ww
r a

W w
where the integrations are over the intervals (F ~., £ J and,

From equation (8.2.2.1) and (8.2.2.2), by integration (Appendix 8A)

2_]0)/.th WW WW aW aW a’ 2a?
e W,,Wq[ Bat ar T o S
24
——Smn, (82.2.3)
D"
here,
W ;_';m - A?
x: z 8224
2a°k? 24 sin Ax (8.224)
(sin m8, — sin m@, )
sz:z o — 1) (8.2.2.5)
m=1 -
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Sm :z(smmelzsmrzna,)
m=1 m (m _A)

W 3 26 _ —_ i —
_ W@ | a0, - sin Az - 0,)) (8.2.2.6)
2k2a3 2k202 sin ka

Sm, = i -)"F(m:06,,0,,6,,6,)
m=

8227
mz(mz — Az) ( )

F,(m,n:6,,9,,6,.6,)
S 1> 23 3
s = ;; mn(m® +n* - 4%)

Z:(smm9 smm&)[sth(ﬂ 6,)—smnh B(z - 494)] z < (sin m6, —sin méb,)
m (m* — A*)sinh Bre WS mm -4

. (sin m6, —sin m8,) sinh B —6,)—sinh B(z 8, 2
- Ty snmh —sin 2)[52 (z~6,) ~sinh Bz 2 ~Z_sm, (8228)
m(m” — A”)sinh Bx 2a

Sing ~ 323, CV™F(m:0,,0,,05,0,)

m=1 n=1 mZ (m2 + ’12 - Az)

__Z( 1) F(m 61,0,,0;, 4) Z( n” Fi(m 91792,93>94)
ot ? Bsinh 7B 2a2 — m* (m* - 4%)

Z( " F(m 01:32:0370)
2 ot m* Bsinh 7B 2ar2

Sm4 (8.2.2.9)

where, F(m :6,.6,,0,,6,)and F,(m,n:6,,0,,6,,0,)are defined as in case(a), and,

Using equations (8.2.2.4), (8.2.2.6), (8.2.2.8) and (8.2.2.9) in equation (8.2.2.3)

eliminates the terms W /k2 a’, Smyand Sm,, to give the coupling impedance
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, _ Jouh ww, W (sin AGr — 63) - sin A(x - 63) 28~ (D"F(m:6,6,,6,,0)

WW. | kasinka klasinka z m® B sinhsB

m=1

@

2a7 5 Ginmd, - sinmd, fsinh B(z - 6,) - sinh Bz — 6,)|
~ mB sinh Bz

+

(8.2.2.10)

m=1

8.2.3. One Port on a Perpendicular Side and One Port on the
Hypotenuse

The two ports p, g have centers 0,y ),(x ,a-x ).
y4 q q

The Green’s function becomes

. [1+(—1)"cosﬂyj(cosﬂx +(—1)”‘cosﬂ(a—x))
Roph | -7 +Z a ’ a a !

4 aK

qoayp |xq:a_xq)= (mz_AZ)

=]

w o (cos R Y, +("" cos ﬂyp}(cos me X Cos R (a—xq) +™" cos R x cos me (a—xq)J
- a a a a a (82.3.1)
P (m2+n2——A2)

The coupling impedance between these ports is given by

V2
z, = - IWP IWq GO, p, | x,,a-x)dy, dx, (8232
P q

. . . w w
where the integrations are over the intervals (yp -t y, +—=* J, and,
2 2

W‘I Wq
x + L X - .
a2 T 22

From equation (8.2.3.1) and (8.2.3.2), by integration (Appendix 8A)
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Pq W Sm, + ———Sm

_J2 o p k| WW, . ZﬁaWp Sm 4 2242 J2a?
- 2 2 3 1 4 4 3
k*a V4 7 27z

—+

w 2
a 1 4«/§a Smns}

3 m, + 4 (8233)
4
where,
< (sin m@, —sin mb,)
Sm, =
" ,”Z:l m (m* - A%)
w 7[3 2
=ty F kin 4z - 6,) - sin 4@ - 6,)] (8.2.3.4)
W2k'a®  2k%a’ sin ka
- (_1)"‘1_7;(”1:91,02,93’94)
Sm, =
" Z:; m* (m* — A%)
_ Wqu7;4 . 74 (sin Ael - sin 49, )(sin A03 - sin 49,) (8.2.3.5)
22 k%a K3 sin ka
Smy=Y" (=)™ (sinmb, —s;n m022)(su;m293 —sinm26,) (823.6)
m=1 m (m —A /2)
& (—D™ (sin m@, — sin m@,)
Sm, =
" ; m* (m* - A%/2)
_— 7r3[sin JA_ 6, - sin ,/A_ BZJ
= —t- 2 2 (8.2.3.7)
k'a® K'a? sin X2
V2
T
n=1 m=n+1 m (m +n A ) m+n
singm — n)9, — sin(n — n9, } (8.2.3.8)
m-n

where, F,(m : 6,,0,,0,,0,)is defined as in section 8.2.1,
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W w /4 w
al? 2 at’? 2 a q 2\/2_ a 1 2J2—

Using equations (8.2.3.4), (8.2.3.5) and (8.2.3.7) in equation (8.2.3.3) eliminates the term

ww, [k a® to give the coupling impedance

7 Roun| VW N 2 VK,(sinA(ﬂ— 8) —sind (fr—Q,)) V2 (sinAel - sinAHZXsinA@ - sinAo)
m ww Ka Pansinka Kasinka
w | sin-4 6 - sin-4_ 6 . .
‘2 2 ) a2 Z(—1)!"(sinm¢91 — sinm@),)(sinn2 6, - sinm2 6)
Pasin 2. 24 m? (m*~ A*2)
V2

W2 a’ Z”: Z”: (D" (sin m8, — sin m@,) [ singn + m), ~ sinGm + n)d,

+

z m (m* +n® - A4%) m+n

n=1 m=n+1

sin(m — n)6, — sin(m — n)@

4 ] (8.2.3.9)

m—-—n

8.2.4 Two Ports on the Hypotenuse

The two ports p, g have centers (x ,a — xp),(x ,a — xp).
p P

The Green’s function becomes
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G(xp,a -x, | x,a- xq)

- [cosfﬂ x, + -y cos -7 (a-x )J [cosﬂ x + (D" cos % (a—x ))
__2ouh - +Z a a ! a a !

R LZ A (m? - £)

cos % X, cos % (a - x)+ (=)™ cos 2Z- X, cos % (a - xp)]
a

m=1 n=1 (m2 + n2 - AZ)

a a a a

l:oosﬂ x cos *Z (a - xq) + (D™ cos BX x, cos 2% (a - xq)il } (3241

The coupling impedance between these ports is given by

Z = G(x,,a-x, | x,a~x)dx, dr (8.24.2)
oooww I j

w w
where the integrations are over the intervals (xp +—2—,y -—2£ ], and,

W, W,
[y ’ 2\[— 2\/2“}'

From equation (8.2.4.1) and (8.2.4.2), by integration (Appendix 8A)

2 2
2@ puhl WW, 84 a aw, aw, aww,
zZ = + Sm + Sm, + Sm, + Sm, + £ Smy
P W, [ ERC RN Bl I bl N s 227" 2z
2
+——‘; Smns} (82.43)
where

Sml — Z F;(mz 91,2625032:64)
w1 m(m"—A%)

ZWH, . 'bind@x - 0) - sin A - 0,))kin 46, - sin 46,)
2k*a’ k’a’ sin ka

(8.2.4.4)
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< (sin m26, —sin m26,)(sin m20, —sinm20,)
Sm, = 8245
m2 g::l m2 (m2 _ A2/2) ( )

2 (sin m20, - sin m26,)
S =
g ;1 m (m*> - A%/2)
o A _ Can A4 _
7’3W,, V4 (sm ; (7w - 20,) - sin =z (z 204)J
- + (8.2.4.6)
V2 ke’ k*a’® sin ka/+2
2 (sinm26, —sinm286,)
S =
e D ok By
. 4 .4
3 b4 (sm —— (@ - 20)) - sin (r - 202)j
W
S0 V2 V2 (8.2.4.7)
V2 k% k’a® sin ka/y2
sm$ 1
° m=1 (m2 _A2/2)
nl 3 \/E—ﬂcotka/\/Z— (8248)

k’a’ 2ka

Smng = i i

n=1 m=n+l1

(sin@m +m6, ~sin(m +n)8,) (sin(m —n)6, —sin(m — )6, )
+
(m2 +n2) (m2 +n’ —Az) (m2 —n2) (m2 +n* ——AZ)

(sin(m+n)03—sin(m+n)04) (sin(m—n)93—sin(m——n)04) 8249
(m* +n?) (m* -n%) (82.49)

w
where, F(m : 6,,6,,6,,0,)is defined as in Section 8.2.1, 6, = —”—(x e J,
p
a 242
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Using equations (8.2.4.4), (8.2.4.6), (824.7) and (8.2.4.8) in equation (8.2.4.3)

eliminates the term w 7, /k* a® to give
P

Z_

rq

j2wyh{”f,”; LA A A +4(sinA(7r—6l)—sinA(7r—02))(sinA03—sinAHA)
4 Bd 4Azka AR ka 22K Kasinka
4 A 4 A
WI,(51n7—5(7r-203)—sm$(7t—204)J+Wq(sm:/?(ﬂ—zﬁl)—sm—ﬁ(ﬂ-wz))
2\2x K*sinka/<2 227 k*sinka/\2

+

Y

a2 Z (sin m26, — sin m26,)(sin m26, — sin m20,)
4z m* (m* — A%)2)

+

m=1

-+

Ad° i i (sin(m +n)f, - sin(m + n)az) + (Sin(m = n)f, ~ sin(m — n)ﬁz) (sin(m + n)f, ~ sin(m + n)g)
= ot + )Yt + 1t - £) @ - +i - A) (n?® + 1)

n=1 m=n+1

. (sin(m - )0, — sin(m — n)04)

(m2 - nz)

}(8.2.4.10)

8.3 Test Application

The new coupling impedance expressions (8.2.1.9), (8.2.2.10), (8.2.3.9) and (8.2.4.10)
were used in the test application to the patch antennas shown in figure 8.2.1, with a
resonant frequency of 2.45GHz, a = 40mm, W =0.067mm , substrate (Duroid 5870)
h = 0.79mm, & = 233, and, a loss tangent of 0.0012.

Results for two different separations between the two ports were obtained for the four
cases and compared with those predicted by a full wave analysis software (Ensemble™)

These result s are shown in graphs 8.3.1, 8.3.2, 8.3.3 and 8.3 4.
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As can be-seen in figure 8.3.1(a) and 8.3.1(b) for ports on the y-axis, the coupling
impedances decrease with separation of the two ports. Figure 8.3.2(a) and 8.3.2(b) show
the comparison of results for coupling between the ports on x and y-axes ,and, as
expected the impedances decrease due to the natural low impedance at the right angle
corner of the triangular patch. Figure 8.3.3(a) and 8.3.3(b) shows the results for coupling
ports between the y-axis and the hypotenuse, the impedances increase with the very high
impedance at the right hand corner of the triangular patch. Finally figure 8.3.4(a) and
8.3.4(b) shows the results for coupling ports on the hypotenuse. In all four cases there is
an excellent agreement between the results obtained from the new economised

computational expressions with that predicted by the Ensemble™.

8.4 Summary

In this chapter an efficient computational expressions for each of the four possible right-
angled isosceles triangular patch coupling impedance configurations has been obtained.
The number of terms in the series for a required accuracy is given. Good agreement
between results using the new expressions and Ensemble™ is obtained in each of the test

applications.
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Impedance | Chms )

1 | | 1 1
235 24 243 25 2.55 2.6
Frequency { GHz )
~— Real part of the equation (8.2.1.4)
— Imaginary part of the equation (8.2.1.9)
====* Real part of the simulation
""" Imaginary part of the simulation

—180

(a) Coupling impedances for y p = 18mm and y, = 22mm

400 | T T T |

Impedance { Ohms )

=200
235 14 245 2.5 21.53 26

Frequency { GHz )
~—— Real part of the equation (8.2.1.9)
— Imaginary part of the equation (8.2.1.9)
===-* Real part of the simulation
""" Imaginary part of the simulation

(b) Coupling impedances for Yp = 14mm and Yg = 26mm

Figure 8.3.1: Coupling impedances of two ports located on the same edge at (0, y p)

©,5,)-
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Impedance { Chms )

Frequency ( GHz )
—— Real part of the equation (8.2.2,10)
—— Imaginary part of the equation (8.2.2.10)
----- Real part of the simulation
----- Imaginary part of the simulation

(a) Coupling impedances for y p =%g = 18mm

130 T 1 T |

Impedance { Ohms )

=80

235 24 245 25 255 26
Frequency ( GHz )
— Real part of the equation (8.2.2.10)
—— [maginary part of the equation (8.2.2.10)
----- Real part of the simulation
----- Imaginary part of the simulation

(b) Coupling impedances for y p=%g = 14mm

Figure 8.3.2: Coupling impedances of two ports located on adjacent edges at (0, ¥ P] .

