PROTEOMICS OF BACTEROIDES FRAGILIS AND ENTEROBACTER CANCEROGENUS

A thesis submitted in partial fulfilment of the requirements of the University of Northumbria at Newcastle for the degree of Doctor of Philosophy

LAKSHMY MANICKAN

Research undertaken in the School of Applied Sciences January 2010

Abstract

Bacteroides fragilis NCTC 9343 is a Gram-negative anaerobic bacterium with genomic DNA of 5205 Kb and a GC ratio of 43%. It is a commensal organism that can act as an opportunistic pathogen and is commonly present on the mucous membranes. It causes a variety of infections including intra abdominal infections, perirectal abscesses and decubitus ulcers. Enterotoxigenic forms are capable of causing diarrhoea in children and animals.

Enterobacter cancerogenus ATCC 35316 is also a Gram-negative facultatively anaerobic bacterium with genomic DNA of 4602 Kb and a GC ratio of 55%. It is a naturally occurring human gut symbiont known to exhibit resistance to antibiotics like aminopenicillins. It has also been reported in cases of severe osteomyelitis and infections of bones and joints.

This study aims to analyse the differential expression of proteins in the presence of mucin since it serves as the first site of adherence for the bacteria. The *E. cancerogenus* and *B. fragilis* proteins were extracted and separated by two dimensional electrophoresis from logarithmic phase cultures grown in semi-defined media enriched with or without porcine gastric mucin Types II and III. The gel images were analysed using Bio-Rad PDQuest, Ludesi Redfin and Nonlinear Dynamics SameSpots softwares. It was observed that the presence of mucin in the media affected the expression of a number of proteins in *E. cancerogenus* and *B. fragilis* cells. The protein spots of interest were excised, hydrolysed using trypsin and subjected to electrospray ionisation based LC-MS analysis in order to determine the identity of the digested proteins and obtain a better understanding of the interactions of *B. fragilis* and *E. cancerogenus* with mucin.

The outer membrane protein surface antigen X was found to be up-regulated in both mucin Type II and III enriched media in *E. cancerogenus*. Some of the other proteins that were differentially regulated in both *E. cancerogenus* and *B. fragilis* included the elongation factor Ts, malate dehydrogenase, triose phosphate isomerase and thiol peroxidase proteins indicating that these proteins may be associated with the ability of bacteria to grow in mucin and may be potential virulence factors.

Genes encoding the proteins CAH06598 and CAH09443 from the glycoside hydrolase families 95 and 97 in *B. fragilis* strain NCTC9343 were cloned, overexpressed and purified using nickel affinity and gel filtration chromatography. The enzymes were found to be active by performing fluorimetric assays using methyl-umbelliferyl sugar substrates. Diffracting crystals of CAH09443 were obtained from the PACT ANION screens containing polyethylene glycol and sodium malonate as a precipitant. Structure determination was achieved via molecular replacement using the glycoside hydrolase Family 97 α -galactosidase, *Bt*GH97b, from *Bacteroides thetaiotaomicron* as a starting model. The structure of CAH09443 was shown to be composed of a N-terminal β -super-sandwich domain and a canonical (β/α)₈ barrel, similar to the two other glycoside hydrolase family 97 enzyme structures reported.

Acknowledgements

First of all, I would like to sincerely thank Prof. Gary Black for providing me with an opportunity to do this PhD by supporting and guiding me throughout the three years. The contributions and inputs provided by Dr. Ken Cook and Prof. Iain Sutcliffe are also very much appreciated. I express my gratitude to Dr. Edward Taylor at the University of York for all his help with the crystallisation work.

I would like to thank Dr. Meng Zhang and Dr. Anna Lindsay for helping me with learning the techniques used in the study. I would like to express my gratitude to all my lovely friends and fellow scientists in lab A307 with a special mention to Claire Jennings for putting up with my madness in the laboratory. The assistance provided by all the technicians in the School of Applied Sciences for performing experiments and using equipments is also appreciated. I would like to thank the IT Department for their support, especially Geoff Sparrow for downloading and installing all necessary software and the staff of Stephenson Building (Jeff Elliott and Dave Robson) for their indirect support and co-operation.

I would like to dedicate this thesis to my loving parents and sister, Lavanya without whose unconditional support, help and encouragement, this work would have been impossible. Finally, I thank Northumbria University for making this experience a special and memorable one.

Abbreviation list

APS	Ammonium persulphate
bp	Base pair
BSA	Bovine serum albumin
СВМ	Carbohydrate binding module
CFE	Cell free extract
Da	Dalton
dNTP	deoxynucleotide triphosphate
DTT	Dithiothreitol
EDTA	Ethylene diamine tetraacetic acid
GH	Glycoside hydrolase
HEPES	N-[2-hydroxyethyl] piperazine-N'-[2-ethanosulphonic acid]
IMAC	Immobilised metal affinity chromatography
IPTG	Isopropyl-β-D-thiogalactopyranoside
kb	Kilobase pair
LB	Luria Bertani
PAGE	Polyacrylamide gel electrophoresis
PCR	Polymerase chain reaction
SDS	Sodium dodecyl sulphate
TAE	Tris-acetate-EDTA
TEMED	N,N,N',N'-tetramethylethylene diamine
TRIS	tris(hydroxymethyl)aminomethane
v/v	volume per volume

w/v	weight per volume
ACN	Acetonitrile
ATP	Adenosine tri phosphate
BHI	Brain Heart Infusion
BPB	Bromophenol blue
BPC	Base peak chromatogram
CHES	N-cyclohexyl-2-aminoethane sulphonic acid
DHAP	Dihydroxy acetone phosphate
ESI	Electrospray ionisation
EF	Elongation factor
IAA	Iodoacetamide
MES	2-(N-morpholino)-ethanesulphonic acid
MPD	2-Methyl-1,3 propanediol
MS	Mass spectrometry
FA	Formic acid
GDP	Guanosine di phosphate
G-3-P	Glyceraldehyde-3-phosphate
GTP	Guanosine tri phosphate
IEF	Isoelectric focussing
LC	Liquid chromatography
CAZY	Carbohydrate active enzymes
dCMP	deoxy cytidine mono phosphate
MPD	2-methyl-1,3 propanediol

NAD	Nicotinamide adenine dinucleotide
NADP	Nicotinamide adenine dinucleotide phosphate
NCBI	National Centre for Biotechnology Information
Omp	Outer membrane protein
PEG	Polyethylene glycol
PEG MME	Polyethylene glycol monomethyl ether
PEPCK	Phosphoenol pyruvate carboxykinase
PBS	Phosphate buffered saline
PFL	Pyruvate formate lyase
SOB	Super optimal broth
SOC	Super optimal culture
SSP	Standard spot numbers
TIC	Total ion current
TPI	Triose phosphate isomerase

Contents

1	Ab	ostract	1	
2	Ac	Acknowledgements		
3	Ab	Abbreviation list		
4	Int	Introduction		
	4.1	Bacteroidaceae	26	
	4.2	Introduction to Bacteroides fragilis	26	
		4.2.1 Types of Bacteroides fragilis infections	27	
		4.2.2 Uses of Bacteroides fragilis to man	28	
		4.2.3 General characteristics of Bacteroides fragilis	28	
		4.2.4 Cell wall structure of Bacteroides fragilis	29	
		4.2.5 Types of <i>B. fragilis</i> toxins	30	
		4.2.6 <i>B. fragilis</i> virulence factors	31	
		4.2.7 Treatment of <i>B. fragilis</i> infections	32	
	4.	3 Enterobacteriaceae	33	
		4.3.1 General virulence factors of Enterobacter species	33	
		4.3.2 Enterobacter cancerogenus	34	
		4.3.3 Enterobacter spp. attachment to intestinal cells	35	
		4.3.4 Antibiotic treatment	36	
	4.4	Epithelial cells of the intestine and their role in protection		
		against antigens	36	
	4.5	5 Mucin	37	
		4.5.1 Structure of mucin	37	
		4.5.2 Sugar composition of mucin	41	
		4.5.3 Functions of mucin	42	
		4.5.4 Mucin degradation by bacteria	43	
	4.6	6 Proteomics	44	
	4.7	7 Transcriptomics	46	
	4.8	3 Two dimensional polyacrylamide gel electrophoresis (2D-PAGE)	46	
	4.9	9 Mass spectrometry	47	
	4.1	10 Glycoside hydrolases	49	

	4.10.1	Invertin	g mechanism in glycoside hydrolases	50
	4.10.2	2 Retaini	ng mechanism in glycoside hydrolases	50
	4.10.3	3 Carboh	ydrate active enzymes (CAZy) based classification of	
		enzyme	es	51
	4.10.4	Active	site topology	52
	4.10.5	Genom	es of <i>B. fragilis</i> and <i>E. cancerogenus</i>	54
	4.10.6	6 Glycos	ide hydrolase families GH95 and GH97 and the putative	e
		activity	of their enzymes	55
Aims	s of the	study		57
Mate	erials for	r the pro	teomics experiment	58
6.1	Culture	e conditio	ons	58
6.2	Anaero	bic char	nber	58
6.3	Minima	al media	used for the growth of <i>B. fragilis</i>	58
	6.3.1	Stock so	olutions	59
	6	.3.1.1	Mineral solution	59
	6	.3.1.2	Hemin stock solution	59
	6	.3.1.3	Resazurin solution	59
	6	.3.1.4	Volatile fatty acid solution	59
	6	.3.1.5	Vitamin B solution	60
	6	.3.1.6	Amino acid mixture	60
6.4	Semi-d	lefined g	rowth media	61
	6.4.1	Stock so	olutions	62
	6	.4.1.1	Salts solution A	62
	6	.4.1.2	Salts solution B	62
6.5	Gram s	staining	reagents	62
6.6	SDS-P	AGE Lo	ading buffer	62
6.7	Protein	i size sta	andards	63
6.8	Buffers	and sol	utions used for the proteomics experiment	63
	6.8.1	Cell res	uspension buffer	63
	6.8.2	Phospha	ate buffered saline	63
	6.8.3	Lysis so	lution	63
	6.8.4	Rehydra	ation solution	64
	6.8.5	Equilibra	ation solution	64
	6	.8.5.1	Equilibration buffer with dithiothreitol	64
	Mate 6.1 6.2 6.3 6.4 6.4 6.5 6.6 6.7	4.10.2 4.10.3 4.10.4 4.10.5 4.10.6 4.10.6 4.10.6 4.10.6 6.1 Culture 6.2 Anaero 6.3 Minima 6.3.1 6.3 6.3 6.3 6.3 6.3 6.3 6.4 6.4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4.10.2 Retaini 4.10.3 Carboh enzyme 4.10.4 Active s 4.10.5 Genom 4.10.6 Glycosi activity Aims of the study Materials for the pro- 6.1 Culture conditio 6.2 Anaerobic char 6.3 Minimal media 6.3.1 Stock so 6.3.1.1 6.3.1.2 6.3.1.3 6.3.1.4 6.3.1.5 6.3.1.6 6.4 Semi-defined g 6.4.1 Stock so 6.4.1 Stock so 6.4.1.1 6.4.1.2 6.5 Gram staining f 6.6 SDS-PAGE Los 6.7 Protein size sta 6.8 Buffers and sol 6.8.1 Cell resu 6.8.2 Phospha 6.8.3 Lysis so 6.8.4 Rehydra	 Materials for the proteomics experiment 6.1 Culture conditions 6.2 Anaerobic chamber 6.3 Minimal media used for the growth of <i>B. fragilis</i> 6.3.1 Stock solutions 6.3.1 Stock solution 6.3.1.2 Hemin stock solution 6.3.1.3 Resazurin solution 6.3.1.4 Volatile fatty acid solution 6.3.1.5 Vitamin B solution 6.3.1.6 Amino acid mixture 6.4 Semi-defined growth media 6.4.1 Stock solutions 6.4.1.1 Salts solution A 6.4.1.2 Salts solution B 6.5 Gram staining reagents 6.6 SDS-PAGE Loading buffer 6.7 Protein size standards 6.8.1 Cell resuspension buffer 6.8.2 Phosphate buffered saline 6.8.3 Lysis solution 6.8.4 Rehydration solution 6.8.5 Equilibration solution

		6	6.8.5.2	Equilibration buffer with iodoacetamide	65
	6.9	Secor	nd dimen	sion SDS-PAGE	65
		6.9.1	14% (w	v/v) Resolving gel components	65
		6.9.2	4% (w/\	 V) Stacking gel components 	65
		6.9.3	Agaros	e sealing solution	66
		6.9.4	Staining	g and destaining solutions	66
		6	6.9.4.1	Colloidal coomassie blue stock	66
		6	6.9.4.2	Fixing solution (Colloidal coomassie blue)	66
		6	6.9.4.3	Staining solution (Colloidal Coomassie blue)	66
		6	6.9.4.4	Fixing solution (Fluorescent staining)	67
		6	6.9.4.5	Staining solution (Fluorescent staining)	67
		6.9.5	Visualis	sation of the stained gel	67
	6.10	Digest	tion of pr	oteins for mass spectrometric analysis	67
		6.10.1	1 Protein	digestion in solution	67
		6	6.10.1.1	Dissolve solution	67
		6	6.10.1.2	Trypsin stock (1µg/µl)	68
	6.11	In-gel	protein o	digestion reagents	68
		6.11.1	1 100 mN	INH₄HCO₃	68
		6.11.2	2 50 mM	NH₄HCO ₃	68
		6.11.3	3 Trypsir	n solution (20 μg/ml)	68
	6.12	Buffer	s used ir	n LC-MS analysis	68
		6.12.1	1 Start b	uffer A	68
		6.12.2	2 Start b	uffer B	69
7	Meth	odolog	gy used f	or the proteomics experiment	70
	7.1	Grow	th study	in <i>B. fragilis</i>	70
	7.2	Grow	th curve	studies	70
	7.3	Two	dimensio	nal polyacrylamide gel electrophoresis methodology	71
	7.4	Grow	th of <i>E.</i> d	cancerogenus and B. fragilis in semi-defined media	71
	7.5	Prote	in extrac	tion	71
	7.6	lso-ele	ectric foc	ussing	73
	7.7	Castir	ng of SDS	S-PAGE gel	74
	7.8	Fluore	escent st	aining	76
	7.9	Visua	alisation o	of stained gel	76
	7.10	Gram	n staining) procedure	76

		7.10.1 Heat fixed film preparation	76
		7.10.2 Gram staining	77
		7.10.3 Expected result	77
	7.11	PDQuest analysis	79
		7.11.1 Acquiring images	79
		7.11.2 Spot detection	79
		7.11.3 Editing spots	80
		7.11.4 Matching spots	80
		7.11.5 Data analysis	81
		7.11.6 Normalization	82
		7.11.7 Consensus	82
		7.11.8 Gel analysis software	82
		7.11.8.1 Redfin analysis of 2DE gels	83
		7.11.8.2 SameSpots analysis of 2DE gels	84
	7.12	Preparation of protein spots for analysis using the mass spectrometer	85
	7.13	Liquid chromatography	85
	7.14	Mass spectrometric analysis	86
		7.14.1 Tuning	86
		7.14.2 Parameter settings for peptide mapping	87
8	Mate	erials used for the cloning, purification and structural studies of glyco	oside
	hydr	olase enzymes from families 95 and 97 in <i>B. fragilis</i>	88
	8.1	Liquid media	88
	8.2	Solid media	88
	8.3	Plasmid vectors and competent cells used for cloning	88
	8.4	Luria-Bertani broth	89
	8.5	LB agar	89
	8.6	Selective media	89
	8.7	Cryogenic storage of bacterial stocks	89
	8.8	SOB broth	90
	8.9	SOC broth	90
	8.10	NZY Enrichment broth	90
	8.11	NZY supplement	90
	8.12	2 TE buffer	91
	8.13	Starter cultures for auto-induction media	91

8.13.1 ZYM-50	052 auto-induction media	91
8.13.2 Stock s	olutions	91
8.13.2.1	50 X M	91
8.13.2.2	1000 X metals	92
8.13.2.3	50 X 5052	92
8.13.2.4	ZY	93
8.13.3 PASM-	5052 SeMet-labelling auto-induction media	93
8.13.4 Stock s	olutions	93
8.13.4.1	20 X P	93
8.13.4.2	17 amino acid mix	93
8.13.4.3	Methionine and selenomethionine solutions	94
8.14 Protein extract	ion and purification solutions and buffers	94
8.14.1 Cell res	suspension buffer in protein extraction	94
8.14.2 Nickel o	column purification resin	95
8.14.3 Gel filtra	ation purification resin	95
8.14.4 Buffers	used for nickel affinity purification	95
8.14.4.1	Start buffer	95
8.14.4.2	Elution buffer	95
8.14.5 Buffers	used for gel filtration purification	95
8.14.6 Buffer	exchange buffers	95
8.15 Crystallisation	screens and reagents	96
8.16 Chemicals and	solutions used for SDS-PAGE	96
8.16.1 Resolvi	ng gel (12% (w/v) acrylamide)	96
8.16.2 Buffer E	3	96
8.16.3 Stackin	g gel (4% (w/v) acrylamide)	96
8.16.4 Buffer C	2	96
8.16.5 Running	g buffer for SDS-PAGE	97
8.16.6 SDS-P/	AGE loading buffer	97
8.16.7 SDS-P/	AGE solubilisation buffer	97
8.16.8 Cooma	ssie blue staining solution	97
8.16.9 Destain	ing solution for gels	98
8.16.10 Brac	lford assay	98
8.17 Solutions used for enzyme assay		
8.18 Stock solutions		

	8.19 Reagents for agarose gel electrophoresis	99
	8.19.1 TAE running buffer (50 X stock)	99
	8.19.2 Bromophenol blue (6 X) sample loading buffer	99
	8.19.3 Size standards for agarose gel electrophoresis	99
	8.20 Kits, reagents and enzymes for DNA extraction and purification	99
	8.21 Polymerase chain reaction	99
9	Methodology used for the cloning, purification and structural st	udies of
	glycoside hydrolase enzymes from families 95 and 97 in <i>B. fragilis</i>	100
	9.1 Bioinformatics analysis	100
	9.2 BLAST analysis	103
	9.3 Primer design	103
	9.4 Genomic DNA extraction and purification in <i>B. fragilis</i>	104
	9.5 Agarose gel electrophoresis	104
	9.6 PCR amplification of the genes of interest	105
	9.7 Reaction components	105
	9.8 Insertion of LIC T4 polymerase (T4 pol) reaction	106
	9.9 Preparation of electrocompetent TOP10 <i>E.coli</i> cells	106
	9.10 Transformation	107
	9.11 Screening of colonies for successful inserts	107
	9.12 PCR screening to identify colonies containing gene inserts	108
	9.13 Purification of the plasmid DNA from colonies containing inserts	108
	9.14 Method used to prepare chemically competent cells	109
	9.15 Restriction digests of the recombinant BF3763 and BF0855 ger	nes from
	pET-YSBLIC	109
	9.16 Transformation of the recombinant genes into BL21 cells	109
	9.17 Solubilisation buffer experiment	110
	9.17.1 Growth of bacteria in starter cultures	110
	9.17.2 Growth of bacteria for expression and purification usin	ng IPTG
	induced media	110
	9.17.3 Small scale protein extraction for the solubilisation	n buffer
	experiment	111
	9.17.4 SDS-PAGE electrophoresis	111
	9.18 Large scale growth of bacteria	112
	9.18.1 Protein extraction	113

	9.18.2 Protein purification	113
	9.18.3 Concentration of proteins	114
	9.19 Concentration of proteins determined by Bradford's assay	114
	9.20 Crystallisation	115
	9.20.1 Crystallogenesis	115
	9.20.2 Data collection	115
	9.21 Enzyme assay	116
	9.21.1 Preparation of substrates	116
	9.21.2 Enzyme assay protocol	116
	9.21.3 Chromophoric assay	116
	9.21.4 Fluorimetric assay	117
10	Results and discussion of the proteomic analysis of B. fragilis NCTC 93	43 and
	E. cancerogenus ATCC 35316	119
	10.1 Growth analysis of <i>B. fragilis</i> and <i>E. cancerogenus</i>	120
	10.1.1 Growth analysis of <i>E. cancerogenus</i>	124
	10.1.2 Growth analysis of <i>B. fragilis</i>	126
	10.2 Growth of <i>E. cancerogenus</i> and <i>B. fragilis</i> in semi-defined media	128
	10.3 Mucin used in the study	128
	10.4 Optimisation of 2DE gels	130
	10.4.1 Comparison of staining methods	130
	10.4.2 Comparison of pH ranges of IEF strips	132
	10.4.3 Comparison of protein loadings	135
	10.4.4 Comparison of polyacrylamide gel concentrations	137
	10.5 Two dimensional gel electrophoresis	139
	10.6 Separation of proteins from E. cancerogenus and B. fragilis grown in	ו semi-
	defined media with and without mucin using 2DE gels	142
	10.6.1 Set of replicate 2DE gels of proteins from <i>E. cancerogenus</i>	142
	10.6.2 Set of replicate 2DE gels of proteins from <i>B. fragilis</i>	164
	10.7 Analysis of 2DE gels	182
	10.7.1 Analysis of 2DE gels using Bio-Rad PDQuest software	182
	10.7.2 Differential expression of proteins in <i>E. cancerogenus</i>	184
	10.7.3 Differential expression of proteins in <i>B. fragilis</i>	187
	10.7.4 Analysis of 2DE gels using Ludesi Redfin software	190

10.7.5 Analysis of 2DE gels using Nonlinear Dynamics Sames	Spots
software	190
10.7.6 Comparative analysis of spot data	190
10.7.7 Analysis using Redfin and SameSpots softwares	208
10.8 Liquid chromatography- Mass spectrometric analysis of protein spots	209
10.9 Mass spectrometric analysis of proteins	229
10.10 Expression of proteins involved in translation, ribosomal structure an	d
biogenesis	232
10.11 Expression of proteins involved in transcription	233
10.12 Expression of proteins involved in secondary metabolite biosynthesis	б,
transport and catabolism	234
10.13 Inorganic ion transport and metabolism associated protein	
expression	235
10.14 Expression of proteins involved in cell wall, membrane and envelope	!
biogenesis	235
10.15 Intracellular trafficking, secretion and vesicular transport associated	
protein expression	239
10.16 Expression of proteins involved in post translational modifications,	
protein turnover and chaperones	240
10.17 Expression of proteins involved in energy production	
and conversion	243
10.18 Expression of carbohydrate transport and metabolism associated	
proteins	246
10.19 Amino acid transport and metabolism associated	
protein expression	248
10.20 Expression of poorly characterized proteins with a general function	
prediction only	250
10.21 Expression of signal transduction mechanism associated proteins	251
10.22 Nucleotide transport and metabolism associated protein expression	n 252
10.23 Summary	253
10.24 Future work	254
Results and discussion of the expression and structural analysis of B. fr	agilis
proteins from glycoside hydrolase families 97 and 95	256
11.1 Construction of plasmid vector expression constructs	256

11.2 Protein expression comparison using IPTG induced media and auto
induction media 259
11.3 Protein expression and purification of B. fragilis proteins CAH06598 and
CAH09443 261
11.4 Protein crystallogenesis and diffraction results for B. fragilis CAH06598
and CAH09443 269
11.5 Production, purification and crystallogenesis of a selenomethionine
derivative for <i>B. fragilis</i> CAH09443 270
11.6 Structure solution of CAH09443 via molecular replacement 274
11.7 Three dimensional structure of CAH09443 276
11.8 Biochemical assay of CAH06598 and CAH09443 278
11.9 Future work 281
12 Bibliography 283

Appendix

- A Chemicals, media and enzymes
 - A1 Chemicals used in the study
 - A2 Recipe for buffers used in the cloning experiment
- B Lab equipment
- C Vectors used in the cloning experiments
- D Protein and DNA size standards
- E Growth curve data for E. cancerogenus and B. fragilis
 - E1 Resazurin Test Method
- F Analysis data for 2DE gels
 - F1 Gel analysis data for *E. cancerogenus* and *B. fragilis* using Bio-Rad PDQuest software
 - F2 Gel analysis data for *E. cancerogenus* and *B. fragilis* using Ludesi Redfin software
 - F3 Gel analysis data for *E. cancerogenus* and *B. fragilis* using Nonlinear Dynamics SameSpots software
- G Mass spectrometric analysis data
 - G1 Details on MS analysis
 - G2 Mass spectrometric analysis data for differentially

expressed spots in E. cancerogenus

- G3 Mass spectrometric analysis data for differentially expressed spots in *B. fragilis*
- G4 Blast analysis results for the hypothetical proteins BF2494, BF1203 and BF0301 in *B. fragilis*

H Crystal screen compositions

- I Bioinformatics analysis of GH95 and GH97 proteins, gel filtration graphs for CAH06598 and CAH09443 and PCR amplification conditions used in the cloning of BF3763 and BF0855 genes.
- J Bradford assay standard curve

List of figures

1.	An electron micrograph showing aggregates of <i>B. fragilis</i>	27
2.	Cell wall structure of <i>B. fragilis</i>	30
3.	A number of mucin monomers linked together in an oligomeric gel	38
4.	Structure of mucin showing the dimer domain	38
5.	Oligomeric structure of mucin focussing on the monomer	
	linkages and bonds	39
6.	Structure of the mucin gene 'muc'	40
7.	Figure represents the fragment ions in an MS/MS spectrum	48
8.	Figure shows the structures of six singly charged sequence ions	48
9.	Figure showing the catalytic mechanism in glycoside hydrolases	50
	9.1 Figure showing the inverting mechanism of hydrolysis	50
	9.2 Figure showing the retaining mechanism of hydrolysis	51
10	Figure showing the active site topology in glycoside hydrolases	53
	10.1 Pocket topology	53
	10.2 Cleft topology	53
	10.3 Tunnel topology	54
11.	Methodology used for the analysis of spot data	78
12.	. Gram staining results for E. cancerogenus	120
13	. Gram staining results for <i>B. fragilis</i>	121
14.	.Graph representing the average absorbance vs time- growth rate	of E.
	cancerogenus in three types of media	125
15.	. Graph representing the average absorbance vs time- growth rate of <i>B. f</i>	ragilis
	in three types of media	127
16	Figure showing the difference between fluorescent staining and Coom	lassie
	blue staining	131
	16.1 Proteome map of <i>E. cancerogenus</i> grown in semi-defined n	nedia.
	Separation was achieved using pH range 3-10 IEF strips. Ge	l was
	stained using fluorescent staining	131
16.2 Proteome map of <i>E. cancerogenus</i> grown in semi-defined media.		
	Separation was achieved using pH range 3-10 IEF strips. Ge	l was
	stained using colloidal Coomassie blue staining	132

- 17. Isolation of *E. cancerogenus* proteins from 450 mL log phase cultures at an
OD of 0.6 separated using a pH range of 3-10 IEF strips133
 - 17.1 Proteome map of *E. cancerogenus* grown in semi defined media without mucin. Separation achieved using a pH range3-10 IEF strips133
 - 17.2 Proteome map of *E. cancerogenus* grown in semi-defined media enriched with mucin Type II. Separation achieved using pH range 3-10 IEF strips
 134
 - 17.3 Proteome map of *E. cancerogenus* grown in semi-defined media enriched with mucin Type III. Separation achieved using pH range 3-10 IEF strips135

18. Proteins isolated from 100 and 450 mL of *B. fragilis* grown in semi-defined media separated by pH 4-7 IEF strips136

- 18.1 Proteins isolated from 450 mL of *E. cancerogenus* grown in semi-
defined media separated by pH 4-7 IEF strips136
- 18.2 Proteins isolated from 100 mL of *E. cancerogenus* grown in semi-
defined media separated by pH 4-7 IEF strips137

19. Isolation of *E. cancerogenus* proteins from 100 mL log phase cultures at an
OD of 0.6 separated using a pH range of 4-7 IEF strips138

- 19.1 Proteome map of *E. cancerogenus* grown in semi-defined media.separation achieved using a 12 % (w/v) gel138
- 19.2 Proteome map of *E. cancerogenus* grown in semi-defined media.separation achieved using a 14% (w/v) gel139
- 20. Proteome maps of *E. cancerogenus* grown in semi-defined media without mucin (control media; using pH 4-7 IEF strips) 143
 - 20.1 Proteome map no.1 of *E. cancerogenus* grown in semi-defined media without mucin 143
 - 20.2 Proteome map no.2 of *E. cancerogenus* grown in semi-defined media without mucin 144
 - 20.3 Proteome map no.3 of *E. cancerogenus* grown in semi-defined media without mucin 145
 - 20.4 Proteome map no.4 of *E. cancerogenus* grown in semi-defined media without mucin 146

20.5 Proteome map no.5 of E. cancerogenus grown in semi-defined
media without mucin 147
20.6 Proteome map no.6 of E. cancerogenus grown in semi-defined
media without mucin 148
20.7 Proteome map no.7 of E. cancerogenus grown in semi-defined
media without mucin 149
21. Proteome maps of <i>E. cancerogenus</i> grown in semi-defined media enriched
with mucin Type II (using pH 4-7 IEF strips) 150
21.1 Proteome map no.1 of <i>E. cancerogenus</i> grown in mucin Type II
enriched media 150
21.2 Proteome map no.2 of E. cancerogenus grown in mucin Type II
enriched media 151
21.3 Proteome map no.3 of <i>E. cancerogenus</i> grown in mucin Type II
enriched media 152
21.4 Proteome map no.4 of E. cancerogenus grown in mucin Type II
enriched media 153
21.5 Proteome map no.5 of E. cancerogenus grown in mucin Type II
enriched media 154
21.6 Proteome map no.6 of E. cancerogenus grown in mucin Type II
enriched media 155
22. Proteome maps of <i>E. cancerogenus</i> grown in media enriched with mucin
Type III (using pH 4-7 IEF strips)156
22.1 Proteome map no.1 of E. cancerogenus grown in mucin Type III
enriched media 156
22.2 Proteome map no.2 of E. cancerogenus grown in mucin Type III
enriched media 157
22.3 Proteome map no.3 of E. cancerogenus grown in mucin Type III
enriched media 158
22.4 Proteome map no.4 of E. cancerogenus grown in mucin Type III
enriched media 159
22.5 Proteome map no.5 of E. cancerogenus grown in mucin Type III
enriched media 160
22.6 Proteome map no.6 of E. cancerogenus grown in mucin Type III
enriched media 161

enriched media 162 22.8 Proteome map no.8 of <i>E. cancerogenus</i> grown in mucin Type III enriched media 163 23. Proteome maps of <i>B. fragilis</i> grown in semi defined media without mucin (control media; using pH 4-7 IEF strips) 164					
enriched media 163 23. Proteome maps of <i>B. fragili</i> s grown in semi defined media without mucin					
23. Proteome maps of <i>B. fragilis</i> grown in semi defined media without mucin					
(control media; using pH 4-7 IEF strips) 164					
23.1 Proteome map no.1 of <i>B. fragilis</i> grown in semi-defined media					
without mucin 164					
23.2 Proteome map no.2 of <i>B. fragilis</i> grown in semi-defined media					
without mucin 165					
23.3 Proteome map no.3 of <i>B. fragilis</i> grown in semi-defined media					
without mucin 166					
23.4 Proteome map no.4 of <i>B. fragilis</i> grown in semi-defined media					
without mucin 167					
23.5 Proteome map no.5 of B. fragilis grown in semi-defined media					
without mucin 168					
23.6 Proteome map no.6 of B. fragilis grown in semi-defined media					
without mucin 169					
24. Proteome maps of <i>B. fragilis</i> grown in semi-defined media containing mucin					
Type II (using pH 4-7 IEF strips)170					
24.1 Proteome map no.1 of B. fragilis grown in mucin Type II enriched					
media 170					
24.2 Proteome map no.2 of B. fragilis grown in mucin Type II enriched					
media 171					
24.3 Proteome map no.3 of B. fragilis grown in mucin Type II enriched					
media 172					
24.4 Proteome map no.4 of B. fragilis grown in mucin Type II enriched					
media 173					
24.5 Proteome map no.5 of B. fragilis grown in mucin Type II enriched					
media 174					
24.6 Proteome map no.6 of B. fragilis grown in mucin Type II enriched					
media 175					
25. Proteome maps of <i>B. fragilis</i> grown in semi-defined media enriched with					
mucin Type III (pH 4-7 IEF strips) 176					

25.1 Proteome map no.1 of <i>B. fragilis</i> in mucin Type III	
enriched media	176
25.2 Proteome map no.2 of <i>B. fragilis</i> in mucin Type III	
enriched media	177
25.3 Proteome map no.3 of <i>B. fragilis</i> in mucin Type III	
enriched media	178
25.4 Proteome map no.4 of <i>B. fragilis</i> in mucin Type III	
enriched media	179
25.5 Proteome map no.5 of <i>B. fragilis</i> in mucin Type III	
enriched media	180
25.6 Proteome map no.6 of <i>B. fragilis</i> in mucin Type III enriched media	181
26. Reference master gels used in the PDQuest analysis of spot data	184
26.1 Reference master gel obtained from PDQuest analysis of	
cancerogenus spot data	184
26.2 Percentage regulation of spots in mucin enriched media with res	
to the control non-mucin media in <i>E. cancerogenus</i>	186
26.3 Reference master gel obtained from PDQuest analysis of B. fra	agilis
spot data	187
26.4 Percentage regulation of spots in mucin enriched media	with
respectto the control non-mucin media in B. fragilis	
189	
27. Comparative analyses of spot data using PDQuest, Redfin and Samespot	S
softwares	192
27.1 Comparative analysis of proteins differentially expressed by <i>E</i> .	
cancerogenus in semi-defined media without mucin vs mucin Typ	be II
enriched media by PDQuest and Redfin softwares using	
Mann-Whitney U test	192
27.2 Comparative analysis of proteins differentially expressed by <i>E</i> .	
cancerogenus in semi-defined media without mucin vs mucin Ty	
III enriched media by PDQuest and Redfin softwares using Manr Whitney U test	194
27.3 Comparative analysis of proteins differentially expressed by <i>B</i> .	
fragilis in semi-defined media without mucin vs mucin Type II	

enriched media by PDQuest and Redfin softwares using the Mann-Whitney U test 196

- 27.4 Comparative analysis of proteins differentially expressed by *B. fragilis* in semi-defined media without mucin vs mucin Type III
 enriched media by PDQuest and Redfin softwares using the Mann-Whitney U test
- 27.5 Comparative analysis of proteins differentially expressed by *E. cancerogenus* in semi-defined media without mucin vs mucin Type II
 enriched media by PDQuest, Redfin and SameSpots softwares using
 the Student t-test (i.e. based on averages)
- 27.6 Comaparative analysis of proteins differentially expressed by E.
 cancerogenus in semi-defined media without mucin vs mucin Type III
 enriched media by PDQuest, Redfin and SameSpots softwares using
 the Student t-test (i.e. based on averages)
 202
- 27.7 Comparative analysis of proteins differentially expressed by *B. fragilis* in semi-defined media without mucin vs mucin Type II enriched media by PDQuest, Redfin and SameSpots softwares using the Student t-test (i.e. based on averages)
- 27.8 Comparative analysis of proteins differentially expressed by *B. fragilis* in semi-defined media without mucin vs mucin Type III
 enriched media by PDQuest, Redfin and SameSpots softwares using
 the Student t-test (i.e. based on averages)
- 28. Figure showing the SSP numbers of regulated protein spots on the master gel of *E. cancerogenus* 210
- 29. Figure showing the SSP numbers of regulated protein spots on the master gel of *B. fragilis* 211
- 30. Figure showing the differentially expressed spots of outer membrane proteins in *B. fragilis* 236
- 31. Figure showing the differentially expressed spots of outer membrane protein H in *B. fragilis* 237
- 32. Figure showing the differentially expressed spots of outer membrane proteins in *E. cancerogenus* 238
- 33. Figure showing the differentially expressed spots of putative thiol peroxidase in *B. fragilis* 241

34. Figure showing the differentially expressed malate dehydrogenase spots in <i>B</i> .			
fragilis 245			
35. Analysis of CAH06598 expression (86 kDa) using a 12% (w/v) SDS gel			
obtained from growing the recombinant <i>E. coli</i> in IPTG induced media 259			
36. Analysis of CAH09443 expression (74 kDa) using a 12% (w/v) SDS gel			
obtained from growing recombinant <i>E. coli</i> in auto-induction media 260			
37.Nickel column purification of CAH06598 protein262			
38. Nickel column purification results for CAH06598 protein263			
38.1 12% (w/v) SDS gel showing purified fractions 1-10 263			
38.2 12% (w/v) SDS gel showing purified fractions 11-20 264			
39. Gel filtration graph of CAH06598 protein showing the UV			
absorbance peak 264			
40.12% (w/v) SDS gel showing the gel filtration results of			
CAH06598 protein 265			
41. Nickel column purification results for CAH09443 protein 266			
42. Nickel column purification results for CAH09443			
protein (12% (w/v) SDS gel) 267			
43. Gel filtration graph of CAH09443 protein showing the UV			
absorbance peak 267			
44.12% (w/v) SDS gel showing the gel filtration results for			
CAH09443 protein 268			
45. Purification results for selenomethionine incorporated CAH09443 derivative			
45.1 12% (w/v) SDS gel showing the nickel column purification results for			
selenomethionine preparations of CAH09443 protein 271			
45.2 Nickel column purification results for the selenomethionine derivative			
of CAH09443 protein 272			
45.3 Gel filtration graph of CAH09443 protein showing the UV absorbance			
peak for the selenomethionine derivative 272			
45.4 12% (w/v) SDS gel showing gel filtration purification results for			
selenomethionine preparations of CAH09443 protein 273			
46. Structure of CAH09443 277			
47. Figure shows the calcium binding sites in <i>Bt</i> GH97a and <i>Bt</i> GH97b 278			
48. Sequence alignment of CAH09443 282			
-			

List of tables

1	 Table showing the parameters used in isoelectric 	
	focussing, pH 4-7	73
2	2. Table showing the parameters used in isoelectric	
	focussing, pH 3-10	73
3	3. Growth of <i>E. cancerogenus</i> in minimal media	122
2	Growth of bacteria in the semi-defined media with different	
	carbon sources	123
5	5. Growth of <i>E. cancerogenus</i> in control media without mucin*	
6	6. Growth of <i>E. cancerogenus</i> in media enriched with mucin Type II*	
7	7. Growth of <i>E. cancerogenus</i> in media enriched with mucin Type III*	
8	8. Growth of <i>B. fragilis</i> in control media without mucin*	
Ś	Growth of <i>B. fragilis</i> in media enriched with mucin Type II*	
1	10. Growth of <i>B. fragilis</i> in media enriched with mucin Type III*	
1	11. Table represents the statistical test results for spot data in replicate gro	ups
	using the PDQuest software	183
1	12. Differentially expressed E. cancerogenus proteins in non mucin vs muc	in
	Type II enriched media by PDQuest and Redfin softwares using the Ma	ann-
	Whitney U test	193
1	13. Differentially expressed E. cancerogenus proteins in non mucin vs muc	in
	Type III enriched media by PDQuest and Redfin softwares using the M	ann-
	Whitney U test	195
1	14. Differentially expressed B. fragilis proteins in non mucin vs mucin Type	II
	enriched media by PDQuest and Redfin softwares using the Mann-Whi	tney U
	test	197
1	15. Differentially expressed B. fragilis proteins in non mucin vs mucin Type	III
	enriched media by PDQuest and Redfin softwares using the Mann-Whi	tney U
	test	199
1	16. Differentially expressed E. cancerogenus proteins in non mucin vs muc	in
	Type II enriched media by PDQuest and Redfin and Samespots softwa	ares
	using the Student t-test (i.e based on averages)	201
1	17. Differentially expressed E. cancerogenus proteins in non mucin vs muc	in
	Type III enriched media by PDQuest and Redfin and Samespots softw	ares
	using the Student t-test (i.e. based on averages)	203

18. Differentially expressed B. fragilis proteins in non mucin vs mucin Type	II
enriched media by PDQuest and Redfin and Samespots softwares using	ng the
Student t-test (i.e. based on averages)	205
19. Differentially expressed <i>B. fragilis</i> proteins in non mucin vs mucin	Гуре III
enriched media by PDQuest and Redfin and Samespots softwares us	sing the
Student t-test (i.e. based on averages)	207
20. Table represents E. cancerogenus proteins that have been ident	ified to
beexpressed in all three conditions with any up or down-regulation	n using
PDQuest software	213
21. Table represents E. cancerogenus proteins that have been identified	d to be
expressed in all three conditions without regulation using	
PDQuest software	216
22. Table represents B. fragilis proteins that have been identified to be exp	pressed
in all three conditions with any up or down-regulation	
using PDQuest software	221
23. Table represents B. fragilis proteins that have been identified to be exp	pressed
in all three conditions without regulation using PDQuest software	226
24. Data collection and refinement statistics for BfGH97	275
25. Determination of the activity of CAH06598 and CAH09443 against a va	ariety of
para nitrophenyl and methyl umbelliferyl substrates at 37°C	279

NB: * Tables 5 to 10 have been included in the Appendix section E.

DECLARATION

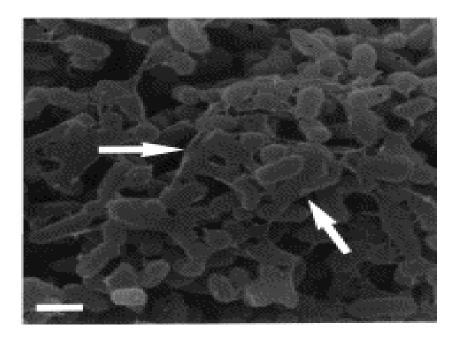
I declare that the work contained in this thesis has not been submitted for any other award and that it is all my own work.

NAME: LAKSHMY MANICKAN

SIGNATURE:

DATE: 26th April 2010

4. General introduction


The study aims at understanding the interaction between gut commensal bacteria and mucin. The GI tract is colonised by a number of bacteria which are opportunistic pathogens that can cause infection when the host immune system is impaired. This work mainly focuses on the gut infection causing bacteria, *Enterobacter cancerogenus* strain ATCC 35316 and *Bacteroides fragilis* strain NCTC 9343.

4.1 Bacteroidaceae

Based on the comparative analysis of the 16S rRNA sequences, *Bacteroides* species have been classified under the family 'Bacteroidaceae' and phylum 'Bacteroidetes'. They play an important role in the maintenance of human and animal health by colonising the intestine and forming an indigenous flora of the colon. They have been known to colonise the distal regions of the stomach where the gastric secretions are diluted and the hindgut beginning from the distal regions of the small intestine with increasing numbers in the terminal illeum and colon. They help in the fermentation of carbohydrates in the colon where the fermentation activity is very high at the caecum. As the carbohydrate sources become limited, the activity is slowed down in the transverse colon and directed towards protein fermentation (Smith *et al.*, 2006).

4.2 Introduction to Bacteroides fragilis

Bacteroides fragilis is classified as a Gram-negative anaerobe which is included in the family of Bacteroideceae. They commonly occur on mucous membranes and are responsible for endogenous infections. *Bacteroides* species cause more than 50% of anaerobic infections. They normally range from $0.5 - 0.6 \mu m$ in diameter to $1.5 - 4.5 \mu m$ in length and are found in nature as round ended bacilli (Fig. 1). They have a genome size of 5205 Kb with a guanine+cytosine (GC) ratio of 42% (Brook, 2006). They are opportunistic pathogens present in the gastrointestinal flora and cause a number of intra-abdominal infections.

Figure 1: An electron micrograph showing aggregates of *B. fragilis.* The bar refers to a size of 1µm (Ferreiraa *et al.*, 2002).

They have also been found to exhibit resistance to a variety of antibiotics including penicillin and the β -lactam antibiotics because they have the ability to produce the enzyme, β -lactamase which attacks the β -lactam ring within the antibiotic. They have also shown multidrug resistance to other antibiotics like clindamycin, tetracycline and metronidazole (Su & Honek, 2007).

4.2.1 Types of Bacteroides fragilis infections

B. fragilis is a Gram-negative bacterium that is capable of causing a variety of infections within the host. These include central nervous system infections, intraabdominal and pleuropulmonary infections, skin and soft tissue infections, female genital tract infections, bacteraemia, osteomyelitis, abscesses and septic arthritis (Pumbwe *et al.*, 2006). *B. fragilis* is commonly present on the mucous membranes and causes a variety of infections including intra abdominal infections, perirectal abscesses and decubitus ulcers. The enterotoxigenic forms are capable of causing diarrhoea in children and animals (Nakano *et al.*, 2007).

4.2.2 Uses of Bacteroides fragilis to man

Bacteroides spp. are also beneficial to man in a number of ways. They are capable of producing certain vitamins like Vitamin K2 and menaquinone which are utilised by the human host.

Anaerobic growth of *Bacteroides* species results in the production of a number of end products such as butyrate, acetate and propionate and this contributes to nearly 70% of the energy source for enterocytes, a distinct type of epithelial cell that constitutes the innermost layer of the large and small intestine and helps to transport molecules into the tissues after breaking them down, present in the colon.

They play a very valuable role in the enterohepatic cycles which include the bile acid recirculation and the bile acid transformation by producing the enzyme, bile salt hydrolase (BSH) (Stellwag & Hylemon, 1976).

Bile acid recirculation involves the absorption of bile acids by the hepatocytes and this process is repeated several times within the intestine to make sure that the maximum amounts of nutrients are absorbed. The presence of anaerobic bacteria help to enhance this process (Hopley & Schalkwyk, 2006).

Bile acid transformation also plays an important role in the regulation of bile and cholesterol in the system. The terminal ileum and large bowel are largely characterised by the presence of those anaerobes which enhance the deconjugation process (Hopley & Schalkwyk, 2006). They compete with other pathogens in the colon thereby developing a competition at food supply and receptor sites by producing acidic end products like acetic acid and lactic acid that lowers the pH of the environment. This regulates the bacterial growth in the intestine.

4.2.3 General characteristics of Bacteroides fragilis

The selective medium which can be used to distinguish *B. fragilis* is Bile esculin agar which has the presence of oxgall, ferric ammonium sulphate (colour change indicator) and an antibiotic, gentamycin. Gentamycin and oxgall act as inhibitors of

other facultative anaerobes and Gram-negative anaerobes. Esculin is hydrolysed by *B. fragilis* to produce dextrose and esculetin and this reacts with the salt to produce black complexes which get accumulated around the colony (Livingston *et al.*, 1978).

B. fragilis have the ability to exhibit haemolytic activity. Studies showed that the haemolytic activity diminished in the presence of oxygen or hydrogen peroxide and was controlled by the *hlyA* and *B* genes (Robertson *et al.*, 2006). This was confirmed when haemolytic activity was observed in blood agar plates containing *E. coli* transformed with the *hlyA* and *B* genes.

4.2.4 Cell wall structure of *Bacteroides fragilis*

B. fragilis has a distinct outer capsular layer made up of polysaccharides A and B (Fig. 2) (Pruzzo *et al.*, 1989). The capsular layer confers resistance to phagocytosis, assists in adherence to the host and also evades complement mediated lysis (Pumbwe *et al.*, 2006).

The second layer, termed as the lipopolysaccharide layer, projects out from the outer membrane of the lipid layer. This can be of varying thickness exhibiting a considerable level of toxicity and also functioning as an adhesive when contacted by host cells.

They have the presence of fibrils which act as short fine appendages whose role in virulence is not yet determined even though it is suspected to be related to adhesion and biofilm formation. The next important component of the cell wall includes the outer membrane vesicles. They are known to produce endotoxins like neuraminidase, sialidase and fibrinogenolytic enzymes (Pumbwe *et al.*, 2006). The fibrinogenolytic enzymes, chondroitin sulphatases and hyaluronidases are histolytic in nature and *B. fragilis* is also capable of producing antimicrobial chemicals, namely bacteriocins. Neuraminidase exhibits a hydrolytic activity on the mucin polysaccharide. One of the previous studies showed that neuraminidase activity plays a very important role in the successful survival of *Bacteroides* in mammalian

tissues thereby acting as one of the major virulence conferring antigens (Godoy *et al.*, 1993).

Studies suggest that *B. fragilis* produces outer membrane proteins which play an important role in maintaining the structure of the cell and the production of these proteins are controlled by a set of 4 *omp* genes (Wexler, 2002).

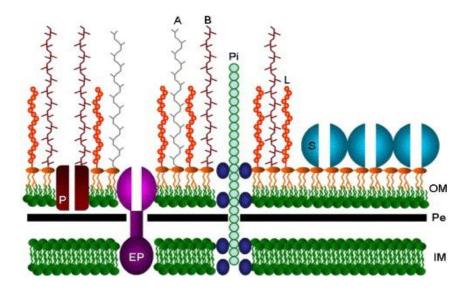


Figure 2:Cell wall structure of *B. fragilis* (Pumbwe *et al.,* 2006)

Pe- periplasmic space, OM- outer membrane, L- side chains, A and

B- Capsular polysaccharides, Pi- Pilus, P- outer membrane porin,

EP- efflux pump, IM- inner membrane.

4.2.5 Types of *B. fragilis* toxins

B. fragilis produces two main types of toxins,

- The endotoxin from the outer membrane vesicles and
- The enterotoxin whose production is controlled by the regulation of three *bft* genes, *I*, *II* and *III*. They can cause diarrhoea within the host by damaging the tight junctions of the intestine. Actin cytoskeleton rearrangement of the

epithelial cells causes a leakage in the internal contents of the intestine (Nakano et al., 2007).

- The *bft* genes also induce a fluid secretion in the intestinal epithelia (Pumbwe *et al.*, 2006).
- *B. fragilis* also produces proteins termed as bacteriocins which inhibit the growth of other bacteria by targeting their RNA polymerase thereby providing the bacteria a better chance of survival during competition from other pathogens (Stein, 1998).

4.2.6 Bacteroides fragilis virulence factors

Some of the virulence factors produced by B. fragilis include capsules where capsulated strains have been shown to be more virulent in nature (Pruzzo et al., 1989). They produce several extracellular or membrane bound enzymes like collagenases, fibrinolysin, proteases, lipases, ribonucleases and deoxyribonucleases involved in tissue degradation and destruction. The other virulence factors are the oxygen scavenging enzymes namely superoxide dismutases, catalases and peroxidases which enable the bacteria to survive in the presence of oxygen or in aerobic environments (Namavar et al., 1991). They produce endotoxins that are transported to the target host sites and induce complement activation. The capsular polysaccharides inhibit phagocytosis and induce abscess formation, the charged surface ligands help in adherence and bacterial interaggregation sometimes promoting the formation of biofilms of the same or different bacterial communities. The IgA protease causes impairment of secretory and mucosal immunity and heparinase promotes coagulation with tissue ischemia. Some strains of bacteria are capable of producing β -lactamases which confer resistance to β lactam antibiotics. Bacteriocins and other secondary metabolites including fatty acids, hydrogen sulphide and ammonia competitively inhibit the growth of normal flora (Stein, 1998).

Studies in *Bacteroides forsythus* have revealed the presence of a S-layer which is a unique surface structure that has been known to be involved in virulence. They help in the adherence of the bacterial cells to the host, surface recognition and resistance to phagocytosis. The S-layer ranges in size from 40-200 kDa in size and is composed of regularly aligned glycoprotein subunits. These proteins could contribute

to the ability of the bacteria to adhere and form biofilms on the surface of teeth resulting in dental plaque (Sabet *et al.*, 2003).

B. fragilis can exist in both capsulated and non-capsulated forms but the capsulated forms tend to have a higher degree of virulence conferring capacity. Their capsules contain two different types of polysaccharides called A and B which are linked together by oppositely charged groups and they confer resistance to the organism against the host defences (Pantosti *et al.,* 1993).

They also produce a number of virulence conferring enzymes which include neuraminidase, hyaluronate lyase, DNase, phosphatase and rare fibrinolysins. They produce the enzyme heparinase which may result in vascular thrombosis (Hopley & Schalkwyk, 2006). They also produce a toxin called fragilysin that is a zinc metalloprotease, 20 kDa in molecular weight. This damages the tight junctions of the intestine resulting in the destruction of enterocytes due to its cytotoxic effects and fluid secretion (Fasano & Nataro, 2004).

4.2.7 Treatment of Bacteroides fragilis infections

A number of normal antibiotics can be used for the treatment of *B. fragilis* infections like metronidazole, chloramphenicol, moxalactam, ceftriaxone, clarithromycin, cefoperazone, cefotaxine, ceftazidime, sparfloxacin, carbapenems and clindamycin (Katsandri *et al.*, 2006). However, recent studies showed that certain strains of *B. fragilis* exhibit resistance to carbapenem by producing a β -lactamase enzyme, carbapenemase. This was found to be induced by the activation of the *cfiA* gene with or without the insertion sequence elements indicating that this gene may be involved in the development of antibiotic resistance in *Bacteroides* (Edwards & Read, 2000). They also exhibited a resistance percentage of 0.8 and 1.3 for antibiotics imipenem and meropenem, respectively (Edwards & Read, 2000).

4.3 Enterobacteriaceae

Enterobacter species are capable of causing a number of infections ranging from bacteraemia, lower respiratory tract infections, skin and soft tissue infections to endocarditis, urinary tract infections, intra abdominal infections and post surgical wound infections. One of the major characteristic of Gram negative bacteria is their ability lipopolysaccharides. Enterobacteriaceae to produce produce lipopolysaccharides which are composed of three parts namely the oligomeric repeating O polysaccharide units, a core and lipid A. The core links the O polysaccharide units to the lipid A and this causes the lipopolysaccharide to remain anchored to the cell envelope. O polysaccharides exhibit structural variation which induces inflammatory responses in the host. The toxin is also capable of causing sepsis within the host which later leads to the development of Enterobacter bacteraemia characterised by cyanosis (Janda & Abbott, 2006). Biochemical characteristics reveal that these bacteria are straight rods, Gram negative, facultatively anaerobic and exhibit both respiratory and fermentative type of metabolism. They are citrate positive, indole negative and are chemoorganotrophic in nature (Bergey & Holt, 1994).

4.3.1 General virulence factors of *Enterobacter* species

Some of the major virulence factors associated with *Enterobacter* species are the mannose sensitive haemagglutinins (MSHA) type 1 or 3, siderophores, toxins and outer membrane proteins. The MSHA are putative fimbriae of 35 kDa size and have a receptor site that is recognised as a high mannose oligosaccharide. Siderophores have been known to be associated with invasive systemic infections. *E. cloacae* produces hydroxamate siderophore aerobactins that may be associated with invasive diseases whereas *E. coli* has been known to produce a 72 kDa aerobactin associated protein. Certain non-aerobactin hydroxamate compounds have also been found to be infrequently expressed in *Enterobacter* species. Details about their role in pathogenicity remain unknown (Keller *et al.*, 1998). *Enterobacter* species also produce toxins like α - haemolysin which have a glycine rich motif and exhibit cytotoxic activity against human erythrocytes and leukocytes. Molecular characterisation of invasive infections caused by *E. cloacae* showed an up-regulation

of the outer membrane protein OmpX suggesting that this could be a potential virulence factor, 17 kDa in size. It was observed that an up-regulation of *ompX* was accompanied by a down-regulation of other outer membrane porins OmpF and OmpC and may be associated with the ability of the organism to exhibit resistance to β -lactam compounds. Bacterial strains lacking the omp X gene were constructed to study their role in pathogenicity and it was observed that these proteins increased the infection rate by 10 fold in non mutant strains (Janda & Abbott, 2006).

4.3.2 Enterobacter cancerogenus

Enterobacter cancerogenus is also a Gram-negative facultatively anaerobic bacterium that is a naturally occurring human gut symbiont. They have a GC ratio of 55% with a size of 4602 Kb and are known to exhibit resistance to antibiotics like aminopenicillins. They have also been reported in cases of severe osteomyelitis and infection of bones and joints and belong to the CDC Enteric group 19.

This bacterium was formerly known as *Erwinia cancerogena* and several morphological, physiological and biochemical studies revealed that *E. cancerogena* was not a member of the genus *Erwinia* but was included in the genus *Enterobacter*. *E. cancerogenus* are capsulated, motile straight rod shaped bacteria with peritrichous flagella. *E. cancerogena* was found to exhibit 75% phenotypic similarity to *Erwinia carotovora* and 92% phenotypic similarity to *Enterobacter nimipressuralis*. Hence it was proposed that *E. cancerogena* could be moved to the genus *Enterobacter* based on phenotypic characterisation.(Dickey & Zumoff, 1988).

They are commonly found in nature and occur as commensals but when the host immune system is impaired they are capable of causing infections which make them opportunistic pathogens. Five cases of infection were reported in 1997. *E. cancerogenus* was identified from blood culture tests where wound infections and septicaemia occurred following environmental exposure of wounds from traumatic events or injuries in adults (Abbott & Janda, 1997).

Studies revealed that *E. cancerogenus* was formerly known as *Enterobacter taylorae* after being moved from the genus *Erwinia*. Based on the evidence obtained from the study of the biochemical and physiological properties of *E. taylorae*, it was proposed

that the organism needed to be included in the *Enterobacteriaceae* family. They were able to ferment glucose to produce gas and showed 84- 95% similarity to ATCC 35317 strain (Farmer *et al.*, 1985). There was a very strong relation between these two bacteria where they had a high degree of DNA relatedness. Since no difference could be ascertained between these two species, it was accepted that *E. cancerogenus* was a senior synonym of *E. taylorae* (Grimont & Ageron, 1989).

Even though it is known that these bacteria are capable of causing infections and occur predominantly as gut microbiota, details regarding their virulence factors or mode of action are not available. Several cases of infection have been reported since 1987 and the bacteria have been included in the Proteobacteria division and isolated mainly from human faeces. Infections occurred following a traumatic injury and the bacterium was found to exhibit resistance to aminopenicillins (Garazzino et al., 2005). Four cases of nosocomial infections were reported in 1989 where all the cases described localised infection following open fractures, wounds or abrasions. The cases reported were bacteraemia, pneumonia and urinary tract infections. The bacteria were also found to produce β -lactamases showing resistance to antibiotics like penicillin and cephalosporins. Administration of cephalosporin prophylactically during cardiac surgery induced a drastic increase in the number of Enterobacter species in the intestine of the patient (Rubinstien et al., 1993). Another reported case of *E. taylorae* infection was osteomyelitis in a patient following an open fracture wound being infected (Westblom & Coggins, 1987). The most recent occurrence of E. cancerogenus infection was reported in 2005 where the infection occurred following a multiple bone fracture with abundant environmental exposure (Garazzino et al., 2005).

4.3.3 *Enterobacter* species attachment to intestinal cells

The outer membrane protein A has been known to play an important role in the attachment of *E. sakazakii* to the epithelial cells of the intestine of human hosts according to previous studies (Nair & Venkitanarayanan, 2007). Even though no reports are available regarding the attachment of *E. cancerogenus* to intestinal epithelial cells, *E. cloacae* which belongs to the same genus has been known to be associated with host intestinal tissues and mucin (Schierack *et al.*, 2007).

4.3.4 Antibiotic treatment

The commonly used antibiotic treatment for *Enterobacter* infections includes carbapenems and cefepime. Cross transmission contributes to some of the major factors that result in the spread of the bacteria. They have been predominantly found in intensive care units especially if infection control is poor.

4.4 Epithelial cells of the intestine and their role in protection against antigens

There are three types of cells that are produced to confer resistance to bacteria. This includes the goblet cells that produce proteoglycans and glycoproteins in the form of viscous mucin that covers the entire surface of the wet intestinal epithelial layer; the M cells that help to transport antigens from the exterior into the lymphoid tissue. This assists the host in identifying bacterial antigens and preparing the immune system. The third type of cells includes the Paneth cells that produce intra epithelial lymphocytes and antibacterial proteins that act against exogenous bacteria (Wilson, 2002). Intestinal cells also protect themselves against bacteria by shedding off the surface epithelia that fill up with keratin. This sloughing off of the outer layers results in the removal of adhered bacteria which get flushed away. Mucosal epithelia also have the ability to produce proteins that recognise lipopolysaccharides present exogenously. This may be produced due to continual exposure to certain specific surface components of bacteria or for identification of potential antigens (Laux *et al.*, 2005).

The entire length of the gastrointestinal tract consists of the intestinal epithelial cells with the outer protective mucous membrane. The upper part of the tract has been known to be colonised by aerobic bacterial flora since the oxygen concentration of the intestine decreases from the duodenum to the colon. The lower part of the intestinal tract is colonised by the anaerobic flora. Variations in pH and nutrition can affect the microflora balance and also determines the general metabolism of the body. Changes in microflora of the gastrointestinal tract have been known to result in metabolic disorders (Serino *et al.*, 2009).

4.5 Mucin

Mucin is a heavily glycosylated protein with a high molecular weight. Mucin forms a major component of the body secretions which include the mucous and secretions of the mucous gland, the saliva and secretions of the salivary gland, fibres of the tendons and the connective tissue. It is albuminoid in nature with a ropy appearance and possesses heavy glycosylation (Dekker *et al.*, 2002). Mucins contain hydrophobic membrane spanning domains that enable them to be retained within the plasma membrane making them membrane bound.

They generally form aggregates of proteins which are about 1-10 million Daltons and are known to contain neuraminic acids in their side chains (Dekker *et al.*, 2002). They have the ability to resist proteolysis and act as the first line of defence against infection.

4.5.1 Structure of mucin

Mucin consists of a number of monomeric units that are linked by O and N linked oligosaccharides. Fig. 3 represents the mucin monomers linked together in an oligomeric gel and Figs. 4 and 5 represent the N and C termini of individual mucin monomers with N and O linked oligosaccharide units, cysteine knot and disulphide rich domains containing disulphide bonds. The disulphide rich domain is also termed as the D domain (Refer to Fig. 5) (Wilson, 2002). Porcine gastric mucin is predominantly made up of O-linked oligosaccharides and mucin side chains contain a number of groups attached to them including sulphates, neuraminic acids, sialic acids and so on.

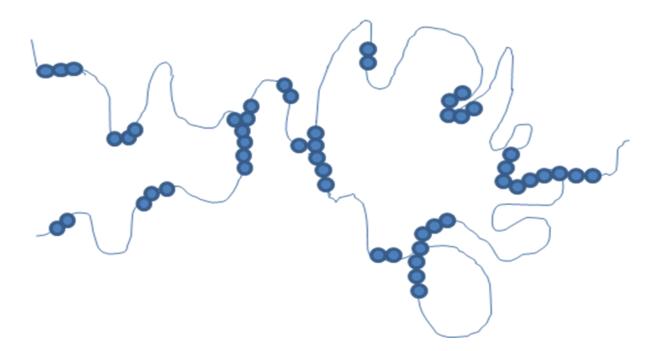


Figure 3: A number of mucin monomers linked together in an oligomeric gel

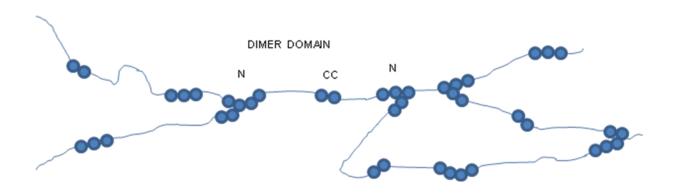
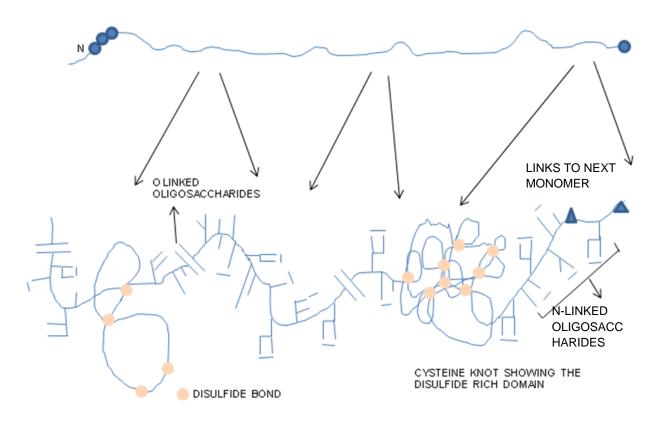



Figure 4: Structure of mucin showing the dimer domain

Figure 5: Oligomeric structure of mucin focussing on the monomer linkages and bonds (Wilson, 2002).

Mucins are of two main types namely soluble mucins and membrane mucins. Soluble mucin secretion associated with the respiratory tract is known to be encoded by a cluster of 18 genes that results in the formation of heavily glycosylated disulphide bond rich glycoproteins in the mucous in man (Rose & Voynow, 2006). Membrane mucins are highly diverse structurally and functionally and contain a transmembrane domain that enables them to associate with the cell surface thereby acting as the first line of defense and can mediate transport of solutes. Examples of membrane mucin include the mucin encoded by the muc1 and muc4 genes. They function as anti-adhesive agents that prevent cell-cell, cell-molecular interactions. They also act as modulators of cell signalling pathways where muc1 encodes for mucin that act as docking protein and muc4 encodes mucin that acts as a modulator of receptor tyrosine kinase ErbB2 (Zhang *et al.*, 2006). Sialomucin complexes have the ability to act as anti-adhesive agents by disrupting cell-matrix interactions and have been overexpressed in cancer cells (Komatsu *et al.*, 1997). This demonstrates the role of mucin and its protective functions within the host.

A study was conducted to study the variation of mucin distribution in the gut. The four main parts that were studied were the small intestine, caecum, colon and luminal contents and three types of mucin were found to predominantly occur in them. These were classified as neutral mucins, sialomucins and sulphomucins of which sialo and sulphomucins were found to be acidic in nature and sulphomucins were sulphated. It was found that conventional rats produced higher amounts to mucin with higher villi and deeper crypts in the small intestine when compared to germ free rats indicating that exposure to bacteria may be one of the main reasons for the production of mucin. It was also observed that conventional rats had decreased amounts of neutral and sulpho mucins in the intestine indicating that bacteria could have a higher hydrolytic activity on them when compared to sialomucins that exhibit higher resistance (Meslin *et al.*, 1999). This could explain the presence of bound sialic acids in the partially purified and crude extracts of mucin from the porcine intestine.

The synthesis of mucin is controlled by a set of mucin genes termed *muc*. Mucin monomers are linked to form aggregates. They have specific non-covalent and intermolecular disulfide bonds to link them. The central region of the gene encodes the synthesis of hundreds of *O*-linked oligosaccharides of varying lengths whereas the N and C terminals have a much lesser level of glycosylation. The central region also possesses 10-80 repeating units of serine or threonine amino acid residues as shown in the figure below (Salyers *et al.*, 1977).

Figure 6: Structure of the mucin gene 'muc'

4.5.2 Sugar composition of mucin

Some of the oligosaccharides which have been released upon breakdown of mucin include 2-acetamido-2-deoxy- α -D-galactopyranosyl (1 \rightarrow 3)-[α -L-fucopyranosyl-(1 \rightarrow 2)]-deoxy- β -D-galactopyranosyl-(1 \rightarrow 3)-[N-glycoylneuraminyl-(2 \rightarrow 6)]-2acetamido-2-deoxy-D-galacitol, N-glycolylneuraminyl \rightarrow N-acetylgalactosaminitol, Nacetylgalactosaminitol. Other oligosaccharides include GlcNAc β (1-3)GalNAc-ol, Gal β (1-4)GlcNAc β (1-3)GalNAc-ol, Gal β (1-4)GlcNAc β (I-3)Gal β (I-4)GlcNAc β (1-3)GalNAc-ol, Gal β (1-4)GlcNAc β (1-3)GalNAc-ol, GalNAccol, Gal β (1-4)GlcNAc β (1-6), and GalNAc α (I-3)Gal β (I-4)GlcNAc β (1-3)Gal β (I-4)GlcNAc β (I-4)GlcNAc β (I-3)GalNAc-ol irrespective of the source of mucin (Podolsky, 1985).

The saccharide composition of mucin depends upon the part of the body where it might be produced, nutrition and several other factors including the environmental conditions. Studies were performed in porcine submaxillary mucins based on their ability to inhibit human A- anti A haemagglutination. The breakdown of the complex polysaccharide into oligosaccharides was studied and the resulting oligosaccharides were grouped from I to V. The study aimed at determining the type of mucin oligosaccharides that was found to be active in inhibiting haemagglutination (Carlson, 1968). Breakdown of mucin resulted in the release of the monosaccharide, 2-acetamido-2-deoxy-D-galacitol (N-acetylgalactosaminitol), a pentasaccharide, 2acetamido-2-deoxy- α -D-galactopyranosyl (1 \rightarrow 3)-[α -L-fucopyranosyl-(1 \rightarrow 2)]-deoxy- β -D-galactopyranosyl- $(1\rightarrow 3)$ -[N-glycoylneuraminyl- $(2\rightarrow 6)$]-2-acetamido-2-deoxy-Dgalacitol. The other reduced oligosaccharides released include N-acetylglucosamine, N-glycolylneuraminyl→N-acetylgalactosaminitol and N-acetylgalactosaminitol (Carlson, 1968).

Similar studies were performed in cervical mucin and it was found to contain neutral, sialylated and sulphated oligosaccharides including fucose, galactose, N-acetylgalactosamine, N-acetylglucosamine, N-acetyl-galactosamine and so on. A neutral tetrasaccharide and an acidic trisaccharide were also isolated. It has been observed that there is a high degree of heterogeneity in mucins derived from various parts of the body like bronchial mucin, colonic mucin, cervical mucin, gastric mucin and so on (Yurewicz & Moghissi, 1981).

Previous studies performed in colonic mucin showed the release of sugars like galactosamine, galactose, glucosamine, sialic acids, fucose, mannose and glucose (Podolsky & Isselbacher, 1983).

4.5.3 Functions of mucin

Mucins are present in various parts of the body and play a very important role by acting as protective barriers of the host against pathogenic bacteria. Intestinal mucin helps the system internally by protecting the walls against the acvtivity of strong digestive enzymes. They lubricate the walls of the intestine, exhibit surface hydrophobicity and can reduce the absorption of toxins (Lugea et al., 2000). Innate mucosal defense involves two main components; mechanisms that are involved in preventing the invasion of bacteria and their toxins and the second mechanism involved the rapid regeneration of the mucosal layer by repairing damages and defects. They work in conjunction with the tight junctions of the intestine controlling the passive diffusion of solutes beneficial to the host while regulating the entry of bacterial toxins and antigens (Blikslager et al., 2007). Even though it is known that the epithelial cell layer of the intestine secretes the mucin glycoproteins that form a viscoelastic gel, functional evidence of their protective functions are limited and not available in detail. Recent studies have revealed the presence of a distinctive and highly conserved structural motif containing 3 small proteins called the trefoil peptides. The goblet cells secreted these proteins and they were found to span the entire length of the gastrointestinal tract. The three proteins were designated as PS2, SP and the Intestinal trefoil factor (ITF) of which the first two were found to occur predominantly in the mucosa of the stomach, mouth, hepatobiliary duct and the pancreatic duct whereas the intestinal trefoil factor was found to be predominant in the small and large intestinal mucosa. These proteins contain a highly conserved 6 cysteine residue motif that form three intrachain loops with disulphide bond interactions. It has also been suggested that the occurrence of secondary structures of these proteins on the mucosal layer could confer resistance to the digestive activity of a variety of protease enzymes. This helps to maintain the intestinal walls structurally and functionally intact from the activity of proteases (Podolsky, 1999).

4.5.4 Mucin degradation by bacteria

Bacteria have the ability to produce a variety of enzymes that degrade the mucin glycoproteins. This enables them to adhere efficiently to the host and thereby cause infection within the host. The glycoside hydrolases produced by bacteria, cleave the carbohydrate chains in mucin and hydrolyse them to produce monosaccharide units. These monosaccharides are then used by the organism as a source of energy and nutrition (Roberton & Stanley, 1982).

Mucin, being the main component of mucosal surfaces acts as a point of adherence for the bacteria where they grow upon the glycoside residues of the complex glycoprotein oligomer by producing glycoside hydrolases and this leads to further damage of the mucosal surface and impairment of the membrane function (Salyers *et al., 1977*). *B. fragilis* has also been known to ferment mucin to release sulphates which favour the growth of other sulphate reducing bacteria. They break down sulphates into sulphides which can be toxic to the human system and this suggests that *B. fragilis* may possess sulfatase activity (Willis *et al.,* 1996).

Mucin, a high molecular weight glycoprotein that is heavily glycosylated and phosphorylated acts as a potential target for commensal bacteria like sulphate reducing bacteria which metabolise the sulphates and phosphates to produce sulphide ions and toxic hydrogen sulphide. This alters the environment in the gut and encourages the growth of other intestinal infection causing bacteria. According to previous studies, the sulphation of the gastrointestinal tract increases from 1-3% in the stomach to 3-5% in the colon (Willis et al., 1996). The intestinal microflora depend upon the type of nutrition and it has been observed that changes in nutrition can affect metabolism and cause an imbalance or change in the microflora of the gut. The other factor that contributes to the type of microflora present in the gut is the oxygen concentration. The upper part of the gastrointestinal tract is colonised by aerobic flora whereas the lower part of the gut is colonised by anaerobes. This may be due to the decrease in concentration of oxygen from the duodenum to the colon (Serino et al., 2009). Evasion of the host immune system results in the development of an infection. Previous studies have shown that micro-organisms have the ability to colonise the reproductive tract by producing enzymes like mucinases and sialidases which degrade the protective mucin layers in the cervix (Wiggins et al., 2001).

Some of the reasons for the colonisation of mucosal surfaces by bacteria may be due to chemotaxis and motility. Previous studies have shown that mutants lacking motility and chemotactic abilities exhibited reduced virulence (Laux et al., 2005). Bacterial flagella can function as adhesins too. Adherence of bacteria to the mucous layer receptors prevents their adherence to the cell receptors of the intestine. But the process behind how this adherence enhances colonisation is not known. Hence the cell surface structures that are expressed in bacteria during colonisation play an important part in understanding the mechanism of pathogenesis (Laux et al., 2005). The B. fragilis genes BF0855 and BF3763 which were cloned and expressed in E. *coli* encoded the putative expression of the enzymes α -fucosidase and α glucosidase respectively. These enzymes have the ability to hydrolyse oligosaccharides into simple sugars like glucose or galactose and may play an important role in the degradation of complex polysaccharides like mucins. These enzymes may be associated with the differential expression of proteins in mucin enriched media and was one of the main reasons for their purification and characterisation in this study.

The study of the genome of organisms is termed as 'genomics' and the sequencing of genomes forms the basic blue print behind the study of proteins. There may be several modifications, interactions and other complex structures formed by proteins but all of these may be linked to the genome through various factors like the environment (Zivy & de Vienne, 2000).

4.6 Proteomics

Proteomics is a field of science that merges the study of genes and proteins employing technologies such as two dimensional gel electrophoresis and mass spectrometry. It is basically a genomic study of the functions and expression of proteins where the two dimensional gel electrophoresis is used to measure the expression of a protein and mass spectrometry is used in protein identification and characterisation. The advancements in the field of genomics has led to the more frequent employment of proteomics to study proteins/enzymes, and has led to advancements in antibacterial drug discovery, identification of drug targets and the

mechanisms of resistance exhibited by bacteria and various other characteristics related to it (Brotz-Oesterhelt *et al.*, 2005).

The term 'proteome' has been derived from the terms 'protein' and 'genome'. There are several factors that can influence the proteome of an organism, namely stress, culture conditions, environment, metabolism, temperature, drugs, illness and so on. The genome encodes the cell specific expression of proteins based on the effect of these factors. Protein modifications also act as important factors that contribute to the functions of a cell and the study of all the proteins produced by a particular species in an environment is collectively termed as proteomics. The five major aspects that contribute to research in proteomics include mass spectrometry based proteomics, proteome-wide biochemical assays, systematic structural biology and imaging techniques, proteome informatics and clinical applications of proteomics (Tyers & Mann, 2003). Proteomics serves as a tool in studying post translational modifications that alter physical and chemical properties of proteins including folding, conformation, stability and functions. Proteomic techniques like stable isotope labelling and novel mass spectrometric peptide sequencing can be used to characterise modifications in proteins like phosphorylation or in membrane proteins. Proteomics has also been used as a valuable tool in the identification of protein isoforms in eukaryotes (Blakeley et al., 2010). Alternate splicing of mRNAs result in a major difference between the sequences of genes present and the translated protein isoforms that can be of varying complexities. Protease associated degradation of proteins acts as an important factor in regulating signalling pathways and other physiological processes where selective affinity purification and tandem mass spectrometric analysis of resulting peptides can be used to study the processing events that may be taking place during cell signalling (Xu et al., 2009).

4.7 Transcriptomics

Analysing or studying proteins that are expressed in a cell through the mRNA present in the cell is called transcriptomics. Transcriptomics forms the link between proteomics and genomics since messenger RNA is the link between genes and proteins (Hegde *et al.*, 2003). Transcriptomics works based on the principle that genes showing similarities in their expression patterns may be functionally related too and hence it may be of importance to study the genes that control these expression profiles. Mutations in gene sequences can be used to study their potential as prospective drug targets, determining the functions of DNA sequences with no known activity based on their similarity to other conserved genes that may be homologous in nature (Twyman, 2003).

4.8 Two dimensional polyacrylamide gel electrophoresis (2D-PAGE)

This technique plays as a major role in the separation of mixtures of proteins. It is mainly composed of two techniques namely isoelectric focussing (IEF) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE).

IEF is the first dimensional separation of the protein based on the net charge that it possesses. A high voltage is applied to the proteins of interest which are to be separated and an immobilised pH gradient technique is used in the separation of proteins using specific reagents. Proteins usually possess a charge and tend to migrate towards the oppositely charged electrode in the presence of an electric field. When a positively charged protein migrates towards the cathode, it passes through an increasing pH gradient which causes an overall decrease in the charge of the protein. Eventually, the protein reaches a pH region that corresponds to its isoelectric point where the net charge becomes zero and migration stops. This results in the formation of a protein band at that particular point. Following the separation based on charges, they are then run on a second dimension SDS-PAGE where the separation is based on the molecular weight and size. This technique employs the use of a denaturing anionic detergent, sodium dodecyl sulphate, in the effective separation of proteins (Gorg *et al.*, 2004). The anionic detergent confers a negative charge to the protein in proportion to its length by wrapping itself around the

polypeptide backbone. When an electric field is applied, the proteins migrate towards the positive electrode. The size of the pores in the polyacrylamide gel are userdefined and differentially retard the migration of proteins based on their size. Smaller protein molecules tend to travel farther down the gel when compared to larger protein molecules that remain closer to the point of origin resulting in effective separation of proteins. Therefore, by combining the separation of proteins based on their charge, or isoelectric point, and size, or relative molecular mass, differential expression studies can be performed.

Previous proteomic studies have been done in analysing the oxidative stress response in *B. fragilis* since they are known to be strict anaerobes and it was found that these bacteria are capable of inducing OxyR regulon genes that respond to the presence of oxygen or hydrogen peroxide in the environment and this might play an important role in their ability to survive within the tissues in the colon (Rocha *et al.*, 2003).

4.9 Mass spectrometry

Separation of molecules on the basis of their mass to charge ratio following ionisation is called mass spectrometry where a mass spectrum is generated based on the intensity of ionisation. The detected spectrum is then compared to a standard database to determine the identity of the complex peptide mixture. The sample is first passed through the ioniser that charges the molecules and the ions that are generated, enter the analyser where the ions are separated in vacuum. The individual ions from the analyser are then passed on to the detector where a spectrum based on the intensity of the ions is generated. The height of the peak in a spectrum is referred to as intensity. Mass spectrometry acts as a major tool in genomics and proteomics where complex molecules and protein mixtures can be identified and analysed (Liebler, 2002). Identification of proteins from a database is called peptide mass fingerprinting (PMF) or peptide mass mapping. Some methods of analysis also involve the comparison of a theoretical calculated spectrum of a database to an experimental spectrum generated from the mass spectrometer. One of the common methods used for the identification of proteins is the tandem mass spectrometry which consists of two phases. The first phase constitutes the ionisation of peptides to produce a spectrum that is used for peptide mass fingerprinting. Some of the peaks from this spectrum are selected based on the intensity and subjected to the second phase of dissociation. The ions are transmitted through a high pressure region of the tandem mass spectrometer containing gas molecules. The gas molecules collide with the ions and further fragment them into ions of varying masses called collision induced dissociation (CID) (Liptak, 2005). Since fragmentation can occur between any two residues along the peptide, differing masses of ions are generated and can be termed as b and y ions (Refer to Figs. 7 and 8). These ions are then mapped to their respective proteins using a database like MASCOT (Johnson, 1987).

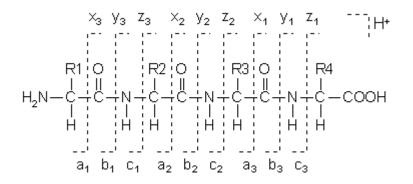


Figure 7 represents the fragment ions in an MS/MS spectrum (Anon, 2010)

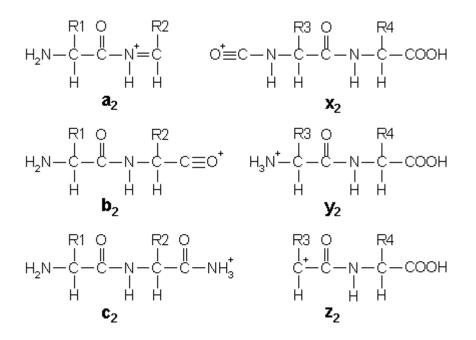
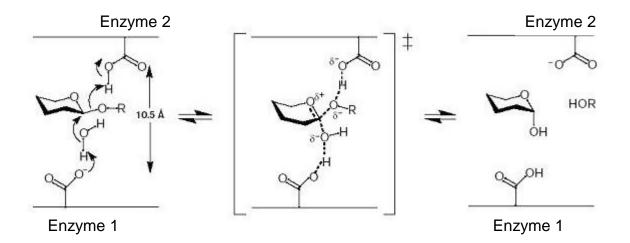


Figure 8 shows the structures of six singly charged sequence ions (Anon, 2010).

4.10 Glycoside hydrolases


Glycoside hydrolases or glycosidases are enzymes that catalyse the hydrolysis of sugars and other complex polysaccharides into smaller and simpler sugar units by hydrolysing their glycosidic linkages. These simple sugars or end products help in carbohydrate metabolism and are used as a source of carbon and energy in bacteria and higher animals. Glycosidases in association with glycosyltransferases, form the main machinery for the synthesis and breakdown of glycosidic bonds. They are produced as extra and intracellular enzymes in bacteria that help to acquire nutrients by breaking down complex compounds into simple sugars. Within the intestinal tract, they are capable of degrading carbohydrates like lactose, starch, sucrose and trehalose.

Glycoside hydrolases can be classified based on the stereochemical outcome of their hydrolysis reactions as inverting or retaining mechanisms. They act on oligo and polysaccharide chains by hydrolysing the glycosidic linkages in the non-reducing end or the middle of the chain. Hence this can be used to classify them as exo-acting or endo-acting glycoside hydrolases. The exo-acting enzymes are capable of cleaving residues from the ends of the polysaccharide chains whereas endo-acting enzymes remove residues from the middle or internal positions in a random manner resulting in several oligosaccharides of different sizes. They have also been classified on sequence based methods where sequence similarity acts as a major factor. This series of sequence based classification of enzymes allows the prediction of their mechanism of hydrolysis, active site residues and possible substrates that can confer this activity. The CAZy website enzyme database is regularly updated and classifies enzymes based on their sequence and three dimensional structural similarities. The glycosidase sequence analysis and three dimensional structure comparison has led to the generation of a hierarchial classification of these glycoside hydrolases (http://www.cazy.org/fam/acc_GH.html).

4.10.1 Inverting mechanism in glycoside hydrolases

Reactions involving the inverting mechanism of hydrolysis of carbohydrates employ the use of two enzymatic residues where one acts as an acid and the other acts as a base. The reaction occurs in the presence of carboxylic acid at the active site. This type of catalysis can be termed as a general acid base assisted catalysis method (Sinnott, 1990).

Figure 9: Figure showing the catalytic mechanism in glycoside hydrolases (<u>http://www.cazy.org/fam/ghf_INV_RET.html</u>)

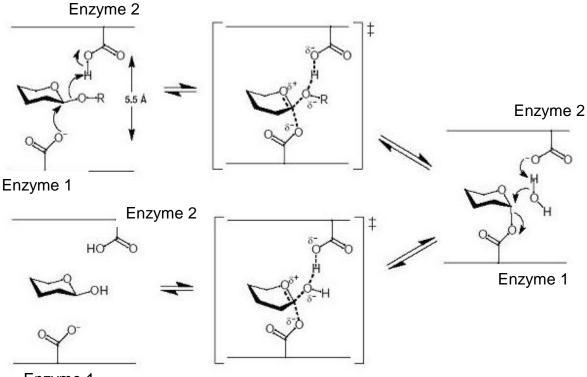


Figure 9.1: Figure showing the inverting mechanism of hydrolysis. Enzyme 1 acts as a base and the enzyme 2 acts as an acid by donating protons.

4.10.2 Retaining mechanism in glycoside hydrolases

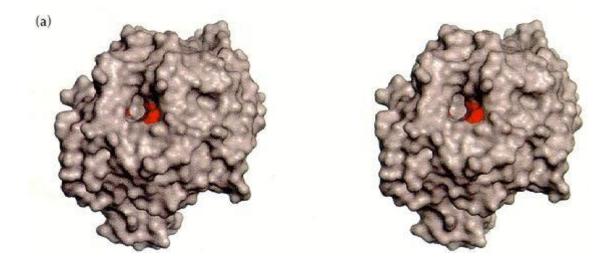
The retaining mechanism involves a 2 step reaction and each step results in an inversion of compounds. There are two enzyme carboxylic acid residues present where one acts as a nucleophile and the other acts as an acid or base by donating or accepting protons respectively. When the nucleophile attacks the anomeric centre in the first step, a glycosyl intermediate is formed. The acidic carboxylate acts as a proton donor and assists the reaction. The second step involves the hydrolysis of the

glycosyl enzyme intermediate by the deprotonated acid carboxylate which acts as a base to produce the hydrolysed product. The reaction also involves the use of a nucleophilic water molecule. The following figure represents the inverting and retaining mechanism of glycoside hydrolase enzymes.

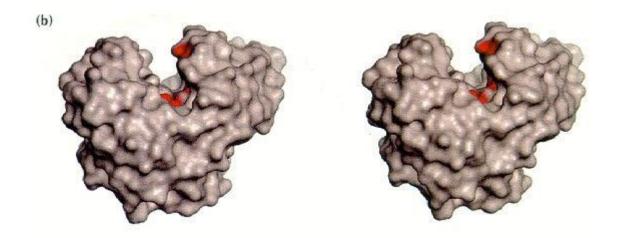
Enzyme 1

Figure 9.2: Figure showing the retaining mechanism of hydrolysis. The enzyme 1 acts as a nucleophile and the enzyme two acts as an acid or a base. A glycosyl enzyme intermediate is formed before the substrate is converted into the hydrolysed product.

4.10.3 Carbohydrate active enzymes (CAZy) based classification of enzymes


The CAZY website classifies enzymes into five main categories namely glycoside hydrolases (GHs), polysaccharide lyases (PLs), glycosyltransferases (GTs) and carbohydrate esterases (CEs) and carbohydrate binding modules (CBMs). Substrate specificity and molecular mechanisms contribute to some of the main factors considered for classification. The relationship between sequences and their folding similarities led to the consideration of amino acid sequence similarities as a major

factor. The active sites remain highly conserved and are maintained with integrity even though the structures of enzymes may differ due to evolutionary divergence. The families have also been grouped into 'clans' based on the strong conservation of the folds of proteins even though sequences were not found to be as conserved as the folds of proteins. This grouping of families into clans would help to overcome structural and sequential resemblances or relatedness of enzymes to more than one family. The other factor that supported the grouping of families into clans was the improved sensitivity of sequence comparison methods. As of May 2009, 115 families of enzymes have been identified and classified in the CAZY website (http://www.cazy.org/fam/acc_GH.html).


4.10.4 Active site topology

Glycoside hydrolases have the presence of specific active sites based on the position of hydrolysis of the polypeptide chain. These may be of three types namely, the pocket site which is characteristic of exo enzymes, the cleft structure that occurs in endo enzyme hydrolysis and the tunnel topology in exo enzyme hydrolysis (refer to the Fig. 10). While the pocket topology binds to the ends of the polysaccharide chains, the cleft topology binds chains randomly within a cleft. The tunnel topology being very similar to the cleft topology has additional polypeptide loops which are present on the top of the cleft giving it a tunnel like appearance. The end of the polypeptide chain enters the tunnel and the digested peptides are released out at the other end. In the case of the cleft active site, random hydrolysis of the polypeptide chain results in the release of oligosaccharides or various lengths (Davies & Henrissat, 1995).

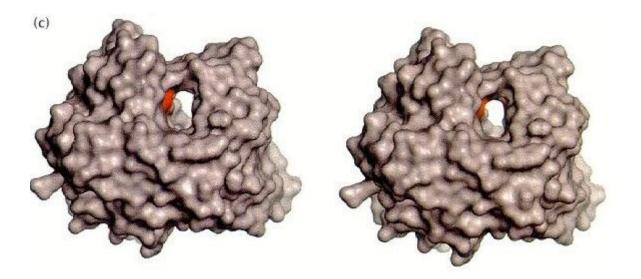

Figure 10: Figure showing the active site topology in glycoside hydrolases (Davies & Henrissat, 1995)

Figure 10.1: Pocket topology. Coloured area indicates the substrate binding site of the enzyme.

Figure 10.2: Cleft topology. Coloured area indicates the substrate binding site of the enzyme.

Figure 10.3: Tunnel topology. Coloured area indicates the substrate binding site of the enzyme.

4.10.5 Genomes of *B. fragilis* and *E. cancerogenus*

Completed published sequences of the genome of a number of different bacteria are readily available online. As of 11th May, 2009, 992 genomes have been published and are available via the Gold genome database. The online database reports 2523 ongoing bacterial genome sequencing projects along with 1029 eukaryotic genomes and 96 archael ongoing projects. The total number of ongoing genome projects has been reported to be 4807 when compared to 2006 when it was 2172 (http://www.genomesonline.org/gold.cgi).

The sequencing of genomes provides important information regarding the function of proteins. Once a genome is sequenced, the DNA is annotated as putative open reading frames (ORFs) containing information about the coded regions including exons, introns, promoters and so on (Zhang, 2006). Based on the translation of these ORFs, proteins or amino acid sequences can be obtained and searched against a sequence database to determine a list of proteins with the highest scores. Protein hits that show a very high degree of similarity or homology indicate a functional similarity between the two proteins. This can also be used to study the similarities and relationships between different bacterial species. Some of the problems that may be associated with this approach are that one particular gene could encode for more than one protein and this could create confusion during analysis (Pennington & Dunn, 2001).

The genome of *B. fragilis* NCTC 9343 has been sequenced and published by the Sanger Institute (http://www.sanger.ac.uk/Projects/B_fragilis/). The genome of *E. cancerogenus* ATCC 35316 is still being sequenced and is available through the NCBI website but work is still ongoing. The sequencing information is available from the Washington University or through the Gold genomes online database (http://www.genomesonline.org/gold.cgi?want=Bacterial+Ongoing+Genomes).

Genomes of various species of *Bacteroides* namely *B. vulgatus*, *B. diastonis* were compared with *B. fragilis* and *B. thetaiotomicron* in a study. The conserved gene sets were grouped into Clusters of orthologous groups. Gut associated Bacteroidetes proteomes showed the predominant expression of conserved genes in carbohydrate transport and metabolism followed by cell wall or membrane or envelope biogenesis. The shared proteome of Bacteroidetes showed the expression of genes involved in amino acid transport and metabolism followed by translation, ribosomal structure and biogenesis genes (Xu *et al.*, 2007).