0).
{xq )
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130 T T T T

Impedance ( (hms )

i 235 24 245 25 255 26

Frequency ( GHz )
— Real part of the equation (8.2.3.9)
~— Imaginary part of the equation (8.2.3.9)
=== Real part of the simulation
""" Imaginary part of the simulation

(a) Coupling impedances for Yp =%y = 18mm

146

72

Impedance ( Ohms )
o

=76

| | | | |
235 24 245 2.5 2.5% 26

=130

Frequency ( GHz )
— Real part of the equation (8.2.3.9)
—— Imaginary part of the equation (8.2.3.9)
---- Real part of the simulation
"""" Imaginary part of the simulation

(b) Coupling impedances for y p = %g = 14mm

Figure 8.3.3: Coupling impedances of one port on perpendicular edge and one port on the

hypotenuse at (0, y p] ,{xq 0).
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Impeeidance { Ohms )

238 24 245 23 258 16
Frequency ( GHz )
—— Real part of the equation (8.2.4.10})
—— Imaginary part of the equation (8.2.4.10)
----- Real part of the simulation
----- Imaginary part of the simulation

(a) Coupling impedances for Xp = 18mm and x_, = 22mm

Impedance ( Ohms )

i 235 24 245 25 255 26

Frequency { GHz )
~—— Real part of the equation (8.2.4.10)
—— Imaginary part of the equation 8.2.4.10}
----- Real part of the simulation
""" Imaginary part of the simulation

(b) Coupling impedances for x p = 14mm and Xg = 26mm

Figure 8.3.4: Coupling impedances of two ports on the hypotenuse at (x ;,,0) ,{:chI 0).
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CHAPTER9

THE CORNER-DELETED-SQUARE MICROSTRIP

ANTENNA DESIGN IMPLEMENTATION

9.1 Introduction

A design procedure for the design of a centre-fed two corner-deleted truncated circular
polarised patch antenna is presented. The circular polarisation results from perturbing a
square antenna geometry, and, the amount of perturbation is obtained by an application of
perturbation analysis (Chapter4). To calculate the input impedance of the antenna the
desegmentation method is used (Chapter 6). In this method connecting ports are
introduced between the segments and a multiport coplanar analysis applied to obtain the
overall characteristic of the combined structure (Chapter 5). The analysis employs
interport coupling impedance formulas which are derived using the Green’s functions for

a square, and, a right angled isosceles triangle path geometry.
New computationally efficient expressions for the interconnecting port impedances on a
rectangle, and, on a right angled isosceles triangle shaped antenna patch, have been

obtained (Chapter 7 and 8).

In this chapter the computational steps, required to determine the antenna size and input

impedance are given in section 9.2. The detailed structural properties of the impedance
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coupling matrices together with the new computationally efficient formulas for the

elements of each matrix are given in section 9.3.

The design geometry and input impedance for an antenna with an operational radiating

frequency, f, of 2.45GHz is calculated and the results presented in section 9.4. The

impedance of the matching network is discussed in section 9.5.

All the results from the above work show close agreement with full-wave software

simulation and practical results.

9.2 Design Procedure Implementation

A procedure for the evaluation of the antenna input impedance using the Desegmentation
technique and the application of this technique to the two deleted corner truncated patch
antenna is presented as below.

1. Assign numerical values to the constants

ﬂ;h,W,T,Gc,N,Nl,MI,

where, £, is Operation frequency (2.45 GHz)
h is Thickness of substrate
W is Width of the feed line
T is Offset feed line position
o, is Conductivity of the copper 5.7x10” s/M
N is Number of ports
N1 is Upper summation limit of infinite series

M1 is Upper summation limit of infinite series
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2. Evaluate unloaded Q -factor, 0, from formula(3.3.1.2.2),

1,11 ©2.1)

3. In the perturbation analysis for circular polarisation the electric field is separated into
orthogonal modes of equal amplitude and with a phase difference of 90° [2]. The
radiated fields excited by these two modes are perpendicular to each other and 90°

out of phase. The typical impedance amplitude and phase diagrams are shown in

figure 9.2.1.
Magnitude of
Impedance Phase
1 80+
0.707 40_\
0
fa fO f},
40+
-804+

Figure 9.2.1: Amplitude and phase diagrams for a single fed circularly polarised

microstrip antenna
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The circular polarisation condition, for a centre feed, is characterised in the above

impedance and phase curves. The design estimates the required offset frequency Af

(figurel), the unperturbed dimension ‘e’ of the antenna, and, the perturbation area
AS obtained from perturbation analysis. Graphs of the individual mode impedances

against frequency are obtained.

The required offset frequency Af for each mode is related to the pre-assigned (detuned)

resonant frequency, £, and, the unloaded Q -factor Q by

_h
4f~2Q (9.2.2)

4. The lower and higher mode frequencies £, and f, are given by

fo=to— O (9.2.3)
= fo+Af (9.2.4)

5. The resonant frequency of the square patch is given by [7]

Cc

r

(.25
2a,[¢ 4 )

where,
a = Length of the unperturbed patch incorporates the fringe field extension
¢ = Velocity of light

Ep= Effective dielectric constant of the substrate
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6. From the perturbation analysis the higher mode resonant frequency is the resonant
frequency before the perturbation. Therefore , the value of ‘a’ is determined by
taking 7. =f,.

The perturbation analysis results give the following relation [3]

AS 1

Y 0 (9.2.6)

where, ASis the total area of the deleted segments and S is the area of the
unperturbed patch
The dimension of the unperturbed square patch with fringe field extensions is then
calculated and the dimension of a deleted triangle is obtained from the perturbation

analysis, where the value of ‘ a incorporates the fringe field extension.

7. Evaluate the desegmentation impedance coupling matrices

VA Z Z V/

pPY? pay? poy? aqf

8. Generate the Z ,, -frequency curve from the formula (6.6.17)

z =z -z [z -z ]}z

pp!

(9.2.6)

qry

where,

my ~ “aor -

9. The fabrication dimension of ‘a’ then obtained by subtracting the fringe extension.

This completes the design computation.
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9.3 Evaluation of Coupling matrices for Input Impedance

The desegmentation configuration of the square patch antenna with two deleted corners,

and, a centre feed, is shown in figure 9.3.1.

a
q -port d
> 41| Ll >
N — A
Vp Va1 n }/
-+ =

(xp,yp) de Vs
p -port Vc 5 l p -port
/<<<< g,-port |~
N

R
q,-port
Figure 9.3.1: Microstrip fed antenna and desegmentation method

In this section the general structure and properties of the segmental coupling matrices

ZyZpsZ

. . » 804, Z_ 5 used in the input impedance formula are described. Using the

impedance coupling matrices of each of the segments shown in figure 9.3.1, the

microstrip input impedance of the antenna is given by the matrix formula
-1
2 =2y 2o 2oy~ Zoap | Za (9.3.1)
where,
2y =2,
and, N is the number of the ports on each of the ¢q,, ¢q,, ¢,, and, g, section of g -ports as

shown in figure 9.3.1.

The number Z,,, represents the interaction of the input feed port with itself, that is, port

‘p’toport ‘ p’,and is given by
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. _ 4 0 - _ . . _ . T
7 :]a),uh{__qcotka+ 2a (sinnf, —sinng,) (sinnb, smng“)cotthr (932)

& |k W, 3; 7D

W
where, A=ka/z k> =0’y &5, j/Q), D' =(n" -4, e,=£(y,,——'4 ,

a 2
7 W T W 7 W
b 7(%*%} % 7{%“5} and, 6, =;(yq+7q)-

where (y,, y,) is the feed location coordinate.

The impedance coupling matrices Z,, and, Z_, represent the interactions between the

feed port “ p” and the interconnecting g -ports, and vice-versa. Z, is a vector of order

4N .

The coupling matrix Z,, connects the single input p -port with the interconnecting g -
ports, and has the following structure:
ZW = [quﬂ" ZP‘I?J" ZP‘I;)” qu4y] (933)

where each of the above sub-matrices is a vector of order N, and, the expressions for the

elements in each of the four matrices are given below.

70 :jwﬂh{—_a ity 2 sinn —sinnB) (sinnf, —sinb,
gy

)
o W ; =5 cothDﬂ} (93.4)

/4 /4
where, A=kafz , D" =P~ 4), 6,25, 0,25, + 72
a 2 a 2
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The N elements of the submatrix Z, , are given by

20 _ jo ph| W, [ sinB(z—-86,)—sin B(z - 6,)]
"W, ak’® sinka

24" ~~ (sin m6, - sin mﬁz)[sinhC(ﬂ—04)—sinhC(ﬂ“93)] (9.3.5)
s m(@m — A)sinh C 7 o

m=1

+

Vs W T W
where, A=kax, C* = (n" - £); =;["m~+7"j 0, =;(’%——'§‘J ,

93:;(}1})-{——2&},0 a[yp-—-;-) fori=N+1,2N.

The N elements of the submatrix Z,,  are given by

S0 _JO h[ wW, 2a3i(sinn6’1—sinn02) (sinn@-sinn@)]

936
B aW W, | ksinka m S Dsinh Dz ( )

where, A4, D, 6, 06,, 0,, 6, are same as defined in equation (9.3.4) ,and, for

i=2N+1,3N.
The N elements of the submatrix Z , , are given by

VAL _Jjouh| W, [ sinB(x —6,)—sin B(x - 6,)]
Bww, ak’® sinka

24 i (sin m6, — sin mﬁz)[ sinh C (7 - 6,) —sinh C (z - 6,) ]
s m@m’ — A)sinh C #

+

(9.3.7)

m=1

where, 4, C, 6, 6,, 6,, 6, are same as defined in equation (9.3.5) and i =3N +1,4N .
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The symmetric coupling matrix Z__,, of dimension 4N x 4N , represents the interactions

between each individual interconnection port on the y -segment and has the form

Z qar Z‘Il‘h}’ Z 957 Z Xqar
. VA V/ Y/
7 = aqr  “agwr  “agr (9.3.8)
= : : Zq;q;r Zgar
4 qar

and contains four distinct submatrices out of a total of sixteen sub-matrices. The

dimension of each submatrixis N x N .

Formulas for the elements in each of the four distinct matrices, 2., , Z.. ., Z,,. >

Z,.. > are given below.

The N* elements of the submatrix Z sy OT€ given by

iy _ JO ,u h 28" S (sinng, —sinnd,) (sinnb,
Z8) = { L cotkar+ Z

_ —SI) oth D | (9.3.9)
a WW;r o n'D

w, W,
where, A=ka/x , D*=(n"-4"), 6= (yqu ZJ % (yq;z+7j>

I w, /4 _ :
Qz;(yqu. ZJ 6, =— (yqu Zq],forzzl,Nand,]zl,N.

The N* elements of the submatrix Z__ are given by

gy _ Jouh| W[ sinBx—6,)—sinB(x-6,)]
W, ak’ sinka

| 20 < (sinmd, — sin mé,)[sinh C (z - 6,) - sinh C (z - 6) |
z m(@? — A)sinh C #

m=1

(9.3.10)
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w, /4
where, A=ka/m, C*=(m*-4%), 6,== (x +7j ,Bzzg(xqﬂ.—j’j

r w, 7 W,
Oy ==y, +—1,0,=—| y,, 5|, i=LN and j=N+12N.
a 2 a 2

The N* elements of the submatrix Z,, are given by

N . WW 3 » . o . e
760 - JO M h il _2a Z:(smnOI 81nn92? (sinnf, —sinnb,) (9.3.11)
W aW W, ksinka 7° ~ Dsinh Dr
w, W
h A=bklr , D’ =" -4%), 6, ==y -2\, 6,= +—2 |
where, £ n* ), (yqﬂ ZJ a( Vi 2)
T /4 T w. R ,
6, :;(y%j ——2"—] , 6, =;(yq3j +——2i’—), fori=1, N and j=2N+1,3N.
The N* elements of the submatrix Z_ are given by
260) — jo ph| W,|[ sinB(z—6,)-sin B(r —6,)]
“r W, ak’ sinka
28 = (sin m, — sin m6)[ sinh C (z - 6,) — sinh C (x - 6)) |
" 7 gl m(t — A)sinh C 7 ©:3.12)

W W

ere, 7w =(m* ==l x, 2| O,="|x, ——2

where, A=ka/rw, C* =(m* - 4%); 6,= g == a
2 > a

UJ 2
T w T W
,0; = ;(ng +7pj , 0, = ;[yqli -—

[\

],fori:l,N and j=3N+1,4N.
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The coupling matrix Z_,, of dimension 4N x 4N, represents the interactions between

each individual interconnecting port on the two ff -segments. Since the values of the
impedance coupling elements are independent of the coordinates system, and, the two S -

segments have the same geometry.

Z 0
_| “aup
Z s _[ ° 2z } (9.3.13)

wp1

The dimension of Z aab and the null sub-matrix is 2N x 2N .

The sub-matrix Z_,, has the form

Z Z
Z — a1 ‘11‘Izﬂ1:| (9 3 14)
B T 2.
= [quﬁl quqlﬂl

where each sub-matrix is of order N x N .