4.10.6 Glycoside hydrolase families GH95 and 97 and the putative activity of their enzymes

The GH95 BF0855 gene encodes for a conserved hypothetical protein containing 755 amino acids with a molecular weight of 86 kDa. The CAH06598.1 protein exhibits putative α 1-2, L-fucosidase and α -L-fucosidase activity and the catalytic nucleophile is asparagine that is activated by aspartic acid residues (Cerdeno-Tarraga *et al.*, 2005). The catalytic proton donor has been identified to be glutamic acid residues. Previous structural studies of these enzymes in *Bifidobacterium bifidum* have shown that the enzyme has a high degree of similarity to the immunoglobulin Ig domains with similar folding patterns. They possess α/α six barrel or catalytic TIM type barrel domain and are active against substrates like 2'-fucosyllactose and lacto-N-fucopentaose I (Katayama, 2004).

The GH97 BF3763 gene encodes for a putative export protein containing 649 amino acids with a molecular weight of 74 kDa. The CAH09443.1 protein is known to be a

putative α -glucosidase or α -galactosidase. Enzymes that exhibit inverting mechanisms of catalysis contain glutamic acid as nucleophiles and those that exhibit retaining mechanisms of catalysis possess aspartic acid residues as nucleophiles (Gloster *et al.*, 2008). Previous studies of the starch utilisation system in *Bacteroides thetaiotomicron* showed an inversion mechanism of catalysis liberating a β -anomer of glucose (Kitamura *et al.*, 2008). The possess α/β eight barrel or catalytic TIM barrel type domains and the amino acids of the active site are located at the C-termini of the β -strands. These proteins exhibit a high degree of similarity to proteins of other families that exhibit a retaining mechanism of glycoside bond hydrolysis (Naumoff, 2005).

The BF0855 gene from *B. fragilis* NCTC 9343 which was cloned and expressed in *E. coli* with a putative activity of α -L-fucosidase or 1, 2 α -L- fucosidase catalyses the reaction between α -L- fucoside and water resulting in the formation of L- fucose as an end product. These enzymes belong to the family of glycoside hydrolases that hydrolyse O and S glycosyl compounds and are also known as α -L- fucoside fucohydrolase. It is involved in n- glycan and glycan structure degradation and may be involved in the degradation of mucin by bacteria. 1, 2- α -L- fucosidase catalyses the following reaction:

Methyl- 2- para- L- fucopyranosyl- β - D- galactoside + H₂O \leftrightarrow L- fucose + methyl β - D- galactoside.

5 Aims of the study

This study aims at understanding the differences in protein expression in *E. cancerogenus* ATCC 35316 and *B. fragilis* strain NCTC9343 in mucin-supplemented media in comparison to basic semi-defined media containing glucose as the carbohydrate source. These are commensal organisms that act as opportunistic pathogens and can cause infections within the host when the immune system is impaired.

Two dimensional gel electrophoresis technologies would be employed, where the proteins were first separated in the first dimension based on their charge and pH using isoelectric focussing and then separated using the second dimension polyacrylamide gel electrophoresis based on their molecular weight. Protein expression profiles would be generated for both bacteria grown in the presence and absence of mucin and compared. Comparative analysis of gels would be used to determine the protein spots that show a differential expression in the presence of mucin.

The protein spots of interest will be excised and subjected to in-gel trypsin digestion where the peptides produced from the degradation of proteins would be analysed using a nano flow liquid chromatography coupled mass spectrometer. This would help to identify the protein based on the mass spectrum (m/z ratio) generated from the MS-MS fragmentation of peptide ions. The identification of the differentially expressed proteins may provide an insight into the indirect association of bacteria and their colonisation of mucin. It may also be interesting to use mucin-coated cell culture plates to study the interaction between bacteria and mucin in the presence of a host immune response.

This study also aims to express, purify and crystallise the proteins CAH06598 and CAH09443 from the glycoside hydrolase families 97 and 95 in *B. fragilis* strain NCTC 9343 which produce the enzymes with the putative functions of α -fucosidase and α -glucosidase respectively. The recombinant enzyme activity was analysed against different chromophoric and fluorogenic substrates. Crystallisation of proteins would be useful in determining its three dimensional structure and obtain a detailed understanding of its active sites.

6. Materials for the Proteomics experiment

6.1 Culture Conditions

Bacteroides fragilis strain NCTC 9343 and Enterobacter cancerogenus ATCC 35316 were cultured in Columbia agar plates (CBA). A single colony from the plate was used to inoculate 20 mL of sterile anaerobic broth media (Bac T/ ALERT SN). The medium was incubated overnight in an anaerobic chamber at 37 °C. A loopful of the liquid culture was used to streak a CBA plate (Figure 3). The purity of the subculture was confirmed by Gram staining which showed Gram-negative rods.

6.2 Anaerobic chamber

The bacteria was cultured and maintained in an anaerobic chamber that was flushed with 80% nitrogen gas, 10% carbon dioxide and 10% hydrogen (Cox & Mangels, 1976).

6.3 Minimal media used for the growth of *B. fragilis*

Minimal media used for the growth of *B. fragilis* according to the method of Varel and Bryant (1974)

Per 100 ml	
Glucose	0.5 g
Mineral solution ¹	5.0 mL
Hemin solution ²	0.1 µL
Resazurin solution ³	0.1 µL
Volatile fatty acid solution ⁴	0.45 mL
Vitamin B solution ⁵	0.5 mL
FeSO ₄ -7H ₂ O	0.4 mg
6 mM (NH ₄) ₂ SO ₄	5.0 mL
Casitone (Difco)	0.2 g
Amino acid mixture ⁶	20 mL
2.5% (w/v) Cysteine-HCI solution	2.0 g
8% (w/v) Na ₂ CO ₃ solution	5.0 mL

The medium was made up with distilled water and autoclaved before use. The pH of the medium was adjusted to 7.0 and all components were added before autoclaving except sodium carbonate and cysteine. The medium was incubated overnight in the anaerobic chamber at 37°C in the absence of oxygen before inoculation of starter cultures.

6.3.1 Stock solutions

6.3.1.1	Mineral solution ¹		
Per litre			
KH_2PO_4		18	g
NaCl		18	g
CaCl ₂ -2H ₂ O		0.5	3 g
MgCl ₂ -6H ₂ O		0.4	g
MnCl ₂ -4H ₂ O		0.2	g
CoCl ₂ -6H ₂ O		0.0	2 g

6.3.1.2 Hemin stock solution²

A stock concentration of 0.1% (w/v) of hemin solution was obtained by dissolving 0.1 g of hemin in 1 mL of 0.1 M sodium hydroxide and then diluted to 100 mL with distilled water and appropriate dilutions of the stock were added to obtain a final concentration of 0.0001% (w/v) of hemin solution.

6.3.1.3 Resazurin solution³

A stock concentration of 0.1% (w/v) of resazurin solution was prepared by dissolving 0.1 g of resazurin in 100 mL of sterile 18.2 M Ω /cm and appropriate dilutions of the stock were added to obtain a final concentration of 0.001% (w/v) of resazurin solution.

6.3.1.4	Volatile fatty acid solution ⁴	
Per 100 mL		
Acetic acid		36 mL
Isobutyric ac	id	1.8 mL

<i>n</i> -Valeric acid	2.0 mL
DL-2 Methylbutyric acid	2.0 mL
Isovaleric acid	2.0 mL

6.3.1.5 Vitamin B solution⁵

Per 100 mL	
Thiamin-hydrochloride	20 mg
Calcium-D-pantothenate	20 mg
Nicotinamide	20 mg
Riboflavin	20 mg
Pyridoxine-HCI	20 mg
p-aminobenzoic acid	1 mg
Biotin	0.25 mg
Folic acid	0.25 mg
Vitamin B12	0.1 mg

Amino acid mixture⁶ 6.3.1.6 Per 50 mL L-histidine-hydrochloride 25 mg L-tryptophan 25 mg Glycine 25 mg L-tyrosine 25 mg L-arginine-hydrochloride 50 mg L-phenylalanine 50 mg L-methionine 50 mg L-threonine 50 mg 50 mg L-alanine L-lysine 75 mg L-serine 75 mg L-valine 75 mg 75 mg L-isoleucine L-proline 75 mg 75 mg L-aspartic acid L-leucine 100 mg

L-glutamic acid

6.4 Semi defined growth media

Per 100 mL	
Casitone	0.5 g
Yeast extract	0.5 g
Ammonium sulphate	0.08 g
Salts solution A*	0.04 mL
Salts solution B *	0.005 mL
Hemin solution	0.01 mL
Glucose	0.5 g
Sodium carbonate	0.8 g
Cysteine-HCI	0.05 g

The medium was adjusted to a pH of 7 and all components were added before sterilisation except glucose and Na₂SO₄. Sterile glucose and sodium carbonate solutions were prepared separately and added aseptically to the medium. The medium was incubated overnight at 37 °C in the anaerobic chamber before inoculation with the starter cultures. The hemin solution was prepared by dissolving 50 mg of hemin in 1 ml of 0.1 M NaOH which was diluted with distilled water to 100 mL. In 100 mL of the mucin supplemented semi-defined media, 0.5 g of mucin Type II or III were added to the media in addition to 0.5 g of glucose and autoclaved. The 0.5 g refers to the total amount weighed out and added rather than the concentration of sugars in mucin.

Sigma-Aldrich porcine gastric mucin Type II and Type III were used in the proteomics experiments. A quantity of 0.5 per of the glycoprotein was weighed out and added to 100 mL of the semi-defined medium and dissolved by vigorous shaking. Mucin was added to the semi-defined medium just before autoclaving and care was taken to avoid inhaling the chemical dust.

6.4.1 Stock solutions

6.4.1.1 Salts solution A

Per litre	
CaCl ₂	0.2 g
MgSO ₄	0.2 g
K ₂ HPO ₄	1.0 g
KH ₂ PO ₄	1.0 g
NaCl	2.0 g
NaHCO ₃	10.0 g

6.4.1.2 Salts solution B

Per litre	
FeSO ₄ -7H ₂ O	2.0 g
CoCl	0.08 g

6.5 Gram staining reagents

Crystal violet	5 mL
Gram's iodine	5 mL
Acetone	5 mL
Safranin solution	5 mL

6.6 SDS-PAGE Loading buffer

Per 10 mL	
60 mM Tris Base pH 6.8	0.6 mL
50% (w/v) glycerol	5 mL
10% (w/v) sodium dodecyl sulphate (SDS)	2 mL
14.4 mM β-mercaptoethanol	0.5 mL
1% (w/v) Bromophenol blue (BPB)	1 mL

Stored as 1 mL aliquots at -20 °C

6.7 Protein size standards

High molecular weight standard (M.W. 36, 45, 55, 66, 84, 97, 116 and 205 kDa) Low molecular weight standard (M.W. 20, 24, 29, 36, 45 and 66 kDa) To obtain a final concentration of about 2.0-3.5 mg/mL, the lyophilised standards were reconstituted in 100 μ L of 18.2 MΩ/cm water and aliquoted out in 4 μ L quantities into 1.5 mL microcentrifuge tubes and stored at -20°C. Refer to appendix D for the list of proteins used as a source for producing these size standards.

6.8 Buffers and solutions used for the Proteomics experiment

6.8.1 Cell resuspension buffer

The cell resuspension buffer has the same recipe as that of the phosphate buffered saline (6.8.2)

6.8.2 Phosphate buffered saline (PBS)

Per litre (pH 7.0)	
NaCl	8 g
KCI	0.2 g
KH ₂ PO ₄	0.2 g
Na ₂ HPO ₄ -12H ₂ O	1.44 g

6.8.3 Lysis solution

Per 10 mL		
Urea	4.8 g	
3-[(3-Cholamidopropyl)	dimethylammonio]-2-hydroxy-1-propane sulph	nonate
(CHAPS)	0.4 g	
The solution was made	up in a sterile universal and aliquoted ou	t into

The solution was made up in a sterile universal and aliquoted out into microcentrifuge tubes in 1 mL quantities. This was then stored at -20°C and 2 μ L of IPG buffer was added to every 100 μ L before use.

6.8.4 Rehydration solution (for IPG strips pH 3-10 or 4-7)

Per 10 ml	
Urea	4.8 g
CHAPS	0.4 g
1% (v/v) BPB	20 µL

1% (w/v) bromophenol blue solution was prepared by dissolving 1 g of bromophenol blue dye in 100 mL of 18.2 M Ω /cm water.

The rehydration solution was divided into 700 μ L aliquots and stored at -20°C. Prior to use, 14 μ L IPG buffer (pH 3-10 or 4-7) and 1.4 mg of ditiothreitol (DTT) was added to each tube to give a final concentration of 2% (v/v) and 0.2% (w/v) respectively.

Isoelectric focusing or the first dimension separation of proteins was carried out using a Multiphor II electrophoresis system involving the use of other components listed in the Appendix section B.

Main parts include the anode and cathode electrodes, tray and electrode holder, dry strip aligners, IEF electrode strips.

6.8.5 Equilibration solution

Stock solution:	
Per 200 mL	
1.5 M Tris-HCI (pH 8.8)	10 mL
Urea	72 g
Glycerol	69 mL
SDS	2 g
1% (v/v) BPB	200 µL
The steal solution was stared at 2000 in 20 mL alignate	

The stock solution was stored at -20°C in 20 mL aliquots.

6.8.5.1 Equilibration buffer with DTT

Per 20 mL	
Equilibration stock solution	20 mL
DTT	0.2 g

6.8.5.2 Equilibration buffer with lodoacetamide (IAA)

Per 20 mL	
Equilibration stock solution	20 mL
Iodoacetamide (IAA)	0.9 g

6.9 Second dimension-SDS-PAGE

The SDS-PAGE was performed using a Protean II XL 2-D cells (Bio-Rad).

4 mm xi clamp notch vs 13 mm XL clamp notch

19 mm xi spacer vs. 8 mm XL spacer

181 mm xi core gasket vs. 198 mm XL core gasket

153 mm xi comb vs. 184 mm XL comb

The main parts include tank and lid, central cooling core, casting stand, sandwich clamps, alignment card and combs.

Small gels- glass plate sizes were 10.1 X 8.2 cm

Large gels- glass plate sizes were 20 X 20 and 20 X 22 cm separated by spacers of 1.5 mm

6.9.1 14% (w/v) Resolving gel components

18.2 MΩ/cm water	58 mL
1.5 M TRIS-HCI, pH 8.8	37.5 mL
10% (w/v) SDS stock	1.5 mL
40% (v/v) solution (37.5:1 acrylamide: bisacrylamide)	52.2 mL
10% (w/v) APS	750 µL
N, N,N',N'-Tetramethylethylenediamine (TEMED)	75 µL

6.9.2 4% (w/v) Stacking gel components

18.2 MΩ/cm water	12.85 mL
0.5 M TRIS-HCI, pH 6.8	5 mL
10% (w/v) SDS stock	200 µL
40% (v/v) solution (37.5:1 acrylamide: bisacrylamide)	1.95 mL
10% (w/v) ammonium persulphate (APS)	100 µL
TEMED	20 µL

1% (w/v) BPB

20 µL

6.9.3 Agarose sealing solution

Per 20 mL	
Running buffer (1 X)	19 mL
Agarose	0.1 g
1% (w/v) BPB	40 µL

Protein size standards were the same as those mentioned in the above sections (Refer to Appendix D for details).

6.9.4 Staining and destaining solutions

6.9.4.1 Colloidal Coomassie blue stock

Per litre	
Ammonium sulphate	100 g
Phosphoric acid	20 mL
Coomassie blue G 250	1 g

20 mL of 18.2 M Ω /cm was used to dissolve 1 g of Coomassie blue G 250. A 20 mL solution of phosphoric acid was used to dissolve 100 g of ammonium sulphate and 18.2 M Ω /cm water was added if necessary. The two solutions were then mixed together and made up to 1 litre with 18.2 M Ω /cm water.

The stock solution was stored at room temperature until use.

6.9.4.2 Fixing solution (Colloidal Coomassie blue staining)

Per litre	
Methanol	500 mL
Glacial acetic acid	120 mL

6.9.4.3 Staining solution (Colloidal Coomassie blue staining)

The stock solution was shaken well to suspend the Coomassie blue stain and four parts of the Coomassie stock was diluted with one part methanol before use.

6.9.4.4 Fixing solution (Fluorescent staining)

Per litre	
Ethanol	400 mL
Acetic acid	100 mL

6.9.4.5 Staining solution (Fluorescent staining)

A 10 X concentration of the Bio-Rad FlamingoTM fluorescent gel stain was diluted to a 1 X working concentration of the solution with 18.2 M Ω /cm.

6.9.5 Visualisation of the stained gels

The Bio Rad Chemi doc XRS (Quantity One [™] software, Resolution: 1392 X 1040 pixels) was used to capture images of the gel using UV transillumination for fluorescence stained gels and the GS-800 densitometer (Resolution: 1360 X 1024 pixels) was used to scan Coomassie blue stained gels. Hard copies of the gel were printed out using the Mitsubishi Video Copy Processor attached to it.

Image acquisition for Coomassie blue stained gels was carried out using Bio-Rad GS-800 image densitometer and further analysis was done using the PDQuest[™] Advanced v 8.0 software. Hard copies of the gel were produced using the Mitsubishi Video Copy Processor (K65HM-_{CE} / High density type, 110 cm X 21 m). The raw image data which was obtained from scanning the gels using the GS-800 densitometer (Bio-Rad Quantity One [™] software) was uploaded into the other two softwares, Ludesi Redfin and Non-linear Dynamics Progenesis SameSpots and used in analysis.

6.10 Digestion of proteins for Mass Spectrometric analysis

6.10.1 Protein digestion in solution

6.10.1.1	Dissolve solution	
Per 100 mL		
SDS		0.1 g
Tris base		6.06 g
Dithiothreitol	(DTT)	77.1 mg

The solution was adjusted to a pH of 8 using HCl and stored at room temperature.

6.10.1.2 Trypsin stock (1 μg/μL) (Promega and NEB)

Vial containing the lyophilised powder was stored at -20°C	
Trypsin lyophilised powder 20 μg/mL	100 µg
Glacial acetic acid (50 mM)	100 µL

The trypsin powder was dissolved in 50 mM glacial acetic acid and stored at -20°C for upto 1 month or at -80°C for a long term.

6.11 In-gel protein digestion reagents

6.11.1	100 mM NH₄HCO₃		
Per 10 mL			
NH ₄ HCO ₃		79 mg	
6.11.2	50 mM NH₄HCO₃		
Per 10 mL			
100 mM NH₄HCO₃		5 mL	
6.11.3	Trypsin solution (20 μg/mL)		
Per 100 µL			
1 μg /μL tryp	sin stock	2 µL	
50 mM NH₄H	HCO ₃	98 µL	
6.12 Buffers used in LC-MS analysis			
6.12.1	Start buffer A		

Per 100 mL	
LC-MS Grade Water	95 mL
LC-MS Grade Acetonitrile	5 mL
Formic acid	0.1 mL

6.12.2 Start buffer B

Per 100 mL	
LC-MS Grade Acetonitrile	95 mL
LC-MS Grade Water	5 mL
Formic acid	0.1 mL

The solution was made up fresh before use.

7 Methodology used for the proteomics experiment

7.1 Growth study in *B. fragilis*

Ampules of *B. fragilis* were ordered from the National Collection of Type Cultures (NCTC) and used to inoculate the anaerobic basal broth media and incubated in the anaerobic chamber at 37°C overnight. The bacteria were sub cultured in Columbia blood agar media or brain heart infusion broth media.

The initial growth curve experiment was carried out by growing the bacteria in minimal medium whose components have been mentioned in the Materials section 6.3. But since the growth in the medium was not found to be reasonable enough for analysis, a semi defined medium was used. The components of the media varied with respect to yeast extract being used as the source of vitamin B. The medium was autoclaved before use and incubated overnight in the anaerobic chamber before inoculation. Mucin and glucose were weighed out and added at 0.5 g per 100 mL to the semi-defined growth media.

The semi defined media supported quicker growth of bacteria. Experiments were performed by using different carbon sources.

The culture was incubated at 37°C in the anaerobic chamber. The anaerobic condition within the chamber was monitored by using resazurin indicator strips that turned pink in the presence of oxygen in the chamber environment. Refer to Appendix E1 for details.

7.2 Growth curve studies

Small volume (20 mL) overnight starter cultures were used to inoculate large volumes (450 mL) of the media and the optical density of the media were monitored at various time intervals by measuring the absorbance at 600 nm and plating out serial dilutions of the culture. The time periods that were used to monitor the growth in *E. cancerogenus* were 0 h, 2 h, 3 h, 4 h, 5h, 6 h, 7 h, and 8 h whereas the time periods in *B. fragilis* were 0 h, 4 h, 6 h, 21 h, 22h, 23 h, 24 h, 25 h, 26 h, 27 h, 28 h, 29 h, 30 h, 31h, 46 h, 47h. The growth of *B. fragilis* in the medium was found to be slower and hence more time points were monitored. For each and every time point, the culture was mixed well and 1 mL was transferred into a plastic cuvette with a sterile pipette tip. The OD was measured at 600 nm using a Cecil Spectrophotometer. 100 μ L of the culture was spread out onto a sterile CBA agar

plate and incubated overnight at 37°C. 1 mL of the culture was used to perform appropriate serial dilutions into test tubes containing 9 mL of sterile distilled water. Care was taken to maintain aseptic conditions within the chamber while performing the experiment. All experiments were performed in triplicates and the average values were calculated. Growth curves were plotted out to determine the phase of growth of the bacterium.

7.3 Two dimensional polyacrylamide gel electrophoresis (2D-PAGE) methodology

Two dimensional gel electrophoresis comprised of a series of steps from the growth of bacteria, protein extraction and one dimensional iso-electric focussing to the two dimensional separation of proteins using SDS-PAGE. The methodology has been explained in detail in the following sections.

7.4 Growth of *E. cancerogenus* and *B. fragilis* in semi defined media

A loopful of the glycerol stock was used to streak out a plate of Columbia blood agar medium and incubated overnight at 37°C in an anaerobic chamber.

A single colony of the bacteria from the culture plate was used to inoculate 450 mL of the semi-defined medium supplemented with and without mucin the following day. The semi defined medium was incubated overnight in the anaerobic chamber before inoculation. The culture was incubated in the anaerobic chamber till the optical density reached a value of 0.7 at 600 nm.

7.5 Protein extraction

A volume of 100 mL of the culture was then centrifuged at 4000 x g for 30 min at 4°C. Following this, the pellets were resuspended in 5 mL of PBS and washed at 4000 x g for 10 min at 4°C. The washing step was repeated 3 times and the final resuspension step was performed in 1 mL of PBS buffer. To 2 μ L of IPG buffer pH 4-7 or 3-10, 100 μ L of lysis solution stock was added to prepare the lysis solution and 100 μ L of this was added to each of the samples. The pellets were then ultrasonicated on ice for 1 min at 10 s intervals and then centrifuged at 14000 x g for 30 min at 4°C. The pellets were then discarded and the supernatant was transferred into clean 1.5 mL microcentrifuge tubes.

The cell free extract was subjected to removal of contaminants using the 2D clean up kit. It also helped to get rid of residual polysaccharides. To 100 μ L of the cell free extract, 300 μ L of precipitant solution was added and incubated on ice for 15 min.

To this, 300 μ L of the co-precipitant was added and vortexed well before centrifuging it for 5 min at 14000 x g. The supernatant was discarded and 40 μ L of the coprecipitant was added to the pellets and incubated on ice for 5 min. This was then centrifuged at 14000 x g for 5 min and the supernatant was discarded. 25 μ L of 18.2 M Ω /cm water was added and vortexed well. To this, 1 mL of chilled wash buffer and 5 μ L of wash additive were added before incubating the tubes at -20°C for atleast 30 min. The tubes containing the proteins could be stored at -20°C for a maximum of one week with minimal protein loss. The solution was centrifuged at 14000 x g for 5 min after which the supernatant was removed and the pellets were allowed to dry for half a min.

The pellets were re-suspended in 350 μ L of rehydration solution containing 0.001 g of DTT, 4 μ L of BPB, 7 μ L of IPG buffer and 350 μ L of the rehydration stock solution. The solution was vortexed and centrifuged at 14000 x g for half a min to remove the insoluble residue and the solution was transferred into the wells of the reswelling tray.

IPG strips of 11 cm length, 3.3 mm width and 0.5 mm thickness (pH 3-10 or 4-7) which were stored in the freezer at -20°C were taken and the plastic was removed from its surface. The strips were layered in the wells of the reswelling tray in such a way that the gel end of the strip was facing the rehydration solution and the positive end of the strip was located at the lower end of the reswelling tray. Once the strips were layered in the wells, the surfaces of the strips were covered with Dry strip cover fluid and left to rehydrate overnight at room temperature.

72

7.6 Iso-electric focussing

рН	Step	Voltage	Time (h)	kVh	Current	Power
intervals		(V)			(mA)	(W)
4-7	1	500	0:01	-	2	5
	2#	500	6:00	3.0	2	5
	3	3500	1:30	3.0	2	5
	4	3500	8:00	30	2	5
		Total:	15:31	•	•	

The temperature was maintained at 20°C

This step was included only when the Multiphor II Electrophoresis system was left running overnight since this is an optional step.

Table 1: Table showing the parameters used in isoelectric focussing, pH 4-7

рН	Step	Voltage	Time (h)	kVh	Current	Power
intervals		(V)			(mA)	(W)
3-10	1	500	0:01	-	2	5
	2	3500	1:30	3.0	2	5
	3	3500	6:00	22.0	2	5
		Total:	7:31			

i otal: 7:31

Table 2: Table showing the parameters used in isoelectric focussing, pH 3-10

The Multiphor II from Amersham Biosciences was used to run the 1st dimension isoelectric focussing.

Two electrode contact strips of 11 cm were cut out and moistened with 1 mL of 18.2 $M\Omega/cm$ water. The Dry strip cover fluid was poured on to the cooling plate and the Drystrip tray with its anode at the upper end [red] and the cathode at the lower end [black] was placed on it. The cathode and anode ends were connected to the Multiphor II isoelectric focussing unit. About 15 mL of the Dry strip cover fluid was poured on the tray and the Dry strip tray aligner was placed on it with the groove side facing upwards. Care was taken to avoid formation of air bubbles while aligning the dry strip tray on the cover fluid since it could affect the thermal contact. The rehydrated Dry strip gels from the reswelling tray were removed and placed parallel to each other along the lanes of the tray with their gel side facing upwards. The cathodic and anodic ends of the strips along with the gel surface were kept in contact by the moistened electrode strip. The electrodes were placed and pressed down on these electrode strips. The cover fluid was poured over the strips to immerse them completely and a programmed EPS 3501 XL power supply (Amersham Biosciences) was switched on. The Techne Circulator C-100 with a TECAM Heat exchanger was used to maintain a temperature of 20°C throughout the process of separation. The gels were left to run for atleast 8 h and the strips were stored at -80°C in plastic petridishes until use. The parameters used in running the IEF strips have been detailed in Tables 1 and 2.

7.7 Casting of SDS-PAGE gel

Two glass plates of size 20 X 20 cm and 20 X 22 cm were wiped clean with 50% ethanol. The glass plates were aligned parallel to each other with a spacer of 1 mm thickness placed in between them around the edges. Single screw clamps were used to clamp the plates together tightly and the whole set up was mounted on a rubber gasket placed on a casting stand.

A 12% (w/v) resolving gel was prepared as mentioned in the materials section and the solution was degassed for 30 min after which it was pipetted out into the space between the glass plates upto about 4 cm from the top of the smaller plate. The surface of the solution was overlayed with 18.2 M Ω /cm water and allowed to polymerise for 45 min atleast. After the gel was set, the overlayed water was poured out and a clean filter paper was used to remove any residual liquid.

A 4% (w/v) stacking gel acrylamide solution was prepared and layered on top of the resolving gel solution. A comb containing a long 17 cm well and a small size standard well measuring 1.5 mm in thickness was immediately inserted into the gap between the plates. Care was taken to avoid formation of air bubbles by inserting the combs at an angle. This was allowed to polymerise for 30 min at least. Once set, the combs were removed and the surface of the gel was rinsed with copious amounts of 18.2 M Ω /cm water to get rid of any gel debris or unpolymerised acrylamide.

The frozen IPG strips were equilibrated with 0.1 g of dithiothreitol (DTT) in 10 mL of the equilibration stock solution by gentle rocking on a shaker for 15 min. The equilibration step was repeated again with 0.45 g of iodoacetamide (IAA) instead of DTT. IAA was dissolved in 10 mL of the equilibration stock solution and the strips containing the gel were gently rocked on a shaker for 15 min.

The strips were placed on a filter paper moistened with 18.2 M Ω /cm water to drain all the excess liquid. Approximately 1 cm of plastic from the negative edge of the strip was cut off in order to obtain a suitable length. The strips were layered on the top of the gel and liquid agarose sealing solution was poured in between the glass plates allowing it to cool down. Care was taken to ensure that the strips were placed with their gel side facing the smaller glass plate.

The gels containing the strips were loaded onto the SDS PAGE electrophoresis unit by assembling them on a cooling core which was gently immersed at an angle into a gel tank containing about 2.0 L of running buffer. Protein size standards of 8 μ I were loaded into the respective wells of each gel present on either side of the cooling core. Running buffer was also used to fill up the upper compartment containing the electrodes.

The second dimension was run in the electrophoresis unit where the lower and upper parts of the tank were filled with the running buffer. A current of 8 mA was applied to two gels and the process was normally complete in about 4 h which was indicated by the bromophenol blue dye that ran down the gel and started to come off. Throughout the separation process, the cooling core was maintained at a temperature of 10°C using the Techne Circulator C-100 with TECAM Heat Exchanger 1000.

On completion of the process, the clamps were removed and the gels were transferred to large storage containers and 250 mL of the fixing solution was added to it. The gels were fixed for about 1 h with gentle rocking.

The fixing solution was replaced by 250 mL of the Coomassie blue staining solution which was left rocking on a shaker overnight at room temperature.

75

Following this, the gels were destained using 18.2 M Ω /cm water for 4-6 h and the images were scanned and analysed using the PDQuest software. The raw image data obtained from scanning the gels using GS-800 Bio Rad densitometer was uploaded and used in analysis in the Redfin and SameSpots softwares.

7.8 Fluorescent staining

Attempts were also made to use fluorescent staining for visualising gels containing protein spots. Once the second dimension run was complete, the gels were left overnight in the fluorescent stain fixing solution with gentle rocking on a laboratory rocker. The gels were transferred to the staining solution the following day and allowed to stain from 3 to 8 h. The gels were stored in special storage boxes wrapped with aluminium foil to avoid contact with sunlight.

7.9 Visualisation of the stained gel

The Bio Rad Chemi doc XRS (Quantity One [™] software) was used to capture images of the gel using UV transillumination. Hard copies of the gel were printed out using the Mitsubishi Video Copy Processor attached to it.

7.10 Gram staining procedure

7.10.1 Heat fixed film preparation

A droplet of water was spread on to the surface of a clean glass slide with the help of a sterile plastic loop. A single colony of the bacteria was picked from a fresh culture plate with another sterile loop and mixed gently with the droplet of water and allowed to dry at room temperature. The slide was heat fixed by passing it through a Bunsen flame. Care was taken to avoid heating the slide too much since it could result in the charring of proteins. The slide was allowed to cool after heat fixation and subjected to Gram staining.

7.10.2 Gram staining

The heat fixed slide was flooded with methyl violet stain for 30 s. The stain was poured off after 30 s and the slide was flooded with Gram's iodine using a Pasteur pipette. The slide was left for 30 s with Gram's iodine on it and then gently rinsed off with tap water. Following this, the decolourising agent, acetone was used to flood the slide for just a few seconds (3-4 s) and washed off instantly in running tap water. The slide was finally flooded with Safranin stain for 30 s. The slide was rinsed off with tap water and dried with a blotting paper. Once the slide was completely dry, it was observed under the microscope using the oil immersion lens (X 100).

7.10.3 Expected Result

The presence of violet or deep purple stained cells indicate that the bacteria may be Gram positive and the presence of red, pink or orange cells indicate that they are Gram negative in nature.

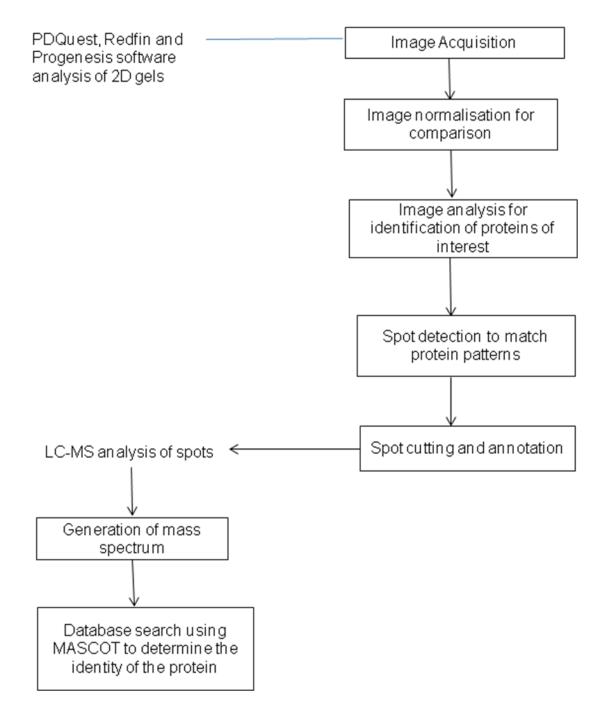


Figure 11: Methodology used for the analysis of spot data

7.11 PDQuest analysis

7.11.1 Acquiring images

The Bio-Rad GS-800 image densitometer was used for scanning and obtaining images of the 2D gels. Atleast 6 gel images were generated from every condition in order to ensure reproducibility of results. The cultures were grown in 450 mL volumes and separated out into 4 samples (Figs. 20.1-20.4, 21.1-21.4, 22.1-22.4, 23.1-23.4, 24.1-24.4, 25.1-25.4) of 100 mL volume each when they reached the appropriate optical density. A second lot of 450 mL cultures were grown independently to process the rest of the 2 or 3 samples (Figs. 20.5-20.7, 21.5-21.6, 22.5-22.8, 23.5-23.6, 24.5-24.6, 25.5-25.6)). Proteins were extracted from these biological replicates and 100 µL of the cell free extract from each sample was processed separately using the 2D Clean up kit. Hence 4 samples of the cell free extracts used in sequential optimisation experiments were from the same pool of material whereas the other 2 were from a separate culture. The PDQuest [™] software uses Bio-Rad imaging services to convert the signals from biological samples into digital data. The gel was initially 'Preview' scanned and specific sections of the gel which contained all the protein spots were framed and acquired. Fig. 9 shows the steps involved in the processing of data.

All the gels were scanned at the same time and care was taken to keep the frame dimension the same in all the cases. Once scanned, the images were saved and copies were printed out using the Mitsubishi Video Copy Processor. The gels can be cropped or rotated according to the crop and rotation tools on the Image menu. PDQuest was used as the default software for analysis based on the Student t-test.

7.11.2 Spot detection

The spot detection wizard was used to start up an experiment and step wise analysis of the gels was carried out. The spot detection wizard was used to detect spots on the gels. A template gel was selected and parameters were generated based on the smallest, faintest and the largest spot identified in it. The set parameters were used to scan every gel accordingly since gels show a high degree of variability with respect to streaking, intensity or clarity. The spot detection wizard was set to identify Gaussian, salt and pepper noise characteristics and filter them using a 7 X 7 pixel size filter dimension based on the individual noise pixels in the gel. Other features

including subtracting backgrounds and speckles detection were also enabled to make the detection process more efficient.

Once the gels were filtered and smoothed to clarify all the spots including fuzzy, streaked or overlapping spots, three dimensional spots called Gaussian spots were created. All types of analysis were then performed on the Gaussian image which contained the Gaussian spots that were precisely identified and quantified. Three types of images were created during spot detection namely the original 2D scan, the filtered image and the synthetic Gaussian image. The Gaussian spots were indicated on the gels using crosshairs that was located at spot centres and spot ellipses that encircled the spot shape.

7.11.3 Editing spots

Editing of spots involved several features including adding, removing, combining or changing spot boundaries. All the editing was performed on the Gaussian image. Since the same parameters were used to identify spots in all the gels, some spots seemed to have been missed out. In certain cases, air bubbles or stain marks were identified as spots. Hence all the gels were reviewed manually to minimise errors. The spot adding tool was used to add spots to the Gaussian image and the spot removal tool was used to remove incorrectly identified or positioned spots.

Other tools include the spot combining tool which is used to combine spots that have been identified to be different and the changing boundary tool which helps with the altering of spot boundary either by removing or moving them around.

7.11.4 Matching spots

Setting up an experiment automatically results in the generation of a matchset once the spots on the gels have been detected. Further grouping of the gels based on the various media conditions in which they were grown was also performed. The three main groups were the Media without mucin, Media with Type II mucin and media with Type III mucin. The gels could be matched manually or automatically. Automated matching was performed with a 50% restriction where the master image was matched to all the other images. The master image contained all the spots from all the gels mapped to it. However, a classic manual match was also performed after the automated match in order to minimise errors during matching. Landmarking was the first step performed which involved choosing reference spots to align and position gels for matching. Once the landmarks are selected, an automatic match of all the spots is performed. The remaining spots can be reviewed individually and either matched or simply added to the master.

7.11.5 Data Analysis

Upon completion of the matching, an experiment summary report can be obtained from the analysis menu. The report shows the number of spots identified in each gel including its group details, match rates 1 and 2. Match rate 1 shows the percentage of matched spots relative to the total number of spots on the gel. Match rate 2 shows the percentage of matched spots on the gel relative to the total number of spots on the master gel.

Standard spot numbers (SSP) are assigned automatically to all the spots. These are generated by the software when the standard gel is divided into rows and columns with each section having the same number of spots. The spots in a section are numbered sequentially and the first two digits of the SSP number indicate the X and Y coordinates of that section. The spot review tool was used to study the histograms of all the spots in a matchset. The spot quantities, intensities, location and the number of gels showing expression of a protein can be identified using this tool. The highlighted spot can be compared between all the gels and match modifications can also be made. The histograms of interest can be selected and used to create analysis sets.

The scatter plot analysis shows the relatedness between two gels or two groups in a matchset. The quantity of each spot in the first gel is plotted along the X axis against the quantity of spots in the second gel. The slope of the scatter plot shows the degree of similarity. The closer the value is to 1.00, the stronger the relatedness between the gels.

From the reports menu, quantity and quality tables can be obtained where the spot quality report shows a range of values from 0 to 100 based on the Gaussian fit, X and Y streaking, overlap and linear range of the scanner.

81

7.11.6 Normalization

Normalization refers to the process where quantitative data from different gels are adjusted in order to compare different samples to one another. Variations in gels occur due to a number of factors which include handling and pipetting errors, loss of sample during loading, low cell density or inconsistent staining. Hence this process helps to compensate for non expression related variations in spot intensity.

The normalization formula:

Normalized spot quantity= Raw spot quantity X Scaling factor X Pipetting error compensation factor/ Normalization factor.

Where raw spot quantity refers to the intensity of each spot, scaling factor refers to a constant value defaulted as 106 parts per million (ppm) and the normalized quantity is multiplied to it.

The normalization factor was calculated for each gel based on 'total quantity in valid spots' method where the raw quantity of a spot in a gel was divided by the total quantity of all the spots in each gel included in the master.

All the spots which showed variations in expression in at least 6 gels were selected for analysis using LC-MS. Further, spots that showed expression in all three conditions were also selected for analysis.

7.11.7 Consensus

Group consensus was used to find potential spot detection errors and use the spot matching information uniformly across a set of gels in replicate group. The consensus tool helps to edit and match spots across specific gels, replicate groups or all the gels in a matchset. The ambiguous spots could be identified from the consensus analysis and matched to one or more spots on other gels. Once updated, the results are added to the spot review analysis report.

7.11.8 Gel analysis software

Apart from the PDQuest TM Advanced software, the Ludesi Redfin software and the Non linear Dynamics Progenesis SameSpots software were also used to compare and analyse the spot data. Spot data and match result tables have been attached to the Appendix F. Redfin software uses the Analysis of variance (ANOVA) and principal component statistical analysis (PCA) for summarising the spot data in *E*.

cancerogenus and *B. fragilis* whereas a cluster analysis is used to describe the same data in Progenesis Samespots software. Study of gels using three different software packages was performed to determine the reliability and reproducibility of analyses data from PDQuest, Redfin and SameSpots rather than depend just on the data obtained from PDQuest analysis. The differentially expressed spot identification criteria included a significant p value of 0.05 or less and a fold change of 1.0 or more.

7.11.8.1 Redfin analysis of 2DE gels

The six main steps used in the analysis of data using the Redfin software included the pre-processing of images, choosing of a warp reference image, warping of all the gel images, creation of a fusion image, detection of spots and generation of spot borders. Completion of all the above mentioned steps provided a series of results showing the experiment overview, statistics used, details of filtered spots including details on its p value (p values< 0.05 are considered to be significant), presence (set as 100%), volume and fold change with respect to all the three different growth conditions.

The pre-processing of images involved an initial quality control check on the gels based on a number of factors to determine its suitability for analysis. The image editor was used to further crop, flip or rotate images as necessary. The step involving the creation of a fusion image is automated and involves transferring of the detected spots and their borders on to every individual image for quantification. This step ensures 100% matching and helps to get rid of cracks or other damages to the image. The ''less-more'' slider helps to optimise the number of spots detected on a gel and the ''loose-tight'' slider helps to determine the spot boundaries.

Redfin analysis of spots also supports the categorisation of data into multiple groups to facilitate comparison. Once the reference image is selected and warped, global and local spot editing tools can be used to edit the spots on the gel. Once the spot borders are detected, an analysis report is generated containing the entire list of spots detected. The spots of interest are then filtered out by setting a p value filter of <0.05, a fold change of 1.0 and an expression volume of 100%. The filtered spots

83

could then be exported as a .pdf or .xls document. Spots of interest can be viewed using a 2D and 3D montage or statistically analysed.

7.11.8.2 SameSpots analysis of 2DE gels

The steps used in the analysis of data using the Progenesis SameSpots included the initial quality assessment followed by the alignment of images. The initial quality assessment step also helps to prevent positional errors with tools for cropping, flipping or rotating images. This software uses an automated image alignment system in order to minimise the repeated editing and re-matching of images.

The pre-filtering step of analysis involved the filtering out of damaged, noisy and spots from the edges of the images. This was followed by appropriate grouping of gels based on their growth conditions to study differential expression and an automated gel analysis involving spot detection, background subtraction, normalisation and matching was performed.

The analysis provides a review of results containing a list of spots from which the spots with relevant p values (<0.05) were selected. Fold change of 1.0 or more can also be used to select relevant spots since fold change is calculated by subtracting the highest and the lowest mean values and this is added on to the mean value of the third group. They provide a 2D and 3D montage view of spots to be able to study them better.

Apart from analysis of variance, this software also uses other statistical applications like PCA analysis, correlation analysis and power analysis for describing the data obtained from the experiment. PCA analysis helps to determine the variation in expression based on the levels of spot expression spread out across all the gels. The correlation analysis helps to determine the degree of relatedness between two sets of data. Normalised spot expression volumes with a value closer to 1 indicate a higher correlation when compared to lower correlation spots which have a value closer to -1. The results of the correlation analysis are visually presented using

dendrograms. Based on the variations in expression, difference between mean groups and sample size, the power value is calculated. The larger the difference between the group means, the more significant the power value of the spot. Usually a power value of 0.8 or more is categorised as a relevant spot. The data is presented

as average values based on the differential expression of spots in three different conditions of growth. The spots of interest could then be selected and used to generate a report for future use.

7.12 Preparation of protein spots for analysis using the Mass spectrometer

The spot outlines of interest were cut out using a scalpel and the gel bits were stored in silanised 0.5 mL tubes at -20°C until use.

The Coomassie blue stain was removed from the gel slice by adding 100 μ L of 100 mM NH₄HCO₃ and 60 μ L of acetonitrile and shaken for 30 min. The same washing process was repeated at least 3 times in order to get rid of the stain completely. Following this, the gel slices were dehydrated by adding 50 μ L of ACN and incubated in room temperature for 5 min. The same process was repeated again. The gel slices containing the proteins were dried using the centrifugal evaporator for 15 min at room temperature. In the meanwhile a 20 μ g/mL concentration of trypsin solution was prepared in 50 mM NH₄HCO₃ solution and 25 μ L of the trypsin solution was added to each of the tubes. The tubes were incubated on ice for 30 min and 30 μ L of 50 mM NH₄HCO₃ was added to cover the solution before incubating it at 37°C in a waterbath overnight.

The following day, 30 μ L of a 50% (v/v) ACN and 5% (v/v) formic acid solution was added to stop the reaction and the tubes were shaken for 30 min. The solution containing the digested peptides were removed and stored in a clean microcentrifuge tube. A 30 μ L solution containing 83% (v/v) ACN and 0.1% (v/v) formic acid was added to the tubes containing the gel slices and shaken for 30 min to remove all the remaining digested peptides which were then pooled into tubes containing the initial collection of digested peptides.

7.13 Liquid chromatography

Liquid chromatography experiments were performed using the Dionex Ultimate 3000 nano LC system which consists of a pump that regulates the flow of buffers, temperature compartment that is maintained at 60°C while running samples, the autosampler that is attached to the syringe facilitating injection of the samples from

the multi-well plate and the UV detector that shows the absorbance values of samples at 254 nm. Separation of samples was carried out using a 200 μ m X 5 cm long monolithic column made up of polystyrene divinyl benzene polymers. The peptide elution gradient was set in such a way that the first 0-0.5 min was used to perform equilibration and injection at a 100% Buffer A concentration. The elution of peptides occurred between 0.5 and 16 min of the gradient where the concentration of acetonitrile was gradually increased by pumping Buffer B to a 100%. The column was washed and prepared for the loading of the next sample during the last 6 min of the gradient (Total 22 min gradient).

The nano LC system is coupled to a Hystar[™] Bruker Daltonics ESI Ion trap MS system which carries out the MS/MS fragmentation of peptides.

7.14 Mass spectrometric analysis

The microcentrifuge tubes containing the digested peptides were freeze dried completely and then resuspended in 10 μ L of the start buffer A. The solution was then pipetted into the respective microtitre well for performing an LC-MS analysis.

The HCTUltra was used as the ion trap system with the ESI source. In order to create a stable spray with high ionisation yields, optimised ESI conditions were used. Identification experiments were performed at a flow rate of 3 μ L/min with a nebulizer pressure of 15 psi and a drying gas flow rate of 5 L/min at a drying gas temperature of 300°C.

7.14.1 Tuning

Optimising the voltages that guide the flow of ions along the CapExit, Skimmer, Octopoles, Lenses and Tap Drive help to achieve maximum signal intensity called tuning. The Smart parameter setting was used for qualitative analysis and this was done using a standard compound. The target mass was set to 622.03 m/z. Tuning solution that was used in our experiments was 20% (w/v) acetonitrile.

86

7.14.2 Parameter settings for peptide mapping

The Standard enhanced scan mode was used to obtain MS spectra in the order of singly, doubly and triply charged precursor ions. The Ion Charge Control (ICC) target was set to 200.000. Scan range was 300-2000 m/z for MS and the average was set to 5 (Low concentration samples required higher average numbers whereas low average numbers were set to complex samples).

The Octopole 1 DC was set to 8.0 V. All ions above the intensity threshold were selected in the Auto MS (n) precursor selection analysis. Singly and doubly charged ions were detected whereas other mass ranges were excluded as being contaminants.

The compound spectra generated from the Auto MS (n) were exported to the Biotools software as *.mgf files and then database searched through Mascot.

Ion chromatograms from data processing included the UV chromatogram, BPC All MS and the TIC All MSn. The MS/MS ion search was used to connect to the Mascot search where the query file peptides were compared to the peptides present in the database to determine the identity of the protein.

The username, email and an appropriate search title were filled in the search box. The taxonomy used for carrying out the searches was 'Eubacteria' since the protein spots were cut out from gels expressing Gram negative bacterial culture proteins. The enzyme used was trypsin and the database normally used to conduct the searches was NCBI. The global modifications were set to a default of Carbamidomethyl (C) and the variable modifications were set to Oxidation (M). The missed cleavages were set to 2 and the charge state to doubly and triply charged ions. The mass tolerance was set to 1.7 Da, MS/MS tolerance to 0.5 Da and the output was set to 50 proteins. The results were saved by clicking on the 'get hits' option. (Refer to section G1 of the Appendix for more details) Random matching results could also provide false positive results and hence certain criteria were set up to segregate false positives from correct identifications. This included selection of results where the protein score was more than 40 and at least 2 peptides matched to the query sequence.

8. Materials used for the cloning, purification and structural studies of glycoside hydrolase enzymes from families 95 and 97 in *B. fragilis*

8.1 Liquid media

Unless stated otherwise, all media were prepared using distilled water, and sterilised by autoclaving. In cases where solutions could not be autoclaved, they were filter-sterilised using $0.2 \ \mu m$ Ministart[®] filter units (Sartorius) and stored in sterile plastic 30 mL containers.

Liquid media were stored at room temperature, and solid media at 4°C. All adjustments to the pH of solutions are stated under the list of components, and were achieved using HCl or NaOH.

8.2 Solid media

Columbia blood agar containing 5% (v/v) horse blood		
Per 100 mL		
Columbia agar powder	3.7 g	
Horse blood	5 mL	

To 95 mL of distilled water, the agar powder was added and mixed well before autoclaving. The medium was then allowed to cool to about 50°C and 5 mL of horse blood was added to it and mixed gently. This was aseptically poured into labelled Petri dishes and allowed to set for 30 min. The horse blood was aliquoted out in 5 mL quantities, stored in the freezer at -20°C and thawed before use.

8.3 Plasmid vectors and competent cells used for cloning

The plasmid vector used was pET-YSBLIC which was a modified form of the pET-28a vector developed in the University of York to allow ligation independent cloning (LIC) with over expression of proteins in BL21 strains. Refer to Appendix C for details.

The vector has the presence of a hexa-histidine tag at the *N*-terminal end that helps in easy purification of proteins using the immobilised metal affinity chromatography column.

The chemically competent cells used for the transformation were TOP10 *E. coli* cells and *E. coli* strain BL21 respectively.

8.4 Luria-Bertani (LB) broth

Per 1000 mL	
Tryptone	10 g
Yeast extract	5 g
NaCl	10 g
pH 7.0	

8.5 LB agar

Per 100 mL	
LB broth	100 mL
Agar (bacteriological agar N° 1)	2 g

The medium was autoclaved to make the agar soluble and then poured into Petri dishes when cooled to about 55°C.

8.6 Selective media

The antibiotic used in the selective medium was kanamycin where a stock concentration of 10 mg/mL was prepared in 18.2 M Ω /cm water and stored at -20°C in the freezer. A 1 in 100 dilution was used as the working concentration making it 50 μ g/mL.

Isopropylthio- β -D-galactoside (IPTG) was used as an inducer in LB medium at a final concentration of 240 μ g/mL and this was prepared from a stock concentration of 24 mg/mL dissolved in sterile 18.2 M Ω /cm water.

8.7 Cryogenic storage of bacterial stocks

The *B. fragilis* stock was stored at -80°C after mixing 0.5 mL of an overnight anaerobic basal broth culture with 0.5 mL of sterile 50% (v/v) glycerol. Per 100 mL

100% (v/v) glycerol (Fisher) 50.0 mL

8.8 SOB broth

Per 100 mL	
Tryptone	2.0 g
Yeast extract	0.5 g
5 M NaCl	0.2 mL
1 M KCI	0.25 mL
4 M MgCl ₂ -6H ₂ O	0.25 mL
4 M MgSO ₄	0.25 mL

The solution was adjusted to a pH of 7.0 and autoclaved before use. $MgCl_2-6H_2O$ and $MgSO_4$ were prepared and autoclaved separately and then aseptically added to the solution.

8.9 SOC broth

Per 100 mL of the SOB broth	
1 M D (+) glucose (filter sterilised)	2.0 mL

8.10 NZY Enrichment broth

Per litre	
NZ Amine	10 g
Yeast extract	5 g
NaCl	5 g
MgSO ₄ .7H ₂ O	2 g

The solution was adjusted to a pH of 7.5 before autoclaving.

8.11 NZY supplement

Per 45 mL	
1 M MgCl ₂ -6H ₂ O	12.5 mL
1 M MgSO ₄	12.5 mL
20% (w/v) D (+) glucose	20 mL

The solution was filter sterilised and 0.45 mL of the NZY supplement was added to 10 mL of the NZY broth to make up the NZY⁺ enrichment broth aseptically.

8.12 TE buffer

Per litre	
0.5 M Tris-base pH 7.5	20 mL
0.5 M EDTA pH 8.0	2 mL
The buffer was adjusted to a pH of 7.5	

8.13 Starter cultures for auto-induction media

Per 10 mL	
Water	9.55 mL
1M MgSO ₄	20 µL
1000 x metals	2 µL
40% (w/v) glucose	125 µL
25% (w/v) aspartate	100 µL
50 X M	200 µL
kanamycin	100 µL

8.13.1 ZYM-5052 auto-induction media

Per 500 mL	
ZY	478.5 mL
1M MgSO ₄	1 mL
1000 X metals	0.5 mL
50 X 5052	10 mL
50 X M	10 mL
kanamycin	5 mL

8.13.2 Stock solutions

8.13.2.1 50 X M

Per 100 mL	
Na ₂ SO ₄ (anhydrous)	3.6 g
NH₄CI (anhydrous)	13.4 g
KH ₂ PO ₄ (anhydrous)	17.0 g
Na ₂ HPO ₄ (anhydrous)	17.7 g

The salts were sequentially dissolved in distilled water and autoclaved before use.

8.13.2.2 1000 X metals Per 100 mL Sterile 18.2 M Ω/cm water 36 mL 0.1 M FeCl₃-6H₂O 50 mL (Dissolved in 100-fold dilution of HCI, approximately 0.12 M HCI and filter sterilised using 0.2 μ m filters) 1 M CaCl₂ (anhydrous) 2 mL 1 mL 1 M ZnSO₄-7H₂O 0.2 M CoCl₂-6H₂O 1 mL 2 mL 0.1 M CuCl₂-2H₂O 1 mL 0.2 M NiCl₂-6H₂O 0.1 M Na₂MoO₄-5H₂O 2 mL 2 mL 0.1 M Na₂SeO₃-5H₂O 0.1 M H₃BO₃ (anhydrous) 2 mL

All the solutions were made separately and autoclaved unless stated otherwise.

20 mL of a 25% (w/v) aspartate solution was prepared and the pH was adjusted to 7.0 by neutralisation with NaOH and autoclaved separately.

8.13.2.3 50 X 5052

Per 100 mL (The compounds were sequentially dissolved in distilled water)

Glycerol	25 g
Glucose	2.5 g
α-lactose	10 g

8.13.2.4 ZY

Per litre (sequentially dissolved in distilled water)	
Tryptone	10 g
Yeast extract	5 g

8.13.3 PASM-5052 SeMet-labelling auto-induction media

-	
Per 500 mL	
Water	450.3 mL
1 M MgSO ₄	1 mL
1000 X metals	0.5 mL
50 X 5052	10 mL
20 X P	25 mL
17 amino acid mix	10 mL
25 mg/mL methionine	0.2 mL
25 mg/mL selenomethionine	2.5 mL
100 μM vitamin B12	0.5 mL
kanamycin	5.0 mL

8.13.4 Stock solutions

8.13.4.1 20 X P

Per 100 mL (sequentially dissolved in water)	
(NH ₄) ₂ SO ₄ (anhydrous)	6.6 g
KH_2PO_4 (anhydrous)	13.6 g
Na ₂ HPO ₄ (anhydrous)	14.4 g

8.13.4.2 17 amino acid mix (17 aa mix)

Per 100 mL (sequentially dissolved in water)	
Alanine	1 g
Arginine-HCI	1 g
Asparagine-H ₂ O	1 g
Aspartate	1 g

1 g
1 g
1 g
1 g
1 g
1 g
1 g
1 g
1 g
1 g
1 g
1 g
1 g

The amino acids were dissolved by continuous stirring and also heating with the Bunsen when necessary. The solution was made up to a pH of 7.0 by neutralisation with NaOH, filter sterilised using 0.2 μ m filters and stored at 4°C until use.

8.13.4.3 Methionine and Selenomethionine solutions

20 mL of a 25 mg/mL solution of methionine solution was prepared and autoclaved before use.

5 mL of a 25 mg/mL L (+)-selenomethionine solution was made up just prior to use and filter sterilised using a 0.2 μ m filter.

20 mL of a 100 μ M solution of Vitamin B12 was prepared by filter serilisation using a 0.2 μ m filter and stored at 4°C until use.

8.14 Protein extraction and purification solutions and buffers

8.14.1 Cell resuspension buffer in protein extraction

Per litre (pH 7.4)	
HEPES	4.76 g
NaCl	29.22 g
imidazole	0.68 g

8.14.2 Nickel column purification resin

Fast flow chelating sepharose from GE Healthcare

8.14.3 Gel filtration purification resin

HiLoad 16/60 Superdex 200 prep grade (All the resins were stored in 20% (v/v) ethanol)

8.14.4 Buffers used for nickel affinity purification

8.14.4.1 Start buffer

Per litre (pH 7.4)	
HEPES	4.76 g
NaCl	29.22 g
imidazole	0.68 g

8.14.4.2 Elution buffer

4.76 g
29.22 g
34 g

8.14.5 Buffers used for gel filtration purification

Per litre (pH 7.4)	
HEPES	4.76 g
NaCl	11.9 g

8.14.6 Buffer exchange buffers

The proteins were concentrated using 30 kDa concentrators.

For CAH06598 and CAH09443	
Per litre (pH 7.4)	
HEPES (5 mM)	0.595 g

8.15 Crystallisation screens and reagents

The screen compositions for the various conditions used for the preparation of crystal trays have been included in the Appendix H.

8.16 Chemicals and solutions used for SDS-PAGE

8.16.1 Resolving gel (12% (w/v) acrylamide)

40% (w/v) solution (37.5:1 acrylamide: bisacrylamide)	3 mL
Buffer B	2.5 mL
18.2 MΩ/cm water	4.5 mL
10% (w/v) ammonium persulphate (APS)	50 µL
Tetramethylethylenediamine (TEMED)	10 µL

8.16.2 Buffer B

Per 100 mL	
2 M Tris-base pH 8.8	75 mL
10% (w/v) sodium dodecyl sulphate (SDS)	4.0 mL

8.16.3 Stacking gel (4% (w/v) acrylamide)

40% (w/v) solution (37.5:1 acrylamide: bisacrylamide)	0.5 mL
Buffer C	1 mL
18.2 MΩ/cm	2.5 mL
10% (w/v) APS	30 µL
TEMED	10 µL

8.16.4 Buffer C

Per 100 mL	
1 M Tris-base pH 6.8	50 mL
10% (w/v) SDS	4 mL

8.16.5	Running buffer for SDS-PAGE	
Per litre		
Tris-base		30.3 g
Glycine		144 g
SDS		10 g

The pH of the solution was adjusted to 8.8 before the addition of SDS and the running buffer was made up at a 10 X stock concentration which was diluted at 1:10 before use with distilled water.

8.16.6 SDS-PAGE Loading buffer

Per 10 mL	
60 mM Tris-base pH 6.8	0.6 mL
50% (w/v) glycerol	5 mL
10% (w/v) SDS	2 mL
14.4 mM β-mercaptoethanol	0.5 mL
1% (w/v) bromophenol blue	1 mL

Stored at 1 ml aliquots at -20°C

8.16.7 SDS-PAGE solubilisation buffer

Per 10 mL	
SDS-PAGE loading buffer	7.6 mL
urea	2.4 g
Stored at 4°C	

8.16.8 Coomassie Blue staining solution

Per litre	
Coomassie Blue R-250	1 g
glacial acetic acid	100 mL
methanol	450 mL

Coomassie blue gel staining solution can be filtered through a filter paper and reused.

8.16.9 Destaining solution for gels

Per litre	
glacial acetic acid	100 mL
methanol	100 mL

The Coomassie blue gel destaining solution can be filtered through a filter paper funnel containing activated charcoal and re-used once the stain is removed.

8.16.10 Bradford assay

Bradford's reagent solution200 μLBovine serum albumin solution at various concentrations ranging from 0.1 mg/mL to
1 mg/mL.1 mg/mLProtein solution to be assayed20 μL

8.17 Solutions used for enzyme assay

8.18 Stock solutions

20 mM solution of HEPES pH 7.4	25 mL
10 mg/mL solution of BSA	20 mL
10 mM 4-methylumbelliferyl α-D-glucoside	10 mL
10 mM 4-methylumbelliferyl α-L-fucoside	10 mL
50 mM 4-nitrophenyl α-D-glucoside	10 mL
50 mM 4-nitrophenyl α-L-fucoside	1 mL
50 mM 4-nitrophenyl β-D-maltoside	1 mL

10 mg/mL α -glucosidase (Recombinant protein purified from the study) 100 μL

10 mg/mL α -fucosidase (Recombinant protein purified from the study) 100 μ L

8.19 Reagents for agarose gel electrophoresis

8.19.1 TAE Running buffer (50 X stock)

Per litre	
Tris-base (ultra-pure)	242 g
17.51 M glacial acetic acid	57.1 g
0.5 M EDTA pH 8.0	100 mL

A 1: 50 dilution of this buffer is used for making agarose gels and for running gels in the electrophoresis tanks.

8.19.2 Bromophenol blue (6 X) sample loading buffer

Per 10 mL	
Bromophenol blue	0.025 g
Glycerol	3.0 g
A 1 X dilution of the buffer was added to the sample before loading it onto a gel.	

8.19.3 Size standards for agarose gel electrophoresis

The Bioline hyperladder I or NEB 1 kb ladder was used as a size standard after diluting to a concentration of 1 μ g/12 μ L. Bioline hyperladder I size standard was added at a concentration of 1 μ g/5 μ L before loading it on to the gel and stored at 4°C for up to 12 months. Refer to Appendix D for details.

8.20 Kits, reagents and enzymes for DNA extraction and purification

Quiagen miniprep kit was used for the extraction of genomic DNA.

8.21 Polymerase chain reaction

1 μ L of the forward primer was mixed with 1 μ L of the reverse primer and made up to 5 μ L with sterile 18.2 MΩ/cm water.

The other reagents include KOD DNA polymerase enzyme, 1M MgSO₄, deoxy nucleotide tri phosphate (dNTP), KOD DNA polymerase buffer and DNA to be amplified.

9. Methodology used for the cloning, purification and structural studies of glycoside hydrolase enzymes from families 95 and 97 in *B. fragilis*

9.1 **Bioinformatics analysis**

The gene of interest was identified from GenPept in the NCBI sequence viewer v2.0 and the FASTA format of the sequence was obtained. The conserved and semi conserved residues of the sequence was determined using the ClustalW software (<u>www.ebi.ac.uk/Tools/clustalw</u>).

The expert protein analysis system (EXPASY) identification and characterisation tool was initially used for the determination of the molecular weight and pl of the proteins of interest. The presence of signal peptides and transmembrane helices in BF3763 and BF0855 was identified the SignalP using 3.0 server (http://www.cbs.dtu.dk/services/SignalP/), and the TMHMM server (http://www.cbs.dtu.dk/services/TMHMM/). The 'Translate tool' in Expasy was used to translate the gene sequence into amino acid sequence thereby determining the amino acids that are present in the protein (http://www.expasy.org/tools/dna.html)

The coding sequence (CDS) for the BF0855 protein from GH95 is

1	ttaagggttc	aactcgatcc	attcaccggc	ttgagtatct	atgttcaaga	tatccgtgcc
61	ggataaagta	tagttcttat	tcggcttcaa	tgtaccggga	cgggccattt	tcaacatgcc
121	gcctttctcc	gaatagatgc	gtacccgatt	gatttctcca	ccttccatcc	gggccgatac
181	caggaatgca	cccatggcgc	gtaagttttc	gaaggataca	tctttccatt	ctttcggtat
241	tgccgggaag	atgcgtatta	cgcctgtgtg	actttgcagc	aacatttctt	gtatgcctgc
301	tgcaaaagcg	aagttacctt	cgagcgtgaa	ggggcggtaa	gtgaagcggg	atttgccgct
361	ttgggtctgg	tcaccgttgg	catggaaggt	gttcttcagg	cagaagcatt	ccgcaaaggt
421	tttcagggct	tgtgcggcac	cttcaccatc	gaatgcacgg	gctttcatat	tggcgagcca
481	actgtatgaa	tatcctgtcc	agtagtccgg	ccctacttta	tcgagtctct	tcaaggtggc
541	gcggatgatg	tgttgtgact	tttctccgtc	gctccagtct	atcagtccca	gcggatggat
601	agccatggca	tgtgaaaaat	gacggtgtga	ttctttgtag	ggatatcctt	tggcgaaagt
661	gaggcaacct	tcttcgtcta	tgtcgtaatc	cggtagttgg	gcttccaggg	atgcccagtg
721	tccggcttcg	tcggccaggt	tcagttcgtg	tgccagttcg	gaagtagcct	taaagaggaa
781	gtgcatcatt	gccaggtcat	aattggtcat	gtcgctgaac	cacgcttgca	gggagttgtc
841	gaatatttcg	ggacttgaac	tgaattccag	tttacgtact	ccttcggggg	taacttctga
901	aatttgctcc	agatagattg	ccacatcctt	gatgaatgga	taagcacgct	ctttgaggaa
961	agtgcggtct	gccgaatatt	tccattgcag	atagaagtgt	tgtgccagcc	atgcagctac
1021	ggtttgcgac	atggagtatt	gtatccatcc	tcccatgggt	tctcctgtca	gggtacaaac
1081	ccccggtata	ttcatccctt	cggtaccgaa	atagcggcgg	gtgtagcgtt	tgtatgcatc
1141	ccgttggttc	cacaacgtgt	tcagatagcc	cattccttcg	gtcaggtgat	tgcctgtata
1201	ggccggccag	taacttagct	gggtatttaa	atcgtgatga	tagtctccct	tccagggcgg
1261	aagtttgccg	ttatcggctg	tccatacagc	ctgcagggag	atggggtatg	agtgttcgcg
1321	ggtagtggaa	ccgaatttat	acatttcgtt	ctgatactgt	ttttgcagta	cagaatcggg
1381	tagagtgatc	gatgattgtg	cccagtactt	gtcccaatat	tccaggtgtg	cctgataatc
1441	atgctttaga	ccgcgttgca	gggcggcttc	tgccttttcg	gaagcttgct	cgccggataa
1501	ggaagaggtg	acgctccagg	taccgtacaa	ggtttcgcct	tcttgcttcc	aacagactgt
1561	tacgtcatac	gaaaagtctc	cgtatccctt	ttgatggtag	gttatttggt	ttccttcacg
1621	aaccactttt	ccttgttgat	agcctaatcg	gtgcagatct	tgtcccgaaa	ccggatcgag
1681	gctgccatcc	ggcttcgttt	tattgtatac	aggagtgatg	atggagggtt	ctatcggggt
1741	tttcaggtta	cggaatacaa	accatccgat	cggttcggta	gcatgaacga	aagtctgcat
1801	ttgtgttccg	tctgcccagt	ctgcttcaca	taaggcattg	ttcaggtaaa	gtcttacctg
1861	agtcggagtg	ccgatctgct	ctaatggaaa	ttcgatggca	gctccgggaa	tcttggacgg
1921	cgcgggattc	atgtcataag	gccagtccag	ctttttctgt	acgggcagat	agttcttttg
1981	acgaatatgt	tcttttaccc	aggagaagcg	gaagttatct	cccgacagac	tgtctaccgg
2041	acgtaaatcc	cataaatcgg	ttctgtccag	tgacaggcgt	agggtggagt	cacgttgcca
2101	taccaaggca	ccgacggtag	catttcccaa	gggcattgct	tcgtcccacg	accgggcaag
2161	tccggtgaat	acaagatcac	tctctgaagg	agtgaccgga	caatagtcat	acgagttgca
2221	actgctccac	agaccacaac	agagtagtaa	tagtagtttg	attttcat	

The CDS for the BF3763 protein from GH97 is

1	atgaaaagaa	aaatgatgtc	cttattactc	gcattggcgg	taataagcgg	aagtagcgtg
61	tacgctaaag	tgattgacgt	aatgtctccc	aacggagcca	ttaaagtatc	ggtagacatc
121	aaggaccgga	tttattattc	ggtgtcctat	gataatgacc	agttattaaa	agattgctat
181	ctcaacctgc	aactgcagaa	tgagacgtta	ggtacgaatc	cccacttacg	gagcaccaaa
241	cgtggaacca	ttgacgaaag	tgtaaaacgt	gaaatacctt	tcaagaatgc	gatcgtaaga
301	aatcactgta	ataccctgag	aatgaatttc	agcggaaatt	atgccgttga	attccgcgta
361	ttcgacaatg	gtatcgctta	ccgttttgtg	acagataaaa	aaggagataa	catcgtaatg
421	ggggaagact	tcgcaattaa	ctttccaacc	aattataaag	ctcatctctc	ccaaccggat
481	ggctttaaaa	cctcatacga	atgcccatat	actcatgtag	ataccgaaaa	gtatgctgct
541	accgaccgca	tgagttacct	gcctgtattg	atagaaacgg	ataaagcata	taaaatactg
601	atatctgaag	ccgacttatc	cgattatccc	tgtatgttcc	ttaaaagtac	cggtaagaac
661	ggaatgcagt	ctatttttcc	caaagcacct	ttagccttcg	gagaagatgg	tgaccgtagc
721	ctcaagatta	ccgaagaagc	cgattacatt	gccaagacgg	acggcaaacg	ttcattcccc
781	tggcgcatga	tggtgatttc	gaaagaagac	aaagaactga	ttgaaaacga	aatggtgtat
841	aacctgtctg	ctccttgtgt	tcttgaagac	tacagttgga	tcaaaccggg	acaagtgagt
901	tgggaatggt	ggcacgacgc	acgcctctat	ggggtagatt	tccgttcggg	tttcaatatg
961	gattcctata	aatactacat	tgacttcgca	tccaagttcg	gtattcctta	tatcatcatg
1021	gacgaaggat	gggcgaaaaa	cacacgtgat	ccgtttaccc	ccaatcccac	catcaatctt
1081	accgaactga	taaaatacgg	aaaggaccgc	aacgtaaaaa	tcgtactttg	gctgccatgg
1141	ctgactgtcg	agaatcattt	cgacctcttt	aaaacatttg	ccgattgggg	catcgcagga
1201	gtgaagatcg	acttcatgga	ccgcagtgac	cagtggatgg	taaactatta	tgaacgtgta
1261	gccaaagaag	ccgccaagca	taaactgttt	gtagattttc	atggtgcttt	taaaccagcc
1321	ggacttgaac	gcaaatatcc	gaatgtgctt	tcctatgaag	gcgtattggg	catggaacaa
1381	ggtggtaatt	gcaaacctga	aaacagcatt	tatctgccct	ttatgcgtaa	tgccgtggga
1441	ccgatggatt	tcactccggg	ttcaatgatc	tctgcacagc	cggaagacaa	ccgttccacc
1501	cgggccaatg	ccatgggctc	aggaacacgt	gctttccaaa	tggctctttt	catcatcttc
1561	gaaagtggtc	tgcaaatgtt	agccgacaat	ccggtttact	attacagaga	acttccctgt
1621	accgaattta	tcacaagtgt	tcccgtcacc	tgggatgaaa	ccaaggtcct	ctatgccaaa
1681	gtaggtgaag	cagtcgtcgt	agccaaacga	aaaggagaac	agtggttcat	cggaggtatc
1741	accggcaatc	aaccacaaaa	catcgagatc	gacctcggat	tcattccggc	aggacaatca
1801	ttcacattaa	cctcatttga	agatggcatt	aacgctgacc	gtcaagcaat	ggattacaag
1861	aaaaaggagt	ctaccgtgaa	caatcaaacc	cgcatgacat	tgaaaatggt	acgcaacggg
1921	ggatgggccg	gaacaattaa	aatgaaatag			

9.2 BLAST analysis

The similarity of the genes and proteins of interest with other sequences was determined using the BLASTP (for proteins) and BLASTN (for DNA) links in the National Centre for Biotechnology Information site (www.ncbi.nlm.nih.gov/BLAST).

9.3 Primer Design

The primers were designed using the Web Primer server (<u>http://genome-www2.stanford.edu/cgi-bin/SGD/web-primer</u>) with a default value of 18 for the minimum length of the primer.

PCR primers for the amplification of the glycoside hydrolase family GH97 BF3763 gene in *B. fragilis* NCTC 9343.

Forward primer sequence:

5'- CACCACCAC ATGAAAGTGATTGACGTAATGTCTCCCAACGG-3' (44 bp)

Reverse primer sequence:

5'- GAGGAGAAGGCGCGTTATTTCATTTTAATTGTTCCGGCCCATCCCCC- 3' (47 bp)

Refer to Appendix I for tables showing the conditions used for the amplification of the BF3763 gene from *B. fragilis*

PCR of the glycoside hydrolase gene GH95_BF0855 from *B. fragilis* NCTC 9343. Primer sequences used for amplification Forward primer 5'-CACCACCACCACATGTATGACTATTGTCCGGTCACTCCTTCAGAGAG-3' Reverse primer 5'-GAGGAGAAGGCGCGTTAAGGGTTCAACTCGATCCATTCACCGGCTTGAGT-3'

The primer sequences were ordered from MWG Biotech, Germany and the Ligation independent cloning (LIC) specific ends were added to the respective ends of the primer sequences.

9.4 Genomic DNA extraction and purification in *B. fragilis* NCTC 9343

The DNeasy tissue kit was used for the extraction of DNA as per a standard protocol. A volume of 10 mL of LB medium was inoculated with a single colony of *B. fragilis* from a pure culture CBA plate. The medium was incubated overnight at 37°C anaerobically.

0.5 mL of the culture was centrifuged at 5000 x g for 10 min. The supernatant was discarded and the pellets were resuspended in 180 µL of Buffer ATL (Recipe patented). To this, 20 µL of proteinase K was added and vortexed well. The mixture was incubated overnight at 56°C in a water bath. The lysate was vortexed for 15 s and 200 µL of Buffer AL (Recipe patented) was added to it. The sample was mixed thoroughly and 200 µL of absolute ethanol (96-100%) was added to it. The sample was vortexed again vigorously and the mixture was pipette out into a DNeasy Mini spin column placed in a 2 mL collection tube. This was centrifuged at 14000 x g for 1 min. The flow through was discarded and the collection tube was replaced. 500 µL of Buffer AW1 (Recipe patented) was added to the Spin column and centrifuged at 14000 x g for 1 min. The flow through was discarded again and the 2 mL collection tube was replaced. 500 µL of Buffer AW2 (Recipe patented) was added to the spin column and centrifuged at 20000 x g for 3 min. The flow through and the collection tube were discarded. The DNeasy mini spin column was placed in a clean 2.0 mL microcentrifuge tube and 200 µL of Buffer AE (10 mM Tris-Cl, 0.5 mM EDTA pH 9.0) was pipetted out onto the column. The sample was incubated in room temperature for 1 min and the DNA was eluted out by centrifuging at 14000 x g for 1 min. The eluted DNA of interest can be stored at -20°C until use.

Agarose gel electrophoresis was performed to confirm the presence of the purified *B. fragilis* genomic DNA.

9.5 Agarose gel electrophoresis

A 1% (w/v) agarose gel was prepared by adding 1 g of agarose in 100 mL of 1 X TAE buffer and bringing it to boil to dissolve the solid bits. This was allowed to cool to about 60°C and then poured into a mini gel casting tray. Care must be taken to avoid air bubbles. A 12 toothed comb was then inserted into the solution. The gel was then left to set on the bench for 20 to 30 min.

Following this, the gel tray was placed horizontally in the electrophoresis tank and 1 x TAE buffer was poured to submerge the gel completely.

The comb was removed without damaging the gel and the samples were loaded into the wells. The samples were prepared by adding 5 μ L of amplified DNA to 1 μ L of the loading dye (bromophenol blue 6 X) along with 5 μ L of the Bioline hyperladder standard (Refer to Appendix D). The electrophoresis was carried out at 100 mA, 200 V for 35 min.

The gels were then visualised using the Bio-Rad Gel doc system (using Quantity One TM software) and hard copies of the gel were printed out using the Mitsubishi Video Copy Processor attached to it.

9.6 PCR amplification of the genes of interest

KOD Hot start DNA polymerase was used to amplify the genes of interest in the PCR protocol using the Eppendorf MasterCycler[™] machine.

9.7 Reaction components

PCR components added to each tube	GH95 (BF0855)	GH97 (BF3763)			
Sterile 18.2 MΩ/cm water	34 µL	33.6 µL			
12.5 µM Forward primer	1 µL	1.2 µL			
12.5 µM Reverse primer	1 µL	1.2 µL			
KOD reaction buffer 10 X	5 µL	5 µL			
(Refer to Appendix for details of the KOD reaction buffer recipe)					
<i>B. fragilis</i> genomic DNA (50 ng/ml)	1 µL	1 µL			
MgSO ₄ (25 mM)	2 µL	2 µL			
dNTPs (5 mM)	5 µL	5µL			
KOD DNA polymerase (1U/µL)	1 µL	1 µL			

The PCR conditions used to amplify the BF3763 and BF0855 genes in *B. fragilis* has been detailed in tables in the Appendix section I.

The amplified PCR products of BF3763 and BF0855 were analysed using agarose gel electrophoresis and purified using the MinElute PCR Purification Kit, QIAGEN.

To 90 μ L of the PCR product, 450 μ L of Buffer PB (Recipe patented) was added and mixed so that they were in the ratio of 1:5 respectively. The mixture was applied onto a MinElute column that was placed in a 2 mL collection tube and centrifuged at 14000 x g for 1 min. The flow through was discarded and the collection tube replaced. 750 μ L of Buffer PE (Recipe patented) was used to wash the column and then centrifuged at 14000 x g for 1 min. The washing step was repeated again. The flow through was discarded and the column was placed in a clean 1.5 mL microcentrifuge tube. 10 μ L of buffer BE (Recipe patented) was pipetted onto the centre of the membrane in the column, left for 1 min at room temperature and centrifuged at 14000 x g for 1 min. This step eluted the purified PCR product which was stored at -20°C until use.

9.8 Insertion of LIC T4 polymerase (T4 pol) reaction

The purified PCR product (10 μ L) was mixed with 2 μ L of 10 X T4 pol buffer (Refer to Appendix A2 for recipe details), 2 μ L of 25 mM dATP, 1 μ L of 100 mM dithiothreitiol (DTT), 0.4 μ L of 2.5U/ μ L of LIC T4 DNA pol (Novagen) and made up to 20 μ L by adding 5.6 μ L of sterile 18.2 MΩ/cm water. The mixture was incubated at 22°C for 30 min. To stop the reaction of T4 DNA polymerase, the mixture was incubated at 75°C for 20 min and centrifuged at 14000 x g for 10 s.

For effective annealing of the genes, BF3763 and BF0855 to the LIC vector pET-YSBLIC, 2 μ L of the reaction mixture resulting from the above was added to 1 μ L of the prepared pET-YSBLIC vector (50 ng/ μ L) and incubated at 20-22°C for 10 min. This was then made up to 4 μ L by adding 1 μ L of 100 mM EDTA and incubated at room temperature for 10 min.

9.9 Preparation of electrocompetent TOP10 E.coli cells

The glycerol stock of the cells was used to inoculate a plate that was incubated overnight at 37°C. A single colony from this was used to inoculate 50 mL of low salt LB which was incubated at 37°C in a shaker at 200 rpm until it reached an OD of 0.5 to 0.7 at 600 nm. The culture was incubated on ice for 30 min and centrifuged at 4000 x g for 15 min at 4°C. A volume of 25 mL of cold filter sterilised 18.2 MΩ/cm water was used to resuspend the pellets which were then centrifuged again and the supernatant was discarded. The pellets were resuspended in 12 mL of cold 18.2

 $M\Omega/cm$ water. The resuspension and centrifugation steps were repeated again reducing the volume of water to 5 mL and then to 2 mL. The steps were repeated once final time reducing the volume of water used to resuspend the pellets to 0.2 mL. The cells were aliquoted out into 40 µL quantities and stored at -80°C.

9.10 Transformation

A volume of 2 μ L of the pET-YSBLIC vector containing the gene of interest was added to 40 μ L of TOP10 *E. coli* cells, gently mixed with a pipette tip and incubated on ice for 1 min. This was transferred to a 2 mm electroporation cuvette which was kept ice cold and sterile. The cuvette was tapped gently in order to make sure that the solution covered the bottom of it. The cuvette was placed in a Bio-Rad ShockPod after drying the outside thoroughly and the lid was closed. The cells were electroporated using the BioRad Gene Pulser Xcell at 2.5 V for 20 ms. 1 mL of the SOC medium was added to the electroporated cells immediately and transferred into a clean sterile micro centrifuge tube using a sterile glass pipette. This was incubated at 37 °C for 60 min at 200 rpm and then plated out onto an LB agar plate containing kanamycin at a concentration of 100 μ g/mL. The transformed cells were allowed to grow by incubating the plates at 37°C overnight.

9.11 Screening of colonies for successful inserts

The number of colonies present in the LB agar plates containing kanamycin was counted the following day. The colonies of interest were transferred onto a fresh 24 grid LB agar plate supplemented with an appropriate concentration of kanamycin. The first colony was streaked across the first grid on the agar plate. The cells remaining on the pipette were gently and thoroughly mixed into 50 μ L of sterile 18.2 MΩ/cm water contained in a 0.2 mL PCR tube. The PCR tubes containing the cell-water suspensions were incubated in the PCR machine at 95°C for 5 min to disrupt the cells and centrifuged at 14000 x g for 2 min. The pellet was discarded and the supernatant was transferred into a clean sterile 0.2 mL PCR tube. This was stored at -20°C until use. The same process was repeated for each and every colony of interest on the agar plate.

9.12 PCR screening to identify colonies containing gene inserts

A volume of 10 μ L of the supernatant from above was mixed with 1 μ L of the forward primer (0.4 μ M), 1 μ L of the reverse primer (0.4 μ M), 5 μ L of dNTPs (2 mM), 1 μ L of (5 U/ μ L) Taq polymerase, 5 μ L of Taq buffer (10 X) (Refer to Appendix A2 for recipe details) and made upto 50 μ L with sterile 18.2 MΩ/cm water.

PCR conditions for the amplification of the BF3763 gene from transformed *E. coli* to screen for colonies containing successful inserts has been included in the Appendix section I.

The presence of successful inserts was confirmed by agarose gel electrophoresis. Refer to Methods section 9.5 for details on how to perform agarose gel electrophoresis.

Colonies containing successful inserts were used to inoculate LB broth media supplemented with an appropriate quantity of kanamycin and incubated overnight at 37°C in a 200 rpm shaking incubator.

9.13 Purification of the plasmid DNA from the colonies containing inserts

The Bio/Spin-PTM Plasmid Miniprep Purification protocol was used to purify the plasmid DNA from the E. coli TOP10 cell colonies containing the gene of interest. A volume of 1.5 mL of the cell culture from overnight incubation was centrifuged at 14000 x g for 1 min and the supernatant was discarded. The same step was repeated twice and the supernatant was discarded with a sterile pipette tip. A volume of 200 µL of Buffer I (Recipe patented) was added and vortexed to resuspend the cells. To this, Buffer II (Recipe patented) of a volume of 200 µL was added and mixed by inverting 5 to 6 times. To this, 200 µL of Buffer III (Recipe patented) was added and mixed by inverting 5 to 6 times and centrifuged at 14000 x g for 5 min. A spin column was placed in a collection tube. The mixture was pipetted into the column and centrifuged at 14000 x g for 30 s. The flow through was discarded and 700 µL of the washing solution was added to the column and centrifuged at 14000 x g for 1min. The flow through was discarded and the column was centrifuged at 14000 x g for 3 min to remove any residual ethanol from the washing step. The flow through was discarded and the column was placed in a clean sterile 1.5 mL microcentrifuge tube. A volume of 50 µL of TE solution was added to the column and

centrifuged at 14000 x g for 1 min to elute the plasmid DNA which was stored at - 20°C until use.

9.14 Method used to prepare chemically competent cells

The glycerol stock of the cells was used to inoculate a plate that was incubated overnight at 37°C. A single colony from this was used to inoculate 50 mL of low salt LB which was incubated at 37°C in a shaker at 200 rpm until it reached an OD of 0.35 to 0.4 at 600 nm. The cells were incubated on ice for 30 min and then centrifuged at 4000 x g for 10 min at 4°C. After discarding the supernatant, the pellets were resuspended in 15 mL of cold 80 mM MgCl₂, 20 mM CaCl₂ solution and then centrifuged at 4000 x g for 10 min at 4°C. The pellets were then resuspended in 1 mL of 100 mM CaCl₂. The cells were incubated on ice for 1 h. The cells were added to 50 % (v/v) glycerol making it up to a final concentration of 15 %(v/v) before freezing it in liquid nitrogen and storing at -80°C until use.

9.15 Restriction digests of the recombinant BF3763 and BF0855 genes from pET-YSBLIC

The restriction enzymes used to carry out the digestion was *Eco* RI and *Xba* I according to the analysis of the sequence in Webcutter 2.0 server (http://www.firstmarket.com/cutter/cut2.html). The restriction enzyme digestion was carried out to remove the recombinant genes from the vector. The restriction enzymes were kept on ice and centrifuged for 3 s before use. To 5 μ L of the plasmid DNA, 0.5 μ L of *Xba* I, 0.5 μ L of *Eco* RI, 1 μ L of 10 X NE Buffer 2, (Refer to Appendix A2 for recipe details) 1 μ L of BSA (50 μ g/ml (w/v)) and 2 μ L of sterile 18.2 M Ω / cm water was added to make it up to 10 μ L. The mixture was incubated at 37°C for 2 h and the presence of the recombinant genes was analysed using agarose gel electrophoresis (Refer to section 9.5 in the Methods section).

9.16 Transformation of the recombinant genes into BL21 cells

Chemically competent BL21 cells were prepared and 50 μ l of the cells were treated with 2.5 μ L of the purified plasmids by gentle mixing on ice for 5 min with a sterile tip. The cells were subjected to heat shock at 42°C in a water bath for 90 s and then immediately transferred back onto ice. A volume of 200 μ L of NZY⁺ medium was

added to the mixture aseptically. The cell wall recovery was induced by incubating the mixture in a water bath at 37°C for 45 min. The transformed cells were plated out onto LB agar plates containing an appropriate amount of kanamycin and incubated overnight at 37°C. The number of colonies showing successful inserts was 2 for GH95 and 3 for GH97.

The genes for GH95 and 97 have been cloned by previous students. All the details are available in the dissertations ('Isolation and transformation of GH95_BF0855 gene from *Bacteroides fragilis* NCTC 9343 in competent cells to produce soluble protein' by Cheun Hong Yeap, 2006 and 'Cloning and expression of glycoside hydrolase family 97 BF3763 (putative exported protein) gene from the *Bacteroides fragilis* NCTC 9343 ATCC 25285 in *Escherichia coli* by Lee Ling, Bong in 2006). Only experiments pertaining to the purification and characterisation of these enzymes have been performed by me.

9.17 Solubilisation buffer experiment

9.17.1 Growth of bacteria in starter cultures

E. coli cells were grown in 30 mL sterile plastic containers containing 10 mL of LB media or 10 mL of autoinduction media starter cultures supplemented with an appropriate amount of kanamycin. The cultures were inoculated from an agar plate or glycerol stock using a sterile inoculation loop and grown overnight in a shaking incubator at 37°C and 200 rpm.

9.17.2 Growth of bacteria for expression and purification using IPTG induced media

An initial study was done to compare the expression of protein in LB and autoinduction media. In both cases, 0.5 mL of the starter culture of BL21 *E. coli* cells was used to inoculate 50 mL of the starter culture. Following the inoculation of the media, the cultures were grown at 37°C in a shaking incubator at 200 rpm.

When the culture reached an OD of 0.6, the flask containing LB medium was induced for the expression of the proteins of interest by the addition of 100 mM IPTG

(Isopropyl β -D-1-thiogalactopyranoside) to make the final concentration 1 mM and then the temperature was reduced to 30°C and the shaking reduced to 100 rpm. However, for auto-induction media cultures, the temperature was reduced to 30°C and the shaking to 100 rpm when it reached an OD of 0.6 without the addition of IPTG. The cultures were then incubated overnight and processed the following morning.

9.17.3 Small scale protein extraction for the solubilisation buffer experiment

The overnight culture was taken the following day and 3.0 mL of it was transferred into two clean microcentrifuge tubes of 1.5 mL each. The tubes were centrifuges at 14000 x g for 1 min. Following centrifugation, the supernatant was discarded and the pellets were dissolved in 300 μ L of the start buffer. The mixture was ultra-sonicated for 5 s at amplitude of 15 and maintained on ice while doing so. The cells were centrifuged at 14000 x g for 10 min and 200 μ L of the supernatant also known as the cell free extract was transferred into a clean microcentrifuge tube. The remaining supernatant was discarded and the pellets were resuspended in 300 μ L of the solubilisation buffer. An SDS-PAGE gel was run with 20 μ L of the sample and 5 μ L of the loading buffer except the solubilisation mixture which was placed in a boiling water bath for 1 min to dissolve the pellets and 20 μ L of it was loaded on to the SDS-PAGE gel. Molecular weight size standards were prepared with 8 μ L of the loading buffer and run along with the samples in order to determine the size of the expressed protein.

9.17.4 SDS-PAGE electrophoresis

The BioRad Mini Protean III kit was used to perform 2D SDS-PAGE. Two clean glass plates of dimensions 10.1 X 7.2 cm and 10.1 X 8.2 cm were aligned parallel to each other and clamped. The larger glass plate had a spacer ridge of 0.75 mm attached to it. The two glass plates along with their casting clamp stand were mounted on the surface of a rubber gasket by applying vertical downward pressure. The resolving gel solution was made up in a plastic container and pipetted into the space between the two plates. A 2 cm mark was made from the top of the smallest plate and the solution was filled up to it. For efficient polymerisation, the surface of the gel was layered with 18.2 MΩ/cm water and the gel was allowed to polymerise

for 20 to 30 min. The water was removed from the surface of the set gel and blotting paper was used to remove any residual unset gel or water. Care was taken to avoid touching the surface of the gel with the blotting paper. The stacking gel solution was then made up and pipetted on to the surface of the resolving gel. This was filled up to the top of the small glass plate and a 10 toothed comb was inserted into the gap between the plates immediately (Size of the comb was 1.1 X 0.75 cm). The gel was then allowed to polymerise for 20 min and the combs were slowly removed to reveal the wells. Care was taken to avoid the formation of air bubbles while doing so and the surface of the gel was rinsed with 18.2 M Ω /cm water. The gels were placed in the electrophoresis module in such a way that the smaller glass plates faced towards the centre. The module was then lowered into the electrophoresis tank and SDS-PAGE (1 X) running buffer was poured into it to fill both the central and the outer compartments. Care was taken to ensure that the electrodes were completely immersed in the buffer and no air bubbles formed. The buffer in the central compartment was allowed to flow into the wells and formed a layer on the top of the gel.