Expressions for the elements in the matricesZ__, and Z__ ; are given below:

The N? elements of the submatrix Z aap 2T€ given by

%ﬁWW ' ”}B

2 ZM{ PP, g SN S0) 2P S (il —sinnf]) (s st = B
W K k’dsnkd 25

2 ® N\ (} —q1 1 —si
2d° & (—1)"(sin mB, — sin m6, )(sinh B, s1nhB04)} (9.3.15)

+
p ; mB? sinh 7B

W /4
where, A=kd/z, B> =m’ - 4’, ng(ng +—2£J;62 23(}’%,. ——_P-J;

/4 /4
gszz(yqu"*'_q); 94:£(yq1j_~:21]:fori:1,N and j=LN.

146



The N? elements of the submatrix Z aa,s &T€ given by

769 :ja) u hl Ww, _Wp(sinA(rr—6'3)—sinA(7z—93)_2d2 = (-1)"F(m:8,,6,,6,,6,)
wl WW, |kdsinkd Kdsinkd n* &  m BsiohzB

. stz ‘Z(Sin mb, —sinm6, )| sinh B(z - 6,) —sinh B(z - 6,)] } (9.3.16)

n mB’ sinh Bre

2 V3 W ] _71' /4 ]
where, A=kd/n , B> =m’ - 47, 91:2(})@‘ +7"), @‘Z(yqli __ZPL),

i

W /4
03:_’5(xqzj+—"j; 03=£(x A——zi),foriﬂ,N and j=N+1,2N.

The Mathcad program listing for the impedance evaluation is given in Appendix 9A.

9.4 Computational and Experiment Results of Input impedance

The procedure in section 9.2 has been used to obtain the computational results for a
single feed two corner-deleted square patch antenna with, a=40mm, d=4.402mm
W =0.0067Tmm, er = 2.33(Duroid 5870), and, the resonant frequency f, =2.45GHz.
For this particular structure, it was found that 15 of the g-ports, and, using an upper
summatiox‘l limit m =10, in the infinite series expressions, gives good results. The layout

of the antenna for the practical experiment to determine the Zin at resonant frequency is

is illustrated in figure 9.4.1.
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Open Circuit —» EE—————

Short Circuit — e ST

Figure 9.4.1. Experimental two corner-deleted circular polarised patch antenna

Figures 9.4.2 and 9.4.3 show the results obtained from the above calculation, from

practical measurement, and, from Ensemble™. The circular polarisation condition in this
designed antenna has been verified by practical measurements (figure 9.4.4 and 9.4.5),
and, axial ratio is measured as a function of frequency and the angle (Theta). Taking into
account the approximations in the theory and fabrication errors the above results are in

good agreement.
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Impedance (Ohms)

A P P | AR

200

=50
35107 10’ 4510 2510° 2.5510°
23510 2410 EredS 1
== Real part of the program
— Real part of Ensemble
= Real part of Pratical
Figure 9.4.2: Real part of the input impedance

150 T I

100

A
L=

=

S a 9 an? an?
23510 2410 . mﬁmﬂiﬁfm 2510 2.5510
""" Imaginary part of the program
— Imaginary part of the Ensemble
-~ Imaginary part of the practical

Figure 9.4.3: Imaginary part of the input
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Axial ratio (dB)

Axial ratio (dB)

24 242 2.44 2.46 243 25 252
Frequency (GHz)
== Practical measurement
Figure 9.4.4: Axial ratio in dB versus frequency

50 T
40 = =
30— =
0 =]
1w =
0 | 1

=200 =100 0 100 200

Funetion of angle {Theta)
= Practical measurement
Fi 9 4 4: Axial ratio in dB as a function of angle (Th
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9.5 Matching Network for a Single Feed Two Corner-deleted Circular
Polarised Patch Antenna

The fabricated antenna with its matching network is shown in Figure 9.5.1. The figure
shows the antenna with the external matching network consisting of the 50 standard
input port and the quarter-wavelength matching impedance transformer, (90°). The input
impedance of the two corner-deleted patch was designed and discussed in section 9.4,
Z

~incp

=103 Q.

Figure 9.5.1: Matched two corner-deleted circular polarised patch antenna
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This unit has been used to obtain measurements of the return loss and gain. Figure 9.5.2
and figure 9.5.3 show the return loss and gain as a function of frequency and angle. The

results clearly show that the operation of the antenna is highly satisfactory.

30

| | | | |
23 2.35 2.4 2.45 25 2.55 2.6
Frequency (GHz)
== Practical measurement

=40

Figure 9.5.2: Return loss (dB)

10 T | T T T

Gain (dB)

-5 |- =
| ] 1 | | 1
=200 =150 =10 =50 0 50 10y 150 200
Function of angle (Theta)
= Practical measurement

Figure 9.5.3: Gain as a function of angle (Theta
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Summary

A design procedure for the corner-deleted microstrip antenna together with a complete
description of its computer implementation has been presented. Numerical tests show
that, the run time using the initially derived formulas would be of the order of several
hours but with the new efficient expressions (Chapter 7 and 8) only half an hour is
needed. Taking into account the approximations in the theory and fabrication errors all
the results obtained are in good agreement. Practical results for the axial ratio, return loss

and gain indicate a good operational performance for the antenna.
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CHAPTER 10

SUMMARY OF THE RESEARCH CARRIED OUT AND
FUTHER WORK

10.1 Summary and Conclusions

In this thesis the results have been presented of the research that has been carried out
in an investigation of the segmentation and desegmentation approaches to evaluate the
input impedance of a composite geometry microstrip antenna. Results from this
investigation have been applied in the design of a circular polarised microstrip
antenna. The research implements a design procedure for a single feed two corner-

deleted circularly polarised microstrip antenna.

Chapter 2

The basis of the short-range prototype microwave system developed for automatic
debiting application in the vehicle tolling and car park access have been discussed.
The operation of a microwave system to be used in traffic applications is described.
Block diagrams showing the communications operation between the RSU and OBU
have been presented. The circuits diagram of the wake-up tag has been described. A
table which illustrates the possibilities with different remote identification

technologies has been tabulated.

Chapter 3

The various modelling approaches and methods of analysis for the microstrip antenna
were discussed. The coplanar coupling port impedance properties of the rectangular

and triangular microstrip patch antenna have been presented. A new computationally
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efficient expressions for the input impedance, with the offset feed, of a rectangular
and a triangular patch antenna were derived and applied to obtain impedance-
frequency graphs with respect to the feed position. Good agreement between the new
formulas, practical measurement and Ensemble™ results are obtained. The electric
field condition for circular polarisation was described together with possible feed

arrangements required to generate circular polarised radiation.

Chapter 4

The eigenvalues and eigenfunctions of the dominant field modes for a square patch
antenna have been derived. They have been used in a perturbation analysis to obtain
the corresponding eigenvalues, eigenfunctions and resonant modal frequencies of a
perturbed square patch with two truncated corners. Using an equivalent circuit model,
and, the conditions on the dominant modal voltages for circular polarisation, a
formula for the fractional perturbation area in terms of the unloaded Q-factor, has

been obtained.

Chapter 5

Using coplanar multiport circuit analysis a general formula for the interport coupling
impedance between two perimeter ports has been derived in terms of the Green’s
function of the patch geometry. Coalescence of the two ports then gives an input

impedance formula.

Chapter 6

The basis of multiport modelling in a segmental approach has been described in terms

of the conservation of current sheet distributions across the interfaces between
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segments. Input impedance matrix formulas for two and three cascade-segments in the
segmentation method have obtained. For the shunt-segment structure a new
generalised input impedance matrix formula has been obtained for a number of
deleted shunt-segment elements. In the desegmentation method a new generalised
impedance matrix formula has been obtained for any number of deleted segments.
Comparison between the segmentation method and the desegmentation shows that the
latter is computationally more efficient when applied to the two corner-deleted square

patch antenna.

Chapter 7

Efficient computational expressions for the elements of the interport coupling
impedance matrices in respect of the three possible rectangular patch coupling
impedances configurations, has been obtained. The number of terms in the series
expressions for a required accuracy is given. A test application using Ensemble™

showed good agreement.

Chapter 8

Efficient computational expressions for the elements of the interport coupling
impedance matrices in respect of the four possible right-angled isosceles triangular
patch coupling impedance configurations, has been obtained. The number of terms in
the series expressions for a required accuracy is given. Good agreement between
results using the new expressions and Ensemble™ is obtained in each of the test

applications.
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Chapter 9

A design procedure for the corner-deleted microstrip antenna together with a
complete description of its computer implementation has been presented. The
program run time to produce the frequency-impedance graphs is of the order half an
hour. It may then be inferred from our computational analysis (Chapter 7,8) that the
run time using the initial derived formulas would be of the order of several hours.
Taking into account the approximations in the theory and fabrication errors all the
results obtained are in god agreement. Practical results for the axial ratio, return loss

and gain indicate a good operational performance for the antenna.

10.2 Suggestions and further work

The new generalisation of the desegmentation matrix impedance expression to any
number of deleted segments, together with the collection of all possible coupling
impedance economised expressions, opens the way to calculate the input impedances

for the following complex practical antenna structures.

1. Using the program in section 9.2, a two-corner-deleted patch antenna with the
offset feed can be investigated. To retain the circular polarisation condition, the
small adjustment might be needed to enlarge the amount of the perturbation
(chapter 2). This would be very useful since then the manufacturing tolerances

could be relaxed.

2. A novel circular polarisation (CP) design of a single-feed microstrip antenna with
truncated corners and central slot (figure 10.2.1) has been described by [1].

Experimental results show that this proposed design has a reduced antenna size as

157



compared to the patch antenna without the central slot. Also the required size of
the truncated corners for CP operation is larger for the slot design than for the
design without a slot, so that the fabrication tolerance is relaxed for the slot
design.

The input impedance of the new proposed design can be found using the
desegmentation method. The two deleted triangles and the slot of proposed

design will be treated as three deleted segments.
y
A

Feed point ——\ d
A
¥ \ I d

lT
a1 az » X

< >

Figure 10.2.1: Square ring microstrip antenna with truncated corners

3. The Green’s function has been obtained for another two triangular [2], namely a) a

30° —60° right angled triangle and b) an equilateral triangle. The same technique
can be applied as in chapter 8 in order to obtain efficient computational
expressions for each of the possible triangular patch coupling impedances

configurations.
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60° 60°

0 60°
60 (

(a) (b)

Figure 10.2.2: A right angled triangle and an equilateral triangle

4. Inrespect of a rectangular microstrip antenna it has been reported [3] that the feed
location for circular polarisation is not restricted to central locations and a formula
for the locus of possible feed locations has been derived. It is thought that the
methodology used in this paper may be transported to a corresponding study in

respect of the corner deleted square patch antenna.

5. The computer run time for more than three deleted segments would be
considerable. A significant reduction could be achieved by cable coupling of
several PC units to evaluate separately the individual impedance coupling

matrices (i.e. multi-parallel processing).

6. The triangle in figure 10.2.3 with an offset location may be found to give circular

polarisation.

Offset Feed

Figure 10.2.3: Triangle patch with offset position
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7. In the present study the segmentation method addresses those segment partitions

which have a cascade type of interconnecting port structure as illustrated in an

antenna, of current practical interest [4], shown below.

f—e > o—
—=o «—po—

—e +—» o—

—e «— o—

—o +—> 06—
——® <«—p —

e «—» o——

Feed Position

Figure 10.2.4: Cascade type of interconnecting port structure

The input impedance of the above configuration can be calculated using the result in
equation 6.3.8 (Chapter 6).

On the other hand, when, in the above illustration (figure 10.2.4), the feed position is
located on the rectangular segment the interconnecting port structure is of a shunt

type, as shown below.

-— +—» o——
@ 4> ——
o «—p o—

—e «——> o—

” Feed Position

Figure 10.2.5: Shunt type of interconnecting port structure

The matrix impedance formula 6.3.9 (chapter 6) is then required for this case.
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In respect of the desegmentation method the present study addresses a partitioning
scheme in which each deleted segment is not itself of composite form. This would

however arise in the present case.

8. The desegmentation method would be applied to the deleted circular patch as in

figure 10.2.6.

Figure 10.2.6: The deleted circular patch
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APPENDIX 3A

Input impedance formulas for a right-angled isosceles triangle

3A.1 Closed Form Summation Formulas

The following summation formulas, which are used in obtaining the input impedance

expressions, are based on the series tables in Gradshtyn [11].

° 21
1. = ——cotdrn
2o ZALA 0 }

m=1

© 1 T 1

2 =—cothAr ———
;mhﬂqz Vi A

.3 )y 1 =

. m:1m2_A2 242 2Asin Ax
> cosmd 1 mcosd(z-6)

. _ B ; 0<6<2
; m?— A2 24 24sin An i
> sinmd O-n nmsind(x-0)

. _ N ; 00<2
; m(m2 - Az) 24> 24sindn ’
= (-1)"cosmd mcoshAd 1

. _ - , mw<O<
2w A 2dsmhdr 24 i

S VR R

Sm(m+ A) 24sinhdr 24
Formulas 1, 2, 3, 4, and, 6 are given directly in the Gradshtyn tables.

Formulas 5, 7 are obtained, respectively, from formulas 4, 6 by integration.

The new formula (5) and (7) above are derived in Appendix 7A and 8A.
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3A.2 Patch with Feed on Vertical Side

A: Integrations

2 2
_ , jouh 1 |7 1 & 1 T m b3
Z,=2 = {_azkz D‘ldy} +?g:‘1m2—A2 U(IJr(—l) cosm;y)dy}

2
o 1 h T m+n /3
+7[2 ;;m“(cosn;y-k(—l) cosm;y)dy]} (3A21)

where, u:T+%, I:T—-pK

2
Integration for FIRST TERM

I, = [’j‘my} =W’ (3A2.2)

Integration for SECOND TERM

L= ﬁ(n(—l)’" wSm%yJ dy]z

!

mp

1)" ’
= {W + —(:——)—C—l-(sin mo, —sin mo, )j‘

2( 1) Wa

———fm+ m’ 2(ﬁ”2) (3A.2.3)

Tu rl , .
where, 6, =—, 60,=—, fm, =sinm6, —sinmé,
a a

Integration for THIRD TERM

L= ]'(cosn—;fynt(—-l)m" cosm-g—yjdy:l

L

- ;";Ja(n)i‘—‘,};—fﬁ(m)]

2( l)m+n 2
mnr?

Jmy fm (3A.2.4)
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B: Summation

j2wh w: w? 2awW a’ 24° 24°
n= H |:_ P +7Sm1 5 Sm, + e Sm, +7Sm4 +?Smn5 (BA2)5)
where,
- 1
Sm, =
1 s - A
2 2
4 T
= —————cotka 3A26
2k*a®  2ka ( )
< (—1)™ (sin mB, —sin m4,)
m., =
=2 ()
B 7[3W B ”3 (sin A01 ~ sin Aez) (3A2 7)
wa’  2ka? sin ka o
z(smme —sinmé@,)? (3A.2.8)
P ey -
Zz(smme ~sinmé, )’
m=l n=l M (m +n '-Az)
s 0, - 0
- Z (in m6y =B m00)" oy B - L 5. (m) (3A2.9)
m*B 2

(-1)™"(sin m@, —sin mf,) (sinnb, —sinnd,)
Smn L 2
o ;1; mn (m*+n*—A4%)

_ i (D" (sin m@, — sin m@,) (sinh B, - sinh B6))
2

— -7 5 (m)(3A.2.10)
_ m(m- — A")sinh Bz 2a

where, B = ym? - 4% .

Using equations (3A.2.6), (3A.2.7), (3A.29) and (3A.2.10) in equation (3A.2.5),
eliminates the Sm, term, to give

Jj2w h ,u[ w: W Wa (sin mf), —sin m@,)
Z= L cotka+——Sm, +2-
W | Wd’ Za zo n}z nB

coth B

a? Z"’: (-D"(sin m@, — sin m@,) (sinh B, — sinh BO, )
3

; . (3A.2.11)
el m(m~ — A”) sinh Bz
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Substituting for Sm,, from equation (3A.2.7) into equation (3A.2.11) , eliminate the

w?[2a%" term, to give

oo

g o Johp | w? oot ka - W(sin A6, — sin A6) s 24 Z (sinm6, — sin m6,)’
w* 3 m’B

m=1

coth Bxr

ka Klasin Ax z

(-D"(sin m@ — sinm@ ) (sinh BO, — sinh BY,)
m (m* — A%) sinh Bx

2a° <
=2
72'3

m=1

} (3A2.12)

3A.3 Patch with Feed on Hypotenuse

A: Integrations

. 2 [u S “ :
7 _ijﬂh{ 4 ’!lﬁdx} +Z-————-m2i‘42[_‘-cosm%x+(—l)mcosm%(a—x)\/idx}

in W2”2 a2k2 !

m=1

0

1 b z 7 . 7
+m:1 ) Zue e J(oosm;xoos";(a_x) +(-1) cosi xeosm (a"x))\/—w]z}@A-?'-l)

where, u:T+—n—/—, =T s
V2

242 N

Integration for FIRST TERM

I = Ulﬁ dx} =W? (3A.3.2)

Integration for SECOND TERM

2
2 m T
I, :Ucosm;x+(—1) cosm—;(a—-x)x/i dx}

8a* . : 8a’
:—m—ZaﬂT(smmBl ~sinmg,)’ :mZL,rZ(ﬁn‘)z (BA3.3)

Tu 7l . .
Where, 6, =— o, == Jm, =sinm@, —sinmb,,
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Integration for THIRD TERM

1

u 2
D‘(cosmzxcosnz(a —x)+(-1)"" cosnzxcosmz(a —x))\/zdx]
a a a a

a

=[(—1)" ZI(cosLnfxcos@—x)\/—deT

) (3A34)

24 I:sin(m+n)6’1 —sin(m+n)8, N sin(m—n)6, —sin(m—n)6, }2
n

m+n m-n
B: Summations
From the integrations, therefore,

Zin = W2

2jouh| Wn' 8 & aw w? 2a°
JO U {_ o + p Sm, 4ﬂ2sz+ ﬁSng+7&n4+7Sm5 (3A.3.5)

where,

2
Sm, = Z (sinm#, —sin m#,)

m=1 m2(m2 "AZ)

w0 1 o0

cosm20, > cosm20, = cosm(6, —6,) cosm(6, +6,)
222—2222— 222”22222
St -A) St -4 Sl -4 = oM’ -A) = m (-4

therefore the expression for S,(m) simplifies to

AW W
wW2ka®  ka

+—————k an’ ka[—cosArrH:osA(n' 6, -0, )cos A(6, —6,)—2sin A(x — 6, )sin 46, :|(3A3 6)
asin
(sin m26, —sin m20. )2
3A3.7
,ZT m? (m* - 4/2) ( )
S, = < sin m26, —sinm20,
=

= m(m2 —A2/2)

wz® . Wr’ [

TR \/—kzasmAfr/s/_

£ (r-20)-sin % (7[—202)) (3A3.8)
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> 1

m=1

_Wn W27z2\/_

=i ai —5 (3A.3.9)
& 1 [(sinfm+n)8 —sin(m+m)8,) (sin(m—n)6, —sin(m—-n)6,) |
=22 -4)| (m+n) | (m—n) (GA310)

Using equations (3A.5.6), (3A.3.8), and (3A.3.9) in equation (3A.3.5)eliminates the term
ww, /k2 a’ to give

2
_ 2jwuh W(SW—4‘/§”Z)+ a* & (sin 2m@, —sin 2m@, )
in w2 %’a 4’ = m (m? —AZ/Z)

a7* (cos Az —cos A(z — 6, - 0, )cos A(6, — 6, ) + 2sin A(z — 8,)sin 46, )
- Kasin ka

A
7:2W ( J—(ﬂ 29) st-(n 28 )) TL'WZ\/ECOtj-Z——ﬂ'

+

V2 kzasmka/\/— 4 ka
1 (sinm-+n)8, —sin(m-+n)d,) ) (sin(m—n)8, —sin(m—n)6,)
7 ;,,Fzm(nhnz Az){ (m+n) ' (m—n) ﬂ (343.10)
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APPENDIX 4A

Eigensystem and Green’s Function for a Rectangle Patch

Geometry

Figure 4A.1: Boundary Value Problem

The boundary value problem consist of the equation
V2¢+ﬂ«2¢:0 (4A1)

where, ¢ =¢(x,y), and, the boundary conditions

%f(o,y):o , %(a,y):o , 0<y<b (4A.2)

g%(x,o):o R Zy—¢(x,b):0 s

let, $(x,y)=X(x)Y () | (4A.4)

0<x<a (4A.3)

then, the boundary conditions (4A.2) require

X'(0)=X"(a)=0 (4A.5)
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and, Y'(0)=Y'(6)=0 (4A.6)

substituting, ¢ = X Y, from (4A.4) into equation (4A.1) gives

X"+2*X =0 (4A.7)
and, Y"+p’Y=0 (4A.8)
where, p* =1>—y* (4A.9)

and y is the constant of separation.
From equation (4A.4)

X(x)=AcosAx+BsinAx (4A.10)

Applying the boundary condition (4A.5), to (4A.10), gives, B=0, and,

A== (4A.11)
a

Similarly, from equation (4A.8)
Y"(y)=C cos px+ Dsin px (4A.12)

Applying the boundary condition (4A.8), to (4A.12), gives, D=0, and,

_nr 4A.13
p== ( )

Therefore, the eigenfunctions, ¢, ,(x, ) are
8,5, ¥) =k, , cOs X cos ﬁb’f y , mn=0,12.... (4A.14)
a

for constant , £,

> mn *

The eigenvalues are therefore,

, mn=012.... (4A.15)
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Normalised Eigenfunctions

The normalisation condition

(5, ) dx dy =1

© Gy
© ey

gives, k,,=¢&,¢,
where, g, =1
g, = V2 , m=>1

Thus, the normalised eigensystem is

Pun(X,¥)=€, 8, cos 7% x cos%y, mn=0,12......
a

and, A}, =

Green’s function

For the non-homogenous wave equation
VXV +kV =-jo uhJ,

the Green’s function is (see 5.2.17)

G,y 7o ye) = LOLES S b (kg ‘ 5 #C5)s)

ab m=0 n=0
That is ,
o uhg e
S zz( 77 kzloos%xoosﬂyws%xooos%yo
& b2

for m,n=0,1,2,....... .

177

(4A.16)

(4A.17)

(4A.18)

(4A.19)

(4A.20)

(4A.21)
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APPENDIX 4B

To Prove

diviu v): Vuv+u divv

—_—

Where, u = u(x, y), v

Proof

avfu v) - [i ; j_a..].(u )

Ox
(. © ., O ( ) )
—ul-g+.|-a;—.lvl+]v2 +

. O 0 .
=Ui— + j— |V + |i— + j—

ox oy Ox oy
=uVv + Vu.v

Furtherlet# = ¢ ,and, v=V¢ ,then,

divg V=9 VVp+Vo.Vg
that is

V(p Vo)=4 V’4+Vp Vo

where,
V$=V.Vg

as required for equation (4.2.4) of chapter 4.

= v(x,y) =iv +jv,,

t v, +t
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APPENDIX 4C

Evaluation of p,p,.q,.9,,p,,,9,, toterms of order d’.

The required expressions are as follows :

p,=[[#as sp,=[[gas  :[[4ds=p,

4, :,U(Vr¢a‘vr¢a) ds 4, = _U (Vr¢b'vr¢b)ds; 9, = j(VT¢a'VT¢b) ds

2 \/_2— T
where , ¢ = sinkx , 4, = sin ky , k=—, AS=AS, +AS, ,and,
a a
.0 .0
V=i—+j——.
ox %7

The evaluations take place over the triangles AS, and AS as shown below,

Yy

d  dar |a2

y=x+d-a

al2 X
y=x+a-d

al2-d

Figure 4C.1 . The unperturbed square patch antenna

Here, AS =d’, and , the unperturbed patch area , S =a”.

All double integrals over AS, are of the form
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=2 g
I f (function) dxdy
ﬁ‘g y=x+a-d

All double integrals over AS, are of the form
=2 =t
| j (function) dxdy

=2_g y=x+d-a
2

Evaluation of p,

:£ﬁ$+£ﬁ$

Since the integrand is everywhere positive, therefore

5 I(d—%—x)(l—coska) dx

2

-

HIGD S

[

-
2 {gg_dsinkaﬁ{x_ coska }
- 2

al 2 2k 4k*
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{g_g_dsinka+d(d—a)

5 o 5 + 4;{2 (cos k(2d —a)—cos ka)}

2
a2
1

=— {dz —%sinka+—2%(cos2kdcoska+sin 2kd sin ka — cos ka)}
a

V4
With £ = —2— ,sin ka = 0, cos ka = —1, so, that,

p = %{dz +§;—2(—0052kd+1)}

For small ‘d’, cos2kd ~1-4k’d*[2 =1-2k’d"

To terms of order d’, D, has the value

_ 1 2 1 2 52
pl_?{d +ﬁ(l—1+2kd )}

2
zz%.:zﬁ
a

S

Evaluation of p,

By symmetry p, = p,

Evaluation of g,

G o) V2
Vg =i +j sin Ax
¢ ox o) a
k
= W2 — cos kr
a
Therefore,
2k?
V4§, V4§, = ——cos’ kx
a
2k*
= — (l — sin? kx)

a

181



so that, by symmetry
= — ” k*\1 — sin® kx ds

aK* az’2 ak>

S ke
2k*d?