The prepared samples were placed in a boiling water bath for 3 min and then centrifuged at 14000 x g for 1 min before loading them onto the gel with the help of a Hamilton syringe. The electrophoresis was performed at 120 mA and 200 V for about 50 min. The completion of the process was indicated by the migration of the bromophenol blue dye to the bottom of the gel.

Upon completion of electrophoresis, the gels were removed from the set up and placed in a plastic container containing Coomassie blue staining solution and rocked gently on a shaker for 10 min at room temperature. Following this, the gels were immersed in the destaining solution for atleast 6 to 8 h. Once the bands were clearly visible, the gels were rinsed with 18.2 M Ω /cm water and then visualised using the BioRad gel documentation system. Photographs of the gel were obtained using the Mitsubishi Video Copy Processor containing the Mitsubishi thermal paper (Refer to Appendix B for details).

9.18 Large scale growth of bacteria

A large scale growth of bacteria was carried out using the auto-induction medium where 500 mL of the medium was inoculated with 5 mL of the starter culture. The growth procedure was followed exactly the same way as mentioned above.

112

9.18.1 Protein extraction

The induced cells were centrifuged at 4000 x g for 15 min and were resuspended in 5 mL of re-suspension buffer. The cells were ultra-sonicated on ice at amplitude of 14 for 2 min in 10 s bursts with 10 s intervals. The lysate was then transferred into centrifuge tubes and then spun at 24000 x g for 30 min at 4°C. The liquid supernatant or the cell free extract was transferred into a sterile plastic universal and stored in ice until purification.

9.18.2 Protein Purification

The recombinant proteins were purified using immobilised metal affinity chromatography (IMAC). Proteins have the presence of hexa-histidine tags at the N terminal that could be used to separate it out from other *E. coli* proteins using the SepharoseTM chelating fast flow resin which acts as the metal affinity matrix. The column was first stripped and charged using 1M NiSO₄ followed by equilibration with 200 mL of start buffer. After equilibration, the cell free extract (10-20 mL) was loaded onto the column and then eluted out with 100 mL of the elution buffer at a flow rate of 4 mL/min. The presence of the protein was monitored using a UV spectrophotometer and the eluted fractions were collected in 4 mL quantities in plastic tubes. A volume of 20 μ L of each sample was run on an SDS-PAGE gel to confirm and detect the fractions containing the pure protein. The pure protein fractions were then concentrated using a Vivaspin protein concentrator and then resuspended in the gel filtration buffer.

Further purification of the proteins was carried out using gel filtration chromatography. The column was first equilibrated using 120 mL of the gel filtration buffer at a rate of 1 mL/min. A volume of 0.5 mL of the protein sample was loaded onto the column by injection and then eluted out at a rate of 1 mL/min. The presence of the pure protein was detected using the UV spectrophotometer and the eluted fractions were collected in 5 mL quantities in plastic tubes. A 20 µL sample from every fraction was run on an SDS PAGE gel to confirm the presence of the pure protein. The fractions of interest were pooled and concentrated.

113

9.18.3 Concentration of proteins

The pure proteins were concentrated using the 30 kDa Vivaspin 6 mL cut off concentrator units (Viva Science). The pooled fractions were concentrated by centrifuging at 4000 x g and were buffer exchanged with 5 mM HEPES (pH 7.4) within the concentrator units.

9.19 Concentration of proteins determined by Bradford's assay

Standard dilutions of BSA were prepared within a range of 1-10 μ g/mL and the total volume was made up to 500 μ L. The absorbance of the solutions was recorded at 595 nm using a visible spectrophotometer and a standard curve was drawn based on the values obtained. A blank was set up containing 18.2 MΩ/cm instead of BSA and added to the Bradford reagent. The protein solution was then diluted appropriately and 500 μ L volumes were transferred into cuvettes. The absorbance values were measured and plotted against the standard to determine the protein concentration.

From the standard curve, the value of c was found to be 0.6 which was the point on the y axis where the line intercepted. Substituting the rest of the values in the equation below, the value of m was determined to be 0.52.

Unknown concentrations of protein samples and their dilutions 1:10, 1:50 and 1:100 were prepared and mixed with the Bradford reagent. The absorbance values at 545 nm was measured and applied to the equation y = mx + c where y = Absorbance at 545 nm, x = the concentration of the unknown sample, m = the gradient of the straight line and c = the point of intercept of the line with the y axis.

Once the concentration of the unknown protein was determined, it was multiplied by the dilution factor in order to obtain the concentration in mg/ mL.

Protein conc. mg/ mL= Conc. obtained from the curve X dilution of the sample/1000.

20 μ L of known concentrations of BSA were prepared and mixed with 200 μ L of the Bradford reagent and the absorbance was measured at 545 nm. The concentration range of BSA was 0.1 to 1.0 mg/mL to generate a standard curve and the standard curve has been included in the Appendix section J.

The concentration of the GH95 protein was determined to be 43 mg/mL from the equation with an absorbance of 0.823 and a dilution factor of 100. The concentration of the GH97 protein was determined to be 29.2 mg/mL from the equation with an absorbance of 0.752 and a dilution factor of 100.

The proteins were diluted to obtain a final concentration of 15 mg/mL with 5 mM HEPES buffer pH 7.4 before crystallisation.

9.20 Crystallisation

The protein concentration was determined using Bradford assay and then crystallisation trays were set up.

9.20.1 Crystallogenesis

1 ml of liquid Aquasil was mixed with 999 mL of 18.2 M Ω /cm water in a 2000 mL beaker and the cover slips were added to the solution.

The liquid solution was stirred every 15 min for about 2 h. The cover slips were taken out and allowed to dry on a tissue paper. The cover slips were wiped down with a clean cloth before use. The crystal tray wells were filled with the appropriate buffer solutions from various screen aliquots and the cover slips containing drops of protein and buffer in three different concentrations of 1:1, 1:2, 2:1 respectively were inverted onto the surface of the wells which were greased beforehand. Once the tray of 24 wells was set up, they were incubated at 22.4°C in the crystallisation incubator and monitored for the presence of crystals every week. The various crystal screens and their compositions have been included in Appendix H. Crystals were harvested in rayon fiber loops, bathed in cryo-protectant solution prior to flash freezing in liquid nitrogen.

9.20.2 Data collection

Diffraction data were collected on the European Synchrotron Radiation Facility (ESRF) from single crystals at 100 K with an oscillation range of 0.5 °. Data were collected at a wavelength of 0.933 Å on beamline ID14-2 using an ADSC Q4R CCD detector. All diffraction data were processed with MOSFLM and reduced and scaled with SCALA (Leslie, 1992). All other computing was undertaken using the CCP4

suite (Anon, 1994) unless otherwise specified. The structure of *Bf*GH97 was solved by molecular replacement using the program PHASER using the *Bacteroides thetaiotaomicron Bt*GH97b (UniProtKB/TrEMBL entry Q8A6L0) structure (Okuyama *et al.*, 2009) (PDB code 3A24) as a search model. 5 % of the total reflections were set aside for cross validation ("R_{free}") purposes and for the weighting of geometrical and temperature factor restraints. The structure was manually built with cycles of REFMAC (Murshudov *et al.*, 1997). Solvent molecules were added using COOT (Emsley & Cowtan, 2004) and checked manually. The structure was validated using MOLPROBITY (Davis *et al.*, 2007).

9.21 Enzyme assay

9.21.1 Preparation of substrates

A volume of 1 mL of 6 mM substrates were prepared by dissolving the substrate in 18.2 M Ω / cm. Since the methylumbelliferone substrates were found to be difficult to dissolve, they were ultra-sonicated (15 amplitude) at 1 min intervals until the substrates dissolved completely. The appropriate volumes required for the assay were aliquoted out into clean microcentrifuge tubes. Care was taken to perform the assays with freshly prepared substrates.

9.21.2 Enzyme assay protocol

Two different assay methods were used to characterise and determine the specific activity of the enzymes expressed from GH95 and 97 namely fluorogenic and chromophoric assays. The putative enzymes expressed from GH95 and 97 were α -fucosidase and α - glucosidase respectively.

9.21.3 Chromophoric assay

p-Nitrophenyl α -D-Glucoside $\rightarrow \alpha$ -D-Glucose + p-Nitrophenol

CONDITIONS: T = 37°C, pH = 6.8, A 400nm, Light path = 1 cm

The substrates used were p-nitrophenyl α -D-glucoside, p-nitrophenyl α -D- fucoside, p-nitrophenyl β -D-maltoside and p-nitrophenyl α -D-galactoside. The activities of the enzymes were measured by their action against the substrates resulting in the release of 4- nitrophenol indicated by a change of colour to yellow. The assay

mixture contained 20 mM of the substrate, 5 mM HEPES pH 7.4, 10 mg/mL BSA and 15 μ L of the enzyme at a final concentration of 10 mg/mL. The volume of the assay mixture was made up to a total volume of 500 μ L. The mixture was transferred to a clean plastic cuvette, mixed well with a sterile pipette tip and incubated at 37°C. The change in absorbance values at a wavelength of 420 nm was noted at 1 min intervals.

9.21.4 Fluorimetric assay

The substrates used to carry out the fluorimetric assays include 4-methylumbelliferyl α -D glucoside, 4-methylumbelliferyl α -D-fucoside and 4-methylumbelliferyl β -Dmaltoside. These are synthetic substrates that react with enzymes to release a product called 4-methylumbelliferone (4-MU). 4-MU is a fluorescent dye whose fluorescence was measured using the Bio-Tek FL600 fluorescence microplate reader. The excitation wavelength used was 360 nm and the emission wavelength was 460 nm. Standard assays were performed at 37°C in a total volume of 500 µL of 5 mM Hepes buffer, pH 7.4, containing 10 mg/mL BSA and 0.15 µg of the enzymes, α -D-glucosidase and α -D-fucosidase. The reaction mixture without the enzyme was transferred into a clean glass cuvette and placed into the cuvette holder in the fluorescence densitometer. Once the excitation and emission wavelengths were set, the enzyme was quickly added and mixed well with a sterile tip and the photometric values were measured at 10 min intervals for 60 min. The cell containing the reaction mixture was maintained at 37°C by a temperature controlled circulator. The photometric recordings were traced out onto chart paper using a chart recorder with a recorder pen attached to it. Positive activity was detected in the case of both enzymes.

Two different types of substrates were used in the study to determine the activity of the recombinant enzyme, α -glucosidase purified from our experiment. Para nitrophenyl- α -D- glucopyranoside was used as a substrate where α -D-glucose and p-nitrophenol were expected to be produced as end products as a result of the hydrolysis of the $\alpha \ 1 \rightarrow 6/ \alpha \ 1 \rightarrow 4$ linkages in the substrate. The release of para nitrophenol into the reaction mixture would result in the development of a yellow colour. The intensity of the yellow colour indicated the amount of product released and was measured spectrophotometrically at 420 nm in the colorimetric assay

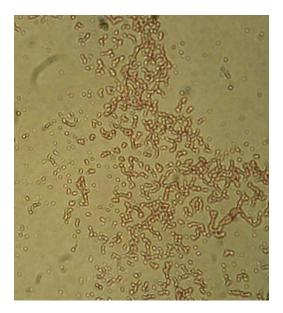
117

(*Anon*, 1996). The other substrate that was used in the study was 4methylumbelliferly α -D-glucoside. The α -glucosidase carried out an enzymatic hydrolysis of the fluorescent sugar resulting in the release of 4-methylumbelliferone as a byproduct of the reaction. The presence of the product in the reaction mixture was analysed using a fluorescent spectrophotomer where the excitation and emission wavelengths were used to measure the amount of product released in the fluorimetric assay (Sheldon *et al.*, 2006).

The BF0855 gene from *B. fragilis* NCTC 9343 was cloned and expressed in *E. coli* and the putative activity of the enzyme was predicted to be α -L-fucosidase or 1, 2 α -L- fucosidase. α -L- fucosidase catalyses the reaction between α -L- fucoside and water resulting in the formation of L- fucose as an end product. They belong to the family of glycoside hydrolases that hydrolyse O and S glycosyl compounds. They are also known as α -L- fucoside fucohydrolase. It is involved in n-glycan and glycan structure degradation. In the presence of 4- methylumbelliferyl α -L- fucoside, 1, 2- α -L- fucosidase catalyses the release of 4-methylumbelliferone as a byproduct of the reaction and this can be used in its fluorimetric assay. The substrate used in the colorimetric assay of α -L- fucosidase was para- nitrophenyl- α -D- fucoside.

10. Results and discussion of the proteomic analysis of *Bacteroides fragilis* NCTC 9343 and *Enterobacter cancerogenus* ATCC 35316

Enterobacter cancerogenus and Bacteroides fragilis are some of the predominant flora of the gut and are capable of acting as opportunistic pathogens by causing gut associated infections. *B. fragilis* originate in the endogenous flora of the mucous membranes and are capable of causing a number of infections including intra abdominal abscesses, soft skin and tissue infections, bacteraemia, gangrene, necrotizing cellulitis and so on. They are also capable of causing severe secondary infections that include central nervous system infections, pleuropulmonary infections and septic arthritis (Pumbwe *et al.*, 2006). Since *Bacteroides* spp. are strictly anaerobic in nature, it hard to detect them during specimen culture and analysis. *E. cancerogenus* has been known to occur as a secondary wound infection causing bacteria. They have been isolated from human faeces, found to be associated with the human gut and form a part of the normal human gut microbiota.


A number of studies have been performed on the differential expression of proteins in *B. fragilis* and *Enterobacter* sp. in response to oxidative stress, antibiotic and so on. In order to determine the proteins that may be differentially expressed in metronidazole-resistant strains of *B. fragilis*, mutants lacking the flavodoxin and pyruvate-ferredoxin oxidoreductase genes were generated and studied (Diniz *et al.*, 2004). Other proteomic studies in *B. fragilis* were performed to determine the oxidative stress response (Rocha *et al.*, 2003). A top down proteomics approach has been used to study the differential expression of heat resistant strains (Williams *et al.*, 2005) and osmotic stress response (Riedel & Lehner, 2007) in *E. sakazakii* and selenite resistance in *E. cloacae* (Barasa, 2008). Since *E. cancerogenus* infections are not as commonly occurring as *B. fragilis* infections, no proteomics experiments have been performed to determine its virulence factors.

10.1 Growth analysis of *E. cancerogenus* and *B. fragilis*

The two strains, *Bacteroides fragilis* NCTC 9343 and *Enterobacter cancerogenus* ATCC 35316, were grown anaerobically at 37°C in an anaerobic chamber. The presence of Gram-negative bacteria was confirmed by Gram staining (Refer to the Figs.12 and 13).

Figure 12: Gram staining results for *E. cancerogenus* showing the presence of small rod shaped bacilli that stained pink.

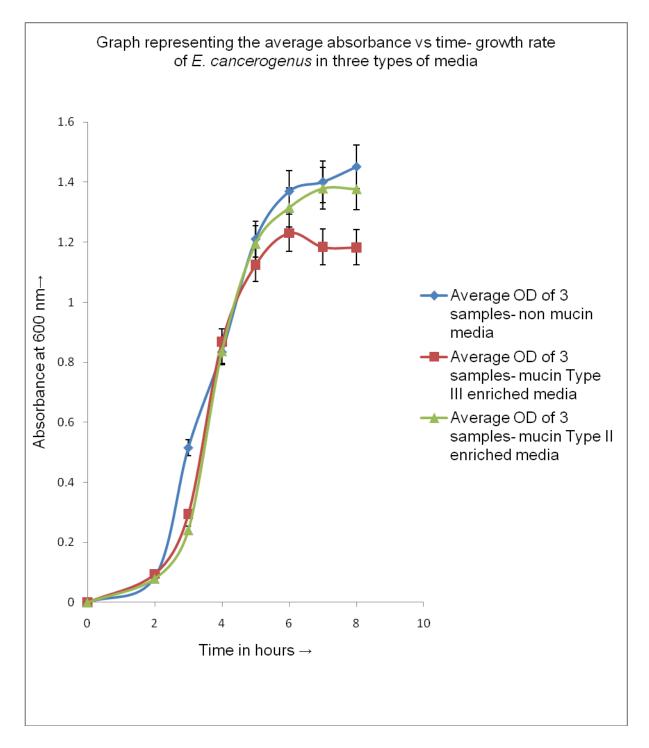
Figure 13: Gram staining results for *B. fragilis* showing the presence of small rod shaped bacilli that stained pink.

Minimal medium was prepared as described in the methodology section and the bacteria were grown in the media. The growth rate of both *B. fragilis* and *E. cancerogenus* was found to be very slow taking about 160 to 170 h to reach an OD of 1.0 at 600 nm. Hence modifications were made in the minimal media where yeast extract was used as a source of vitamin B and the concentration of casitone was increased from 0.2 g to 0.5 g per 100 mL of medium. The growth in this medium (semi- defined media) was found to be much quicker with the culture attaining an overnight stationary phase in case of *E. cancerogenus* (12-16 h) and 40 h for *B. fragilis*. Table 3 showing the growth of *E. cancerogenus* and *B. fragilis* in minimal growth media have been included below. Table 4 included below details the growth of bacteria (*E. cancerogenus* and *B. fragilis*) in semi-defined media containing various sources of carbon.

Time in h	Average absorbance at 600 nm				
	E. cancerogenus	B. fragilis			
0	0.000	0.000			
12	0.008	0.015			
24	0.023	0.044			
48	0.158	0.102			
72	0.278	0.304			
96	0.488	0.417			
120	0.821	0.632			
144	1.025	0.954			
168	1.238	1.189			
192	1.143	1.178			

Table 3: Growth of *E. cancerogenus* and *B. fragilis* in minimal media

Type of carbon source used in	Average OD at	4 h after	Average OD at 8 h after		Average OD at 16 h after	
the semi-defined media	inoculation		inoculation		inoculation (overnight	
					incubation)	
	E. cancerogenus	B. fragilis	E. cancerogenus	B. fragilis	E. cancerogenus	B. fragilis
Glucose	0.839±0.0008	0.223±0.0009	1.036± 0.002	0.539±0.0012	1.304± 0.0025	0.728±0.0008
Mucin Type II	0.378±0.001	0.035±0.0008	0.367± 0.156	0.156±0.0008	0.358±0.002	0.462±0.0017
Mucin Type III	0.355 ±0.0005	0.038±0.0012	0.353±0.093	0.201±0.0008	0.325±0.0008	0.512±0.0008
Glucose and Type II mucin (0.5	0.993±0.0012	0.324±0.0012	1.148 ±0.001	0.498±0.0012	1.316±0.0016	0.819±0.0017
g/100 mL of glucose and mucin						
Type II)						
Glucose and Type III media (0.5	1.090±0.0124	0.287±0.0009	1.220±0.025	0.562±0.0016	1.414 ±0.0017	0.753±0.0016
g/100 mL of glucose and mucin						
Type III)						
Type II and III mucin (0.5 g/100	0.956±0.0008	0.045±0.001	1.134±0.002	0.198±0.0008	0.614±0.0012	0.485±0.0012
mL of mucin Type II and Type III)						
Glucose and Type II and III mucin	0.068±0.0017	0.015±0.0017	0.881±0.0017	0.367±0.0008	0.821±0.0012	0.328±0.0008
(0.5 g/100 mL of glucose, mucin						
Type II and Type III)						

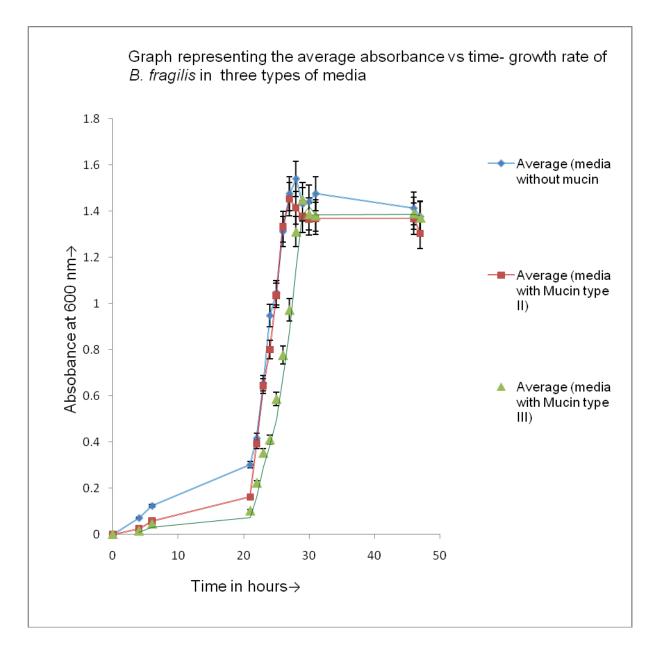

Table 4: Growth of bacteria in the semi-defined media with different carbon sources

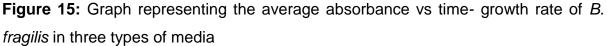
All experiments were performed in duplicate and the values represented in the tables indicate average values of absorbance (600 nm) at the respective time points. All the carbon sources were added at a concentration of 0.5 g per 100 mL of the media. A quantity of 0.5 g of mucin was weighed out from the bottle and added to the medium rather than measuring the concentration of sugar in it.

10.1.1 Growth analysis of *E. cancerogenus*

Media (450 mL) inoculated with a 1 mL volume from 10 mL overnight starter cultures showed the following growth results over a period of 8 h (Fig. 14). The optical density values were measured at 600 nm at various time periods. An average of three results is represented in the graph below for both OD values against time and three different media have been used.

All the growth curve experiments were performed in triplicate and vertical error bars representing the standard deviation from the mean can be observed in the graph.


Figure 14: Graph representing the average absorbance vs time- growth rate of *E. cancerogenus* in three types of media


10.1.2 Growth analysis of *B. fragilis*

Media (450 mL) inoculated with a 1 mL volume from 10 mL overnight starter cultures showed the following growth results over a period of 48 h (Fig. 15). The optical density values were measured at 600 nm at various time periods. An average of three results is represented in the graph below for both OD values and colonies forming units against time and three different media have been used.

All the growth curve experiments were performed in triplicate and vertical error bars representing the standard deviation from the mean can be observed in the graph.

The average absorbances for the growth of *E. cancerogenus* and *B. fragilis* in semidefined media have been included in the Appendix section E in the following tables. Tables 5, 6 and 7 included in the Appendix E show the growth of *E. cancerogenus* in non mucin, mucin Type II and Type III enriched media, respectively. Tables 8, 9 and 10 included in the Appendix E show the data for the growth of *B. fragilis* in non mucin, mucin Type II and Type III enriched media, respectively.

The harvesting time point for the cultures of *E. cancerogenus* and *B. fragilis* were determined based on halving the maximum OD value achieved during its growth in the semi-defined media as 0.6 and 0.7, respectively. This would also ensure that the cells were in their mid log phase.

10.2 Growth of *E. cancerogenus* ATCC 35316 and *B. fragilis* NCTC 9343 in semi-defined media

Both bacteria were grown in three types of semi-defined media which included media without mucin, media enriched with porcine intestinal mucin Type II and media enriched with porcine intestinal mucin Type III. Even though initial attempts were aimed at growing the bacteria in minimal media with and without mucin, it was found that the extremely slow rate of growth of bacteria hindered the progress of experiments and hence the medium was slightly modified by the addition of yeast extract, replacing the vitamin solution and increasing the concentration of casitone from 0.2 to 0.5 g to enable quicker growth of the bacteria.

Growth of the bacteria was studied in the logarithmic phase rather than the stationary phase because most of the virulence factors and other important proteins are normally expressed in the logarithmic phase of growth (Ernst *et al.*, 1990).

Several carbon sources were used to study the growth of *E. cancerogenus* and *B. fragilis* and it was found that the semi-defined medium containing glucose on its own (or in combination with mucin) supported efficient growth. In a semi-defined medium containing only mucin as a source of carbon, the growth rate was found to be low, with the optical density not increasing beyond 1.0, when compared to a semi-defined medium containing glucose and mucin. This may be due to the general tendency of bacteria to use glucose as the first source of carbon and other carbohydrate sources are utilised only when glucose is completely depleted in the media (Studier, 2005).

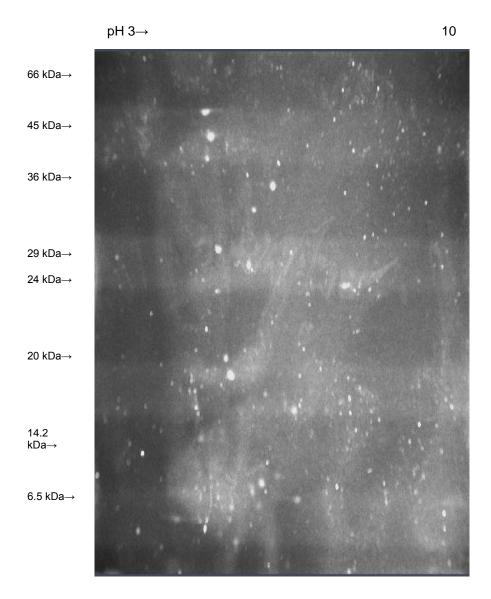
10.3 Mucin used in the study

The two types of mucin used were porcine gastric/intestinal mucin Type II and III. The main difference between the Type II and Type III medium is that mucin Type III is a partially purified powder that has the presence of 0.5 to 1.5% bound sialic acid. The sugar and amino acid composition of mucin has not been determined by the Sigma-Aldrich company from where it was purchased. The Type II mucin is a crude extract of mucin glycoproteins from the hog stomach using the enzyme pepsin and it has about 1% of bound sialic acid. Since the study aimed at analysing the differential protein expression in opportunistic pathogens when they come in contact with the first line of cell defence, mucin, the closest possible system to the human body was necessary. Previous studies show that the core structures found in porcine gastric mucins are the same as that in human gastric mucins (Karlsson *et al.*, 1997). One of the most easily accessible types of mucin was the porcine gastric mucin without the involvement of any ethical issues thereby encouraging the incorporation of mucin as a potential source of carbohydrates in the semi-defined medium.

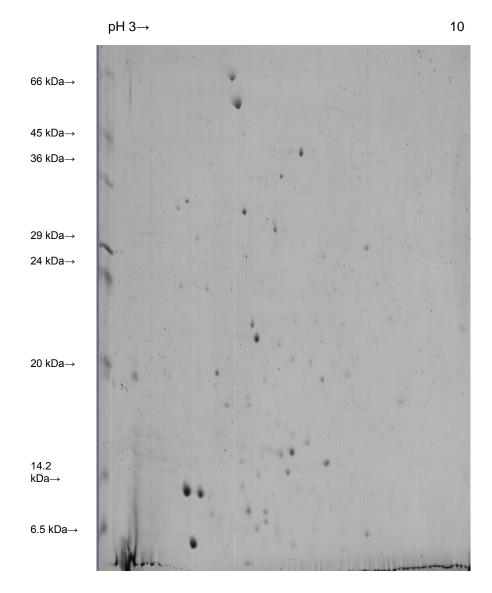
Out of several mucin types used in a study, ovomucoid, porcine gastric mucin and beef submaxillary mucin were found exhibit high similarity to human colonic mucin (Salyers *et al.*, 1977). The variations mainly occur in a relatively small number of basic structures. Some of these variations include the presence of acidic structures derived from neutral oligosaccharides in human colonic mucin, variations in the degree of sialylation, the biantennary structures of mucin oligosaccharides and also the branched chain olicosaccharides which appear to be linear chain derivatives of the same core structure (Podolsky, 1985). High levels of sialylation have been observed in both human and porcine colonic mucin. The hydroxyl groups present at the end of the sialic acids that contain acetyl esters inhibit bacterial degradation of mucin (Corfield *et al.*, 1992). Disulphide rich domains have been idenitified in both human intestinal and porcine submaxillary mucins but there may be a low degree of sequence identity (PerezVilar *et al.*, 1996).

It is possible that the activity of *B. fragilis* on colonic mucin may be different to that of gastric mucin since gastric mucin has been used in our studies due to the unavailability of colonic mucin.

My results show the expression of a number of proteins related to oxidative stress and heat shock which indicate the presence of stress during growth. Previous proteomics studies in *E. faecalis* have revealed the expression of a number of stress associated proteins in exponentially grown cells, viable but non culturable cells and proteins expressed during starvation conditions (Heim *et al.*, 2002). These stress proteins are generally expressed in response to bacterial growth and adaptability to various environmental conditions.

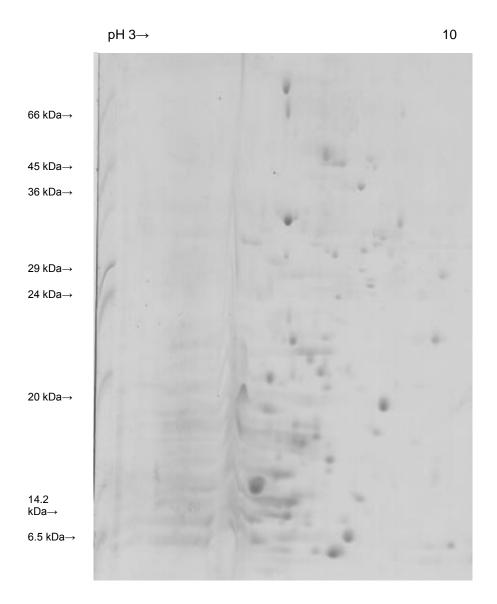

Proteome profiles obtained from the growth of bacteria in mucin enriched media suggest that the differentially expressed proteins may be associated with colonisation where bacteria adapt themselves to bind to the mucous layers of the gut. Bacterial proteins associated with the ability to induce an immune response within the host could act as potential virulence factors and eventually result in infection. In the proteomics studies, first dimension separation of proteins was limited to a pH range of 4-7 rather than a variety of different pH gradients. Performing experiments with different second dimension separations may also provide a better insight into understanding differential protein expression. There are a large number of bacteria that occur commonly on mucous membranes forming a part of the normal gut flora by adhering and colonising mucin. But certain environmental adaptations within them can result in their ability to produce enzymes and compounds that lead to virulence.

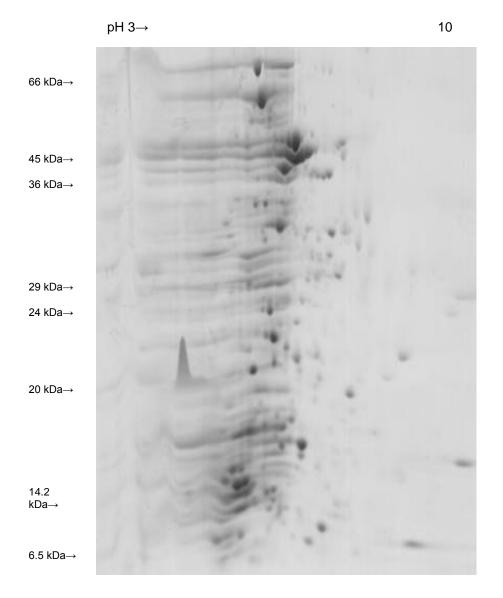
10.4 Optimisation of two dimensional polyacrylamide gel electrophoresis (2DE-PAGE) gels


10.4.1 Comparison of staining methods

An attempt was used to compare the Coomassie blue staining with fluorescent staining, but due to the inconvenience of the requirement to irradiate with UV light when excising protein spots and poorer resolution, the Coomassie blue staining technique was chosen to analyse the spots of interest. On comparison of the gels represented in Figs 16.1 and 16.2 it is evident that the spots have been expressed with better clarity and resolution when colloidal Coomassie blue stain was used. From the figure, it was evident that fluorescent staining failed to achieve the required sensitivity levels and seemed inconsistent when compared to Coomassie blue staining. The process of cutting out spots of interest would be a more tedious process if fluorescent staining was used since this would involve working in the presence of UV light. The gel looks smudgy and the presence of a dark background may obscure the number of low abundance proteins observed. The improper background staining may be attributed to the trapping of the fluorescent dye in detergent micelles and this has been observed in previous studies (Malone *et al.*, 2001).

Figure 16: Figure showing the difference between fluorescent staining and Coomassie blue staining.


Figure 16.1: Proteome map of *E. cancerogenus* grown in semi-defined media without mucin. Separation was achieved using pH range 3-10 IEF strips. Gel was stained using fluorescent staining.


Figure 16.2: Proteome map of *E. cancerogenus* grown in semi-defined media without mucin. Separation was achieved using pH range 3-10 IEF strips Gel was stained using colloidal Coomassie blue staining.

10.4.2 Comparison of pH ranges of IEF strips

The proteins from the culture supernatant were initially analysed using pH range 3-10 IEF strips. However the location of proteins seemed to be predominantly within the 4-7 pH range (Figures 17.1, 17.2 and 17.3) and hence the IPG strip pH range was changed to 4-7. **Figure 17**: Isolation of E. *cancerogenus* proteins from 450 mL mid log phase cultures at an OD of 0.6 separated using pH range of 3-10 IEF strips

Figure 17.1: Proteome map of *E. cancerogenus* grown in semi-defined media without mucin. Separation was achived using pH range 3-10 IEF strips.

Figure 17.2: Proteome map of *E. cancerogenus* grown in semi-defined media enriched with mucin Type II. Separation was achieved using pH 3-10 IEF strips.

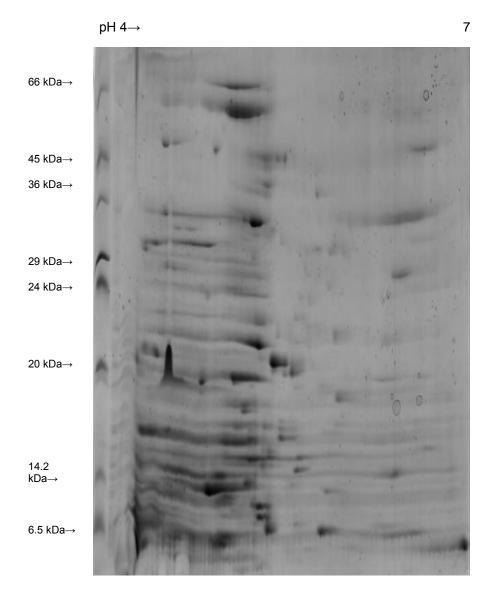
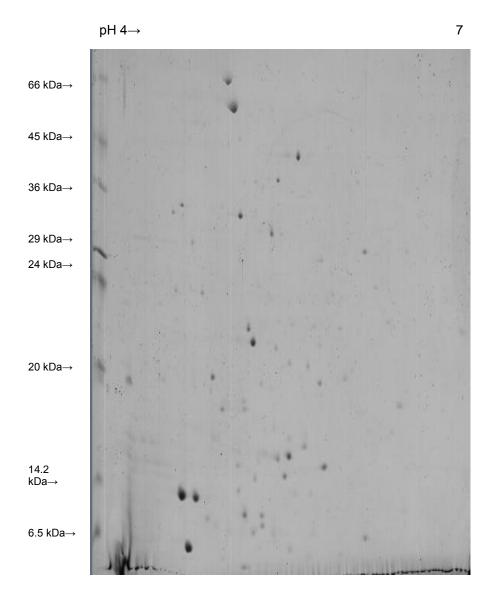

10

Figure 17.3: Proteome map of *E. cancerogenus* grown in semi-defined media enriched with mucin Type III. Separation was achieved using pH 3-10 IEF strips.


10.4.3 Comparison of protein loadings

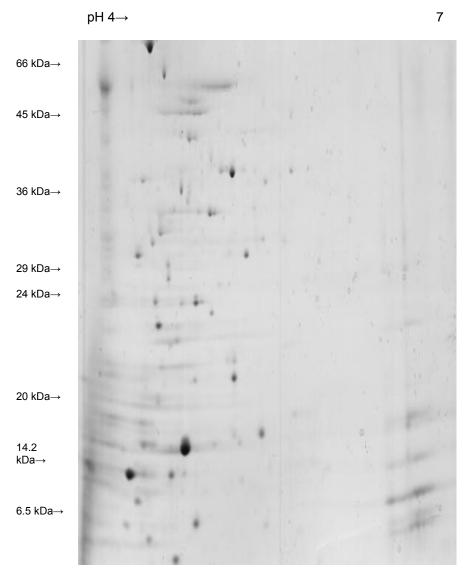
The expression of proteins was studied in the mid logarithmic phase of growth of the culture and several optimisation experiments were performed to determine the appropriate volume of the culture that could provide a good separation and resolution of spots. Initial experiments were performed using 450 mL of the log phase cultures and were later reduced to a volume of 100 mL in order to obtain the best possible resolution (Figs. 18.1 and 18.2).

Figure 18. Proteins isolated from 100 and 450 mL of *B.fragilis* and *E. cancerogenus* grown in semi-defined media separated by pH 4-7 IEF strips

Figure 18.1: Proteins isolated from 450 mL of *E. cancerogenus* grown in semidefined media without mucin separated by pH 4-7 IEF strips.



Figure 18.2: Proteins isolated from 100 mL of E.*cancerogenus* grown in semidefined media without mucin separated by pH 4-7 IEF strips.


10.4.4 Comparison of polyacylamide gel concentrations

The protein expression patterns were found to be more distinct and better resolved in 12 % (w/v) rather than 14% (w/v) gels and hence 12 % (w/v) gels were used during the study (Figures 19.1 and 19.2).

Figure 19: Isolation of E. *cancerogenus* proteins from 100 mL log phase cultures at an OD of 0.6 separated using pH range of 4-7 IEF strips

Figure 19.1: Proteome map of *E. cancerogenus* grown in semi-defined media without mucin. Separation was achieved using a 12% (w/v) gel

Figure 19.2: Proteome map of *E. cancerogenus* grown in semi-defined media without mucin. Separation was achieved using a 14% (w/v) gel

10.5 Two dimensional gel electrophoresis

One of the initial problems was the culture volume required to obtain a protein expression profile with good resolution and minimising horizontal streaks. Hence different volumes of cultures were used to obtain expression patterns in the log phase and a 100 mL culture volume at an OD_{600nm} of 0.6 or 0.7 in *E. cancerogenus* or *B. fragilis*, respectively, was found to be the most appropriate. Based on the results obtained, 100 mL culture volumes were used in the study (Refer to Figs. 18.1, 18.2 with different volumes in results section).

Sample preparation is one of the most important parts of the two dimensional gel electrophoresis (2DE) technique since even small variations in methodology could

result in massive changes in protein expression profiles. Reproducibility of gels was another major issue faced in the 2DE method. Care was taken to ensure that proteins studied from different conditions were extracted and analysed in a similar fashion aiming at minimising variation as much as possible (Choe & Lee, 2003). At least six gels were generated from each condition in order to confirm that they were reproducible. During Mann-Whitney U analysis using the PDQuest and Redfin softwares, spots that were not up- or down-regulated in all the replicate gels compared to all the replicated control gels were excluded. During Student t-test analysis using the PDQuest, Redfin and SameSpots software, an average expression in each condition was considered rather than the expression levels in each replicate gel.

Initial experiments resulted in a high amount of horizontal and vertical streaks on the gels with poor resolution. One of the main reasons for this was the incomplete resolubilisation of pellets following their treatment with the 2D Clean up kit. The protein pellets were resolubilised in the rehydration buffer by ultra-sonication on ice for a few seconds and the insoluble pellets were removed by centrifugation for 1 min. This helped to reduce protein overload on to the IPG strips and also resulted in efficient separation of proteins.

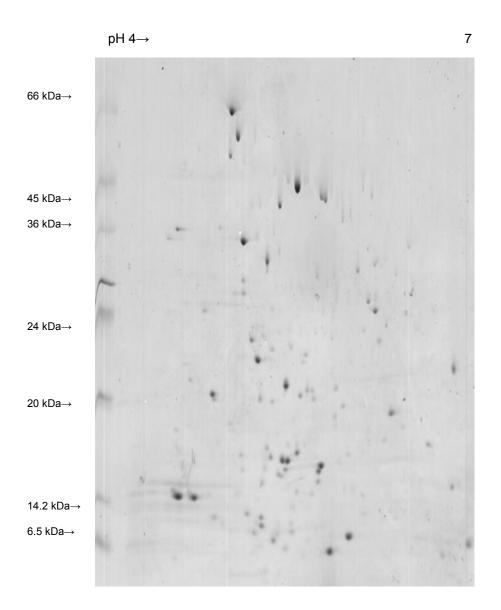
The composition of the solutions used in the 2D Clean up kit are not freely available. Previous studies have shown that they help to remove contaminating polysaccharides from the protein samples (Zhang, 2006) (Zhang *et al.*, 2007). The 2D Clean up kit consists of the precipitant, co-precipitant, wash buffer and wash additive solutions whose recipe has been patented. Alternatively, the acetone precipitation method could be used to prepare protein samples from *B. fragilis* cultures where acetone is the main compound precipitating out the proteins present in the cell free extract.

Similar studies were performed to determine the pH range for the IPG strips used in the first dimension electrophoresis. The pH range of 3-10 was used initially but since most of the proteome expression was concentrated around the acidic pH range of 4-7, further experiments were performed using IPG strips of pH 4-7 (refer to Figs. 17).

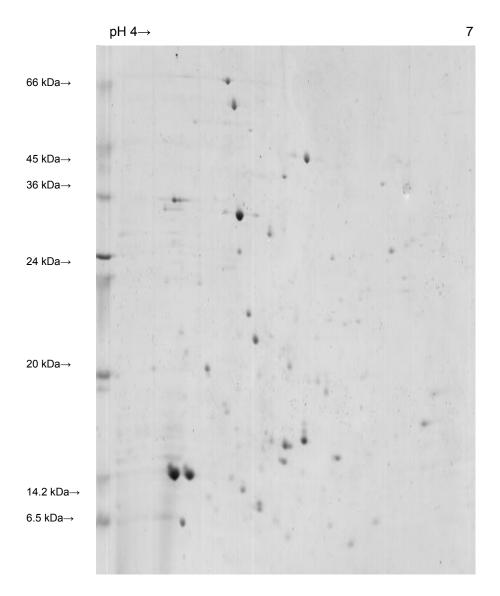
An attempt was used to compare the Coomassie blue staining with fluorescent staining but due to the inconvenience of cutting out spots and improper resolution,

140

the Coomassie blue staining technique was chosen to analyse the spots of interest. The inconvenience of cutting out spots was that UV light was required to locate the exact spot boundaries and this would make the cutting process a tedious task and visualisation in visible light impossible. From Figs. 16.1 and 16.2, it is evident that the spots have been expressed with better clarity and resolution when colloidal Coomassie blue stain was used. The increased convenience of using colloidal Coomassie blue staining method when compared to fluorescent staining supported its use in the study.


Since reproducibility and uniform dimensions of scan area on gels were some of the most important factors to be considered, the scanning of all the gels were performed together at the same time ensuring that the scan area was exactly the same for all of them. Further adjustments were possible using the PDQuest, Redfin and Samespots software tools where flipping of gels, cropping and background subtractions were carried out to optimise and compensate for differences in intensities of staining and other experimental variations. The spots on the gels were reviewed using the spot review tool and the consensus tool was used to edit any errors that may have occurred during spot analysis.

10.6 Separation of proteins from *E. cancerogenus* and *B. fragilis* grown in semi-defined media with and without mucin using 2DE gels.

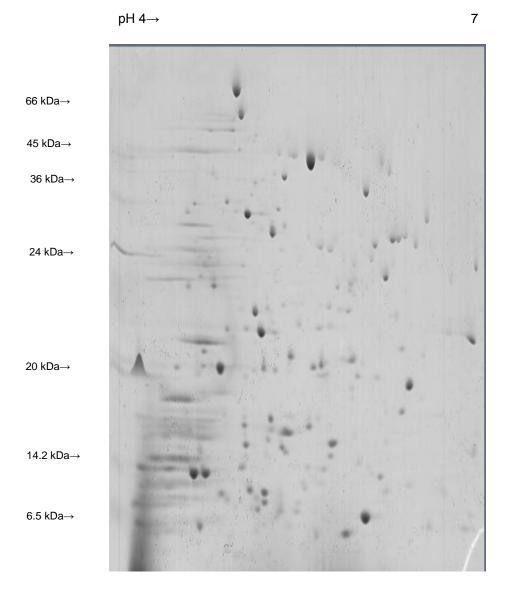
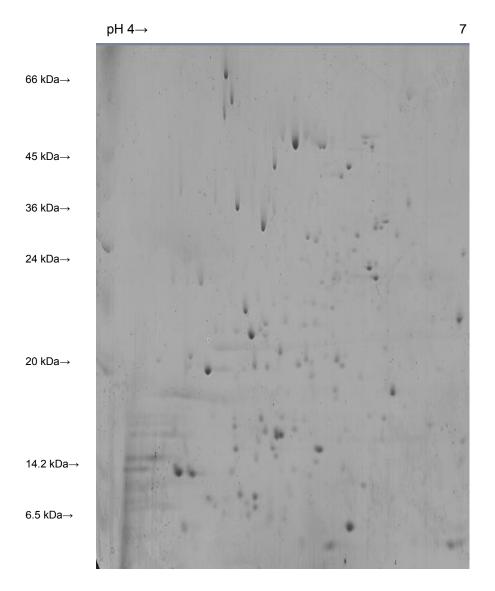
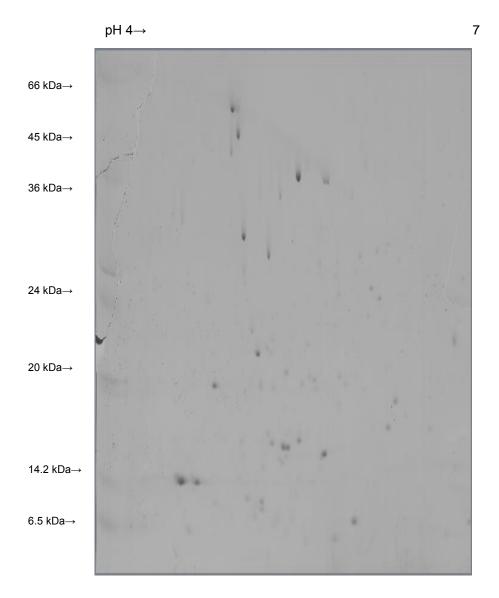

10.6.1 Sets of replicate 2DE gels of proteins from *E. cancerogenus*

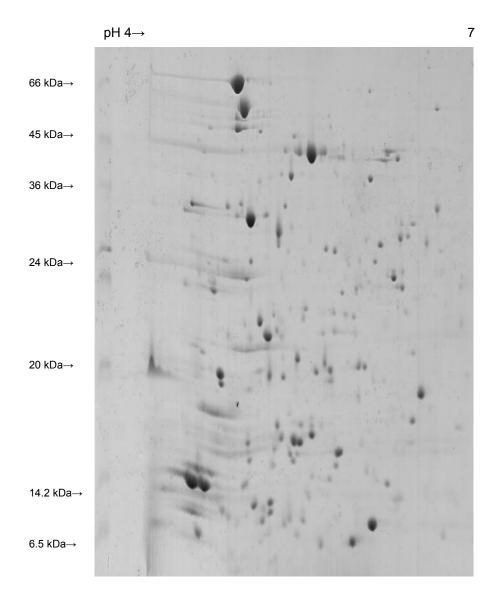
Multiple sets of gels of biological replicates of proteins from *E. cancerogenus* grown in media without mucin, media with mucin Type II and media with mucin Type III (IEF strip pH range 4-7, processing volume: 100 mL, harvesting OD at 600 nm: 0.6) (Figs. 20-22).

Figure 20: Proteome maps of *E. cancerogenus* grown in semi-defined media without mucin (control media; using pH 4-7 IEF strips).

Figure 20.1: Proteome map no.1 of *E. cancerogenus* grown in semi-defined media without mucin

Figure 20.2: Proteome map no.2 of *E. cancerogenus* grown in semi-defined media without mucin.


Figure 20.3: Proteome map no.3 of *E. cancerogenus* grown in semi-defined media without mucin.

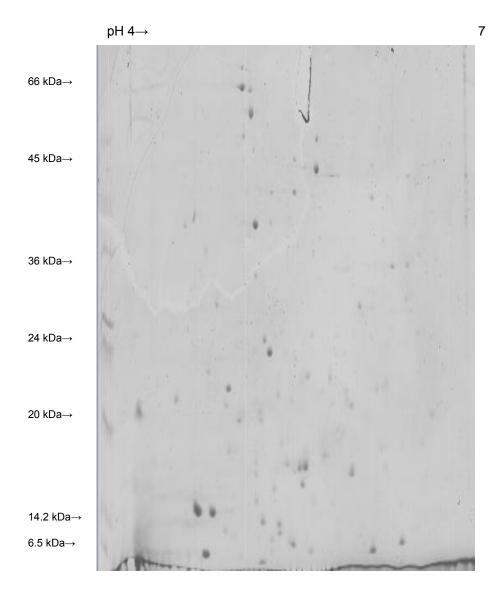

Figure 20.4: Proteome map no.4 of *E. cancerogenus* grown in semi-defined media without mucin.

Figure 20.5: Proteome map no.5 of *E. cancerogenus* grown in semi-defined media without mucin.

Figure 20.6: Proteome map no.6 of *E. cancerogenus* grown in semi-defined media without mucin.

Figure 20.7: Proteome map no.7 of *E. cancerogenus* grown in semi-defined media without mucin.

Figure 21: Proteome maps of *E. cancerogenus* grown in semi-defined media enriched with mucin Type II (using pH 4-7 IEF strips)

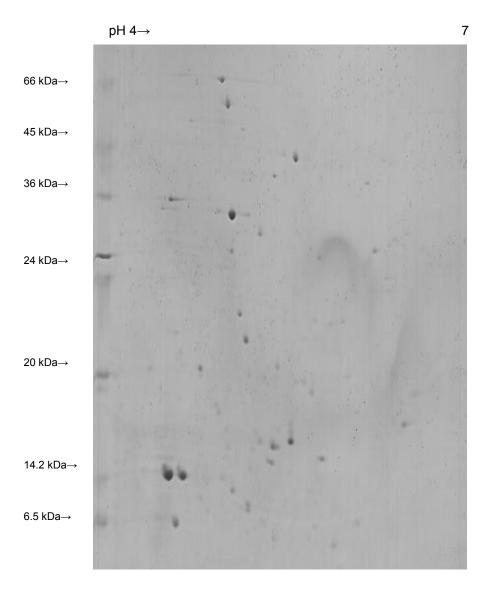


Figure 21.1: Proteome map no.1 of *E. cancerogenus* grown in mucin Type II enriched media

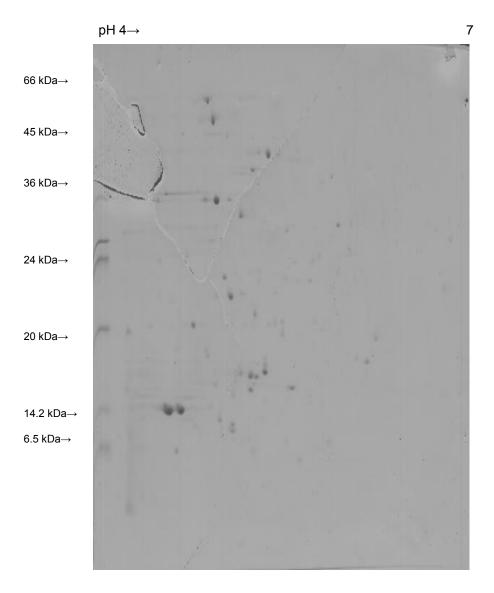


Figure 21.2: Proteome map no.2 of *E. cancerogenus* grown in mucin Type II enriched media

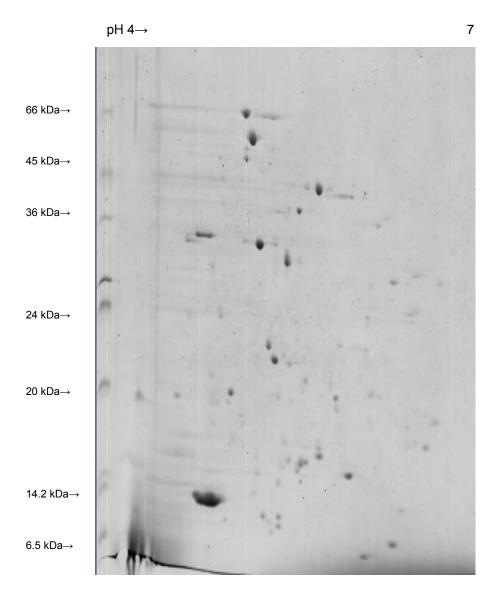


Figure 21.3: Proteome map no.3 of *E. cancerogenus* grown in mucin Type II enriched media

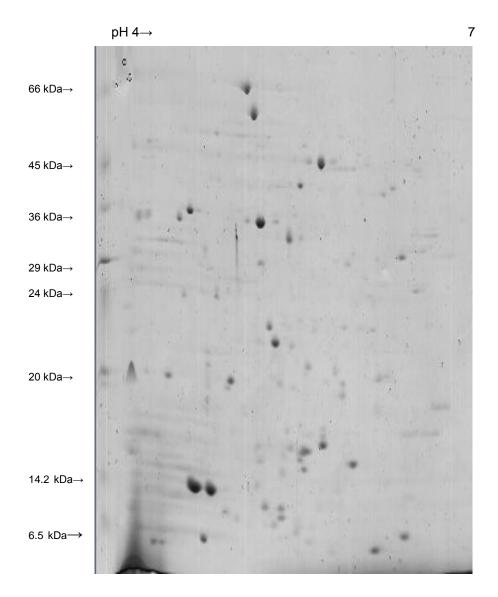


Figure 21.4: Proteome map no.4 of *E. cancerogenus* grown in mucin Type II enriched media

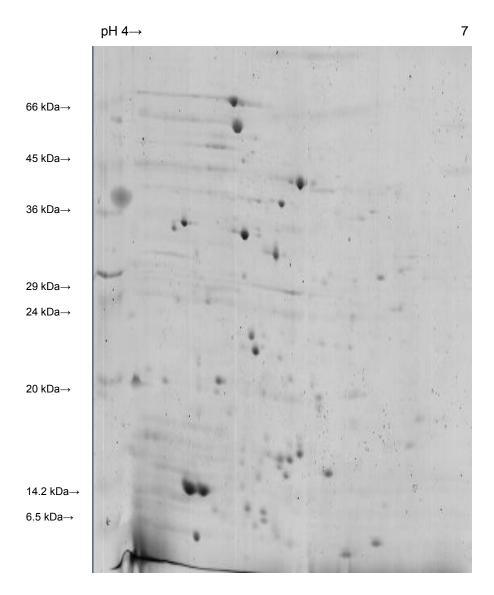


Figure 21.5: Proteome map no.5 of *E. cancerogenus* grown in mucin Type II enriched media

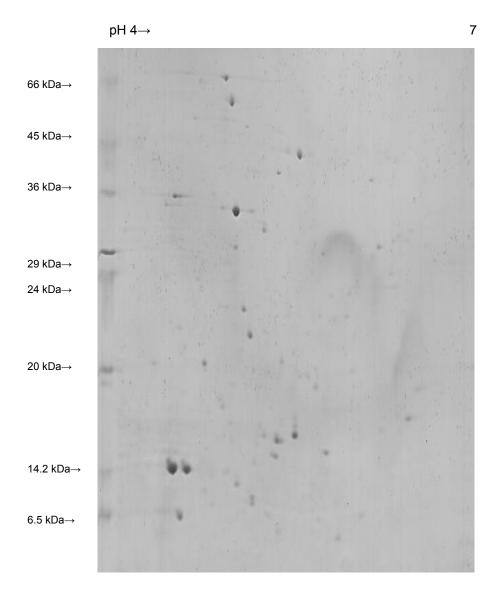


Figure 21.6: Proteome map no.6 of *E. cancerogenus* grown in mucin Type II enriched media

Figure 22: Proteome maps of *E. cancerogenus* grown in semi-defined media enriched with mucin Type III (using pH 4-7 IEF strips)

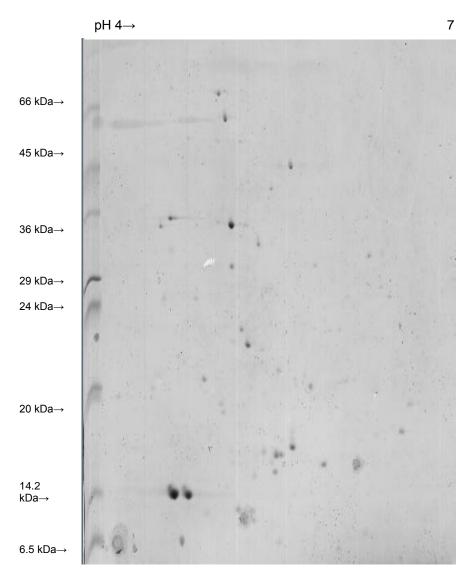


Figure 22.1: Proteome map no.1 of *E. cancerogenus* grown in mucin Type III enriched media

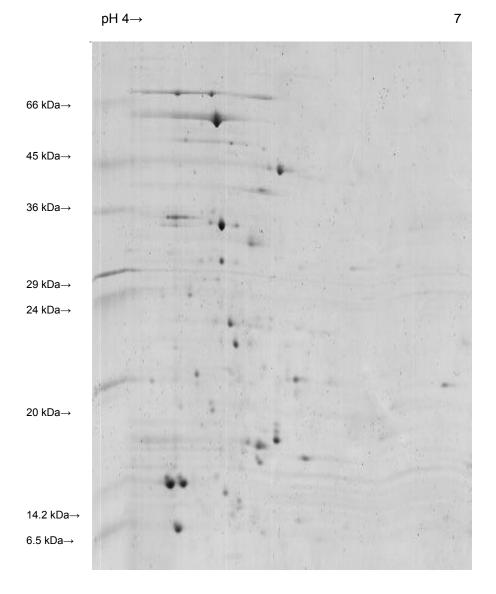


Figure 22.2: Proteome map no.2 of *E. cancerogenus* grown in mucin Type III enriched media

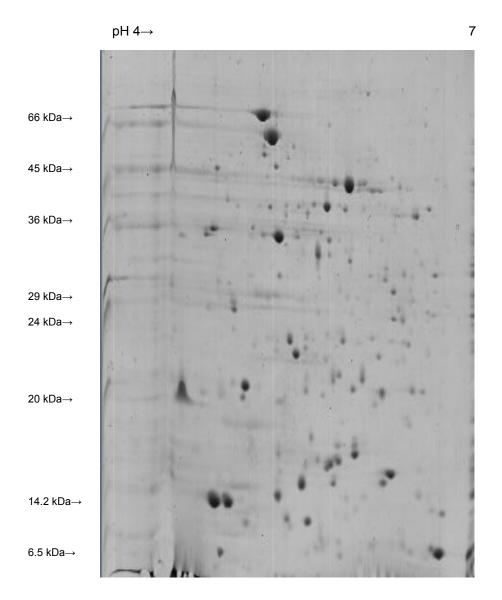


Figure 22.3: Proteome map no.3 of *E. cancerogenus* grown in mucin Type III enriched media

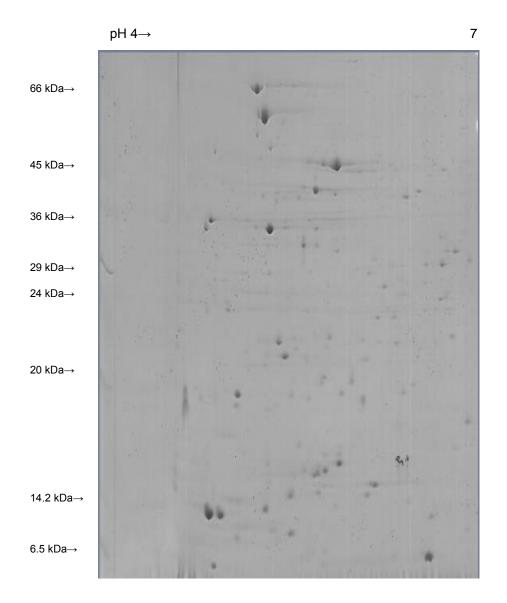


Figure 22.4: Proteome map no.4 of *E. cancerogenus* grown in mucin Type III enriched media

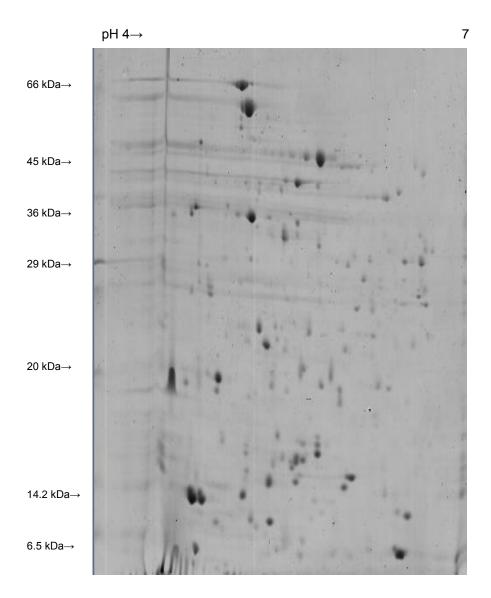


Figure 22.5: Proteome map no.5 of *E. cancerogenus* grown in mucin Type III enriched media

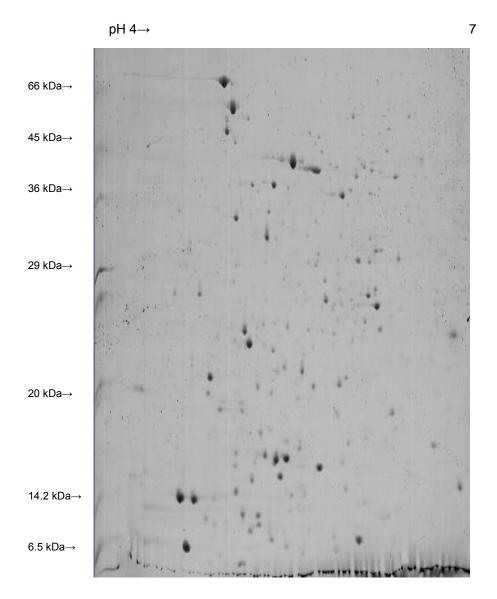


Figure 22.6: Proteome map no.6 of *E. cancerogenus* grown in mucin Type III enriched media

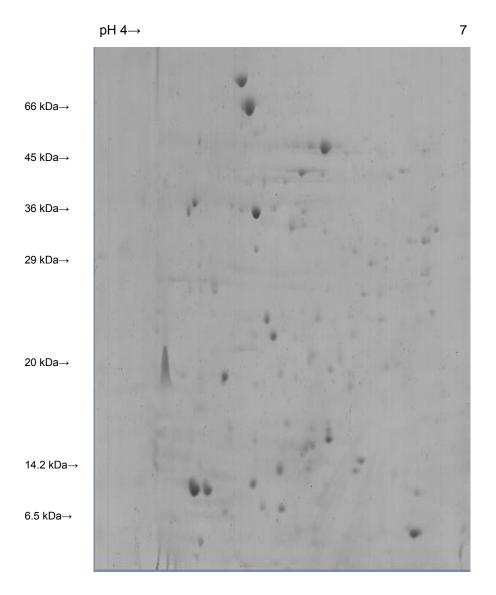


Figure 22.7: Proteome map no.7 of *E. cancerogenus* grown in mucin Type III enriched media

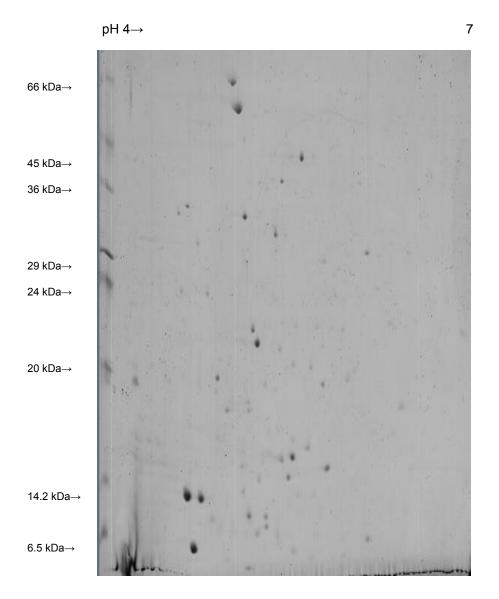


Figure 22.8: Proteome map no.8 of *E. cancerogenus* grown in mucin Type III enriched media

10.6.2 Sets of replicate 2DE gels of proteins from B. fragilis

Multiple sets of gels of proteins from *B. fragilis* grown in media without mucin, media with mucin Type II and media with mucin Type III (IEF strip pH range 4-7, processing volume: 100 mL, harvesting OD at 600 nm: 0.7) (Figs. 23-25).

Figure 23: Proteome maps of *B. fragilis* grown in semi-defined media without mucin (control media; using pH 4-7 IEF strips)

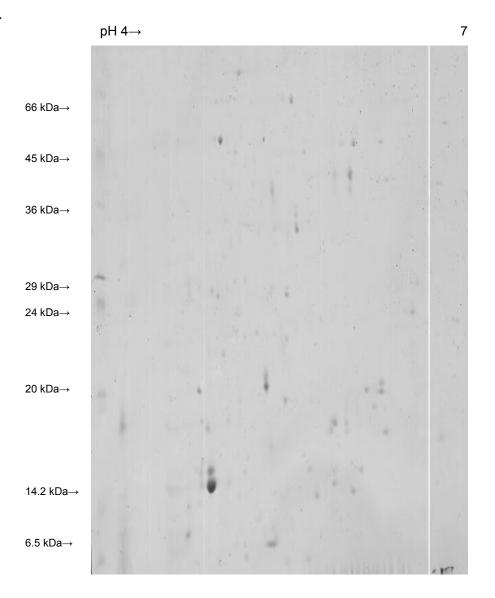


Figure 23.1 Proteome map no.1 of *B. fragilis* grown in semi-defined media without mucin

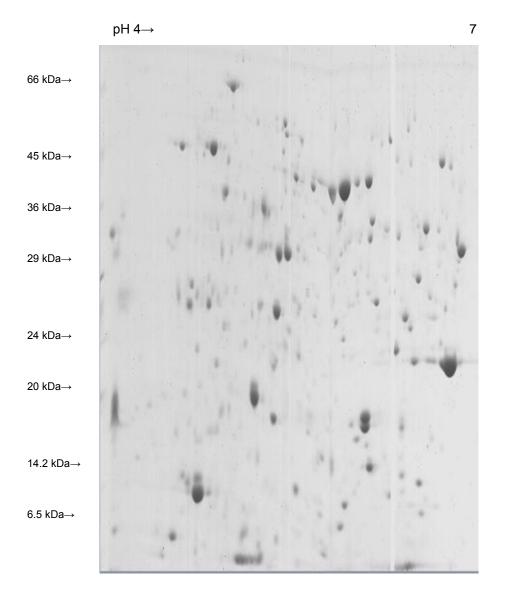


Figure 23.2: Proteome map no.2 of *B. fragilis* grown in semi-defined media without mucin

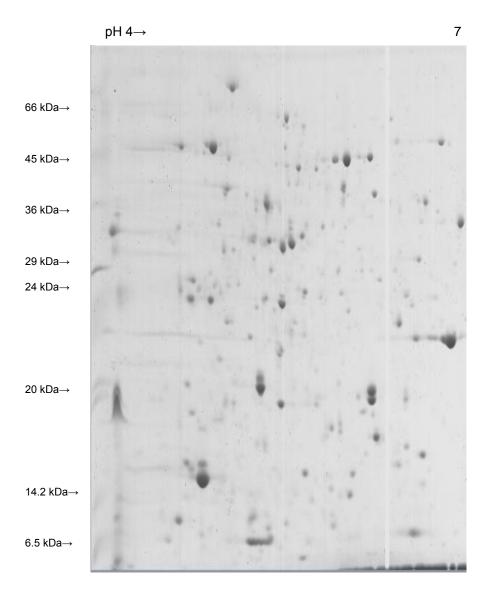


Figure 23.3: Proteome map no.3 of *B. fragilis* grown in semi-defined media without mucin

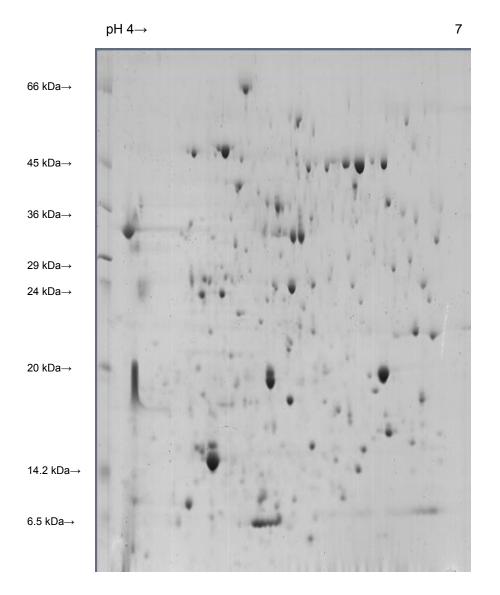


Figure 23.4: Proteome map no.4 of *B. fragilis* grown in semi-defined media without mucin

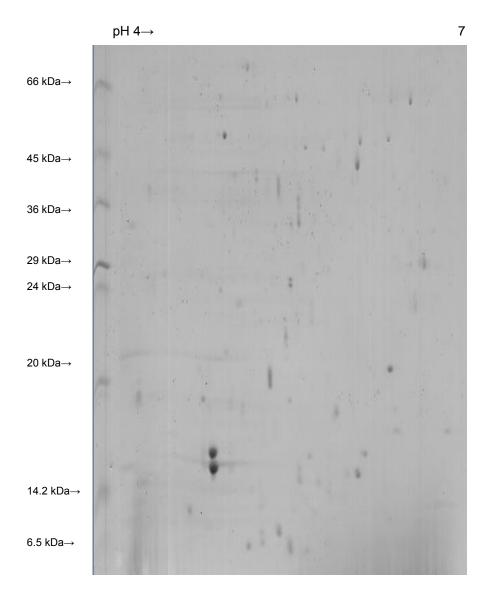


Figure 23.5: Proteome map no.5 of *B. fragilis* grown on semi-defined media without mucin

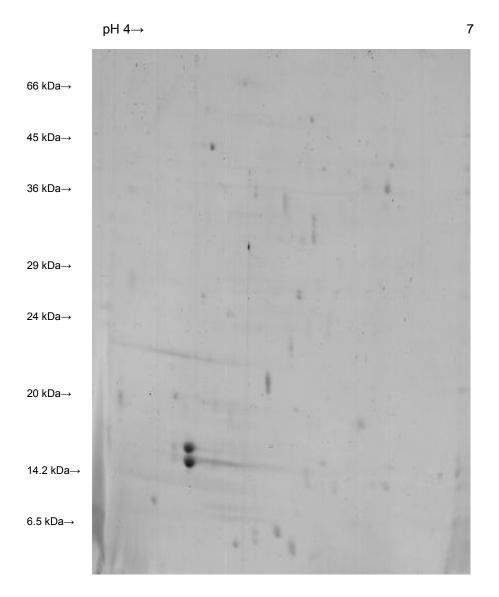


Figure 23.6: Proteome map no.6 of *B. fragilis* grown in semi-defined media without mucin

Figure 24: Proteome maps of *B. fragilis* grown in media containing mucin Type II (using pH 4-7 IEF strips).

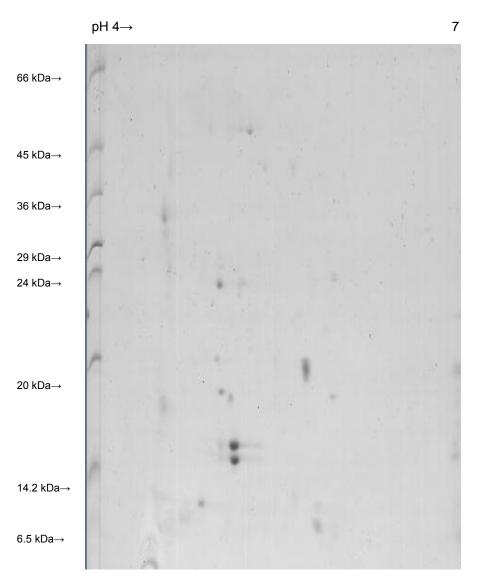


Figure 24.1: Proteome map no.1 of *B. fragilis* grown in mucin Type II enriched media

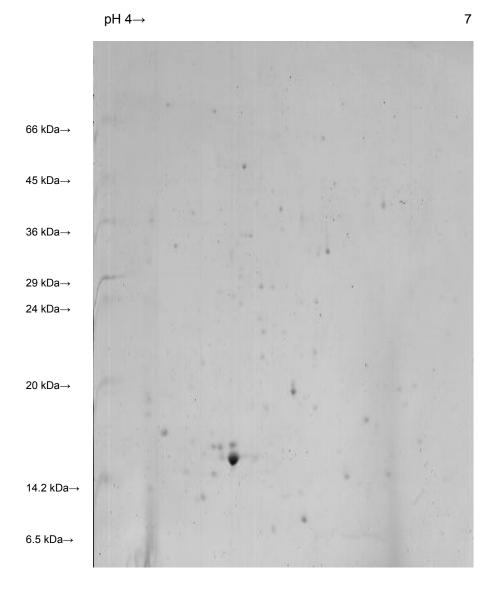


Figure 24.2: Proteome map no.2 of *B. fragilis* grown in mucin Type II enriched media

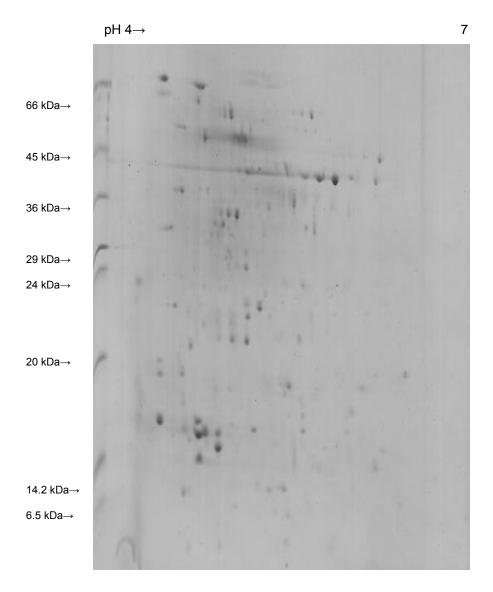


Figure 24.3: Proteome map no.3 of *B. fragilis* grown in mucin Type II enriched media

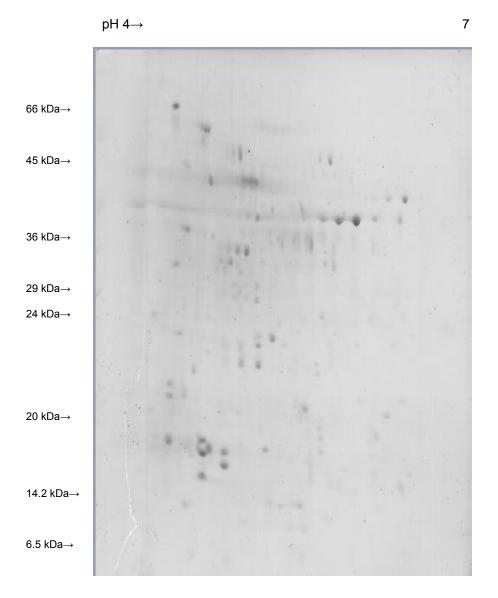


Figure 24.4: Proteome map no.4 of *B. fragilis* grown in mucin Type II enriched media

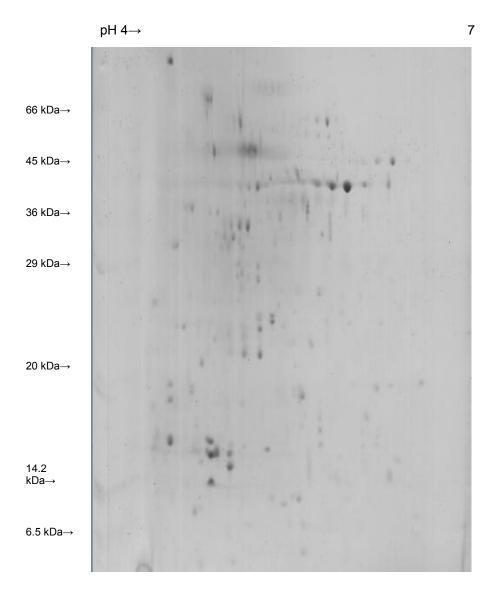


Figure 24.5: Proteome map no.5 of *B. fragilis* grown in mucin Type II enriched media

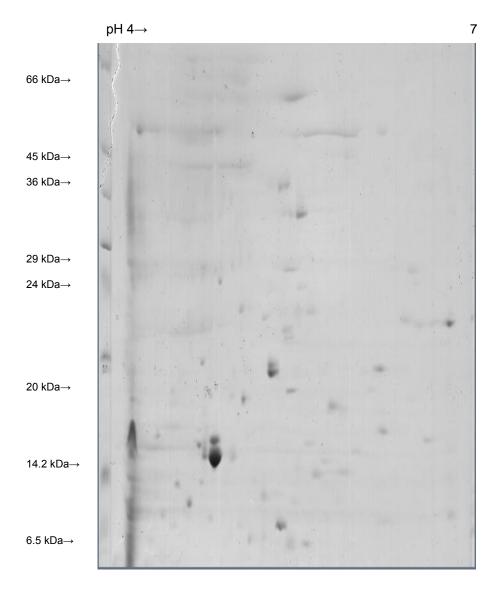


Figure 24.6: Proteome map no.6 of *B. fragilis* grown in mucin Type II enriched media

Figure 25: Proteome maps of *B. fragilis* grown in semi-defined media enriched with mucin Type III (pH 4-7 IEF strips)

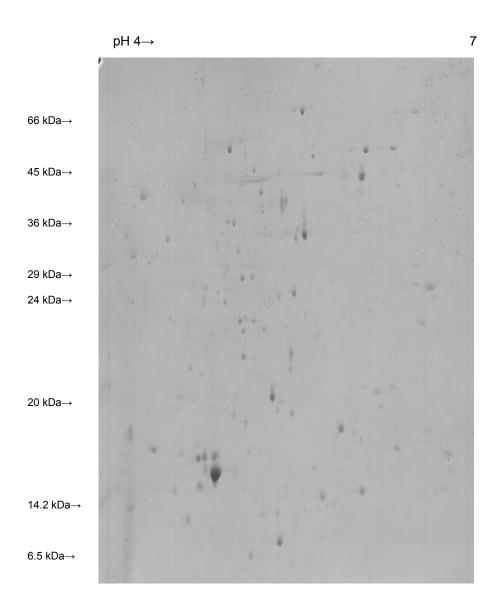


Figure 25.1: Proteome map no.1 of *B. fragilis* grown in mucin Type III enriched media

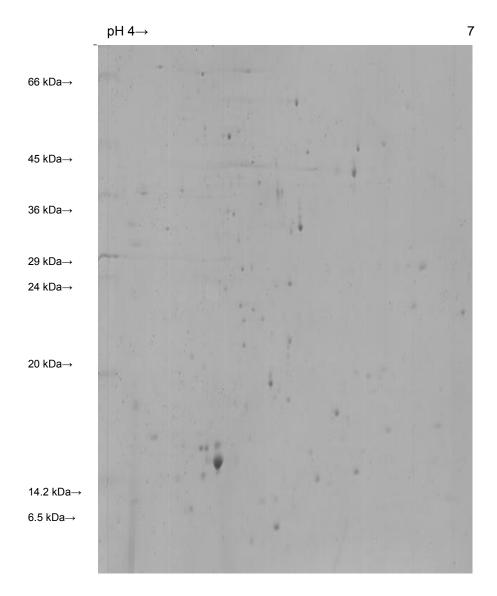


Figure 25.2: Proteome map no.2 of *B. fragilis* grown in mucin Type III enriched media

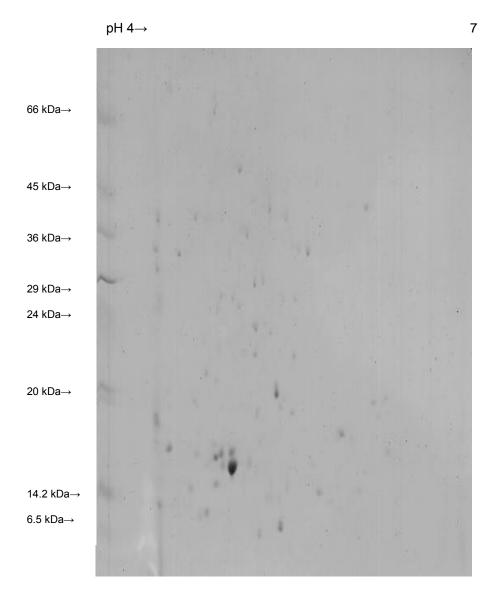


Figure 25.3: Proteome map no.3 of *B. fragilis* grown in mucin Type III enriched media

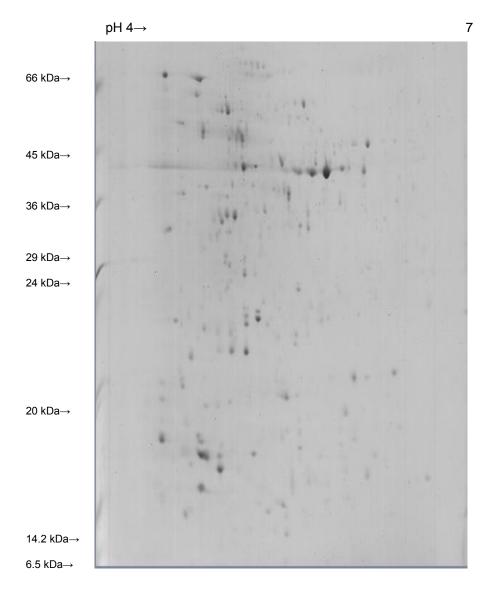


Figure 25.4: Proteome map no.4 of *B. fragilis* grown in mucin Type III enriched media

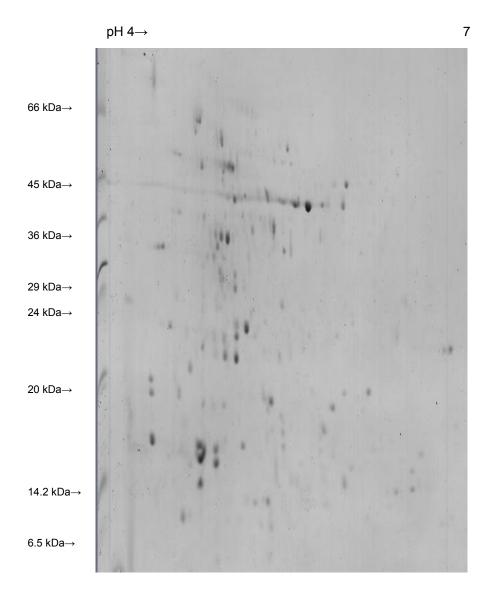


Figure 25.5: Proteome map no.5 of *B. fragilis* grown in mucin Type III enriched media

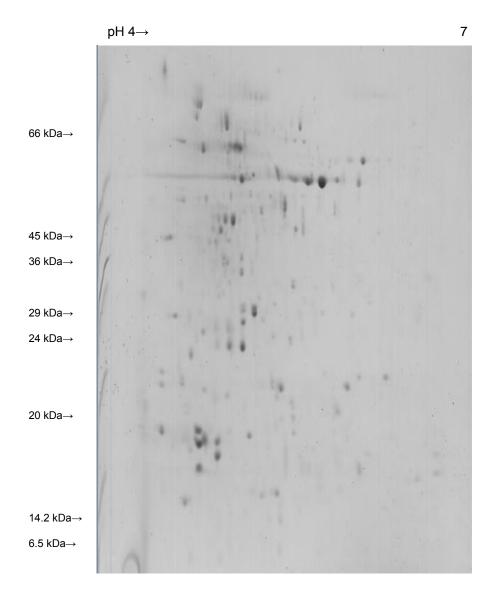
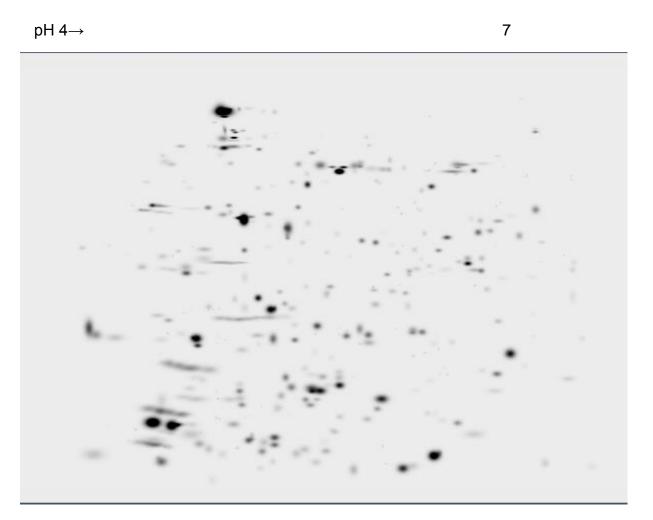


Figure 25.6: Proteome map no.6 of *B. fragilis* grown in mucin Type III enriched media

10.7 Analysis of 2DE gels

10.7.1 Analysis of 2DE gels using Bio-Rad PDQuest software

PDQuest software was used to analyse the spots present in the three different conditions. A reference master image was created which contained all the spots from all the three different conditions. Further landmarking and matching of gels was performed using the reference master gel as the template (Fig. 26.1, 26.3). The filename 'PROTBF 1' refers to the 2D gel analysis in *E. cancerogenus* and the filename 'PROTEOMICS 3' refers to the 2D gel analysis in *B. fragilis*. Refer to Appendix F for details.


The spot review tool was used to generate bar charts showing the expression of all the spots included in the reference master gel (Appendix F1). The spots are assigned SSP numbers and the graphs show the level of expression of a spot in all the individual gels or can be adjusted to show average values within replicate groups. Differentially expressed proteins were identified based on these expression patterns and cut out from the gel for further analysis. The analysis manager was used to perform statistical analysis on the spot data and the two main statistical tests performed were the Student t-test and the Mann-Whitney U test (Table 11).

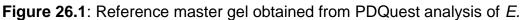

Replicate groups used in	Student t-	Mann-Whitney U	Organism
analysis	test	test	
Non mucin v. mucin Type II	85/127	42/127	E. cancerogenus
enriched media			
Non mucin v. mucin Type III	32/65	33/65	E. cancerogenus
enriched media			
Non mucin v. mucin Type II	45/84	39/84	B. fragilis
enriched media			
Non mucin v. mucin Type III	66/94	28/94	B. fragilis
enriched media			

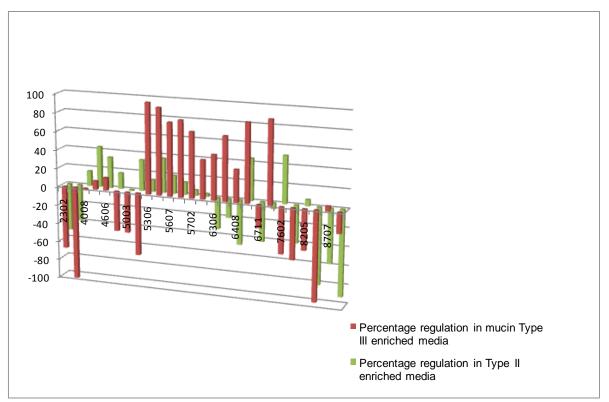
Table 11: Table represents the statistical test results for spot data in replicate groups using the Bio-Rad PDQuest software. The values represented in the table as x/y indicate that 'x' refers to the differentially expressed proteins and 'y' refers to the total proteins detected in each statistical test.

Figure 26: Reference reference master gels used in the PDQuest analysis of spot

data

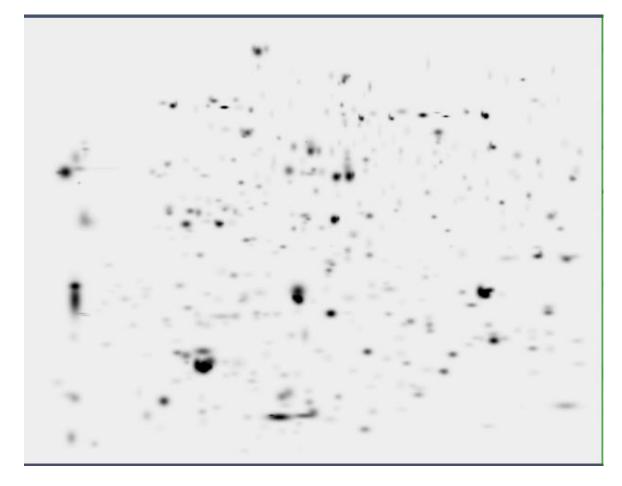
cancerogenus spot data.

10.7.2 Differential expression of proteins in *E. cancerogenus*


Out of a total of 132 spots that were analysed, 98 proteins were identified using ESI LC MS/MS in *E. cancerogenus*. From the 98 proteins that were identified, 23 protein spots were differentially expressed in mucin enriched media. Seven proteins were shown to be up-regulated in both types of mucin enriched media (SSP numbers-4008, 5306, 5601, 5607, 5701, 5702, 6203, 6605), three proteins were up-regulated in mucin Type II enriched media (SSP numbers-5102, 7602, 8205) and 5 proteins in mucin Type III enriched media (SSP numbers-6306, 6401, 6408, 8707). Four

proteins were found to be down-regulated in both types of mucin media (SSP numbers 3002, 5003, 7001, 8206), six proteins were found to be down-regulated in mucin Type II enriched media (SSP numbers 3601, 5302, 6303, 6408, 8707, 9601) and five proteins were down-regulated in mucin Type III enriched media (SSP numbers 2302, 5003, 5601, 6711, 8205) See Fig. 26.2 for graphical summary of differentially expressed proteins.

Proteins involved in translation namely the elongation factors Tu and greA were found to be down-regulated in both mucin enriched media but elongation factor Ts was found to be up-regulated in mucin Type II enriched media (refer to Fig. 26.2, Table 20) Proteins involved in carbohydrate metabolism namely phosphoglycerate kinase and enolase were found to be up-regulated in both mucin enriched media. Immune response proteins and toxins, ecotin was found to be down-regulated in both mucin enriched media except the surface antigen outer membrane protein X and outer membrane protein A which was shown to be up-regulated in both mucin enriched media. The amino acid biosynthesis protein domains for carbamate kinase, DHAP synthetase I and cytidylate kinase were also found to be up-regulated in Type III mucin enriched media. A DNA synthesis associated glutaredoxin related protein region was also identified as up-regulated in mucin Type II enriched media. The oxidative stress associated protein regions namely universal stress protein, ribonucleotide reductase region; pyruvate formate lyase region and autonomous glycyl radical cofactor were down-regulated in mucin Type III enriched media except the universal stress protein which was up-regulated in both mucin enriched media. The other up-regulated proteins include the protein transport associated periplasmic, translocation associated tolB proteins. These were found to be up-regulated in mucin Type III enriched media. The protein folding associated thiodisulphide oxidoreductase and protein metabolism associated acetoin reductase were also upregulated in mucin Type II enriched media. Four hypothetical proteins were detected (similar to Yba B and Yfa Z protein, Hypothetical protein 20877, 17757) of which the first two (similar to Yba B and Yfa Z protein) were found to be up-regulated in mucin Type II enriched media and the hypothetical protein 20877 was up-regulated in mucin Type III enriched media. The hypothetical protein 17757 was found to be


down-regulated in mucin Type III enriched media. Refer to Appendix G for details on the putative identifications obtained using BLAST analysis.