= az —kzpl

oK K2

T2 &

=0

Evaluation of g,

By symmetry ¢, = g = 0
Evaluation of p

- H 9.9,4s

= iz [[ sin ko sin ky ds
a AS:ASI+AS2

By symmetry

7, :%ﬂsinkxsinkyds

— I sinkx{cos%—cosk(x +a—d)}dx

2

Since, k =n/a,coska/2=0,
so that,
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a-2

2
Dy :;3— j sinkxcosk(x+a—d) dx

2
a

2
a-2

:'k}ZF [ {sink(2x+a—d)+sink(d-a)} de

2

_ a2
2 __cosk(2x+a—d)+xsink(d_a)] 2
ka® | 2k a
2

2

=7 —%{coskd—coskd}+dsink(d—a)}

= %(sin kd cos ka — cos kd sin ka)

=Z‘Tci(—sinhl)

2c
“ia )
to terms in d”.
Therefore,
2d?
Pn=" e
2AS
s

Evaluation of ¢ ,

0 0 2
Vo =1i + \/—sinkx
a & ay a
k
= i\/2——coskx
a
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V¢b:(i o +j aJ\/Z_sinky
a

Ox oy
k
= j\/2————— cos ky
a
Therefore,
k k
V¢ V¢, = iv2 — cos kx . j\/i‘wcosky
a a
=0
so that,
q, = J’J’ V4 Vg ds
AS
= ” 0 ds
AS

=0
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APPENDIX 4D

Ratio of the voltages v , v,

The figure 4.6.1.1 can be redrawn as below :

r % mode

S
—_— —_
LAAALS
ﬂ
AN

n
-~

Figure 4D.1 Equivalent circuit

For step down transformer ,

V1

V2
= N_ ,and, — =N,
v, Y,
therefore,
v, N V2
= 21, (4D.1)
Vv N, V1
and
Vi=1.Z (4D.2)
v2=1.2, (4D.3)
Where
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2
v, _ N I.N, .Z
Ve N, )| 1.N*.Z
therefore,
I/b — Nb Ya
v, N .Y

Y =Z ad ¥, =Z,

and this is the result required for equation (4.7.1) of chapter 4.
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APPENDIX 4E

Magnitude and Phase Relationship for Circular Polarisation

For the mode amplitudes to be equal requires

2

V2

b

V

a

so that equation 4.7.6 can put into the form,

(Q)J{f fj (QJ“{JI f)

—Zgzl/[—Jrfz—ZﬁfMH————f";\:ﬂ -f—"2+f2—2f2+—[;

) o fz

L (b 1)-22 (1) (o 1) =0

L 1)-22 (o 1) L (a2 1)o7 )0

JQt -2];2+;{ (M?+1)=0

_Q-17~2+£(M2+1):0

1, M), @ED)
Q a

where,

SO,
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o’ =(M* +1)/(é— 2}

For the mode phase difference to be +7/2, requires that

argV, —argV, =arg(V, [V, )= tx/2

Rationalising V,/V, equation 4.7.6 can put into the form,

JM oM? Lo F
v, | o ”(f f) 0 ’(f fj
V

Lo s S So_ s Lo
Q”(f fJ 0 ’[f fj

fon __f‘,ZMZ _f_oz f_02 _fonz B
y, O “{f ] j[f f]”(Q (f 7 j

2 Y
Q”(f f)

g ) 1%
poBM | LM g Se
arg{z,,_ }:ml o o

o
% (f 7 W7

102— _szz M £

SR

fZM 2M2 2 —_tan ZZI—:
)

which requires,

M ([ M )L
s R

That is,

Thus
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LM g g o M

2 2x 42
Vol ;2 -M* - 1+fM =0

2
M oot -mr-1+M

=0 (4E.3)

Eliminating a” between equations 4E.2 and 4E.3, gives

(1\/12+1b (A/I ) M22Q )

Q2 (ZQ -—l) (]\//+lb
(MZ+1)Q 1+M(2Q2“1) _ o
S e g (wM

bl
e o

In application it can be assumed that ( is much greater than ‘1° ( about 70) so that

assume 20° — 1 ~ 20* and Q* -1 =~ Q? , equation 4E 4 gives

QZ(MZ + 1) = 2M + oM

1
QZ[(MZ +1f - 4M2J = M +1)
0*(M? +1f (2 - 1f = 21 +1) (4E.5)
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Let M =1-2AS/S =1-6, equation 4E.5 gives,

0*4 - 26 + 52> = 20 - 5)6* - 26 + 2)

06" (2-46+36°-57)
- 2
[2—5+6—J

and this is the result required for equation (4.7.11) of chapter 4.
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APPENDIX 5A:

Verification of the Normal Zero Boundary Condition for the

Green’s Function on An Isosceles Triangle

The Green’s function for the triangle in fig.5A.1 below

Figure 5A.1: The zero normal boundary condition

given by Gupta[3] is of the form

+00 +-0

Gx,y)= D, > F(m, nix, yo)T(x, ) (5A.1)

where, T, ,(x,y) = cos mT”x cos n—Aﬂ—y +(-1D)""" cos nT”x cos mT”y (5A.2)
The zero normal boundary condition can be verified by showing that
oT/ox , 0T/dy , and, OT/on are zero along the respective boundaries.

Let /4 = k,then

T, ,=cosmkxcosnky +(-=1)""" cos nkx cos mky (5A.3)
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or
== = —k|m sin mhx cos nky + (~1y"*"n sin nkx cos mky| (5A.4)
ox

Onthe ‘¥’ axis, x = 0, so that 0T /dx vanishes on this axis.

oT
_— = —k[n cos mkx sin nky + (—1)"""m cos nkx sin mky] (5A.5)

o

On the “x’ axis, y = 0, sothat 67/dy vanishes on this axis.

On the hypotenuse the normal 07/dn can be resolved into perpendicular component, so
that,

oT zr orT n or or or 1
—— = 0§ — — + COS — = + (5A.6)
on 4 o 4 o x oy ) V2
On the hypotenuse, y = 4 — x, so that
cos nky = cos nk(4 — x) = cos(nz — nkx) = (- 1)" cos nkx (5A.7)
and, cos mky = (~ 1)" cos mkx (5A.8)
and, sin nky = sin 7k(4 - x) = sin(nx — nkx) = —(~ 1)" sin rkx (5A.9)
and, sin mky = —(~ 1)" sin mkx (5A.10)
Substituting (5A.7), (5A.8) into (5A.4), gives
or Al . .
—— = —k(~ 1)"|m sin mkx cos rkx + n sin nkx cos mix) (5A.11)
ox
Substituting (5A.9), (5A.10) into (5A.5), gives
or . i .
—— = —k(~ 1)"[n cos mkx sin nkx + m cos nkx sin mbx] (5A.12)
Thus from (5A.11) and (5A.12)
or or orT 1
= + =0 (5A.13)
on x )2

The normal zero boundary condition on the hypotenuse.
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APPENDIX 5B

Vector Transformation Between the Rectangular Cartesian

and Tangential / Normal Coodinate System

The rectangular form of the current density is given by

1 {Aav Aav}
J = X +y
Jwuh Ox oy

(a) (b)

Figure 5B.1 : Cartesian and tangential system

From figure 5B.1a and 5B.1b :

The component of —— inthe § directionis — cos & .
Ox Ox

ov .
The component of —— inthe s directionis — sin « .

oy oy
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The total component of J_ in the s direction is therefore

1 { oy v }
JS: —cosa +—sina
Jwph | Ox oy
since,
ov ov
o = —&+—3
ox Yy
therefore,

v v & v dy
= +

ds o ds oy ds

ov ov

=——cosa + —sin @

Ox »y

thus, from (5B.1) and (5B.2) :

Jwuh  ds

1 av
{—} = total component in the § direction.

AY

Patch perimeter

V x

0

P.

Figure 5B.2 : Cartesian and tangential system
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From figure 5B.1b and 5B.2 :

ov Y 7)Y
The component of —— inthe n directionis — sin .

Ox Ox
av 3 ~ - - - av

The component of — inthe n directionis — — cos « .
%7 oy

The total component of J _ in the n direction is therefore

1 ov o .
J, = —cosq@ — —sin a (5B.3)
jwph | ox oy

since,

v v d v dy
= +
ds o dn Oy dn

ov ov .
=—cosa ——sina (5B.4)

Ox o

therefore from (5B.3) and (5B.4) the total component of J _in the n direction is

]
Jwuh \ dn

Thus J , can be written in the form

1 (ov . ov
J = §+—n (5B.5)
jwuh 8 on

where n is the outward normal.
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APPENDIX 7A:

Coupling Impedance Formulas for a Rectangle

7A.1 Closed form summation formulas

The following summation formulas, which are used in obtaining the input impedance

expressions, are based on the series tables in Gradshteyn [1].

1.

= 1 T
Z A2 2A2 ——ﬂcot An

m=1

m’
Z": <" _ 1 mcos24z _
~m>-A> 24> 24sinArx ’

> 21 ZzlcothAfr— 12
~Sm+A° 24 24

Z(l) 4

‘m’+ A 2A2 2Asinh Ax

> sinmd  (n—0) msinhA(z-6)
Z 2 2\ 2 2 .
,,,:lm(m +4 ) 24 2A4° sinh A

i C(Zsmez _ 12_7rcosA'(7z—9) . 0<@<27
“~m’-A4" 24 2A4sin Aw
> sinm@ _0*7T+”SIHA(”_9) 0<0<2xn

por m(m2 - A2) 24 2A4%sin An ‘

i sinmg @ zsin3dr  wsind(37-6)
m:,m(mz—AZ) 24> 24%sindx = 24%sindx

2n <6 <4rn

The first six formulas in the above list are given directly in the Gradshteyn tables.

Formula number seven is obtained from formula six by integration which improves

convergence by one order. However, in order to meet the convergence interval required

in the impedance calculations it was, in addition, necessary to replace, 8, by, 6 -27 .

The new formula (7) above is obtained as follows:

Using formula (6)
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icosm@_ 1 rzcosd(z-0)
“~m*-A4> 24> 2 Asindrx

and integrating, gives

®  sinmd 6 T sin A(7 - 9)
2 ( AZ) 24 2 A'sindx
“~m(m sin

when @ = 0,

and therefore the new formula (7) is obtained:

z sin mé@ _9—7r+;7sinA(7r—6) ‘
m(mz—-Az)_ZAz 2A%sin Ax ’

7A.2 Case (a): Ports at centres_(0,y,), (0,,).

A: Integrations

nr nr
2b2 w COS—— Y, COS——

__Jjouh LA b b
L abWWq'H{ 7’ ,,,Z:;mz 7[22_: n - B

Y

773 nm
© w COS— ypcos

Y
b q
+ 71A.2.1
,,,Z;Z_:‘ e e e B dy, dy, ( )
a b k
w /4 W, /4 ka kb
here, U=y +-—*, L=y ——2 u=y +-% I=y ——% A=— B=-—.
" Yty BTN HE T TR YT 7z
Integration for FIRST TWO TERMS
ulU
L= dy,dy,=wp, (7A2.2)
1L
Integration for THIRD TERM
ulU
I, = chos—ypcos 5 Y, &, d,
b2
:ﬁﬁ(nzel,ez,@,@) (7A.2.3)
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where, F,(n:6,,0,,6;,6,) =(sinn6, —sinng, )(sinn6, - sinn6,), 0 %=
u 7l
9 =—, 9 = —
3 b 4 b
B: Summations
From the equation (7A.2.1), therefore,
: -WW, 2a*W W 2 *p?
- jo uh Mo, a ELE M-, 2b4 Sn, + iﬁ—f—Sn3:| (7A.2.4)
abw W, k V4 7 7
where,
Smy=> —
rnl st m2 _A2
__x . cot ka (7A.2.5)
2a%k? 2ak
Snz - F;(nz: 01;92793704) (7A,2-6)
n=1 n (n _B)
FE(n:6,6,,0,,0,) 1
Smn ! L 2’ =
3 z ,;m +D*
F
Z s ’94)cothD7r— ZZ il 932’6“)
203 n (n -B%)
[ . 2
:zzp;(n.al,fz,os,&)coﬂl Dr-2_sn, (7TA.2.7)
2~ n'D 2a

where, D* = (n* - B*) a*/b*,
Using equations (7A.2.5) and (7A.2.7) in equation (7A.2.4) eliminates both of the terms
w.W, [k* and Sn,, to give

7 jwyh

rq

=4 ot ka+ 200 i (sinn6, — sinnd,) (sinnd, - sinnf,)
ab k WWﬂ3 nZD

P q n=1

cothDz|  (TA.2.8)
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7A.3 Case (b): Ports at centres (0,y,), (x,,0)

A : Integrations

mr nrw
__Jjwuh ‘”' 1 2a2 o COS— - a ‘i'_}_Zb2 ‘”cosbyl’

L = abW W, = m-4L e h-B
mr nw
o o COS™ X, CO8— "y,
+4 dx 7A 3.1
;,,Z_l mrt n’nt b, ( )
a’ b? K
w w W W
where, U=yp+7”, Lzyp——-z—’i, u=x,+-=, lzxq——z-q—

The integration limits take into account the current circuit direction.

Integration for FIRST TERM

ul
L= [[-1-dy,dx, =W R, (7A3.2)
1L

Integration for SECOND TERM

ulU

L = [ [-1-cos ™= dy,dx, chos—xdx ——Ka(smm@ —sinmf,) (7A.3.3)
1L a a mr

U wl
where, 6, =—, 6, =—
a a

Integration for THIRD TERM

W b
Similar to “SECOND TERM™: I, = ——2—(sinn#6, —sinn6, ) (7TA.3.9)
nr

U o L
b * b

Integration for FOURTH TERM

where, 6, =

v W 0, — 0,
= “» cos——x cos—ypdy . - a(sinmb, sm:nﬂZ(smnH —sinné,) (TA3.5)
1L ‘
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B: Summations

From the equation (7A.3.1), therefore,

3 3 3
wuh |WpWg 2a°W 26°W 4ab
g - Jo u P2 q s P Sml . 3 9 n, - a4 Smn3 (7A36)
aprWq k T T V.4
where,
< (sin m6, ~sin mf,)
Sm, = TA3.7
m, Z; " (mz__Az) ( )
S :i(sinnég sinn 6,)
2 £ n(nZ—BZ)
3W 3].; B ___9 el B -
B ;[kszs a (ﬂzkzbi) S A (7433)
sin Bz

Smn,

B i (sin m6, —sin mo, )i (sin nf, —sinnb,)
=1 m n=1 n (n2 + CZ)

W, S {sont,—snnt) i(sinmel—sinnﬂz)(sinhC(n—@)—sinhC(fr—%))

), m(m2 +A2) L op oy m(m2 —Az)sinhCﬂ

:—naZVK, Sl(m)+ﬂ 2 > ( sinm6, —sinmé, ) [Zsinl;Cgﬂ—H‘,)—sinhC(ir—@)] (TA3.9)
2b )/ m(m —A")sinhCr

where,

/4 /4 w
Ct=(m’-4) bz/az; 6 = —Zr—(xq + 1 ],92 = —g—( -1 J,H =l(x - £ J,and,
a a q al?

4 WP
04:—;—yp+ 2 .

Using equations (7A.3.8) and (7A.3.9) in equation (7A.3.6) eliminates both of the terms
WW, [k and Sm,, to give

7 - jouh|W, [sinB(:r - 6,) — sin B(x —(93)]
Toooww, ak? sin kb

. 2;2 i (sinm@ — sin mg) sinh C ¢z - 6) - sinhC (z - 6) |

m@t — A)sinhC 7z (7A.3.10)

m=}
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7A.4 Case (c): Ports at centres (0,y,), (a,y,)

A : Integrations

; nmw nm
7 - _]W‘Uh j,(j, _L+2a22-o: (_1) 2b2 © COS‘Z‘yPCOS—b“yq
"oabWW, Ll K nmm -4 7o n'-B
v« (—1) COS— ), COS——,
+4 a 71A4.1
mZ:;Z; m27z_2 nZn,Z ) dypdyq ( )
Tk
/4 /4
where, U=yp——5’i, Lzyp+_§£’ u:yq—-zi, 1=yq+7q

The integration limits take into account the current circuit direction.
Integration for FIRST and SECOND TERMS

ul

L=[]-1a,a,=-Wwpw, (7A4.2)

1L

Integration for THIRD and FOURTH TERMS

R
I,= ‘U cos——yp cos 2% yqdy dy, = F(n 6,,6,,6,,6,) (7A.4.3)
I L
where, OI:ZL—, ezzﬂ, 93:7r—l, 04:ﬂ, and,
b b b b

F,(n:6,,6,,6,,6,)=(sinnb, —sin nb, ) (sinnb, —sinnb, )

B: Summations

From the equation, therefore,

(TA.4.4)
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-
Z()

m—lm A2
1 T
- _ TA 4.5
247 24 sin Ax ( )
> F(n:6,0,,0,,0,)
Sn, = ! 1272273774 7A 4.6
nz Z; n2(n2__B2) ( )

- F(n:6,,0,,0,,0,) (D)7
Sm - 1 1 2 3
& ; n’ ;m 4+ D?

& F(n:6,,0,,6,,8,)  b> & Fi(n:6,,6,,6,.0,)
2 o Dsinh Dz 2a2

S 222 - B2

o . 2
=-”—Z Fl(n.01.,02,93,94) _ b _Sn, (7A.4.7)
25 Dsinh Dr 2a

where, F,(n : 6,,6,,6,,0,), 6, 0,, 0,, 6, are as defined in section A.

Using equations (7A.4.5)and (7A.4.7)in equation (7A.4.4)eliminates both of the terms
WW, [k and Sn,, to give

7 = jo uh ww, _ 2ab? Z“’: (sin nf, - sin n6,) (sin n, — sin n6,)

- bW W | ksinka
P q

(7TA.4.8)
el D sinh Dx
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APPENDIX 8A:

Coupling impedance formulas for a right-angled Isosceles

Triangle

8A.1 Closed form summation formulas

The following summation formulas, which are used in obtaining the input impedance

expressions, are based on the series tables in Gradshteyn [5].

° 2T 1
] N I S
,,,Z::lm2-A2 ZALzA c0 ”}

= 1 T 1
2. = ——coth Ax -
; m +4> 24 247

> (D" 1 x
3, S
% m —A4> 24> 2A4sinAn

o cosmd _ 1 mcosd(n-6)

4 ,,,Zzlmz—Az—ZA2 24sin An » 0<0<2x
D Tt SR
o SO T nsoss
(i L

> (-1)"cosmf mcoshAf 1 r<O<n

8. = ;
,,,Z; m* + A4’ 24sinh Ar  24°

> (-1)"sinmd  zsinh40 @

9. >

ot m(m® + A7) T 2A’sinh Ar 24

;- w<O0<Lmw

Formulas 1, 2, 3, 4, 6 and, 8 are given directly in the Gradshteyn tables.

Formulas 5, 7, 9 are obtained, respectively, from formulas 4, 6, 8, by integration.
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The new formula (5) above has been derived in Appendix 7A.
The new formula (7) above is obtained as follows:
Using formula (6)

i(—l)"’cosmﬁ_ 1 mcosdl
“~ mt - A 24> 2A4sin Am

and integrating, gives

i(—l)"’sinm@_ ) 3 7 sin AG N

Sm(m-4?) 24° 24°sindn
when, 8 = 0

C=0

and therefore the new formula (7) is obtained:

i (-1)"sinm@ 0 _ msin A0
mm(m*-4?) 24" 24%sinAn

In a similar way the new formula (9) is obtained.

A8.2 Case (a) : Ports at Centres (0,y,), (0,,)

A : Integrations

a2k2 n.l m=1 7”2 —AZ

© [cmnzyp +(—l)m+" oosm—;fypj“:oosn—qu +(~1)m+" cosmzyq}

1 a a
% 2121: m +n’ — A &b,
/4 W W
where, U:yp+—5p_’ L:yp-———z—p, u:yq—{--—z—g-, l:yq__zi
Integration for FIRST TERM

ulU
1, :,!-,Lfl'dyp@q =W,
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Integration for SECOND TERM

L= ufﬂiH(—l)m cos—nizyp}[l +(-1)" cos%yqildypdyq

1)'a, . _ ~1)'a, . _
= l:WP +(——n;)ﬂ——(sm m6, —sin m@, )MWQ +£—;);-(sm m@, —sinmo, )}

() Wa () W

=W W +
P 4q mr mr

S, + o 2.ﬁ”1.ﬁn2 (8A.23)

Where, 6, =20, 6,="L g -7l 6 "%ty _snmd —sinm6, fin, =sinmd,—sinmb),
a a a a

Integration for THIRD TERM

ul

= Jf oo (O e, e O s o

{;;q,;ﬁ’ﬁ————(_l)mn“ﬁmM L ﬁn}

mi

When the four terms arising from the above product are introduced into the double sum
(8A.2.1) it is found, by symmetry that duplicated occurs and only the following two

terms are required.

2( 1)m+n 2

= 2261 2 Jmy fm, + Jmy fin, (8A.2.4)
mzz

B: Summations

From the integrations, therefore,

. WW W 2 2
7 _]Za),uh{_ 7q +—1—Sm,+a 3‘1_sz a Sm +2a [Smn + Smn ]} (BA.2.5)
2 nt '

"W,

kZ aZ 72_2
where,

aW; (D" (sinmb; —sinmb),)
r m (i’ —A4°)

Srnl Z m2 AZ

WWx® WWaracotnd W (sind€ —sinAf)
_ e PG i M (8A.2.6)
k*a® 24 ak’sindr

(=1D)"(sin m,~sin md, )
z 2(m AZ)

(8A2.7)

m=1
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= F(m:06,,0,,0,,0
Sy = Y 21 0o 0. 00) (8A.2.8)

F(m:6,0,,0,,0,)
S 12 2, 1
Mty = ;,ZT m*(m* +n* - 4%)

ZF(m 9,,62,03,0 )Z 1
mmmt+n® -4 Snt+ B

where, B> =m”* - A4*.

Therefore,
FE(m:0,0,,0,0,) 1
Smn, = L 12273 74 coth Bz —
* ,,,z_l m’ 2B 2B
T~ F(m:6,,0,,6,,0,)cothnB 1~ F(m:6,,0,,6,,6,)
:_Z ) —'Z 2,2 2
2 m B 255 m@m -47)
. F 10,0, ,9 th 78
=3 (" 6,.0,,0,,6,) 0 - L s m (8A.2.9)
2 m*B 2

o (_1)"“‘”1};2(”1’” : 01:92:93’04)
Smn. =
s ,,,Z:‘f; mn (m* +n* - 4%)

z(—1) (sin mb, smmB)Z( )" (sin nf, —sin n,)

~ n(n’* + B
(-1)" (sin m0, — sin mb,) 7 (sinh BO, — sinh B6,)
Z > - -6, +6,
m=t m 24 sinh Bz

ﬁz(—l) (sin mf), — sin mé), Xsinh BY, —sinh BG, ) W‘/IZ(—I) (smme ~sinmb,)
2m m(m . )sinh Brr 2a ( A )

Z CD"Gsinmé, - sinmd,siahB0, ~simhB0) W o (8p 5 10)
m(m* - A*)sinh Brr 2a

where, F(m : 6,,0,,0,,0,) = (sin m6, — sin m,) (sin mg, — sin mé,),

1?2 72°73° 74

F,(m,n :8,,0,,0,,0,) = (sinmf, — sinmd,) (sinnd, - sinnb,), and,

azl WP 'Hzl _£0=l Vng:_Zr_ __VV‘I
1 g {7» 2 P T g T P T T ) T e T )

Using equations (8A.2.6), (8A.2.9)and (8A.2.10)in equation (8A.2.5) eliminates in turn

the three terms ww /k2 a*, S (m)yand S, (m), to give the economised form
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cotA +
ka k *asinka ﬂ3 nt B

m=1

y o {_ ww W (sindf, —sind6) L2 Z (sinm®, — sinmé,) (sinmé, — sinmf,) coth 7 B

242 i (-D"(sin m6, — sin m@,)(sinh BY, - sinh BG,) (8A2.11)
z B’ sinh 7B

A8.3 Case (b) : Ports at Centres (0,y,), (x,,0)

A : Integrations

-2 o ] +§[l+(’l)m°°Sya£yp}[(‘l)m°°s%zxq}

m W W” m=1 m2 "‘Az
nr min mr mr min WU
[cos;yp (-1) cos7ypi|[cos—; x,+(-1) cos~—- xq}
N d 8A3.1
;; A — A dyp q ( )
W W /4
where, U=y, +7”, L :yp——zl, u=x, +—2—q, I=x, —7"
Integration for FIRST TERM
ul
L=([-1dy,a, =-wp, (8A3.2)
1L
Integration for SECOND TERM
ulU
m+n mi m mrz
I, :.!';'j—[:l'f‘(—l) cos—a——yp}[(—l) cos——c—;xq}dypdxq

= {—Wp - (::l)ﬂ i (sin m6, —sinmb, )J |:(—1)m W, + % (sin m6, —sin mé, )]

= _|:(_1)m WPVVQ +%ﬂ1 ﬁ”z ( l)m : ﬁ”]ﬁ"z} (8A.3.3)

where,@lzﬁU, HZ:EL, 03:Z[—li, 94=7[—l Jm, =sinm6, —sinm@,,
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Sfm, =sinm@, —sinmd,.

Integration for THIRD TERM

11 oo™ mx mn I
13—!_[ [cos y, +(-1)"" cos yp}[cos — L +(=1)"" cos—x, ]dypdxq

{———ﬁa ) ﬁnM finy + (l)m ﬁ!}

mr

m+n 2

(l) GO @ o fm, - (l) )

S,

When the four terms arising from the above product are introduced into the double sum

(8A.3.1) it is found, by symmetry that duplication occurs and only the following two

terms are required.