Analyses performed using the Redfin and Samespots softwares confirmed the upregulation of the cell wall, membrane and envelope biogenesis associated protein outer membrane surface antigen X and carbohydrate metabolism associated phosphoglycerate kinase in both mucin enriched media in *E. cancerogenus*. Transcription associated elongation factor Ts was found to be up-regulated in mucin Type III enriched media in all the software analyses in *E. cancerogenus*. Refer to Tables 16 and 17 for further details.

Percentage regulation of spots in mucin enriched media with respect to the control non mucin media in *E. cancerogenus*

Figure 26.2: Percentage regulation of spots in mucin enriched media with respect to the control non-mucin media in *E. cancerogenus*

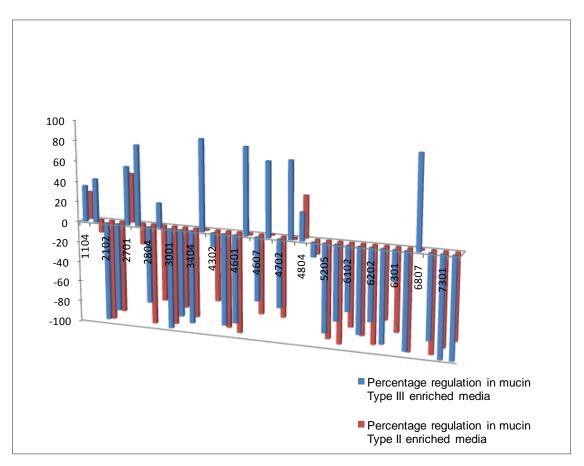
Figure 26.3: Reference master gel obtained from PDQuest analysis of *B. fragilis* spot data.

10.7.3 Differential expression of proteins in B. fragilis

Out of a total of 106 proteins that were analysed, 73 were identified using LC MS/MS in *B. fragilis* and 45 were found to be differentially expressed. A total of 31 spots (SSP numbers- 1104, 2101, 2102, 2401, 2701, 2704, 2804, 2806, 3303, 3404, 4502, 4601, 4607, 4608, 4702, 4804, 5106, 5201, 5205, 5402, 6102, 6103, 6202, 6206, 6301, 6304, 6802, 6807, 6901, 7301, 7401) were differentially expressed in mucin enriched media but only 5 proteins (SSP numbers- 1104, 2701, 2704, 2806 and 4804) were found to be up-regulated in mucin enriched media. SSP number 1104 was up-regulated in both types of mucin media but SSP 2701and 2704 were up-regulated in mucin Type II enriched media. SSP 2806 was found to be up-regulated in both mucin enriched media. Twenty-five proteins were found to be down-regulated in mucin enriched media. Eight proteins

were found to be down-regulated in both mucin enriched media (SSP numbers 1803, 2102, 3001, 3303, 4601, 5106, 5205, 6103) whereas 12 proteins were down-regulated in mucin Type II enriched media and 5 proteins were down-regulated in mucin Type III enriched media. The presence of a host immune response may trigger the up-regulation of more proteins in the bacteria (Tran *et al.*, 2003). The predominant proteins showing regulation in mucin enriched media have been indicated in Fig. 26.4 and Table 20.

The 4 protein spots that were found to be up-regulated were the hypothetical protein BF2494 (SSP 1104), proton transport and ATP synthesis associated ATP synthase subunit E (SSP 2701, 2704) and translation associated 50S ribosomal protein L7/L12 (SSP 2806).


The presence of protein isoforms may have been indicated by the identification of the same protein in more than one spot that occured adjacent to each other on the gels but not much information is available regarding the existence of isoforms in prokaryotic bacteria. Proteins that showed this phenomenon were the citric acid cycle associated malate dehydrogenase in *B. fragilis*, oxidative stress associated thiol peroxidase in *B. fragilis* and the immune response associated outer membrane proteins in *E. cancerogenus* and *B. fragilis* (refer to Figs. 30, 31, 33 and 34 for zoomed in images in the Discussion section).

The proteins that showed down-regulation included the carbohydrate metabolism associated phosphoenol pyruvate carboxylase, triose phosphate isomerase, oxidative stress associated thiol peroxidase, immune response associated putative outer membrane protein. glutathione detoxification system associated lactoylglutathione lyase, RNA protection associated putative RNA binding protein, translation associated ribosomal protein L7/L12 and elongation factor Ts, citric acid cycle associated malate dehydrogenase and chaperone associated GrpE protein. Refer to Table 21 for details. Two down-regulated hypothetical proteins were identified namely BF1203 and BF0301 and one hypothetical protein BF2494 was upregulated. Refer to Appendix G4 for details on the putative identifications obtained using BLAST analysis. Hypothetical proteins BF2494 were found to be up-regulated in mucin Type II enriched media when analysed using both PDQuest and SameSpots softwares but not in Redfin. Similarly, BF1203 hypothetical proteins were

188

found to be down-regulated in both mucin Type II and III enriched media when analysed using both PDQuest and SameSpots softwares (tests were based on the Student t-test).

Analyses performed using the Redfin and Samespots softwares in *B. fragilis* confirmed the down-regulation of the carbohydrate metabolism associated triose phosphate isomerase in mucin Type II enriched media. Energy production and conversion associated malate dehydrogenase proteins were found to be down-regulated in mucin Type II enriched media but up-regulated in mucin Type III enriched media but up-regulated in mucin Type III enriched media in *B. fragilis*. All analyses also showed the up-regulation of the transcription protein elongation factor Ts in mucin Type II enriched media. Student t-test was used to perform the analyses using all the three softwares where expression levels were considered based on average values in each condition.

Percentage regulation of spots in mucin enriched media with respect to the control non mucin media in *B. fragilis*

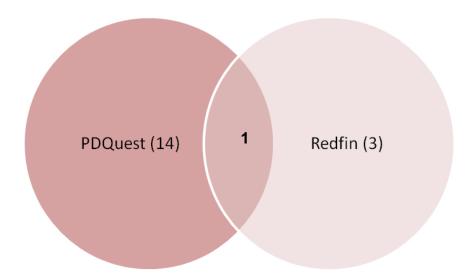
Figure 26.4: Percentage regulation of spots in mucin enriched media with respect to the control non-mucin media in *B. fragilis*

The general growth rate of both *B. fragilis* and *E. cancerogenus* were not profoundly influenced by the presence of mucin in the media especially with reference to culture density.

10.7.4 Analysis of 2DE gels using Ludesi Redfin software

Reports have been generated for the 2DE gel analysis using the Ludesi Redfin software for studying the differential expression of proteins in control vs mucin enriched media in *E. cancerogenus* and *B. fragilis*. Refer to Appendix F2 for results, including p values and expression levels of *E. cancerogenus* and *B. fragilis* proteins in non-mucin, mucin Type II and Type III enriched media. Spots selected for analysis were based on significant p values of <0.05 and a fold change of 1.5 or more. Expression profile filters were also used to detect up or down regulation of proteins.

10.7.5 Analysis of 2DE gels using Nonlinear Dynamics SameSpots software


The SameSpots analysis software from Nonlinear Dynamics was also used to study the differential expression of proteins in both bacteria. The spots of interest were selected based on the analysis of variance where significant p values of <0.05 and fold changes of 1.0 or more were considered. Refer to Appendix F3 for the analysis report of *E. cancerogenus* and *B. fragilis* spot data, respectively.

10.7.6 Comparative analysis of spot data

The spots with relevant p values from each analysis were manually compared in all the three softwares (Fig 27; Tables 12-19). The proteins highlighted in 'bold' font in the tables indicate differential expression in all software analyses under those specific growth conditions and statistical tests. SSP number refers to the Standard spot number which has been used to identify the protein spots using the default Bio-Rad PDQuest software. Each circle of the Venn diagram indicates the differentially expressed proteins in one particular software package and the overlap regions indicate the proteins identified commonly in two of the software packages. The central region where all the three circles overlap shows the proteins that have been differentially expressed in all the three software packages (Fig. 27). SSP numbers have been indicated for spots that remained unidentified using LC-MS analysis.

Since SameSpots works only on the basis of average expression in each growth condition, the Mann-Whitney U test, where expression of a protein in each individual gel can be considered, could not be performed using data from SameSpots. Therefore the Student t-test was used to compare SameSpots, PDQuest and Redfin data, and the Mann-Whitney U test was used to compare PDQuest and Redfin data.

The Student t-test was used to identify proteins with a significant p value (<0.05) from all three softwares and the average values were used to compare expression. The Mann-Whitney U test was used to identify proteins with a significant p value (<0.05) from all three softwares but the expression in individual gels was considered unlike the Student t-test where the average values were compared.

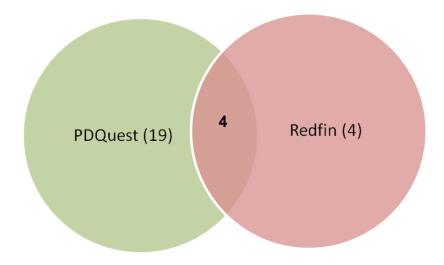
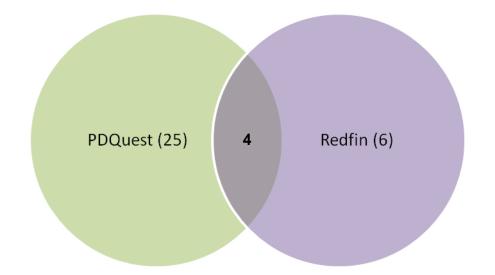


Figure 27: Comparative analyses of spot data using PDQuest, Redfin and SameSpots softwares

Figure 27.1: Comparative analysis of proteins differentially expressed by *E. cancerogenus* in semi-defined media without mucin vs mucin Type II enriched media by PDQuest and Redfin softwares using Mann-Whitney U test. Refer to Table 12 for details on the differentially expressed proteins in media without mucin vs mucin Type II enriched media by PDQuest and Redfin softwares using the Mann-Whitney U test.

PDQuest analysis	Redfin analysis
↑ (↑ (4.57, 0.0144)
	↑ (2.55, 0.0247)
	↑ (2.51, 0.0089)
Ļ	
Ļ	
↑	
↑ (
↑ (
Ļ	
↑ (
Ļ	
↑ (
↑ (
1	
Ļ	
Ļ	
	analysis ↑ ↓ ↓ ↓ ↑ ↓

Table 12: Differentially expressed *E. cancerogenus* proteins in non mucin vs mucin Type II enriched media by PDQuest and Redfin softwares using the Mann-Whitney U test. ↑ indicates up-regulation of the protein, ↓ indicates down-regulation of the protein. (Fold change, p value) for differentially expressed spots has been indicated in brackets for Redfin and SameSpots softwares. SSP numbers of protein spots are indicated in the first column.


Figure 27.2: Comparative analysis of proteins differentially expressed by *E. cancerogenus* in semi-defined media without mucin vs mucin Type III enriched media by PDQuest and Redfin softwares using the Mann-Whitney U test. Refer to Table 13 for details on the differentially expressed *E. cancerogenus* proteins in media without mucin vs. mucin Type III enriched media by PDQuest and Redfin softwares using the Mann-Whitney U test.

Protein identity- <i>E. cancerogenus</i>	PDQuest analysis	Redfin analysis
Elongation factor Ts (5601)	\downarrow	↓ (2.17, 0.0026)
Carbamate kinase (5607)	1	↑ (2.58, 0.0296)
Periplasmic protein (5306)	1	↑ (2.93, 0.0262)
Ecotin (8206)	\downarrow	
Autonomous glycyl radical cofactor (4008)	\downarrow	
Phosphoglycerate kinase (5701)	1	
Outer membrane protein surface antigen X (6203)	↑	↑ (2.85, 0.0143)
Elongation factor greA (2302)	↓	
Glutaredoxin related protein (3002)	\downarrow	
Hypothetical protein 17757(5003)	Ļ	
Universal stress protein A (5102)	↑	
Enolase (5705)	↑	
Hypothetical protein 20877 (6306)	1	
Cytidylate kinase (6401)	↑	
2-dehydro-3-deoxy phosphooctonate aldolase (6605)	↑	
Elongation factor Tu (6711)	Ļ	
SSP 2402 (Not identified)	↑	
SSP 3602 (Not identified)	↑	
Tol B (8707)	1	

Table 13: Differentially expressed *E. cancerogenus* proteins in non mucin vs mucinType III enriched media by PDQuest and Redfin softwares using the Mann-WhitneyU test

↑ indicates up-regulation of the protein

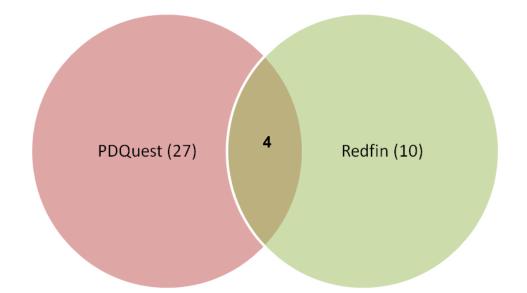

↓ indicates down-regulation of the protein. (Fold change, p value) for differentially expressed spots has been indicated in brackets for Redfin and SameSpots softwares. SSP numbers of protein spots are indicated in the first column.

Figure 27.3: Comparative analysis of proteins differentially expressed by *B. fragilis* in semi-defined media without mucin v mucin Type II enriched media by PDQuest and Redfin software using Mann-Whitney U test. Refer to Table 14 for details on the differentially expressed B. *fragilis* proteins in media without mucin vs. mucin Type II enriched media by PDQuest and Redfin softwares using the Mann-Whitney U test based.

Protein identity- <i>B. fragilis</i>	PDQuest analysis	Redfin analysis
Putative thiol peroxidase (6304)		↓ (2.22, 0.0264)
Outer membrane protein H (6202)	Ļ	
Putative RNA binding protein (6102)	Ļ	↓ (3.66, 0.0139)
SSP 3206 (Not identified)	Ļ	↓ (3.11, 7.293e-4)
Putative thiol peroxidase (4601)	Ļ	↓ (3.07, 0.0163)
Malate dehydrogenase (4607)	Ļ	↓ (3.07, 3.5558e-4)
Hypothetical protein BF2494 (1104)	Î ↑	
50S Ribosomal protein L7/L12 (2102)	Ļ	
Hypothetical protein BF2494 (2804)	Ļ	
50S Ribosomal protein L7/L12 (3001)	↓	
Triose phosphate isomerase (4502)	Ļ	↓ (2.69, 0.0136)
Elongation factor Ts (4702)	Ļ	
50S Ribosomal protein L7/L12 (5106)	Ļ	
Hypothetical protein BF1203 (5205)	Ļ	
Phosphoenol pyruvate carboxykinase (6901)	Ļ	
Lactoylglutathione lyase (6103)	Ļ	
Putative outer membrane protein H (5402)	Ļ	
Hypothetical protein BF 0301 (6206)	Ļ	
Fructose bisphosphate aldolase (6802)	Ļ	
Superoxide dismutase (7301)	Ļ	
SSP 1103 (Not identified)	Î ↑	
SSP 1211 (Not identified)	↑	
SSP 5401(Not identified)	Ļ	
SSP 1107(Not identified)	↑	
SSP 1803 (Not identified)	Ļ	
Putative thiol peroxidase (6301)	^	

Table 14: Differentially expressed *B. fragilis* proteins in non mucin vs mucin Type II enriched media by PDQuest and Redfin softwares using the Mann-Whitney U test. ↑ indicates up-regulation of the protein; ↓ indicates down-regulation of the protein. (Fold change, p value) for differentially expressed spots has been indicated in brackets for Redfin and SameSpots softwares. SSP numbers of protein spots are indicated in the first column.



Figure 27.4: Comparative analysis of proteins differentially expressed by *B. fragilis* in semi-defined media without mucin vs mucin Type III enriched media by PDQuest and Redfin software using the Mann-Whitney U test. Refer to Table 15 for details on the differentially expressed B. *fragilis* proteins in media without mucin vs. mucin Type III enriched media by PDQuest and Redfin softwares using the Mann-Whitney U test.

Protein identity- B. fragilis	PDQuest analysis	Redfin analysis
Putative thiol peroxidase (6304)		↓ (2.22, 0.0264)
Outer membrane protein H (6202)	Ļ	↓ (4.69, 0.0176)
SSP 3206 (Not identified)		↑ (3.11, 7.293e-4)
Putative thiol peroxidase (4601)	Ļ	↓ (3.07, 0.0163)
SSP 1207 (Not identified)		↓ (2.65, 0.0101)
SSP 3305 (Not identified)		↓ (2.47, 0.0479)
Malate dehydrogenase (4607)	Ţ	↓ (2.62, 0.0211)
Malate dehydrogenase (4608)	↑ (↑ (3.07, 3.5558e-4)
SSP 5002 (Not identified)		↓ (2.89, 0.0037)
50S Ribosomal protein L7/L12 (2102)	Ļ	
50S Ribosomal protein L7/L12 (5106)	I	
Lactoylglutathione lyase (6103)	\downarrow	
Triose phosphate isomerase (6302)	Ļ	↓ (2.69, 0.0136)
Hypothetical protein BF2494 (2804)	Ţ	
SSP 1103 (Not identified)	↑	
Hypothetical protein BF2494 (1104)	↑	
GrpE protein (2401)	Ļ	
ATP synthase subunit E (2701)	↑	
SSP 4101 (Not identified)	↑ (
Malate dehydrogenase (4804)	1	
Hypothetical protein BF1203 (5201)	Ļ	
Superoxide dismutase (3404)	↑ (
Thioredoxin (6301)	↑	
Hypothetical protein BF1203 (5205)	Ļ	
Hypothetical protein BF 0301(6807)	Ţ	
SSP 1211 (Not identified)	↑	
SSP 1402 (Not identified)	\downarrow	
SSP 1803 (Not identified)	\downarrow	
SSP 2403 (Not identified)	↑	
SSP 2504 (Not identified)	↑ (
ATP synthase subunit E (2704)	↑ (
50S Ribosomal protein L7/L12 (2806)	↑ (

Table 15: Differentially expressed *B. fragilis* proteins in non mucin vs mucin Type III enriched media by PDQuest and Redfin softwares using the Mann-Whitney U test. ↑ indicates up-regulation of the protein; ↓ indicates down-regulation of the protein. (Fold change, p value) for differentially expressed spots has been indicated in brackets for Redfin and SameSpots softwares.

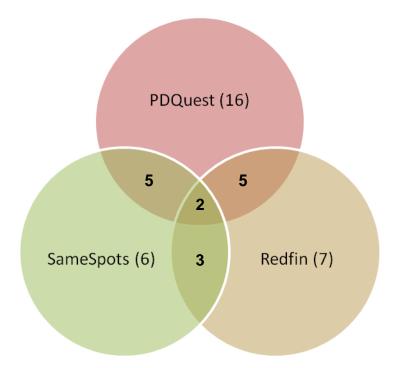

SSP numbers of protein spots are indicated in the first column.

Figure 27.5: Comparative analysis of proteins differentially expressed by *E. cancerogenus in* semi-defined media without mucin vs mucin Type II enriched media by PDQuest, Redfin and Same spots software using the Student t-test. Refer to Table 16 for details on the differentially expressed *E.cancerogenus* proteins in media without mucin vs. mucin Type II enriched media by PDQuest, SameSpots and Redfin softwares using the Student t-test.

Protein identity- E. cancerogenus	PDQuest	Redfin analysis	Samespots
	analysis		analysis
SSP 7001 (Not identified by mass	↑	↑ (4.57, 0.0144)	
spectrometry)			
SSP 6102 (Not identified)		↑ (2.55, 0.0247)	
SSP 1602 (Not identified)	Ļ		↓ (3.4, 0.024)
Peptidoglycan binding domain (5305)		↑ (2.51, 0.0089)	
Ecotin (8206)	Ļ		
Glutaredoxin related protein (3002)	Ļ		
Autonomous glycyl radical cofactor	Ļ		
(4008)			
Outer membrane protein X (6203)	↑	↑ (2.85, 0143)	↑ (2.3, 0.006)
Acetoin reductase (7602)	1		
Tol B protein (8707)	\downarrow		
Outer membrane protein II (4505)	Ļ		
Enolase (5705)			↑ (6.5, 0.029)
Phosphoglycerate kinase (5701)	↑	↑(2.51, 0.0089)	↑ (2.3, 0.032)
SSP 7003 (Not identified)		↑ (2.55, 0.0116)	↑ (2.3, 0.006)
Inorganic pyrophosphatase (5405)	↑	↑ (1.73, 0.0033)	
Thiol disulphide oxidoreductase protein	\downarrow		↓ (2.2, 0.003)
(6408)			
SSP 2509 (Not identified)	↑		
SSP 3602 (Not identified)	Ļ		
SSP 5302 (Not identified)	Ļ		
Putative glutathione peroxidase (4701)		↑ (1.81, 0.0459)	
ABC type sugar transport system (6001)		↑ (4.41, 0.045)	

Table 16: Differentially expressed *E. cancerogenus* proteins in non mucin vs mucin Type II enriched media by PDQuest and Redfin and Samespots softwares using the Student t-test (i.e. based on averages) ↑ indicates up-regulation of the protein. ↓ indicates down-regulation of the protein. (Fold change, p value) for differentially expressed spots has been indicated in brackets for Redfin and SameSpots softwares. SSP numbers of protein spots are indicated in the first column.

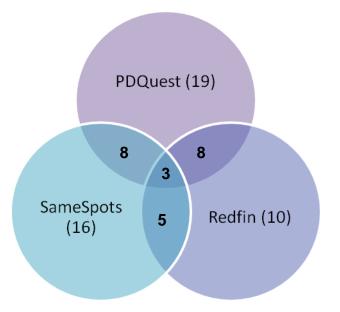


Figure 27.6: Comaparative analysis of proteins differentially expressed by *E. cancerogenus* in semi-defined media without mucin v mucin Type III enriched media by PDQuest, Redfin and SameSpots softwares using the Student t-test (i.e. based on averages). Refer to Table 17 for details on the differentially expressed *E.cancerogenus* proteins in media without mucin vs. mucin Type III enriched media by PDQuest, SameSpots and Redfin softwares using the Student t-test.

Protein identity- <i>E.</i>	PDQuest	Redfin	Samespots
cancerogenus	analysis	analysis	software
Elongation factor Ts (5601)	Ļ	↓ (2.17, 0.0026)	↓ (2.5, 0.041)
Carbamate kinase (5607)	Ļ	↓ (2.58, 0.0296)	
Periplasmic protein (5306)	↑	↑ (2.93, 0.0262)	
Ecotin (8206)	Ļ		↓ (6.0, 3.043e-004)
Autonomous glycyl radical cofactor (4008)	Ļ		
Phosphoglycerate kinase (5701)	↑ (
Outer membrane protein	↑	↑ (2.85, 0.0143)	↑ (2.3, 0.006)
surface antigen X (6203)			
Elongation factor greA (2302)	Ļ		
Glutaredoxin related protein	\downarrow		
(3002)			
Hypothetical protein 17757 (5003)	\downarrow		↓ (2.1, 0.054)
Universal stress protein (5102)	↑		
Enolase (5705)	\uparrow		
Outer membrane protein A (4606)	1		
Cytidylate kinase (6401)	↑		↑ (2.5, 0.045)
DAHP synthetase (6605)	↑		
Elongation factor Tu (6711)	↑	↑ (2.55, 0.0247)	
SSP 7003 (Not identified)		↑ (2.55, 0.0116)	↑ (2.3, 0.006)
ABC type sugar transport system (6001)		↑ (4.41, 0.045)	

Table 17: Differentially expressed *E. cancerogenus* proteins in non mucin vs mucin Type III enriched media by PDQuest and Redfin and SameSpots softwares using the Student t-test (i.e. based on averages). ↑ indicates up-regulation of the protein

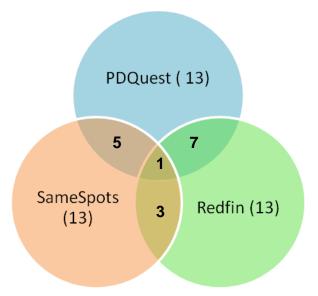
↓ indicates down-regulation of the protein. (Fold change, p value) for differentially expressed spots has been indicated in brackets for Redfin and SameSpots softwares. SSP numbers of protein spots are indicated in the first column.

Figure 27.7: Comparative analysis of proteins differentially expressed by *B. fragilis* in semi-defined media without mucin vs mucin Type II enriched media by PDQuest, Redfin and Same Spots softwares using the Student t-test (i.e. based on averages).

Refer to Table 18 for details on the differentially expressed *B. fragilis* proteins in media without mucin vs. mucin Type II enriched media by PDQuest, SameSpots and Redfin softwares using the Student t-test.

.

Protein identity- <i>B. fragilis</i>	PDQuest analysis	Redfin analysis	Samespots software
Putative thiol peroxidase (6304)		↓ (2.22, 0.0264)	(4.2, 0.024)
Outer membrane protein H (6202)	Ļ	↓ (4.69, 0.0176)	
Putative RNA binding domain (6102)	Ļ	↓ (3.66, 0.0139)	
SSP 3206 (Not identified)		↓ (3.11, 7.293e-4)	↓ (1.9, 0.003)
Putative thiol peroxidase (4601)	\downarrow	↓ (3.07, 0.0163)	
Malate dehydrogenase (4607)	Ļ	↓ (3.07, 3.5558e-4)	↓ (3.2, 0.002)
Hypothetical protein BF2494 (1104)	1		↑ (5.1, 6.672e-004)
50S Ribosomal protein L7/L12 (2102)	Ļ		
Hypothetical protein BF2494 (2804)	Ļ		
50S Ribosomal protein L7/L12 (3001)	Ļ		↓ (2.4, 0.043)
Triose phosphate isomerase (4502)	Ļ	↓ (2.69, 0.0136)	↓ 4.5, 0.052)
Elongation factor Ts (4702)	1	↑ (2.34, 0.0250)	↑ (2.4, 0.043)
50S Ribosomal protein L7/L12 (5106)	Ļ		
Hypothetical protein BF1203 (5205)	Ļ		↓ (1.5, 0.033)
Lactoylglutathione lyase (6103)	Ļ	↓ (2.68, 0.0211)	
Hypothetical protein 1203 (5402)	Ļ		
Hypothetical protein 0301 (6206)	Ļ		
Phosphoenol pyruvate carboxykinase (6901)	↓		
Fructose bisphosphate aldolase (6802)	Ļ		↓ (3.0, 0.002)
SSP 3904 (Not identified)			↓ (3.7, 0.003)
50S Ribosomal protein L7/L12 (3106)			↓ (1.7, 0.009)
Superoxide dismutase (6206)	Ļ		↓ (6.9, 0.004)
SSP 5806 (Not identified)			↓ (4.3, 0.028)
SSP 1101 (Not identified)			↓ (6.1, 5.017e-004)
Triose phosphate isomerase (6302)	\downarrow	↓ (6.78, 0.0156)	
SSP 1302 (Not identified)			↓(2.0, 6.287e-004)
Adenylate kinase (4302)			↓(2.6, 0.046)


 Table 18: Differentially expressed *B. fragilis* proteins in non mucin vs mucin Type II enriched media by PDQuest

 and Redfin and SameSpots softwares using the Student t-test (i.e. based on averages) ↑ indicates up-regulation

 of the protein ↓ indicates down-regulation of the protein. (Fold change, p value) for differentially expressed spots

 has been indicated in brackets for Redfin and SameSpots softwares. SSP numbers of protein spots are indicated

 in the first column.

Figure 27.8: Comparative analysis of proteins differentially expressed by *B. fragilis* in semi-defined media without mucin vs mucin Type III enriched media by PDQuest, Redfin and SameSpots softwares using the Student t-test (i.e. based on averages). Refer to the Table 19 for details on the differentially expressed *B. fragilis* proteins in media without mucin vs. mucin Type III enriched media by PDQuest, SameSpots and Redfin softwares using the Student t-test.

Protein identity- <i>B. fragilis</i>	PDQuest analysis	Redfin analysis	Samespots software
Putative thiol peroxidase (6304)	↓	↓ (2.22, 0.0264)	
Outer membrane protein H (6202)	Ļ	↓ (4.69, 0.0176)	
SSP 3206 (Not identified)		↑ (3.11, 7.293e-4)	↑ (1.9, 0.003)
SSP 1207 (Not identified)		↓ (2.65, 0.0101)	
SSP 3305 (Not identified)		↓ (2.47, 0.0479)	
Malate dehydrogenase (4607)		↓ (3.07, 3.5558e-4)	
Malate dehydrogenase (4608)	1	↑ (3.24, 0.0431)	↑ (1.3, 0.053)
SSP 5002 (Not identified)		↓ (2.89, 0.0037)	
50S Ribosomal protein L7/L12 (2102)	Ļ		↓ (2.4, 0.043)
50S Ribosomal protein L7/L12 (5106)	Ļ		
Lactoylglutathione lyase (6103)	Ļ	↓ (2.68, 0.0211)	
SSP 3904 (Not identified)			↓ (3.7, 0.003)
Adenylate kinase (4302)			↓ (2.6, 0.046)
SSP 7001 (Not identified)			↓ (3.8, 0.001)
Hypothetical protein BF2494 (1104)	1		
Hypothetical protein BF1203 (5205)	Ļ		↓ (1.5, 0.033)
Hypothetical protein BF1203 (5201)	Ļ		↓ (2.8, 0.024)
Malate dehydrogenase (4705)			↓ (2.1, 0.047)
Putative thiol peroxidase (4701)			↑(4.2, 0.024)
SSP 3702 (Not identified)			↑ (3.6, 0.012)
SSP 1803 (Not identified)	Ļ		↓ (1.5, 0.049)
SSP 5103 (Not identified)		↓ (2.46, 0.0271)	↓ (1.8, 0.043)
Outer membrane protein precursor (3303)	Ļ	↓ (5.07, 2.848e-6)	
SSP 2403 (Not identified)	1	↑ (2.70, 0.0381)	
GrpE protein (2401)	↓	↓ (2.66, 0.0034)	

Table 19: Differentially expressed *B. fragilis* proteins in non mucin vs mucin Type III enriched media by PDQuest and Redfin and SameSpots softwares using the Student t-test (i.e. based on averages) ↑ indicates up-regulation of the protein; ↓ indicates down-regulation of the protein. (Fold change, p value) for differentially expressed spots has been indicated in brackets for Redfin and SameSpots softwares. SSP numbers of protein spots are indicated in the first column.

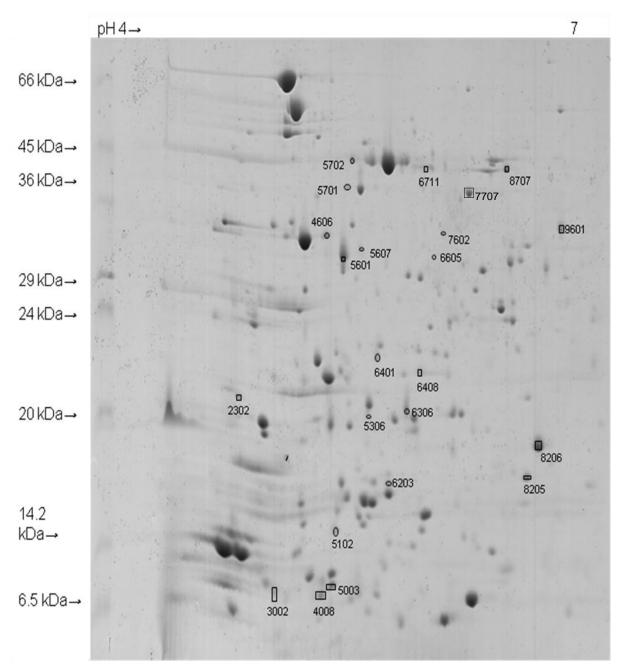
10.7.7 Analysis using Redfin and SameSpots softwares

Initial analysis of results was performed using the PDQuest software using the Student t-test and hence this has been used as the default method for discussing the results. Following further analysis using the Redfin and SameSpots softwares, the differential expression data from all the three softwares were compared. PDQuest and Redfin software analyses were based on the Mann Whitney U test performed to determine the proteins showing a regulation based on the levels of expression in each individual gel in every growth condition. Analyses using PDQuest, SameSpots and Redfin softwares were based on the Student t-test performed based on the average level of expression of proteins in every growth condition.

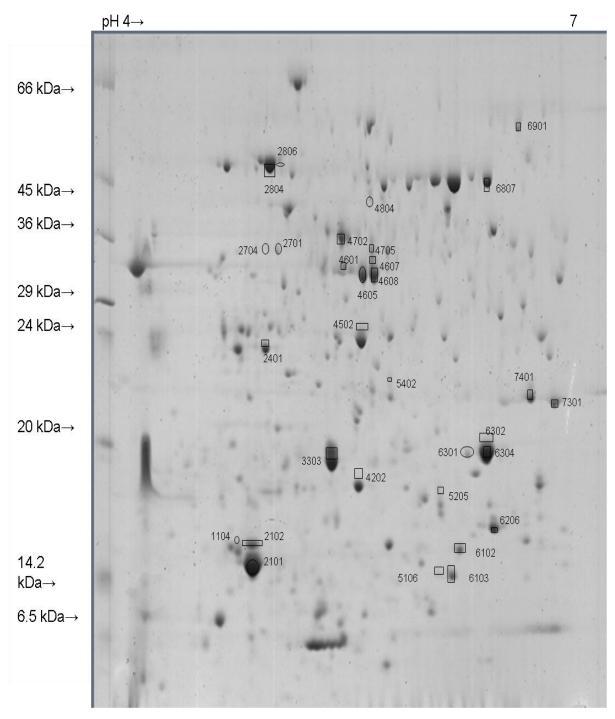
The Mann Whitney U test based analysis of proteins showed a down-regulation of elongation factor Ts in mucin Type III enriched media and an up-regulation of the outer membrane surface antigen protein in mucin Type III enriched media in *E. cancerogenus*. Apart from these two proteins, the periplasmic proteins and carbamate kinase proteins were up-regulated in mucin Type III enriched media whereas SSP number 7001 protein which was unidentifiable from mass spectrometry was up-regulated in mucin Type II enriched media in *E. cancerogenus*. The Student t-test based analyses of proteins from all the 3 softwares showed an up-regulation of outer membrane surface antigen protein in both mucin Type II and III enriched media and an up-regulation of phoshoglycerate kinase in mucin Type II enriched media in *E. cancerogenus*. In mucin Type III enriched media in *E. cancerogenus*, the elongation factor Ts protein was found to be down-regulated.

From both the tests, it could be identified that the outer membrane surface antigen was up-regulated in mucin Type III enriched media in *E. cancerogenus* indicating that this protein may be a potential virulence factor whose expression may be associated with the presence of mucin in the growth media.

The Mann Whitney U test based analysis of proteins in *B. fragilis* showed a downregulation of the RNA binding protein, thiol peroxidase, malate dehydrogenase and triose phosphate isomerase proteins in mucin Type II enriched media. In mucin Type III enriched media, down-regulation of the outer membrane protein H, thiol peroxidase and triose phosphate isomerase proteins was observed in *B. fragilis*.


208

The Student t-test based analyses of proteins from all the 3 softwares showed a down-regulation of malate dehydrogenase, triose phosphate isomerase and an up-regulation of elongation factor EFTs in mucin Type II enriched media in *B. fragilis*. In mucin Type III enriched media only malate dehydrogenase was found to be up-regulated in all the 3 softwares.


From both the tests, it could be identified that malate dehydrogenase was found to be up-regulated in mucin Type III enriched media and down-regulated in mucin Type II enriched media suggesting that they may be existing as isoforms. Triose phosphate isomerase was also found to be down-regulated in mucin Type II enriched media suggesting that these proteins may be associated with the pathogenicity of *B. fragilis* when grown in the presence of mucin.

10.8 Liquid chromatography - Mass spectrometric analysis of protein spots

A total of 132 *E. cancerogenus* protein spots were analysed using LC-MS of which 98 spots were identified and 34 spots were found to be differentially expressed, according to PDQuest software analysis using Student t-test. Of the 34 spots that showed a regulation of expression, 23 spots were identifiable and the remaining 11 were unidentifiable. For *B. fragilis*, a total of 106 protein spots were analysed of which 73 spots were identified and 45 were found to be differentially expressed. Of the 45 spots that showed differential expression, 31 spots were identifiable and the remaining 14 were unidentifiable. Figure 28 shows the differentially expressed proteins in the reference master gel for *E. cancerogenus* and Figure 29 shows the differentially expressed proteins in the reference master gel for *B. fragilis*. Refer to Appendix sections G2 and G3 for details on the peptide match scores and identities of proteins using the Mascot search for both *E. cancerogenus* and *B. fragilis*.

Figure 28: The SSP numbers of differentially expressed protein spots on the reference master gel of *E. cancerogenus* based on the PDQuest software analysis. ○Indicates up-regulation and □ indicates down-regulation in mucin enriched media

Figure 29: The SSP numbers of differentially expressed protein spots on the reference master gel of *B. fragilis* based on the PDQuest software analysis.

○Indicates up-regulation and □ indicates down-regulation in mucin enriched media

Tables 20 and 22 represent the list of proteins identified, including the spots that were found to be differentially expressed in *E. cancerogenus* and *B. fragilis* respectively. Tables 21 and 23 represent the list of proteins identified, excluding the spots that were found to be differentially expressed in *E. cancerogenus* and *B. fragilis*.

S.No	SSP number	Identity of the protein	Function	Regulation	Peptide match score/ number of peptides	Fold change (PDQuest)	Accession number
1	2302	Elongation factor gre A	Unknown function	↓ mucin Type III media	125/3	5.9	gi 261342624
2	3002	Hypothetical protein 03947	Post translational modifications, protein turnover and chaperones	↓ mucin media	101/2	6.9	gi 261339586
3	4008	Autonomous glycyl radical cofactor GrcA	General function prediction only	↓ mucin Type III media	150/4	1.7	gi 261340878
4	4606	Omp A	Cell wall, membrane, envelope biogenesis	↑ mucin media	84/2	2.4	gi 261339284
5	5003	Hypothetical protein 17757	Protein function unknown	↓ mucin Type III media	126/2	2.2	gi 261342318
6	5102	Universal stress protein A	Signal transduction mechanisms	↑ mucin Type III media	195/7	7.2	gi 261341988
7	5306	Periplasmic protein	Function unknown	↑ mucin Type III media	130/4	5.5	gi 261339031
8	5601	Elongation factor Ts	Translation, ribosomal structure and biogenesis	↓ mucin Type III media	376/8	6.5	gi 261338832
9	5607	Carbamate kinase	Amino acid transport	↑ mucin Type III	355/6	4.9	gi 261339130

			and metabolism	media			
10	5701	Phosphoglycerate kinase	Carbohydrate transport and metabolism	↑ mucin Type II media	684/13	4.7	gi 261342323
11	5702	Phosphopyruvate hydratase	Carbohydrate transport and metabolism	↑ mucin Type III media	238/4	3.8	gi 261342208
12	6203	Outer membrane protein surface antigen X	Cell wall, membrane, envelope biogenesis	↑ mucin media	129/2	2.3	gi 261341400
13	6306	Hypothetical protein 20877	General function prediction only	↑ mucin Type III media	91/3	7.5	gi 261342932
14	6401	Cytidylate kinase	Nucleotide transport and metabolism	↑ mucin Type III media	115/3	2.4	gi 261339244
15	6408	Periplasmic protein disulphide isomerise I	Energy production and conversion	↓ mucin Type II media	189/5	6.6	gi 261342934
16	6605	2-dehydro-3- deoxyphosphoocto nate aldolase	Amino acid transport and metabolism	↑ mucin Type III media	144/3	6.5	gi 261340146
17	6711	Elongation factor Tu	Translation, ribosomal structure and biogenesis	↓ mucin Type III media	246/7	3.3	gi 261341842
18	7602	Acetoin reductase	Secondary metabolites	↑ mucin Type II media	298/5	1.5	gi 261341164

			biosynthesis, transport and catabolism, signal transduction mechanisms				
19	7707	Gamma glutamyl phosphate reductase	Energy production and conversion	↓ mucin Type II media	97/2	4.7	gi 261340945
20	8205	yfaZ family protein	Unknown function	↓ mucin Type III media	195/3	1.8	gi 261339072
21	8206	Ecotin	Cell wall, membrane, envelope biogenesis	↓ mucin media	147/5	8.9	gi 261340622
22	8707	tolB translocation protein	Intracellular trafficking, secretion and vesicular transport	↓ mucin Type II media	271/7	2.6	gi 261341330
23	9601	Omp A	Cell wall, membrane, envelope biogenesis	↓ mucin Type II media	152/3	5.7	gi 261339284

Table 20: Table represents *E. cancerogenus* proteins that have been identified to be expressed in all three conditions with any up or down-regulation using PDQuest software. Regulation in mucin media in the table refers to both mucin Type II and Type III enriched media.

S.No	SSP number	Identity of the protein	Function	Regulation	Peptide match score/ number of peptides
1	1108	50S ribosomal protein L7/L12	Translation, ribosomal structure and biogenesis	None	155/5
2	1703	Porin 02457	Cell wall, membrane and envelope biogenesis	None	55/2
3	2001	Hypothetical protein 03856	Unknown function	None	116/8
4	2104	50S ribosomal protein L7/L12	Translation, ribosomal structure and biogenesis	None	134/6
5	2305	PTS system II A subunit	Carbohydrate transport and metabolism	None	237/7
6	2403	Heat shock protein grpE	Post translational modifications, protein turnover and chaperones	None	77/2
7	2506	Heat shock protein grpE	Post translational modifications, protein turnover and chaperones	None	60/2
8	3808	Trigger factor protein	Post translational modifications, protein turnover and chaperones	None	573/12
9	3809	Trigger factor protein	Post translational modifications, protein	None	71/2

			turnover and chaperones		
10	3901	Hypothetical protein 00599, Dnak chaperone protein	Heat shock proteins	None	560/9
11	3902	Hypothetical protein 00599, Dnak chaperone protein	Heat shock proteins	None	561/12
12	4101	Hypothetical protein 03459, Autonomous glycyl radical cofactor	General function prediction only	None	185/3
13	4202	Hypothetical protein 03416, 5- methylaminometh yl-2-thiouridylate methyltransferase	Translation, ribosomal structure and biogenesis	None	126/3
14	4401	Peroxiredoxin 01092	Post translational modifications, protein turnover and chaperones	None	191/4
15	4402	00804 inorganic pyrophosphatase	Energy production and conversion	None	71/2
16	4505	Omp II, 01735	Cell wall, membrane, envelope biogenesis	None	278/5
17	4602	Omp A	Cell wall, membrane, envelope biogenesis	None	468/16
18	4701	Putative glutathione peroxidase	Post translational modification, protein turnover,	None	137/4

			chaperones		
19	4812	Porin 02457	Cell envelope biogenesis	None	84/2
20	4814	Tol C protein	Intracellular trafficking, secretion and vesicular transport	None	175/4
21	4901	Molecular chaperone DnaK	Post translational modification, protein turnover, chaperones	None	60/2
22	5002	01181, YbaB family, hypothetical protein	Protein function unknown	None	166/3
23	5107	Riboflavin synthase subunit β , 01103 hypothetical protein, 6,7, dimethylribityllum azine synthase	Biosynthesis of riboflavin	None	265/4
24	5207	DNA binding protein, 02636	General function prediction only	None	218/8
25	5305	Peptidoglycan binding domain, 01554	Cell wall degradation	None	111/3
26	5401	Inorganic pyrophosphatase, 00804	Energy production and conversion	None	160/5
27	5403	Inorganic pyrophosphatase, 00804	Energy production and conversion	None	185/4
28	5405	Inorganic pyrophosphatase	Energy production and conversion	None	235/6
29	5406	Inorganic	Energy production and	None	163/5

		pyrophosphatase	conversion		
30	5604	Elongation factor Ts, 00441	Translation, ribosomal structure and biogenesis	None	259/5
31	5704	Phosphoglycerate kinase	Carbohydrate transport and metabolism	None	638/15
32	5705	Enolase, 04083	Carbohydrate transport and metabolism	None	483/14
33	6001	ABC type sugar transport system	Carbohydrate transport and metabolism	None	85/2
34	6202	OmpX, 01529	Cell wall, membrane, envelope biogenesis	None	247/3
35	6307	F0F1 ATP synthase subunit B	Energy production and conversion	None	186/4
36	6603	01449, hypothetical protein (DNA uptake, outer membrane assembly)	Function unknown	None	328/6
37	6702	Phosphopyruvate hydratase, 04083	Carbohydrate transport and metabolism	None	479/9
38	7301	Single stranded DNA binding protein	General function prediction only	None	219/4
39	7401	03228, hypothetical protein, TRX like ferredoxin family, NADH: ubiquinone oxidoreductase subunit E	Energy production and conversion	None	74/1

40	7403	02508, hypothetical protein, phage shock protein psp A	Lipid transport and metabolism	None	76/2
41	7501	Hypothetical protein, 2,5 diketo D gluconate reductase A	Biosynthesis of vitamin C, carbohydrate metabolism	None	152/4
42	7704	01034, Aldehyde dehydrogenase	Energy production and conversion	None	87/2
43	7710	03735, Flavodoxin	Energy production and conversion	None	247/7
44	8602	04209, protein of unknown function	Unknown function	None	126/3
45	8604	Phosphopyruvate hydratase	Carbohydrate transport and metabolism	None	635/16
46	8610	01936, Aldose-1- epimerase	Carbohydrate transport and metabolism	None	115/2
47	8611	03358, Dihydrodipicolinat e synthase	Amino acid transport and metabolism	None	78/2
48	8704	00565, Peptidyl- prolyl cis trans isomerase SurA	Post translational modification, protein turnover and chaperones	None	223/4

 Table 21: Table represents *E. cancerogenus* proteins that have been identified to be

 expressed in all three conditions without regulation using PDQuest software

S. No	SSP number	Identity of the protein	Function	Regulation	Peptide match score/ number of peptides	Fold change (PDQuest)	Accession number
1	1104	BF2494, Hypothetical protein	Mediates protein-protein interactions	↑ mucin media	366/8	3.1	gi 60681974
2	2101	50S ribosomal protein L7/L12	Translation, ribosomal structure and biogenesis	↓ mucin Type II media	265/4	1.5	gi 60683451
3	2102	50S ribosomal protein L7/L12	Translation, ribosomal structure and biogenesis	↓ mucin media	347/30	9.9	gi 60683451
4	2401	GrpE protein	Post translational modification, protein turnover and chaperones	↓ mucin Type III media	83/2	8.9	gi 60681311
5	2701	ATP synthase subunit E	Energy production and conversion	↑ mucin Type III media	197/4	5.3	gi 60682222
6	2704	ATP synthase subunit E	Energy production and	↑mucin Type III media	175/5	2.9	gi 60682222

			conversion				
7	2804	TRP repeat containing protein, 2494	Mediates protein-protein interactions	↓ mucin Type II media	393/7,366/8	8.8	gi 60681974
8	2806	50S ribosomal protein L7/L12	Translation, ribosomal structure and biogenesis	↑mucin Type III media	165/6	2.6	gi 60683451
9	3303	Omp precursor	Cell wall, membrane, envelope biogenesis	↓ mucin media	184/8	8.3	gi 60680025
10	4202	Omp precursor	Cell wall, membrane, envelope biogenesis	↓ mucin media	473/13	4.4	gi 60680025
11	4502	Triose phosphate isomerase	Carbohydrate transport and metabolism	↓ mucin Type II media	183/4	9.3	gi 60683174
12	4601	Putative thiol peroxidase	Post translational modification, protein turnover and chaperones	↓mucin media	112/2	9.3	gi 60682249

13	4605	Thioredoxin	Post translational modification, protein turnover and chaperones	↓mucin Type II media	140/5	4.2	gi 60680203
14	4607	Malate dehydrogenase	Amino acid transport and metabolism	↓ mucin Type II media	159/4	7	gi 60683199
15	4608	Malate dehydrogenase	Amino acid transport and metabolism	↑mucin Type III media	85/2	3.7	gi 60683199
16	4702	Elongation factor Ts	Translation, ribosomal structure and biogenesis	↓ mucin Type II media	331/7	7.3	gi 60683229
17	4705	Malate dehydrogenase	Amino acid transport and metabolism	↓mucin media	159/4	3.7	gi 60683199
18	4804	Malate dehydrogenase	Amino acid transport and metabolism	↑mucin Type III media	171/5	3.5	gi 60683199
19	5106	50S ribosomal protein L7/L12, Hypothetical	Translation, ribosomal structure and	↓ mucin media	93/1, 60/3	1.4	gi 60683451

		protein 2161	biogenesis				
20	5205	Hypothetical protein 1203, putative anti- sigma factor	Signal transduction mechanisms	↓mucin media	403/7	9.1	gi 60680695
21	5402	Hypothetical protein 1203	Signal transduction mechanisms	↓ mucin Type II media	361/9	8.7	gi 60680695
22	6102	Putative RNA binding protein	General function prediction only	↓ mucin Type II media	159/4	7.3	gi 60682207
23	6103	Lactoylglutathione lyase	Amino acid transport and metabolism	↓mucin media	195/3	8.7	gi 60682596
24	6206	Superoxide dismutase (Fe), hypothetical protein 0301	General function prediction only	↓mucin Type II media	100/3, 136/2	8.1	gi 60679842
25	6301	Thioredoxin	Post translational modification, protein turnover, chaperones	↑ in mucin Type III media	87/2	5.6	gi 60680203
26	6302	Triose phosphate isomerase	Carbohydrate transport and	↓ mucin media	87/2	9.8	gi 60683174, gi 60682249

			metabolism				
27	6802	Fructose- bisphosphate aldolase	Carbohydrate transport and metabolism	↓mucin media	196/6	8.3	gi 60682607
28	6807	Conserved hypothetical protein	Unknown function	↓ mucin media	610/14	4.1	gi 60491969
29	6901	Phosphoenol pyruvate carboxykinase	Carbohydrate transport and metabolism.	↓ mucin Type II media	663/14	9.1	gi 53715725
30	7301	FeS Superoxide dismutase	Inorganic ion transport and metabolism	↓ mucin media	466/37	9.6	gi 60682036
31	7401	Ribosome recycling factor	Translation, ribosomal structure and biogenesis	↓mucin media	235/5	9.2	gi 60680182

 Table 22: B. fragilis (Table represents proteins that have been identified to be expressed in all three conditions with any up or down regulation using PDQuest software). Regulation in mucin media in the table refers to both mucin Type II and Type III enriched media.

S. No	SSP number	Identity of the protein	Function	Regulation	Peptide match score/ number of peptides
1	0605	BF2494, TRP repeat containing protein similar to tetratricopeptide repeat family	Mediates protein- protein interactions	None	45/2
2	1208	50S ribosomal protein L7/L12	Translation, ribosomal structure and biogenesis	None	141/4
3	2106	50S ribosomal protein L7/L12	Translation, ribosomal structure and biogenesis	None	121/2
4	3001	50S ribosomal protein L7/L12	Translation, ribosomal structure and biogenesis	None	93/1
5	3105	50S ribosomal protein L7/L12	Translation, ribosomal structure and biogenesis	None	160/2
6	3302	Co-chaperonin GroES	Post translational modification, protein turnover and chaperones	None	48/1
7	3401	FeS superoxide dismutase	Inorganic ion transport and metabolism	None	211/5
8	3403	FeS superoxide dismutase	Inorganic ion transport and metabolism	None	466/38
9	3902	Chaperone dnaK	Post translational modification,	None	345/10

			protein turnover and chaperones		
10	4302	Adenylate kinase	Nucleotide transport and metabolism	None	105/2
11	4408	GrpE protein	Post translational modification, protein turnover and chaperones	None	98/3
12	4701	Putative thiol peroxidase	Post translational modification, protein turnover and chaperones	None	172/5
13	5201	Hypothetical protein 1203, putative anti- sigma factor	Signal transduction mechanisms	None	133/3
14	5204	Hypothetical protein 1203	Signal transduction mechanisms	None	361/9
15	5808	Enolase	Carbohydrate transport and metabolism	None	469/8
16	5810	Phosphopyruvate hydratase	Carbohydrate transport and metabolism	None	354/6
17	6202	Putative OmpH	Cell wall, membrane, envelope biogenesis	None	60/1
18	6304	Thiol peroxidase	Carbohydrate transport and metabolism	None	484/18
19	6709	Hypothetical protein 1004	Protein function unknown	None	358/9
20	6801	Chaperonin groEL	Post translational	None	703/12

			modification, protein turnover, chaperones		
21	6803	Enolase	Carbohydrate transport and metabolism	None	179/4

Table 23: *B. fragilis* (Table represents proteins that have been identified to beexpressed in all three conditions without any up or down regulation using PDQuestsoftware)

MASCOT search results with the peptide scores and identity of the protein spots can be seen in Appendix G.

This study was able to identify 62% of the differentially expressed proteins using LC-MS analysis in *E. cancerogenus* and 67% of the differentially expressed proteins were identified in *B. fragilis*.

10.9 Mass spectrometric analysis of proteins

Formic acid (FA) was used in the preparation of buffers for LC-MS analysis instead of trifluoroacetic acid (TFA). This is because TFA has known negative effects which include suppression of sensitivity and ionisation of protein samples by binding and pairing to the basic groups of peptides when ionised in the gaseous phase. At a concentration of 0.1% (w/v) or more, TFA is capable of preventing spray formation or nebulisation due to the generation of a high surface tension during the ionisation process (Anon, 2002). Also, better resolution of peaks has been observed during the separation of proteins using liquid chromatography (Anon, 2002). Hence this buffer was used in our study.

Sample carry over was another potential problem that was found to influence the results obtained from the MS data. This was overcome by performing water runs in between the sample runs to remove any of the remaining peptides present in the monolith column.

Concentration of protein present in a spot was another important issue for determining its identity. Determining the concentration of the protein to be loaded to identify it from the LC-MS analysis was essential since the differential protein expression profile contained several different proteins of varying intensities. Since at least six replicates of each gel condition was generated, each of the spot was processed separately and pooled together for analysis. Initial trial experiments were performed by cutting out six sets of faint, medium and dark spots. It was observed that three or four faint spots pooled together gave a positive identification for the majority protein on MS analysis. On average, 4 spots were pooled together to detect fainter spots whereas 2 or 3 replicate spot samples were pooled together to detect dark and medium spots respectively.

Some of the spots remained undetectable because of the very low concentrations or due to sample loss during processing. Pressure variations in LC set up and needle blockages in the MS set up resulted in loss of some of the samples too. The autosampler that transferred the sample on to the column used an injection needle to pick up the sample from the multi-well microtitre plate and care had to be taken to avoid the pipetting of air bubbles along with the sample into the wells since this sometimes resulted in the blockage of the system. Frequent ultra-sonication and cleaning of the needles and the shield in the MS system helped to prevent blockages.

The possibility of adjacent spots overlapping each other on the gel suggests that the cutting out of spots need to be very accurate. It was also a possibility that some of the adjacent overlapping spots were isoforms resolving poorly. Some of the adjacent overlapping spots were identified to be the same protein. The inability to obtain a positive identity for some protein spots may be attributed to the fact that proteins were lost during processing, freeze drying or experimental errors. Several steps involved the solubilisation, freeze drying and resuspension of proteins which added to the loss of proteins.

In order to avoid random matching of measured masses to peptides in the MASCOT sequence database, the searches were restricted to the grouping of 'Eubacteria.' Random matching results could also provide false positive results and hence certain criteria were set up to segregate false positives from correct identifications. This included selection of results where the protein score was more than 40 and at least 2 peptides matched to the query sequence.

A total of 23 differentially expressed proteins were identified out of 34 in *E. cancerogenus* and 31 proteins were identified out of 45 in *B. fragilis*. The default statistical analysis used in PDQuest was the Student t-test. More than 60% of the differentially expressed proteins were identified in both cases but a substantial amount of the protein samples were lost due to processing or experimental errors.

The LC-MS spectra generated from the protein spots were searched through the MASCOT server in the NCBI and SWISS PROT databases. It was found that the NCBI prioritised the *B. fragilis* strain YCH76 over the NCTC 9343 strain. The exact reason for this is unknown. The significant hits in the YCH76 strain prompted us to

perform NCBI blast searches with its NCTC 9343 counterparts and it was observed that the matched peptide sequences were identical in both cases. There is a possibility that the unique classification, categorisation and annotation of sequences in the NCBI database is responsible for the results obtained. Similar searches in the SWISS PROT database produced matching peptide sequences in the NCTC 9343 strain but the ion scores were found to be lower. This may be because SWISS PROT database has a manually annotated protein sequence record (Mizrachi, 2002). Previous work by other scientists have suggested the presence of similar problems in data analysis (Ingrell, 2009). Refer to the second section of the discussion for further details.

Differential expression of virulence associated proteins like neuraminidases, sialidases, mucinases and glycoside hydrolases were expected to be evident from the proteomic experiments but surprisingly, none of these proteins were identified. B. fragilis, known to exhibit a well established catabolic pathway in its activity against sialic acids by producing silaidases did not express the protein in the presence of mucin, unless it was expressed in undetectable amounts. The reason behind repression of these enzymes may be due to the presence of glucose in the semi-defined growth media in addition to mucin which may be inducing a catabolite repression.

It may be interesting to perform specific assays to determine the presence of these enzymes in the cell free extracts since they have not been detected from the proteomics experiments.

10.10 Expression of proteins involved in translation, ribosomal structure and biogenesis

The ribosome recycling factor (RRF) protein was found to be down-regulated in mucin enriched media in B. fragilis but no regulation was observed in E. cancerogenus. The protein plays a vital role in the recycling of ribosomes after completion of protein synthesis. The two main signal transduction associated proteins required for the release of ribosomes from the mRNA are elongation factor (EF-G) and the ribosome recycling factor (originally known as the ribosome recycling factor (RRF); (Wilson et al., 2005). RRF dissociates ribosomes from mRNA after termination of translation and is essential for bacterial growth (Janosi et al., 1994). The activity of this protein is important for the availability of free ribosomes for further continuation of protein synthesis. These proteins play an important role in inducing immune responses within the host during infection by activating the production of IgG antibodies (Cassataro et al., 2007). This suggests that these proteins may be up-regulated during adverse growth conditions but has been found to be downregulated in mucin enriched media in *B. fragilis*. Previous studies have shown that the growth of Streptococcus oralis in acidic conditions resulted in an up-regulation of these surface-associated proteins (Wilkins et al., 2003).

The 50S ribosomal protein L7/12 was found to be down-regulated in mucin enriched media in *B. fragilis* even though no regulation was observed in *E. cancerogenus*. The main functions of the 50S ribosomal subunit L7/L12 is mRNA directed protein synthesis, increase in polypeptide synthesis and reduction of missense error rate. Variable expression levels of 50S ribosomal subunit L7/L12 were observed in mucin media in *B. fragilis* which could be related to the possible existence of isoforms even though this phenomenon has not been observed in bacteria. But a general down-regulation of the protein was observed in mucin enriched media except SSP number 2806 which shows an up-regulation in expression.

10.11 Expression of proteins involved in transcription

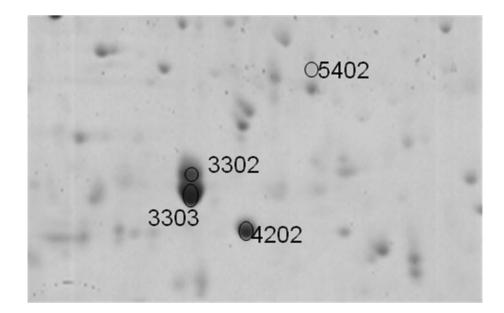
Elongation factor Ts was found to be down-regulated in mucin enriched media in *B. fragilis* and *E. cancerogenus*. Interestingly, it has been known from previous studies in *S. pneumoniae* that opaque invasive variants of the bacteria were found to exhibit a down regulation of elongation factor Ts when compared to the less invasive variants that expressed higher amounts of the elongation factor (Overweg *et al.*, 2000). The elongation factor Ts plays an important role in protein synthesis by acting as a nucleotide exchange factor that is required for the regeneration of elongation factor Tu (EF-Tu) from its inactive EF-Tu-GDP form to the active form EF-Tu-GTP. This enables EF-Tu to interact with the next incoming amino acid (Hwang & Miller, 1985).

Elongation factor EF-Tu was found to be down-regulated in mucin enriched media in *E. cancerogenus* even though the protein showed no differential expression in *B. fragilis.* EF-Tu is an intracellular protein that contains a number of other proteins associated with it and is involved in translation elongation factor activity and GTP binding. It plays an important role in the translation process by initiating the selection and binding of the cognate amino-acyl t-RNA to the acceptor A site (Pape *et al.*, 1998). They may be associated with the translation and biogenesis of ribosomal structures apart from being involved in transcription. Differential expression studies in mycobacteria showed the down-regulation of these proteins until they came in contact with the host macrophages which indicates that the expression of these proteins may be triggered by the presence of a host immune response (Monahan *et al.*, 2001).

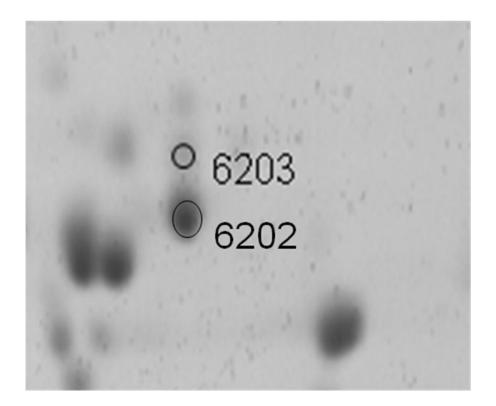
Putative RNA binding protein domains were down-regulated in mucin enriched media in *B. fragilis*. These proteins play an important role in regulating transcription termination; protect the mRNA from degradation during unfavourable growth conditions like cold shock and nucleic acid recognition (Stulke, 2002). They are capable of stopping translation by preventing the binding of mRNA to ribosomes and can control the secondary structure formation of mRNA by promoting or preventing

translation initiation thereby modulating metabolic processes. They induce antitermination of carbon and nitrogen catabolic genes to suit the survival of bacteria in the growth media and the CRM domain forms the conserved region of RNA binding protein with 100 amino acids involved in nucleic acid recognition (Barkan *et al.*, 2007). RNA binding attenuation protein trp, was found to be associated with the production of a putative efflux protein in *B. subtilis* suggesting that it may be a potential virulence factor (Yakhnin *et al.*, 2006). Down-regulation of these proteins in mucin enriched media suggests that the adaptability of *B. fragilis* in this media is much better when compared to the control semi-defined media.

10.12 Expression of proteins involved in secondary metabolite biosynthesis, transport and catabolism


Acetoin reductase, a very essential enzyme involved in acetoin catabolism and acetoin dehydrogenation activity has been found to be up-regulated in media enriched with mucin Type II but down-regulated in media enriched with mucin Type III in *E. cancerogenus*. This protein was not identified in *B. fragilis*. The enzyme catalyses the conversion of acetoin and NADH to 2, 3 butanediol and NAD (+) which is a characteristic of anaerobic fermentation processes. This is also used in the commercial production of 2,3 butanediol (Xiao & Xu, 2007). A study in *B. subtilis* has revealed that this cytoplasmic protein is expressed under anaerobic conditions when the cells enter the late log phase where the production of acetoin (Nicholson, 2008). The production of acetoin is essential for maintaining the pH of the media where it compensates for the acidic end products that are produced when glucose is present as a source of carbon in the media and this has been observed in *V. cholerae* (Kovacikova *et al.*, 2005). This suggests that the growth stage of the bacteria during media harvest play a very important role in their protein expression.

10.13 Inorganic ion transport and metabolism associated protein expression


The enzyme superoxide dismutase has been identified to be down-regulated in mucin enriched media in B. fragilis. This protein has not been identified in E. *cancerogenus*. They are housekeeping enzymes that respond or confer resistance to oxidative stress in bacteria. Their location is periplasmic and catalyses the dismutation of superoxide into oxygen and hydrogen peroxide thus functioning as an antioxidant in cells exposed to oxygen. They are produced to allow the host to outcompete any aerobic flora or reduce reactive oxygen species. They destroy radicals that are commonly produced within cells and are toxic to biological systems. They occur as homodimers or homotetramers (Messerschmidt et al., 2001). Previous studies have shown that the expressions of these enzymes are encoded by the sodA and sodB genes. The sodA gene was activated when the growth conditions shifted from anaerobic to aerobic conditions and the sodB gene was switched off under aerobic conditions (Matsumura et al., 1993). Growth of bacteria in media containing glucose and phosphate has been known to induce autoxidation (Carlsson et al., 1978) but a down-regulation of the enzyme results in a reduction in control of autoxidation and formation of superoxide radicals indicating that *B. fragilis* has a poorer survival rate in the presence of mucin.

10.14 Expression of proteins involved in cell wall, membrane and envelope biogenesis

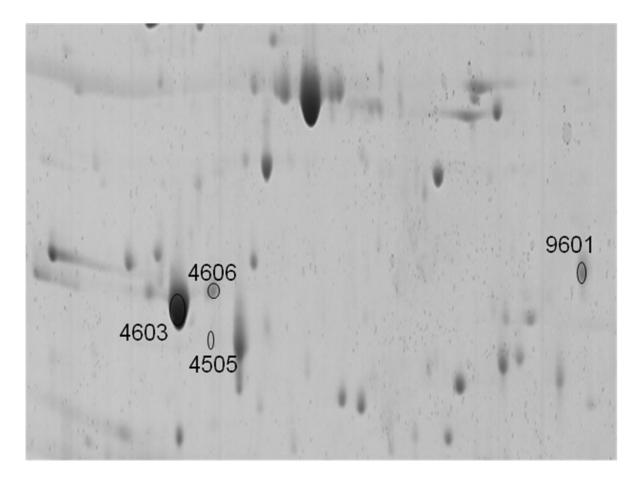

Several outer membrane proteins have been differentially expressed in mucin enriched media with both *B. fragilis* and *E. cancerogenus*. Outer membrane protein A was up-regulated while outer membrane protein II was found to be down-regulated in *E. cancerogenus*. The outer membrane surface antigen X was found to be upregulated in both mucin Type II and III enriched media in *E. cancerogenus*. In *B. fragilis*, two different spots were found to contain the same outer membrane protein precursors which were down-regulated in both cases in mucin enriched media. This could possibly indicate that the protein is present as isoforms in *B. fragilis* but no information is available in literature regarding the existence of isoforms in outer membrane proteins of bacteria. Refer to Figs. 30, 31 and 32 which indicate spots that expressed the same protein in *B. fragilis* and *E. cancerogenus*.

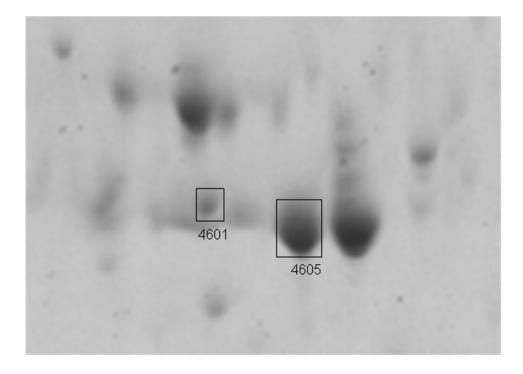
Figure 30: Figure showing the differentially expressed spots of outer membrane proteins in *B. fragilis.* SSP numbers 3302 and 5402 were identified to be outer membrane protein H and SSP numbers 3303 and 4202 were identified to be outer membrane protein precursors.

Figure 31: Figure showing the differentially expressed spots of outer membrane protein H in *B. Fragilis*

Figure 32: Figure showing the differentially expressed spots of outer membrane proteins in *E. cancerogenus*. SSP numbers 4606, 4505 and 9601 were identified to be outer membrane protein II and SSP numbers 4602 and 4603 were identified to be outer membrane protein A.

Outer membrane proteins are porins involved in transport of solutes, are immunogenic in nature and occur as epitopes on the bacterial surface exhibiting antigenic properties (Luo *et al.*, 1997). Outer membrane protein H have been known to be up-regulated during periods of iron starvation where lack of iron activates the *fur* gene which then activates the *ompH* gene leading to the increased production of the protein (Bosch *et al.*, 2001). These proteins may also be associated with intracellular trafficking, transport and secretion of vesicles apart from cell envelope biogenesis. They enable the adaptation of bacteria to various niches by obtaining iron from host-iron complexes. Increased amounts of glucose could also result in the suppression of the outer membrane protein H expression (Wheeler, 2009). Previous studies have shown that depletion of carbon sources in the growth media can result

in the activation of the gene encoding the synthesis of the protein since general expression in the presence of sugars is prevented by catabolite repression as studied in *Photobacterium* sp. (Bartlett & Welch, 1995). Outer membrane proteins A and II have been known to play an important role in conjugation, invasion of host tissues and detection of viruses apart from inducing immunogenic responses in the host (Singamsetty *et al.*, 2008). Deletion of the gene encoding the synthesis of the outer membrane proteins caused a reduction in the biomass, reduced survival rate at high temperatures, loss of viability in stationary phase (Beher *et al.*, 1980) and accumulation of low molecular weight solutes (Barrios *et al.*, 2006). Previous studies in *B. fragilis* (Ko *et al.*, 2009) and *Chlamydia pneumonia* (Hogan *et al.*, 2003) have shown the outer membrane potein encoding genes to be associated with virulence and seem to be up-regulated in severe cases of infection.


10.15 Intracellular trafficking, secretion and vesicular transport associated protein expression

Translocation associated ToIB proteins were found to be differentially expressed in mucin enriched media in *E. cancerogenus* where up-regulation was observed in the mucin Type III enriched media and down-regulation was observed in the mucin Type II enriched media. This protein was not identified in *B. fragilis*. ToIB proteins are known to be involved in a number of functions that include translocation of colicins of group E and A including the delivery of the toxins to their respective target sites, assembly of porins in the outer membrane, recycling of peptidoglycan and linking the peptidoglycan layer to the outer membrane of the cell (Abergel *et al.*, 1999). They have been known to interact with trimeric outer membrane complexes including ompF and ompC but do not interact with monomeric forms like ompA (Rigal *et al.*, 1997). They are a part of the ToI dependent translocation system where they form complexes with porins in the form of ToIA II His-porin complexes can result in the down-regulation of the ToIB proteins (Lazzaroni *et al.*, 2002). They may also be essential for maintenance of the outer membrane stability (Lazzaroni *et al.*, 1999).

10.16 Expression of proteins involved in post translational modifications, protein turnover and chaperones

Putative thiol peroxidase was found to be differentially expressed in *B. fragilis* in mucin Type II and III enriched media but was not identified in *E. cancerogenus*. The protein was found to be up-regulated in SSP number 6301 and down-regulated in SSP numbers 4601 and 4605 in mucin enriched media in *B. fragilis* (Figure 33). They play an important role as antioxidants and may be activated under conditions of oxidative stress and protect cells against the damaging effects of reactive oxygen species produced during metabolism (Missall et al., 2004). In the presence of hydrogen peroxide, they convert the reduced form of thioredoxin to the oxidised form and are also known as peroxiredoxins. The presence of varying concentrations of oxidants in the growth media produced as a result of the accumulation of toxic metabolic end products may be responsible for the differential expression of these enzymes in mucin enriched media. Under anaerobic growth conditions, the expression of these proteins is controlled by the binding of designated proteins that prevent the activation of the tpx promoter (Kim et al., 1999). The regulation of these proteins may be attributed to the adaptation capabilities of bacteria to various ecological niches even under conditions of stress.

These proteins protect DNA and detoxify peroxides. The activation of the genes controlling the expression of these proteins is controlled by the *tpx* promoter (Kim *et al.*, 1999). Considering the lack of oxygen in anaerobic growth conditions, the down-regulation of these proteins suggests the possible lowering of oxidative stress in mucin enriched media (Kim *et al.*, 1999).

Figure 33: Figure showing the differentially expressed spots of putative thiol peroxidase in *B. fragilis*

E. cancerogenus showed a down-regulation of a protein from the glutaredoxin family in mucin Type III enriched media but was not identified in *B. fragilis*. Glutaredoxin related proteins are disulphide reductases that contain glutaredoxin and NADPH as cofactors. They have the presence of an intramolecular disulphide bond, act as electron carriers in the synthesis of deoxyribonucleotides and contribute to cellular functions like cell proliferation, viability and stabilisation during stress conditions (Holmgren et al., 2005). Thiol disulphide oxidoreductases play an important role in disulphide bond formation in cytochrome biogenesis (Holmgren et al., 2005). Previous studies in E. coli reveal the ability of these proteins to adhere to tissue culture cells and may contribute to the formation of pili (Donnenberg et al., 1997). They have been known to contribute to bacterial virulence by acting as a folding catalyst suggesting that the down-regulation of these proteins in mucin media may be associated with the absence of a host immune response that induced expression (Yu & Kroll, 1999). This explains the reason behind the observation of a downregulation of the glutaredoxin family related protein like thiol disulphide oxidoreductase in mucin Type III enriched media in *E. cancerogenus*. Other factors such as general metabolic requirements or toxic by product build up could also be responsible.

The co-chaperonin protein GroES was found to be up-regulated in mucin Type III enriched media in *B. fragilis*. This protein was not identified in *E. cancerogenus*. This is an oligomeric molecular chaperone which functions in protein folding and intracellular signals. It is a surface protein which is released from cells when required. It captures the substrate with the help of co-chaperone GroES and ATP which help with the binding. The substrate is then discharged into the microenvironment inside the chaperone promoting productive folding. The polypeptide is later released into the solution. GroES works as a co-chaperone with GroEL during protein folding. They have metal binding enzyme sites and can play an important role in host immunogenicity (Ranford et al., 2004). These chaperonins are known to act as intercellular signals interacting with a variety of cell types, including leukocytes, vascular endothelial cells and epithelial cells and may be responsible for key cellular activities such as synthesis of cytokines and adhesion proteins (Landry et al., 1996). Co-chaperonin GroES is a known virulence factor and has been known to be associated with inducing inflammation and promoting cell proliferation (Lin et al., 2006). Up-regulation of these virulence associated proteins in mucin Type III enriched media indicate that they may be expressed during infection of the host by bacteria.

A heat shock protein, GrpE was found to be differentially down-regulated in mucin enriched media in *B. fragilis* but no regulation was observed in *E. cancerogenus*. This is a stress related protein that works in conjunction with two other proteins namely DnaK and DnaJ forming complexes and is activated to repair damaged proteins or to initiate folding of proteins (Packschies *et al.*, 1997). Apart from being involved in protein folding and disaggregation of heat shock proteins, these proteins also carry out the degradation of misfolded proteins. Unfolded proteins bind to DnaJ protein to form an unstable complex which is then stabilised by the hydrolysis action of DnaK. The movement of the folded protein is initiated by the removal of an ADP molecule which is converted to ATP coupled to the DnaK protein caused by the GrpE protein (Straus *et al.*, 1990). Inactivation of the gene encoding the GrpE protein in *E. coli* has known to enhance the production of heat shock proteins and the continual production of the heat shock protein could not be stopped even though the growth conditions were returned to normal (Lipinska *et al.*, 1988). Down-regulation of

the protein indicates the lowering of heat shock or oxidative stress when grown in mucin enriched media when compared to the control media.

ATP synthase subunit E was up-regulated in mucin Type II and III enriched media in B. fragilis but no regulation was observed in E. cancerogenus. ATP synthases form proton channels that cause an influx of ions across the membrane thereby generating a proton gradient formed by the hydrolysis of ATP or oxidative phosphorylation of ADP and resulting in the generation of energy for metabolic processes (Feniouk & Junge, 2005). Differential expression studies in Mycobacterium avium showed the up-regulation of the the ATP synthase subunit C called the AtpC component of the ATP synthase complex (Radosevich et al., 2007). The exact function of the subunit E is not known but the up-regulation of the protein may be associated with energy generation for efficient growth of the bacteria. Upregulation of the ATPase subunit E may be associated with the availability of a large amount of sugar substrates for growth thereby supporting an increased generation of energy in *B. fragilis*. It is quite interesting that only the subunit E of the ATP synthase complex appeared to be up-regulated in mucin enriched media instead of the entire protein complex. ATP synthase subunit B, another component of the ATP synthase complex was identified during MS analysis of protein spots but did not show any differential expression in mucin enriched media. The exact reasons for the differential expression of the ATP synthase subunit E in mucin enriched media remain unknown.

10.17 Expression of proteins involved in energy production and conversion

Phosphoenol pyruvate carboxykinase (PEPCK), an important enzyme in the gluconeogenetic pathway catalysing the decarboxylation of oxaloacetate into phosphoenol pyruvate and carbon-di-oxide was shown to be down-regulated in mucin Type II and III enriched media in *B. fragilis*. This protein was not identified in *E. cancerogenus*. They utilise ATP or GTP as a source of phosphates and exhibit catalytic activity by binding to metal containing sites. The activation of these enzymes occurs when non fermentable sources of carbon are present in the media

and have been known to occur in ruminal and other anaerobic bacteria (Schocke & Weimer, 1997). Over expression of these proteins could affect the growth balance since they are known to have an influence over the oxygen concentrations in the media and this alteration in expression has been studied in *E. coli* (Chao & Liao, 1993). Since mucin acts as a rich source of carbon substrates, the fermentation of these substrates probably depend on the energy conservation and nutritional specialisation of *B. fragilis*. Studies have shown the up-regulation of the *acuF* gene which encodes the synthesis of PEPCK when non fermentable sources of carbon are present in the growth media (Hynes *et al.*, 2002). Hence the down-regulation of the protein in mucin enriched media can be attributed to the lack of requirement of more sugars for growth as mucin itself acts as a major source of carbon.

One of the interesting results from my study showed the differential regulation of malate dehydrogenase enzymes in B. fragilis but was not identified in E. cancerogenus. These enzymes were found to be down-regulated in mucin Type II and III enriched media in SSP number 4607 but the same enzyme was found to be up-regulated in mucin Type II and III enriched media in SSP number 4804 (Fig. 34). This could indicate that the enzyme exists in isoforms that may be differentially expressed based on their function but has been observed only in eukaryotes and is not known to exist in *B. fragilis*. Malate dehydrogenases catalyse the conversion of malate to oxaloacetate in the citric acid cycle and their expression has been known to vary with the carbon substrates and growth conditions used for culturing bacteria (Minarik et al., 2002). Apart from being involved in carbohydrate metabolism, they may also be associated with amino acid transport and metabolism. Previous studies in malate dehydrogenase enzymes have shown that they exist as isoenzymes and also exhibit allelic polymorphisms in eukaryotes (Gietl, 1992) and in phototropic bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris (Eprintsev et al., 2008). There were considerable amounts of distinctive amino acids associated with the allelic polymorphisms of the *mdh* gene indicating that this could have been caused by the horizontal transfer of genes in E. coli and S. enterica (Boyd et al., 1994). The *mdh* gene in *E. coli* encodes for the ArcA protein whose expression is down-regulated under anaerobic conditions and regulation of expression was studied in response to varying oxygen, carbon and haeme availability in the growth media

(Park *et al.*, 1995). The differential expression of these proteins may be associated with the presence of mucin in the semi-defined growth media which acts as a rich source of carbon providing a better survival rate for the bacteria.

Figure 34: Figure showing the differentially expressed malate dehydrogenase spots in *B. fragilis*

NAD dependent aldehyde dehydrogenase enzyme was found to be down-regulated in media containing mucin Type II in *E. cancerogenus*. These proteins were not identified in *B. fragilis*. The aldehyde dehydrogenase enzymes are very closely associated with the gamma glutamyl phosphate reductase enzymes. They catalyse the dehydrogenation or oxidation of aldehydes to produce acidic end products in the presence of NADP as a co-factor. One of the important features of this enzyme is that it can act as an allergen that induces IgE responses in humans and mammals. The enzyme may be acting as a potential virulence factor by triggering immune responses within the host by activating the IgG antibodies. Under anaerobic conditions, aldehyde dehydrogenases metabolise endogenous acetaldehyde and ferment nutrients to produce energy (Mikulskis et al., 1997). Previous studies showed that the expression of these proteins in germ free mice were modulated when challenged by bacteria and were found to be down-regulated (Fukushima et al., 2003). Down-regulation of aldehyde dehydrogenase in mucin Type II enriched media indicates that the presence of mucin may be modulating the expression of this enzyme.

10.18 Expression of carbohydrate transport and metabolism associated proteins

Triose phosphate isomerase (TPI) which is involved in the interconversion of the TPI isomers dihydroxy acetone phosphate (DHAP) and glyceraldehyde-3-phosphate was found to be down-regulated in mucin Type II and III enriched media in *B. fragilis*. The enzyme plays an important role in carbohydrate metabolism through glycolysis and energy production. Regulation of the tpi gene which encodes the enzyme that can result in the accumulation of sugar moieties which becomes impossible to metabolise (Solem et al., 2008). They are also known to be immunogenic in nature where these enzymes were up-regulated in convalescent phase serum obtained from patients suffering from pneumococcal infections caused by S. pneumoniae (Zysk et al., 2000). Growth of B. fragilis in cell culture could trigger an up-regulation of these proteins since they are associated with the host immune system. Differential expression studies in planktonic and biofilm cultures showed the up-regulation of these enzymes in biofilm conditions (Becker et al., 2001). Previous studies have shown that these enzymes can be over expressed during stress conditions like deprivation of oxygen and this suggests that the down-regulation of these proteins may be due to the ability of bacteria to grow well in the presence of mucin (Yamaji et al., 2004). Regulation of expression of these proteins indicates that they play a vital role in carbohydrate metabolism and immune response suggesting that they could act as potential virulence factors when grown in host cells.

Up-regulation of the conserved domains of enolase or phosphopyruvate hydratase was observed in *E. cancerogenus* media enriched with mucin Type II and III. The enzyme forms an integral part of the glycolytic pathway catalysing the conversion of 2-phosphoglycerate to phosphoenol pyruvate. The expression of these enzymes has been found to be enhanced under anaerobic conditions and mutants lacking the presence of the enolase gene have been unable to utilise gluconeogenetic and glycolytic carbon sources (Lemaire & Wesolowski-Louvel, 2004). Enolase has also been known to play an important role in tissue invasion and pathogenesis in Grampositive bacteria and may be over expressed in infection conditions (Liu & Shih,

2007). The up-regulation of these proteins in *E. cancerogenus* suggests the possibility that they may be indirectly involved in pathogenicity and may act as potential virulence factors and are therefore worthy of further study.

Phosphoglycerate kinase; a key enzyme involved in the glycolytic pathway was upregulated in mucin Type II and III enriched media in *E. cancerogenus*. This protein was not identified in *B. fragilis*. These enzymes are involved in the anaerobic fermentation and generation of energy from carbon sources by catalysing the conversion of 1, 3-bisphosphoglycerate into 3-phosphoglycerate in the glycolytic cycle. Inactivation of the *pgk* gene encoding the synthesis of phosphoglycerate kinase resulted in the accumulation of 1, 3-bisphosphoglycerate thereby leading to the inability to generate energy for metabolism (Nakano *et al.*, 1999). Up-regulation of these enzymes indicates the efficient metabolisation of sugars which is probably enhanced in the presence of mucin which acts as a rich source of carbon.

Fructose 1,6-bisphosphate aldolase was found to be down-regulated in mucin Type II and III enriched media in *B. fragilis* following analysis using the PDQuest gel analysis software. This protein was not identified in *E. cancerogenus*. This enzyme catalyses the conversion of fructose 1,6 bisphosphate to dihydroxyacetone phosphate and glyceraldehyde-3-phosphate in the glycolytic pathway involving the binding of a divalent metal ion (Zinc) to the active site (Anon, 2009). This enzyme has been known to be expressed when B. fragilis cell suspensions were grown in media containing glucose and lactate as carbon sources (Macy et al., 1978). Previous studies in Trichomonas vaginalis revealed the up-regulation of malate dehydrogenases and fructose 1,6 bisphosphate aldolases and were found to be associated with virulence (Cuervo et al., 2008). Hence these enzymes may be potential virulence factors and play a vital role in the adherence of bacteria to host cells. They were found to be over expressed in the viable but non culturable state of bacteria suggesting that they play a vital role in the alternate metabolic pathways involved in the generation of energy (Heim et al., 2002). In our experiments, fructose 1,6 bisphosphate aldolase was found to be down-regulated in mucin enriched media indicating better energy generation and viability of cells in mucin enriched media.

10.19 Amino acid transport and metabolism associated protein expression

Proteins from the carbamate kinase family involved in ATP and amino acid synthesis pathways was found to be up-regulated in mucin enriched media in *E. cancerogenus*. This protein was not identified in *B. fragilis*. Carbamate kinases catalyse the conversion of carbamoyl phosphate and ADP to carbamate and ATP. Hence this acts as a major source of ATP for energy metabolism. Previous studies have shown the over expression of this enzyme induced by growth of bacteria in anaerobic conditions, moderate expression induced by the presence of arginine and repression caused by the presence of ammonia (Abdelal *et al.*, 1982). Expression of carbamate kinase was found to increase when *S. aureus* cultures were grown under biofilm conditions and seem to play an important role in the growth of bacteria (Resch *et al.*, 2005). This indicates that the enzyme is involved in energy production reactions for the better growth of bacteria and its up-regulation may be attributed to the availability of rich sources of carbon under strict anaerobic conditions. Up-regulation of these proteins in mucin enriched media indicates an increase in energy metabolism in the presence of mucin in *E. cancerogenus*.

One of the other proteins that were differentially under expressed in mucin Type II and III enriched media was the lactoylglutathione lyase enzyme in B. fragilis. This protein was not identified in *E. cancerogenus*. This enzyme has been known to play an important role in the detoxification of the bacterial system and may be produced in response to oxidative stress (MacLean et al., 1998). Only a general prediction of the function of these proteins is available associating them with amino acid transport and metabolism. This enzyme is also known as glyoxalase I and it catalyses the isomerisation of hemithioacetal adducts which are produced as a result of the reaction between glutathione (containing a glutathionyl group) and methylglyoxal (containing an aldehyde group). The end product of the reaction was lactoylglutathione which protected the system from the toxic effects of methylglyoxal (Korithoski et al., 2007). The glutathione conjugates formed from the glyoxalase I-II pathway can activate KefB and KefC potassium channels that cause a lowering of the pH of the bacterial cell intracellularly thereby protecting them against the toxic effects of electrophiles (Ferguson et al., 1998). Studies have shown that the genes encoding the expression of these enzymes when over expressed, resulted in an increased tolerance of the organism to methylglyoxal and osmotic stress exhibiting a

protective function (Takatsume *et al.*, 2005). They may be over expressed in cases of oxidative stress especially when acidic conditions prevail in the growth media (Wilkins *et al.*, 2002). Similar results have been observed in *S. mutans* where the *lgl* gene was over expressed during growth in acidic media (Korithoski *et al.*, 2007). But the down-regulation of the enzyme in mucin enriched media indicates a decrease in toxic metabolites or oxidative stress which suggests better viability and survival rates in mucin media rather than the control semi-defined media.

Proteins from the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase I (DAHP) family was found to be up-regulated in mucin enriched media in E. cancerogenus. This protein was identified to be 2-dehydro-3-deoxy phosphooctonate aldolase and was not expressed in *B. fragilis*. 2-dehydro-3-deoxy phosphooctonate aldolase belongs to the transferase enzyme family and has been known to be upregulated at transition stages from logarithmic to stationary phase in growth cultures (Sowell et al., 2008). The enzyme, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase I plays an important role in the aromatic amino acid biosynthesis and shikimate pathway (Panina et al., 2001). Two of the main amino acids synthesised using the shikimate pathway are tyrosine and phenylalanine and the feedback inhibition caused by the end products of the shikimate pathway does not affect the activity of DAHP synthase enzyme in Bacillus sp. (Kim, 2001). It catalyses the condensation reaction that converts phosphoenol pyruvate and D-erythrose-4phosphate to 3-deoxy-D-arabino-heptulosonate 7-phosphate and this step plays an important role in the synthesis of amino acids like tyrosine and phenyl alanine (Herrmann, 1995). Since the substrates used in the condensation reaction are mainly sugar phosphates and mucin acts as a rich source of carbohydrates and complex polysaccharides, the up-regulation of these enzymes in *B. fragilis* can be understood.

10.20 Expression of poorly characterized proteins with a general function prediction only

The periplasmic protein, ecotin was found to be down-regulated in *E. cancerogenus* but not identified in *B. fragilis*. The protein acts as a broad range serine protease inhibitor that is capable of acting against enzymes like trypsin, chymotrypsin, blood peptidase factor Xa, thrombin and urokinase type plasminogen activator (Mcgrath *et al.*, 1995). They exhibit a high degree of variation and develop adaptive interactions that suit the survival of the pathogen in host tissue and studies show that its location in the cell is periplasmic (Mcgrath *et al.*, 1991). They have a protective function and may be responsible for the bacteriostatic activity of the bacteria against neutrophil elastases (Eggers *et al.*, 2004). Since the presence of a host immune response triggers the expression of ecotin, its down-regulation suggests the lack of host digestive enzymes. This indicates that ecotin may be used as a protective system against proteolytic enzymes or other antibacterial agents and the lack of any components that challenge the growth of bacteria may have caused its down-regulation in mucin enriched media. In fact, media containing mucin support better growth of bacteria.

Differential expression of ribonucleotide reductase, pyruvate formate lyase (PFL) and autonomous glycyl radical cofactor were observed in *E. cancerogenus*. This protein was not identified in B. fragilis. Proteomic analysis of the spots revealed upregulation of the protein in mucin Type II enriched media whereas down-regulation was observed in mucin Type III media. The autonomous glycyl radical cofactor plays an important role in the in the regulation of transcription and may be induced under conditions of oxidative stress since it acts as an antioxidant (Wyborn et al., 2002). The enzyme ribonucleotide reductase is involved in the aerobic glycolysis reaction whereas pyruvate formate lyase takes part in the anaerobic glycolysis reaction (Leppanen et al., 1999). Under oxidative stress conditions, the fragmentation of pyruvate formate lyase takes place and this induces the activation of the autonomous glycyl radical cofactor gene which then acts as an independent glycyl radical carrier and replaces the C terminal glycyl radical in PFL (Wagner et al., 2001). Previous studies have shown that the enzyme pyruvate formate lyase is over expressed in the presence of pyruvate or milk and can yield mixed acid end products following anaerobic fermentation (Derzelle et al., 2005). Since the exact composition

of mucin remains unknown, the end products of glycolysis may be inducing the expression of this protein in mucin Type II enriched media when compared to the mucin Type III enriched media as revealed in previous work (Sawers & Bock, 1988).

A transcription elongation associated protein, elongation factor GreA was identified to be down-regulated in mucin Type II and III enriched media in *E. cancerogenus*. They are involved in the process of transcription regulation where the elongation factors cleave 2 or 3 nucleotides from the N terminal end of the nascent transcripts of RNA polymerases which are trapped by the arresting sites in the DNA forming locked DNA/RNA polymerase tertiary complexes as they pass through them. Once cleaved, resumption of the process of elongation takes place from the 3' end (Lu et al., 1997). Their functions include DNA dependent regulation of transcription, DNA binding and transcription elongation regulator activity (Stepanova et al., 2007). These are cell surface associated proteins that are over expressed during stress conditions. Induced stress conditions like growth in lower pH (5.0) in Streptococcus *mutans* (Len *et al.*, 2004) and mutation of the *pgi* gene that encodes the synthesis of the phosphoglycerate kinase enzyme trigger the increased expression of these proteins (Kabir & Shimizu, 2003). The lack of any stress conditions and the ability to survive effectively in the media could be responsible for the down-regulation of this protein in mucin enriched media when compared to the control non mucin media in E. cancerogenus.