24°

I, = "wiﬁllﬁnz ’(%—ﬁ'ﬁﬁnz (8A.3.4)

mnr

B: Summations

From the integrations, therefore,

7 - ZJQ)#h WW WW aW aWw. 2 2a>
- 7[ V(4 /4

a a
" — k2 2 L Sm, ——Sm, ——=Sm, ~;4—Sm4 —-—7?-Smn5
P q

2

2 Sm,,s} (8A3.5)
w
where,

D"
m=3 GV

m=1

__x z
T 2a% 24sin Ax (8A.3.6)

Sm, = Z (sin m6, —sin mo,)

=L D) (8A3.7)

S = i (sinm@, — sin m6,)
? m=1 m (m2 —AZ)

qur’ . ﬂz(sin Az - 6,) - sin A(zw - 04))

(8A.3.8)
2%a? 2k’a? sin ka
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S (-D"F(m:6,0,,0,,0,)
RY 4=Z ”iz(mzl_Azz)3 -

(8A.3.9)

e, (m,n:6,,6,,6,.6,)
S mn(m? +n* - 4)

S =

(sin mf, —sin mé, )2 (—1)" (sin ng, —sin nb, )
Z m Z} n(n® + B%)

_i(sinm@l—sinmﬂz){ zsithBY, 6, zsinhBO, 0, }

o m 2B’sinh Br 2B° 2B sinhBr 2B

:_fi(simal—smm@ [sthB (z-0y)~sthB (7-8,)] 7 S(sinmd,—sinmd),)
2m m (mz—AZ)sinth' 2d m m (mz——Az)

1{2(5511'” g -sinm 6) [sithB (r-6)-sichB (7-6)]
2.3 m (nf —A)sinh B

7
=5m (8A.3.10)

Smn6 - ZZ (_1) F;(m . 01:02763’04)

m=1 n=l m’ (mz +n’ - AZ)

Z( 1) F(m 01’02’0310) Z (_1)

e m” _ln +B?
:i("l)mpi(m:ahezaeaae4) T _ 1
et m 2Bsinh Br 2B’
Z( 1) F(m 01702103)04) Z(_l) F(m 01’02:03,0)
200 m* Bsinh 7B “~ 2_4%)
Z(—l) F(m 01’02703,9) 2S”l4 (8A311)
203 m* Bsinh 7B 2a
where, F(m :6,,0,,0,,0,)and F,m,n:6,0,,0,06)are defined as in case(A), and,

/4 w /4 W
=z 7 | =T, 7| - g |- =Fly __9

Using equations (8A.3.6), (8A.3.8), (8A.3.10)and (8A.3.11) in equation (8A.3.5)

eliminates the terms W w /k2 a’, Sm,and Sm, ,to give
P 9
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W, W (sin Az - 63) - sin Az - 63) > (-)"F(m:6,6,6,6,)

> uh )
;7 - JoH _ 2a Z
pa wWw, | kasinka Kasinka T m* B sinhzB

m=1

2 o~ (sinmf, - sinm)sinh B(z - 6,) — sinh Bz - 6,)]
z mB* sinh Bxr

+ } (8A.3.12)

A8.4 Case (c) : Ports at Centres (0y,), (x,a-x,)

A : Integrations

m mi mn m mw
1 -1 bl phiad -1 it
,—J h [ +( ) cos yij:COS xq +( ) COS xq}

P‘I 2 2
WWr 11 o m -4

+ii oo % Y, +(—1)mm cos % yp} X

m=1 n=1L a a

mnr niw m+n nr mnw
cos———xqcos—(a—xq)Jr(—l) cos———xqcos—(a—xq)
a a a a

m’ +n’ - A

dy dx, (8A.4.1)

where, U = y 4& L=y ——2, u=x,+—% l:x_Wq
Ty Ty T T o
Integration for FIRST TERM
i wW,
=1 dy,dx, = (8A.4.2)
1L

5

Integration for SECOND TERM

T m _ mr mrx m _ MT
I, :‘l“ﬂlﬂ—l) cos;—y,,il[cos—a—xq+(—l) COST(a—‘xq)}‘iypdxq

mr

[W ()'a * snmd 51nm9)}{%(sinm%—sinmS!,)+(—1)m£[sinm(7r—6’3)—sinm(ﬂ—a;)ﬂ

_ Wp2a

ity + (1" = i fim, (8A43)
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Where, 6,=72, 6, =7L 9 - g " 0 snm6,—sinmé,,
a a a a

Jfin, =sinm@, —sinmb,.

Integration for THIRD TERM

LU
I, :jﬂcosng—yp +(-1)™" cosmg—yp} X

mr nm o N mx
cos—x, cos—(a—x )+(—1)'" " cos—x cos——(a—x ) dy dx
a a q a q a q rq

——‘l:iﬁnl+(—_;9m—+ngﬁnl}x

nr mr

(-)'a

{W [ sin(m-+n) 6, —sin(m-+n) 6, |+ ((—1)” a [ sin(m—n) 6, —sin(m—n) 6?4]:l (8A.4.9)

m—n)x

B: Summations

From the integrations, therefore,

Z _ J2wuh —W”W“’ 2\/zaW‘"S +2ﬁa2Sm +J§02S
n an/q k2a2 ”3 ml 4 2 2”4 m3
aW 2
st Sm4+4‘£“ Smns} (8A.4.5)
where,
Sm :Z"’:(sin mo, —sin mo,)
1 m=1 m (m2 “—Az)
il n’ [ A(x - 6,) ~ sin A( 0)] (8A.4.6)
= + S1in v/ -— Sin F/ 2 e N
W2ka® 2k’ sin ka ? ‘

= (-D)"F(m:6,,6,,6,,0,)
sz :2;: m112 (m21_ /212)3 4

N i (—D™ (sin m0, — sin m6, )(sin mo, — sin mo,)
= m* (m* - 4")

3 i (-1)" (sin m6, sin m6, — sin mO, sin mo, - sin m, sin m6, + sin mo, sinmé,)
m=1 m2 (m2 - AZ)
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i=1,4,6,7 i=2,3,5,

m* (m* - 4%)

-n” [ Z cos ma; — cosma,}
Z 5.8

Where’ a1=01—03, a2 =61+63’ a3:02_03’ a4:61+03’ a5=01_047 a6=91+94’

:02_04 as :62+04 :

Therefore,
1 (D™ cosma; (—1) cos ma,
Sm, :—Z z 2 T2 g2y
253 li-1a67 ™ (m —A") sz m (m - A7)

2 Asindr 6 A

_ 1) 1| & moosday = 1 [ Duplicate terms in @, ,;,..... &
24 ~\atotal of 32 terms.

From the extensive algebraic detail it is found that 16 of the 32 terms cancel along with

the terms 7°/6 , and,1/ A . Hence,

Sm 1)1 _af_;tcosAaI + Duplicate terms in a,,c;,.....0,
? 2124 2 Asindzr | \atotal of 16 terms.

Further,
2 ar*w W,
al — D & =46,-6,)0,-6,)= _7'_2
i=1,4,6,7 ’ i=2,3,5,8 2
and,

Z cosda; - Z cos AQ; = 2(sin A0, - sin A48, )(sin A0, — sinA0,)
i=1.4,6,7 123,58

therefore the expression for Sm, simplifies to

W W'  z*(sin AG,—sin AB,)(sin A6, —sin A6,)
2J— Ka* ko’ sinka

(8A.4.7)

B Z“’: (-1)" (sinm6, —sin mB,)(sinm26, —sinm206,)

m (m*— 42)2) (8A.4.8)

= (=17 (sin mb, —sin mf,)
= m (m-A4)2)

Sm, =
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2| sin —4 O—SmA—BJ
Wpﬂ.3 ) [ ‘/'2— 1 \/2_ 2

_ (8A.4.9)

PR k2a’ sin ka

2

>« (D)7 (sinmb, —sinmb,) [ sin(m +n)@, —sin(m +n)o,

S =
s ,,Zz,,,,zzml m (m*+n*—4%) m+n
sin(m — n)d, — sin(m - n)d, }(8A4 10)
m-—-n

where, F(m : 6,,0,.6,,6,)is defined as in section A8.2,

/4 w w W
T S T S R o o
a 2 a 2 al’ 22 al’ 202

Using equations (8A.4.6), (8A.4.7) and (8A.4.9) in equation (8A.4.5) eliminates the term
ww, [k a® to give

Pq

Rouh| 2WW N 2 W;(sinA(ﬂ~0,) -siM(ﬂ—Q)) 2 (sinAq —sinAQZXsinA@ —sinAQ)
I/I; VI; a Kansinka Kasinka

W[sin——A q-sin24 g
"\ 2 . Py Z (-I(sinm@, — sivn @) )(sinn2 6, —sinm2 6)
274

kzasinjk_‘i m?* (m~ A%[2)
2

N 22 a2 i i (D" (sinm@, - sinm@,) | sin(m + n)d, — sin(m + n)0,
”4

m (m* +n* - 4%

m+n

n=1 m=n+1

sin(m — n)H3 - sin(n — n)0,
+

](8A.4.11)

m-—-n
In the formula (8A.4.11), it appears that the single summation, on m, could be obtained in
closed form. An investigation has revealed that while this is mathematically possible it is
however computationally impractical. This is because in detail, the procedure generates
EIGHT infinite series, and, each series has two closed forms depending on the required
interval of convergence. The result is that it is computationally more efficient to evaluate

directly the small number of series terms required for convergence.
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A8.5 Case (d) : Ports at Centres (x,,a-x,), (x,,a-x,)

A : Integrations

D B e ) e R ]
‘”. a’k* Z:‘ m— A2

o = WW/[

s T T
+§ 2 cosm—x cosn—(a x )+( 1) cosn—x,_ cosm— (a x) X
m=1 n=1 a a a 4

N

T ¥ m+n T w

Cosm—quOSn—(a—xq)+(—l) cosn—xq Cosm—(a"xq)
a a a a

——— 2 dx dx, (8A.5.1)

h U=x_+ W” L W” + Wq )
where, U = —=, L=x —&, u=x +—=, I=x ——%
N D) NG N 7 22

Integration for FIRST TERM

I = ]jzdxdx =W, (8A.5.2)
1L

Integration for SECOND TERM

IZ=]:£[cosm x, +(-1)" cosma(a—xq):][cosm—:lixq+(—1)"cosm%(a—xq)}2dxpdxq

2
= -—%‘17 (sinmb, —sinmb, )(sinm@, ~sinmb,)

mrn
8a’
=— fm, fim, (8A.5.3)
Where, 91 :Z[.g, 92 _—__-.ﬂ'_l/., 93 :_”_g, 94 :ﬂ,
a a a a

Jm, =sinm0, —sinm@,, fim, =sinmb; —sinmb,.
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Integration for THIRD TERM

2};1{{[cosm§xpcosn§(a—x) -n™ cosn x cosmz[—(a x )] X

a

cosm%xqcoan(a x )+( n™" coanx cosma(a x )}}Zafx dx,

T m+n m+n

_2a”[ sin(m+n)6, —sin(m+n)6, +sin(m+n)61 —sin(m+n)92jl .

sin(m+n)@, —sin{m+n)8, sin{m—-n)@, —sin(m-n)o
|: ( )6 ( ) 4, ( )6, ( ) 4i| (8A.5.4)
m+n m-n
B: Summations
From the integrations, therefore,
Rouh| WW, 8 & a a’'w, a'w, aWW,

Z = + Sm, + Sm, + Sm, + Sm, + Sm

"~ ww, { L T N/ P RN P T

4a*

where

> E(m:0.,06,,0
Smxzz 1(mz 1,2 z 32,04)
m=1 m (m -4 )

= (sin mB, —sin mB, )(sin m@, —sin mo,)
= Z 2,2 2
m=1 m(m —A")

15 gy ]

v listas M (m _A) i=2,3,5.8 M (m Az)

where «, is given in Case (c).

Then,

1 o meosdA(r-a) 1 Duplicate terms in @,, @, ..... 0,
Sty = ——5 9| WY~ et |
24 2 Asin Ax 3 4 a total of 40 terms.