10.21 Expression of signal transduction mechanism associated proteins

The universal stress proteins were found to be up-regulated in mucin Type II and mucin Type III enriched media in *E. cancerogenus*. This protein has not been identified in *B. fragilis*. This result is similar to the autonomous glycyl radical cofactor differential expression suggesting reduced accumulation of toxic end products or oxidative stress in mucin Type III media when compared to mucin Type II media. These cytoplasmic proteins play a major role in protecting DNA against damaging agents and they have been known to be over expressed when cells enter a preparatory phase before transition from the log phase to the stationary phase (Nystrom & Neidhardt, 1994). Expression may also be induced by depletion of carbon sources in growth media (Persson *et al.*, 2007) or in the presence of stress

inducing agents like salt or toxic by-products of metabolism (Weber & Jung, 2002). In some cases, these proteins have been known to be expressed even before complete depletion of carbon sources in the media (Chang *et al.*, 2002). Previous studies in the universal stress proteins expressed by *E.coli* showed that 6 different proteins which were encoded by 6 different genes *uspA*, *B*, *C*, *D* and *E* were produced under different conditions of stress. The genes usp C and E were found to produce proteins that were involved in cell adhesion and motility and this could be related to the up-regulation of these proteins in mucin enriched media (Nachin *et al.*, 2005).

10.22 Nucleotide transport and metabolism associated protein expression

Three other proteins found to be differentially expressed were cytidylate kinase in *E. cancerogenus*, phosphoglycerate kinase in *E. cancerogenus* and the 50S ribosomal protein L7/12 in *B. fragilis*. Cytidylate kinase proteins were found to be up-regulated in mucin Type III enriched media and down-regulated in mucin Type II enriched media in *E. cancerogenus*. These are cytoplasmic proteins that play a vital role in pyrimidine and nucleic acid metabolism by catalysing the transfer of a phosphate group from ATP thereby converting dCMP to dCDP and ADP. The two main functions of the protein include cytidylate kinase activity and ATP binding and they also require the binding of metal ions like magnesium (Mg²⁺). When mutants lacking the conserved serine residues were generated, there was a dramatic decrease in the phosphorylation of dCMP indicating that these residues were highly conserved (Bertrand *et al.*, 2002). Not much information is available regarding the differential expression of these proteins but over expression in mucin Type III media suggests the possible availability of more energy in the form of ATP for nucleic acid synthesis unlike the mucin Type II or non mucin media.

E. cancerogenus showed the up-regulation of a periplasmic protein with a phospholipid binding domain in mucin enriched media. SSP number 6408 also showed a differential expression of a periplasmic protein disulphide isomerase I. This protein showed a down-regulation in the mucin Type II enriched media in *E. cancerogenus*. This protein was not identified in *B. fragilis*. The periplasmic protein disulphide isomerase belongs to the thiol disulphide oxidoreductase protein family

and is known to play an important role in the oxidative protein folding pathway. Gram-negative cell walls have the presence of phospholipids associated with their peptidoglycan and periplasmic layers. Periplasmic proteins form a part of bacterial transport systems with a high affinity and solute binding extracellular site (Ito *et al.*, 1981). They may also be involved in the formation and aggregation of porins that transport nutrients across the membrane but the exact function of these proteins remain unknown (Lazar & Kolter, 1996). Previous studies have shown that increased concentrations of sucrose is capable of inducing the over expression of these genes and mucin being a rich source of carbohydrates like sucrose could be responsible for the up-regulation of these proteins (Costerto *et al.*, 1974).

10.23 Summary

Some of the differentially expressed proteins identified in *E. cancerogenus* and *B. fragilis* were found to be hypothetical proteins that showed the presence of unknown domains of function. These include the SSP numbers 5003 (hypothetical protein 03947), 6306 (hypothetical protein 20877) and 8205 (Yfaz family protein) in *E. cancerogenus* and SSP numbers 1104 (BF2494), 2804 (BF2494), 5205 (BF1203) and 6206 (BF0301) in *B. fragilis*. Two of the proteins that were found to be differentially expressed in both *E. cancerogenus* and *B. fragilis* were elongation factor Ts and outer membrane proteins.

Apart from the differentially expressed proteins, several other proteins were found to be expressed in *B. fragilis* and *E. cancerogenus*. These can be classified as proteins required for the general metabolism and growth of bacteria in both control and mucin enriched media. A list of these proteins is available in the 'Result section Table numbers 20 and 22 '.

10.24 Future work

Cell culture coated multiwell plates can be used to study the interactions between the bacteria and eukaryotic cells. This may help in the better understanding of the virulence factors involved in the host infections caused by the bacteria since the presence of a host immune response may trigger the expression of virulence associated proteins.

The database used for searching and identifying the proteins of interest from the mass spectra was predominantly NCBI. It may be better to use other protein identification databases like PRIDE for determining the identity of proteins since they provide an identity based on searches in several databases including NCBI and UniProt.

A non gel based approach may also be used in studying differential expression in mucin media in both log and stationary phase. Even though the log phase is known to be associated more with virulence, it may be interesting to find out the differences in regulation that occurs in the stationary phase. One of the modern proteomics technologies includes Shotgun proteomics or Multidimensional protein identification technology (MUDPIT) where the proteins are subjected to a 2D-LC separation through strong cation exchange columns in the first dimension. The second dimension separation employs reverse phase chromatography. The cell lysates are tryptic digested before separation and pre-fractionation is carried out with iso-electric focussing. In order to obtain a better resolution of proteins, affinity chromatography using non-specific dyes could also be performed. The digestion and separation of proteins is followed by mass spectrometric analysis. The peptides are subjected to MS/MS by using electrospray ionisation (ESI) or matrix assisted laser desorption/ ionisation (MALDI). The spectrum generated from the mass spectrometric analysis is compared to a database to determine the identity of the protein of interest. This is considered an efficient method because it helps to identify proteins with high molecular masses, extreme pl, hydrophobic or when they occur in low abundance. This approach could also help in the identification of integral membrane proteins and overcome some of the drawbacks of two dimensional gel electrophoresis. Analysis of proteins using this technique could be used as a future method of studying differential expression of proteins.

253

In the proteomics technique, the sample processing step plays a very important role since slight variations can cause drastic changes in expression. In my methodology, the use of the clean up kit seems to help in obtaining a good resolution of proteins but the components of this kit remains unknown. It would be interesting to compare the expression of proteins when the acetone precipitation method is used instead of the 2D clean up kit.

Further work could also be done in trying to generate mutants that lack the genes associated with the expression of proteins like the outer membrane surface antigens which are known for their virulence and appear to be differentially expressed in both *B. fragilis* and *E. cancerogenus*. This could be useful in providing more information regarding the pathogenicity of these bacteria.

11. Results and discussion of the expression and structural analysis of *B. fragilis* proteins from glycoside hydrolase families 97 and 95.

11.1 Construction of plasmid vector expression constructs

NB. Expression vector constructs carrying the genes encoding proteins CAH09443 and CAH06598 from glycoside hydrolase families 97 and 95 respectively, were provided by Lee Ling Bong and Cheun Hong Yeap from Northumbria University.

FASTA format of the putative α-fucosidase (CAH06598) of glycoside hydrolase family 95 from *B. fragilis* NCTC 9343:

>gi|60491840|emb|CAH06598.1| conserved hypothetical protein [*Bacteroides fragilis* NCTC 9343]

1	mkiklllllc	cglwsscnsy	dycpvtpses	dlvftglars	wdeamplgna	tvgalvwqrd
61	stlrlsldrt	dlwdlrpvds	lsgdnfrfsw	vkehirqkny	lpvqkkldwp	ydmnpapski
121	pgaaiefple	qigtptqvrl	ylnnalcead	wadgtqmqtf	vhatepigwf	vfrnlktpie
181	psiitpvynk	tkpdgsldpv	sgqdlhrlgy	qqgkvvregn	qityhqkgyg	dfsydvtvcw
241	kqegetlygt	wsvtsslsge	qasekaeaal	qrglkhdyqa	hleywdkywa	qssitlpdsv
301	lqkqyqnemy	kfgsttrehs	ypislqavwt	adngklppwk	gdyhhdlntq	lsywpaytgn
361	hltegmgyln	tlwnqrdayk	rytrryfgte	gmnipgvctl	tgepmggwiq	ysmsqtvaaw
421	laqhfylqwk	ysadrtflke	raypfikdva	iyleqisevt	pegvrklefs	sspeifdnsl
481	qawfsdmtny	dlammhflfk	atselaheln	ladeaghwas	leaqlpdydi	deegcltfak
541	gypykeshrh	fshamaihpl	glidwsdgek	sqhiiratlk	rldkvgpdyw	tgysyswlan
601	mkarafdgeg	aaqalktfae	cfclkntfha	ngdqtqsgks	rftyrpftle	gnfafaagiq
661	emllqshtgv	irifpaipke	wkdvsfenlr	amgaflvsar	meggeinrvr	iysekggmlk
721	marpgtlkpn	knytlsgtdi	lnidtqagew	ielnp		

The protein was found to contain a signal peptide that was cleaved between the 19th and 20th position of the amino acid sequence (Appendix I). The protein parameters were determined from the Protparam tool (Refer to Appendix I for details).

FASTA format of the putative α-glucosidase (CAH09443) of the glycoside hydrolase family 97 from *B. fragilis* NCTC 9343:

>gi|60494642|emb|CAH09443.1| putative exported protein [*Bacteroides fragilis* NCTC 9343]

1mkrkmmslllalavisgssvyakvidvmspngaikvsvdikdriyysvsydndqllkdcy61lnlqlqnetlgtnphlrstkrgtidesvkreipfknaivrnhcntlrmnfsgnyavefrv121fdngiayrfvtdkkgdnivmgedfainfptnykahlsqpdgfktsyecpythvdtekyaa181tdrmsylpvlietdkaykiliseadlsdypcmflkstgkngmqsifpkaplafgedgdrs241lkiteeadyiaktdgkrsfpwrmviskedkelienemvynlsapcvledyswikpgqvs301wewwhdarlygvdfrsgfnmdsykyyidfaskfgipyiimdegwakntrdpftpnptinl361telikygkdrnvkivlwlpwltvenhfdlfktfadwgiagvkidfmdrsdqwmvnyyerv421akeaakhklfvdfhgafkpaglerkypnvlsyegvlgmeqggnckpensiylpfmrnavg481pmdftpgsmisaqpednrstranamgsgtrafqmalfiifesglqmladnpvyyrelpc541tefitsvpvtwdetkvlyakvgeavvakrkgeqwfiggitgnqpqnieidlgfipagqs601ftltsfedginadrqamdykkkestvnnqtrmtlkmvrnggwagtikmk

The SignalP server predicted the presence of a signal peptide with probable cleavage positions between the 22nd and the 23rd residues of the amino acid sequence (Appendix I). The protein parameters were determined from the Protparam tool (Appendix I).

The genes were amplified using the following primers:

Forward primer for BF3763

5'- ATGAAAGTGATTGACGTAATGTCTCCCAACGG-3'

Reverse primer for BF3763

5'- ATTGTTCCGGCCCATCCCCC-3' and

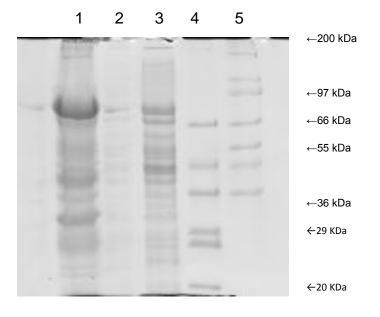
Forward primer for BF0855

5'- TATGACTATTGTCCGGTCACTCCTTCAGAGAG-3'

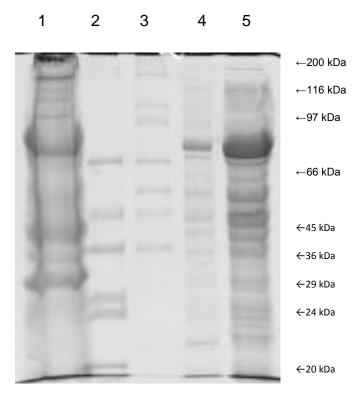
Reverse primer for BF0855

5'- AGGGTTCAACTCGATCCATTCACCGGCTTGAGT-3'

The amplified genes which encoded the mature CAH09443 and CAH06598 proteins were cloned into the pETYSBLIC vector (see Appendix C)


The BF3763 and BF0855 genes were cloned and expressed in *E. coli* using the pET-YSBLIC vector system. *E. coli* was used as a host for the expression of recombinant proteins because of the ease of promoter control, high amount of product yields, high densities of growth in cultures, easy to grow with regards to metabolic carbon requirements (Brown, 1953). The pET-YSBLIC vector is a modification of the pET28a vector developed at York University where the gene of interest can be inserted into the vector through ligation independent cloning. The LIC vector is modified to encode a hexa-histidine tag that is incorporated at the *N* terminus of the protein of the encoded gene thereby making its purification easy. These factors make the LIC vector the most suitable candidate for cloning and expression experiments.

The SignalP and TMHMM websites were used to determine the presence of signal peptides and transmembrane helices in the proteins of interest so that genes sequences encoding these protein elements could be excluded during cloning. This was done to prevent the accumulation of secreted and transmembrane proteins in the inner membrane of the host which would inhibit growth.

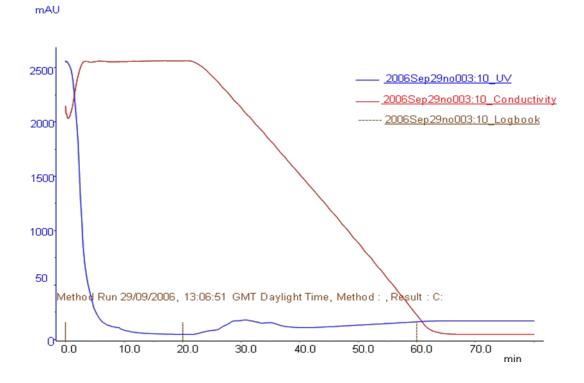

257

11.2 Protein expression comparison using IPTG induced media and autoinduction media

Figs. 35 and 36 show SDS gels of CAH06598 and CAH09443 proteins, respectively, isolated from recombinant *E.coli* cells grown in IPTG induced media and auto-induction media.

Figure 35: Analysis of CAH06598 expression (86 kDa) using a 12% (w/v) SDS gel obtained from growing the recombinant *E. coli* in IPTG induced media. Lane 1-Solubilisation buffer sample, Lane 2-1 in 10 dilution of CFE, Lane 3- Cell free extract (CFE), Lane 4- Low molecular weight marker, Lane 5- High molecular weight marker.

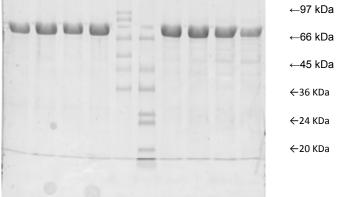
Figure 36: Analysis of CAH09443 expression (74 kDa) using a 12% (w/v) SDS gel obtained from growing recombinant *E. coli* in auto-induction media. Lane 1-Solubilisation buffer sample, 2- Low molecular weight marker, 3- High molecular weight marker, 4- 1in 10 dilution of CFE, 5- CFE

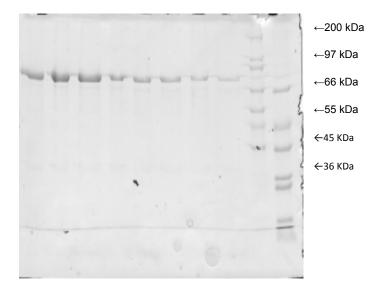

Since the cell free extract in the auto-induction media showed better expression than the IPTG induced media, the former was used in the protein purification experiment.

The analysis of protein production was performed by comparing the expression levels in auto-induction and IPTG induced media. The auto-induction media which had the presence of glucose and α -lactose in it supported the growth of the recombinant *E. coli* and glucose was initially used as the source of carbon. Once the glucose present in the media was completely depleted, the cells started metabolising the lactose present. According to previous studies, this stage was normally achieved when the cells entered their mid or late log phase (Studier, 2005). The cultures were incubated overnight at 30°C with constant aeration and harvested at their stationary phase of growth (OD >4.0). However, the differences in level of expression of the protein of interest was not studied in lower temperatures or at various time points post induction even though lower temperatures (20°C) have been known to support

better growth due to increased solubility of oxygen (Donovan *et al.*, 1996). But since the expression of proteins was found to be very significant in the culture conditions used in the experiment and no other contaminating proteins were detected, the same system was used to obtain stable protein expression.

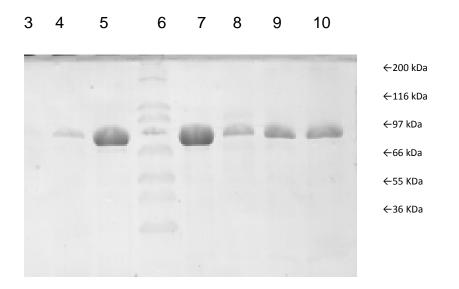
11.3 Protein expression and purification of *B. fragilis* proteins CAH06598 and CAH09443

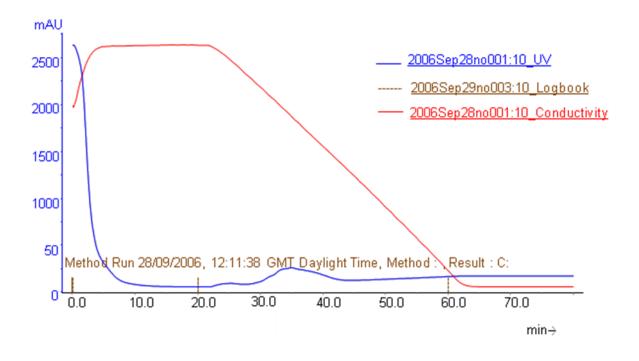

CAH06598 and CAH09443 were extracted, purified using immobilised nickel affinity chromatography (Figs 37 and 41, respectively) and run on 12% (w/v) SDS-gels (Figs. 38 and 42, respectively) to confirm the proteins of the right molecular weight. Further purification of the proteins was performed using gel filtration and fractions observed on SDS gels.


Figure 37: Nickel column purification of CAH06598 protein. The blue line represents the UV absorbance and the peak that appears between 20 and 40 min confirms the results from the SDS gels.

Figures 38: Nickel column purification results for CAH06598 protein

1 2 3 4 5 6 7 8 910


Figure 38.1: 12% (w/v) SDS gel showing purified fractions. Lanes 1, 2, 3, 4, 7, 8, 9 and 10 shows the presence of a band at 86 kDa indicating the presence of the CAH06598 protein which corresponded to the eluted fraction numbers of 26, 27, 28, 29, 30, 31, 32 and 33 respectively. Lanes 5 and 6 represent the high and low molecular weight standards respectively.


Figure 38.2: 12% (w/v) SDS gel showing purified fractions. Lanes 1 to 8 shows the decrease in intensity of the band at 86 kDa, indicating the presence of the CAH06598 protein, as elution continued and represent fraction numbers 34 to 41 respectively. Lanes 9 and 10 show the high and low molecular weight standards.

Fractions 34-41 were pooled and concentrated in a 30 kDa cut-off centrifugal concentrator and washed into 20 mM HEPES buffer pH 7.4. The concentrated protein was then purified using a HiLoad 16/60 Superdex 200 prep grade gel filtration column (Fig. 39) and the fractions containing CAH09443 analysed via SDS-PAGE (Fig. 40).

Figure 39: Gel filtration graph of CAH06598 protein showing the UV absorbance peak. Refer to Appendix section I for details.

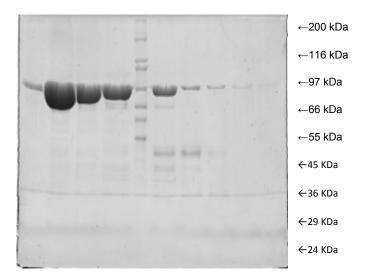


Figure 40: 12% (w/v) SDS gel showing the gel filtration fractions containing CAH06598 protein. Lanes 3, 4, 5, 7, 8, 9 and 10 represent the fractions 14, 15, 16, 17, 18, 19 and 20 respectively indicating the presence of protein bands at 86 kDa. Lane 6 shows the high molecular weight standard.

Figure 41: Nickel column purification results for CAH09443 protein. The blue line represents the UV absorbance and the peak that appears between 30 and 40 min indicates the elution of the protein at these corresponding fractions.

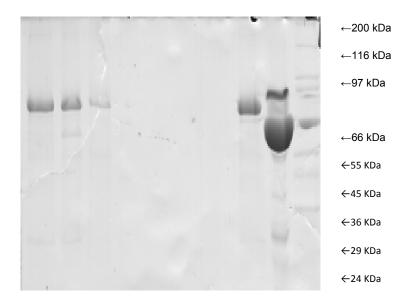

1 2 3 4 5 6 7 8 9 10

Figure 42: Nickel column purification results for CAH09443 protein (12% (w/v) SDS-gel). Lanes 2, 3, 4 and 6 represent fractions 34, 36, 38 and 40 respectively showing the presence of bands at 74 kDa. Lanes 1, 7, 8, 9 and 10 represent the fractions 31, 41, 43, 45 and 47 and Lane 5 represents the high molecular weight standard.

Fractions 34-40 were pooled and concentrated in a 30 kDa cut-off centrifugal concentrator and washed into 20 mM HEPES buffer pH 7.4. The concentrated protein was then purified using a HiLoad 16/60 Superdex 200 prep grade gel filtration column (Fig. 43) and the fractions containing CAH09443 analysed via SDS-PAGE (Fig. 44).

Figure 43: Gel filtration graph of CAH09443 protein showing the UV absorbance peak. Refer to Appendix section I for details.

Figure 44: 12% (w/v) SDS gel showing the gel filtration results for CAH09443 protein. Lanes 1, 2, 3 and 8 show the fractions 10, 12, 13 and 15 respectively and Lane 9 and 10 represent the low and high molecular weight standards. Lanes 4 to 7 represent fractions 17, 19, 21 and 23 which do not show the presence of bands. Fractions 10 to 15 were pooled for further concentration.

The purified proteins were concentrated to a volume of 0.5 mL and the concentration of protein was estimated using Bradford's assay. They were diluted down to a concentration of 15 mg/mL from 43 mg/mL (CAH06598) and 29 mg/mL (CAH09443) respectively before crystallogenesis.

The proteins expressed and purified from CAH09443 showed tendencies towards precipitation at pH 9 and above. Hence the proteins were maintained in 5 mM HEPES buffer at a pH of 7.4. The nickel column purification of recombinant proteins from *E. coli* did not yield good peaks of absorbance at 280 nm in the UV chromatograms but strong and well detectable bands were observed on performing the SDS-PAGE analysis. The UV chromatogram peaks for GH95 proteins were found to be better resolved when compared to CAH09443.

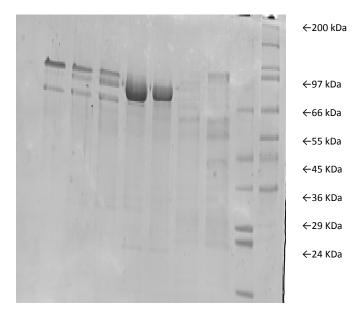
11.4 Protein crystallogenesis and diffraction results for *B. fragilis* CAH06598 and CAH09443.

A number of different crystallisation screens were used in the attempt to crystallise *B. fragilis* CAH06598 and CAH09443 proteins. These include PEG/Ion, Hampton Screen (HS) I and II, Clear Strategy Screen (CSS) I and II, PEG/Anion, PEG/Cation, PEG/pH, SaltRx, Newcastle and Index screens.

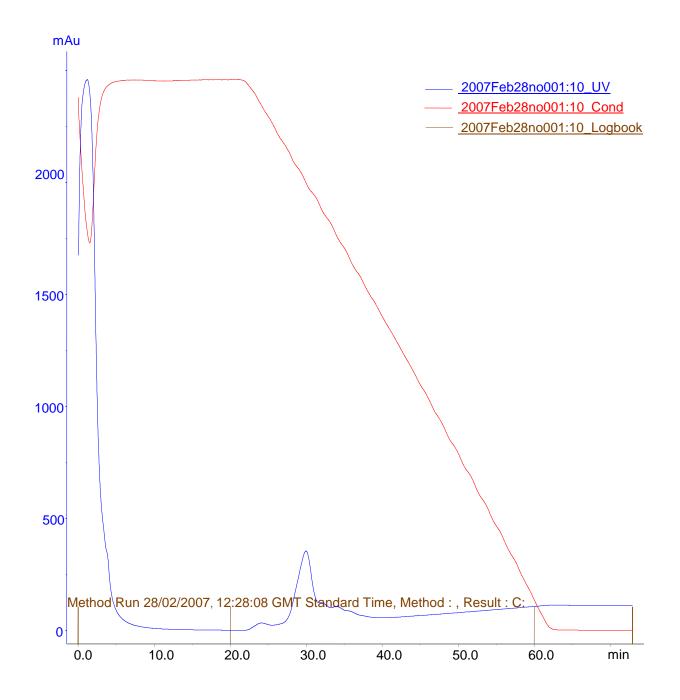
Crystals of CAH06598 proteins were observed in the Peg/Ion screen 3 containing 0.2 M ammonium fluoride and 20% (w/v) polyethylene glycol (PEG) 3350, CSS II screen condition 35 containing 10% PEG 8000, 10% PEG 1000 and 0.2 M Calcium acetate, HS I screen condition 20 containing 0.2 M ammonium sulphate, 0.1 M sodium acetate pH 4.6 and 25% (w/v) PEG 4000, Newcastle screen condition 1 containing 50% PEG 400, 0.2 M lithium sulphate and 0.1 M sodium acetate pH 5.1 and PEG/Anion screen condition 8 containing 0.2 M sodium sulphate and 20% PEG 3350. But no diffraction was obtained from the crystals of the above mentioned conditions.

The PACT ANION screen number 12 for CAH09443 produced crystals that diffracted and the screen was composed of 20% (v/v) PEG 3350 (Polyethylene Glycol) and 200 mM of sodium malonate. The proteins were buffered in 5 mM HEPES at a pH of 7.4. Other conditions that produced crystals include Peg/Ion condition 40 containing 0.2 M potassium thiocyanate, 0.1 M Bis-tris propane pH 8.5 and 20% PEG 3350, PEG/Anion condition 34 containing 0.2 M sodium potassium phosphate, 0.1 M Bistris propane pH 7.5 and 20% PEG 3350 and PEG/Anion condition 22 containing 0.2 M sodium potassium phosphate, 0.1 M Bis-tris propane pH 6.5 and 20% PEG 3350. But unfortunately these crystals did not diffract.

Crystallisation studies were performed on both the CAH06598 and CAH09443 protein families but no crystals were detected in CAH06598 that gave a positive diffraction pattern. CAH09443, yielded crystals with a positive diffraction pattern in the PACT/ANION screen number 12 but when the selenomethionine proteins were produced in minimal media, crystals were obtained but did not show a diffraction pattern. Attempts were made at growing selenomethionine protein crystals by seeding existing crystals into new screen conditions but no detectable crystals were observed.


11.5 Production, purification and crystallogenesis of a selenomethionine derivative for *B. fragilis* CAH09443

A selenomethionine derivative of CAH09443 was expressed, purified (Fig. 45) and crystallised but no positive diffraction patterns were obtained from the crystals.


Figure 45: Purification results for selenomethionine incorporated CAH09443 derivative.

12% (w/v) SDS gels showing the nickel column purification and gel filtration purification results for the selenomethionine preparations of CAH09443 respectively.

1 2 3 4 5 6 7 8 9 10

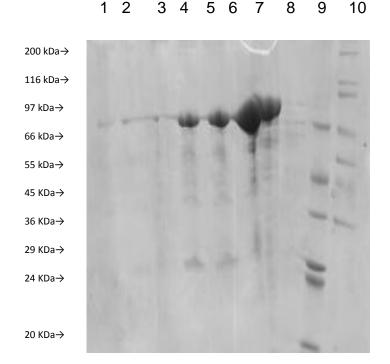


Figure 45.1: 12% (w/v) SDS gel showing the nickel column purification results for selenomethionine preparation of CAH09443 protein. Lanes 5 and 6 shows the presence of bands at 74 kDa and these were from fractions 41 and 43 and Lanes 1, 2, 3, 4, 7 and 8 represent fractions 31, 33, 36, 38, 46 respectively. Lanes 9 and 10 represent low and high molecular weight standard.

Figure 45.2: Nickel column purification results for the selenomethionine derivative of CAH09443 protein.

Figure 45.3: Gel filtration graph of CA09443 protein showing the UV absorbance peak for the selenomethionine derivative. Refer to Appendix section I for details.

Figure 45.4: 12% (w/v) SDS gel showing gel filtration purification results for selenomethionine preparation of CAH09443 protein.

Lanes 4 to 7 shows the presence of purified fractions and the fraction numbers were 12, 13, 14 and 15. Lanes 9 and 10 were the low and high molecular weight standards and lanes 1 to 3 and 8 represent fractions 9, 10, 11 and 16 respectively.

The gels indicate the presence of bands at the correct molecular weight of 74 kDa.

Crystals were produced on screening using the Newcastle crystal screen condition 17 containing 40% MPD, 5% PEG 8000 and 0.1 M sodium cacodylate pH 7.0 but did not show diffraction.

11.6 Structure solution of CAH09443 via molecular replacement

NB. Structure solution of CAH09443 was performed by Dr Edward Taylor at York Structural Biology Laboratory.

The crystals were found to belong to space group P 2 21 21 with two molecule in the asymmetric unit with the approximate cell dimensions of a = 60.33 Å b = 132.82 Å c = 163.65 Å (Table 24). The structure was determined via molecular replacement using *Bacteroides thetaiotaomicron Bt*GH97b (UniProtKB/TrEMBL entry Q8A6L0) structure (PDB code 3A24) as a search model and refined to a resolution of 2.70 Å with an R-factor of 0.225 and R-free of 0.296 (Table 24).

Data Processing	BfGH97
Space Group (No.)	P 2 21 21 (18)
Unit Cell lengths (Å)	a = 60.33 b = 132.82 c = 163.65
Unit Cell angles (°)	$\alpha = \beta = \gamma = 90$
Molecules in asymmetric unit	2
Resolution Range (outer shell) ¹	81.82-2.70 (2.85-2.70)
R _{merge} *	0.11 (0.464)
< \/_ >*	6.3 (15.6)
Completeness*	99.8 (99.7)
Redundancy*	6.6 (5.7)
Refinement Statistics	
Resolution Range (Å)	103.13- 2.70
R _{cryst}	0.225
R _{free} ²	0.296
No. protein atoms	9953
Mean B value protein atoms (Å ²)	28.0
Mean B value solvant atoms (Å ²)	29.4
Ramachandran Statistics ³	88.2% preferred regions, 7.5% allowed regions, 4.2% outliers

Table 24: Data collection and refinement statistics for *Bf*GH97 (*B. fragilis* CAH09443 protein). Structure figures were drawn with PyMOL (DeLano Scientific www.pymol.org).

1 Numbers in parenthesis correspond to the high resolution outer shell

2 Estimated Standard Uncertainty, based upon R_{free} , calculated using REFMAC

3 Calculated using Validation options in COOT

11.7 Three dimensional structure of CAH09443.

The tertiary structure of CAH09443 reveals two domains (Fig. 46); an N-terminal β super-sandwich domain (in yellow) and a canonical (β/α)₈ barrel (in red). This is a similar architecture to other GH97 enzymes, specifically the *Bacteroides thetaiotaomicron* α -glucosidase, *Bt*GH97a (Gloster *et al.*, 2008; Kitamura *et al.*, 2008) and α -galactosidase, *Bt*GH97b (Okuyama *et al.*, 2009). Previous studies in the *Bacteroides thetaiotomicron* GH97 showed that one of the general characteristics of GH97 enzymes may be their ability to possess two catalytic residues that act as bases at the end of β strands 3 and 5 or a conserved nucleophilic residue at the end of the β strand 4 (Refer to Fig. 47 for calcium binding sites of the *Bt*GH97 enzymes) (Okuyama *et al.*, 2009). Our enzyme, BfGH97 seems to show the presence of a conserved nucleophilic aspartic acid residue at the position 405 which corresponds to the position 415 in *Bt*GH97b (Refer to Fig. 48 for details of the ClustalW alignment).

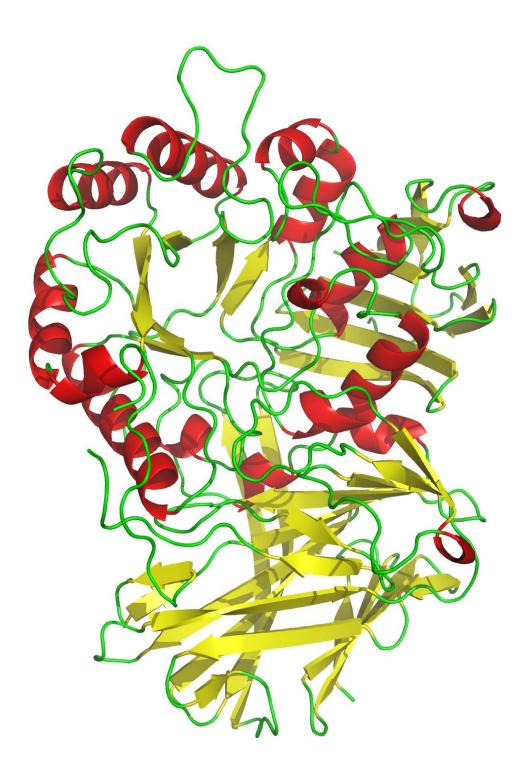


Figure 46: Structure of CAH09443. Crystal structure of CAH09443 coloured according to domains. The N-terminal β -super-sandwich domain is in yellow and a canonical (β/α)₈ barrel is in red.

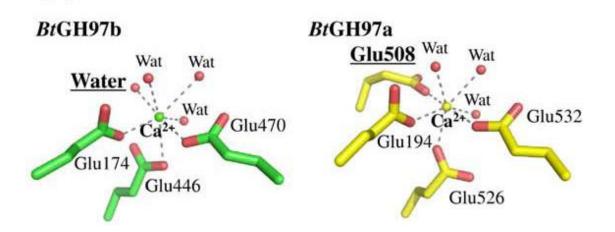


Figure 47: Figure shows the calcium binding sites in *Bt*GH97a and *Bt*GH97b (Okuyama *et al.*, 2009).

11.8 Biochemical assay for CAH06598 and CAH09443.

CAH06598 was predicted to be a putative uncharacterized protein and CAH09443 was predicted to be α -glucosidase.

Table 25 shows the presence or absence of activity in fluorescent and chromogenic assays for CAH06598 and CAH09443 proteins against methylumbelliferyl and p-nitrophenyl glycoside substrates, respectively.

Substrates used in enzyme	B. fragilis CAH06598	B. fragilis CAH09443
assay	(GH95)	(GH97)
Para nitrophenyl α-D-	-	+ (18 h incubation)
glucoside		
Para nitrophenyl α-D-	+ (18 h incubation)	-
fucoside		
Para nitrophenyl α-D-	-	+ (18 h incubation)
galactoside		
Para nitrophenyl β-D-	-	-
maltoside		
4-methylumbelliferyl α-D-	-	+ (2 min incubation)
glucoside		
4-methylumbelliferyl α-D-	+ (2 min incubation)	+ (2 min incubation)
fucoside		
4-methylumbelliferyl β-D-	-	-
maltoside		

Table 25: Determination of the activity of CAH06598 and CAH09443 against a

variety of para nitrophenyl and methylumbelliferyl substrates at 37°C.

+ indicates presence of activity

- indicates absence of activity

Two types of enzyme assays were performed to determine the putative activity of the enzymes from CAH06598 and CAH09443 which was α -fucosidase and α glucosidase respectively. The fluorimetric assays showed activity towards their respective substrates but the chromophoric assays did not show positive activity. As mentioned in the results section Table number 23, the pNP assay showed a change in colour of the reaction mixture when incubated overnight at 37°C but no instant reactions or change of colour to yellow was observed. This suggests that the reaction occurred at a slower rate in the pNP assay which could probably be optimised by changing the concentration of the substrates, enzymes or by modifying the reaction conditions. The enzymes were found to be very specific in their reactions towards the substrates even though a wide range of substrates were used. This also indicates that the fluorescent assays were more sensitive when compared to the chromophoric assays. The CAH06598 putative α-fucosidase enzyme exhibited activity towards 4-methylumbelliferyl α -D-fucoside and CAH09443 putative α glucosidase exhibited activity towards 4-methylumbelliferyl α-D-glucoside indicating the specificity of the enzyme in its activity against the substrates used. No assay experiments were performed to determine the optimum temperature and pH for the activity of the enzymes since positive activity was observed at 37°C and the pH was maintained at 7.4 since the CAH09443 enzyme precipitated at higher pH.

α-Glucosidase enzymes are also known as acid maltases, glucoinvertases, glucosidosucrases, lysosomal α-glucosidases, maltases and maltaseglucoamylases. They are capable of hydrolysing terminal, non reducing 1→4 linked D-glucose residues resulting in the release of α-D-glucose as an end product. They are also known as exo-enzymes because they carry out exohydrolysis of α 1→4 glucosidic linkages and hydrolyse oligosaccharides rapidly. The hydrolysis of polysaccharides is comparatively slower and industrial enzymes are capable of hydrolysing 1, 6 α-D-glucose linkages in polysaccharides (Hughes *et al.*, 2003).

These enzymes play an important role in the hydrolysis of complex polysaccharides into glucose and act as one of the major factors that contribute to type 2 diabetes. Attempts are being made to use acarbose, which is a competitive inhibitor of α -glucosidase to lower the blood glucose levels in diabetic patients following the consumption of food containing carbohydrates (Van de Laar *et al.*, 2005). The

279

enzymes also take part in glycogen metabolism and nutrient uptake of bacteria. They catalyse the transglycosylation of α -D-glucose moieties and are industrially useful in the biosynthesis of oligosaccharides or glycoconjugates (Shirai *et al.*, 2008).

11.9 Future work

Further experiments could be performed to generate a catalytic mutant of CAH09443 that lacks the putative acid catalyst, Asp404. This amino acid residue has been identified to be the acid catalyst as it aligns with the acid catalyst, Asp415 of the α -galactosidase, *Bt*GH97b, from *Bacteroides thetaiotaomicron* (Fig. 47). Once the mutant is generated, its structure can be solved in the presence of substrate, therefore providing additional structural data with respect to enzyme-substrate interactions.

gi|60494642|emb|CAH09443.1| MKRKMMSLILLALAVISGSSVYAKVIDVMSPNGATKVSVDIKDRIYYSVSY 50 gi|29339180|gb|AA076978.1| MKKLTFLLLCVLCTLS--LQAQKQFTLASPDGNLKTTITIGDRLTYDITC 48 * : : **:* :*.:: * **: *.:: **: : ** .*..:* gi|60494642|emb|CAH09443.1| DNDQLLKDCYLNLQLQN-ETLGTNPHLRSTKRGTIDESVKREIPFKNATV 99 gi|29339180|gb|AA076978.1| NGRQILTPSPISMTLDNGTVWGENAKLSGTSRKSVDEMIPSPF-YRASEL 97 : :: : : gi|60494642|emb|CAH09443.1| RNHCNTLRMNFSGNYAVEFRVFDNGIAYRFVTDKKGDNIVMGEDFAINFP 149 RNHYNGLTLRFKKDWNVEFRAYNDGIAYRFVNQGKKPFRVVTEVSDYCFP 147 qi|29339180|qb|AA076978.1| *** * * :.*. :: ****.::******* *: * gi|60494642|emb|CAH09443.1| TNYKAHL----SOPDG----FKTSYECPYTHVDTEKYAATDRMSYLPVL 190 SDMTASVPYVKSGKDGDYNSQFFNSFENTYTTDKLSKLNK-QRLMFLPLV 196 gi|29339180|gb|AA076978.1| :: .* : * ** * •*** •** • •* :*: :**:: gi|60494642|emb|CAH09443.1| IETDKAYKILISEADLSDYPCMFLKSTG----KNGMQSIFPKAPLAFGED 236 VDAGDGVKVCITESDLENYPGLYLSASEGANRLSSMHAPYPKRTVOGGHN 246 gi|29339180|gb|AA076978.1| :::... *: *:*:** ::** ::* ..*:: :** .: *.: gi|60494642|emb|CAH09443.1| GDRSLKITEEADYIAKTDGKRSFPWRMMVISKEDKELIENEMVYNLSAPC 286 -QLQMLVKEHEDYIAKVDKPRNFPWRIAVVTTTDKDLAATNLSYLLGAPS 295 gi|29339180|gb|AA076978.1| : .: :.*. *****.* *.****: *::. **:* .:: * *.**. gi|60494642|emb|CAH09443.1| VLEDYSWIKPGOVSWEWWHDARLYGVDFRSGFNMDSYKYYIDFASKFGIP 336 gi|29339180|gb|AA076978.1| RMSDLSWIKPGKVAWDWWNDWNLDGVDFVTGVNNPTYKAYIDFASANGIE 345 gi|60494642|emb|CAH09443.1| YIIMDEGWAKNTR-DPFTPNPTINLTELIKYGKDRNVKIVLWLPWLTVEN 385 qi|29339180|qb|AA076978.1| YVILDEGWAVNLQADLMQVVKEIDLKELVDYAASKNVGIILWAGYHAFER 395 *:*:**** * : * : *:*.**:.*. .:** *:** : :.*. gi|60494642|emb|CAH09443.1| HFD-LFKTFADWGIAGVKI**D**FMDRSDQWMVNYYERVAKEAAKHKLFVDFH 434 gi|29339180|gb|AA076978.1| DMENVCRHYAEMGVKGFKVDFMDRDDQEMTAFNYRAAEMCAKYKLILDLH 445 gi|60494642|emb|CAH09443.1| GAFKPAGLERKYPNVLSYEGVLGMEQGGNCKP----ENSIYLPFMRNAV 479 gi|29339180|gb|AA076978.1| GTHKPAGLNRTYPNVLNFEGVNGLEQMKWSSPSVDQVKYDVMIPFIRQVS 495 *:.****:*.****.:*** *:** . . * : .: :**:*:. gi|60494642|emb|CAH09443.1| GPMDFTPGSMISAQPEDNRSTRANAMGSGTRAFQMALFIIFESGLQMLAD 529 gi|29339180|gb|AA076978.1| GPMDYTQGAMRNASKGNYYPCYSEPMSQGTRCRQLALYVVFESPFNMLCD 545 ****:* *:* .*. : . ::.*..***. *:**:::*** ::**.* NPVYYYRELPCTEFITSVPVTWDETKVLYAKVGEAVVVAKRKGEQWFIGG 579 gi|60494642|emb|CAH09443.1| gi|29339180|gb|AA076978.1| TPSNYMREPESTAFIAEIPTVWDESIVLDGKMGEYIVTARRKGDVWYVGG 595 * ** .* **:.:*..***: ** .*:** :*:**: *::** gi|60494642|emb|CAH09443.1| ITGNQPQNIEIDLGFIPAGQSFTLTSFEDGINADRQAMDYKKKESTVNNQ 629 gi|29339180|gb|AA076978.1| ITDWSARDIEVDCSFLGD-KSYHATLFKDGVNAHRAGRDYKCESFPIKKD 644 **.***.* :*: * *:**:**.* . *** :. .:::: gi|60494642|emb|CAH09443.1| TRMTLEMVRNGGWAGTIEME 649 gi|29339180|gb|AA076978.1| GKLKVHLAPGGGFALKIK-- 662 ::.:::. .**:* .**

Figure 48: Sequence alignment (of the CAH09443 amino acid residues and the AA076978 residues of *Bt*GH97b showing the conserved aspartic acid residue (emboldened and underlined) positioned at 415 and 404 respectively using ClustalW). (http://www.ebi.ac.uk/Tools/clustalw2/index.html).

Bibliography

- Abbott, S. L. & Janda, J. M. (1997) 'Enterobacter cancerogenus ("Enterobacter taylorae") Infections associated with severe trauma or crush injuries',
 American Journal of Clinical Pathology, 107 (3), pp. 359-361.
- Abdelal, A. T., Bibb, W. F. & Nainan, O. (1982) 'Carbamate Kinase from
 Pseudomonas-Aeruginosa Purification, Characterization, Physiological-Role, and Regulation', Journal of Bacteriology, 151 (3), pp. 1411-1419.
- Abergel, C., Bouveret, E., Claverie, J. M., Brown, K., Rigal, A., Lazdunski, C. & Benedetti, H. (1999) 'Structure of the *Escherichia coli* TolB protein determined by MAD methods at 1.95 angstrom resolution', Structure, 7 (10), pp. 1291-1300.
- Anon (1994) 'Collaborative Computational Project Number 4', Acta Crystallographica Section D-Biological Crystallography, 50 (Pt 5), pp. 760-763.
- Anon (1996) *Enzymatic assay of alpha-glucosidase.* Missouri: Sigma [Online]. Available at: <u>www.sigmaaldrich.com</u> (Accessed: 21/10/08).
- Anon (2002) Eliminate TFA and improve sensitivity of peptide analyses by LC/MS. Bellefonte: Sigma-Aldrich Co. [Online]. Available at: <u>http://www.sigmaaldrich.com/Graphics/Supelco/objects/11600/11547.pdf</u> (Accessed: 25/06/2009).
- Anon (2010) *Peptide mass fingerprint.* [Online]. Available at: <u>http://www.matrixscience.com/help/pmf_help.html</u>.
- Anon (2009) *Dynamics and Inhibition of Class II fructose 1,6-bisphosphate aldolase.* Electronic thesis. University of Waterloo.

- Barasa, N. W. (2008) Proteomic characterization of selenite resistance in a strain of *Enterobacter cloacae*. Youngstown State University.
- Barkan, A., Klipcan, L., Ostersetzer, O., Kawamura, T., Asakura, Y. & Watkins, K. P. (2007) 'The CRM domain: An RNA binding module derived from an ancient ribosome-associated protein', Rna-a Publication of the Rna Society, 13 (1), pp. 55-64.
- Barrios, A. F. G., Zuo, R. J., Ren, D. C. & Wood, T. K. (2006) 'Hha, YbaJ, and OmpA regulate *Escherichia coli* K12 biofilm formation and conjugation plasmids abolish motility', *Biotechnology and Bioengineering*, 93 (1), pp. 188-200.
- Bartlett, D. H. & Welch, T. J. (1995) 'Omph Gene-Expression Is Regulated by Multiple Environmental Cues in Addition to High-Pressure in the Deep-Sea Bacterium Photobacterium Species Strain Ss9', *Journal of Bacteriology*, 177 (4), pp. 1008-1016.
- Becker, P., Hufnagle, W., Peters, G. & Herrmann, M. (2001) 'Detection of differential gene expression in biofilm-forming versus planktonic populations of *Staphylococcus aureus* using micro-representational-difference analysis', *Applied and Environmental Microbiology*, 67 (7), pp. 2958-2965.
- Beher, M. G., Schnaitman, C. A. & Pugsley, A. P. (1980) 'Major Heat-Modifiable
 Outer-Membrane Protein in Gram-Negative Bacteria Comparison with the
 Ompa Protein of *Escherichia-Coli*', *Journal of Bacteriology*, 143 (2), pp. 906-913.
- Bergey, D. H. & Holt, J. H. (1994) 'Bergey's manual of Determinative Bacteriology', in Bergey, D. H., Holt, J. H., Krieg, N. R. & Sneath, P. H. (eds.) Group 4- Gram negative aerobic/microaerophilic rods and cocci Group 5- Facultative anaerobic Gram negative rods. Lippincott Williams & Wilkins, pp. 102, 178.
- Bernhardt, J., Weibezahn, J., Scharf, C. & Hecker, M. (2003) '*Bacillus subtilis* during feast and famine: Visualization of the overall regulation of protein synthesis

during glucose starvation by proteome analysis', *Genome Research*, 13 (2), pp. 224-237.

- Bertrand, T., Briozzo, P., Assairi, L., Ofiteru, A., Bucurenci, N., Munier-Lehmann, H., Golinelli-Pimpaneau, B., Barzu, O. & Gilles, A. M. (2002) 'Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of *Escherichia coli* enzyme', *Journal of Molecular Biology*, 315 (5), pp. 1099-1110.
- Blakeley, P., Siepen, J.A., Lawless, C. & Hubbard, S.J. (2010). 'Investigating protein isoforms via proteomics: A feasible study.' *Proteomics* 10(6). pp. 1127-1140.
- Blikslager, A. T., Moeser, A. J., Gookin, J. L., Jones, S. L. & Odle, J. (2007)
 'Restoration of barrier function in injured intestinal mucosa', *Physiological Reviews*, 87 (2), pp. 545-564.
- Bosch, M., Tarrago, R., Garrido, M. E., Campoy, S., de Henestrosa, A. R. F., de Rozas, A. M. P., Badiola, I. & Barbe, J. (2001) 'Expression of the *Pasteurella multocida* ompH gene is negatively regulated by the Fur protein', *FEMS Microbiology Letters*, 203 (1), pp. 35-40.
- Boyd, E. F., Nelson, K., Wang, F. S., Whittam, T. S. & Selander, R. K. (1994)
 'Molecular-Genetic Basis of Allelic Polymorphism in Malate-Dehydrogenase (Mdh) in Natural-Populations of *Escherichia-Coli* and *Salmonella-Enterica*', *Proceedings of the National Academy of Sciences of the United States of America*, 91 (4), pp. 1280-1284.
- Brook, I. (2006) Bacteroides infection. [Online]. Available at: <u>http://www.emedicine.com/med/topic2945.htm</u> (Accessed: 15/12/2006).
- Brotz-Oesterhelt, H., Bandow, J. E. & Labischinski, H. (2005) 'Bacterial proteomics and its role in antibacterial drug discovery', *Mass Spectrometry Reviews*, 24 (4), pp. 549-565.

- Brown, T. A. (ed.) (1953) Chapter 2: Vectors for gene cloning: Plasmids and Bacteriophages. 3rd edn. London: Chapman and Hall, 1995, Gene cloning and DNA analysis: an introduction
- Carlson, D. M. (1968) 'Structures and Immunochemical properties of oligosaccharides isolated from pig submaxillary mucins', *The Journal of Biological Chemistry*, 243 (3), pp. 616-626.
- Carlsson, J., Nyberg, G. & Werthen, J. (1978) 'Hydrogen-Peroxide and Superoxide Radical Formation in Anaerobic Broth Media Exposed to Atmospheric Oxygen', *Applied and Environmental Microbiology*, 36 (2), pp. 223-229.
- Cassataro, J., Velikovsky, C. A., Bruno, L., Estein, S. M., de la Barrera, S., Bowden, R., Fossati, C. A. & Giambartolomei, G. H. (2007) 'Improved immunogenicity of a vaccination regimen combining a DNA vaccine encoding *Brucella melitensis* outer membrane protein 31 (Omp31) and recombinant Omp31 boosting', *Clinical and Vaccine Immunology*, 14 (7), pp. 869-874.Brown, T. A. (ed.) (1953) *Chapter 2: Vectors for gene cloning: Plasmids and Bacteriophages*. 3rd edn. London: Chapman and Hall, 1995, Gene cloning and DNA analysis: an introduction
- Cerdeno-Tarraga, A. M., Patrick, S., Crossman, L. C., Blakely, G., Abratt, V., Lennard, N., Poxton, I., Duerden, B., Harris, B., Quail, M. A., Barron, A., Clark, L., Corton, C., Doggett, J., Holden, M. T. G., Larke, N., Line, A., Lord, A., Norbertczak, H., Ormond, D., Price, C., Rabbinowitsch, E., Woodward, J., Barrell, B. & Parkhill, J. (2005) 'Extensive DNA inversions in the *B. fragilis* genome control variable gene expression', *Science*, 307 (5714), pp. 1463-1465.
- Chang, D. E., Smalley, D. J. & Conway, T. (2002) 'Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model', Molecular Microbiology, 45 (2), pp. 289-306.

- Chao, Y. P. & Liao, J. C. (1993) 'Alteration of Growth-Yield by Overexpression of Phosphoenolpyruvate Carboxylase and Phosphoenolpyruvate Carboxykinase in *Escherichia-Coli*', *Applied and Environmental Microbiology*, 59 (12), pp. 4261-4265.
- Choe, L. H. & Lee, K. H. (2003) 'Quantitative and qualitative measure of intralaboratory two-dimensional protein gel reproducibility and the effects of sample preparation, sample load, and image analysis', *Electrophoresis*, 24 (19-20), pp. 3500-3507.
- Corfield, A. P., Wagner, S. A., Clamp, J. R., Kriaris, M. S. & Hoskins, L. C. (1992)
 'Mucin Degradation in the Human Colon Production of Sialidase, Sialate O-Acetylesterase, N-Acetylneuraminate Lyase, Arylesterase, and Glycosulfatase Activities by Strains of Fecal Bacteria', *Infection and Immunity*, 60 (10), pp. 3971-3978.
- Costerto.J.W., Ingram, J. M. & Cheng, K. J. (1974) 'Structure and Function of Cell-Envelope of Gram-Negative Bacteria', *Bacteriological Reviews*, 38 (1), pp. 87-110.
- Cox, M. E. & Mangels, J. I. (1976) 'Improved Chamber for Isolation of Anaerobic Microorganisms', *Journal of Clinical Microbiology*, 4 (1), pp. 40-45.
- Cuervo, P., Cupolillo, E., Britto, C., Gonzalez, L. J., Silva-Filho, F. C. E., Lopes, L.
 C., Domont, G. B. & De Jesus, J. B. (2008) 'Differential soluble protein expression between *Trichomonas vaginalis* isolates exhibiting low and high virulence phenotypes', *Journal of Proteomics*, 71 (1), pp. 109-122.
- Davies, G. & Henrissat, B. (1995) 'Structures and Mechanisms of Glycosyl Hydrolases', Structure, 3 (9), pp. 853-859.
- Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X.,Murray, L. W., Arendall, W. B., Snoeyink, J., Richardson, J. S. & Richardson,D. C. (2007) 'MolProbity: all-atom contacts and structure validation for

proteins and nucleic acids', *Nucleic Acids Research*, 35 (Web server issue), pp. 375-383.

- Dekker, J., Rossen, J. W. A., Buller, H. A. & Einerhand, A. W. C. (2002) 'The MUC family: an obituary', *Trends in Biochemical Sciences*, 27 (3), pp. 126-131.
- Derzelle, S., Bolotin, A., Mistou, M. Y. & Rul, F. (2005) 'Proteome analysis of Streptococcus thermophilus grown in milk reveals pyruvate formate-lyase as the major upregulated protein', Applied and Environmental Microbiology, 71 (12), pp. 8597-8605.
- Dickey, R. S. & Zumoff, C. H. (1988) 'Emended Description of *Enterobactercancerogenus* Comb Nov (Formerly *Erwinia-cancerogena*)', International *Journal of Systematic Bacteriology*, 38 (4), pp. 371-374.
- Diniz, C. G., Farias, L. M., Carvalho, M. A. R., Rocha, E. R. & Smith, C. J. (2004)
 'Differential gene expression in a *Bacteroides fragilis* metronidazole-resistant mutant', *Journal of Antimicrobial Chemotherapy*, 54 (1), pp. 100-108.
- Donnenberg, M. S., Zhang, H. Z. & Stone, K. D. (1997) 'Biogenesis of the bundleforming pilus of enteropathogenic *Escherichia coli*: reconstitution of fimbriae in recombinant *E-coli* and role of DsbA in pilin stability - a review', *Gene*, 192 (1), pp. 33-38.
- Donovan, R. S., Robinson, C. W. & Glick, B. R. (1996) 'Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter', *Journal of Industrial Microbiology*, 16 (3), pp. 145-154.
- Edwards, R. & Read, P. N. (2000) 'Expression of the carbapenemase gene (cfiA) in *Bacteroides fragilis*', *Journal of Antimicrobial Chemotherapy*, 46 (6), pp. 1009-1012.
- Eggers, C. T., Murray, L. A., Delmar, V. A., Day, A. G. & Craik, C. S. (2004) 'The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase', *Biochemical Journal,* 379, pp. 107-118.

Emsley, P. & Cowtan, K. (2004) 'Coot: model-building tools for molecular graphics', Acta Crystallographica Section D-Biological Crystallography, 60, pp. 2126-2132.

- Ernst, R. K., Dombroski, D. M. & Merrick, J. M. (1990) 'Anaerobiosis, Type-1 Fimbriae, and Growth-Phase Are Factors That Affect Invasion of Hep-2 Cells by *Salmonella-Typhimurium*', *Infection and Immunity*, 58 (6), pp. 2014-2016.
- Eprintsev, A. T., Klimova, M. A., Shikhalieva, K. D. & Kompantseva, E. I. (2008)
 'Isolation and purification of malate dehydrogenase isoforms from phototrophic purple bacteria *Rhodobacter sphaeroides* and *Rhodopseudomonas palustris*,' *Biology Bulletin,* 35(6), pp. 585-591.
- Farmer, J. J., Fanning, G. R., Davis, B. R., Ohara, C. M., Riddle, C.,
 Hickmanbrenner, F. W., Asbury, M. A., Lowery, V. A. & Brenner, D. J. (1985)
 'Escherichia-Fergusonii and Enterobacter-Taylorae, 2 New Species of
 Enterobacteriaceae Isolated from Clinical Specimens', Journal of Clinical
 Microbiology, 21 (1), pp. 77-81.
- Fasano, A. & Nataro, J. P. (2004) 'Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins', *Advanced Drug Delivery Reviews*, 56 (6), pp. 795-807.
- Feniouk, B. A. & Junge, W. (2005) 'Regulation of the F0F1-ATP synthase: The conformation of subunit epsilon might be determined by directionality of subunit gamma rotation', *FEBS Letters*, 579 (23), pp. 5114-5118.
- Ferguson, G. P., Totemeyer, S., MacLean, M. J. & Booth, I. R. (1998) 'Methylglyoxal production in bacteria: suicide or survival?', *Archives of Microbiology*, 170 (4), pp. 209-219.
- Ferreiraa, E. O., Falcãoa, L. S., Vallima, D. C., Santosa, F. J., Andradeb, J. R. C., Andradeb, A. F. B., Vommaroc, R. C., Ferreiraa, M. C. S. & Domingues, R. M.

C. P. (2002) '*Bacteroides fragilis* adherence to Caco-2 cells', *Anaerobe*, 8 (6), pp. 307-314.

- Fukushima, K., Ogawa, H., Takahashi, K., Naito, H., Funayama, Y., Kitayama, T., Yonezawa, H. & Sasaki, I. (2003) 'Non-pathogenic bacteria modulate colonic epithelial gene expression in germ-free mice', *Scandinavian Journal of Gastroenterology*, 38 (6), pp. 626-634.
- Gietl, C. (1992) 'Malate-Dehydrogenase Isoenzymes Cellular Locations and Role in the Flow of Metabolites between the Cytoplasm and Cell Organelles', *Biochimica Et Biophysica Acta*, 1100 (3), pp. 217-234.
- Glaser, M., Nulty, W. & Vagelos, P. R. (1975) 'Role of Adenylate Kinase in Regulation of Macromolecular Biosynthesis in a Putative Mutant of *Escherichia-Coli* Defective in Membrane Phospholipid Biosynthesis', *Journal* of Bacteriology, 123 (1), pp. 128-136.
- Gloster, T. M., Turkenburg, J. P., Potts, J. R., Henrissat, B. & Davies, G. J. (2008)
 'Divergence of Catalytic Mechanism within a Glycosidase Family Provides
 Insight into Evolution of Carbohydrate Metabolism by Human Gut Flora', *Chemistry & Biology*, 59 (10), pp. 1058-1067.
- Godoy, V. G., Dallas, M. M., Russo, T. A. & Malamy, M. H. (1993) 'A Role for Bacteroides-Fragilis Neuraminidase in Bacterial-Growth in 2 Model Systems', Infection and Immunity, 61 (10), pp. 4415-4426.

Gorg, A., Weiss, W. & Dunn, M. J. (2004) 'Current two-dimensional electrophoresis technology for proteomics', *Proteomics*, 4 (12), pp. 3665-3685.

Garazzino, S., Aprato, A., Maiello, A., Masse, A., Biasibetti, A., De Rosa, F. G. & Di Perri, G. (2005) 'Osteomyelitis caused by *Enterobacter cancerogenus* infection following a traumatic injury: Case report and review of the literature', *Journal of Clinical Microbiology*, 43 (3), pp. 1459-1461.

- Grimont, P. A. D. & Ageron, E. (1989) 'Enterobacter-Cancerogenus (Urosevic, 1966)
 Dickey and Zumoff 1988, a Senior Subjective Synonym of Enterobacter-Taylorae Farmer Et Al (1985)', Research in Microbiology, 140 (7), pp. 459-465.
- Hegde, P. S., White, I. R. & Debouck, C. (2003) 'Interplay of transcriptomics and proteomics', *Current Opinion in Biotechnology*, 14 (6), pp. 647-651.
- Heim, S., Lleo, M. D. M., Bonato, B., Guzman, C. A. & Canepari, P. (2002) 'The Viable but Nonculturable State and Starvation Are Different Stress Responses of *Enterococcus faecalis*, as Determined by Proteome Analysis ', *Journal of Bacteriology*, 184 (23), pp. 6739-6745.
- Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J. P. & Davies, G. (1995)
 'Conserved Catalytic Machinery and the Prediction of a Common Fold for Several Families of Glycosyl Hydrolases', *Proceedings of the National Academy of Sciences of the United States of America*, 92 (15), pp. 7090-7094.
- Herrmann, K. M. (1995) 'The Shikimate Pathway as an Entry to Aromatic Secondary Metabolism', *Plant Physiology*, 107 (1), pp. 7-12.
- Hogan, R. J., Mathews, S. A., Kutlin, A., Hammerschlag, M. R. & Timms, P. (2003)
 'Differential expression of genes encoding membrane proteins between acute and continuous *Chlamydia pneumoniae* infections', *Microbial Pathogenesis*, 34 (1), pp. 11-16.
- Holmgren, A., Johansson, C., Berndt, C., Lonn, M. E., Hudemann, C. & Lillig, C. H.
 (2005) 'Thiol redox control via thioredoxin and glutaredoxin systems', *Biochemical Society Transactions*, 33, pp. 1375-1377.
- Hopley, L. & Schalkwyk, J. V. (2006) *Bacteroides fragilis*-beware of Bacteroides! [Online]. Available at:

http://www.anaesthetist.com/icu/infect/bacteria/anaerobe/Findex.htm#bfrag.ht m (Accessed: 6-12-2006).

- Hughes, C. V., Malki, G., Loo, C. Y., Tanner, A. C. R. & Ganeshkumar, N. (2003)
 'Cloning and expression of alpha-D-glucosidase and N-acetyl-betaglucosaminidase from the periodontal pathogen, Tannerella forsythensis (Bacteroides forsythus)', Oral Microbiology and Immunology, 18 (5), pp. 309-312.
- Hwang, Y. W. & Miller, D. L. (1985) 'A Study of the Kinetic Mechanism of Elongation Factor-Ts', *Journal of Biological Chemistry*, 260 (21), pp. 1498-1502.
- Hynes, M. J., Draht, O. W. & Davis, M. A. (2002) 'Regulation of the acuF gene, encoding phosphoenolpyruvate carboxykinase in the filamentous fungus *Aspergillus nidulans*', *Journal of Bacteriology*, 184 (1), pp. 183-190.

Ingrell, C. R. (2009) Challenges in biological interpretation of proteomics data.

- Ito, K., Bassford, P. J. & Beckwith, J. (1981) 'Protein Localization in *Escherichia-Coli*Is There a Common Step in the Secretion of Periplasmic and Outer-Membrane Proteins', *Cell*, 24 (3), pp. 707-717.
- Janda, J. M. & Abbott, S. L. (2006) The enterobacteria. American Society for Biology [Online]. Available at: <u>http://books.google.co.uk/books?hl=en&lr=&id=tjZT9_wRsXUC&oi=fnd&pg=P</u> <u>A1&dq=The+enterobacteria+book&ots=nVBGdM9Tjb&sig=HlQqvgJ3M7msV</u> <u>MyBuDCBI6i5oic</u> (Accessed 19-07-2009)
- Janosi, L., Shimizu, I. & Kaji, A. (1994) 'Ribosome Recycling Factor (Ribosome Releasing-Factor) Is Essential for Bacterial-Growth', *Proceedings of the National Academy of Sciences of the United States of America,* 91 (10), pp. 4249-4253.

- Johnson, R. S., Martin, S. A., Biemann, K., Stults, J. T. & Watson, J. T. (1987) 'Novel Fragmentation Process of Peptides by Collision-Induced Decomposition in a Tandem Mass-Spectrometer - Differentiation of Leucine and Isoleucine', *Analytical Chemistry*, 59 (21), pp. 2621-2625.
- Kabir, M. M. & Shimizu, K. (2003) 'Fermentation characteristics and protein expression patterns in a recombinant *Escherichia coli* mutant lacking phosphoglucose isomerase for poly(3-hydroxybutyrate) production', *Applied Microbiology and Biotechnology*, 62 (2-3), pp. 244-255.
- Karlsson, N. G., Nordman, H., Karlsson, H., Carlstedt, I. & Hansson, G. C. (1997)
 'Glycosylation differences between pig gastric mucin populations: A comparative study of the neutral oligosaccharides using mass spectrometry', *Biochemical Journal*, 326, pp. 911-917.
- Katayama, T., Sakuma, A., Kimura, T., Makimura, Y., Hiratake, J., Sakata, K.,
 Yamanoi, T., Kumagai, H. & Yamamoto, K. (2004) 'Molecular cloning and characterization of *Bifidobacterium bifidum* 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (Glycoside hydrolase family 95)', *Journal of Bacteriology*, 186 (15), pp. 4885-4893.
- Keller, R., Pedroso, M. Z., Ritchmann, R. & Silva, R. M. (1998) 'Occurrence of virulence-associated properties in *E. cloacae*', *Infection and Immunity*, 66 (2), pp. 645-649.
- Kim, K. J. (2001) 'Regulation of 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase of *Bacillus sp* B-6 producing phenazine-1-carboxylic acid', *Journal of Biochemistry and Molecular Biology*, 34 (4), pp. 299-304.
- Kim, S. J., Han, Y. H., Kim, I. H. & Kim, H. K. (1999) 'Involvement of ArcA and Fnr in expression of *Escherichia coli* thiol peroxidase gene', *Iubmb Life*, 48 (2), pp. 215-218.

- Kitamura, M., Okuyama, M., Tanzawa, F., Mori, H., Kitago, Y., Watanabe, N.,
 Kimura, A., Tanaka, I. & Yao, M. (2008) 'Structural and Functional Analysis of
 a Glycoside Hydrolase Family 97 Enzyme from *Bacteroides thetaiotaomicron*', *Journal of Biological Chemistry*, 283 (52), pp. 36328-36337.
- Ko, K. S., Kuwahara, T., Lee, K. & Kook, Y. H. (2009) 'Population structure and distribution of virulence-related genes of *Bacteroides fragilis* isolates from Korea and Japan', *Diagnostic Microbiology and Infectious Disease*, 64 (3), pp. 340-343.
- Komatsu, M., Carraway, C. A. C., Fregien, N. L. & Carraway, K. L. (1997) 'Reversible disruption of cell-matrix and cell-cell interactions by overexpression of sialomucin complex', *Journal of Biological Chemistry*, 272 (52), pp. 33245-33254.
- Korithoski, B., Levesque, C. M. & Cvitkovitch, D. G. (2007) 'Involvement of the detoxifying enzyme lactoylglutathione lyase in *Streptococcus mutans* aciduricity', *Journal of Bacteriology*, 189 (21), pp. 7586-7592.
- Kovacikova, G., Lin, W. & Skorupski, K. (2005) 'Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae', *Molecular Microbiology*, 57 (2), pp. 420-433.
- Landry, S. J., Taher, A., Georgopoulos, C. & vanderVies, S. M. (1996) 'Interplay of structure and disorder in cochaperonin mobile loops', *Proceedings of the National Academy of Sciences of the United States of America*, 93 (21), pp. 11622-11627.
- Laux, D. C., Cohen, P. S. & Conway, T. (eds.) (2005) Role of the mucus layer in bacterial colonization of the intestine- Chapter 15. Washington: ASM Press, Colonization of mucosal surfaces

- Lazar, S. W. & Kolter, R. (1996) 'SurA assists the folding of *Escherichia coli* outer membrane proteins', *Journal of Bacteriology*, 178 (6), pp. 1770-1773.
- Lazzaroni, J. C., Dubuisson, J. F. & Vianney, A. (2002) 'The Tol proteins of *Escherichia coli* and their involvement in the translocation of group A colicins', *Biochimie,* 84 (5-6), pp. 391-397.
- Lazzaroni, J. C., Germon, P., Ray, M. C. & Vianney, A. (1999) 'The Tol proteins of *Escherichia coli* and their involvement in the uptake of biomolecules and outer membrane stability', *FEMS Microbiology Letters*, 177 (2), pp. 191-197.
- Lemaire, M. & Wesolowski-Louvel, M. (2004) 'Enolase and glycolytic flux play a role in the regulation of the glucose pennease gene RAG1 of *Kluyveromyces lactis*', *Genetics*, 168 (2), pp. 723-731.
- Len, A. C. L., Harty, D. W. S. & Jacques, N. A. (2004) 'Stress-responsive proteins are upregulated in *Streptococcus mutans* during acid tolerance', *Microbiology-Sgm*, 150, pp. 1339-1351.
- Leppanen, V. M., Merckel, M. C., Ollis, D. L., Wong, K. K., Kozarich, J. W. & Goldman, A. (1999) 'Pyruvate formate lyase is structurally homologous to type I ribonucleotide reductase', *Structure*, 7 (7), pp. 733-744.
- Leslie, A. G. W., *in Joint CCP4 and ESF-EACMB newsletter on protein crystallography* (Daresbury Laboratory, Warrington, UK., 1992), Vol. 26.
- Liebler, D. (2002) Introduction to Proteomics- Tools for the New Biology. New Jersey: Humana Press, Protein digestion techniques, Protein expression profiling.
- Lin, Y. F., Wu, M. S., Chang, C. C., Lin, S. W., Lin, J. T., Sun, Y. J., Chen, D. S. & Chow, L. P. (2006) 'Comparative immunoproteomics of identification and characterization of virulence factors from *Helicobacter pylori* related to gastric

cancer', *Molecular* & *Cellular Proteomics*, 5 (8), pp. 1484-1496Levett, P. N. (ed.) (1991) *Anaerobic Microbiology: A practical approach.* Practical approach series, Oxford: IRL at Oxford University Press.

- Lipinska, B., King, J., Ang, D. & Georgopoulos, C. (1988) 'Sequence-Analysis and Transcriptional Regulation of the *Escherichia-Coli* Grpe Gene, Encoding a Heat-Shock Protein', *Nucleic Acids Research,* 16 (15), pp. 7545-7562.
- Liptak, Z. (2005) Algorithmic and combinational questions in mass spectrometry and EST cludtering Bielfeld University.
- Liu, K.-J. & Shih, N.-Y. (2007) 'The role of enolase in tissue invasion and metastasis of pathogens and tumour cells', *Journal of Cancer Molecules*, 3 (2), pp. 45-48.
- Livingston, S. J., Kominos, S. D. & Yee, R. B. (1978) 'New Medium for Selection and Presumptive Identification of *Bacteroides-Fragilis* Group', *Journal of Clinical Microbiology*, 7 (5), pp. 448-453.
- Lu, C. D., Kwon, D. H. & Abdelal, A. T. (1997) 'Identification of greA encoding a transcriptional elongation factor as a member of the carA-orf-carB-greA operon in *Pseudomonas aeruginosa* PAO1', *Journal of Bacteriology*, 179 (9), pp. 3043-3046.
- Lugea, A., Salas, A., Casalot, J., Guarner, F. & Malagelada, J. R. (2000) 'Surface hydrophobicity of the rat colonic mucosa is a defensive barrier against macromolecules and toxins', *Gut*, 46 (4), pp. 515-521.
- Luo, Y. G., Glisson, J. R., Jackwood, M. W., Hancock, R. E. W., Bains, M., Cheng, I. H. N. & Wang, C. L. (1997) 'Cloning and characterization of the major outer membrane protein gene (ompH) of *Pasteurella multocida* X-73', *Journal of Bacteriology*, 179 (24), pp. 7856-7864.

- MacLean, M. J., Ness, L. S., Ferguson, G. P. & Booth, I. R. (1998) 'The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in *Escherichia coli*', *Molecular Microbiology*, 27 (3), pp. 563-571.
- Macy, J. M., Ljungdahl, L. G. & Gottschalk, G. (1978) 'Pathway of Succinate and Propionate Formation in *Bacteroides-Fragilis*', *Journal of Bacteriology*, 134 (1), pp. 84-91.
- Malone, J. P., Radabaugh, M.R., Leimgruber, R.M. & Gerstenecker, G.G. (2001).
 'Practical aspects of fluorescent staining for proteomic applications,' *Electrophoresis*, 22 (5), pp. 919-932.
- Matsumura, Y., Takagi, M. & Imanaka, T. (1993) 'Regulation of *Escherichia-Coli* Superoxide-Dismutase Genes (sodA and sodB) by Oxygen', *Biotechnology Letters*, 15 (3), pp. 229-234.
- Mcgrath, M. E., Gillmor, S. A. & Fletterick, R. J. (1995) 'Ecotin Lessons on Survival in a Protease-Filled World', *Protein Science*, 4 (2), pp. 141-148.
- Mcgrath, M. E., Hines, W. M., Sakanari, J. A., Fletterick, R. J. & Craik, C. S. (1991)
 'The Sequence and Reactive Site of Ecotin a General Inhibitor of Pancreatic Serine Proteases from *Escherichia-Coli*', *Journal of Biological Chemistry*, 266 (10), pp. 6620-6625.
- Meslin, J. C., Fontaine, N. & Andrieux, C. (1999) 'Variation of mucin distribution in the rat intestine, caecum and colon: effect of the bacterial flora', Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 123 (3), pp. 235-239.
- Messerschmidt, A., Huber, R., Poulos, T. & Wieghardt, K. (eds.) (2001) *Handbook of Metalloproteins.* Chichester: John Wiley and Sons Limited, iron superoxide dismutase.

- Mikulskis, A., Aristarkhov, A. & Lin, E. C. C. (1997) 'Regulation of expression of the ethanol dehydrogenase gene (adhE) in *Escherichia coli* by catabolite repressor activator protein cra', *Journal of Bacteriology,* 179 (22), pp. 7129-7134.
- Minarik, P., Tomaskova, N., Kollarova, M. & Antalik, M. (2002) 'Malate dehydrogenases - Structure and function', *General Physiology and Biophysics,* 21 (3), pp. 257-265.
- Missall, T. A., Pusateri, M. E. & Lodge, J. K. (2004) 'Thiol peroxidase is critical for virulence and resistance to nitric oxide and peroxide in the fungal pathogen, *Cryptococcus neoformans*', *Molecular Microbiology*, 51 (5), pp. 1447-1458.
- Mizrachi, I. (2002) *The NCBI Handbook.* NCBI [Online]. Available at: <u>http://www.ncbi.nlm.nih.gov/books/bookres.fcgi/handbook/ch1.pdf</u> (Accessed: 05-08-09).
- Monahan, I. M., Betts, J., Banerjee, D. K. & Butcher, P. D. (2001) 'Differential expression of mycobacterial proteins following phagocytosis by macrophages', *Microbiology-Sgm*, 147, pp. 459-471.
- Morona, R., Manning, P. A. & Reeves, P. (1983) 'Identification and Characterization of the Tolc Protein, an Outer-Membrane Protein from *Escherichia-Coli*, *Journal of Bacteriology*, 153 (2), pp. 693-699.
- Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997) 'Refinement of macromolecular structures by the maximum-likelihood method', Acta Crystallographica Section D-Biological Crystallography, 53, pp. 240-255.
- Nachin, L., Nannmark, U. & Nystrom, T. (2005) 'Differential roles of the universal stress proteins of *Escherichia coli* in oxidative stress resistance, adhesion, and motility', *Journal of Bacteriology,* 187 (18), pp. 6265-6272.

- Nair, M. K. M. & Venkitanarayanan, K. (2007) 'Role of bacterial OmpA and host cytoskeleton in the invasion of human intestinal epithelial cells by *Enterobacter sakazakii*', *Pediatric Research*, 62 (6), pp. 664-669.
- Nakano, M. M., Zhu, Y., Haga, K., Yoshikawa, H., Sonenshein, A. L. & Zuber, P. (1999) 'A mutation in the 3-phosphoglycerate kinase gene allows anaerobic growth of *Bacillus subtilis* in the absence of ResE kinase', *Journal of Bacteriology*, 181 (22), pp. 7087-7097.
- Nakano, V., Gomes, T. A. T., Vieira, M. A. M., Ferreira, R. D. & Avila-Campos, M. J. (2007) 'bft gene subtyping in enterotoxigenic *Bacteroides fragilis* isolated from children with acute diarrhea', *Anaerobe*, 13 (1), pp. 1-5.
- Namavar, F., Verweijvanvught, M. A. J. J. & Maclaren, D. M. (1991) 'A Study of the Candidate Virulence Factors of *Bacteroides-Fragilis*', *Journal of General Microbiology*, 137, pp. 1431-1435.
- Naumoff, D. G. (2005) 'GH97 is a new family of glycoside hydrolases, which is related to the alpha-galactosidase superfamily', *BMC Genomics,* 6, pp. -.
- Nicholson, W. L. (2008) 'The Bacillus subtilis ydjL (bdhA) Gene Encodes Acetoin Reductase/2,3-Butanediol Dehydrogenase', Applied and Environmental Microbiology, 74 (22), pp. 6832-6838.
- Nikaido, H. (2003) 'Molecular basis of bacterial outer membrane permeability revisited', *Microbiology and Molecular Biology Reviews,* 67 (4), pp. 593-+.
- Nystrom, T. & Neidhardt, F. C. (1994) 'Expression and Role of the Universal Stress Protein, Uspa, of *Escherichia-Coli* during Growth Arrest', *Molecular Microbiology,* 11 (3), pp. 537-544.
- Okuyama, M., Kitamura, M., Hondoh, H., Kang, M. S., Mori, H., Kimura, A., Tanaka, I. & Yao, M. (2009) 'Catalytic Mechanism of Retaining alpha-Galactosidase

Belonging to Glycoside Hydrolase Family 97', *Journal of Molecular Biology,* 392 (5), pp. 1232-1241.

- Overweg, K., Pericone, C. D., Verhoef, G. G. C., Weiser, J. N., Meiring, H. D., De Jong, A. P. J. M., De Groot, R. & Hermans, P. W. M. (2000) 'Differential protein expression in phenotypic variants of *Streptococcus pneumoniae*', *Infection and Immunity*, 68 (8), pp. 4604-4610.
- Packschies, L., Theyssen, H., Buchberger, A., Bukau, B., Goody, R. S. & Reinstein, J. (1997) 'GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism', *Biochemistry*, 36 (12), pp. 3417-3422.
- Panina, E. M., Vitreschak, A. G., Mironov, A. A. & Gelfand, M. S. (2001) 'Regulation of aromatic amino acid biosynthesis in gamma-proteobacteria', *Journal of Molecular Microbiology and Biotechnology*, 3 (4), pp. 529-543.
- Pantosti, A., Tzianabos, A. O., Reinap, B. G., Onderdonk, A. B. & Kasper, D. L.
 (1993) 'Bacteroides-Fragilis Strains Express Multiple Capsular
 Polysaccharides', Journal of Clinical Microbiology, 31 (7), pp. 1850-1855.
- Pape, T., Wintermeyer, W. & Rodnina, M. V. (1998) 'Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E-coli ribosome', *EMBO Journal*, 17 (24), pp. 7490-7497.
- Park, S. J., Cotter, P. A. & Gunsalus, R. P. (1995) 'Regulation of Malate-Dehydrogenase (Mdh) Gene-Expression in *Escherichia-Coli* in Response to Oxygen, Carbon, and Heme Availability', *Journal of Bacteriology*, 177 (22), pp. 6652-6656.
- Peptide fragmentation. (2007) [Online]. Available at: <u>http://www.matrixscience.com/help/fragmentation_help.html</u>. (Accessed: 18/03/09).

- Pennington, S. R. & Dunn, M. J. (eds.) (2001) Proteomics: from protein sequence to function. Oxford: BIOS.
- PerezVilar, J., Eckhardt, A. E. & Hill, R. L. (1996) 'Porcine submaxillary mucin forms disulfide-bonded dimers between its carboxyl-terminal domains', *Journal of Biological Chemistry*, 271 (16), pp. 9845-9850.
- Persson, O., Valadi, A., Nystrom, T. & Farewell, A. (2007) 'Metabolic control of the *Escherichia coli* universal stress protein response through fructose-6phosphate', *Molecular Microbiology*, 65 (4), pp. 968-978.
- Pettersson, I. & Kurland, C. G. (1980) 'Ribosomal-Protein L7-L12 Is Required for Optimal Translation', *Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences*, 77 (7), pp. 4007-4010.
- Podolsky, D. K. (1985) 'Oligosaccharide Structures of Human Colonic Mucin', Journal of Biological Chemistry, 260 (14), pp. 8262-8271.
- Podolsky, D. K. (1999) 'Mucosal Immunity and Inflammation V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense', *American Journal of Physiology-Gastrointestinal and Liver Physiology*, 277 (3), pp. G495-G499.
- Podolsky, D. K. & Isselbacher, K. J. (1983) 'Composition of Human Colonic Mucin -Selective Alteration in Inflammatory Bowel-Disease', *Journal of Clinical Investigation*, 72 (1), pp. 142-153.
- Pruzzo, C., Guzman, C. A. & Dainelli, B. (1989) 'Incidence of Hemagglutination Activity among Pathogenic and Non-Pathogenic *Bacteroides-Fragilis* Strains and Role of Capsule and Pili in Ha and Adherence', *FEMS Microbiology Letters*, 59 (1-2), pp. 113-118.

- Pumbwe, L., Skilbeck, C. A. & Wexler, H. M. (2006) 'The Bacteroides fragilis cell envelope: Quarterback, linebacker, coach-or all three?', Anaerobe, 12 (5-6), pp. 211-220.
- Radosevich, T. J., Reinhardt, T. A., Lippolis, J. D., Bannantine, J. P. & Stabel, J. R.
 (2007) 'Proteome and differential expression analysis of membrane and cytosolic proteins from *Mycobacterium avium subsp. paratuberculosis* strains K-10 and 187', *Journal of Bacteriology*, 189 (3), pp. 1109-1117.
- Ranford, J. C., Coates, A. R. M. & Henderson, B. (2004) 'Chaperonins are cellsignalling proteins: the unfolding biology of molecular chaperones', *Expert Reviews in Molecular Medicine*, pp. 1-17.
- Resch, A., Rosenstein, R., Nerz, C. & Gotz, F. (2005) 'Differential gene expression profiling of *Staphylococcus aureus* cultivated under biofilm and planktonic conditions', *Applied and Environmental Microbiology*, 71 (5), pp. 2663-2676.
- Riedel, K. & Lehner, A. (2007) 'Identification of proteins involved in osmotic stress response in *Enterobacter sakazakii* by proteomics', *Proteomics*, 7 (8), pp. 1217-1231.
- Rigal, A., Bouveret, E., Lloubes, R., Lazdunski, C. & Benedetti, H. (1997) 'The TolB protein interacts with the porins of *Escherichia coli*', *Journal of Bacteriology*, 179 (23), pp. 7274-7279.
- Roberton, A. M. & Stanley, R. A. (1982) 'Invitro Utilization of Mucin by *Bacteroides-Fragilis*', *Applied and Environmental Microbiology*, 43 (2), pp. 325-330.
- Robertson, K. P., Smith, C. J., Gough, A. M. & Rocha, E. R. (2006) 'Characterization of *Bacteroides fragilis* hemolysins and regulation and synergistic interactions of HlyA and HlyB', *Infection and Immunity*, 74 (4), pp. 2304-2316.

- Rocha, E. R., Herren, C. D., Smalley, D. J. & Smith, C. J. (2003) 'The complex oxidative stress response of *Bacteroides fragilis*: the role of OxyR in control of gene expression', *Anaerobe*, 9 (4), pp. 165-173.
- Rose, M. C. & Voynow, J. A. (2006) 'Respiratory tract mucin genes and mucin glycoproteins in health and disease', *Physiological Reviews*, 86 (1), pp. 245-278.
- Rosner, J. L. & Martin, R. G. (2009) 'An Excretory Function for the *Escherichia coli* Outer Membrane Pore ToIC: Upregulation of marA and soxS Transcription and Rob Activity Due to Metabolites Accumulated in toIC Mutants', *Journal of Bacteriology*, 191 (16), pp. 5283-5292.
- Roszak, D. B. & Colwell, R. R. (1987) 'Survival Strategies of Bacteria in the Natural-Environment', *Microbiological Reviews*, 51 (3), pp. 365-379.
- Rubinstien, E. M., Klevjeranderson, P., Smith, C. A., Drouin, M. T. & Patterson, J. E. (1993) 'Enterobacter-Taylorae, a New Opportunistic Pathogen - Report of 4 Cases', Journal of Clinical Microbiology, 31 (2), pp. 249-254.
- Sabet, M., Lee, S. W., Nauman, R. K., Sims, T. & Um, H. S. (2003) 'The surface (S-) layer is a virulence factor of *Bacteroides forsythus*', *Microbiology-Sgm*, 149, pp. 3617-3627.
- Salyers, A. A., Vercellotti, J. R., West, S. E. H. & Wilkins, T. D. (1977) 'Fermentation of Mucin and Plant Polysaccharides by Strains of Bacteroides from Human Colon', *Applied and Environmental Microbiology*, 33 (2), pp. 319-322.
- Sawers, G. & Bock, A. (1988) 'Anaerobic Regulation of Pyruvate Formate-Lyase from *Escherichia-Coli* K-12', *Journal of Bacteriology*, 170 (11), pp. 5330-5336.
- Schierack, P., Walk, N., Reiter, K., Weyrauch, K. D. & Wieler, L. H. (2007)
 'Composition of intestinal Enterobacteriaceae populations of healthy domestic pigs', *Microbiology-Sgm*, 153, pp. 3830-3837.

- Schirmer, T. (1998) 'General and specific porins from bacterial outer membranes', Journal of Structural Biology, 121 (2), pp. 101-109.
- Schocke, L. & Weimer, P. J. (1997) 'Purification and characterization of phosphoenolpyruvate carboxykinase from the anaerobic ruminal bacterium *Ruminococcus flavefaciens*', *Archives of Microbiology*, 167 (5), pp. 289-294.
- Serino, M., Luche, E., Chabo, C., Amar, J. & Burcelin, R. (2009) 'Intestinal microflora and metabolic diseases', Diabetes and Metabolism.
- Sheldon, W. L., MacAuley, M. S., Taylor, E. J., Robinson, C. E., Charnock, S. J., Davies, G. J., Vocadlo, D. J. & Black, G. W. (2006) 'Functional analysis of a group A streptococcal glycoside hydrolase Spy1600 from family 84 reveals it is a beta-N-acetylglucosaminidase and not a hyaluronidase', *Biochemical Journal*, 399, pp. 241-247.
- Shirai, T., Hung, V. S., Morinaka, K., Kobayashi, T. & Ito, S. (2008) 'Crystal structure of GH13 alpha-glucosidase GSJ from one of the deepest sea bacteria', *Proteins-Structure Function and Bioinformatics*, 73 (1), pp. 126-133.
- Singamsetty, V. K., Wang, Y., Shimada, H. & Prasadarao, N. V. (2008) 'Outer membrane protein A expression in *Enterobacter sakazakii* is required to induce microtubule condensation in human brain microvascular endothelial cells for invasion', *Microbial Pathogenesis*, 45 (3), pp. 181-191.
- Sinnott, M. L. (1990) 'Catalytic Mechanisms of Enzymatic Glycosyl Transfer', *Chemical Reviews*, 90 (7), pp. 1171-1202.
- Smith, C. J., Rocha, E. R. & Paster, B. J. (eds.) (2006) The Prokaryotes: a handbook on the biology of bacteria. The medically important *Bacteroides* spp. in health and disease.

- Solem, C., Koebmann, B. & Jensen, P. R. (2008) 'Control analysis of the role of triosephosphate isomerase in glucose metabolism in *Lactococcus lactis*', *let Systems Biology*, 2 (2), pp. 64-72.
- Sowell, S. M., Norbeck, A. D., Lipton, M. S., Nicora, C. D., Callister, S. J., Smith, R. D., Barofsky, D. F. & Giovannoni, S. J. (2008) 'Proteomic analysis of stationary phase in the marine bacterium "*Candidatus Pelagibacter ubique*", *Applied and Environmental Microbiology*, 74 (13), pp. 4091-4100.
- Stein, J. H. (1998) Internal Medicine. Mosby A Times Mirror Company [Online]. Available at: <u>http://books.google.co.uk/books?isbn=0815186983</u> (Accessed: 16-04-09).
- Stellwag, E. J. & Hylemon, P. B. (1976) 'Purification and Characterization of Bile-Salt Hydrolase from *Bacteroides-Fragilis* Subsp Fragilis', *Biochimica Et Biophysica Acta*, 452 (1), pp. 165-176.
- Stepanova, E., Lee, J., Ozerova, M., Semenova, E., Datsenko, K., Wanner, B. L., Severinov, K. & Borukhov, S. (2007) 'Analysis of promoter targets for *Escherichia coli* transcription elongation factor GreA in vivo and in vitro', *Journal of Bacteriology*, 189 (24), pp. 8772-8785.
- Straus, D., Walter, W. & Gross, C. A. (1990) 'Dnak, Dnaj, and Grpe Heat-Shock Proteins Negatively Regulate Heat-Shock Gene-Expression by Controlling the Synthesis and Stability of Sigma-32', *Genes & Development*, 4 (12A), pp. 2202-2209.
- Su, Z. D. & Honek, J. F. (2007) 'Emerging bacterial enzyme targets', *Current Opinion in Investigational Drugs*, 8 (2), pp. 140-149.
- Studier, F. W. (2005) 'Protein production by auto-induction in high-density shaking cultures', *Protein Expression and Purification,* 41 (1), pp. 207-234.

- Stulke, J. (2002) 'Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures', *Archives of Microbiology*, 177 (6), pp. 433-440.
- Takatsume, Y., Izawa, S. & Inoue, Y. (2005) 'Unique regulation of glyoxalase I activity during osmotic stress response in the fission yeast *Schizosaccharomyces pombe*: neither the mRNA nor the protein level of glyoxalase I increase under conditions that enhance its activity', *Archives of Microbiology*, 183 (3), pp. 224-227.
- Terhorst, C., Moller, W., Laursen, R. & Wittmann.B (1973) 'Primary Structure of an Acidic Protein from 50-S Ribosomes of *Escherichia-Coli* Which Is Involved in Gtp Hydrolysis Dependent on Elongation Factors G and T', *European Journal* of Biochemistry, 34 (1), pp. 138-152.
- Thauer, R. K., Jungermann, K. & Decker, K. (1977) 'Energy-Conservation in Chemotropic Anaerobic Bacteria', *Bacteriological Reviews*, 41 (1), pp. 100-180.
- Twyman, R. (2003) Transcriptomics: The global study of gene expression at the RNA level. [Online]. Available at: http://genome.wellcome.ac.uk/doc_wtd020758.html. (Accessed: 12-02-09)
- Tyers, M. & Mann, M. (2003) 'From genomics to proteomics', *Nature*, 422 (6928), pp. 193-197.
- Van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., Van de Lisdonk, F. H., Rutten, G. E. & Van Weel, C. (2005) 'alpha-Glucosidase inhibitors for patients with type 2 diabetes - Results from a cochrane systematic review and metaanalysis', *Diabetes Care*, 28 (1), pp. 154-163.
- Varel, V. H. & Bryant, M. P. (1974) 'Nutritional Features of *Bacteroides-Fragilis* Subsp Fragilis', *Applied Microbiology*, 28 (2), pp. 251-257.

- Virlogeux-Payant, I., Baucheron, S., Pelet, J., Trotereau, J., Bottreau, E., Velge, P. & Cloeckaert, A. (2008) 'ToIC, but not AcrB, is involved in the invasiveness of multidrug-resistant Salmonella enterica serovar Typhimurium by increasing type III secretion system-1 expression', International Journal of Medical Microbiology, 298 (7-8), pp. 561-569.
- Wagner, A. F. V., Schultz, S., Bomke, J., Pils, T., Lehmann, W. D. & Knappe, J. (2001) 'YfiD of Escherichia coli and Y061 of bacteriophage T4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygenfragmented pyruvate formate-lyase', *Biochemical and Biophysical Research Communications*, 285 (2), pp. 456-462.
- Walter, S. & Buchner, J. (2002) 'Molecular chaperones Cellular machines for protein folding', Angewandte Chemie-International Edition, 41 (7), pp. 1098-1113.
- Weber, A. & Jung, K. (2002) 'Profiling early osmostress-dependent gene expression in *Escherichia coli* using DNA microarrays', *Journal of Bacteriology*, 184 (19), pp. 5502-5507.
- Westblom, T. U. & Coggins, M. E. (1987) 'Osteomyelitis Caused by Enterobacter-Taylorae, Formerly Enteric Group-19', Journal of Clinical Microbiology, 25 (12), pp. 2432-2433.
- Wexler, H. M. (2002) 'Outer-membrane pore-forming proteins in gram-negative anaerobic bacteria', *Clinical Infectious Diseases*, 35, pp. S65-S71.
- Wheeler, R. (2009) 'Outer membrane proteomics of *P. multocida* isolates to identify outative host- specificity determinants ', *Bioscience Horizons,* 2 (1), pp. 1-12.
- Wiggins, R., Hicks, S. J., Soothill, P. W., Millar, M. R. & Corfield, A. P. (2001)
 'Mucinases and sialidases: their role in the pathogenesis of sexually transmitted infections in the female genital tract', *Sexually Transmitted Infections*, 77 (6), pp. 402-408.

- Wilkins, J. C., Homer, K. A. & Beighton, D. (2002) 'Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions', Applied and Environmental Microbiology, 68 (5), pp. 2382-2390.
- Wilkins, J. C., Beighton, D. & Homer, K. A. (2003) 'Effect of acidic pH on expression of surface-associated proteins of *Streptococcus oralis*', *Applied and Environmental Microbiology*, 69 (9), pp. 5290-5296.
- Williams, T. L., Monday, S. R., Edelson-Mammel, S., Buchanan, R. & Musser, S. M. (2005) 'A top-down proteomics approach for differentiating thermal resistant strains of *Enterobacter sakazakii*', *Proteomics*, 5 (16), pp. 4161-4169.
- Willis, C. L., Cummings, J. H., Neale, G. & Gibson, G. R. (1996) 'In vitro effects of mucin fermentation on the growth of human colonic sulphate-reducing bacteria', *Anaerobe*, 2 (2), pp. 117-122.
- Wilson, D. N., Schluenzen, F., Harms, J. M., Yoshida, T., Ohkubo, T., Albrecht, R., Buerger, J., Kobayashi, Y. & Fucini, P. (2005) 'X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit', *EMBO Journal*, 24 (2), pp. 251-260.
- Wilson, M. (ed.) (2002) Bacterial disease mechanisms- An introduction to cellular microbiology, Cambridge: Cambridge University Press.
- Wyborn, N. R., Messenger, S. L., Henderson, R. A., Sawers, G., Roberts, R. E., Attwood, M. M. & Green, J. (2002) 'Expression of the *Escherichia coli* yfiD gene responds to intracellular pH and reduces the accumulation of acidic metabolic end products', *Microbiology-Sgm*, 148, pp. 1015-1026.
- Xiao, Z. J. & Xu, P. (2007) 'Acetoin metabolism in bacteria', *Critical Reviews in Microbiology*, 33 (2), pp. 127-140.

- Xu, G. Q., Shin, S.B.Y. & Jaffrey, S.R. (2009). 'Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini.' *Proceedings of the National Academy of Sciences of the United States of America*, 106(46), pp. 19310-19315.
- Xu, J., Mahowald, M. A., Ley, R. E., Lozupone, C. A., Hamady, M., Martens, E. C., Henrissat, B., Coutinho, P. M., Minx, P., Latreille, P., Cordum, H., Van Brunt, A., Kim, K., Fulton, R. S., Fulton, L. A., Clifton, S. W., Wilson, R. K., Knight, R. D. & Gordon, J. I. (2007) 'Evolution of symbiotic bacteria in the distal human intestine', *Plos Biology*, 5 (7), pp. 1574-1586.
- Yakhnin, H., Yakhnin, A. V. & Babitzke, P. (2006) 'The trp RNA-binding attenuation protein (TRAP) of *Bacillus subtilis* regulates translation initiation of ycbK, a gene encoding a putative efflux protein, by blocking ribosome binding', *Molecular Microbiology*, 61 (5), pp. 1252-1266.
- Yamaji, R., Fujita, K., Nakanishi, I., Nagao, K., Naito, M., Tsuruo, T., Inui, H. & Nakano, Y. (2004) 'Hypoxic up-regulation of triosephosphate isomerase expression in mouse brain capillary endothelial cells', *Archives of Biochemistry and Biophysics*, 423 (2), pp. 332-342.
- Yu, J. & Kroll, J. S. (1999) 'DsbA: a protein-folding catalyst contributing to bacterial virulence', *Microbes and Infection,* 1 (14), pp. 1221-1228.

Yurewicz, E. C. & Moghissi, K. S. (1981) 'Purification of Human Mid-Cycle Cervical Mucin and Characterization of Its Oligosaccharides with Respect to Size, Composition, and Microheterogeneity', *Journal of Biological Chemistry*, 256 (22), pp. 1895-1904.

Zhang, J., Yasin, M., Carraway, C. A. C. & Carraway, K. L. (2006) 'MUC4 expression and localization in gastrointestinal tract and skin of human embryos', *Tissue & Cell*, 38 (4), pp. 271-275.

Zhang, M. (2006) Proteomic analysis of Streptococci. Northumbria University.

- Zhang, M., McDonald, F. M., Sturrock, S. S., Charnock, S. J., Humphery-Smith, I., Black, G. W. (2007). 'Group A streptococcus cell-associated pathogenic proteins as revealed by growth in hyaluronic acid-enriched media,' *Proteomics*, 7(9), pp. 1379-1390.
- Zivy, M. & de Vienne, D. (2000) 'Proteomics: a link between genomics, genetics and physiology', *Plant Molecular Biology*, 44 (5), pp. 575-580.
- Zysk, G., Bongaerts, R. J. M., Ten Thoren, E., Bethe, G., Hakenbeck, R. & Heinz, H.
 P. (2000) 'Detection of 23 immunogenic pneumococcal proteins using convalescent-phase serum', *Infection and Immunity*, 68 (6), pp. 3740-3743.

APPENDICES

Appendix A- Chemicals, media and enzymes

This section of the Appendix contains a list of the chemicals, enzymes and media used in the study.

A1 Chemicals used in the study

Acros

Lactose

p-aminobenzoic acid

Cysteine

Imidazole

Iodoacetamide

Monosodium phosphate

Duchefa

Ethylenediaminetetraacetic acid disodium salt

Fisher BioReagents

Acrylamide/Bisacrylamide 37.5:1 40% solution

Brilliant blue G-250

Coomassie Blue R-250

Methanol

Fisher chemicals

Acetic acid, glacial

Acetone

Acetonitrile

Ammonium bicarbonate

Ammonium sulphate

Ethanol

Glycerol

D-(+)-Glucose

Ammonium per sulphate

N,N,N',N'-tetra methylethylene diamine (TEMED)

Phosphoric acid

Potassium dihydrogen phosphate

Propan-2-ol

Dipotassium hydrogen phosphate

Sodium carbonate

Sodium hydroxide

Sodium tetraborate

Melford

Agarose (High gel strength)

Dithiothreitol

Glycine

N-[2-hydroxyethylpiperazine-N'-[2-ethanesulphonic acid] (HEPES)

Isopropyl-β-D-thiogalactopyranoside

Kanamycin

Sodium chloride

Sodium dodecyl sulphate

Tris [Hydroxymethyl] aminomethane (Tris-HCl)

Urea

Promega

Trypsin Gold

Riedel-deHaen

Hydrochloric acid

Sulphuric acid

Sigma

L-Aspartic acid

Ammonium sulphate

Bovine serum albumin (BSA)

Bromophenol blue

CHAPS

Citric acid

Dipotassium phosphate

Ethidium bromide

Ferrous sulphate

Magnesium sulphate

Magnesium chloride

β-mercaptoethanol

Pantothenic acid

Potassium chloride

Xylene cyanol

Potassium monophosphate monobasic

Phenol

Resazurin

Riboflavin

Sodium acetate

Sodium chloride

Sodium hydroxide

Sodium sulphite

Calcium chloride

Cobalt chloride

Cupric chloride

Manganese chloride

Nickel (II) chloride

Barium chloride

Strontium chloride

Zinc chloride

Bradfords reagent

Porcine gastric Mucin Type II

Porcine gastric mucin Type III

Media:

Oxoid

Agar (Bacteriological agar N° 1)

NZ amine (casein hydrolysate)

Tryptone

Yeast extract

Columbia Agar base

Anaerobic CO_2 generation compact [CO_2 GenTM (Atmosphere Generation System)]

Difco

Casitone (Bactopeptone)

BactAlert^{TN} Anaerobic Basal media

Hampton Research

Aquasil

Amino acids and vitamins used in media:

Acros	Sigma	Fisher	BDH	Aldrich
		Scientific		
L-alanine			4-	Isoleucine
L-alanine	L-arginine	L-lysine		Isoleucine
			aminobenzoic	
			acid	
L-aspartic acid	Ascorbic acid		L(-)- Proline	L-tryptophan
L-glutamic acid	L-asparagine			
Pyridoxine	Folic acid			
Riboflavin	Glutamine			
L-serine	D(+) Biotin			
L-threonine	L-histidine			
L-valine	L-leucine			
	Niacinamide			
	Nicotinic acid			
	L-			
	phenylalanine			
	L-tyrosine			

Crystallisation chemicals:

Ammonium acetate- Fisher chemicals Ammonium chloride- Fisher Tri ammonium citrate- Fisher Ammonium citrate dibasic- Sigma Ammonium formate- Acros Ammonium fluoride- Sigma Ammonium dihydrogen orthophosphate- Fisher Ammonium nitrate- Fisher Ammonium sulphate- Sigma Ammonium tartrate dibasic- Sigma **Bicine-Acros Bis-Tris- Melford Bis-Tris propane- Sigma** 1, 4- Butanediol- Acros Caesium chloride- Fisher Calcium acetate (dried) - Fisher Calcium chloride hexahydrate- Fisher CAPS free acid- Melford CHES- Melford Citric acid- Fisher

Cobalt (II) chloride- Fisher

1, 4- Dioxane- Fisher

Diammonium hydrogen citrate- Fisher

HEPES, free acid- Melford

Hexadecyl trimethyl ammonium bromide- Sigma

1, 6- Hexanediol- Acros, Fisher

Jeffamine- Fluka

Imidazole (GPG) – Fisher

Iron (II) chloride- Fisher

DL-Malic acid- Fisher

Tertiary butyl alcohol- Fisher

Barbitone sodium- BDH

Barium chloride- Sigma

Calcium sulphate- Fisher

Cadmium chloride- Acros

Ethylene glycol- Fisher

Formaldehyde (40%) – BDH

Formamide- BDH

Lithium acetate dehydrate- Acros

Lithium chloride anhydrous- Fisher

Lithium sulphate- Fisher

Magnesium acetate- Sigma

Magnesium chloride- Fisher

Magnesium formate dehydrate- Fluka

Magnesium nitrate- Fisher Magnesium sulphate- Fisher MES- Fisher 2-methyl-1, 2- pentanediol- Acros Nickel (II) chloride- Fisone Nickel chloride hexahydrate- sigma Nickel sulphate- BDH Nickel (II) sulphate hexahydrate- Sigma Pentaerythritol ethoxylate- Aldrich Phenylmethyl sulfonyl fluoride- Sigma Poly (acrylic acid) – Acros Polyethylene glycol- Fluka Polyethylene glycol 4000 grade- Fisher Polyethylene glycol 6000 grade- Fisher Potassium dichromate-Melford Potassium hydrogen tartrate- Fisher Potassium iodide- Fisone Sodium cacodylate trihydrate- Fisher Sodium cyanoborohydride- Sigma Thiomersal- BDH Tri-lithium citrate tetrahydrate- Fluka Sodium chloride- Fisher Potassium thiocyanate- Fisher

Sodium acetate trihydrate- Fisher Potassium-dihydrogen orthophosphate- Fisher Potassium nitrate- Fisher Sodium formate- Fisher Potassium chloride- Fisher Potassium iodide- Fisher Sodium sulphate anhydrous- Fisher Zinc acetate- Fisher Sodium thiocyanate dehydrate- Fisher Tri-sodium citrate- Fisher Potassium sulphate- Fisher Sodium selenite- Sigma Polyethylenimine-Sigma Zinc sulphate- Fisher di- sodium tetraborate- Fisher Succinic acid- Fisher Potassium bromide- Fisher Di-sodium hydrogen orthophosphate dodecahydrate- Fisher Sodium nitrate- Fisher Sodium bromide- Fisher Sodium fluoride- Fisher Zinc chloride- Fisher Sodium succinate- Fisher

Tri-sodium citrate- Fisher Potassium sodium tartrate- Fisher Trimethylamine N-oxide dehydrate- Acros Tri potassium citrate- Fisher Tris Base Ultrapure- Melford Sodium propionate- Fisher Polyvinyl pyrrolidone K15- Fluka Sodium dihydrogen orthophosphate dehydrate- Fisher Sodium tartrate- Fisher Potassium formate- Fluka Potassium fluoride anhydrous- Fluka Potassium acetate- Fisher Sodium selenite- Fisher Sodium acetate trihydrate- Fisher Di-potassium hydrogen orthophosphate- Fisher Polyethylene glycol 20000- Fluka Polyethylene glycol 5000 monomethyl ether- Fluka Propan-2-ol- BDH Polypropylene glycol 2000 grade- Fisher Porpane-1, 2- diol- Fisher Propylene glycol 400- Fluka Pentaerythritol propoxylate- Aldrich Polyethylene glycol 8000- Fisher

Polyethylene glycol 400 grade- Fisher
Polyethylene glycol 600 grade- Fisher
Polyethylene glycol 1000 grade- Fisher
Polyethylene glycol- Sigma
Polyethylene glycol 3000- Fluka
2-Ethoxyethanol- Fisher
Polyethylene glycol 200 grade- Fisher
Polyethylene glycol 300- Sigma
Glycerol- Fisher
Polyethylene glycol 2000 monomethyl ether- Fluka.

A2 Recipe for buffers used in the cloning experiment

Taq reaction buffer (10 X)

Tris pH 8.4	200 mM
KCI	500 mM
MgCl ₂	50 mM

T4 DNA polymerase reaction buffer (10 X)

Tris- HCI pH 8.8	67 mM
MgCl ₂	6.7 mM
(NH ₄) ₂ SO ₄	16.6 mM
β mercaptoethanol	10 mM
EDTA	6.7 µM

BSA 170 μg/mL

KOD polymerase reaction buffer (10 X)

Tris HCl pH 7.5 at 25°C	20 mM
MgCl ₂	8 mM
DTT	7.5 mM
BSA	50 µg/mL

NE Buffer 2 (1 X)

NaCl	50 mM
Tris-HCl pH 7.9 at 25°C	10 mM
MgCl ₂	10 mM
DTT	1 mM

The buffer is supplied at a 10 X concentration.

Appendix B

Lab Equipment

Autoclaving

A benchtop Prestige® Medical 2100 Classic autoclave was used to sterilise solutions at 121°C, 32 lb/inch² pressure for 20 min.

pH meter

pH of solutions were adjusted to the required values using a Jenway Ion Meter 3340 calibrated with the standard buffer values of pH 4.0, 7.0 and 9.2.

Spectrophotometer

The Cecil 2000 Series Spectrophotometer was used to determine the cell density of cultures of bacteria at various stages of growth. The wavelength was set to 660 nm for bacterial cultures and 420 nm for determining the optical density of Bradford assay reaction mixtures.

The Hitach Fluorescence Spectrophotometer was used to determine the enzyme activity against methylumbelliferone substrates. The excitation wavelength was set at 360 nm and the emission wavelength was set at 460 nm.

Incubators

A Gallenkamp orbital shaker was used to grow liquid bacterial cultures and a Gallenkamp static incubator was used to grow bacteria on solid media. The..... anaerobic chamber was used to grow bacteria anaerobically at 37°C. The static incubator maintained a stable anaerobic environment by being flushed with a mixture of 10% carbon-di-oxide gas, 80% nitrogen gas and 10% hydrogen gas.

Freeze drier

The trypsinised protein samples containing digested peptides were lyophilised using the Christ® Alpha 1-2 freeze drier.

Centrifugation

The Sigma^{*} 1-15 bench top microcentrifuge was used to centrifuge samples of upto 1.5 ml in volume. The Sigma 3K18C refrigerated bench top centrifuge was used to centrifuge larger volumes of cultures or solutions (>1.5 ml). The rotors used have been detailed as follows:

The rotor number 11133 was used to harvest cells at 4000 xg in clay universal holders (part No. 17049, 25 ml plastic universals were used), concentrate proteins at 4000 xg in 30 kDa cut off protein concentrators which were inserted into clay universal holders (part No. 17049). The rotor number 12158 was used to separate soluble cell extract from lysed cells at 14000 xg in 30 ml plastic centrifuge tubes (part No. 31190030). The rotor number 12131 was used to isolate DNA from the Qiagen kit and to extract proteins from lysed cells by centrifuging at 14000 xg in 1.5 ml microcentrifuge tubes.

Sonication

The MSE Soniprep 150-ultrasonication machine was used to lyse cells.

Protein purification

Large scale purification of proteins was carried out using an AKTA prime and the FPLC system which was controlled by Prime View Software.

PCR machine

Eppendorf MasterCycler[™] PCR machine was used to perform all the PCR reactions.

Electroporator

A Bio-Rad Gene Pulser Xcell[™] with an attached Bio-Rad Pc and CE module was used for the transformation of electrocompetent cells. The Bio-Rad ShockPod[™] was used to place the cuvettes.

Agarose gel kits

Owl Scientific EASY-CAST electrophoresis system was used for the electrophoresis of DNA and the power supply was an E-C 570-90 E-C Apparatus Corporation power pack.

2D Clean up kit from Amersham Biosciences

The solutions used in the Clean up kit include the precipitant solution which was used to in solubilise proteins, the co-precipitant solution which worked with the precipitant solution in enhancing the precipitation of proteins, the wash buffer to get rid of non protein contaminants and the wash additive to facilitate rapid and complete resuspension of the proteins in the solution. Due to trade reasons, the company have not revealed the exact composition of these solutions.

SDS-PAGE gel kits for small gels

A Bio-Rad Mini-PROTEAN 3 Cell kit was used for the electrophoresis of proteins and the same E-C 570-90 E-C Apparatus corporation power pack was used.

SDS-PAGE kit for 2D analysis of large gels

Protean II XL 2-D cells and accessories were used to perform the electrophoresis. The kit included a tank and a lid, a central cooling core unit, casting stand, sandwich clamps, alignment card and combs. The accessories provided include a 4 mm xi clamp notch vs. 13 mm XL clamp notch, 19 mm xi spacer vs. 8 mm XL spacer, 181 mm xi core gasket vs. 198 mm XL core gasket and a 153 mm xi comb vs. 184 mm XL comb.

The molecular biology kits used in the study include the Qiagen Miniprep kit for the purification of recombinant plasmids, the Qiagen Maxiprep kit for the large scale preparation of cloning vectors, the Qiagen Qiaquick gel extraction kit for the purification of DNA from agarose gels and the Qiagen DNeasy kit for the purification of genomic DNA.

Immobiline DryStrip Kit

Immobiline[™] DryStrip gels of pH range 4-7 and 3-10 were ordered as a part of the electrophoresis kit. The other parts include the electrodes (anode and cathode), try and electrode holder, DryStrip aligners, IEF electrode strips and the Bio-Rad power pack 200 and Universal power supply pack for protein and nucleic acid electrophoresis.

Gel Documentation

The Quantity One^{TM} software in the Bio-Rad Gel Doc 2000 system was used to visualise the agarose gels. The Bio-Rad GS-800 densitometer was used to visualise SDS-PAGE gels. Hard copies of the gel were obtained using the Mitsubishi Video Copy Processor (Model P91) with Mitsubishi thermal paper (K65HM-_{CE}/High density type, 110 mm X 21 m).

Gel spot analysis

The spots on the gels were compared and analysed using the Advanced PDQuest[™] 8.0 software in the Bio-Rad Gel Doc 2000 system.

LC-MS analysis

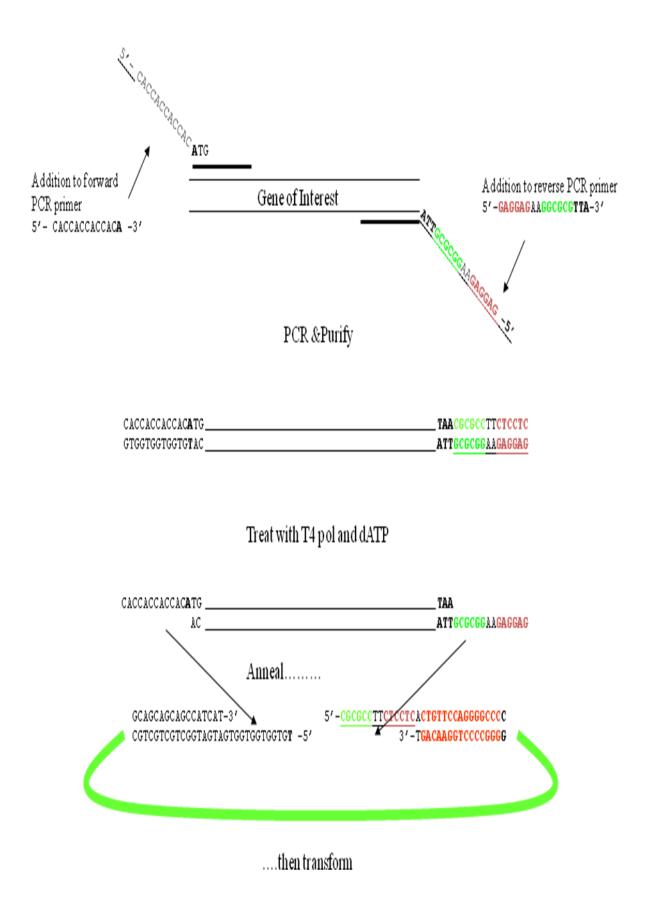
The Ultimate 3000 Dionex LC system was used to separate the peptide fragments before Mass spectrometric analysis. The LC system was equipped with a vaccum degasser, a UV cell compartment, flow manager, column compartment fitted with an oven maintained at 60°C and the autosampler system with a multiwell sample microtitre plate.

Mass spectrometric analysis

The peptides of interest were identified using the Bruker Daltonics ESI-ion trap Mass spectrometer equipped with the Esquire series, Hystar sample processing, Chromeleon LC system and the Biotools software for Mascot database searches.

Appendix C Vectors used in the cloning experiment The vector used in cloning was pET-YSBLIC

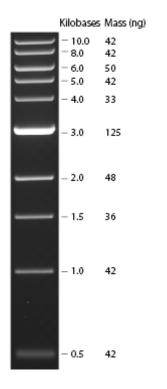
Construct = pET-YSBLIC


GAGGAG BseRI PreScission (3C) Protease CTGGAAGTTCTGTTCCAGGGGGCCC GGCGCGCC AscI CATATG NdeI

Parent vector, Pet-28a containing 3C protease site

5'-AGATATACCATGGGCAGCAGCATCATCATCATCATCATCATCACAGCAGCGGCCTGGAAGTTCTGTTCCAGGGGCCCCATATGGCTAGCATGACTGGTGGACAGCAAATG-3' 3'-TCTATATGGTACCCGTCGTCGGTAGTAGTAGTAGTAGTGTGTCGTCGCCGGGCCCTTCAAGACAAGGTCCCCGGGGTATACCGATCGTACTGACCACCTGTCGTTTAC-5' ArgArgTyrMetGlySerSerHisHisHisHisHisSerSerGlyLeuGluValLeuPheGlnGlyProHisMetAlaSerMetThrGlyGlyGlnGlnMet

YSBL pET-28a LIC



Appendix D

Protein and DNA size standards

Proteins	Molecular	High range	Wide	Low range
	weight	(S8320)	range	(M3913)
			(S8445)	
Myosin from rabbit	200000	X	X	
muscle				
B-galactosidase from <i>E</i> .	116000	X	Х	
coli				
Phosphorylase b from	97000	X	Х	
rabbit muscle				
Albumin, bovine serum	66000	Х	X	X
Glutamic	55000	X	Х	
dehydrogenase from				
bovine liver				
Ovalbumin from chicken	45000	X	X	Х
egg				
Glyceraldehyde-3-	36000	Х	Х	Х
phosphate				
dehydrogenase from				
rabbit muscle				
Carbonic anhydrase	29000		Х	X
from bovine				
erythrocytes				
Trypsinogen from	24000		Х	Х
bovine pancreas				
Trypsin inhibitor from	20000		Х	Х
soyabean				
α-lactalbumin from	14200		Х	Х
bovine milk				
Aprotinin from bovine	6500		Х	Х
lung				

High and low molecular weight markers for SDS PAGE gels

NEB 1 kb Ladder used to determine the mass of the DNA fragments.

HyperLadder I

	SIZE	(bp)	ng/BAND
		0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000	100 80 60 50 40 30 25 20
	· 1	500	15
-	F−−− 1	000	100
-		800	80
	H	600	60
	H	400	40
	·	200	20
	1% agarose	gel	

- Higher intensity bands: 1000bp and 10000bp
- · Supplied in a ready-to-use format
- Each lane (5µl) provides 720ng of DNA

Bioline hyperladder I used as a size standard for agarose gel electrophoresis.

Appendix E

Growth curve data for <i>E. cancerogenus</i> and <i>B. fragilis</i>						
	Time in	Absorbance	Absorbance	Absorbance	Average	
	h	at 600 nm-	at 600 nm-	at 600 nm-	absorbance	
		Experiment 1	Experiment 2	Experiment 3	at 600 nm	
	0	0	0	0	0	
	2	0.081	0.083	0.087	0.083667	
	3	0.416	0.58	0.55	0.515333	
	4	0.789	0.882	0.831	0.834	
	5	1.156	1.288	1.186	1.21	
	6	1.386	1.415	1.306	1.369	
	7	1.412	1.426	1.364	1.400667	
	8	1.434	1.445	1.474	1.451	

Growth curve data for *E. cancerogenus* and *B. fragilis*

Table 5: Growth of *E. cancerogenus* in control media without mucin

Time	Absorbance	Absorbance	Absorbance at	Average
in h	at 600 nm-	at 600 nm-	600 nm-	absorbance at
	Experiment 4	Experiment 5	Experiment 6	600 nm
0	0	0	0	0
2	0.053	0.076	0.108	0.079
3	0.21	0.256	0.257	0.241
4	0.931	0.794	0.786	0.837
5	1.264	1.132	1.188	1.194667
6	1.38	1.31	1.256	1.315333
7	1.392	1.370	1.376	1.379333
8	1.396	1.350	1.386	1.377333

Table 6: Growth of E. cancerogenus in media enriched with mucin	Type II
---	---------

Time	Absorbance at	Absorbance	Absorbance	Average
in h	600 nm-	at 600 nm-	at 600 nm-	absorbance
	Experiment 7	Experiment 8	Experiment 9	at 600 nm
0	0	0	0	0
2	0.104	0.107	0.072	0.094333
3	0.31	0.292	0.280	0.294
4	0.901	0.897	0.807	0.868333
5	1.106	1.116	1.152	1.124667
6	1.186	1.242	1.264	1.230667
7	1.208	1.144	1.2	1.184
8	1.188	1.156	1.204	1.182667

Table 7: Growth of *E. cancerogenus* in media with mucin Type III

Time	Absorbance at	Absorbance at	Absorbance at	Average
in h	600 nm-	600 nm-	600 nm-	absorbance at
	Experiment 10	Experiment 11	Experiment 12	600 nm
0	0	0	0	0
4	0.067	0.087	0.059	0.071
6	0.112	0.1	0.158	0.123333
21	0.313	0.286	0.307	0.302
22	0.439	0.383	0.426	0.416
23	0.748	0.596	0.619	0.654333
24	1.004	0.909	0.93	0.947667
25	1.018	1.052	1.069	1.046333
26	1.394	1.298	1.243	1.311667
27	1.526	1.483	1.418	1.475667
28	1.556	1.552	1.512	1.54
29	1.488	1.418	1.385	1.430333
30	1.452	1.448	1.422	1.440667
31	1.475	1.466	1.486	1.475667
46	1.402	1.412	1.423	1.412333
47	1.328	1.396	1.404	1.376

 Table 8: Growth of B. fragilis in control media without mucin

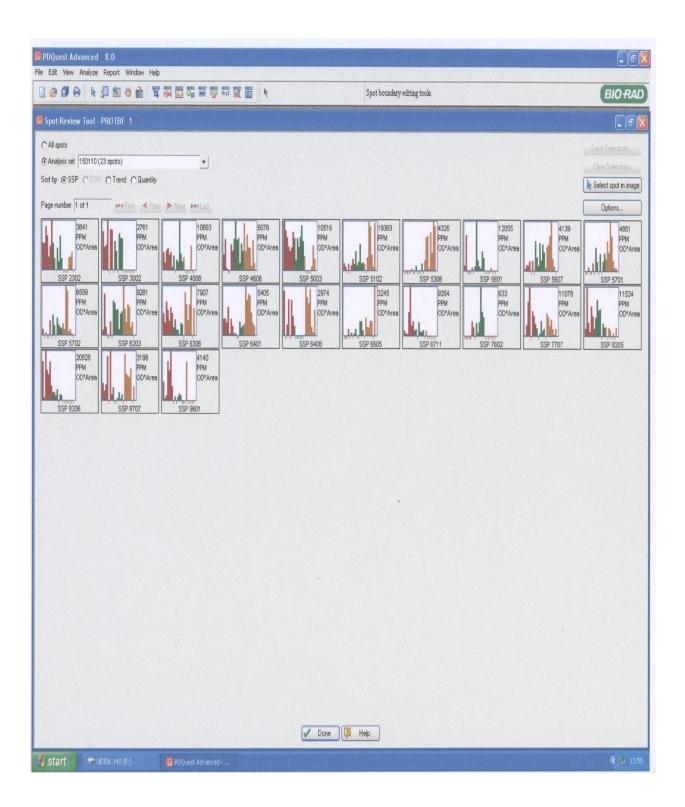
Time	Absorbance at	Absorbance at	Absorbance at	Average
in h	600 nm-	600 nm-	600 nm-	absorbance
	Experiment 13	Experiment 14	Experiment 15	at 600 nm
0	0	0	0	0
4	0.012	0.018	0.015	0.015
6	0.05	0.041	0.045	0.045333
21	0.098	0.106	0.102	0.102
22	22 0.206 0.236		0.226	0.222667
23	0.34	0.358	0.36	0.352667
24	0.397	0.412	0.422	0.410333
25	0.532	0.622	0.603	0.585667
26	0.718	0.814	0.798	0.776667
27	0.922	1.039	0.956	0.972333
28	1.294	1.334	1.306	1.311333
29	1.433	1.461	1.457	1.450333
30	1.359	1.398	1.405	1.387333
31	1.382	1.368	1.393	1.381
46	1.401	1.387	1.384	1.390667
47	1.385	1.355	1.376	1.372

 Table 9: Growth of B. fragilis in media with mucin Type II

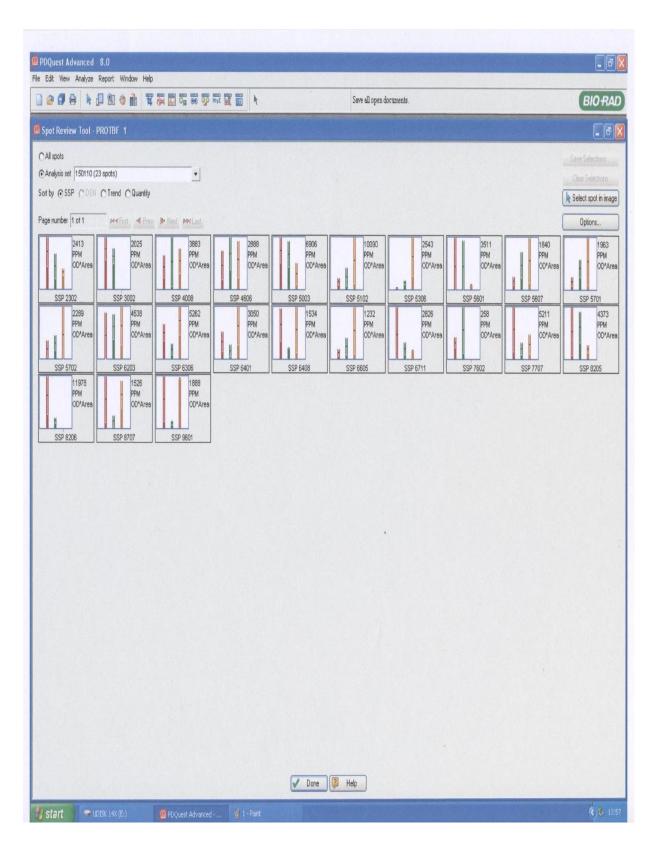
Time	Absorbance at	Absorbance at	Absorbance at	Average
in h	600 nm-	600 nm-	600 nm-	absorbance
	Experiment 16	Experiment 17	Experiment 18	at 600 nm
0	0	0	0	0
4	0.029	0.023	0.019	0.023667
6	0.063	0.052	0.058	0.057667
21	0.165	0.158	0.162	0.161667
22	0.384	0.4	0.391	0.391667
23	0.598	0.675	0.656	0.643
24	0.738	0.842	0.823	0.801
25	1.012	1.058	1.035	1.035
26	1.328	1.338	1.332	1.332667
27	1.438	1.463	1.457	1.452667
28	1.402	1.417	1.423	1.414
29	1.334	1.393	1.404	1.377
30	1.374	1.355	1.369	1.366
31	1.348	1.382	1.375	1.368333
46	1.368	1.376	1.36	1.368
47	1.284	1.318	1.307	1.303

Table 10: Growth of *B. fragilis* in media with mucin Type III

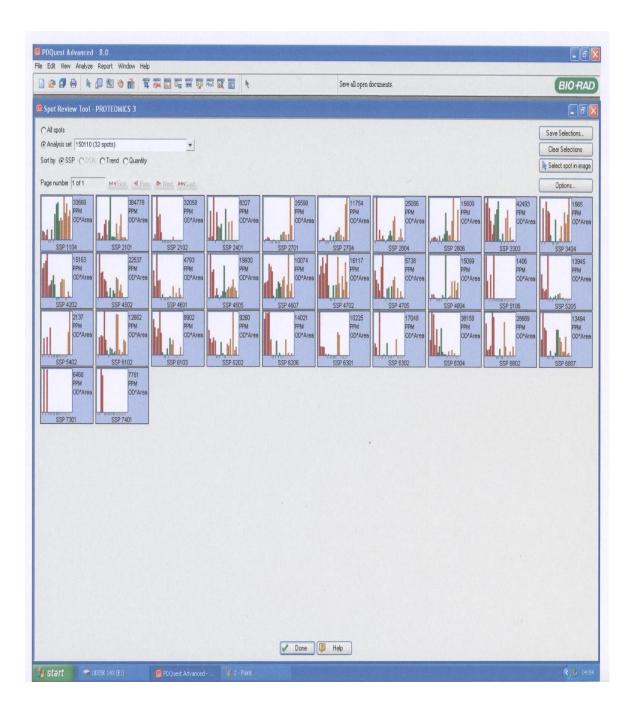
E1 Resazurin test method


A 0.001% resazurin solution was prepared by dissolving 1 mg of resazurin and 2 g of cysteine-HCI in sterile 18.2 M Ω /cm making it up to 100 ml. The solution was aliquoted into 5 ml quantities and used as indicators. The resazurin strips or solutions were pink to purple in the presence of oxygen and gradually turn colourless when left in an environment lacking oxygen. This was normally used as a test to confirm the absence of oxygen in the bacterial growth environment.

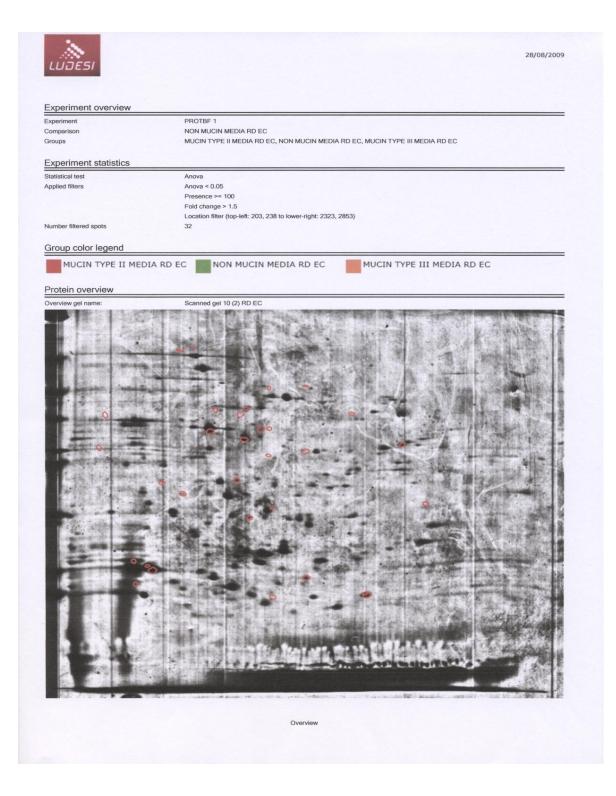
Appendix F- Analysis data for 2DE gels


F1 Gel analysis data for *E. cancerogenus* and *B. fragilis* using Bio-Rad PDQuest software

			Create a new experiment.		BIO
Spot Review Tool - PROTEOMICS 3					
∩All spots					Save Selection
Analysis set 150110 (32 spots)	•				Clear Select
iont by ©SSP ©DSN ©Trend ©Quantity					Select spot i
Page number 1 of 1 Mark Find, of Prev.		8473	5026	6396	
19872 110334 PPM OD*Area SSP 1104 SSP 2101	13090 PPM OD*Area SSP 2102 SSP 2401 4116 PPM OD*Area SSP 2401	PPM OD*Area	PPM	PPM OD*Area	SSP 3303 SSP 340
9704 PPM OD*Area U O*Area	2585 PPM OD*Ares N	4529 PPM OD*Area	PPM OD*Area	3146 PPM OD*Area H	1042 PPM OD*Area SSP 5106 SSP 520
SSP 4202 SSP 4502 1629 5677 PPM PPM OD*Area OD*Area	SSP 4601 SSP 4605 S965 PPM OD'Area OD'Area	SSP 4607 11702 PPM OD*Area	PPM	8285 PPM OD*Area UD*Area	15094 PPM OD*Area
SSP 5402 SSP 6102 6447 7231 PPM OD*Area	SSP 6103 SSP 6202	SSP 6206	SSP 6301 SSP 630	12 SSP 6304	SSP 6802 SSP 680
SSP 7301 SSP 7401					


'Protbf 1' Average quantities of differentially expressed spots in three different growth conditions. Red bars indicate non-mucin media, Green bars- mucin Type II enriched media, Brown bars- mucin Type III enriched media.

'Protbf 1' Protein quantities in individual gels of differentially expressed spots in three different growth conditions. Red bars indicate non-mucin media, Green bars- mucin Type II enriched media, Brown bars- mucin Type III enriched media.



'Proteomics 3' Average quantities of differentially expressed spots in three different growth conditions. Red bars indicate non-mucin media, Green bars- mucin Type II enriched media, Brown bars- mucin Type III enriched media.

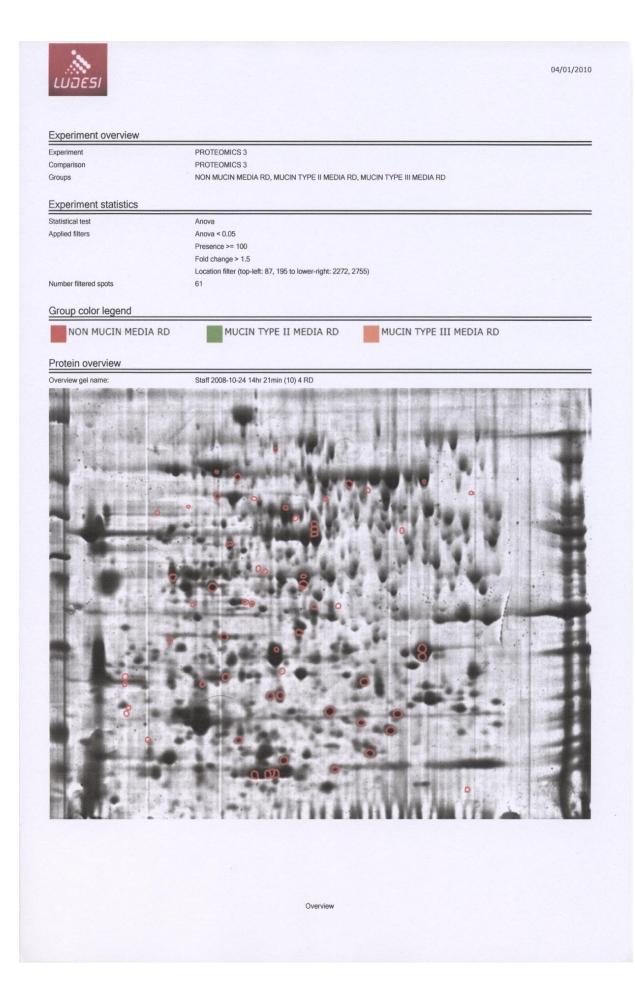
'Proteomics 3' Protein quantities in individual gels of differentially expressed spots in three different growth conditions. Red bars indicate non-mucin media, Green bars- mucin Type II enriched media, Brown bars- mucin Type III enriched media.

F2 Gel analysis data for *E. cancerogenus* and *B. fragilis* using Ludesi Redfin software

28/08/2009

Filtered	spots						
ID Anova Presence Fold Volume	619 0.0470 100 % 2.01 323		0	0	•		
ID Anova Presence Fold Volume	733 0.0459 100 % 1.81 468		D	b			÷
ID Anova Presence Fold Volume	127 0.0450 100 % 4.41 2140	1-2	A	d.	0		*
ID Anova Presence Fold Volume	320 0.0434 100 % 1.79 1608				0		
ID Anova Presence Fold Volume	681 0.0433 100 % 2.67 655		0				
ID Anova Presence Fold Volume	583 0.0430 100 % 3.03 1182		0	0	0		*
ID Anova Presence Fold Volume	695 0.0425 100 % 2.32 650		0	Ø			
ID Anova Presence Fold Volume	636 0.0418 100 % 2.01 2436	Personal and	0	0	0		
ID Anova Presence Fold Volume	24 0.0354 100 % 1.54 27676		0	0	0		
ID Anova Presence Fold Volume	445 0.0345 100 % 2.46 1025		0	Q.	0		

Item 1 to 10 of 32


28/08/2009

D Anova Presence Fold Volume	672 0.0324 100 % 3.44 366			
D Anova Presence Fold Volume	87 0.0296 100 % 2.58 1795			
D Anova Presence Fold Volume	483 0.0262 100 % 2.93 609			
D Anova Presence Fold Volume	551 0.0250 100 % 4.36 667		0	
D Anova Presence Fold Volume	210 0.0247 100 % 2.55 1400			
ID Anova Presence Fold Volume	565 0.0242 100 % 2.45 635		000	
ID Anova Presence Fold Volume	684 0.0204 100 % 1.64 610			
ID Anova Presence Fold Volume	58 0.0202 100 % 3.32 7216			
ID Anova Presence Fold Volume	131 0.0144 100 % 4.57 1871	, i i i i i i i i i i i i i i i i i i i		2000 High fold increase Type III
ID Anova Presence Fold Volume	307 0.0143 100 % 2.40 1247	14 <u>1</u>		
ID Anova Presence Fold Volume	548 0.0143 100 % 2.85 871			
Volume	871		Item 11 to 21 of 32	· MINDA IIIINA I.IIIII

28/08/2009

ID Anova Presence Fold Volume	631 0.0116 100 % 2.55 245			
ID Anova Presence Fold Volume	130 0.0100 100 % 6.67 862			3000 High fold increase in Mucin III
ID Anova Presence Fold Volume	297 0.0089 100 % 2.51 1325			
ID Anova Presence Fold Volume	384 0.0085 100 % 2.18 1205	4		
ID Anova Presence Fold Volume	137 0.0050 100 % 2.71 1208			
ID Anova Presence Fold Volume	351 0.0047 100 % 2.75 1312	1	0	
ID Anova Presence Fold Volume	1 0.0033 100 % 1.73 24393			
ID Anova Presence Fold Volume	48 0.0026 100 % 2.17 9679			
ID Anova Presence Fold Volume	437 0.0020 100 % 2.25 1262			
ID Anova Presence Fold Volume	497 0.0020 100 % 2.13 705			
ID Anova Presence Fold	238 0.0016 100 % 2.33	1. 1. 1.		

Filtered				
D Anova Presence Fold Volume	10 0.0028 100 % 7.04 4270	ø		
D Anova Presence Fold Volume	17 0.0156 100 % 6.78 4047		00	
D Anova Presence Fold Volume	138 0.0204 100 % 6.56 1230	0	o a b.	
ID Anova Presence Fold Volume	8 0.0375 100 % 5.16 636	9		
ID Anova Presence Fold Volume	141 2.848e-6 100 % 5.07 1206	a.	0 0 0	
ID Anova Presence Fold Volume	300 0.0233 100 % 4.99 1999			
ID Anova Presence Fold Volume	7 0.0176 100 % 4.69 4147	0		
ID Anova Presence Fold Volume	104 1.734e-4 100 % 4.62 4452			
ID Anova Presence Fold Volume	3 0.0365 100 % 4.32 879	ø		
ID Anova Presence Fold Volume	253 0.0138 100 % 4.30 541			

Item 1 to 10 of 61

Anova Presence Fold	893 0.0074 100 % 4.00 237	O.		
Anova Presence Fold	558 0.0072 100 % 3.88 1378			
	709 0.0091 100 % 3.85 508		d al o	
D Anova Presence Fold Volume	126 0.0162 100 % 3.78 2211			
ID Anova Presence Fold Volume	267 0.0025 100 % 3.76 2064			
ID Anova Presence Fold Volume	24 0.0242 100 % 3.74 1818			
ID Anova Presence Fold Volume	149 0.0139 100 % 3.66 5225		000	
ID Anova Presence Fold Volume	645 0.0185 100 % 3.55 731	6	000	
ID Anova Presence Fold Volume	415 0.0055 100 % 3.43 874			
ID Anova Presence Fold Volume	402 0.0220 100 % 3.43 587	0		
ID Anova Presence Fold Volume	776 0.0422 100 % 3.26 605		800	
			Item 11 to 21 of 61	

ID

Anova

Fold

ID

Anova

Fold Volume

ID Anova Presence

Fold Volume

ID Anova Presence Fold Volume

-ID Anova Presence Fold Volume

ID Anova Presence Fold Volume -ID Anova Presence Fold Volume -ID Anova Presence Fold Volume

Presence 1

Volume

Presence

578 0.0101 100 % 3.26 711	ð		
80 8.341e-4 100 % 3.26 3433	1		
983 0.0431 100 % 3.24 460	Ø		
573 0.0156 100 % 3.24 581	Q	000	
342 0.0239 100 % 3.23 629			
512 0.0171 100 % 3.11 829	R		
547 7.293e-4 100 % 3.11 1365			
276 0.0205 100 % 3.07 507			

04/01/2010

ID Anova Presence Fold Volume	1074 0.0163 100 % 3.07 557			
ID Anova Presence Fold Volume	603 0.0239 100 % 3.07 581	.0	00	
ID Anova Presence Fold Volume	399 3.558e-4 100 % 3.07 1869			

Item 22 to 32 of 61

mone add and add add add and add add add add						
Provent 29.5 Image: Constraint of the second of the s	ID Anova Presence Fold Volume	0.0021 100 % 2.96	a	0,0		ter of these lines
normal control 2007 Image: Control Image: Control<	ID Anova Presence Fold Volume	0.0449 100 % 2.95		0 0		-11++
nrgence gence tome 2015 2025 Image: Ima	ID Anova Presence Fold Volume	0.0413 100 % 2.95				
resence 100%	ID Anova Presence Fold Volume	0.0165 100 % 2.92				
nova 0.0333 Image of the series of the	ID Anova Presence Fold Volume	0.0037 100 % 2.89		60		
nova 0.0164 1000 %	ID Anova Presence Fold Volume	0.0383 100 % 2.88	0			
nova resence od od 2.75 0.0378 2.75 Impound <	ID Anova Presence Fold Volume	0.0164 100 % 2.84	0	1	. Y	
Nova resence old fold 0.0126 2.71 1895 Image:	ID Anova Presence Fold Volume	0.0378 100 % 2.75				to the last
Anova 0.0096 Presence 100 % 2.70 364 Do n 1004 0.0381 Presence 100 % 2.70 364 Do n 1004 2.70 364 Do n 364 Do n 365 Do n 365	ID Anova Presence Fold Volume	0.0126 100 % 2.71	ø.			
Anova 0.0381 Presence 100 % Fold 2.70 Journe 364	ID Anova Presence Fold Volume	0.0096 100 % 2.70	0	•		
Item 33 to 43 of 61	ID Anova Presence Fold Volume	0.0381 100 % 2.70	2			and the dist
					Item 33 to 43 of 61	

ID Anova Presence Fold Volume	815 0.0136 100 % 2.69 580		
ID Anova Presence Fold Volume	305 0.0211 100 % 2.68 1346		
ID Anova Presence Fold Volume	891 0.0252 100 % 2.67 379		
ID Anova Presence Fold Volume	244 0.0034 100 % 2.66 1905		
ID Anova Presence Fold Volume	287 0.0101 100 % 2.65 1357		
ID Anova Presence Fold Volume	708 0.0211 100 % 2.62 1976	0	
ID Anova Presence Fold Volume	819 0.0475 100 % 2.50 348	ha.	
ID Anova Presence Fold Volume	34 0.0479 100 % 2.47 4074		
ID Anova Presence Fold Volume	238 0.0271 100 % 2.46 1498		
ID Anova Presence Fold Volume	140 0.0226 100 % 2.41 1211	0	
ID Anova Presence Fold Volume	1063 0.0250 100 % 2.34 746	Q	

论大法国	7000
5	
the second for the same second second second	
CONTRACTOR OF A CONTRACTOR OF A DATA	
and the second se	
	$ = \frac{1}{1000} = $

Item 55 to 61 of 61

F3 Gel analysis data for *E. cancerogenus* and *B. fragilis* using NonLinear Dynamics SameSpots software

Page 1 of 1

PROTBF 1

PROTBF 1

Experiment: PROTBF 1

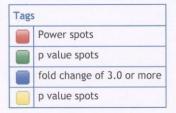
Report created: 16/01/2010 22:18:43

Reference image

		11 30 21	
45) 102 117 117		111 111 111	197 197
2012 CELE (2012	强	221	30 495 495
423 429	E173		
in the second	650 514	211/ 2	799
355 (14)	915 392	309	1021
	1032133	Stello)	
	1403	42	13/1 1313
1260) 1205 1295 1641W	ENEL	2.3	1437 1437
1000 1000 1000 1000 1000 1000 1000		1010215)	eext eext
	17450	a state of the second state of	HONEAU
1911 1995 1995	• •	2017	defetate datedate
3073	2223		-2/2/5/5 -1.42/5
The second dependence	And the second s	24041 20141	24200
Attend And And And And And And And And And A	durat	2512 2582	22001 2505
2652) 2684)	20510 2751	27/201	2001
2850 825			2359) 2355243744 29041 2955
25441 2940 2292942	1999 - 1999 - 1999 - 1999 - 1	alabriate selet a solutet	2975) 2975) 3048
17115 60115	3083042	3024) 3124440	36096
		317/ 31957	9202) 9202
STEP EN SEAN 3	are the	EEE	34127
3505	3597/357/3 350	aldalt)	THE THE
35253604		36911693	STATISTICS
1915	4123	559618962985398	3900 3900
4000		510	4000
: LEGITOR			

file://C:\Documents and Settings\larcje1\My Documents\1.htm

16/01/2010

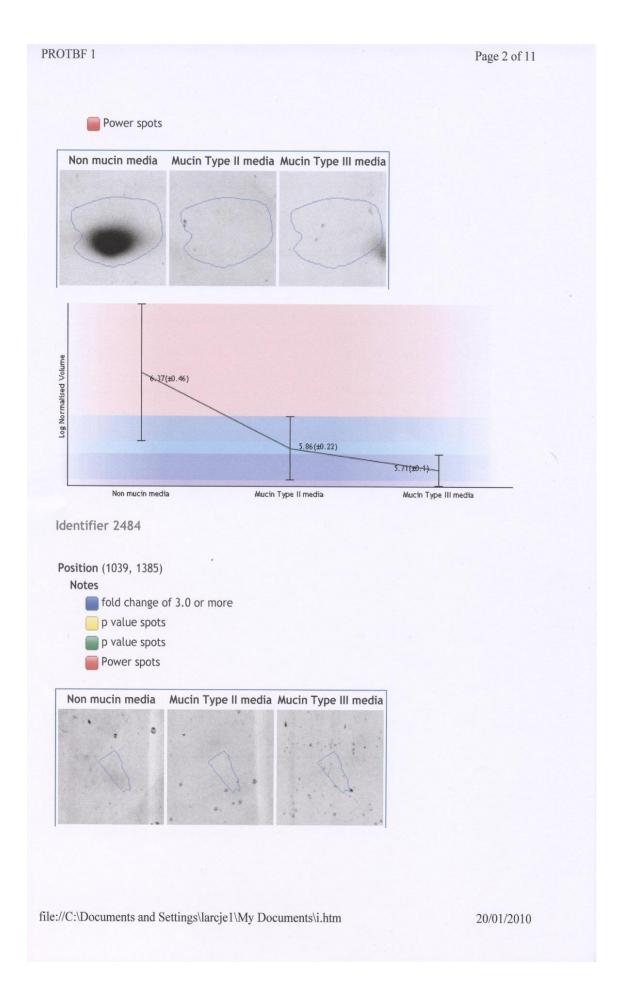

PROTBF 1

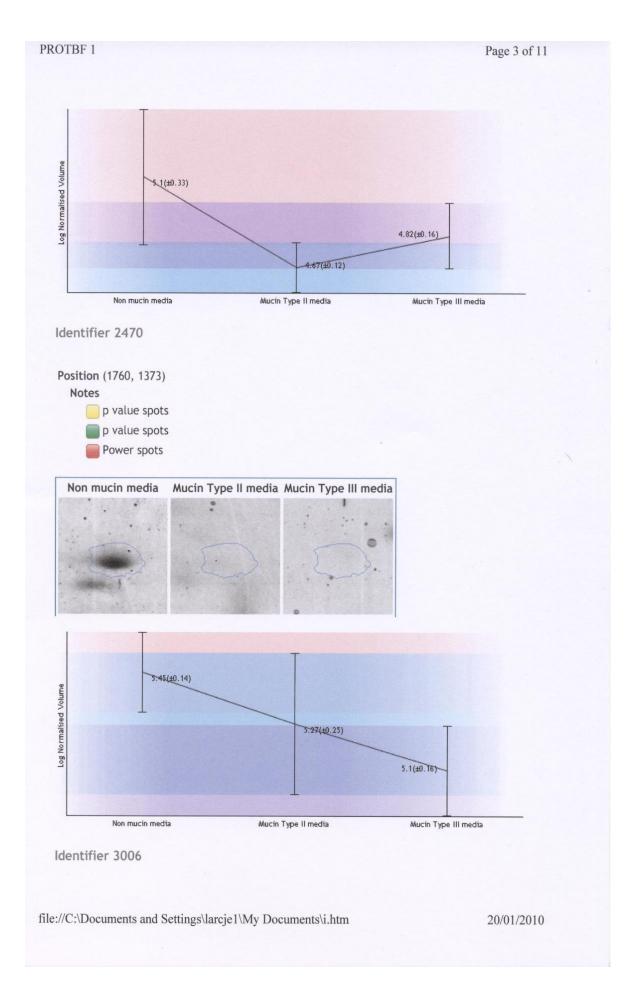
Experiment: PROTBF 1

Report created: 20/01/2010 23:53:23

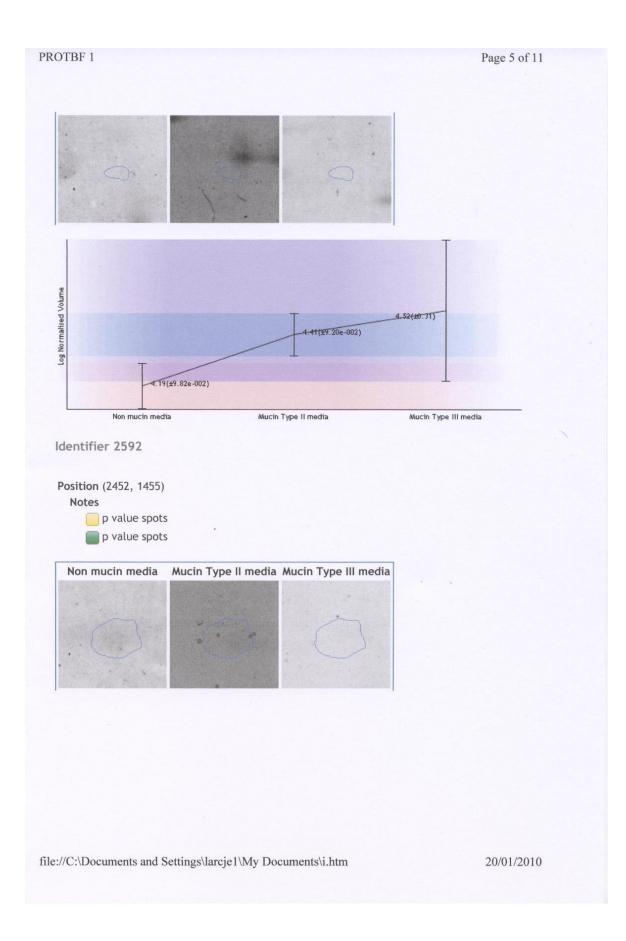
Spots

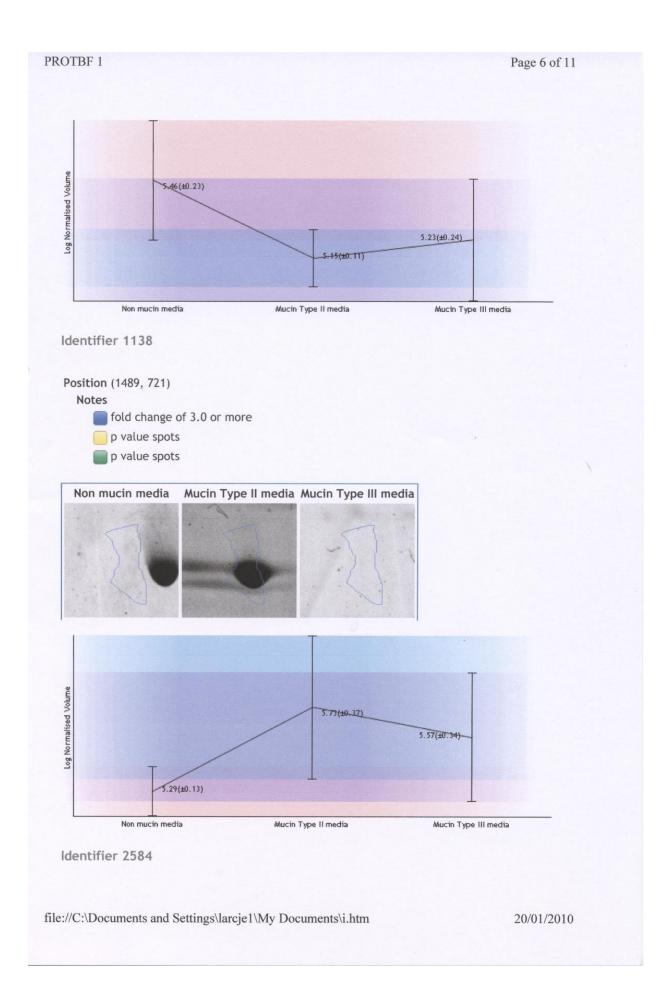
#	Anova (p)) Fold	Tags	Notes	Average Normalised Volumes		
					Non mucin media	Mucin Type II media	Mucin Type III media
3698	3.043e-004	6.0			3.148e+006	7.924e+005	5.241e+005
2484	0.002	3.2			1.516e+005	4.788e+004	6.999e+004
2470	0.003	2.2	-		2.941e+005	2.068e+005	1.350e+005
3006	0.006	2.3			2.202e+005	5.007e+005	2.233e+005
1608	0.011	2.7			1.558e+004	2.609e+004	4.131e+004
2592	0.017	2.1			3.104e+005	1.456e+005	1.927e+005
1138	0.024	3.4			2.021e+005	6.919e+005	4.931e+005
2584	0.025	1.6			4950.707	3996.665	3040.097
3691	0.028	2.8			6.981e+005	9.814e+005	3.530e+005
1295	0.029	6.5			3192.412	2.091e+004	5940.371
3572	0.030	1.8			1.101e+004	1.267e+004	6902.432
4128	0.031	3.0			3.009e+004	9.073e+004	6.460e+004
4319	0.033	6.0			8.717e+004	3.030e+005	5.204e+005
3986	0.054	7.7			1361.911	1.043e+004	2036.838

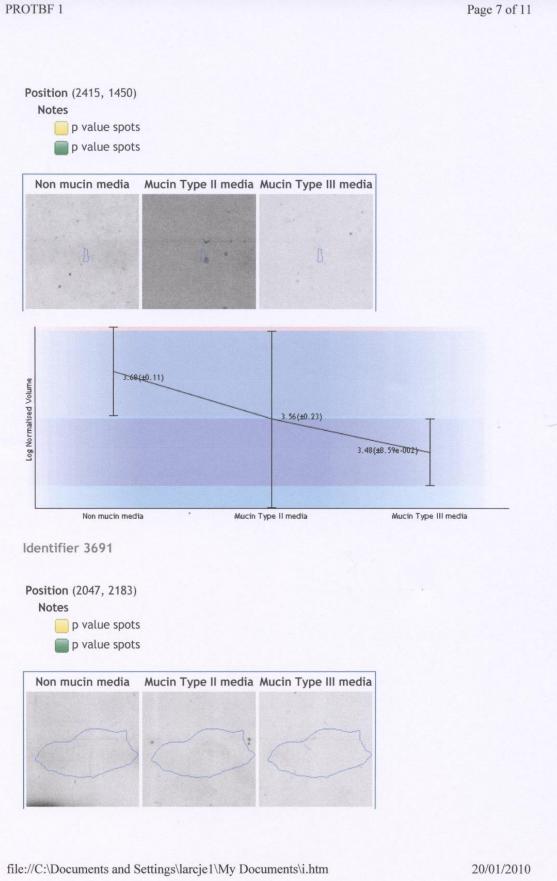


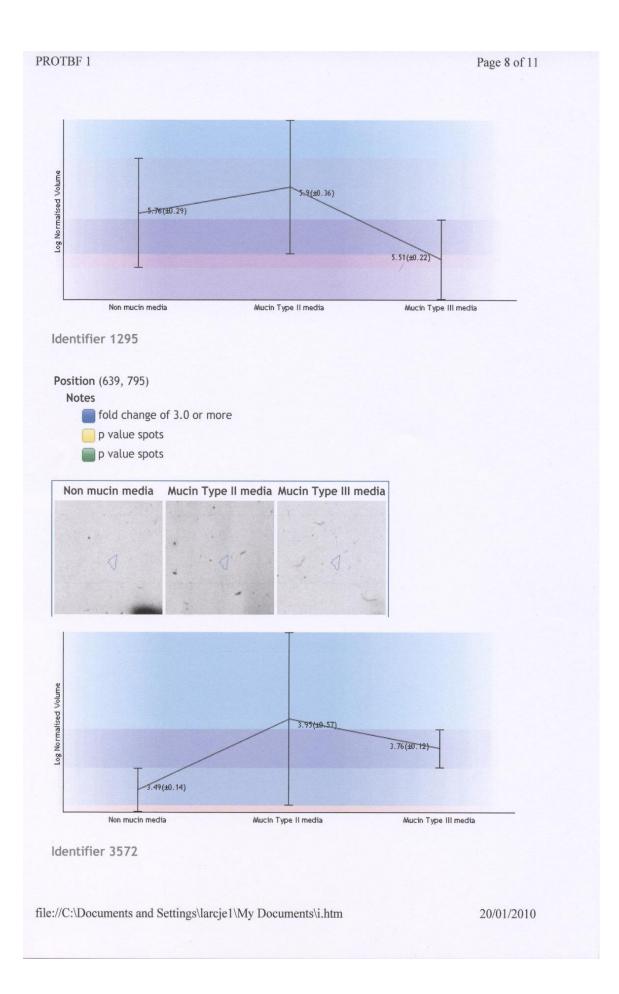

Identifier 3698

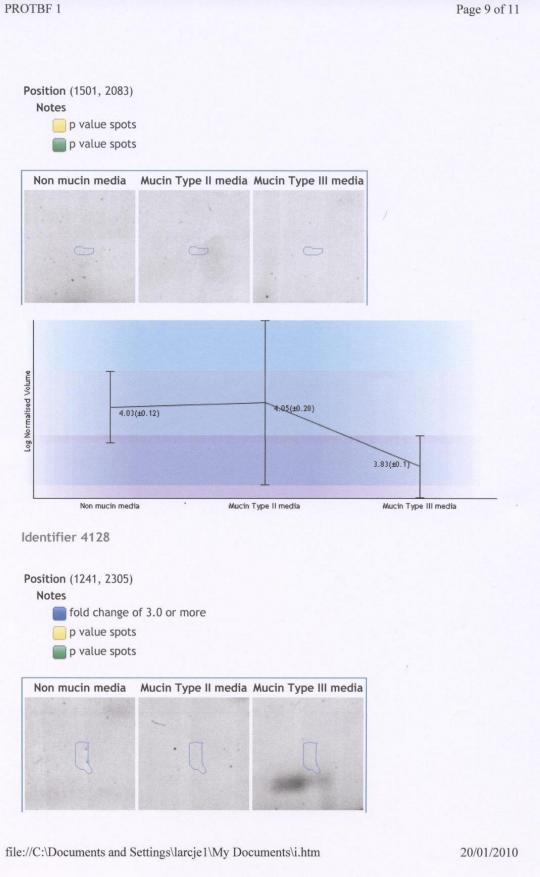
Position (2138, 2189) Notes fold change of 3.0 or more p value spots p value spots

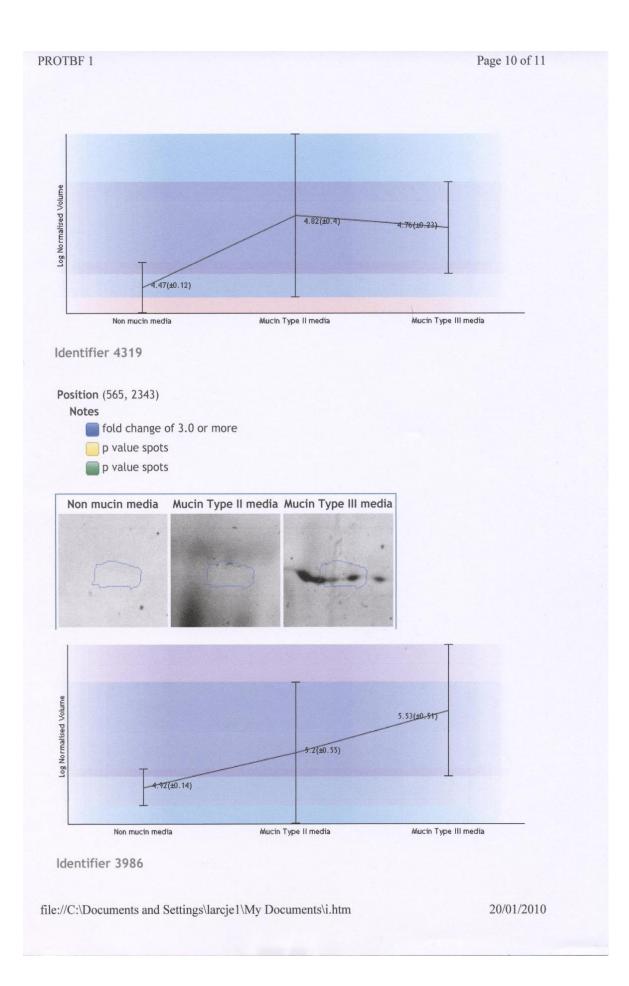

file://C:\Documents and Settings\larcje1\My Documents\i.htm

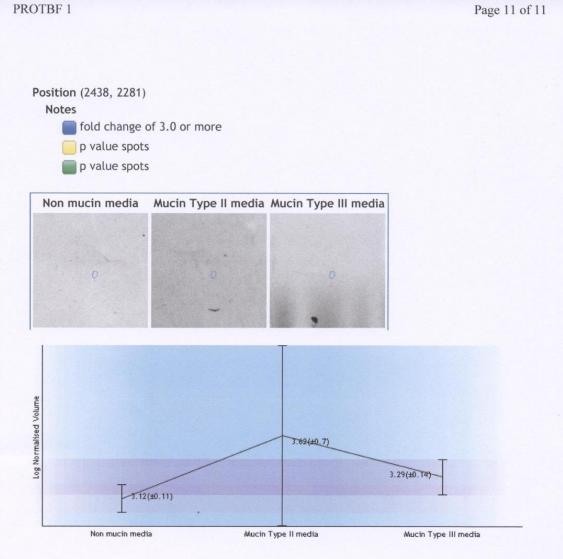

20/01/2010




PROTBF 1 Page 4 of 11 Position (1674, 1761) Notes p value spots p value spots Power spots Non mucin media Mucin Type II media Mucin Type III media 5.68(±0.14) Log Normalised Volume 5.31(±0.2) 5.17(±0.43) Non mucin media Mucin Type II media Mucin Type III media Identifier 1608 Position (2509, 958) Notes p value spots p value spots Power spots Non mucin media Mucin Type II media Mucin Type III media 20/01/2010 file://C:\Documents and Settings\larcje1\My Documents\i.htm



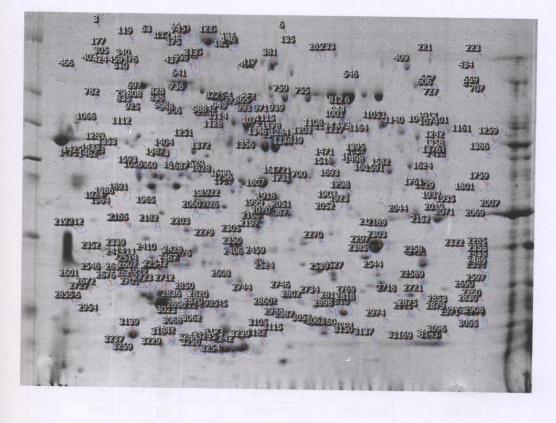

Page 7 of 11



Page 9 of 11

Page 11 of 11

file://C:\Documents and Settings\larcje1\My Documents\i.htm


PROTEOMICS 3

Page 1 of 1

PROTEOMICS 3

Experiment: PROTEOMICS 3 Report created: 16/01/2010 22:22:41

Reference image

file://C:\Documents and Settings\larcje1\My Documents\2.htm

PROTEOMICS 3

Experiment: PROTEOMICS 3

Report created: 20/01/2010 23:57:30

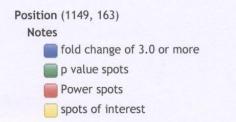
Spots

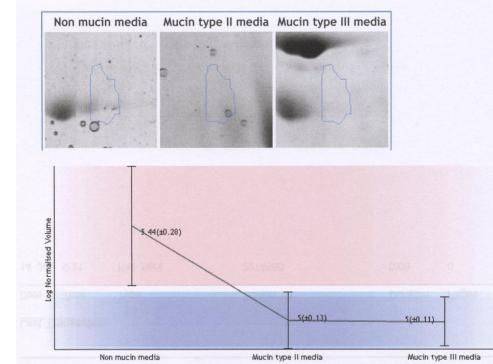
#	Anova (p)	Fold	Tags	Notes	Average Normalised Volumes			
					Non mucin media	Mucin type II media	Mucin type III media	
95	1.039e-004	3.0			3.023e+005	1.031e+005	1.012e+005	
2914	1.114e-004	2.3			1.123e+005	4.946e+004	5.120e+004	
2026	1.362e-004	1.9			6.443e+004	3.867e+004	3.409e+004	
2132	3.050e-004	4.8			4.420e+005	1.284e+005	9.248e+004	
755	3.761e-004	6.7			5.050e+005	7.543e+004	8.154e+004	
3176	5.017e-004	6.1			1.166e+006	2.160e+005	1.925e+005	
2484	6.287e-004	2.0			2.108e+004	1.329e+004	1.052e+004	
2717	6.672e-004	5.1			6.585e+004	3.377e+005	8.572e+004	
2945	6.762e-004	2.3			2.858e+005	1.318e+005	1.254e+005	
2365	8.818e-004	2.9			2.652e+004	9878.909	9019.675	
2608	0.001	2.7			1.663e+005	6.131e+004	7.626e+004	
2746	0.001	3.8			9.243e+005	2.420e+005	2.470e+005	
1171	0.002	3.0			3.900e+005	1.467e+005	1.303e+005	
3139	0.002	3.3			1.783e+006	5.443e+005	5.895e+005	
854	0.002	3.1			9.330e+004	2.854e+005	2.040e+005	
1234	0.002	3.2	-		4.140e+005	1.294e+005	1.517e+005	
3234	0.002	2.5			2.018e+005	8.117e+004	1.190e+005	
2352	0.003	1.9			3754.338	1944.626	3165.534	
2410	0.003	3.7			5.802e+005	5.349e+005	1.571e+005	
1579	0.004	1.9			1433.976	2319.226	2752.321	
1342	0.004	4.9			2.388e+006	4.888e+005	7.282e+005	
3060	0.009	1.7			2.947e+004	1.909e+004	3.283e+004	
813	0.010	3.0			4591.714	1.368e+004	9587.014	
1922	0.022	3.5			4.540e+004	1.605e+005	9.859e+004	
872	0.024	4.1			8057.272	2.099e+004	3.320e+004	
3244	0.026	1.7			2.928e+005	2.396e+005	1.745e+005	
2083	0.028	2.0			8.762e+004	4.398e+004	7.334e+004	

file://C:\Documents and Settings\larcje1\My Documents\d.htm

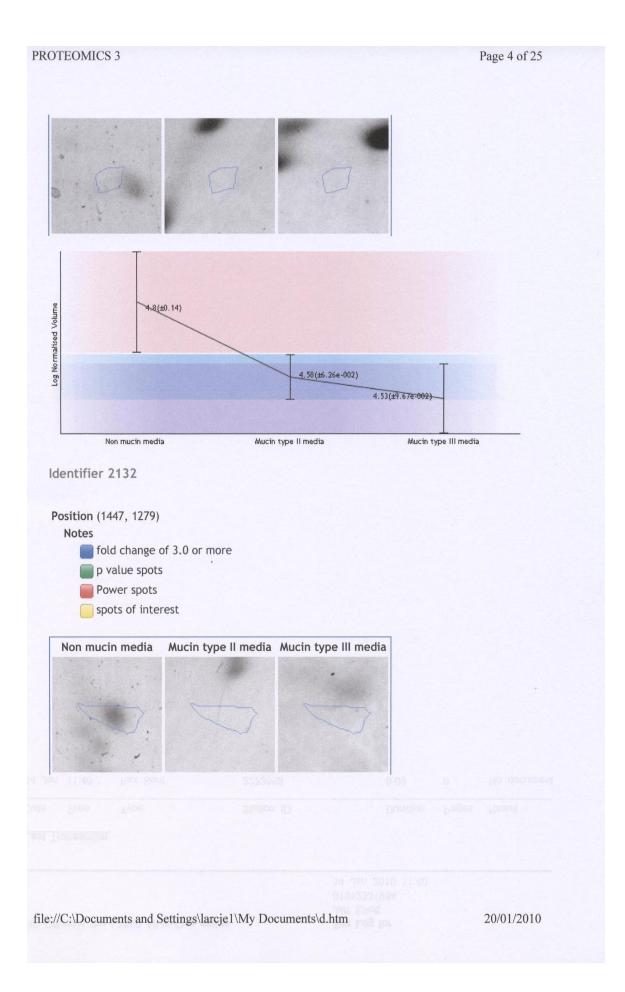
21/01/2010

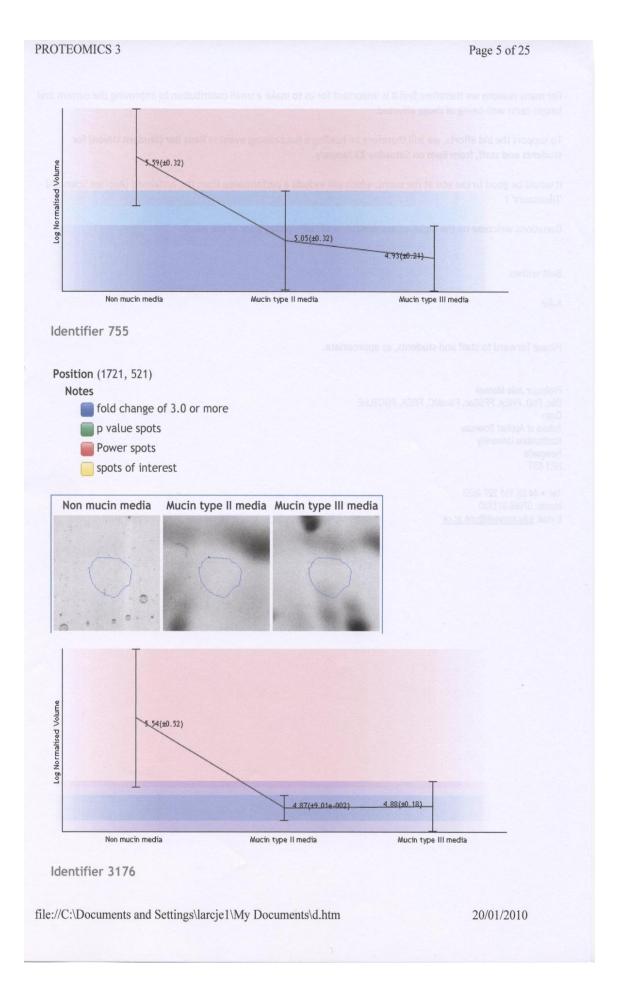
1 age 1 01 25

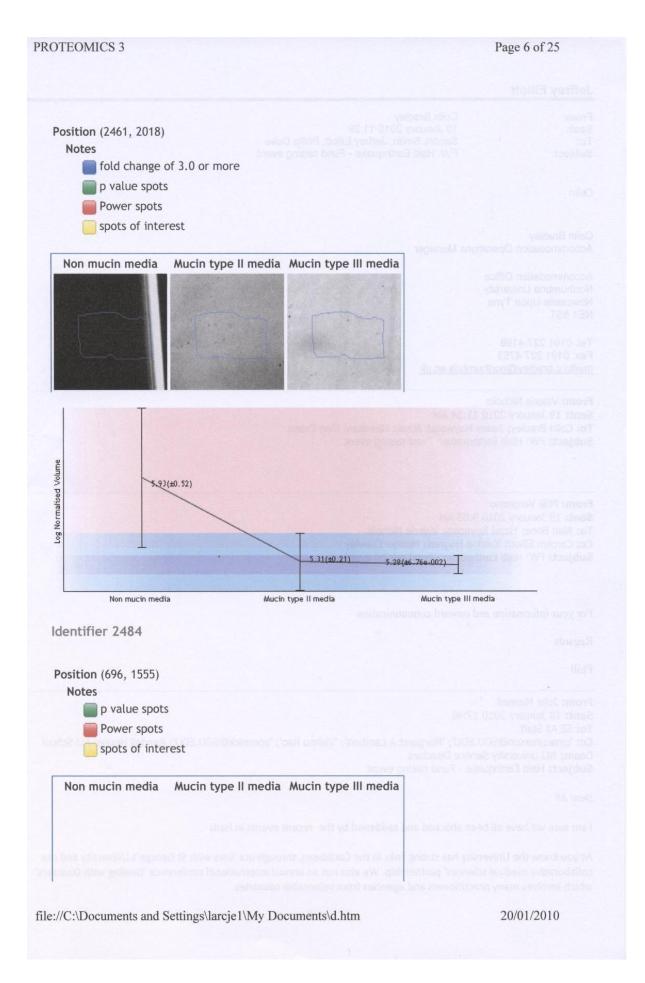

PROTEOMICS 3

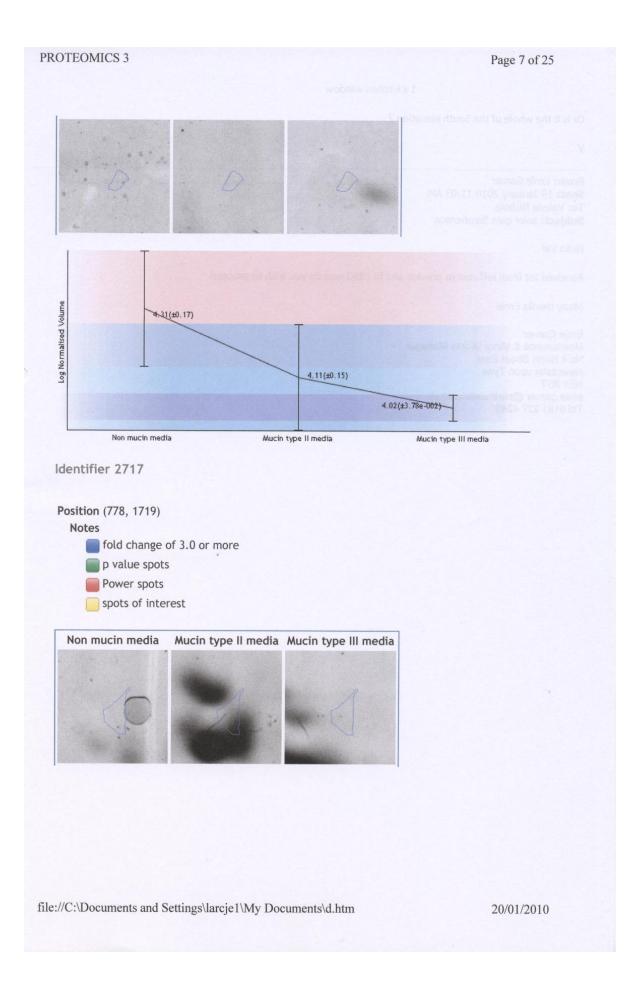

Page 2 of 25

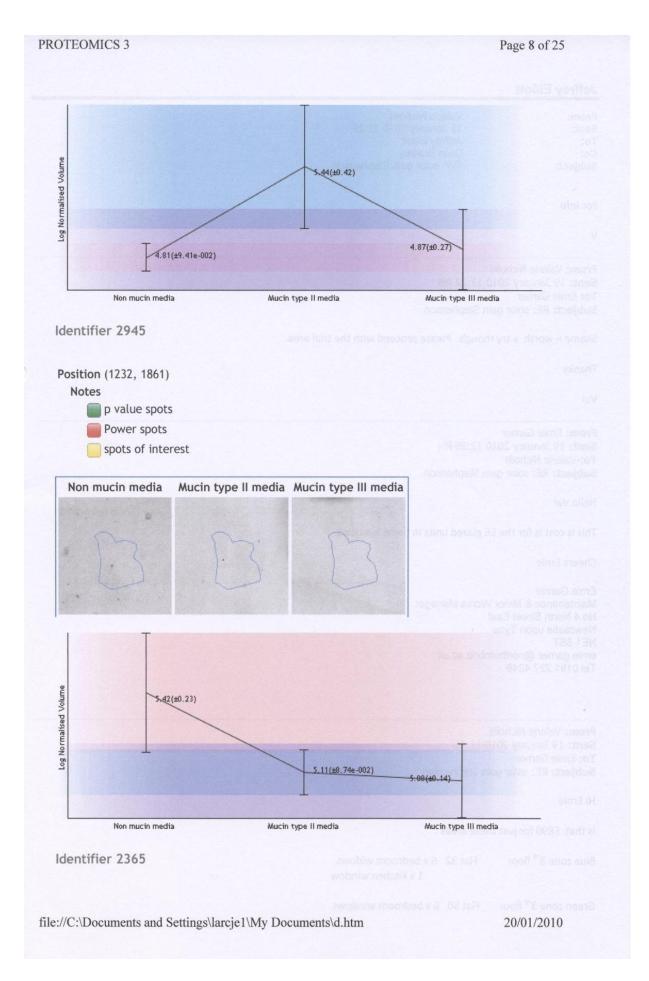
2859.892	3052.482	1753.296	1.7	0.028	1902
2.645e+005	3.564e+005	9.781e+004	3.6	0.037	285
9.005e+004	2.417e+005	2.874e+005	3.2	0.038	1807
1.648e+006	3.254e+006	3.925e+006	2.4	0.043	2712
6113.549	8357.012	8994.086	1.5	0.049	835