From the extensive algebraic detail it is found that 24 of the 40 terms cancel along with

the terms —z2/3 , and, 1/ 4> . Hence,
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S, = _1_{[__0_5_12__ ﬂcosA(ﬂ-al)]+(Duplicate terms in @,,a,,..... agj }

24* 2 Asin Az | | atotal of 16 terms.
Further,
oW W,
> oal- Y al =46,-6,)0; -0,) = —%1
i=1,4,6,7 =2.3.5,8 a
and,

> cosd(m-a;)- Y, cosA(m - )=sin A(z -6,)~sin Az - 6,)|[sin 46; - sin46, |
i=1,4,6,7 i=2,3,5.8

therefore the expression for S, (m) simplifies to

T WW, . 7* (sin A(w —6,)—sin A(w - 8,)) (sin 46, —sin 46,)

= 8A 56
" ok ka’ sin ka ( )
=, (sin m260, —sin m26,)(sin m20, — sin m260
Sm, =Z;(sm — (,;3(_ yE /2)3 sin m26,) (8A.5.7)
2, (sin m20, —sin m26,)
Sm, =
= —4)2)
3| . A . A
3 T (sm (r - 20) — sin (r — 20 )]
W 3 4
M V2 V2 (8A.5.8)
V2 ka? k2a® sin ka/\2
_ x> (sinm26, ~sinm20,)
= = A7)
3| . A . A
3 V.4 (sm (z - 20)) - sin (w - 20, )J
w
-0, 2 V2 (8A.5.9)
2 k2a? k2a?® sin ka/\/—2_
P N
S -4
- 7[2 _ J_2_7rcot ka/\/; (8A510)
k’a? 2ka
S :i i (sin(m+n)6§ —sin(m+n)6'2) +(sin(m—-n)01 —sin(m——n)ez) (sin(m+n)03 —sin(m+n)04)
S Lil| (min) (mtn’-A) (m-n) (" +n* -4 (m+n)
. (sin(m —n)6; —sin(m —n)6,) (8A5.11)
(m—n) e
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where, F,(m : 6,,0,.9,,6,) is defined as in Section A82

PR (LI PN & L PR & /T [P & (L |
al? 27 al? 22 al? 22 al? 22

Using equations (8A.5.7), (8A.5.8), (8A.5.9) and (8BA.5.10) in equation (8A.5.5)

eliminates the term W, [k* a* to give

;- j20),uh|:“f,"; LA A #sindz - ) ~ sind(z - §))(sinAg), - sind6)

. +
w ww Pd 4nka 4Axka 27K Kasinka

. A : A . A
W |sin (m — 20 ) — sin = - 208) W _{sin
L ) (=%
242 7 k* sin ka/2 227 k* sin ka/2

. A
(7 — 20) — sin (n —20)
. 1 JZ— z)

«©

. a? Z (sin m26 - sin m20,)(sin m20, — sin m20,)
4 - mZ (m2 ~A2/2)

4z

n=l m=n+l

+ﬁi i (sin m+n)g, —sin( m+n),) (sin( m—n)@ —sin( m-n)6, ) | | {sin(m-+n)6, —sin(m+n)6))
7 (m+n) (nf +n* —4) - (m—r) -+ —A) P

N (sin(m ~n)0; —sin(m - n)6,)
(m—n)

The possible closed form for the single summation on ‘m’, above, is not used for the

} (8A.5.12)

reasoning described in the previous Case(c).
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APPENDIX 9A

The Mathcad Program Listing for the Impedance

Evaluation

Define;

80) 8” /‘l07 /’tr’ ¢, .f(.bh’ k0’6a W,Na Nl,Ml

_ fo
S
fi:=fo + Af
fr=fH
1 2
bl:= .
2-fr'\/u-s er+1
1
2
eeff = 241 3‘——1-(1 + 12~——)
2
(ereff + 0.3)-(1’111-0.264)
AL :=0.412h- -
(ereff - O’ZSQ'(T + 0.8)
[
al == - AL
2-fr-\lae1f
120
Zo = 20m

Js&‘{l’hl +1.393+ (0.6671:{% + 1.444)):]
- (sin(k(}zbl -cos (9)) J~sin(9)3 N

cos (9)

11
Gl:=

1207
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sin(kilicos (e))

1 2

Gl2:=
120 . cos(0)

1
Rin := ———————
(G1+ G122

o :=2-x-fo

k:= \l(m)z-u-SO-sr-(l - i-5)

For Zppy

91:2.1[_, T+X eZ:L T—X 03:=01
bl 2 bl 2

- (sin(n.el) - sin(n-ez)).(sin(n_93) _ sin(n-64))

3 ,nz - (B

D

219

Jo(ko-al-sin(6))-sin(e)’ do

04:=062



_towh|f-al o kan) .
al-bl k
20801 |~
. -a
= Z DB
n-w n=1

Do (sin(n-61) - sin(n-02))-(sin(n-03,) — sin(n-04,))

2n% — (B)>
E:=coth| x| — o’ - (B) ]

| L bl
Zpql == |1« 0

for jel,2.N

&

n . w
03, « E{[(bl —a2) + (j- o lj:l + —2—}

K W

—J1 (bl - e | = —
el oo (553

7, o koih (-‘i‘l.cot(k.al))

&

al-bl k
2031 | o
. .a
e Z DB
n-w n=1
r<r+1
Zi<—-ZT

Zi

F:= (sin(mGZ,) - sin(mel,))

G:=[smhl:[ j%;.[mz _ (A)Z:]}-(n - 94)} - sinh[[ jf:—zz[ - (A)z]}(n - es)ﬂ
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pq2 =

Zpq3 =

1«0
for je N+ I, N+2.2N

bl-w
(%)2-sin(n-B)

[ sin[B-(x - 04)] - sin[ B-(x - 93)]]}

F-G

20%b1 ©
.al”-
+ — E

4

r<1+1

Zie 7"

Zi

r< 0
for je2N+1,2N+2.3N

m=1 p[nd - (A)Z]-sinh[n- ij-[mz - (A)z]}

al

1 (sin(a-61) - sin(0-02))-(sin(n-03,) — sin(n-04,))

2= ] o] 7|

bl

T a2 w
04, — | a2-| (-2 +—
Tobt a N)N+l:|:| 2}
. B 2
Z,« lio-ph { W }
bl-w (k)-sm(k-al)w
-2-b1%al
+_.
25
T a=1 D
rer+1
Zie 7T
Zi
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H:= (sin(m-GZf) - sin(m-elr))

I:{sinl{ fﬁ—?[‘“z - (A)z]}-(n - 64)} - sinh[ j:—:z-[mz - (A)Z]}(n - e3)ﬂ

r< 0
for je3 N+ 1,3N+2.4N

bl-w

L . a2
61, «— ;—]-Uial - ':(J - 3N)TQ'—+——]-:I:| +

2.a>-b1
+
3
4

Zpq = augment(Zpql,Zpq2,Zpq3,Zpg4)

Ter+1

Zie @)
Zi

T
Zqpy:=7pq

' w2-al.bl - I: (k)z-sin(n-B)

HI

[ sin[ B-(x - 04)] - sin[ B-(x — 93)]]}

m =1 m[m2 - (A)z]-sinhl:n-j-l—)-};

222
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[n?- (A)z]}




For Zqqy

D (sin(n-elr) - sin(n-BZ,))-(sin(nBSﬂ) - sin(n‘94ﬂ))
o2 'nz — (B)2

E:= ooth[n.[%‘?\/nz—_@—)zﬂ

Zqqyl:= r<« 0

for ie1,2. N
m« 0

for jel,2.N

3 & B a2 w

03, « H(bl a2)+(JN+l):l+ :'
a2

4 = - i -

e,,ebl[[(m a2)+(JN+lﬂ

io-ph | { -al
Ly pé || | —-cot(k-al
=m T Ll (k ( a))

aaf$ )

7w

n=1

meimr+1

rer+1

F := (sin(m62,) — sin(m01,,))

G:= { SMH jilg.[m? - (A)ZJJ-(R - 94,)} - sinh[[ j:—:j[mz - (A)ﬂ (- 93:)H

He=m| o? - (A)zj-sinh{ - jb—lj[ u - (A)Z]jl

al
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Zqqyl2:= |r<« 0

for iel,2. N

<« 0

for je N+ 1,N+2.2:N

T a2 w
Ol —1{|G-N)- -
L [[(J N)N+1]+ 2}
.4 a2 w
2, —_ 1 — . ——
G"Falﬂi(" N)N+1:| 2:|
e3,<—1-[[a2—(i)- 22 ]+2}
bl N+1] 2
T

04, « —-H:aZ—(i)- 2 }“v'v‘:l
bl N+1 2

Zy e oth fl OIW r B (n - 04)] - sin] B(x - 03)]] | .
w%al-bl || (% sin(n-B)

2a%b1 - F.G
.a . .
+ 3 Z H

n

m=1

merar+1

re<r+1

I:=(sin(n-01,) — sin(n-62,))-(sin(n-63,,) ~ sin(n-04,))

J:=I: %i—z-[nh(mz]]sinh{w[ %g'[nz—(B)z]jH
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Zqqyl13:= Jr<« 0

for ie1,2. N

mwe« 0

for je2N+1,2N+2.3N

o1, « {T-[(bl —a2)+ [(1)- Nai 1:j - ﬂ

02, « —t-:—cl—-H:(bl ~a2) + {(i)- Nai 1j— + %]

03, « ﬁﬂiaz - i(j —2.N)-T£—l: - —ﬂ

ot fyon] 3
. B 2

from € liif}h' i (k)-si:(k-al)}

2.b1%al Zm 11

— .a

+—————. — —
3 2]
T n

n=1

merr+1

rer+1

O:= (sin(m-GZ,.,) - sin(melﬂ))

P {sinhHi j:’le-[mz - (A)Zj}(n - %)} - sinh[[ \l—g-[mz - (A)Z]}-(n - 93,)ﬂ

2
R:= m[m2 - (A)ﬂ-sinh{ n-j}-)—l;l:mz - (A)zj]
1

a
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Zqqyld:=

r« 20
for ie1,2. N

1«0
for je3N+1,3N+2.4N

04, « el l:[(bl —a2) +[(1)

7 o -ph _ bl.w

T a2 |l
01, « — | al -| (j - 3 N). ——
v al[[ [(J N)N+1]_
T a2 |
02« — || al -| (j - 3-N).—
" all:[ [(J N)N+ 1]

1t . a2
03, « E—l—[[ (bl —a2) + [(1)- N

+

|

(SN E-RNS P Rl n|g

1

]

+

+ 1]

IO o TR [ SSEUUN Sy U |

N+1]]

T,

2.a1%b1
+

meo1r+ 1

r<r+1

2qq72 = Zqqv1 2qqY23:=Zqqyl4

ZqqY3 = Zqqy1

749724:=Zqqy13

Zqqy4:=Zqqyl Zqqy34:=Zqqy12

Zqqnt1 := angment(Zqqy1, Zqqv12, Zqqy13, Zqqv14)

Zqqyt2 := augment (quyz 1,ZqqY2,ZqqY23, quYl4)

Zqqy3 = augment(Zqq131, Zqq132, Zqq13, Zqqy34)

Zgqyt4 ;= augment (quy41, Zqqy42,7Zqqv43, quy4)

Zqqy = stack (Zqqnt1, Zqq 12, Zqqv3, Zqqvt4)
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whal-bl || (&% sin(n- B)

Z OP
m =1

T
2qqY21:=Zqqy12

T
Zqqy31:=Zqqyl3

T
Zqqy4l:=Zqqvl4

[sm[B (n 94 - sm[B (7t 03 )]]]

T
Zqqy32:=Zqqy14

T
2qqY42 .= Zqqy24

T
ZqqyA3:=Zqqy34



For Zqqp

- (sin(mo1,) - sin(m62,))- (sin(m63,)) - sin(m-04,,))

2| o - (a2)’]

E:= coth[ n-\/mz - (Az)z]
F := (sin(m61,) - sin(mGZ,))~[ sinh| \oi? (A2)2793,,]  sinh| Jof* - (A2)2-64H]]

G:= m[m2 - (A2)2]-Sinh[ i — (AZ)Z]

ZqqBll:= [r« 0

for ie1,2.N
e« 0

for je1,2.N

o 5{(w%)3)
j

z,  « fobn __wz.cot(n-AZ):| + o {sinA2 04:) - Sin(Az'%"))jl
’ W (k)-a2 (k> a2-sin(n-A2)
10
. 22 D> op|.
"3 m=1
r 5 10
1225 ()
L. L n m =1 -
mer+ 1
T r1+1
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e W'l: sin[AZ-(n - 93;:)] - sin[AZ-(n - 64,,)]]
(k)% a2-sin(n-A2)

B (_1)’“.(sin(m-61,) - sin(m-GZr))-(sin(m%,,) - sin(m94,,))

1=
mz.[,/mz - (A2)2]-sinh[n~\/m2 - (A2)2]

_= (sin(m61,) - sin(mGZ,))-[ sinh| y? — (A2)? (z - 93,,)]  sinh| Jo? — (A2)? (x - 94,,)]]
o[~ (A2)? ] sioh | n\fo? — (42)"]

ZqqPl2:= lr« 0

for ie,2. N

me 0

for je N+ 1,N+2.2N

N+1| 2
T w
04, — |G- -
" 2[(1 NN 2}
. i 2 i
io-h- w
Zon k. @ ...

3
T m =1
2a22 10
+ . J
= D
L n m=1
w1+ 1
rer+1
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Zero = |r< 0

for ie1,2.. N2

e 0

for je 1,2..N.2
Z, x¢1j0

me1r+1

rer+1

Zqqp21:=Zqqp12'

ZqqP1t1 := augment(Zqqp11,Zqqp12)
ZqqP1t2 := angment(Zqq p21,Zqqp11)
ZqqP1 := stack(Zqqp1t1, Zqqp1t2)
Zqqp2:=Zqqpl

Zqqftl := angment (quﬁl, Zero)
ZqqPt2 := augment (Zero, Zqqp2)

ZqqP := stack (Zqqpt1,Zqqpt2)

Zppo = Zppy - | Zpq-(Zaqy - Zaap)” " Zapy]
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Zero = jr<« 0

for i€ 1,2..N-2

e 0

for je 1,2.N-2
2 x1)0

mwerr+1

r<r+1

Zqqp21:=Zqqp12’

ZqqP1tl := angment (Zqqp11, Zqqp12)
Zqqf112 := augment (quBZl,quﬁl 1)
Zqqp! = stack(Zqqp1t1, Zqqp1t2)
Zqqf2:=Zqqpl

ZqqPtl ;= augment (qu Bl, Zero)
Z2qqpt2 := augment (Zero ,Zqq [32)

ZqqP := stack(Zqqpt1,Zqqpt2)

Zppa = Zppy - | Zpa-(Zaqy - Zaqp) - Zapy]

230