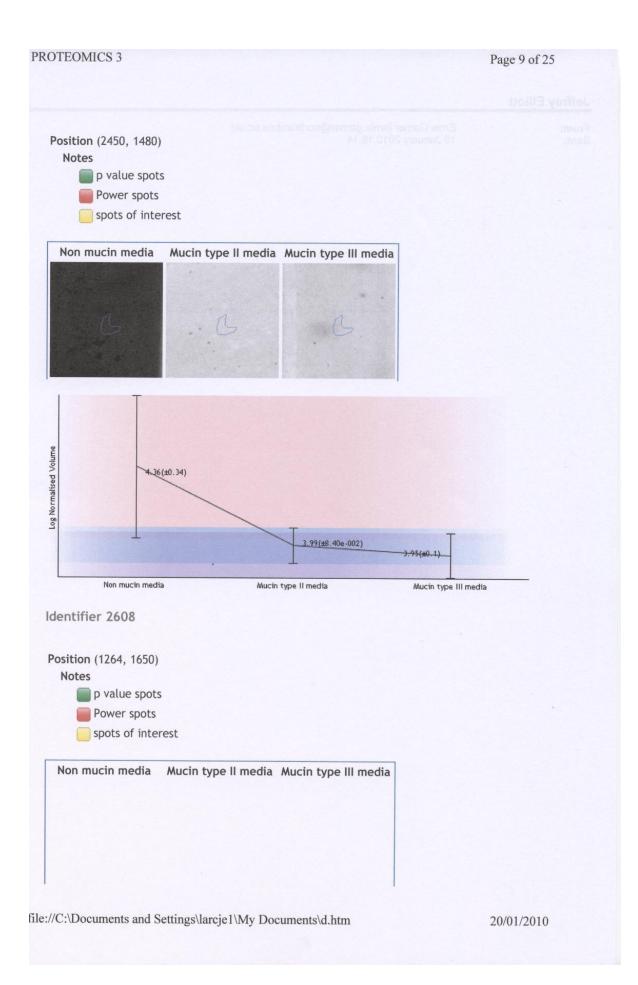

Identifier 95

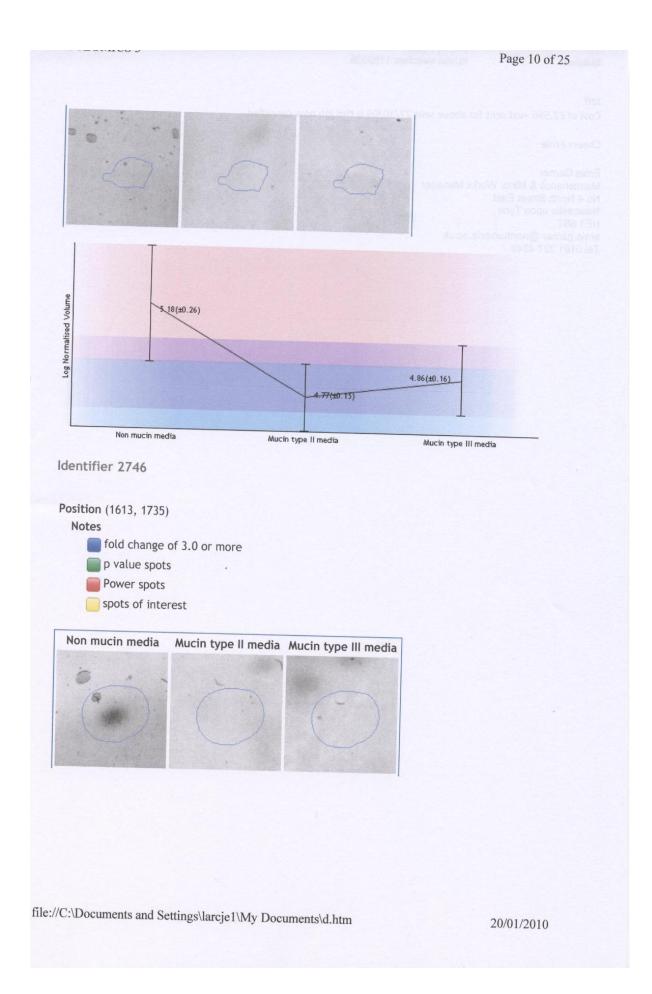


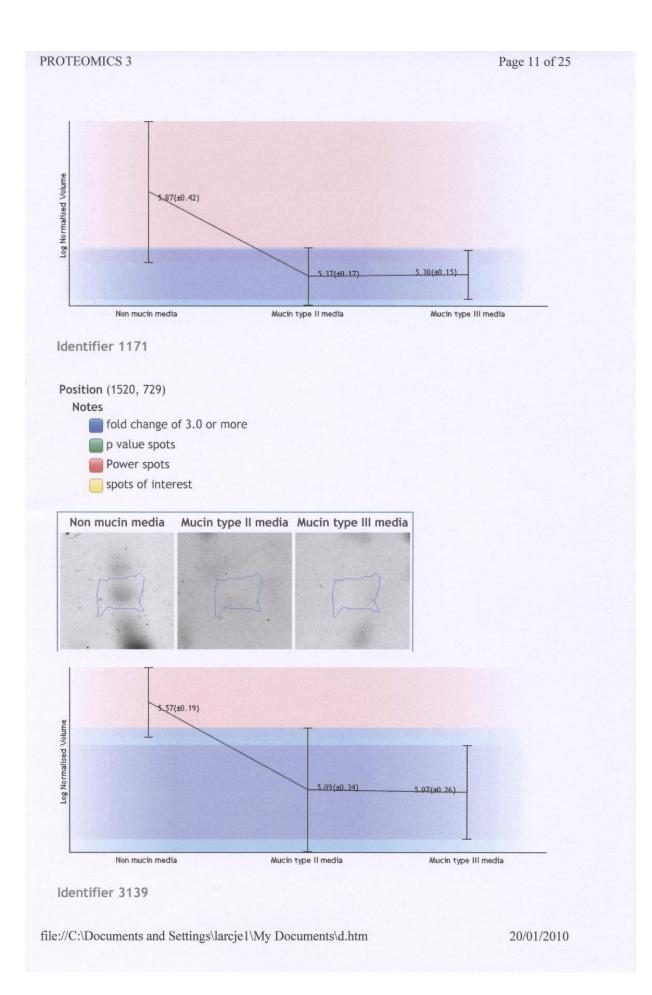


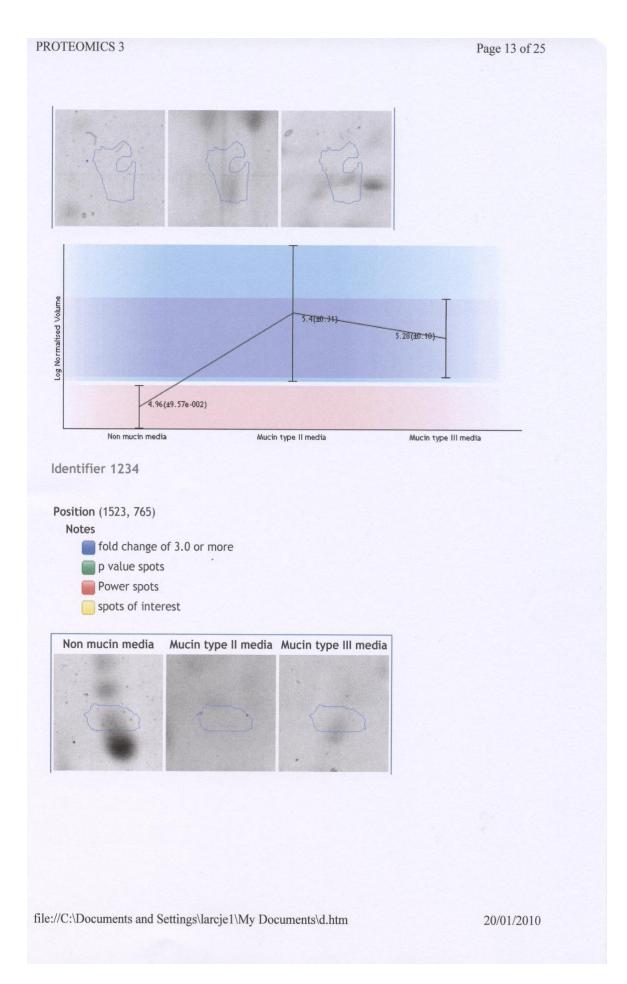

file://C:\Documents and Settings\larcje1\My Documents\d.htm 20/01/2010

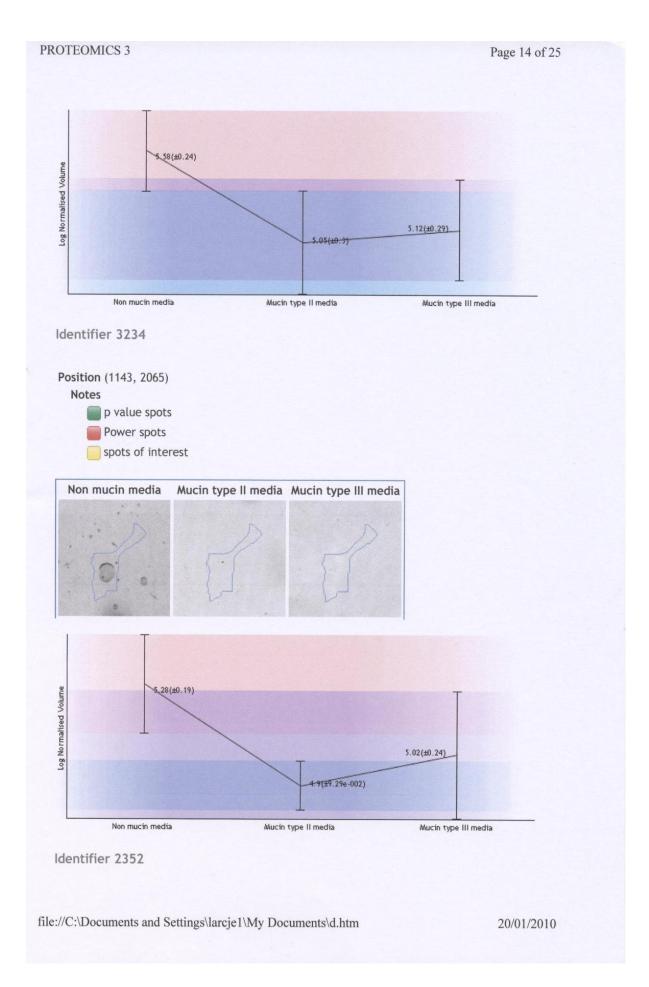

PROTEOMICS 3 Page 3 of 25 Identifier 2914 Position (1101, 1843) Notes p value spots Power spots spots of interest Mucin type II media Mucin type III media Non mucin media \$.03(±0.19) Log Normalised Volume 4 69(+7 09e-002) 4.69(+0.14) Non mucin media Mucin type III media Mucin type II media Identifier 2026 Position (1193, 1219) Notes p value spots Power spots spots of interest Non mucin media Mucin type II media Mucin type III media file://C:\Documents and Settings\larcje1\My Documents\d.htm 20/01/2010

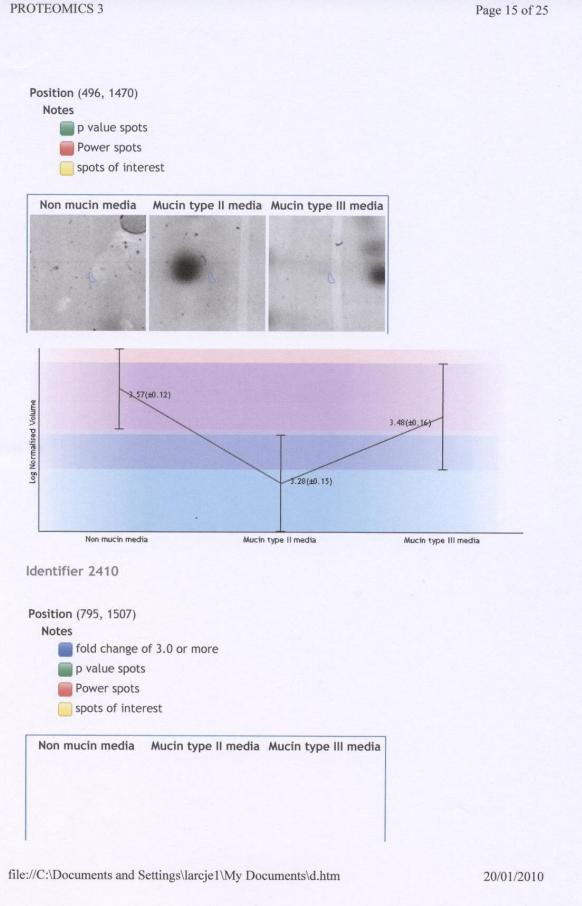


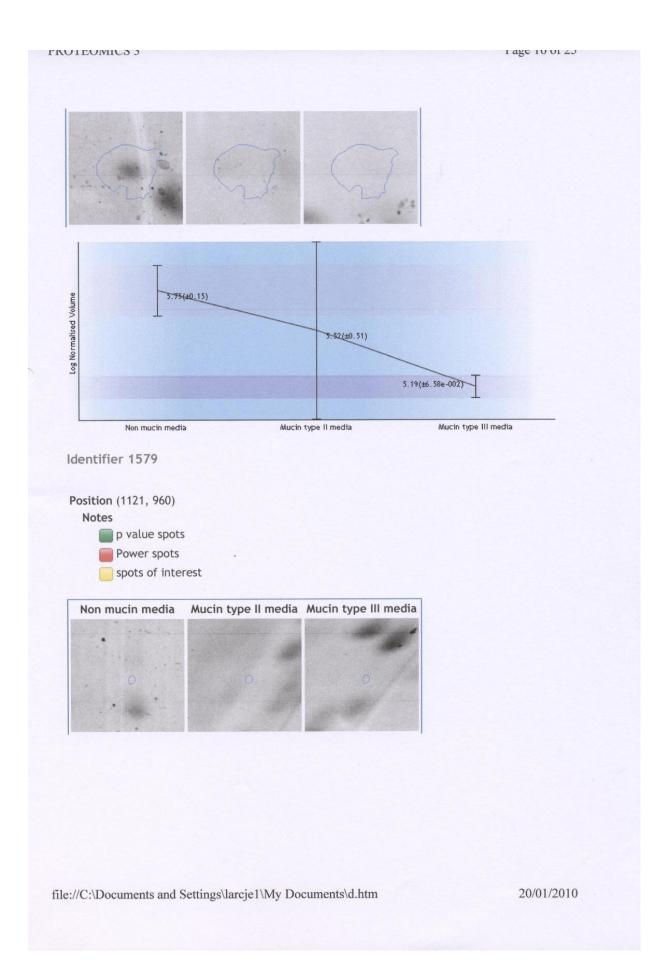


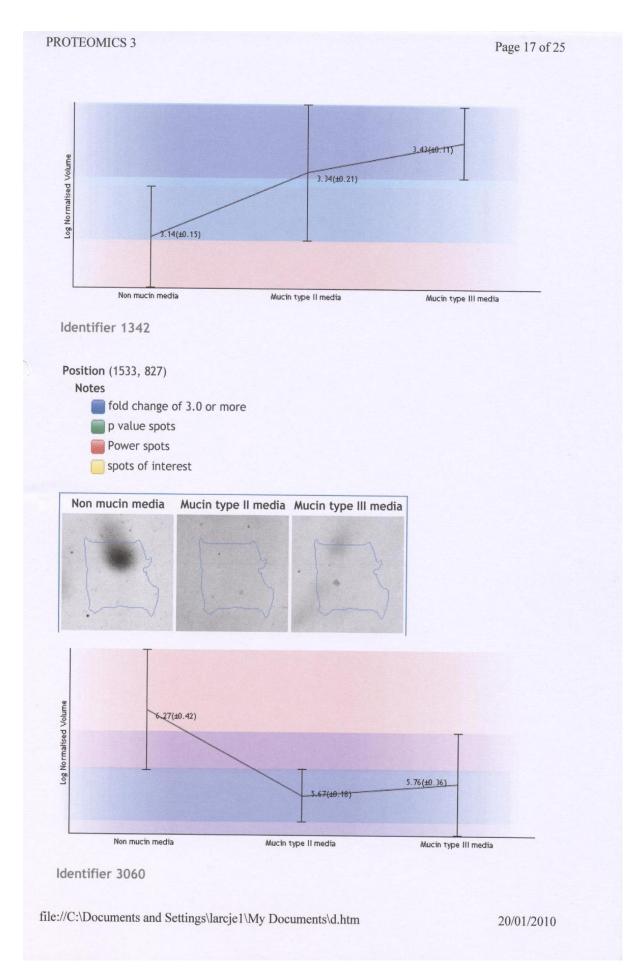




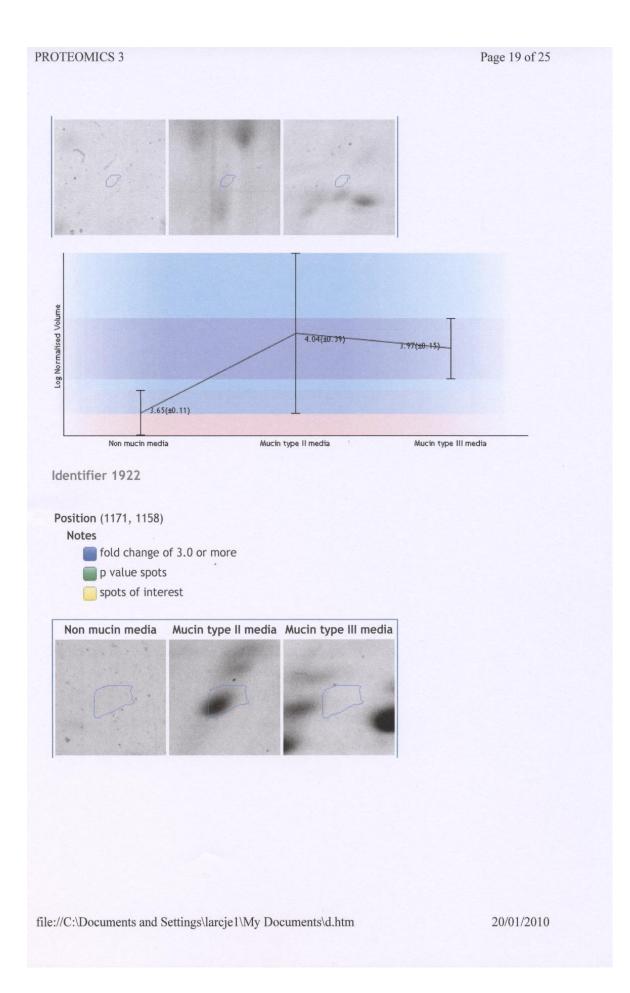


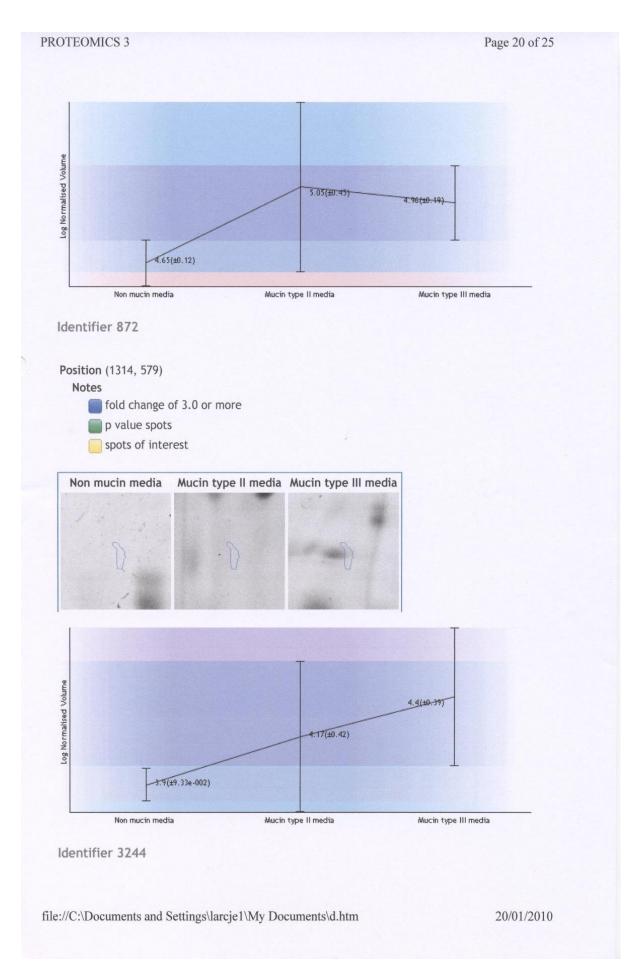



PROTEOMICS 3 Page 12 of 25 Position (685, 1993) Notes fold change of 3.0 or more p value spots Power spots spots of interest Mucin type II media Mucin type III media Non mucin media 6.2(±0.29) Log Normalised Volume 5.72(±0.28) 5.69(±0.25) Mucin type III media Non mucin media Mucin type II media **Identifier 854** Position (1255, 574) Notes fold change of 3.0 or more p value spots Power spots spots of interest Non mucin media Mucin type II media Mucin type III media file://C:\Documents and Settings\larcje1\My Documents\d.htm 20/01/2010

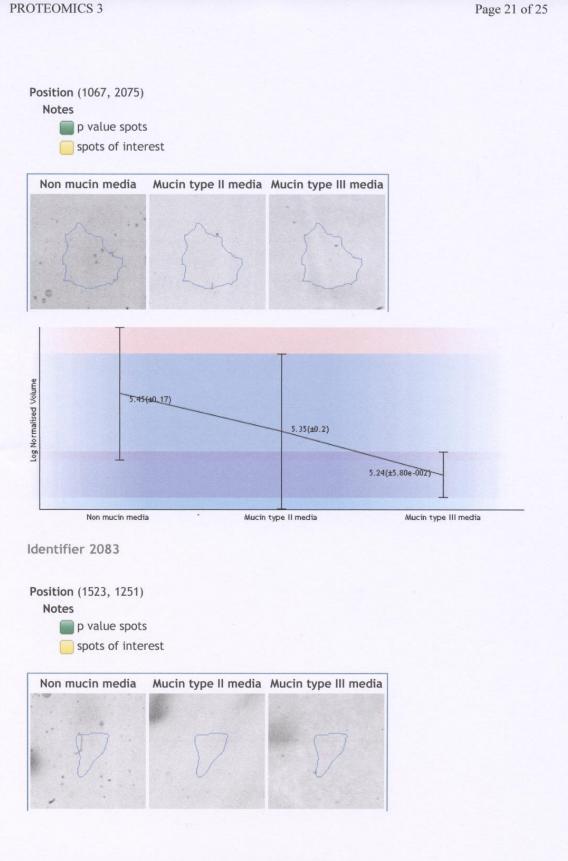


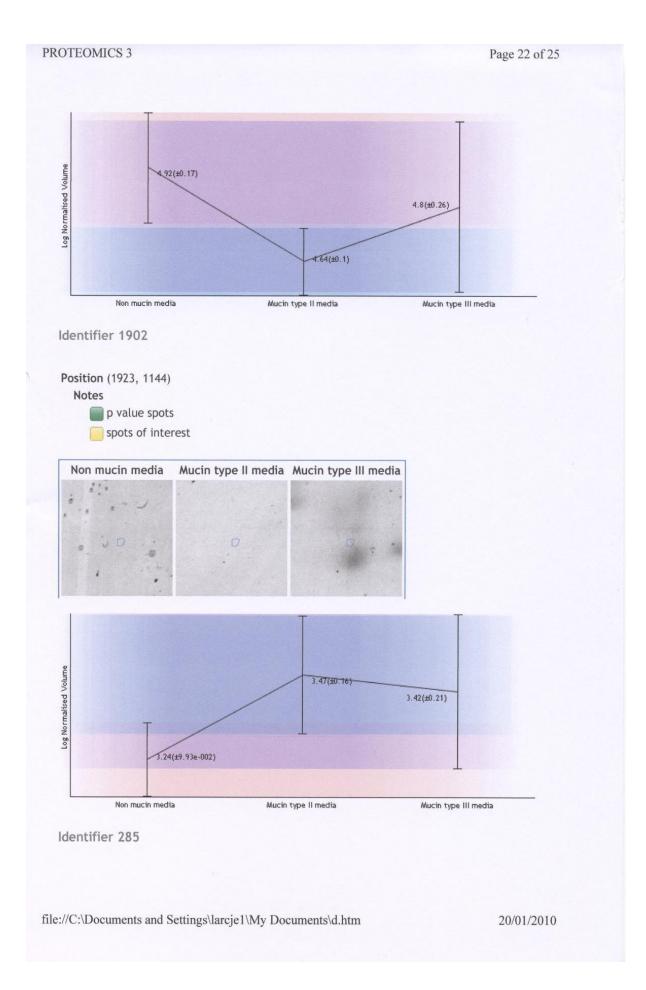
Page 15 of 25



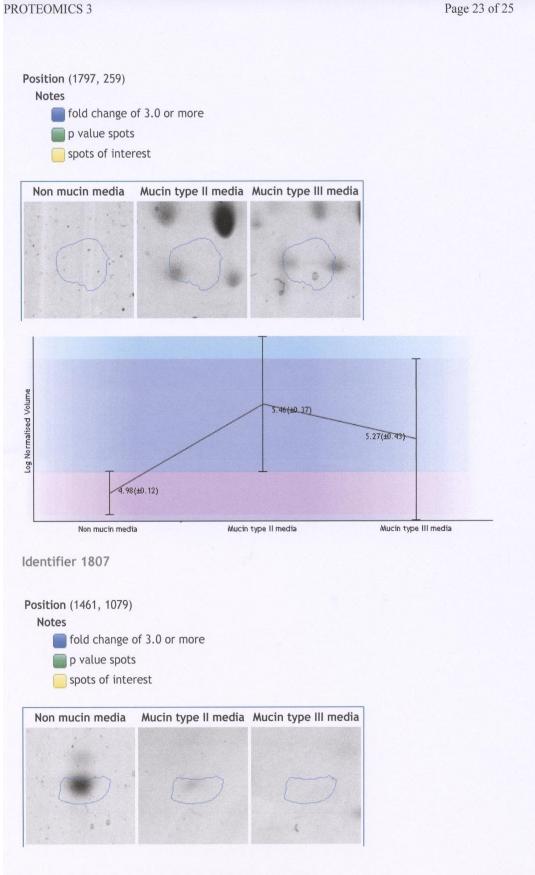


Page 18 of 25

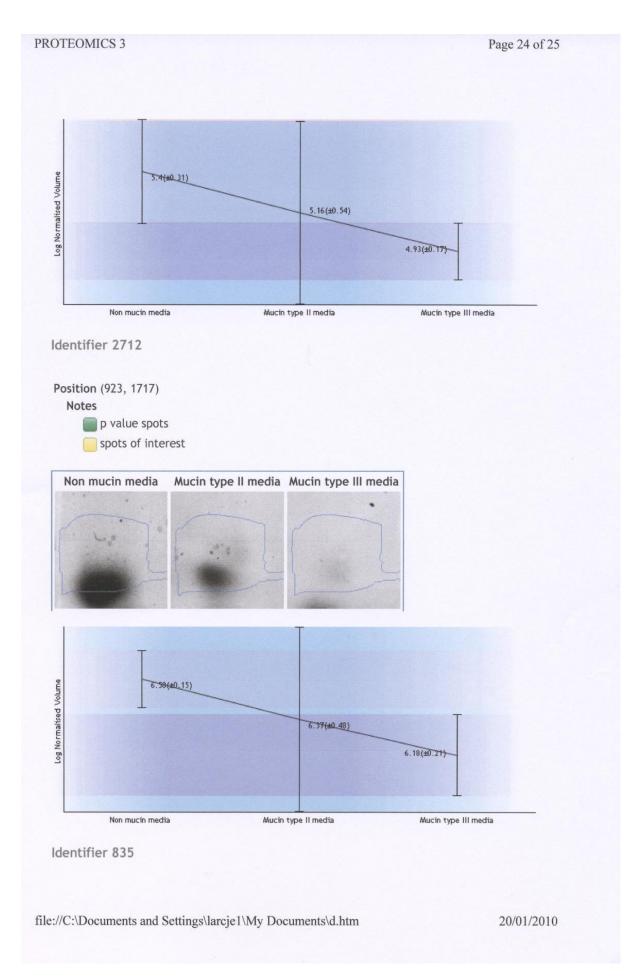


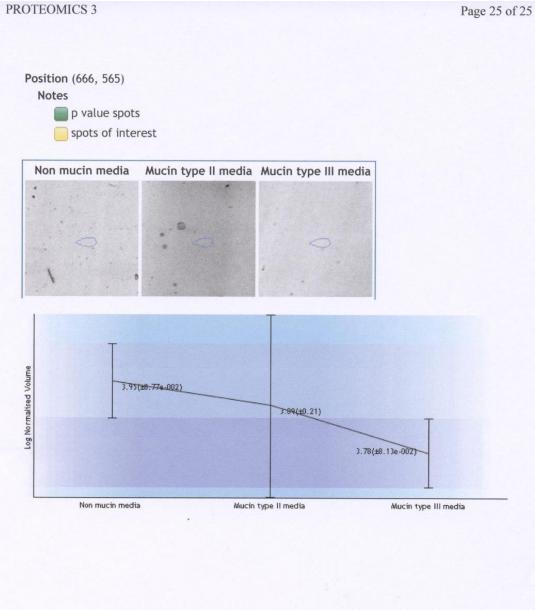

Page 21 of 25

20/01/2010



389


file://C:\Documents and Settings\larcje1\My Documents\d.htm


Page 23 of 25

file://C:\Documents and Settings\larcje1\My Documents\d.htm

Page 25 of 25

file://C:\Documents and Settings\larcje1\My Documents\d.htm

Appendix G

G1 Details on MS analysis

Bruker Daltonics Mass spectrometer that worked based on the principle of electrospray ionisation was used for fragmenting, ionising and identifying peptides from the protein spots of interest. The liquid sample which passed through an emitter was ionised to form a liquid jet under high voltage electricity. The liquid then radially dispersed to form small and highly charged liquid droplets due to Coulomb repulsion. Following nebulisation, the ions were dried and desorbed under the influence of the same high potential electrostatic field.

The generation of ions

The three important steps in the generation of ions were nebulisation, desolvation and ion evaporation. The sample containing the trypsinised proteins was first separated using the LC column in the Dionex Ultimate 3000 system and the droplets were fed into the mass spectrometer through the needle at a flow rate of 3 μ L/min. The droplets enter the spray chamber from the tip of the needle where the force of Coulomb repulsion exceeds the surface tension causing the droplets to explode into smaller droplets that undergo evaporation. During the process of evaporation, the droplets become highly charged and get ionised. When the surface tension on the surface of the droplets is exceeded by the ionic field, ions are emitted into the gas phase. Peptides containing amino acids either accept or donate protons based on their charge. A similar effect can be observed in the buffers and solvents that also ionise in the presence of an electric field. pH of the buffers and solvents can have a great effect on the peptide signals detected. The ionisation process can also be affected by the conductivity of solutions and their flow rate.

Parts of the lon trap mass spectrometer

The spray shield forms a protective covering that prevents the deposition of contaminants, buffer salts and other impurities. The transfer capillary plays an important role in the declustering and desolvation of ions. It acts as the first barrier in the vaccum system. The skimmer forms the main part of the next vaccum stage where it helps to remove dried gas and other solvent molecules. The ions that pass

through the transfer capillary and the skimmer enter the dual octopoles that focus, slow down or accelerate them for efficient ion trapping.

Ion trap system

The first step in the trapping of ions involves the generation of a potential well which acts as the site for accumulation of ions. The end cap generates a repelling potential that enhances the trapping efficiency. The ions collide with helium thereby slowing them down and oscillating around the centre of the trap. The ions focussed in the centre of the trap are ejected by applying an increased RF amplitude and auxillary RF which cause each m/z to come into resonance. The ions accumulated in the 3D multipolar field were ejected by increasing the RF amplitudes and the response was measured at the detector.

The conversion dynode emitted electrons when hit by ions. These electrons were accelerated onto an electron multiplier that converted the electrons into a resulting current that was measured as the MS spectrum.

Gases used in lon traps

One rough pump and two turbomolecular pumps were used to create four stages of vaccum within the system (Refer to drawing). Helium gas was used for cooling the ions during trapping and also as a collision gas for fragmentation. Nitrogen gas was used generally for keeping the system clean, nebulising samples and drying liquid droplets.

G2 Mass spectrometric analysis data for differentially expressed spots *E. cancerogenus*

```
(MATRIX) Mascot Search Results
                                                       Lakshmy Manickan
lakshmy.manickan@unn.ac.uk
SSP 2302
User
Email
Search title
                                                      SSP 2302
D:\Data\Lakshmy\120808\140808\SSP2302_RE13_01_281.d\SSP2302_RE13_01_281.mgf
NCBinr 20100102 (10272453 sequences; 3505279183 residues)
Bacteria (Eubacteria) (5690016 sequences)
5 Jan 2010 at 11:11:44 GMT
gil26496 RecName: Full=Lysostaphin; AltName: Full=Glycyl-glycine endopeptidase; Flags: Precursor
gil261342624 transcription elongation factor GreA [Enterobacter cancerogenus ATCC 35316]
Diversion of the sequence o
MS data file
Database
Taxonomy
Timestam
Protein hits
                                                        gi|16762061 transcription elongation factor GreA [Salmonella enterica subsp. enterica serovar Typhi str. CT18]
gi|37528357 transcription elongation factor GreA [Photorhabdus luminescens subsp. laumondii TT01]
                                                        gil206329694 hypothetical protein PROPEN_03606 [Proteus penneri ATCC 35198]
gil206329694 hypothetical protein PROPEN_03606 [Proteus penneri ATCC 35198]
gil208750117 Transcription elongation factor greA [Yersinia rohdei ATCC 4380]
gil209137754 transcription elongation factor greA [Yersinia aldovae ATCC 35236]
Probability Based Mowse Score
Ions score is -10*Log(P), where P is the probability that the observed match is a random event.
Individual ions scores > 57 indicate identity or extensive homology (p<0.05).
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits
 Hits
$ 15
 aquant 10
                                                                                    1908
                                                                                  100 100
Probability Based Mowse Score
Peptide Summary Report
  Format As Peptide Summary
                                                                                                           •
                                                                                                                                                                                                                                                            Help
                                                                                                                               Max. number of hits AUTO
                                        Significance threshold p< 0.05
                                                                                                                                                                                                                                         Show sub-sets 0
                                        Standard scoring @ MudPIT scoring C Ions score or expect cut-off
                                        Show pop-ups . Suppress pop-ups C Sort unassigned Decreasing Score 💌 Require bold red 🗆
Select All Select None Search Selected Error tolerant
1. <u>gill26496</u> Mass: 51656 Score: 143 Queries matched: 2 emPAI: 0.13
                     RecName: Full=Lysostaphin; AltName: Full=Glycyl-glycine endopeptidase; Flags: Precursor
            Check to include this hit in error tolerant search

        Query
        Observed
        Mr(expt)
        Mr(calc)
        Delta Miss
        Score
        Expect Rank
        Peptide

        102
        819.8730
        1637.7314
        1637.7897
        -0.0582
        0
        42
        1.7
        1
        K.SESASFTPHTDIITR.T

        182
        1007.4620
        2012.9094
        2012.9336
        -0.0241
        0
        101
        2e-06
        1
        R.MVNSFSNSTAQDPMPFLK.S

                    Proteins matching the same set of peptides:

<u>gi|153047</u> Mass: 42213 Score: 143 Queries matched: 2

lysostaphin (ttg start codon) [Staphylococcus simulans]
                                                                Mass: 53058
                                                                                                               Score: 143
                                                                                                                                                        Queries matched: 2
                    RecName: Full=Lysostaphin; AltName: Full=Glycyl-glycine endopeptidase; Flags: Precursor
2. gi1261342624 Mass: 17799 Score: 125 Queries matched: 3 emPAI: 0.42
                       transcription elongation factor GreA [Enterobacter cancerogenus ATCC 35316]
            Check to include this hit in error tolerant search

        Query
        Observed
        Mr(expt)
        Mr(calc)
        Delta Miss
        Score
        Expect Rank
        Peptide

        Image: Transmission of the state of the sta
3. gil16762061 Mass: 17703 Score: 120 Queries matched: 3 emPAI: 0.69
                     transcription elongation factor GreA [Salmonella enterica subsp. enterica serovar Typhi str. CT18]
            ☐ Check to include this hit in error tolerant search

        Query
        Observed
        Mr (expt)
        Mr (calc)
        Delta
        Miss
        Score
        Expect
        Rank
        Peptide

        70
        655.379
        1308.7434
        1308.7513
        -0.0079
        0
        (57)
        0.059
        1
        R.RPEILARIAER.E

        71
        437.2600
        1308.752
        1308.7513
        0.0068
        0
        58
        0.039
        1
        R.RPEILARIAER.E

        72
        656.3350
        1310.6554
        1310.7306
        -0.0752
        0
        61
        0.022
        1
        K.QNLISVNSPIAR.G

            1
                    Proteins matching the same set of peptides:
gi/24114470 Mass: 17688 Score: 120 Queries matched: 3
                     transcription elongation factor GreA [Shigella flexneri 2a str. 301]
 mhtml:file://C:\Documents and Settings\larcje1\Local Settings\Temp\Peptide Summar... 21/01/2010
```

Page 1 of 2

(MATRIX) Mascot Search Results

Protein View

Match to: gil261342624 Score: 125 transcription elongation factor GreA [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\140808\SSP2302_RE13_01_281.d\SSP2302_RE13_01_281.mgf

Nominal mass (M_r): **17799**; Calculated pI value: **4.82** NCBI BLAST search of $\underline{gi|261342624}$ against nr Unformatted sequence string for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **17%**

Matched peptides shown in Bold Red

1 MQAIPMTLRG AEKLREELDF LKSVRRPEII AAIADAREHG DLKENAEYHA 51 AREQQGFCEG RIKDIRAKLS NAQVIDITKM PNNGRVIFGA TVTVLNLDND 101 EEQKYRIVGD DEADFKQNLI SVNSPIARGL IGKEQDDVVV IRTPGGEVEY 151 EIIKVEYL

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

143 - 158 919.9400 1837.8654 1837.9349 -0.0695 1 R.TPGGEVEYEIIKVEYL (Ions score 24)							
-0.08	شـــــــــــــــــــــــــــــــــــ						
1300 MS error 49 pp	1400 1500 1600 1700 1800 1300 1400 1500 1600 1700 1800 Mass (Da) RMS error 49 ppw Mass (Da)						
OCUS	ZP 05970482 158 aa linear BCT 15-OCT-2009						
DEFINITION	transcription elongation factor GreA [Enterobacter cancerogenus ATCC 35316].						
ACCESSION	ZP_05970482						
/ERSION DBLINK	ZP 05970482.1 GI:261342624 Project:28663						
DBSOURCE	REFSEQ: accession NZ ABWM02000035.1						
KEYWORDS							
SOURCE ORGANISM	Enterobacter cancerogenus ATCC 35316 Enterobacter cancerogenus ATCC 35316						
ORGANISH	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;						
	Enterobacteriaceae; Enterobacter.						
REFERENCE	1 (residues 1 to 158)						
AUTHORS	Weinstock,G., Sodergren,E., Clifton,S., Fulton,L., Fulton,B., Courtney,L., Fronick,C., Harrison,M., Strong,C., Farmer,C.,						
	Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C.,						
	Mitreva, M., Nelson, J., Hou, S., Wollam, A., Pepin, K.H., Johnson, M.,						
	Bhonagiri,V., Nash,W.E., Warren,W., Chinwalla,A., Mardis,E.R. and Wilson,R.K.						
TITLE	Direct Submission						
JOURNAL	Submitted (06-0CT-2009) Genome Sequencing Center, Washington						
	University School of Medicine, 4444 Forest Park, St. Louis, MO						
REFERENCE	63108, USA 2 (residues 1 to 158)						
AUTHORS	Fulton, L., Clifton, S., Fulton, B., Xu, J., Minx, P., Pepin, K.H.,						
	Johnson, M., Thiruvilangam, P., Bhonagiri, V., Nash, W.E., Mardis, E.R.						
MIMIP	and Wilson, R.K.						
JOURNAL	Direct Submission Submitted (17-SEP-2008) Genome Sequencing Center, Washington						
	University School of Medicine, 4444 Forest Park, St. Louis, MO						
	63108, USA						
COMMENT	WGS <u>REFSEQ</u> : This record is provided to represent a collection of whole genome shotgun sequences. The reference sequence was derived						
	whole genome shortgun sequences. The reference sequence was derived						
	Annotation was added by the NCBI Prokaryotic Genomes Automatic						
	Annotation Pipeline Group. Information about the Pipeline can be						
	found here:						
	http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be						

Mascot Search Results: Protein View

Page 2 of 2

manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: 296078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from PTCC (ATCC 35316). ATCC (ATCC 35316).

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. Method: conceptual translation.

source

Protein Region

Region

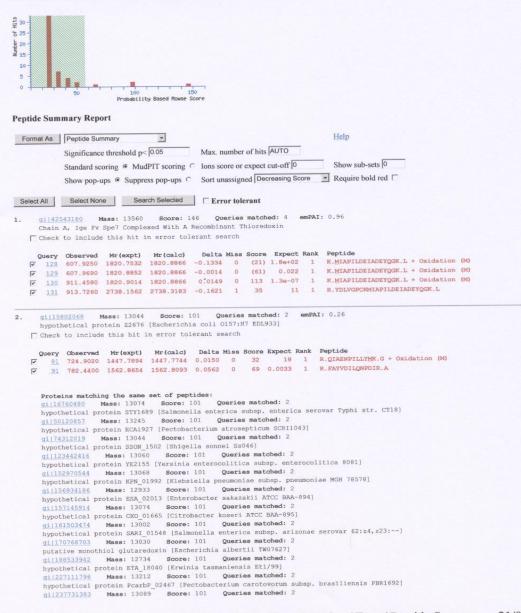
Region

FEATURES

oa:	Location/Qualifiers 1158
	/organism="Enterobacter cancerogenus ATCC 35316" /strain="ATCC 35316" /db_xref="taxon: <u>500639</u> " 1158
	/product="transcription elongation factor GreA" /calculated_mol_wt=17621 1157 /region_name="greA"
	/note="transcription elongation factor GreA; Reviewed; PRK00226" /db_xref="CDD: <u>134177</u> " 174
	/region_name="GreA_GreB_N" /note="N-terminal domain; pfam03449" /db_xref="CDD: <u>112274</u> " 80157
	/region_name="GreA_GreB" /note="C-terminal_domain; pfam01272" /db_xref="CDD: <u>110285</u> " 1158 /gene="greA"
	<pre>/locus_tag="EcanA3_020100019305" /coded by="complement(NZ_ABWM02000035.1:306544307020)" /note="COG0782 Transcription elongation factor" /transl_table=11 /db_xref="CDD:134177"</pre>

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSGSS... 21/01/2010


Page 1 of 5

(MATRIX) Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title MS data file Database Taxonomy Timestamp Protein hits	<pre>: ssp 3002 : ssp 3002 D:\DataLlakshmy\120808\260808\ssp 3002_RG16_01_396.d\SsP 3002_RG16_01_396.mgf : NCBInr 20100102 [10272453 sequences; 3505279183 residues) : Bacteria (Subacteria) (5690016 sequences) : 5 Jan 2010 at 11:13:53 GMT : g1142543180 Chain A, Ige Fv Spe7 Complexed With A Recombinant Thioredoxin g115802068 hypothetical protein Z2676 [Escherichia coli 0157:H7 DL933] g11238920001 hypothetical protein NT01EI_2105 [Edwardsiella ictaluri 93-146] g115810554 putative thioredoxin [Photobacterium profundum SS9]</pre>

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

mhtml:file://C:\Documents and Settings\larcje1\Local Settings\Temp\Peptide Summar... 21/01/2010

Peptide Summary Report (SSP 3002)

Page 2 of 5

conserved hypothetical protein [Citrobacter sp. 30_2]
 gi[236749425
 Mass: 13316
 Score: 101
 Queries matched: 2

 Glutaredoxin-4
 [Yersinia rohdei ATCC 43380]

 gi[236782581
 Mass: 13289
 Score: 101
 Queries matched: 2

 Glutaredoxin-4
 [Yersinia bercovieri ATCC 43970]
 di[23073742 Mass: 13208 Score: 101 Queries matched: 2 Glutaredoxin-4 [Yersinia frederiksenii ATCC 33641] Gutaredoxin-4 [Yersinia interderixSenii ArCC 33041] gi[230792292 Mass: 13262 Score: 101 Queries matched: 2 Glutaredoxin-4 [Yersinia intermedia ATCC 29909] gi[24]1913123 Mass: 15206 Score: 101 Queries matched: 2 Chain A, Structure Of E. Coli Monothiol Glutaredoxin Grx4 Homodimer gi[242239124 Mass: 12992 Score: 101 Queries matched: 2 glutaredoxin-like protein [Dickeya dadantii Ech703] gil251789329 Mass: 13316 Score: 101 Que glutaredoxin-like protein [Dickeya zeae Ech1591] Queries matched: 2 gutaremoxin-irke protein [unckeya 2848 Ech1991] gi[253689763 Mass: 13228 Score: 101 Queries matched: 2 glutaredoxin-like protein [Pectobacterium carotovorum subsp. carotovorum PC1] glutaredoxin-like protein [Pantoea sp. At-9b] gi|259906543 Mass: 12733 Score: 101 Queries matched: Putative glutaredoxin protein YdhD [Erwinia pyrifoliae Ep1/96] Queries matched: 2
 gil260597772
 Mass:
 12927
 Score:
 10

 Glutaredoxin-4
 [Cronobacter turicensis]
 gil261339586
 Mass:
 13045
 Score:
 10
 Score: 101 Queries matched: 2 dilcollagese Mass: 13045 Score: 101 Queries matched: 2 hypothetical protein EcanA3_03947 [Enterobacter cancerogenus ATCC 35316] hypothetical protein EcanA3_03947 [Enterobacter cancerogenus AT di[26121927 Mass: 13259 Score: 101 Queries matched: 2 glutaredoxin-like protein [Pectobacterium wasabiae WPP163] di]269139028 Mass: 12773 Score: 101 Queries matched: 2 hypothetical protein ETAE [679 [Cdwardsiella tarda ETB202] di]271500215 Mass: 13334 Score: 101 Queries matched: 2 glutaredoxin-like protein [Dickeya dadantii Ech586] Mass: 12760 Score: 101 3. gi|238920001 Queries matched: 2 emPAI: 0.27 hypothetical protein NTO1EI_2105 [Edwardsiella ictaluri 93-146] T Check to include this hit in error tolerant search
 Query
 Observed
 Mr (expt)
 Mr (calc)
 Delta Miss
 Score
 Expect Rank
 Peptide

 81
 724,9020
 1447,7784
 1447,7744
 0.0150
 0
 32
 18
 1
 R.QIAENPIILYMK.G + Oxidation (M)

 91
 782,4400
 1562,8654
 1562,8093
 0.0562
 0
 69
 0.0033
 1
 R.FAYVDILQMPDIR.A
 <u>gi[54310594</u> Score: 65 Queries matched: 3 putative thioredoxin [Photobacterium profundum SS9] 4. Check to include this hit in error tolerant search
 uery
 Observed
 Mr(expt)
 Mr(calc)
 Delta Miss
 Score
 Expect Rank
 Peptide

 128
 607.9250
 1820.7832
 1820.8866
 -0.1334
 0
 (19)
 3.2e+02
 2
 K.MIAPILDEIANEYEGK.V + Oxidation (M)

 129
 607.9500
 1820.8866
 -0.014
 0
 (58)
 0.044
 2
 K.MIAPILDEIANEYEGK.V + Oxidation (M)

 129
 607.9500
 1820.8866
 -0.014
 0
 (58)
 0.044
 2
 K.MIAPILDEIANEYEGK.V + Oxidation (M)

 129
 11.4580
 1820.9014
 1820.8866
 0.0149
 0
 65
 0.0079
 2
 K.MIAPILDEIANEYEGK.V + Oxidation (M)
 Query Observed Mr (expt) Proteins matching the same set of peptides: <u>gi[84393642</u> Score: 65 Queries matched: 3 <u>gi[90414228</u> Score: 65 Queries matched: 3 Peptide matches not assigned to protein hits: (no details means no match)
 Observed
 Mr (expt)
 Mr (calc)
 Delta Miss
 Score
 Expect Rank
 Peptide

 679.3270
 1356.6394
 1356.7976
 -0.1582
 2
 45
 1
 1
 INDISS

 515.2470
 1028.4794
 1028.5866
 -0.1071
 0
 33
 18
 1
 VIDELT
 Query Observed Mr(expt) Mr(calc) 1 LNDIDSILKAKK

 10
 015.2470
 1028.4794
 1028.5866
 -0.1071
 0
 33
 18
 1
 VAREAUX

 55
 515.2470
 1028.4794
 1028.5866
 -0.1071
 0
 33
 18
 1
 VAREAUX

 65
 632.3680
 1262.7214
 1263.6320
 -0.9105
 1
 31
 23
 1
 REQVQNATYR

 71
 681.1670
 2040.4792
 2040.1367
 0.3424
 1
 29
 43
 1
 NIVSSTELIQ8VIKAFIK

 52
 492.3030
 982.5914
 983.5916
 -1.0002
 1
 29
 32
 1
 KLATWLPR

 58
 582.1380
 1743.3922
 174.8640
 -0.4618
 0
 29
 50
 1
 NLPFINSQPNSASSR

 198
 737.6880
 2210.0422
 2211.0598
 -1.0177
 0
 28
 33
 1
 EHREPFYMSGIASULT + Oxidation (M)

 136
 615.8910
 1844.6512
 1845.0472
 -0.3960
 1
 26
 44
 1
 INDERLYMEASUREAUX
 Oxidation (M)

 136
 615.8910
 1844.6512
 1845.0472
 -0.3960
 <t 1 VLDELLTAR 17 V 17 2 17 17 7 0.9380 0 26 1 202 742.3760 2224.1062 2223.1681 62 1 MLTGTATLPSTAAAQPPAQIQR 0.7168 0 26 1.5s+02 1 MLTGTATLPSTAAA -1.0899 0 25 1.2e+02 1 QIGSGGEAAPAFSE 1 44 465,7930 1394,3572 1393,6403 900.0780 2697.2122 2698.3021 1 QIGSGQEAAPAFSPPSTLSMQAPSPAR + Oxidation (M) 2

 121
 900.0780
 2697.2122
 2698.3021
 -1.0899
 0
 25
 1.2e+02
 1
 QHESGQEAAPAFSPFSTLSMQADERAR + Oxida

 193
 1084.4090
 3250.252
 3250.3690
 -0.1639
 1
 25
 92
 1
 MMFRGFLAMPSASYNDDMMDCMOVYQMAK + 2 Ox

 122
 904.2980
 1806.5814
 1055.8180
 0.7634
 2
 25
 1e+02
 1
 VVGGFLONDNNEKKN

 132
 609.5150
 1825.5232
 1824.8135
 0.7097
 0
 24
 66
 1
 SMGGNDTPAVGFAMGIER + Oxidation (M)

 106
 647.9540
 2540.8602
 2540.3737
 0.4664
 1
 24
 1.6e+02
 1
 RIGUSAHDFAQLGADEVILITYANK

 241
 905.5410
 2713.6012
 2714.4391
 -0.8360
 1
 24
 69
 1
 RIGUSAHDFAQLGADEVILITYANK

 109
 577.9310
 1730.7712
 1729.8999
 0.8713
 0
 24
 1.6e+02
 1
 NDSAIVQALEALFPSR

 144
 951.8300
 2852.4662
 2851.4279
 1.0402
 2
 24
 1.6e+02
 1
 KPGIVPEFEDEREEIQEIEQFIK

 73
 69 V 92 1 MMFRGFGLAMPSASYNDDWMDGVYQMAK + 2 Oxidation (M) 1 2 1 17 1 7 V -0.7749 1 23 84 1 FRRADTLGILDPFATFEAIR 1.0737 2 23 1.8e+02 1 KEPMIADLARYENQSITGFFCASQK + Oxidation (M) 218 767.1490 2298.4252 2299.2001 ~ 1 152 974.8230 2921.4472 2920.3735 931.6700 930.6627 931.4611 23 1.7e+02 1 AETSQTPAK -0.7983 0 45
 B9
 771.6520
 2311.9342
 2311.1466
 0.7873
 2
 23
 1.94+02
 1
 MHAQASLFCFAARIAFASR

 124
 906.2870
 2715.8392
 2716.2477
 -0.4086
 2
 23
 1.94+02
 1
 DPYSQGARAGDKFDPYYQGTNATTR

 53
 499.3350
 996.6554
 996.4624
 0.1930
 0
 23
 1.46+02
 1
 SQAALDNAAH

 161
 991.6440
 2971.9102
 2972.5351
 -0.6249
 2
 23
 1.86+02
 1
 LKFIDVVIVDTAGRLHVDEAMMDEIL

 221
 1158.1100
 3471.3082
 3470.7359
 0.5723
 1
 22
 1.9e+02
 1
 HNGVDAVAMTRAVGQALVNGGVVSG
 17 1 1 SEMILIYON 1 LKFIDVVIVDTAGRLHVDEAMMDEIK + Oxidation (M) 1 HNGVDAVAMTRAVGQALVNGGVVBGASTLTMQTAR + 2 Oxidation (M)

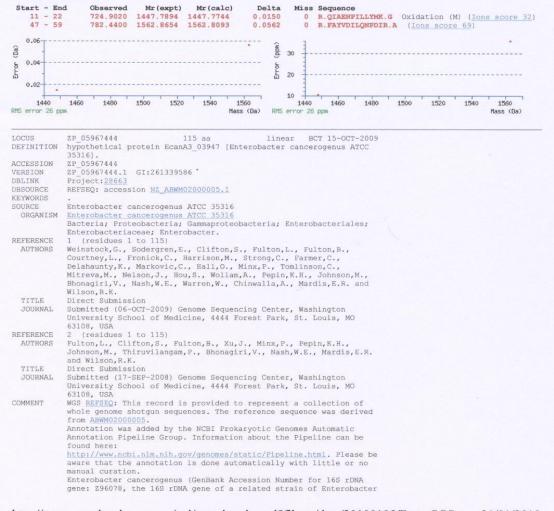
mhtml:file://C:\Documents and Settings\larcje1\Local Settings\Temp\Peptide Summar... 21/01/2010

Protein View

Match to: gi[261339586 Score: 101 hypothetical protein EcanA3_03947 [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\260808\SSF 3002_RG16_01_396.d\SSF 3002_RG16_01_396.mgf

Nominal mass (M_r): 13045; Calculated pI value: 4.87 NCBI BLAST search of gi[261339586 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316


Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **21**%

Matched peptides shown in Bold Red

1 MSTTIEKIQR QIAENPILLY MKGSPKLPSC GFSAQAVQAL SACGERFAYV 51 DILQNPDIRA ELPKYANWPT FPQLWIDGEL VGGCDILIEM YQRGELQQLI 101 KETAAKYKTE EPGAE

Show predicted peptides also

Sort Peptides By
 Residue Number C Increasing Mass C Decreasing Mass

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSGSe... 21/01/2010

Mascot Search Results: Protein View

Page 2 of 2

cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454.

	: conceptual translation.
FEATURES	Location/Qualifiers
source	1115
	/organism="Enterobacter cancerogenus ATCC 35316"
	/strain="ATCC 35316"
	/db xref="taxon:500639"
Protein	1115
	/product="hypothetical protein"
	/calculated mol wt=12748
Region	897
	/region name="GRX PICOT like"
	/note="Glutaredoxin (GRX) family, PKC-interacting cousin
	of TRX (PICOT)-like subfamily; composed of PICOT and
	GRX-PICOT-like proteins. The non-PICOT members of this
	family contain only the GRX-like domain, whereas PICOT
	contains an N-terminal TRX-like domain; cd03028"
	/db xref="CDD: <u>48577</u> "
Site	order (22, 3032, 7071)
	/site type="other"
	/note="putative GSH binding site"
	/db xref="CDD: <u>48577</u> "
Site	order(30,33)
	/site type="other"
	/note="catalytic residues"
	/db_xref="CDD: <u>48577</u> "
CDS	1115
	/locus_tag="EcanA3_020100003947"
	/coded_by="NZ_ABWM02000005.1:254505254852"
	/note="COG0278 Glutaredoxin-related protein"
	/transl table=11
	/db xref="CDD: <u>138199</u> "

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSGSe... 21/01/2010

User Email Search title MS data file Database Taxonomy Timestamp Protein hits	: Lakshmy Manickan : Lakshmy manickan@unn.ac.uk : SSP 4008 : D:\Data\meng\20080728\SSP4008_RB7_01_222.d\SSP4008_RB7_01_222.mgf : NCBInr 20100102 (10272453 sequences; 3505279183 residues) : Bacteria (Bubacteria) (5690016 sequences) : 5 Jan 2010 at 11:17:21 GWT : gill5803106 autonomus glycyl radical cofactor GrcA [Escherichia coli 0157:H7 EDL933]
Probability Bas	ed Mowse Score
Individual ions sco	log(P), where P is the probability that the observed match is a random event. ores > 57 indicate identity or extensive homology (p<0.05). derived from ions scores as a non-probabilistic basis for ranking protein hits.
still 20 5 0 0	50 Probability Based House Score
Peptide Summa	iry Report
Format As	eptide Summary Help
Si	gnificance threshold $p < 0.05$ Max. number of hits AUTO
St	andard scoring MudPIT scoring Ions score or expect cut-off Show sub-sets
Sł	now pop-ups 🖲 Suppress pop-ups 🔿 Sort unassigned Decreasing Score 🔄 Require bold red 🗆
Select All	Select None Search Selected CError tolerant
Check to Query Ot 7 47 44 7 110 47 7 111 71	us glycyl radical cofactor GrcA [Escherichia coli 0157:H7 EDL933] include this hit in error tolerant search bserved Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 15.7760 889.5374 889.5021 0.0353 0 38 5.7 1 K.YEQLITR.V 78.9540 1433.8402 1433.7739 0.0663 0 (37) 6.2 1 R.VEGGQHLAVHVLR.R 7.9630 1433.9114 1433.7739 0.1375 0 39 3.3 1 R.VEGGQHLAVHVLR.R 76.0110 1950.0074 1949.9370 0.0704 0 75 0.00082 1 K.ANHDLLINSFWLLDSEK.G
Proteins gi 15832	matching the same set of peptides: 699 Mass: 14333 Score: 150 Queries matched: 4
	us glycyl radical cofactor GrcA [Escherichia coli 0157:H7 str. Sakai]
autonomo	us glycyl radical cofactor GrcA [Salmonella enterica subsp. enterica serovar Typhi str. CT18]
gi 82778 autonomo	007 Mass: 14375 Score: 150 Queries matched: 4 us glycyl radical cofactor GrcA [Shigella dysenteriae Sd197]
gi[11064 autonomo	2741 Mass: 14317 Score: 150 Queries matched: 4 us glycyl radical cofactor GrcA [Escherichia coli 536]
gi 14631	2705 Mass: 14385 Score: 150 Queries matched: 4 us glycyl radical cofactor GrcA [Enterobacter sp. 638]
gi 15297	1433 Mass: 14350 Score: 150 Queries matched: 4
gi115714	
autonomo gi 19824	us glycyl radical cofactor GrcA [Citrobacter koseri ATCC BAA-895] 4654 Mass: 14403 Score: 150 Queries matched: 4
gi 23770	us glycyl radical cofactor [Salmonella enterica subsp. enterica serovar Dublin str. CT_02021853] 5089 Mass: 15033 Score: 150 Queries matched: 4
	cherichia sp. 3_2_53FAA] 2565 Mass: 15009 Score: 150 Queries matched: 4
	yfiD [Citrobacter sp. 30_2] 0878 Mass: 14490 Score: 150 Queries matched: 4
autonomo	us glycyl radical cofactor GrcA [Enterobacter cancerogenus ATCC 35316]
	0312 Mass: 14378 Score: 150 Queries matched: 4 us glycyl radical cofactor [Klebsiella pneumoniae subsp. rhinoscleromatis ATCC 13884]
Peptide matches	s not assigned to protein hits: (no details means no match)
	Dbserved Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
	581.3590 1360.7034 1360.6470 0.0564 2 49 0.36 1 KSGGKSPEDEAEK 679.3320 1356.6494 1356.7976 -0.1482 2 37 6.7 1 INDISIIKAKK
220 1	113.0770 2224.1394 2224.0035 0.1360 2 36 5.9 1 MCAEVARRGGELVDGDGLMR + 2 Oxidation (M)
₽ <u>83</u> ₽ 137	629.3340 1256.6534 1256.7816 -0.1281 2 33 15 1 IKASLQKTIQK 553.9480 1658.8222 1658.8410 -0.0188 2 32 16 1 TMARGLRELSDPEGK
M 137	200.9460 1006.0422 1008.0410 -0.0100 2 32 10 1 TMARGLEELSDYEGK

mhtml:file://C:\Documents and Settings\larcje1\Local Settings\Temp\Peptide Summar... 21/01/2010

Page 1 of 2

(MATRIX) Mascot Search Results

Protein View

Match to: gi|261340878 Score: 150 autonomous glycyl radical cofactor GrcA [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\meng\20080728\SSP4008_RB7_01_222.d\SSP4008_RB7_01_222.mgf

Nominal mass (M_z): **14490;** Calculated pI value: **4.85** NCBI BLAST search of <u>gi|261340878</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **29%**

Matched peptides shown in Bold Red

1 MITGIQITKA ANDDLLNSFW LLDSEKNEAR CVVAKAGFAE DEIVPVNKLG 51 EIEYREIPME VQPEVRVEGG QHLNVNVLRR ETLMDAVEHP EKYPQLTIRV 101 SGYAVRFNSL TPEQQRDVIA RTFTESL

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSGS... 21/01/2010

Mascot Search Results: Protein View

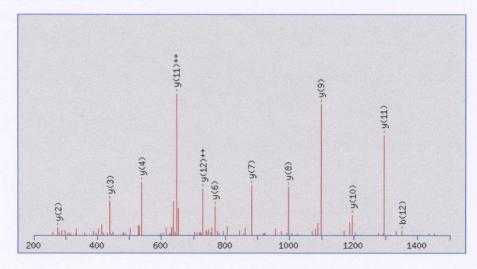
Page 2 of 2

manual curation. Enterobacter cancerogenus (GenBank Accession Number for 165 rDNA gene: 296078, the 165 rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316). We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible. This work was supported by the National Human Genome Research Institute and the NTH Roadmap Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. This project is co-owned with the Human Microbiome Project. Mox ref="tance" data provide the eductase for the data provide the sequence of the data provide the sequence of the data provide the

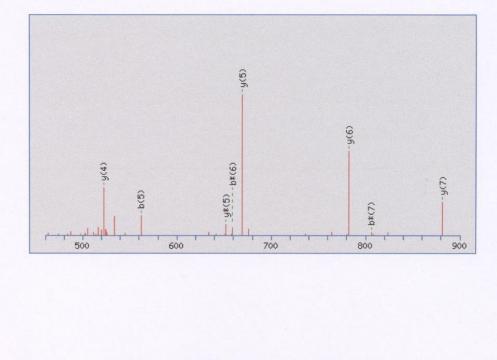
Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSGS... 21/01/2010

Peptide Summary Report (SSP 4602)


Page 1 of 5

(MATRIX) Mascot Search Results


Email Search MS dat Databa Taxono Timest Protein	a file se my amp	: laksh : SSP 4 : D:\Da : NCBIn : Bacte : 5 Jan : gi 26 gi 62 gi 15 gi 26	ta Lakshmy (nr 20100102 sria (Eubact 1 2010 at 11 1339284 out 201665 Omp 37146352 out 2039986 out 1578722 maj	eunn.ac.uk 120808\2608 (10272453 s aria) (5690 :19:04 GMT er membrane A [Cronobac er membrane	equences; 0016 seque ster sakaz protein : protein : mbrane pr	3505279 nces) A [Enterdakii] A [Citrol A [Klebs: otein [Pe	bacter car bacter kos lella pneu actobacter	es) nceroo eri Al moniae ium cy	subsp. rhinoscleromatis ATCC 13884] /pripedii]
Proba	bility B	ased Mow	se Score						
Individu	ual ions	scores > 57 i	here P is the pr ndicate identit om ions score:	ty or extensive	e homology	(p<0.05).			
40 55 0 0 10 1000000000000000000000000000000		00 200	Probabilit	400 y Based Mouse S	500 Score				
		mary Repo							
Form		Peptide Sum	1	-					Help
		100	e threshold p<			mber of hit			
			oring @ Mud						Show sub-sets 0
		Show pop-u	ps @ Suppres	SS DOD-UDS C	Sort unas	ssigned De	creasing Sco	re	Require bold red
Selec	t All	Select None	e Sean Mass: 37561	ch Selected	Error	r tolerant	ched: 16		I: 0.53
1. □	t All gi 261 outer f	Select None 339284 I membrane p	Best Sean Mass: 37561 rotein A [Sr [Sr this hit in In Mr (expt) 1082.4494 1207.6934 1262.7372 1362.7534 1362.7534 1625.3034 1625.9714 1625.9714 1625.9714	Ch Selected Score: htterobacter hterobacter 1082.5397 1263.6460 1363.7460 1363.7460 1363.7460 1363.7437 1625.7937	Error 468 Que canceroge erant sear	r tolerant aries mat nus ATCC cch Miss Sco 0 3 0 4 0 6 1 (5 1 5	ched: 16 35316] ce Expect 9 3.3 1 1.1 5 0.01 9 0.26 1 0.25 2) 2.3e+02 9 2.7a-05 2) 0.016 3) 0.039 9) 0.0038 7 0.046	emPA	
1	t All g1 261; outer 1; Check 9; Query 84 94 99 104 105 127 128 129 130 131 228 243 244	Select None 339284 1 membrane p to include Observed 542.2320 604.8540 632.8000 455.2530 682.3840 813.6590 813.6590 813.9310 813.9300 814.4100 783.0930 890.8220	e Sean Mass: 37561 rotein A [R: this hit in Mr (expt) 1082.4494 1263.5854 1362.7372 1362.7534 1625.3034 1625.9714 1625.8774 1625.8774 1626.9054 2269.442 2269.442 2670.3982	ch Selected Score: hterobacter a error tol. Mr (calc) 1002.5397 1207.6449 1263.6460 1363.7460 1363.7460 1625.7937 1625.7937 1625.7937 1625.7937 1625.7937 2246.1856 2670.3864	468 Que canceroge erant sear Delta 0.0486 -0.0605 -1.0088 -0.9255 -0.4903 -0.0223 0.0537 0.1777 1.0117 0.9716 -0.926 0.017	r tolerant pries mat nus ATCC cch Miss Scor 0 4 1 (5 1 5 1 5 1 5 0 (2 2 0 9 0 (6 0 (5) 0 (6 0 (5) 0 (5) 0 (5) 0 (5) 0 (5)	ched: 16 35316] re Expect 0 3.3 4 1.1 5 0.01 0) 0.26 1 0.25 2 2.3e+02 0 2.7e-05 2) 0.016 3) 0.038 7 0.046 3 9.2 2 0.14	emPA Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peptide R.SUVENTRIK.A R.AQSVVDTLVSK.G K.AQSVVDTLVSK.G K.RAQSVUDTLVSK.G K.RAQSVUDTLVSK.G K.LAYPVTDDLDVTR.L K.LAYPVTDDLDVTR.L K.LAYPVTDDLDVTR.L K.LAYPVTDDLDVTR.L K.LAYPVTDDLDVTR.L K.LAYPVTDDLDVTR.L K.LAYPVTDDLDVTR.L K.LAYPVTDLDUTT.L K.LAYPVTDLDVTR.L K.LAYPVTDLDUTT.L K.LAYPVTDLDUTT.L K.LAYPVTDLDUTT.L K.ATLKPEQQALDQLTQLSHLDPK.D K.ATLKPEQQALDQLTTQLSHLDPK.D
र दिदा द द द द द द द द द द द द . □	t All gi 261; outer of Check 9 94 94 94 94 94 94 105 127 128 127 128 129 130 131 228 243 244 245 192	Select None 339284 1 membrane p to include Observed 542,2320 604,8540 652,8000 455,250 682,3840 813,8930 813,9930 814,4100 783,0930 814,4100 783,0930 894,8750 1017,1370	Best Sean Mass: 37561 rotein A [St Totein A [St this hit in In Mr (expt) 1082.494 1207.6934 1362.7374 1362.7534 1362.5034 1625.9034 1625.9714 1626.8054 12366.2572 2366.2572 2669.4442 2671.3982 2671.4032 3048.3892 3948.3892	Ch Selected Score: hterobacter a error tol. Mr (calc) 1002.5397 1207.6449 1263.6460 1363.76	468 Que canceroge erant sear -0.0902 0.0486 -0.0605 -0.0925 -0.4903 -0.0223 0.0537 0.1777 1.0117 0.0716 -0.9423 0.0117 1.0167 0.0372	r tolerant pries matcher cch Miss Sco: 0 33 0 44 0 66 1 (5) 1 55 0 (2) 0 90 0 (6) 0 (5) 0 (2) 0 (2) 0 90 0 (6) 0 (5) 0 (3) 0 (3)	ched: 16 35316] re Expect 9 3.3 4 1.1 5 0.01 0) 0.26 4 0.25 2) 2.3e+02 0 0.016 3) 0.039 9) 0.0038 7 0.046 3) 9.2 2 0.14 1) 1.7e+02 4 0.033 9.2 2 0.14 1) 1.7e+02 4 0.033 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	emPA Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	Peptide K.SDVLPNFPKA.A R.AQSVVDFLVSK.G K.DOSVVVLGFTDR.I K.RAQSVVDFLVSK.G K.RAQSVVDFLVSK.G K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDLDVTR.L K.LGYPVTDLDUTR.L K.LGYPVTDLDUTR.L K.LGYPVTDLDUTR.L K.ATLKPEGQALDQLTTQLSNLDPK.D K.ATLKPEGQALDQLTTQLSNLDPK.D K.ASSIJAGDDUTGVSPYPAGGVERNMTR.D
।. □ 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	t All gi 261; outer of Check 9 94 94 94 94 94 94 105 127 128 127 128 129 130 131 228 243 244 245 192	Select None 339284 1 membrane p to include Observed 542,2320 604,8540 652,8000 455,250 682,3840 813,8930 813,9930 814,4100 783,0930 814,4100 783,0930 894,8750 1017,1370	Be Seam Mass: 37561 rotein A [Sr this hit ii this hit ii 1 1082.4494 1207.6934 1362.7372 1362.7372 1362.7372 1362.5974 1625.8074 1625.9714 1625.9714 1625.9714 1626.9054 2366.2572 2669.4442 2366.2572 2669.4442 2671.4032	Ch Selected Score: hterobacter a error tol. Mr (calc) 1002.5397 1207.6449 1263.6460 1363.76	468 Que canceroge erant sear Delta -0.0902 0.0486 -0.0605 -1.0088 -0.9925 -0.4903 -0.0925 0.0537 0.1777 1.0117 0.0716 -0.9423 0.0542	r tolerant pries matcher cch Miss Sco: 0 33 0 44 0 66 1 (5) 1 55 0 (2) 0 90 0 (6) 0 (5) 0 (2) 0 (2) 0 90 0 (6) 0 (5) 0 (3) 0 (3)	ched: 16 35316] ce Expect 0 3.3 1 1.1 5 0.01 0 0.26 1 0.25 2) 2.3e+02 0 0.016 3) 0.27a+05 2) 0.0039 3) 0.0038 7 0.046 3) 0.22 2 0.14 1,1.7e+02	emPA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8	Peptide K.SULENNIK.A R.AQSVUDILVSK.G K.DGSVUVJETDR.I K.RQSVUDILVSK.G K.RQSVUDILVSK.G K.LGYPUTDLLOVTR.L K.LGYPUTDLLOVTR.L K.LGYPUTDLLOVTR.L K.LGYPUTDLLOVTR.L K.LGYPUTDLLOVTR.L K.LGYPUTDLLOVTR.L K.LGYPUTDLLOVTR.L K.GYPUTDLLOVTR.L K.GYPUTDLLOVTR.L K.GYPUTDLLOVTR.L K.ATLKPEGQALDQLITQLSKLDPK.D K.ATLKPEGQALDQLITQLSKLDPK.D
1.	All	Select None 339284 1 membrane p to include Observed 542,2320 604,8540 652,8000 455,2530 813,930 813,930 813,930 814,4100 783,0390 814,4100 783,0390 894,4750 1017,1370 1022,5150 01655 M Cronobacte	Best Sean Mass: 37561 rotein A [St Totein A [St this hit in In Mr (expt) 1082.494 1207.6934 1362.7374 1362.7534 1362.5034 1625.9034 1625.9714 1626.8054 12366.2572 2366.2572 2669.4442 2671.3982 2671.4032 3048.3892 3948.3892	ch Selected Score: hterobacter a error tol: Mr (calc) 1092.5397 1207.6449 1263.6460 1363.7460 1364.3469 1366.36	468 Que canceroge erant sear -0.9002 0.0486 -0.9025 -0.4003 -0.0223 0.0537 0.1777 1.0117 0.0716 -0.9423 0.0117 1.0167 0.0372 0.1763	r tolerant pries mat pries mat pries Sco 0 33 0 4 0 6 1 (5) 1 (5) 0 4 0 6 1 (5) 0 (2) 0 99 0 (6) 0 (3) 0 (3) 0 (3) 0 (3) 0 (3) 0 (3) 0 (3) 0 (2) 0 (3) 0 (2) 0 (3) 0 (3) 0 (2) 0 (3) 0 (2) 0 (3) 0 (2) 0 (3) 0 (2) 0	ched: 16 35316] ce Expect: 5 0.01 0) 0.26 4 0.25 2.3e+02 0 2.7e-05 0) 0.038 0 0.039 0 0.046 3) 0.046 3) 9.22 0 0.14 1) 1.7e+02 4 0.025 1.6e+02	emPA Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peptide K.SDVLFNFFNK.A R.AgSVVDILVSK.G K.DGSVVVLGFTDR.I K.RAGSVVDILVSK.G K.RAGSVVDILVSK.G K.LGYFVTDDLDVTR.L K.LGYFVTDDLDVTR.L K.LGYFVTDDLDVTR.L K.LGYFVTDDLDVTR.L K.LGYFVTDDLDVTR.L K.LGYFVTDDLDVTR.L K.GYFVTDDLDVTR.L K.AGYFVTDDLDVTR.L R.FGQQELDQLTTQLSNLDFK.D K.ATLKPEGQALDQLTTQLSNLDFK.D K.ATLKPEGQALDQLTTQLSNLDFK.D R.ADSSNSIAGDDHDTGVSFVFAGGVEWAMTR.D + Oxidation (M)
1. 	All	Select None 339284 1 membrane p to include Observed 542.2320 604.8540 652.8000 455.2500 813.8930 813.8930 813.8930 813.9930 814.4100 783.0930 891.4750 1017.1370 1022.5150 01655 M Cronobacte to include Observed	 Be Sean Mass: 37561 rotein A [St this hit in Mr (expt) 1082.4494 1207.6934 1262.7534 1362.7534 1362.7534 1625.9714 1625.9714 1625.9714 1625.9714 1625.9714 1625.9714 1626.8054 2366.2572 2669.4442 2671.4032 3048.3892 3064.5232 ass: 37147 r sakazakiii this hit in Mr (expt) 	ch Selected Score: . hterobacter a error tol. Mr (calc) 1062.5397 1207.6449 1263.6460 1363.7460 1363.7460 1363.7460 1363.7460 1363.7460 1363.7460 1363.7461 1363.7460 1364.3469 1364.3469 1364.3469 1364.3469 1364.3469 1364.3469 1365.7460 1365.	Error 468 Que canceroge canceroge erant sear Delta -0.9902 0.0486 -0.9925 -0.4903 -0.9925 0.0487 0.0127 0.1777 1.0117 0.0716 -0.9423 0.0117 1.0167 0.372 0.1763 558 Que erant sear Delta I	r tolerant pries mat enus ATCC cch Miss Sco. 0 33 0 44 0 6 1 (5) 1 5 0 (2) 0 99 0 (6) 0 (2) 0	ched: 16 35316] ce Expect 9 3.3 4 1.1 5 0.01 0) 0.26 1 0.25 2) 2.3e+02 0 0.016 3) 0.039 9.2 2 0.14 1,1-e+02 4 0.003 1,1-e+02 4 0.003 9.2 2 0.14 1,1-e+02 4 0.003 1,1-e+02 4 0.003 1,1-e+02 4 0.003 1,1-e+02 4 0.003 1,1-e+02	emPA Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peptide K.SOVLPNERK.A R.AQGVVDILVSK.G K.BOSVVLGFTDR.I K.RAQSVVDILVSK.G K.RAQSVVDILVSK.G K.RAQSVVDILVSK.G K.RAQSVVDILVSK.G K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.ATLKPEGQALDQLTGLSNLDPK.D K.ATLKPEGQALDQLTGLSNLDPK.D R.ADSSNSIAGDDHDTGVSPVFAGGVEWAMTR.D + Oxidation (M) 0.29
1. 	All Image: Check is a state of the state of	Select None 339284 1 membrane p to include Observed 542.2230 604.8540 652.8000 455.2530 682.3840 813.6590 813.6590 813.9310 813.9310 813.9300 814.4100 891.1400 891.1400 891.1400 891.14750 107.1370 1022.5150 01555 M Cronobacte to include Observed Observed	 Be Sean Mass: 37561 rotein A [St this hit in Mr (expt) 1082.4494 1207.6934 1262.7534 1362.7534 1362.7534 1625.9714 1625.9714 1625.9714 1625.9714 1625.9714 1625.9714 1626.8054 2366.2572 2669.4442 2671.4032 3048.3892 3064.5232 ass: 37147 r sakazakiii this hit in Mr (expt) 	ch Selected Score: hterobacter a error tol: Mr (calc) 1082.5397 1207.6449 1263.6460 1363.7460 1363.7460 1363.7460 1363.7460 1363.7461 1363.7461 1363.7461 1363.7461 1363.7461 1363.7460 1364.3469 1364.34	Error 468 Que canceroge canceroge erant sear -0.0902 0.0486 -0.0605 -0.0902 0.0486 -0.925 -0.4903 -0.0223 0.0177 0.0117 1.0117 0.03716 -0.9423 0.0117 1.0167 0.0372 0.1763 58 Quez contact sear Delta Delta -0.0902	r tolerant pries mats mus ATCC cch Miss Sco. 0 3: 0 44 0 6 1 (5: 1 5: 0 (2: 0 9: 0 (3: 0 (3: 0 (3: 0 (3: 0 (3: 0 (2: 0 (3: 0 (3:	ched: 16 35316] re Expect 3 3.3 4 1.1 5 0.01 0) 0.26 4 0.25 2) 2.3e+02 0) 2.7e-05 2) 0.016 3) 0.038 7 0.046 3) 9.2 2 0.14 1) 1.7e+02 4 0.14 1.5e+02 2 0.14 1.5e+02	emPA Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>I: 0.53 Peptide R.SULENNIKAR R.AgSVUDTLVSK.G K.AGSVVVLGPTDR.I K.ARQSVUDTLVSK.G K.ARQSVUDTLVSK.G K.ARQSVUDTLVSK.G K.ARQSVUDTLVSK.G K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.ATLKPEGQALDQLTTQLSKLDPK.D K.ATLKPEGQALDQLTTQLSKLDPK.D R.ALSKSSIAGDDHDTGVSPVPAGGVENAMTR.D R.ADSSNSIAGDDHDTGVSPVPAGGVENAMTR.D + Oxidation (M) 0.29</pre>
1. 	All	Select None 339284 1 membrane p to include Observed 542.2320 604.840 652.8000 813.6590 813.6590 813.6590 813.9310 813.9300 814.4100 783.0930 891.4750 107.1370 1022.5150 01665 M Cronobacte to include Observed 542.2320 652.8000 813.650	e Sean Mass: 37561 rotein A [Sr this hit in Mr (expt) 1082.4494 1207.6934 1207.6934 1263.5854 1362.7374 1625.3034 1625.3034 1625.9714 1625.9714 1625.9714 1625.9714 1625.9714 1625.9714 1625.442 2670.3962 2671.4032 2669.4422 2670.3962 2671.4032 3064.5232 ass: 37147 r sakazak11 this hit in Mr (expt) 1082.4494 1625.3034	ch Selected Score: hterobacter a error tol. Mr (calc) 1082.5397 1207.6449 1263.6460 1363.7460 1363.7460 1363.7460 1363.7460 1363.7460 257.937 1625.7937	Error 468 Que canceroge canceroge errant sear -0.0902 0.0486 -0.0605 -0.9925 -0.4903 -0.0927 0.0716 0.0942 0.0117 1.0167 0.0372 0.1763 0.0127 558 Quex erant sear -0.0902 -0.0902 -0.0605 -0.0902 -0.0605	r tolerant pries matorics miss Score 0 30 0 44 0 63 1 (50 1 (50 1 (50 1 (50 0 (22) 0 (22) 0 (30 0 (30) 0	ched: 16 35316] re Expect: 3 3.3 4 1.1 5 0.01 0) 0.26 4 0.25 2 2.3e+02 0 2.7e-05 2) 2.3e+02 0 2.7e-05 2) 2.3e+02 0 0.038 3) 0.038 3) 0.046 3) 9.2 2 0.144 1) 1.7e+02 4 0.046 3) 9.2 2 0.144 1) 1.7e+02 4 0.046 3 .3 5 0.04 1 .5 2	emPA Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	I: 0.53 Poptide K.SDVLFNFFKA.A R.AgSVVDILVSK.G K.DGSVVVLGFTDR.I K.RAgSVVDILVSK.G K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ASLSKISLGDDHDTGVSFVFAGGVEWAMTR.D + Oxidation (M) 0.29
1. 기 기 기 기 기 기 기 기 기 기 기 기 기 기	All	Select None 339284 1 membrane p to include Observed 542.2320 604.840 652.8000 813.6590 813.6590 813.6590 813.9310 813.9300 814.4100 783.0930 891.4750 107.1370 1022.5150 01665 M Cronobacte to include Observed 542.2320 652.8000 813.650	e Sean Mass: 37561 rotein A [Sr this hit in Mr (expt) 1082.4494 1207.6934 1207.6934 1263.5854 1362.7374 1625.3034 1625.3034 1625.9714 1625.9714 1625.9714 1625.9714 1625.9714 1625.9714 1625.442 2670.3962 2671.4032 2669.4422 2670.3962 2671.4032 3064.5232 ass: 37147 r sakazak11 this hit in Mr (expt) 1082.4494 1625.3034	ch Selected Score: hterobacter a error tol. Mr (calc) 1082.5397 1207.6449 1263.6460 1363.7460 1363.7460 1363.7460 1363.7460 1363.7460 257.937 1625.7937	Error 468 Que canceroge canceroge errant sear -0.0902 0.0486 -0.0605 -0.9925 -0.4903 -0.0927 0.0716 0.0942 0.0117 1.0167 0.0372 0.1763 0.0127 558 Quex erant sear -0.0902 -0.0902 -0.0605 -0.0902 -0.0605	r tolerant pries matorics miss Score 0 30 0 44 0 63 1 (50 1 (50 1 (50 1 (50 0 (22) 0 (22) 0 (30 0 (30) 0	ched: 16 35316] re Expect: 3 3.3 4 1.1 5 0.01 0) 0.26 4 0.25 2 2.3e+02 0 2.7e-05 2) 2.3e+02 0 2.7e-05 2) 2.3e+02 0 0.038 3) 0.038 3) 0.046 3) 9.2 2 0.144 1) 1.7e+02 4 0.046 3) 9.2 2 0.144 1) 1.7e+02 4 0.046 3 .3 5 0.04 1 .5 2	emPA Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	I: 0.53 Poptide K.SDVLFNFFKA.A R.AgSVVDILVSK.G K.DGSVVVLGFTDR.I K.RAgSVVDILVSK.G K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ATLKFEGQALDQLTTQLSKLDFK.D K.ASLSKISLGDDHDTGVSFVFAGGVEWAMTR.D + Oxidation (M) 0.29
1. 기 기 기 기 기 기 기 기 기 기 기 기 기 기	All 1 gi 261 outer i outer i outer i Check 94 94 94 94 94 92 104 105 127 128 130 131 228 243 243 244 192 195 192 0mpA (i 1629 OmpA (i 1620 127 128 125 127 128 192 195 192 192 195	Select None 339284 1 membrane p to include Observed 542.2320 604.840 652.8000 813.6590 813.6590 813.6590 813.6930 813.9310 891.4750 107.1370 1022.5150 01665 M Cronobacte to include Observed 542.2320 652.8000 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.6930 813.913 813.913 813.9130 814.9130 814.9130 815.910 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.9130 815.915000 815.915000 815.915000 815.915000 815.915000 815.9150000 815.9150000 815.915000000000000000	Best Sean Mass: 37561 rotein A [Sr fithis hit in Indext fithis hit in Mr (expt) 1082.4494 1207.6934 1362.7374 1362.7534 1625.9714 1625.9714 1625.9714 1625.9714 1626.8054 2366.2572 2669.4442 2670.3982 2064.5232 ass: 37147 r sakazak11; this hit it 1082.4494 1263.5854 1265.9714 1265.3034 1625.3034 1263.5854 1625.7714 1262.4494 1625.9714 1262.5874 1625.9714	ch Selected Score: hterobacter a error tol. Mr (calc) 1082.5397 1207.6449 1263.6460 1363.7460 1363.7460 1363.7460 1363.7460 1363.7460 1363.7460 2670.3864 2670.38	Error 468 Que canceroge canceroge erant sear -0.0902 0.0486 -0.0605 -0.9925 -0.4903 -0.0927 0.0177 1.0177 0.0177 0.0117 1.0167 0.0322 0.1763 558 Quez -0.0902 -0.0605 -0.0902 -0.4003 -0.0902 -0.4003 -0.0902 -0.4003 -0.0902 -0.4003 -0.0233 -0.0223 -0.4055 -0.4003 -0.4055 -0.4053 -0.4057 -0.4053	r tolerant pries matorics miss Score 0 30 0 44 0 6 1 (5) 1 (5) 1 (5) 0 (2) 0 (2) 0 (2) 0 (3) 0 (6) 0 (5) 0 (3) 0	ched: 16 35316] re Expect: 3 3.3 4 1.1 5 0.01 0) 0.26 4 0.25 2 2.3e+02 0 2.7e-05 2) 2.3e+02 0 2.7e-05 2) 2.3e+02 0 2.7e-05 3) 0.038 9) 0.0038 7 0.046 3) 9.2 2 0.14 1) 1.7e+02 4 0.003 1, 5e+02 	emPA Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I: 0.53 Poptide K.SDVIENFNKA A.AgSVVDILVSK.G K.DGSVVVLGFTDR.I K.RAGSVVDILVSK.G K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.SUSPVTDDLDVTR.L K.ATLKPEQQALDQLTTQLSNLDPK.D K.ATLKPEQQALDQLTTQLSNLDPK.D K.ATLKPEQQALDQLTTQLSNLDPK.D R.ASSNSIAGDDHDTGVSPVPAGGVEWAMTR.D R.ADSSNSIAGDDHDTGVSPVPAGGVEWAMTR.D + Oxidation (M) 0.29 Poptide K.SUVLENTEN.I K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L
1. 기 기 기 기 기 기 기 기 기 기 기 기 기 기	All	Select None 339284 1 membrane p to include Observed 552,2320 604,8540 604,8540 604,8540 602,3840 813,8930 813,9310 813,9310 891,4750 1022,5150 01665 M Cronobacte to include 042,2320 632,8000 813,6590 813,6590 813,6590 813,6590 813,6590 813,6590 813,6590 813,6590 813,6590 813,6590 813,6590 813,6590 813,9310 813,9310 813,9310 813,9310 813,9310 814,4100 814,4100 814,4100 814,4100 814,4100 814,4100 814,4100 814,4100 814,4100 814,4100 813,9310 813,9310 813,9310 813,9310 813,9310 814,4100 814,4100 813,9310 813,9310 813,9310 813,9310 813,9310 813,9310 813,9310 813,9310 813,9310 813,9310 813,9310 813,9310 813,9310 813,9310 814,9310 813,9310 814,9310 813,9310 814,9310 814,9310 814,9310 813,9310 814,9310 813,9310 814,4100 814,4	Be Seam Mass: 37561 rotein A [Sr this hit in Mr (expt) 1082.4494 1207.6934 1263.5854 1362.7372 1362.7372 1362.7372 1362.7374 1625.3034 1625.9714 1625.9714 1626.8474 1626.9054 2364.2572 2669.4442 2670.3982 3064.5232 3064.5232 3064.5232 3064.5232 ass: 37147 r sakazakii this hit in 102.4494 1263.5854 1625.7714 1625.4074 1625.4074 1625.4074 1625.6074	ch Selected Score: hterobacter herror tol: Mr (calc) 1002.5397 1207.6449 1263.6460 1363.7477 1365.7937 1425.793	□ □ Error 468 Que canceroge canceroge canceroge canceroge 0.0486 -0.0902 0.0486 -0.0902 0.0486 -0.0902 0.0486 -0.0902 0.0486 -0.0902 0.0486 -0.0902 0.0177 0.0177 0.0177 1.0167 0.0372 0.1673 0.0372 558 Quex erant sear -0.0605 -0.4903 -0.0505 -0.4903 -0.0605 -0.0605 -0.4903 -0.0605 -0.4903 -0.0223 0.0537 0.1777 1.0117	r tolerant prices mat prices mat miss Sco: 0 33 0 44 0 6 1 (5; 0 42 0 9 0 (6; 0 (5; 0 (3; 0 (3	ched: 16 35316] ce Expect 3 3 3 1 1.1 5 0.01 0 0.25 2 0.25 2 0.016 3 0.039 0 0.0038 7 0.046 3 0.039 0 0.0038 1 1.6e+02 2 0.14 1.7e+02 4 0.003 1 1.6e+02 ce Expect 5 0.01 1.6e+02 ce 2.3e+02 0 0.14 0 0.038 0 0.0 0 0.23e+02 0 0.14 0 0.038 0 0.0 0 2.3e+02 0 0.14 0 0.038 0 0.0 0 2.3e+02 0 0.038 0 0.0 0 0.038 0 0.039 0 0.27e+05 0 0.04 0 0.04 0 0.04 0 0.04 0 0.04 0 0.05 0 0.04 0 0.05 0 0.04 0 0.04 0 0.05 0 0.04 0 0.04 0 0.05 0 0.04 0 0 0.04 0 0 0.04 0 0 0.04 0 0 0.04 0 0.04 0 0 0.05 0 0.005 0 0.005	emPA Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peptide K.SOVLPNETNER.A R.AQGVVDILVSK.G K.BOSVVLGFTDR.I K.RAQSVVDILVSK.G K.RAQSVVDILVSK.G K.RAQSVVDILVSK.G K.RAQSVVDILVSK.G K.LASYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.LGYPVTDDLDVTR.L K.ATLKPEQQALDQLTQLSNLDPK.D K.ATLKPEQQALDQLTQLSNLDPK.D R.ADSSNSIAGDDHDTGVSPVFAGGVENAMTR.D + Oxidation (M) 0.29 Peptide K.SOVLENTNK.A K.LGYPVTDDLDVTR.L K.LGYPVTDDLBVTR.L K.LGYPVTDDLBVTR.L K.LGYPVTDDLBVTR.L K.LGYPVTDDLBVTR.L K.LGYPVTDDLBVTR.L

Enterobacter cancerogenus SSP 4602 peptide sequences

SDVLFNFNK- Ion score 39

Page 1 of 2

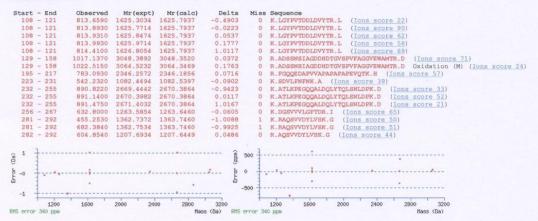
(MATRIX) Mascot Search Results

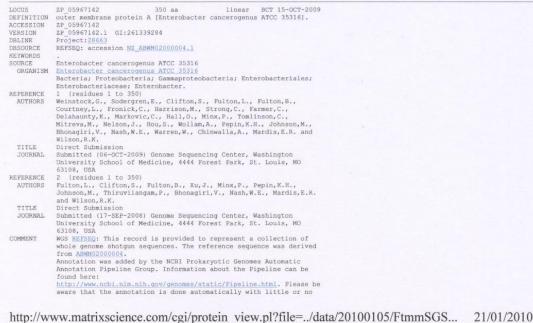
Protein View

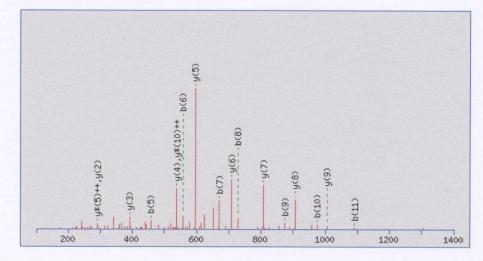
Match to: gi]261339284 Score: 468 outer membrane protein A [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\l20808\260808\SSP 4602_RG21_01_403.d\SSP 4602_RG21_01_403.mgf

Nominal mass (Mg): 37561; Calculated pI value: 5.19 NCBI BLAST search of $\underline{g1|261339284}$ against nr Unformatted sequence string for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316


Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **35**%


Matched peptides shown in Bold Red


1	MKKTAIAIAV	ALAGFATVAQ	AAPKDNTWYA	GGKLGWSQFH	DIGWYNSSLN
51	NDGPTHESQL	GAGAFGGYQV	NPYVGFEMGY	DWLGRMPYKG	DNVNGAFKAQ
101	GVQLTAKLGY	PVTDDLDVYT	RLGGMVWRAD	SSNSIAGDDH	DTGVSPVFAG
151	GVEWAMTRDI	ATRLEYOWVN	NIGDGATVGV	RPDNGMLSVG	VSYRFGQQED
201	APVVAPAPAP	APEVQTKHFT	LKSDVLFNFN	KATLKPEGQQ	ALDQLYTQLS
251	NLDPKDGSVV	VLGFTDRIGS	DAYNQGLSEK	RAQSVVDYLV	SKGIPANKIS
301	PRGMGESNPV	TGNTCDNVKP	RAALIDCLAP	DRRVEIEVKG	IKDVVTQPAA
351					

Show predicted peptides also

Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass

DGSVVVLGFTDR- Ion score 65

Mascot Search Results: Protein View

Page 2 of 2

manual curation. Enterobacter cancerogenus (GenBank Accession Number for 165 rDNA gene: 296078, the 165 rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).

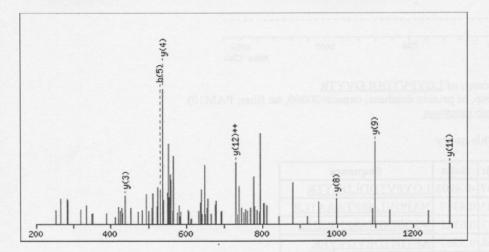
We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. Method: conceptual translation.

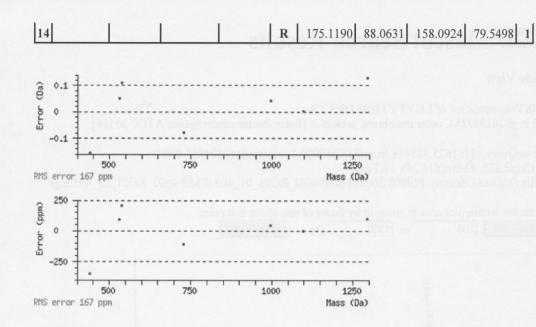
Mechou:	conceptual translation.
FEATURES	Location/Qualifiers
source	1350
	/organism="Enterobacter cancerogenus_ATCC_35316"
	/strain="ATCC 35316"
	/db xref="taxon:500639"
Protein	1350
	/product="outer membrane protein A"
	/calculated mol wt=37337
Region	1346
	/region_name="PRK10808"
	/note="outer membrane protein A; Reviewed; PRK10808"
	/db_xref="CDD: <u>138188</u> "
Region	23196
	/region_name="Surface_Ag_2"
	/note="Surface antigen; cl01155"
	/db_xref="CDD: <u>141128</u> "
Region	224338
	/region_name="OmpA_C-like"
	/note="Peptidoglycan binding domains similar to the
	C-terminal domain of outer-membrane protein OmpA; cd07185"
	/db_xref="CDD: <u>143586</u> "
Site	order(229230,265266,269,273274,277,328,332)
	/site_type="other"
	/note="ligand binding site"
	/db_xref="CDD: <u>143586</u> " 1350
CDS	
	/locus_tag="EcanA3_020100002425"
	/coded_by="complement(NZ_ABWM02000004.1:545400546452)" /note="COG2885_Outer_membrane_protein_and_related
	peptidoglycan-associated (lipo)proteins"
	/transl table=11
	/db xref="CDD:138188"
	Am Vier- Contractor

.


http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSGS... 21/01/2010

Peptide View

MS/MS Fragmentation of LGYPVTDDLDVYTR Found in gi|261339284, outer membrane protein A [Enterobacter cancerogenus ATCC 35316]


Match to Query 127: 1625.303448 from(813.659000,2+) intensity(2804959.0000) Title: Cmpd 235, +MSn(814.24), 19.7 min Data file D:\Data\Lakshmy\120808\260808\SSP 4602_RG21_01_403.d\SSP 4602_RG21_01_403.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 200 to 1300 Da Full range

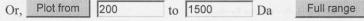
Monoisotopic mass of neutral peptide Mr(calc): 1625.7937
Fixed modifications: Carboxymethyl (C)
Ions Score: 22 Expect: 2.3e+02
Matches (Bold Red): 7/104 fragment ions using 18 most intense peaks

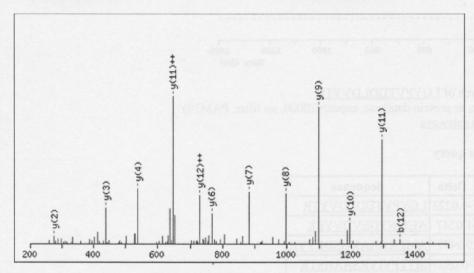
#	a	a ⁺⁺	b	b ⁺⁺	Seq.	у	y++	y*	y* ⁺⁺	#
1	86.0964	43.5519	114.0913	57.5493	L	NABOVI	ISOGDO	AV/ CSCL	17202.24	14
2	143.1179	72.0626	171.1128	86.0600	G	1513.7169	757.3621	1496.6904	748.8488	13
3	306.1812	153.5942	334.1761	167.5917	Y	1456.6955	728.8514	1439.6689	720.3381	12
4	403.2340	202.1206	431.2289	216.1181	P	1293.6321	647.3197	1276.6056	638.8064	11
5	502.3024	251.6548	530.2973	265.6523	V	1196.5794	598.7933	1179.5528	590.2800	10
6	603.3501	302.1787	631.3450	316.1761	Т	1097.5109	549.2591	1080.4844	540.7458	9
7	718.3770	359.6921	746.3719	373.6896	D	996.4633	498.7353	979.4367	490.2220	1
8	833.4040	417.2056	861.3989	431.2031	D	881.4363	441.2218	864.4098	432.7085	1
9	946.4880	473.7477	974.4829	487.7451	L	766.4094	383.7083	749.3828	375.1951	(
10	1061.5150	531.2611	1089.5099	545.2586	D	653.3253	327.1663	636.2988	318.6530	4
11	1160.5834	580.7953	1188.5783	594.7928	V	538.2984	269.6528	521.2718	261.1396	4
12	1323.6467	662.3270	1351.6416	676.3245	Y	439.2300	220.1186	422.2034	211.6053	1
13	1424.6944	712.8508	1452.6893	726.8483	Т	276.1666	138.5870	259.1401	130.0737	12

NCBI **BLAST** search of <u>LGYPVTDDLDVYTR</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

All matches to this query

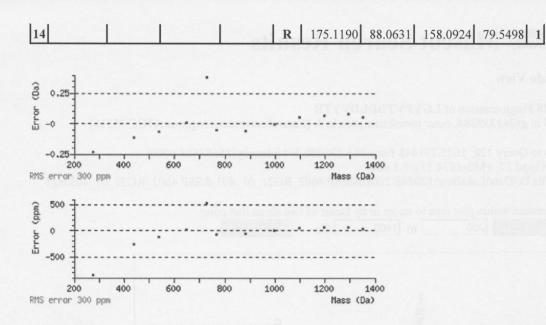
Score	Mr(calc):	Delta	Sequence
21.8	1625.7937	-0.4903	LGYPVTDDLDVYTR
11.7	1624.8685	0.4349	NAPGVLHSFTAAATLR
10.9	1624.6713	0.6321	VSDSDGNASENEHHK
10.6	1624.7468	0.5567	AETINTDEVDVYEK
10.6	1624.7986	0.5048	MRVKVILACTECK
10.6	1625.7607	-0.4573	FMTGLDDDLTQVGAK
9.6	1625.8049	-0.5015	EHGDLEGPLKAFADK
9.3	1625.9902	-0.6868	GIVSPILQVVKAMKK
9.1	1624.7072	0.5962	KENCPVASSSTMDAK
8.5	1625.7257	-0.4222	WFGSGGDGSVQGAMVR


(MATRIX) SCIENCE Mascot Search Results


Peptide View

MS/MS Fragmentation of LGYPVTDDLDVYTR Found in gi|261339284, outer membrane protein A [Enterobacter cancerogenus ATCC 35316]

Match to Query 128: 1625.771448 from(813.893000,2+) intensity(85683688.0000) Title: Cmpd 37, +MSn(814.35), 7.3 min Data file D:\Data\Lakshmy\120808\260808\SSP 4602_RG21_01_403.d\SSP 4602_RG21_01_403.mgf


Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1625.7937 Fixed modifications: Carboxymethyl (C) Ions Score: 90 Expect: 2.7e-05 Matches (Bold Red): 12/104 fragment ions using 15 most intense peaks

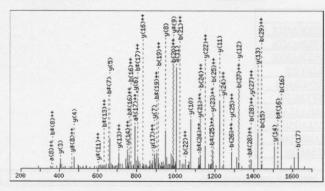
#	a	a ⁺⁺	b	b ⁺⁺	Seq.	у	y++	y*	y* ⁺⁺	#
1	86.0964	43.5519	114.0913	57.5493	L	SUNGIK	1/2/ IVI	MOREN	1.2.17.6	14
2	143.1179	72.0626	171.1128	86.0600	G	1513.7169	757.3621	1496.6904	748.8488	13
3	306.1812	153.5942	334.1761	167.5917	Y	1456.6955	728.8514	1439.6689	720.3381	12
4	403.2340	202.1206	431.2289	216.1181	Р	1293.6321	647.3197	1276.6056	638.8064	11
5	502.3024	251.6548	530.2973	265.6523	V	1196.5794	598.7933	1179.5528	590.2800	10
6	603.3501	302.1787	631.3450	316.1761	Т	1097.5109	549.2591	1080.4844	540.7458	9
7	718.3770	359.6921	746.3719	373.6896	D	996.4633	498.7353	979.4367	490.2220	8
8	833.4040	417.2056	861.3989	431.2031	D	881.4363	441.2218	864.4098	432.7085	7
9	946.4880	473.7477	974.4829	487.7451	L	766.4094	383.7083	749.3828	375.1951	6
10	1061.5150	531.2611	1089.5099	545.2586	D	653.3253	327.1663	636.2988	318.6530	5
11	1160.5834	580.7953	1188.5783	594.7928	V	538.2984	269.6528	521.2718	261.1396	4
12	1323.6467	662.3270	1351.6416	676.3245	Y	439.2300	220.1186	422.2034	211.6053	3
13	1424.6944	712.8508	1452.6893	726.8483	Т	276.1666	138.5870	259.1401	130.0737	2

NCBI **BLAST** search of <u>LGYPVTDDLDVYTR</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

All matches to this query

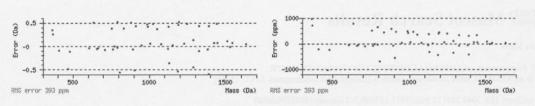
Score	Mr(calc):	Delta	Sequence
90.0	1625.7937	-0.0223	LGYPVTDDLDVYTR
33.0	1624.7468	1.0247	<u>AETINTDEVDVYEK</u>
28.1	1624.8242	0.9472	AMLKAAAKGSDEVYR
23.7	1625.8672	-0.0957	MTTPVIVRSAAHSTR
23.2	1624.7733	0.9982	<u>KFYDDKGNEVPGEK</u>
20.3	1625.6748	0.0966	MECACARAHVYTR
19.9	1625.9002	-0.1287	RPGRVXFVDLSEVR
18.5	1625.6553	0.1161	DDHAEEPSDEAQQR
18.4	1625.7798	-0.0083	DLQRDTPFNTYTR
17.6	1625.8157	-0.0442	<u>GMSYLAEMLSLNGIK</u>

Mascot: http://www.matrixscience.com/


415

Peptide View

MS/MS Fragmentation of ADSSNSIAGDDHDTGVSPVFAGGVEWAMTR Found in gi|261339284, outer membrane protein A [Enterobacter cancerogenus ATCC 35316]


Match to Query 192: 3048.389172 from(1017.137000,3+) intensity(4976399.0000) Title: Cmpd 86, +MSn(1017.75), 9.2 min Data file D:\Data\Lakshmy\120808\260808\SSP 4602_RG21_01_403.d\SSP 4602_RG21_01_403.mgf

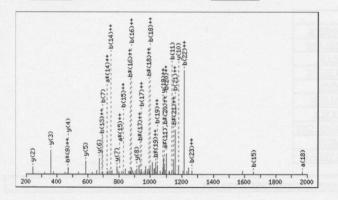
Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 200 to 1700 Da Full range Full range

Monoisotopic mass of neutral peptide Mr(calc): 3048.3520 Fixed modifications: Carboxymethyl (C) Ions Score: 71 Expect: 0.003 Matches (Bold Red): 51/332 fragment ions using 88 most intense peaks

#	a	a++	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y* ⁺⁺	#
1	44.0495	22.5284			72.0444	36.5258			A					30
2	159.0764	80.0418			187.0713	94.0393			D	2978.3221	1489.6647	2961.2956	1481.1514	29
3	246.1084	123.5579			274.1034	137.5553			S	2863.2952	1432.1512	2846.2686	1423.6379	28
4	333.1405	167.0739			361.1354	181.0713			S	2776.2631	1388.6352	2759.2366	1380.1219	27
5	447.1834	224.0953	430.1569	215.5821	475.1783	238.0928	458.1518	229.5795	N	2689.2311	1345.1192	2672.2046	1336.6059	26
6	534.2154	267.6114	517.1889	259.0981	562.2103	281.6088	545.1838	273.0955	S	2575.1882	1288.0977	2558.1616	1279.5845	25
7	647.2995	324.1534	630.2729	315.6401	675.2944	338.1508	658.2679	329.6376	Ι	2488.1562	1244.5817	2471.1296	1236.0684	24
8	718.3366	359.6719	701.3101	351.1587	746.3315	373.6694	729.3050	365.1561	A	2375.0721	1188.0397	2358.0455	1179.5264	23
9	775.3581	388.1827	758.3315	379.6694	803.3530	402.1801	786.3264	393.6669	G	2304.0350	1152.5211	2287.0084	1144.0079	22
10	890.3850	445.6961	873.3585	437.1829	918.3799	459.6936	901.3534	451.1803	D	2247.0135	1124.0104	2229.9870	1115.4971	21
11	1005.4120	503.2096	988.3854	494.6963	1033.4069	517.2071	1016.3803	508.6938	D	2131.9866	1066.4969	2114.9600	1057.9836	20
12	1142.4709	571.7391	1125.4443	563.2258	1170.4658	585.7365	1153.4392	577.2233	Н	2016.9596	1008.9835	1999.9331	1000.4702	19
13	1257.4978	629.2525	1240.4713	620.7393	1285.4927	643.2500	1268.4662	634.7367	D	1879.9007	940.4540	1862.8742	931.9407	18
14	1358.5455	679.7764	1341.5189	671.2631	1386.5404	693.7738	1369.5139	685.2606	Т	1764.8738	882.9405	1747.8472	874.4272	17
15	1415.5670	708.2871	1398.5404	699.7738	1443.5619	722.2846	1426.5353	713.7713	G	1663.8261	832.4167	1646.7995	823.9034	16
16	1514.6354	757.8213	1497.6088	749.3080	1542.6303	771.8188	1525.6037	763.3055	V	1606.8046	803.9060	1589.7781	795.3927	15
17	1601.6674	801.3373	1584.6408	792.8241	1629.6623	815.3348	1612.6358	806.8215	S	1507.7362	754.3717	1490.7097	745.8585	14
18	1698.7202	849.8637	1681.6936	841.3504	1726.7151	863.8612	1709.6885	855.3479	Р	1420.7042	710.8557	1403.6776	702.3425	13
19	1797.7886	899.3979	1780.7620	890.8847	1825.7835	913.3954	1808.7569	904.8821	V	1323.6514	662.3293	1306.6249	653.8161	12
20	1944.8570	972.9321	1927.8304	964.4189	1972.8519	986.9296	1955.8254	978.4163	F	1224.5830	612.7951	1207.5565	604.2819	11
21	2015.8941	1008.4507	1998.8676	999.9374	2043.8890	1022.4481	2026.8625	1013.9349	A	1077.5146	539.2609	1060.4880	530.7477	10
22	2072.9156	1036.9614	2055.8890	1028.4481	2100.9105	1050.9589	2083.8839	1042.4456	G	1006.4775	503.7424	989.4509	495.2291	9
23	2129.9370	1065.4722	2112.9105	1056.9589	2157.9319	1079.4696	2140.9054	1070.9563	G	949.4560	475.2316	932.4295	466.7184	8
24	2229.0054	1115.0064	2211.9789	1106.4931	2257.0004	1129.0038	2239.9738	1120.4905	V	892.4346	446.7209	875.4080	438.2076	7
25	2358.0480	1179.5277	2341.0215	1171.0144	2386.0430	1193.5251	2369.0164	1185.0118	Е	793.3661	397.1867	776.3396	388.6734	6
26	2544.1274	1272.5673	2527.1008	1264.0540	2572.1223	1286.5648	2555.0957	1278.0515	W	664.3235	332.6654	647.2970	324.1521	5
27	2615.1645	1308.0859	2598.1379	1299.5726	2643.1594	1322.0833	2626.1328	1313.5701	Α	478.2442	239.6258	461.2177	231.1125	4
28	2746.2050	1373.6061	2729.1784	1365.0928	2774.1999	1387.6036	2757.1733	1379.0903	Μ	407.2071	204.1072	390.1806	195.5939	3
29	2847.2526	1424.1300	2830.2261	1415.6167	2875.2475	1438.1274	2858.2210	1429.6141	Т	276.1666	138.5870	259.1401	130.0737	2
30									R	175.1190	88.0631	158.0924	79.5498	1

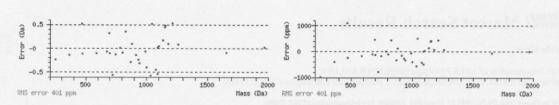
NCBI **BLAST** search of <u>ADSSNSIAGDDHDTGVSPVFAGGVEWAMTR</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

All matches to this query


Score	Mr(calc):	Delta	Sequence
71.0	3048.3520	0.0372	ADSSNSIAGDDHDTGVSPVFAGGVEWAMTR
64.9	3048.3520	0.0372	ADSSSNIAGDDHDTGVSPVFAGGVEWAMTR
39.5	3047.3679	1.0212	ADSSNSIAGDNHDTGVSPVFAGGVEWAMTR
21.1	3048.4896	-0.1005	FIAVLTMSGIATAQSGTTSKFMQLGEGDR
20.4	3049.4662	-1.0771	MNLHAEDDVIAPVSTGTSVAALTPAPDADR
20.4	3048.5664	-0.1772	MLGPGSIVGNPLDAGFAAVVDPSVYMKSIK
18.9	3048.4860	-0.0968	NTNVPADSRDQAAALSAALTAGAHAAEAGAEK
18.3	3048.6001	-0.2109	MRLNHFACAAALLAATAAALVPAPAQAQTK
17.4	3047.4449	0.9442	VGGAQIDMMKYDMGGSAAVFGAMRTIAQR
17.4	3049.4530	-1.0638	QGSADATLSQPHYTLANARLSWFSADDK

(MATRIX) SCIENCES Mascot Search Results

Peptide View


MS/MS Fragmentation of ATLKPEGQQALDQLYTQLSNLDPK Found in gi|261339284, outer membrane protein A [Enterobacter cancerogenus ATCC 35316]

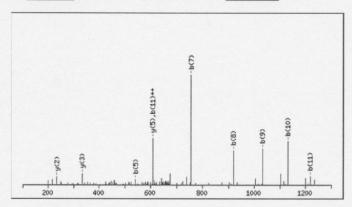
Match to Query 244: 2670.398172 from(891.140000,3+) intensity(46648868.0000) Title: Cmpd 82, +MSn(891.82), 9.1 min Data file D:\Data\Lakshmy\120808\260808\SSP 4602_RG21_01_403.d\SSP 4602_RG21_01_403.mgf

Monoisotopic mass of neutral peptide Mr(calc): 2670.3864 Fixed modifications: Carboxymethyl (C) Ions Score: 52 Expect: 0.14 Matches (Bold Red): 34/264 fragment ions using 62 most intense peaks

#	a	a++	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y*++	#
1	44.0495	22.5284			72.0444	36.5258			A					24
2	145.0972	73.0522			173.0921	87.0497	-		Т	2600.3566	1300.6820	2583.3301	1292.1687	23
3	258.1812	129.5942			286.1761	143.5917			L	2499.3089	1250.1581	2482.2824	1241.6448	22
4	386.2762	193.6417	369.2496	185.1285	414.2711	207.6392	397.2445	199.1259	K	2386.2249	1193.6161	2369.1983	1185.1028	21
5	483.3289	242.1681	466.3024	233.6548	511.3239	256.1656	494.2973	247.6523	Р	2258.1299	1129.5686	2241.1034	1121.0553	20
6	612.3715	306.6894	595.3450	298.1761	640.3665	320.6869	623.3399	312.1736	E	2161.0772	1081.0422	2144.0506	1072.5289	19
7	669.3930	335.2001	652.3665	326.6869	697.3879	349.1976	680.3614	340.6843	G	2032.0346	1016.5209	2015.0080	1008.0076	18
8	797.4516	399.2294	780.4250	390.7162	825.4465	413.2269	808.4199	404.7136	Q	1975.0131	988.0102	1957.9866	979.4969	17
9	925.5102	463.2587	908.4836	454.7454	953.5051	477.2562	936.4785	468.7429	Q	1846.9545	923.9809	1829.9280	915.4676	16
10	996.5473	498.7773	979.5207	490.2640	1024.5422	512.7747	1007.5156	504.2615	Α	1718.8959	859.9516	1701.8694	851.4383	15
11	1109.6313	555.3193	1092.6048	546.8060	1137.6263	569.3168	1120.5997	560.8035	L	1647.8588	824.4331	1630.8323	815.9198	14
12	1224.6583	612.8328	1207.6317	604.3195	1252.6532	626.8302	1235.6266	618.3170	D	1534.7748	767.8910	1517.7482	759.3777	13
13	1352.7169	676.8621	1335.6903	668.3488	1380.7118	690.8595	1363.6852	682.3462	Q	1419.7478	710.3775	1402.7213	701.8643	12
14	1465.8009	733.4041	1448.7744	724.8908	1493.7958	747.4016	1476.7693	738.8883	L	1291.6892	646.3483	1274.6627	637.8350	11
15	1628.8643	814.9358	1611.8377	806.4225	1656.8592	828.9332	1639.8326	820.4199	Y	1178.6052	589.8062	1161.5786	581.2930	10
16	1729.9119	865.4596	1712.8854	856.9463	1757.9068	879.4571	1740.8803	870.9438	Т	1015.5419	508.2746	998.5153	499.7613	9
17	1857.9705	929.4889	1840.9440	920.9756	1885.9654	943.4863	1868.9389	934.9731	Q	914.4942	457.7507	897.4676	449.2374	8
18	1971.0546	986.0309	1954.0280	977.5176	1999.0495	1000.0284	1982.0229	991.5151	L	786.4356	393.7214	769.4090	385.2082	7
19	2058.0866	1029.5469	2041.0600	1021.0337	2086.0815	1043.5444	2069.0550	1035.0311	S	673.3515	337.1794	656.3250	328.6661	6
20	2172.1295	1086.5684	2155.1030	1078.0551	2200.1244	1100.5659	2183.0979	1092.0526	N	586.3195	293.6634	569.2930	285.1501	5
21	2285.2136	1143.1104	2268.1870	1134.5972	2313.2085	1157.1079	2296.1820	1148.5946	L	472.2766	236.6419	455.2500	228.1287	4
22	2400.2405	1200.6239	2383.2140	1192.1106	2428.2354	1214.6214	2411.2089	1206.1081	D	359.1925	180.0999	342.1660	171.5866	3
23	2497.2933	1249.1503	2480.2667	1240.6370	2525.2882	1263.1477	2508.2617	1254.6345	Р	244.1656	122.5864	227.1390	114.0731	2
24									K	147.1128	74.0600	130.0863	65.5468	1

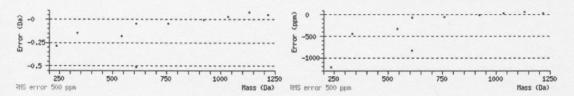
NCBI **BLAST** search of <u>ATLKPEGOOALDOLYTOLSNLDPK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

All matches to this query


Score	Mr(calc):	Delta	Sequence
51.9	2670.3864	0.0117	ATLKPEGQQALDQLYTQLSNIDPK
51.9	2670.3864	0.0117	ATLKPEGQQALDQLYTQLSNLDPK
34.7	2669.4891	0.9091	IIFEIDQALGIENVTLDIKDGLLK
34.4	2671.4068	-1.0087	ATLKPEGQQALDQLYTQLTTLDPK
32.8	2671.2118	-0.8137	NREIHEQECFNLNPATNVMNPK
30.7	2670.2806	0.1175	DNQMRPLTDEELLQEQATALPDK
29.4	2669.4170	0.9812	QINDEMTVQNKALEIARQQLSLK
28.8	2670.3646	0.0335	AGNKGSEAAQGLLEMISLNQQILGNV
28.0	2671.2662	-0.8680	MVEPAEEQFSGFIFKIQANMDPK
27.9	2671.4908	-1.0927	FVIEEGIKESLLGGRTINATLVGGAK

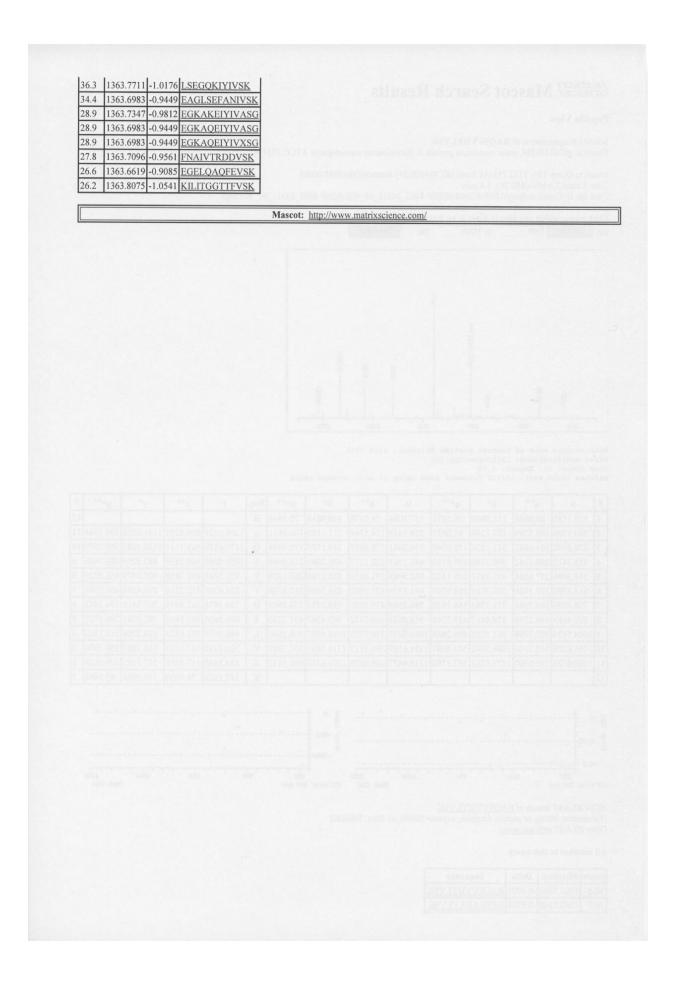
Peptide View

MS/MS Fragmentation of RAQSVVDYLVSK Found in gi[261339284, outer membrane protein A [Enterobacter cancerogenus ATCC 35316]


Match to Query 105: 1362.753448 from(682.384000,2+) intensity(2643055.0000) Title: Cmpd 2, +MSn(683.26), 5.4 min Data file D:\Data\Lakshmy\120808\260808\SSP 4602_RG21_01_403.d\SSP 4602_RG21_01_403.mgf

Clic	k mouse wit	hin plot ar	ea to zo	om in by	factor of ty	wo about that poin	nt
Or,	Plot from	100	to	1300	Da	Full range	

Monoisotopic mass of neutral peptide Mr(calc): 1363.7460 Fixed modifications: Carboxymethyl (C) Ions Score: 51 Expect: 0.25 Matches (Bold Red): 10/132 fragment ions using 11 most intense peaks

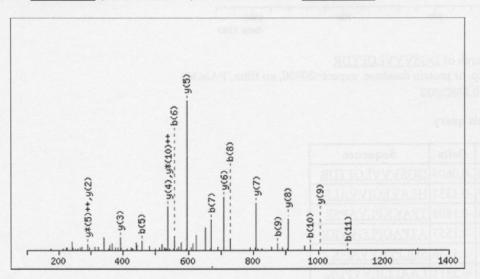

#	a	a ⁺⁺	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y*++	#
1	129.1135	65.0604	112.0869	56.5471	157.1084	79.0578	140.0818	70.5446	R					12
2	200.1506	100.5789	183.1240	92.0657	228.1455	114.5764	211.1190	106.0631	A	1208.6521	604.8297	1191.6256	596.3164	11
3	328.2092	164.6082	311.1826	156.0949	356.2041	178.6057	339.1775	170.0924	Q	1137.6150	569.3111	1120.5885	560.7979	10
4	415.2412	208.1242	398.2146	199.6110	443.2361	222.1217	426.2096	213.6084	S	1009.5564	505.2819	992.5299	496.7686	9
5	514.3096	257.6584	497.2831	249.1452	542.3045	271.6559	525.2780	263.1426	V	922.5244	461.7658	905.4979	453.2526	8
6	613.3780	307.1926	596.3515	298.6794	641.3729	321.1901	624.3464	312.6768	V	823.4560	412.2316	806.4294	403.7184	7
7	728.4050	364.7061	711.3784	356.1928	756.3999	378.7036	739.3733	370.1903	D	724.3876	362.6974	707.3610	354.1842	6
8	891.4683	446.2378	874.4417	437.7245	919.4632	460.2352	902.4367	451.7220	Y	609.3606	305.1840	592.3341	296.6707	5
9	1004.5524	502.7798	987.5258	494.2665	1032.5473	516.7773	1015.5207	508.2640	L	446.2973	223.6523	429.2708	215.1390	4
10	1103.6208	552.3140	1086.5942	543.8007	1131.6157	566.3115	1114.5891	557.7982	V	333.2132	167.1103	316.1867	158.5970	3
11	1190.6528	595.8300	1173.6262	587.3168	1218.6477	609.8275	1201.6212	601.3142	S	234.1448	117.5761	217.1183	109.0628	2
12				1					K	147.1128	74.0600	130.0863	65.5468	1

NCBI **BLAST** search of <u>RAOSVVDYLVSK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

All matches to this query

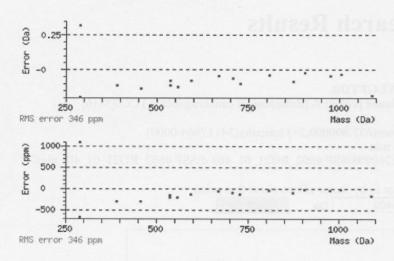
	Mr(calc):		
50.6	1363.7460	-0.9925	RAQSVVDYLVSK
36.3	1363.7248	-0.9714	HFSKANAYLVSK

(MATRIX) SCIENCE Mascot Search Results


Peptide View

MS/MS Fragmentation of DGSVVVLGFTDR Found in gi]261339284, outer membrane protein A [Enterobacter cancerogenus ATCC 35316]

Match to Query 99: 1263.585448 from(632.800000,2+) intensity(34117664.0000) Title: Cmpd 23, +MSn(633.16), 6.6 min Data file D:\Data\Lakshmy\120808\260808\SSP 4602_RG21_01_403.d\SSP 4602_RG21_01_403.mgf


Click mouse within plot area to zoom in by factor of two about that point

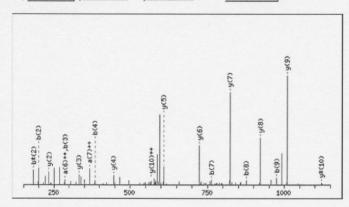
Monoisotopic mass of neutral peptide Mr(calc): 1263.6460 Fixed modifications: Carboxymethyl (C) Ions Score: 65 Expect: 0.01 Matches (Bold Red): 17/88 fragment ions using 23 most intense peaks

#	a	a ⁺⁺	b	b ⁺⁺	Seq.	у	y ⁺⁺	y*	y* ⁺⁺	#
1	88.0393	44.5233	116.0342	58.5207	D	hand	Maseut			12
2	145.0608	73.0340	173.0557	87.0315	G	1149.6263	575.3168	1132.5997	566.8035	11
3	232.0928	116.5500	260.0877	130.5475	S	1092.6048	546.8060	1075.5782	538.2928	10
4	331.1612	166.0842	359.1561	180.0817	V	1005.5728	503.2900	988.5462	494.7767	9
5	430.2296	215.6184	458.2245	229.6159	V	906.5043	453.7558	889.4778	445.2425	8
6	529.2980	265.1527	557.2930	279.1501	V	807.4359	404.2216	790.4094	395.7083	7
7	642.3821	321.6947	670.3770	335.6921	L	708.3675	354.6874	691.3410	346.1741	6
8	699.4036	350.2054	727.3985	364.2029	G	595.2835	298.1454	578.2569	289.6321	5
9	846.4720	423.7396	874.4669	437.7371	F	538.2620	269.6346	521.2354	261.1214	4
10	947.5197	474.2635	975.5146	488.2609	Т	391.1936	196.1004	374.1670	187.5872	3
11	1062.5466	531.7769	1090.5415	545.7744	D	290.1459	145.5766	273.1193	137.0633	2
12					R	175.1190	88.0631	158.0924	79.5498	1

NCBI **BLAST** search of <u>DGSVVVLGFTDR</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

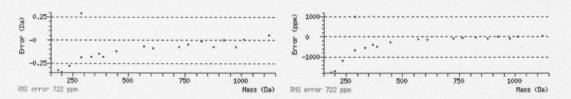
All matches to this query

Score	Mr(calc):	Delta	Sequence
64.5	1263.6460	-0.0605	DGSVVVLGFTDR
43.3	1263.7187	-0.1332	HEAVEGIVVALK
35.8	1263.7663	-0.1808	TPAKKPLVAPSR
34.0	1263.7412	-0.1557	ATPAQPLGVVRR
33.2	1264.7391	-1.1536	SDLPPIIVVANK
31.6	1263.8166	-0.2311	LAALLILVVPDK
29.7	1263.8642	-0.2788	VVGLLILVVIAR
29.2	1263.8027	-0.2172	KIPQKIPTLAR
29.0	1262.6143	0.9712	<u>GDIVNGIGFDEK</u>
28.8	1263.7299	-0.1445	GLAAPKGLPEGVR


21.4 19.9 19.8 19.7 19.2 19.1 18.9	1207.6019 1206.5993 1206.6179 1206.6608	 -0.9579 0.0915 1.0942 1.0755 1.0326 	9 <u>DQD</u> <u>ASQ</u> <u>REV</u> <u>REV</u> <u>AQS</u>	<u>OHKVVIK</u> VVQFCLR	K.									
				agao a		Mascot	http://ww	w.matrixs	cience.com	<u>n/</u>	1910	5 7 3 FS	8944-5 1 (916) 1	diala la
							1000	1 mil 14	14 0 11 70	191.90		ins of it	ridine :	eron s

Peptide View

MS/MS Fragmentation of AQSVVDYLVSK Found in gi[261339284, outer membrane protein A [Enterobacter cancerogenus ATCC 35316]


Match to Query 94: 1207.693448 from(604.854000,2+) intensity(17956968.0000) Title: Cmpd 7, +MSn(605.23), 5.7 min Data file D:\Data\Lakshmy\120808\260808\SSP 4602_RG21_01_403.d\SSP 4602_RG21_01_403.mgf

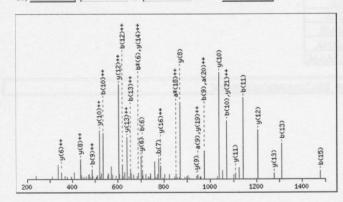
Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 150 to 1150 Full range Da

Monoisotopic mass of neutral peptide Mr(calc): 1207.6449 Fixed modifications: Carboxymethyl (C) Ions Score: 44 Expect: 1.1
Matches (Bold Red): 19/116 fragment ions using 47 most intense peaks

#	а	a ⁺⁺	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y**+	#
1	44.0495	22.5284			72.0444	36.5258			A					11
2	172.1081	86.5577	155.0815	78.0444	200.1030	100.5551	183.0764	92.0418	Q	1137.6150	569.3111	1120.5885	560.7979	10
3	259.1401	130.0737	242.1135	121.5604	2§7.1350	144.0711	270.1084	135.5579	S	1009.5564	505.2819	992.5299	496.7686	9
4	358.2085	179.6079	341.1819	171.0946	386.2034	193.6053	369.1769	185.0921	V	922.5244	461.7658	905.4979	453.2526	8
5	457.2769	229.1421	440.2504	220.6288	485.2718	243.1396	468.2453	234.6263	V	823.4560	412.2316	806.4294	403.7184	7
6	572.3039	286.6556	555.2773	278.1423	600.2988	300.6530	583.2722	292.1397	D	724.3876	362.6974	707.3610	354.1842	6
7	735.3672	368.1872	718.3406	359.6740	763.3621	382.1847	746.3355	373.6714	Y	609.3606	305.1840	592.3341	296.6707	5
8	848.4512	424.7293	831.4247	416.2160	876,4462	438.7267	859.4196	430.2134	L	446.2973	223.6523	429.2708	215.1390	4
9	947.5197	474.2635	930.4931	465.7502	975.5146	488.2609	958.4880	479.7477	V	333.2132	167.1103	316.1867	158.5970	3
10	1034.5517	517.7795	1017.5251	509.2662	1062.5466	531.7769	1045.5201	523.2637	S	234.1448	117.5761	217.1183	109.0628	2
11									K	147.1128	74.0600	130.0863	65.5468	1

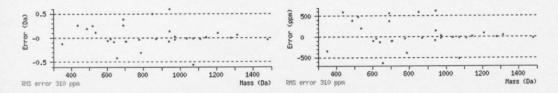
NCBI **BLAST** search of <u>AQSVVDYLVSK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST web gateways

All matches to this query


Score	Mr(calc):	Delta	Sequence
44.0	1207.6449	0.0486	AQSVVDYLVSK
29.4	1206.7085	0.9850	VVSVVQAGVPPF
24.0	1207.6673	0.0261	GHGQVIGNLVSK

Peptide View

MS/MS Fragmentation of FGQQEDAPVVAPAPAPAPEVQTK Found in gil261339284, outer membrane protein A [Enterobacter cancerogenus ATCC 35316]


Match to Query 228: 2346.257172 from(783.093000,3+) intensity(68730400.0000) Title: Cmpd 39, +MSn(783.69), 7.3 min Data file D:\Data\Lakshmy\120808\260808\SSP 4602_RG21_01_403.d\SSP 4602_RG21_01_403.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 200 to 1500 Da Full range

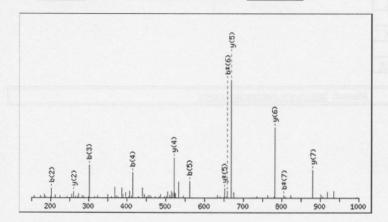
Monoisotopic mass of neutral peptide Mr(calc): 2346.1856 Fixed modifications: Carboxymethyl (C) Ions Score: 57 Expect: 0.046 Matches (Bold Red): 31/256 fragment ions using 40 most intense peaks

#	a	a ⁺⁺	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y* ⁺⁺	#
1	120.0808	60.5440			148.0757	74.5415			F					23
2	177.1022	89.0548			205.0972	103.0522			G	2200.1244	1100.5659	2183.0979	1092.0526	22
3	305.1608	153.0840	288.1343	144.5708	333.1557	167.0815	316.1292	158.5682	Q	2143.1030	1072.0551	2126.0764	1063.5419	21
4	433.2194	217.1133	416.1928	208.6001	461.2143	231.1108	444.1878	222.5975	Q	2015.0444	1008.0258	1998.0179	999.5126	20
5	562.2620	281.6346	545.2354	273.1214	590.2569	295.6321	573.2304	287.1188	E	1886.9858	943.9965	1869.9593	935.4833	19
6	677.2889	339.1481	660.2624	330.6348	705.2838	353.1456	688.2573	344.6323	D	1757.9432	879.4753	1740.9167	870.9620	18
7	748.3260	374.6667	731.2995	366.1534	776.3210	388.6641	759.2944	380.1508	A	1642.9163	821.9618	1625.8897	813.4485	17
8	845.3788	423.1930	828.3523	414.6798	873.3737	437.1905	856.3472	428.6772	P	1571.8792	786.4432	1554.8526	777.9299	16
9	944.4472	472.7272	927.4207	464.2140	972.4421	486.7247	955.4156	478.2114	V	1474.8264	737.9168	1457.7999	729.4036	15
10	1043.5156	522.2615	1026.4891	513.7482	1071.5106	536.2589	1054.4840	527.7456	V	1375.7580	688.3826	1358.7314	679.8694	14
11	1114.5528	557.7800	1097.5262	549.2667	1142.5477	571.7775	1125.5211	563.2642	A	1276.6896	638.8484	1259.6630	630.3352	13
12	1211.6055	606.3064	1194.5790	597.7931	1239.6004	620.3039	1222.5739	611.7906	P	1205.6525	603.3299	1188.6259	594.8166	12
13	1282.6426	641.8250	1265.6161	633.3117	1310.6375	655.8224	1293.6110	647.3091	A	1108.5997	554.8035	1091.5732	546.2902	11
14	1379.6954	690.3513	1362.6688	681.8381	1407.6903	704.3488	1390.6638	695.8355	P	1037.5626	519.2849	1020.5360	510.7717	10
15	1450.7325	725.8699	1433.7060	717.3566	1478.7274	739.8673	1461.7009	731.3541	A	940.5098	470.7586	923.4833	462.2453	9
16	1547.7853	774.3963	1530.7587	765.8830	1575.7802	788.3937	1558.7536	779.8805	P	869.4727	435.2400	852.4462	426.7267	8
17	1618.8224	809.9148	1601.7958	801.4016	1646.8173	823.9123	1629.7908	815.3990	A	772.4199	386.7136	755.3934	378.2003	7
18	1715.8751	858.4412	1698.8486	849.9279	1743.8701	872.4387	1726.8435	863.9254	P	701.3828	351.1951	684.3563	342.6818	6
19	1844.9177	922.9625	1827.8912	914.4492	1872.9127	936.9600	1855.8861	928.4467	E	604.3301	302.6687	587.3035	294.1554	5
20	1943.9862	972.4967	1926.9596	963.9834	1971.9811	986.4942	1954.9545	977.9809	V	475.2875	238.1474	458.2609	229.6341	4
21	2072.0447	1036.5260	2055.0182	1028.0127	2100.0396	1050.5235	2083.0131	1042.0102	Q	376.2191	188.6132	359.1925	180.0999	3
22	2173.0924	1087.0498	2156.0659	1078.5366	2201.0873	1101.0473	2184.0608	1092.5340	Т	248.1605	124.5839	231.1339	116.0706	2
23									K	147.1128	74.0600	130.0863	65.5468	1

NCBI **BLAST** search of <u>FGQQEDAPVVAPAPAPAPEVQTK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

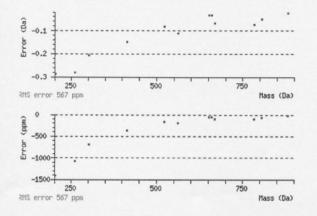
All matches to this query

Score	Mr(calc):	Delta	Sequence
56.9	2346.1856	0.0716	FGQQEDAPVVAPAPAPAPEVQTK
35.8	2346.1855	0.0716	FGQQEEAAPIAPAPAPAPEVQTK
23.3	2346.1420	0.1152	MDEDERMARAALSGLEANLVR
22.7	2346.2042	0.0530	VLMLVSGGLGOALWYSHDEKK
21.8	2345.2267	1.0304	FGQDDAVAPVVAPAPAPAPVVETK
20.1	2346.2154	0.0417	QVYGTVKGKLMAWDPVAQEAR
19.8	2345.1838	1.0734	EQGIDTVWFGAAAPLGLMAGVAR
19.7	2345.3008	0.9564	FNAPKAAPAPAPVPVAAPAPAPAPR
19.5	2347.2318	-0.9746	VAIISGAAQGMGAATARLFAAEGAK
18.3	2346.2880	-0.0308	SARADLLGPVGAPASGRAAAAVAAAI


(MATRIX) SCIENCE Mascot Search Results

Peptide View

MS/MS Fragmentation of SDVLFNFNK Found in gi/261339284, outer membrane protein A [Enterobacter cancerogenus ATCC 35316]


Match to Query 84: 1082.449448 from(542.232000,2+) intensity(14554407.0000) Title: Cmpd 14, +MSn(543.11), 6.2 min Data file D:\Data\Lakshmy\120808\260808\SSP 4602_RG21_01_403.d\SSP 4602_RG21_01_403.mgf

 $\begin{array}{c|c} Click mouse within plot area to zoom in by factor of two about that point \\ Or, \begin{tabular}{c} Plot from & 150 & to & 1000 & Da & Full range \\ \hline \end{array}$

Monoisotopic mass of neutral peptide Mr(calc): 1082.5397 Fixed modifications: Carboxymethyl (C) Ions Score: 39 Expect: 3.3 Matches (Bold Red): 12/76 fragment ions using 17 most intense peaks

#	a	a++	a*	a* ⁺⁺	b	b++	b*	b*++	Seq.	у	y ⁺⁺	y*	y* ⁺⁺	#
1	60.0444	30.5258			88.0393	44.5233			S					9
2	175.0713	88.0393			203.0662	102.0368			D	996.5149	498.7611	979.4884	490.2478	8
3	274.1397	137.5735			302.1347	151.5710			V	881.4880	441.2476	864.4614	432.7343	7
4	387.2238	194.1155			415.2187	208.1130			L	782.4196	391.7134	765.3930	383.2001	6
5	534.2922	267.6498			562.2871	281.6472			F	669.3355	335.1714	652.3089	326.6581	5
6	648.3352	324.6712	631.3086	316.1579	676.3301	338.6687	659.3035	330.1554	N	522.2671	261.6372	505.2405	253.1239	4
7	795.4036	398.2054	778.3770	389.6921	823.3985	412.2029	806.3719	403.6896	F	408.2241	204.6157	391.1976	196.1024	3
8	909.4465	455.2269	892.4199	446.7136	937.4414	469.2243	920.4149	460.7111	N	261.1557	131.0815	244.1292	122.5682	2
9									K	147.1128	74.0600	130.0863	65.5468	1

NCBI **BLAST** search of <u>SDVLFNFNK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

All matches to this query

Score	Mr(calc):	Delta	Sequence
38.9	1082.5397	-0.0902	SDVLFNFNK
37.4	1082.5318	-0.0824	SDVIFDMIK
37.4	1082.5318	-0.0824	SDVIFLMDK
32.4	1082.5396	-0.0902	AEELFGYVR
30.3	1082.6448	-0.1953	LVALQDGLVR
29.7	1082.5397	-0.0902	DEGLFTFVR
24.5	1082.6059	-0.1565	MFRVFIVR
24.5	1082.5253	-0.0758	MFTPGMIVR
23.8	1082.5760	-0.1266	FLSSDFIVR
22.9	1082.5720	-0.1226	ADPLDGQIVR

```
Lakshmy Manickan
lakshmy manickan@unn.ac.uk
SSP 4606
D:\Data\Lakshmy\120808\241108\SSP 4606_RB21_01_773.d\SSP 4606_RB21_01_773.mgf
MCBInr 20100102 (10272453 sequences; 3505279183 residues)
Bacteria (Subacteria) (569016 sequences)
5 Jan 2010 at 11:20:40 GMT
ej150582463 oxidoreductase [Exiguobacterium acetylicum]
gi14627569 short-chain dehydrogenase/reductase SDR [Novosphingobium aromaticivorans DSM 12444]
ei148368 outer membrane protein II [Enterobacter aerogenes]
User
Email
Search title
MS data file
Database
Taxonomy
Timesta
Protein hits
                                : gi150582463
Probability Based Mowse Score
lons score is -10*Log(P), where P is the probability that the observed match is a random event.
Individual ions scores > 57 indicate identity or extensive homology (p<0.05).
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits
Hits
$ 30
Number 1
   15
    10
    5
                     Probability Based Mowse Score
Peptide Summary Report
 Format As Peptide Summary
                                                                   *
                                                                                                                                                           Help
                         Significance threshold p< 0.05 Max. number of hits AUTO
                                                                                                                                                    Show sub-sets 0
                         Standard scoring @ MudPIT scoring C Ions score or expect cut-off
                         Show pop-ups @ Suppress pop-ups C Sort unassigned Decreasing Score 🔄 Require bold red 🗆
 Select All Select None Search Selected Error tolerant
         <u>qi[50582463</u> Mass: 27360 Score: 238 Queries matched: 5 emPAI: 0.41
1.
               xidoreductase [Exiguobacterium acetylicum]
        Check to include this hit in error tolerant search
                                                                     Mr (calc)
                                                                                             Delta Miss Score Expect Rank Peptide
                           Observed Mr (expt)
            Query

        Observed
        Mr (expt)
        mr (calc)
        petta miss source

        497.5760
        1489.7062
        1489.7413
        -0.0351
        0
        53

        573.2590
        1716.7552
        1716.8570
        -0.1019
        0
        (25)

                                                                                                                               0.15 1 R.VLAPAATETEFADR.S
87 1 K.YTVITGASSGIGYETAK.L
        V
        ₽ 155
                                                                                                                                                1 K.YTVITGASSGIGYETAK.L
                           859.3900 1716.7654 1716.8570 -0.0916
        1
                                                                                                          0
                                                                                                                      91 2.3e-05
               156

        100
        005.5500
        110.7054
        176.0576
        -0.0516
        0
        91
        2.5e-05
        1
        K.TTVITGASSGIGYETEK.E

        197
        197
        676.9390
        2027.7952
        2028.9752
        -1.1801
        0
        (37)
        3.6
        1
        K.SVDLADNONVHDLYEGLK.E

        198
        1014.9250
        2027.8354
        2028.9752
        -1.1398
        0
        94
        7.5e-06
        1
        K.SVDLADNONVHDLYEGLK.E

             g1146275769 Mass: 27018 Score: 97 Queries matched: 2 emPAI: 0.26
short-chain dehydrogenase/reductase SDR [Novosphingobium aromaticivorans DSM 12444]
 2. gi|146275769
        □ Check to include this hit in error tolerant search

        Query
        Observed
        Mr (capp)
        Mr (calc)
        Delta Miss
        Score
        Expect Rank
        Peptide

        107
        107
        455.1670
        1362.4792
        1362.6204
        -0.1413
        0
        52
        0.14
        1
        K.FEDTPLSDFHR.V

        107
        211
        700.5920
        2098.0542
        2099.0027
        -0.2486
        0
        44
        0.63
        1
        R.VNSVHPGGIDTPMLGSIMDK.X + 2 Oxidation (M)

 3.
        gi|148368 Mass: 25654
                                                                  Score: 84
                                                                                           Queries matched: 2 emPAI: 0.13
             outer membrane protein II [Enterobacter aerogenes]
        ☐ Check to include this hit in error tolerant search
        Proteins matching the same set of peptides:
gi 261339284 Mass: 37561 Score: 84
                                                                                                  Queries matched: 2
             outer membrane protein A [Enterobacter cancerogenus ATCC 35316]
 Peptide matches not assigned to protein hits: (no details means no match)

        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss Score
        Expect Rank
        Peptide

        651.8070
        1301.5994
        1302.5914
        -0.9920
        0
        40
        2.9
        1
        GYYCSLI

            Query

        ▼
        101
        651.8070
        1301.5994
        1302.5914
        -0.9920
        0
        40

        ▼
        109
        692.3100
        1382.6054
        1382.8245
        -0.2191
        2
        39

        ▼
        120
        738.3480
        1474.6814
        1475.8209
        -1.1394
        1
        36

        ▼
        229
        789.7300
        2366.1682
        2366.3533
        -0.1851
        2
        34

         7
                                                                                                                                     2.9 1 GYYCSLLAEAR
                                                                                                                                2.9 1 GYYCSLLAEAR
3.1 1 LSIALGKGSKNPAK
                                                                                                                                     7.1 1 TRTTFVQQLINR
                                                                                                                                 9.9 1 GDNGVGKTTLLKILAGLLQPSSGK
```

mhtml:file://C:\Documents and Settings\larcje1\Local Settings\Temp\Peptide Summar... 21/01/2010

Page 1 of 2

SCIENCE Mascot Search Results

Taxonomy: Enterobacter cancerogenus ATCC 35316

Protein View

Match to: gi[261339284 Score: 84 outer membrane protein A [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\241108\SSP 4606_RB21_01_773.d\SSP 4606_RB21_01_773.mgf

Nominal mass ($M_{\rm r}):$ 37561; Calculated pI value: 5.19 NCBI BLAST search of gi1261339284 against nr Unformatted sequence string for pasting into other applications

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **10%**

Matched peptides shown in Bold Red

1 MKKTAIAIAV ALAGFATVAQ AAPKDNTWYA GGKLGWSQFH DTGWYNSSIN 51 NDGFTHESQL GAGAFGGYQV NPYVGFEMGY DWLGRMPYKG DNVNGAFKAQ 101 GVQLTAKLGY PYTDDLDYYT RLGGMVWRAD SSNSIAGDDH DTGVSPVFAG 151 GVEMAMTKDI ATKLEYQWVN NIGDGATVGV RPDNGMLSVG VSYRFGQGED 201 APVVAPAPA PAPSVQTKHFT LKSDVLFNFN KATLKPEGQQ ALDQLYTQLS 251 NLDPKDGSVV VLGFTDRIGS DAYNQGLSEK RAQSVVDYLV SKGIPANKIS 301 PRGMGESNPV TGNTCDNVKP RAALIDCLAP DRRVEIEVKG IKDVVTQPAA 351

Show predicted peptides also

Start - En 108 - 12 195 - 21	1 813.8050 1625.5954 1625.7937 -0.1983 0 K.LGYFVTDDLDVYTR.L (Ions score 48)
-0.05	25 -50 2 -75 -100
-0.2 + • • •	1750 2000 2250 1750 2000 2250 Mass (Da) RMS error 87 ppm Mass (Da)
CUS FINITION CESSION RSION	ZP_05967142 350 aa linear BCT 15-OCT-2009 outer membrane protein A [Enterobacter cancerogenus ATCC 35316]. ZP_05967142 ZP_05967142.1 GI:261339284
BLINK BSOURCE EYWORDS	Project:28663 REFSEQ: accession NZ_ABWM02000004.1
OURCE ORGANISM	Enterobacter cancerogenus ATCC 35316 Enterobacter cancerogenus ATCC 35316 Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Enterobacter.
EFERENCE AUTHORS	<pre>Intervoluce: I to 350) Weinstock,G., Sodergren,E., Clifton,S., Fulton,L., Fulton,B., Courtney,L., Fronick,C., Harrison,M., Strong,C., Farmer,C., Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C., Mitreva,M., Nelson,J., Hou,S., Wollam,A., Pepin,K.H., Johnson,M., Bhonagiri,V., Nash,W.E., Warren,W., Chinwalla,A., Mardis,E.R. and Wilson,R.K.</pre>
TITLE JOURNAL	Direct Submission Submitted (06-0CT-2009) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA
EFERENCE AUTHORS	2 (residues 1 to 350) Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H., Johnson,M., Thiruvilangam,P., Bhonagiri,V., Nash,W.E., Mardis,E.R. and Wilson,R.K.
TITLE JOURNAL	Direct Submission Submitted (17-SEF-2008) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA
OMMENT	WGS REFER: This record is provided to represent a collection of whole genome shotgun sequences. The reference sequence was derived from ABWM02000004. Annotation was added by the NCBI Prokaryotic Genomes Automatic Annotation Pipeline Group. Information about the Pipeline can be found here:

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSGS... 21/01/2010

SCIENCE Mascot Search Results

(SCIENCE) 1	lascut Seal	ch Kesui	15				
User Email Search title MS data file Database Taxonomy Timestamp Protein hits	: Lakshmy Manick : lakshmy.manick : SSP 5003 : D:\Data\Lakshm : NCBInr 2010010 : Bacteria (Euba : 5 Jan 2010 at : gi 261342318 h	an@unn.ac.uk /\120808\280808\ 2 (10272453 sequent teria) (5690016 11:22:03 GMT	ences; 350 sequences)5279183 3)	3 residues	5)	RJ6_01_513.mgf cancerogenus ATCC 35316]
Probability Ba	sed Mowse Score						
Individual ions so	Log(P), where P is the ores > 57 indicate ider derived from ions sco	tity or extensive hor	mology (p<	0.05).			
Munder of H15	50 Probabil	100 100 Based Howse Score	1				
Peptide Summ	ary Report						
Format As	Peptide Summary	*					Help
S	ignificance threshold p	< 0.05 N	Aax. number	of hits	AUTO		
S	tandard scoring @ M	IdPIT scoring C Id	ons score or	expect c	ut-off 0		Show sub-sets 0
S	how pop-ups @ Supp	ress pop-ups 🔿 S	ort unassign	ned Decr	easing Score		Require bold red
Colord All	Calast Maga	arah Calastad					
Select All	Select None Se	arch Selected	Error tol	erant			
1. gi 2613				s match			0.27
	tical protein Ecan/ o include this hit			cerogen	lus AICC 3	02101	
			-1+- Mi		Purset P	ank 1	Bontido
	bserved Mr(expt) 56.2900 1665.8482		0244 0	36	Expect R		Peptide R.VAQYLSFLEQNGVAK.K
V <u>166</u>	28.6650 1882.9732	1882.9537 0.	0195 0	90	2.4e-05	1 1	R.AAIDDAIHQAQQLASGFK.G
Peptide matche	es not assigned to	protein hits: (n	o details	means	no match)		
Query	Observed Mr (exp		Delta Mis				Peptide
マ <u>67</u> マ 233	679.3770 1356.73 749.4760 2245.40		0.0582 2		0.45	1	LNDIDSILKAKK TLVLAMSDFTDLNTVDQVVAK + Oxidation (M)
▼ 61	516.3400 1030.66		0.1108 (5.5	1	VLDELDSLK
₹ <u>76</u>	736.1480 1470.28	14 1469.6126	0.6688 0	31	29	1	MGESGDSGAMLLDR + 2 Oxidation (M)
✓ <u>69</u>			0.0987 (48	1	EGDLAAAFSMIDK + Oxidation (M)
▼ <u>232</u> ▼ 226	747.0540 2238.14 738.0380 2211.09		1.0833 1 0.9954 1		40	1	MRMAAEPGAAVTGFGGVDDVVR + 2 Oxidation (M) KYVTTVAAQDATGNQFANSPK
	1011.1660 3030.47		0.9329		63	1	GLVEKGWQQALPDHAAPYTSTMVFLVR + Oxidation (M)
P 64	633.3340 1264.65	34 1265.5267 -	0.8733 (27	50	1	QEMDMENEIK
			1.1435 1		39	1	YLKTMGALIEGEETGEITIR
	876.6700 2626.98 987.5410 2959.60		0.4012 2		62	1	MYRVVSQFNDGIRTPIAQIYIK + Oxidation (M) VAARLFGGGVVTAVSVPAVMCVLTVVACR
 ✓ 190 ✓ 244 	892.6220 2674.84				29	1	MYGIKGTAKASDDGIYPMMAQNGIK + Oxidation (M)
▼ 188	982.2840 2943.83	02 2943.4470	0.3832	1 27	63	1	GGVHFLLEVDTPAALEQRMEVASAEMK + Oxidation (M)
P <u>98</u>	805.0860 2412.23			1 27	90	1	DLTLLSDYERHEMIEEQMK + 2 Oxidation (M)
 ✓ <u>155</u> ✓ 118 	914.2040 2739.59 853.0970 2556.26			2 26 0 25		1	AALTLMQIEDLNKTRLANAAAAAAQR + Oxidation (M) SGLDVDGFSVAVCEEIGVPLSNHR
▼ <u>118</u> ▼ <u>72</u>		14 1402.6690 -		0 25			LEELSMYDLYK
₹ 2 <u>35</u>	757.8950 2270.66			0 25	53	1	VLAAPTAIAGEDNGHVMTETTR
and the second sec			0.3950				SYFPVLDLQGHSDCDDVVHMREGLKEIR + Oxidation (M)
✓ <u>196</u>	1006.5340 2011.05	34 2009.9782	1.0753	2 25	1.5e+02	1	GKTGLYYFCGRGQSFLR

 199
 1008.5340
 2011.0554
 2009.9782
 1.0753
 2
 25
 1.54402
 1
 GKTGLYENCGROUPSLA

 187
 979.3990
 1956.7834
 1957.0190
 -0.2355
 0
 24
 79
 1
 ALVLQVLDIIDNEEAMR + Oxidation (M)

 130
 876.6690
 2627.8852
 2627.3317
 0.5535
 2
 24
 1.66+02
 1
 HGDNUTHFLEKTANEVSLIXARGASK

 214
 695.0820
 2082.2242
 2082.9536
 -0.7295
 0
 24
 92
 1
 MHNLYGNGSAGAVMIMLEK + 3 Oxidation (M)

 206
 1029.2490
 2055.4834
 2055.9944
 0.4891
 0
 24
 1.46+02
 1
 MENGLIARASVQARER + 2 Oxidation (M)
 7 7 S 734.9050 2201.6932 2201.1362 0.5570 1 24 1.9e+02 1 DTALAQIEGMLKATGPEVVSR + Oxidation (M) 7 <u>75</u> <u>74</u>
 731.2890
 2190.8452
 2191.1307
 -0.2855
 1
 24
 1.9e+02
 1
 SVVFGQDPAIDALASAIRMSR + Oxidation (M)

 667.5370
 2599.5892
 2599.3581
 0.2311
 2
 23
 1.8e+02
 1
 SRIGVCKVDITPPIGIDFVGYHR

 1012.5140
 3034.5202
 3033.3538
 1.1664
 0
 23
 2.1e+02
 1
 DLHALMTDSQDWWDADFGHYGGLMVR + Oxidation (M)
 ~

5
 126
 867.5370
 2599.5892
 2599.3581
 0.2311
 2

 200
 1012.5140
 3034.5202
 3033.3538
 1.1664
 0

Page 2 of 2

http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be aware that the annotation is done automatically with little or no manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA Enterobacter cancerogenus (deneant Accession Number for 165 TDNA gene: 296078, the 165 TDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316). We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible. This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/]. This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. Method: conceptual translation. Location/Qualifiers FEATURES Location/Qualifiers
1..350
/organism="Enterobacter cancerogenus ATCC 35316"
/strain="ATCC 35316"
/db_xref="taxon:500639"
1..350
/product="outer membrane protein A"
/colorbead and wtm33333 source Protein /calculated_mol_wt=37337 Region 1..346 1..346
/region_name="PRK10806"
/note="outer membrane protein A; Reviewed; PRK10808"
/db_xref="CDD:<u>138188</u>"
23..196
/region_name="Surface_Ag_2"
/note="Surface_antigen; cl01155"
/db_xref="CDD:<u>141128</u>"
224__338 Region 224.338 Region /region_name="OmpA_C-like" /note="Peptidoglycan binding domains similar to the C-terminal domain of outer-membrane protein OmpA; cd07185" /db_xref="CDD1<u>143586</u>" /db_xref="CDD:143566" order(229..230,265..266,269,273..274,277,328,332) /site_type="other" /note="ligand binding site" /db_xref="CDD:143566" Site 1..350 '
/locus_tag="EcanA3_020100002425"
/coded_by="complement(NZ_ABWM02000004.1:545400..546452)"
/note="COG2885 Outer membrane protein and related
peptidoglycan-associated (lipo)proteins"
/transl_table=11
/db_xref="CDD:138188"

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSGS... 21/01/2010

(MATRIX) Mascot Search Results

Protein View

Match to: gi|261342318 Score: 126 hypothetical protein EcanA3_17757 [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\280808\SSP 5003_RJ6_01_513.d\SSP 5003_RJ6_01_513.mgf

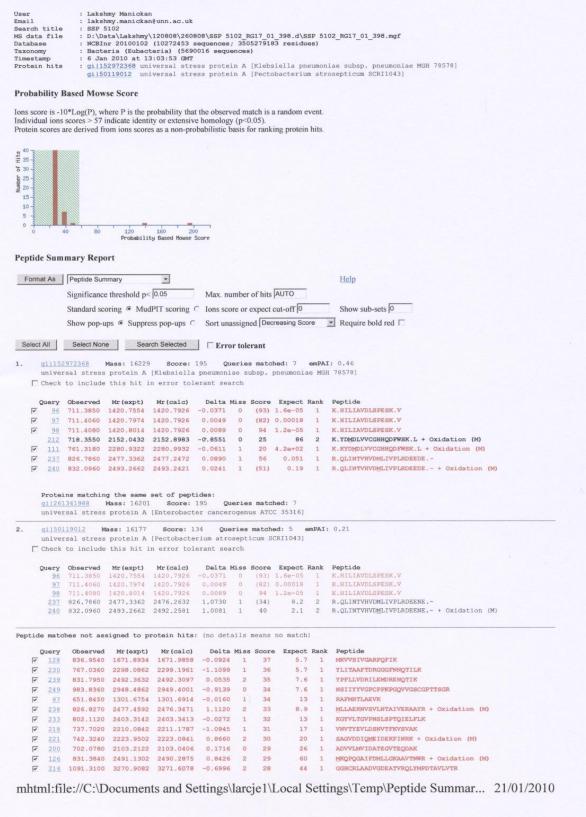
Nominal mass (M_r): **26485;** Calculated pI value: **5.95** NCBI BLAST search of $\underline{g1/261342318}$ against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **13%**

Matched peptides shown in Bold Red

1 MKFNVIALAA LVSLGAVSAQ ANELPAGPHI VTSGTASVDA VPDVATLAIE 51 VNVAAKDAAS AKKQADDRVA QYLSFLEQNG VAKKDINSAN LRTQPDYDYQ 101 NGKSILKGYR AVRTVEVTLR QLDKLNSLLD GALKAGLNEI SSVSLGVAQP 151 EKYKDBARKA AIDDAIRGAQ QLASGFKKGL GPVJSVRVHV SNYPSPMVR 201 MMKADAAPVS AQETYEQPTI QFDDQVDVVF QLEPTQTQQT EAAKAQ


Show predicted peptides also

Sort Peptides By
 Residue Number C Increasing Mass C Decreasing Mass

0.02	
0	
0	b 0
0	
-0.02	-10
168	80 1720 1760 1800 1840 1880 1680 1720 1760 1800 1840 1880
S error 12 pp	
ocus	ZP 05970176 246 aa linear BCT 15-OCT-2009
EFINITION	hypothetical protein EcanA3 17757 [Enterobacter cancerogenus ATCC
	35316].
CCESSION	ZP_05970176
ERSION	ZP 05970176.1 GI:261342318
BLINK	Project:28663
BSOURCE EYWORDS	REFSEQ: accession NZ_ABWM02000033.1
DURCE	Enterobacter cancerogenus ATCC 35316
ORGANISM	Enterobacter cancerogenus ATCC 35316
	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
	Enterobacteriaceae; Enterobacter.
EFERENCE	1 (residues 1 to 246)
AUTHORS	Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B.,
	Courtney,L., Fronick,C., Harrison,M., Strong,C., Farmer,C.,
	Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C., Mitreva,M., Nelson,J., Hou,S., Wollam,A., Pepin,K.H., Johnson,M.,
	Bhonagiri, V., Nash, W.E., Warren, W., Chinwalla, A., Mardis, E.R. and
	Wilson, R.K.
TITLE	Direct Submission
JOURNAL	Submitted (06-OCT-2009) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
AUTHORS	2 (residues 1 to 246) Fulter L Clifter S. Fulter P. Yu L Miny P. Papin K.H.
AUTHORS	Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H., Johnson,M., Thiruvilangam,P., Bhonagiri,V., Nash,W.E., Mardis,E.R.
	and Wilson, R.K.
TITLE	Direct Submission
JOURNAL	Submitted (17-SEP-2008) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
OMMENT	WGS <u>REFSEQ</u> : This record is provided to represent a collection of
	whole genome shotgun sequences. The reference sequence was derived from ABWM02000033.
	Annotation was added by the NCBI Prokaryotic Genomes Automatic
	Annotation Pipeline Group. Information about the Pipeline can be
	found here:
	http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSGSa... 21/01/2010

(MATRIX) Mascot Search Results

Page 2 of 2

manual curation. Enterobacter cancerogenus (GenBank Accession Number for 165 rDNA gene: 296078, the 165 rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human faces. The sequenced strain was obtained from ATCC (ATCC 35316). We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible. This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/]. This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. Method: conceptual translation. FEATURES Location/Qualifiers source 1..246 /organism="Enterobacter cancerogenus ATCC 35316" /db xref="taxon:500639" Protein 1..246 /region_name="DUF541" /note="Frotein of unknown function (DUF541); c101077" /db xref="CDD:141087" CDS 1..246 /locus tag="EcanA3_020100017757" /code dby="complement(NZ_ABMM02000033.1:268250..268990)" /note="Cod2968 Uncharacterized conserved protein" /transl_table=11 /db xref="CDD:138394"

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSGSa... 21/01/2010

(MATRIX) Mascot Search Results

Protein View

Match to: gi|261341988 Score: 195
universal stress protein A [Enterobacter cancerogenus ATCC 35316]
Found in search of D:\Data\Lakshmy\120808\260808\SSP 5102_RG17_01_398.d\SSP 5102_RG17_01_398.mgf

Nominal mass (M_z) : **16201**; Calculated pI value: **4.98** NCBI BLAST search of <u>gil261341988</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **35**%

Matched peptides shown in Bold Red

1 MAYKHILIAV DLSPESKVLV DKAVSMARPY NAKVSLIHVD VNYSDLYTGL 51 IDVNLGDMQK RISEETHHAL SELSTNAGYP ITETLSGSGD LGQVLVDAIK 101 KYDMDLVVCG HHQDFWSKLM SSARQLINTV HVDMLIVPIR DEEDE

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

Start - En 5 - 17 5 - 17 5 - 17 101 - 11 102 - 11 125 - 14	711.3850 1420.7554 1420.7926 -0.0371 0 K.HILIAVDLSPESK.V (Ions score 93) 711.4060 1420.7974 1420.7926 0.0049 0 K.HILIAVDLSPESK.V (Ions score 93) 711.4080 1420.8014 1420.7926 0.0049 0 K.HILIAVDLSPESK.V (Ions score 82) 711.4080 1420.8014 1420.7926 0.0089 0 K.HILIAVDLSPESK.V (Ions score 94) 8 761.3180 2280.9932 2260.911 K.KYDMEUVGGHQDFWSK.L Oxidation (M) (Ions score 20) 8 718.3550 2152.0432 2152.8983 -0.8551 0 K.YDMEUVCGHQDFWSK.L Oxidation (M) (Ions score 25) 5 5626.7860 2477.3362 2477.2472 0.0890 1 R.QLINTVHVIMILIVPLENDEEDE (Ions score 56)
125 - 14	5 832.0960 2493.2662 2493.2421 0.0241 1 R.QLINTVHVDMLIVPLRDEEDE Oxidation (M) (Ions score 51)
-0.25	
-0.75	-300
1400 IS error 151 p	1600 1800 2000 2200 2400 1400 1600 1800 2000 2200 2400 pm Mass (Da) RMS error 151 ppm Nass (Da)
ocus	ZP 05969846 145 aa linear BCT 15-OCT-2009
EFINITION CCESSION	universal stress protein A [Enterobacter cancerogenus ATCC 35316]. ZP 05969846
ERSION	ZP 05969661 GI:261341988
BLINK	Project:28663
BSOURCE EYWORDS	REFSEQ: accession NZ_ABWM02000029.1
DURCE	Enterobacter cancerogenus ATCC 35316
ORGANISM	Enterobacter cancerogenus ATCC 35316
	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
FERENCE	Enterobacteriaceae; Enterobacter. 1 (residues 1 to 145)
AUTHORS	Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B.,
	Courtney, L., Fronick, C., Harrison, M., Strong, C., Farmer, C.,
	Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C., Mitreva,M., Nelson,J., Hou,S., Wollam,A., Pepin,K.H., Johnson,M.,
	Bhonagiri,V., Nash,W.E., Warren,W., Chinwalla,A., Mardis,E.R. and
	Wilson,R.K.
JOURNAL	Direct Submission Submitted (06-OCT-2009) Genome Sequencing Center, Washington
ocordano	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
AUTHORS	2 (residues 1 to 145) Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H.,
normono	Johnson, M., Thiruvilangam, P., Bhonagiri, V., Nash, W.E., Mardis, E.R.
	and Wilson, R.K.
JOURNAL	Direct Submission Submitted (17-SEP-2008) Genome Sequencing Center, Washington
ooutrus	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
OMMENT	WGS REFSEQ: This record is provided to represent a collection of whole genome shotgun sequences. The reference sequence was derived
	from ABMM02000029.
	Annotation was added by the NCBI Prokaryotic Genomes Automatic
	Annotation Pipeline Group. Information about the Pipeline can be found here:
	http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be
	aware that the annotation is done automatically with little or no
	manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA
	gene: 26078, the 165 rDNA gene of a related strain of Enterobacter
	cancerogenus, not the sequenced strain), is a member of the
	Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from
	toosteed troin maint teces, the sequenced strath was obtained from
	/w.matrixscience.com/cgi/protein_view.pl?file=/data/20100106/FtmmSxStt 21/01/2010

Page 2 of 2

ATCC (ATCC 35316).

	We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is
	removed. Contigs are ordered and oriented where possible.
	This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].
	This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. Method: conceptual translation.
FEATURES	Location/Qualifiers
source	1145
	/organism="Enterobacter cancerogenus ATCC 35316" /strain="ATCC 35316"
Protei	/db_xref="taxon: <u>500639</u> " n 1145
Protei	/product="universal stress protein A"
	/calculated mol wt=16022
Region	
	/region name="USP Like"
	/note="Usp: Universal stress protein family. The universal
	stress protein Usp is a small cytoplasmic bacterial
	protein whose expression is enhanced when the cell is
	exposed to stress agents. Usp enhances the rate of cell
	survival during prolonged exposure to; cd00293"
ates	/db_xref="CDD: <u>30165</u> "
Site	order(911,39,109110,111112,121123) /site type="other"
	/site_type="blocker" /note="Ligand Binding Site"
	/db xref="CDD: 30165"
CDS	1145
	/locus tag="EcanA3 020100016092"
	/coded by="NZ ABWM02000029.1:151914152351"
	/note="COG0589 Universal stress protein UspA and related
	nucleotide-binding proteins"
	/transl_table=11
	/db_xref="CDD:137695"

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100106/FtmmSxStt.... 21/01/2010

(MATRIX) Mascot Search Results

MS da Datal Taxon Times	omy : Bacteria (Eubacteria) (5690016 sequences)
Prob	ability Based Mowse Score
ndiv	tore is -10*Log(P), where P is the probability that the observed match is a random event. that ions scores > 57 indicate identity or extensive homology (p <0.05). a scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.
Still 30 - 20 - 20 - 10 - 5 - 0 -	30 100 Probability Based Rouse Score
Pept	de Summary Report
Fo	Help
	Significance threshold $p < 0.05$ Max. number of hits AUTO
	Standard scoring MudPIT scoring Store or expect cut-off Show sub-sets
	Show pop-ups 🐔 Suppress pop-ups C Sort unassigned Decreasing Score 🔄 Require bold red 🗆
Sele	t All Select None Search Selected Error tolcrant
F F F	Query Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 28 549.7840 1097.5534 1097.6081 -0.0546 0 (62) 0.016 1 K.LLADDIVPSR.H 79 549.8330 1097.6514 1097.6081 0.0434 0 65 0.0095 1 K.LLADDIVPSR.H 80 550.3010 1098.5874 1097.6081 0.9794 0 (46) 1.5 1 K.LLADDIVPSR.H 96 692.8400 1383.6734 1383.6340 0.0394 0 20 3.2e+02 3 K.VORNENDSAT7AK.V + Oxidation (M) 188 1011.5000 2020.9854 2021.0317 -0.0463 0 83 0.00013 1 K.VVTLSGFVESQTQAEEAVK.V 189 674.6710 2020.9912 2021.0317 -0.0405 0 (80) 0.00025 1 K.VVTLSGFVESQTQAEEAVK.V
2.	<u>gi]146310199</u> Mass: 21390 Score: 130 Queries matched: 4 emPAI: 0.34 periplasmic protein [Enterobacter sp. 638] Check to include this hit in error tolerant search
	Query Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 78 549.7840 1097.5534 1097.6081 -0.0546 0 (62) 0.016 1 K.LLADDIVPSR.K
	79 549.8330 1097.6514 1097.6081 0.0434 0 65 0.0095 1 K.LLADDIVPSR.K 80 550.3010 1098.5874 1097.6081 0.9794 0 (46) 1.5 1 K.LLADDIVPSR.K
F	96 692.8440 1383.6734 1383.6340 0.0394 0 65 0.0098 1 K.VGNFMDDSSITAK.V
	Proteins matching the same set of peptides: <u>gi[261339031</u> Mass: 21366 Score: 130 Queries matched: 4 periplasmic protein [Enterobacter cancerogenus ATCC 35316]
3.	<u>di 238794784</u> Mass: 21354 Score: 94 Queries matched: 4 emPAI: 0.16 Osmotically-inducible protein Y [Yersinia intermedia ATCC 29909] Check to include this hit in error tolerant search
	Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 78 549.7840 1097.5534 1097.6081 -0.0546 0 (62) 0.016 1 K.LLADDIVPSR.K
1	
1	79 549.8330 1097.6514 1097.6081 0.0434 0 65 0.0095 1 K.LLADDIVER.K
F	80 550.3010 1098.5874 1097.6081 0.9794 0 (46) 1.5 1 K.LLADDIVPSR.K

(MATRIX) Mascot Search Results **Protein View** Match to: gi|261339031 Score: 130 periplasmic protein [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\260808\SSP 5306_RG13_01_389.d\SSP 5306_RG13_01_389.mgf Nominal mass (M_): 21366; Calculated pI value: 7.79 NORTH LAST search of $\underline{q1/261339031}$ against nr Unformatted sequence string for pasting into other applications Taxonomy: Enterobacter cancerogenus ATCC 35316 Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 11% Matched peptides shown in Bold Red 1 MNMTRLKISK TLLAVTLGSV LVSGSALAEN TTMDKAQSTA DTAGDKIDSS 51 MNKVGNFMDD SSITAKVKAA LVDDEAIKST DISVKTDKKV VTLSGFVESQ 101 AQAEQAVKVA KGVEGVTSVS DKLHVRDSKN ASVKGYAGDA ATTSEIKAKL 151 LADDIVPSRK VKVETTDGVV QLSGTVDSQA QSDRAESIAK AIDGVKSVKN 201 DLYTK 201 DLKTK Show predicted peptides also Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass Start - End Observed Mr (expt) Mr (calc) Delta Miss Sequence Observed Mr (expt) Mr (calc) 692.8440 1383.6734 1383.6340 549.7840 1097.5534 1097.6081 549.8330 1097.6514 1097.6081 550.3010 1098.5874 1097.6081 54 - 66 150 - 159 150 - 159 150 - 159 0.0394 -0.0546 0.0434 0 K.VGNFMDDSSITAK.V (Ions score 65) 0 K.LLADDIVPSR.K (Ions score 62) 0 K.LLADDIVPSR.K (Ions score 65) 0 K.LLADDIVPSR.K (Ions score 46) 0.9794 1 (wdd) 750 (Da) 500 Error 0.5 Error 250 ------0 0 1200 1300 14 1400 Mass (Da) 1300 1200 1100 RMS error 447 ppm 1100 1400 Mass (Da) RMS error 447 ppm ZP_05966889 205 aa linear BCT 15-OCT-2009 periplasmic protein [Enterobacter cancerogenus ATCC 35316]. ZP_05966889.1 GI:261339031 Project:28663 REFSEQ: accession NZ_ABWM02000004.1 LOCUS DEFINITION ACCESSION VERSION DBLINK DBSOURCE KEYWORDS . Enterobacter cancerogenus ATCC 35316 Enterobacter cancerogenus ATCC 35316 Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; SOURCE ORGANISM Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Enterobacter. 1 (residues 1 to 205) Weinstock,G., Sodergren,E., Clifton,S., Fulton,L., Fulton,B., Courtney,L., Fronick,C., Harlson,M., Strong,C., Farmer,C., Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C., Mitreva,M., Nelson,J., Hou,S., Wollam,A., Pepin,K.H., Johnson,M., Bhonagiri,V., Nash,W.E., Warren,W., Chinwalla,A., Mardis,E.R. and Wilson,R.K. Direct Submission REFERENCE AUTHORS TITLE Submitted (06-OCT-2009) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA JOURNAL 63103, USA 2 (residues 1 to 205) Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H., Johnson,M., Thiruvilangam,P., Bhonagiri,V., Nash,W.E., Mardis,E.R. and Wilson,R.K. REFERENCE AUTHORS and Wilson,R.K. Direct Submission Submitted (17-SEP-2008) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA WGS <u>REFSEQ</u>: This record is provided to represent a collection of whole genome shotgun sequences. The reference sequence was derived from <u>ABWM02000004</u>. Annotation was added by the NCBI Prokaryotic Genomes Automatic TITLE JOURNAL. COMMENT from ABWM02000004. Annotation was added by the NCBI Prokaryotic Genomes Automatic Annotation Pipeline Group. Information about the Pipeline can be found here: http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be http://www.matrixscience.com/cgi/protein view.pl?file=../data/20100105/FtmmSrceL... 21/01/2010

Page 2 of 2

aware that the annotation is done automatically with little or no manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: 296078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. Method: conceptual translation. FEATURES Location/Qualifiers source 1..205 /organism="Enterobacter cancerogenus ATCC 35316" /strain="ATCC 35316" /db_xref="taxon:500639" Protein 1..205 /region_name="PRK10568" /note="periplasmic protein" /calculated_mol_wt=21248 Region 3..205 /region_name="PRK10568" /note="periplasmic protein; Provisional; PRK10568" /db_xref="CDD:137994" Region 64..127 /region_name="BON" /note="Putative phospholipid-binding domain; cl02771" /db_xref="CDD:141694" 143..203 /region_name="BON" /note="Putative phospholipid-binding domain; cl02771" /db_xref="CDD:141694" CDS 1..205 /locus_tag="EcanA3_020100001160" /codd_by="complement(NZ_ABWM02000004.1:262747..263364)" /note="CDD:137994"

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSrceL... 21/01/2010

(MATRIX) SCIENCE/ Mascot Search Results

User Email Soarch title MS data file Database Taxonomy Timestamp Protein hits	: NCBInr 201001 : Bacteria (Eub) : 5 Jan 2010 at : gil261338832 (gil942722 (gil259907543 H gil50119972 (an@unn.ac.uk my\120808\260808\SSP 56)2 (10272453 sequences; acteria) (5690016 seque	3505279183 a nces) nterobacter (tor Complex B rwinia pyrifo ectobacteriur	cancerogent Sf-TuEF-Ts bliae Epl/S n atrosepti	is ATCC 35316] From Escherichia Coli 96] .cum SCRI1043]
Probability Ba	sed Mowse Score				
Individual ions sc	ores > 57 indicate ide	e probability that the observe ntity or extensive homology pres as a non-probabilistic ba	(p<0.05).		
		300 400 lity Based Mowse Score			
Peptide Summ	ary Report				
	Peptide Summary				Help
	ignificance threshold		nber of hits AU	-	
	tandard scoring @ M		e or expect cut-		Show sub-sets 0
SI	how pop-ups @ Supp	oress pop-ups C Sort unas	signed Decreas	sing Score	Require bold red
 gi/26133 elongati 	8832 Mass: 304 on factor Ts [Ent			:8 emPA	I: 0.06
A CONTRACT OF A	bserved Mr (expt)		iss Score Ex		Peptide
	42.8650 1483.715 87.9130 1773.811		0 108 4.8		K.VETDFAAEVAAMSK.Q + Oxidation (M) R.VSSLEGDVLGSYQHGAR.I
	92.2800 1773.818				R.VSSLEGDVLGSYQHGAR.I
	17.6220 1849.844 38.4440 1874.873		0 32 0 91 2	14 5 e-05 1	K.EYQVQLDIAMQSGKPK.E + Oxidation (M)
final manage	38.4440 1874.873 26.3090 1875.905		0 (33)	14 1	K.ALTEANGDIELAIENMR.K + Oxidation (M) K.ALTEANGDIELAIENMR.K + Oxidation (M)
☑ <u>167</u> 6	52.6170 1954.829	1954.9347 -0.1055	0 (41)	1.9 1	K.FTGEVSLTGQPFVMDPSK.S + Oxidation (M)
₹ 168 9	78.4730 1954.9314	1 1954.9347 -0.0032	0 57 (0.048 1	K.FTGEVSLTGOPFVMDPSK.S + Oxidation (M)
2. gi 19427	22 Mass: 30389	Score: 267 Queri	es matched:	6 emPAI:	0.23
Chain B,	Elongation Facto	r Complex Ef-TuEF-Ts Fr	om Escherich		
Check to	include this hit	in error tolerant sear	ch		
Query O			iss Score Ex		
	42.8650 1483.7154 17.6220 1849.8442		0 108 4.8 0 32	le-07 1 14 5	K.VETDFAAEVAAMSK.Q + Oxidation (M) K.EYQVQLDIAMQSGKPK.E + Oxidation (M)
	38.4440 1874.873 26.3090 1875.905		0 91 2	le-05 1 14 1	K.ALTEANGDIELAIENMR.K + Oxidation (M) K.ALTEANGDIELAIENMR.K + Oxidation (M)
		2269.0936 -0.9595			K.IDGNYGIILEVNCQTDFVAK.D
<u>224</u> 7	57.7650 2270.273	2269.0936 1.1795	0 (21) 1.9	e+02 3	K. IDGNYGIILEVNCQTDFVAK. D
gil15799 elongati gil15714 elongati gil17076 translat gil17204 RecName: gil19443	852 Mass: 3052 on factor Ts [Esc 7400 Mass: 322 on factor Ts [Cit 8398 Mass: 3052 ion elongation fa 5630 Mass: 304 Full=Elongation 3422 Mass: 3052	a set of peptides: 0 Score: 267 Quex herichia coli 0157:H7 E 39 Score: 267 Que robacter koseri ATCC BA 04 Score: 267 Que ctor Ts [Escherichia al 71 Score: 267 Que factor Ts; Short=Er-Ts 38 Score: 267 Que ctor Ts [Shigella dysen	ries matched A-895] ries matched bertii TW076 ries matched ries matched	: 6 : 6 27] : 6	
mhtml:file:	//C:\Documer	nts and Settings\la	rcje1\Loca	al Settin	gs\Temp\Peptide Summar 21/01/2010

(MATRIX) Mascot Search Results

Protein View

Match to: gi[261338832 Score: 376 elongation factor Ts [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\260808\SSP 5601_RG24_01_409.d\SSP 5601_RG24_01_409.mgf

Nominal mass (M_r): 30472; Calculated pI value: 5.13 NCBI BLAST search of gil261338832 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **20%**

Matched peptides shown in Bold Red

- 1 MAEITASLVK ELRERTGAGM MDCKKALTEA NGDIELAIEN MRKSGAIKAA 51 KKAGNVAADG VIITKIDGTY GIILEVNCQT DEVAADGGFQ AFANKVLDAA 101 VAGKITDVEV LKAQFEERV ALVAKIGENI NIRRVSSLEG DVLGSYQHGA 151 RIGVLVAAKG ADEELVKQLA MHIAASKPF VKPEDVSAEV VEKEYQVQLD 201 IAMQSGKPKE IAEKNVEGRM KKFTGEVSLIT GQFFVMDFSK SVAQLLKEHN 251 ADVTGFIRFE VGEGIEKVET DFAAEVAAMS KQS

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

FEATUREC

Page 2 of 2

aware that the annotation is done automatically with little or no manual curation. Enterobacter cancerogenus (GenBank Accession Number for 165 rDNA gene: 296078, the 165 rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. Method: conceptual translation. Location/Qualifiers

FEATURES	Location/Qualifiers
source	1283
	/organism="Enterobacter cancerogenus ATCC 35316"
	/strain="ATCC 35316"
	/db xref="taxon:500639"
Protein	1283
	/product="elongation factor Ts"
	/calculated mol wt=30244
Region	1279
And a state of the	/region name="tsf"
	/note="elongation factor Ts; Provisional; PRK09377"
	/db xref="CDD:137239"
Region	439
Part Descrites	/region name="UBA"
	/note="Ubiquitin Associated domain. The UBA domain is a
	commonly occurring sequence motif in some members of the
	ubiquitination pathway, UV excision repair proteins, and
	certain protein kinases. Although its specific role is so
	far unknown, it has been; c100153"
	/db xref="CDD:140477"
Region	61263
and a second sec	/region name="EF TS"
	/note="Elongation factor TS; pfam00889"
	/db xref="CDD:109927"
CDS	1283
	/gene="tsf"
	/locus tag="EcanA3 020100000165"
	/coded by="complement(NZ ABWM02000004.1:3088931740)"
	/note="COG0264 Translation elongation factor Ts"
	/transl table=11
	/db xref="CDD:137239"

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSrcm... 21/01/2010

(MATRIX) Mascot Search Results

: Lakshmy Manickan
: lakshmy.manickan@unn.ac.uk
: SSP 5607
: D:\Data\Lakshmy\120808\280808\SSP 5607 RH20 01 448.d\SSP 5607 RH20 01 448.mgf
: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
: Bacteria (Eubacteria) (5690016 sequences)
: 5 Jan 2010 at 11:32:24 GMT
: gi 261339130 carbamate kinase [Enterobacter cancerogenus ATCC 35316]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

ber of			
2 20 - 15 - 10 -			
5 -	0		100

200 300 Probability Based Mouse Score

Peptide Summary Report

Format As	Peptide Summary		Help
	Significance threshold p< 0.05	Max. number of hits AUTO	
	Standard scoring @ MudPIT scoring C	Ions score or expect cut-off 0	Show sub-sets 0
	Show pop-ups @ Suppress pop-ups C	Sort unassigned Decreasing Score	Require bold red

Select All Select None Search Selected

Error tolcrant

1. <u>gil261339130</u> Mass: 32346 Score: 355 Queries matched: 6 emPAI: 0.48 carbamate kinase [Enterobacter cancerogenus ATCC 35316] Check to include this hit in error tolerant search

5	Juery	Observed	Mr (expt)	Mr (calc)	Delta	Miss	Score	Expect	Rank	Peptide
4	33	465.2430	928.4714	928,5341	-0.0627	0	50	0.4	1	K.DLSAALLAR.Q
2	63	714.8890	1427.7634	1427.7984	-0.0349	0	86	6.90-05	1	R. IVESDAITALIOR.D
	65	498,6310	1492.8712	1492.9341	-0.0629	0	27	55	5	R.KPTLVVALGGNALLK.R
~	98	878.0740	1754.1334	1753.9938	0.1397	1	80	0.0002	1	R.GIEAVIDKDLSAALLAR.Q
2	181	766.7240	2297.1502	2297,0859	0.0643	0	55	0.075	1	R.DHLVICNGGGGVPVVENANGYR.G
1	188	798.1100	2391.3002	2391.2910	0.0171	0	57	0.047	1	R. VVLVHGNGPQVGLLALQNSAYDK. V

Peptide matches not assigned to protein hits: (no details means no match)

	uery	Observed	Mr (expt)	Mr(calc)			Score	1000		Peptide
~	39	476.8730	951.7314	952.5818	-0.8503		43	0.96	1	AAPGGAILKR
~	51	587.8290	1173.6434	1173.7332	-0.0898	2	36	7.2	1	TLKLTKETIK
~	65	498.6310	1492.8712	1491,7351	1.1360	1	33	12	1	RGAASATGLGEDLMK + Oxidation (M)
~	104	608.9710	1823.8912	1823.9377	-0.0465	1	33	12	1	QELADEAE IVLPRGER
~	88	563.1710	1686.4912	1685.9147	0.5764	2	30	18	1	ADRRVLLWLANGMR + Oxidation (M)
~	49	577.7330	1730.1772	1730.8951	-0.7179	1	30	43	1	LPNIDYRVALAEDSR
7	55	618.9030	1235.7914	1235.6067	0.1847	1	30	27	1	VEEAMDTVKAK + Oxidation (M)
~	140	1034.4450	3100.3132	3099.5196	0.7936	1	29	49	1	GHAEAELNIGFTAVASSGPLPDAMAAFRQR + Oxidation (M)
-	199	873.4630	2617.3672	2617,2417	0.1255	2	28	31	1	MRMTFRWYGENNDSVTLEQIK
7	122	976.7320	2927.1742	2926.4827	0.6915	2	28	52	1	NPDAAELVRGHSGRIVGCLTALMITMK + Oxidation (M)
~	90	565,5930	1693.7572	1692.8366	0.9206	2	27	47	1	SGMRSAEPRSLPSFR + Oxidation (M)
7	109	927.1790	2778.5152	2779.4691	-0.9539	2	27	71	1	QFGKKTAVSSVTFDIPQGQMVGIIGR + Oxidation (M)
~	139	1034.1020	3099.2842	3098,6652	0.6190	2	27	73	1	ITKLRLYVSGSNLLTFSSLYQGLDPEGK
~	182	771.7530	2312.2372	2312.1107	0.1265	1	26	54	1	CRSFDAGADGTAFAEGIGVVALK
7	166	742.3730	2224.0972	2224.0549	0.0423	0	25	70	1	FGPPGASSNGFNENLALFNSGK
7	124	985,8260	2954.4562	2954.4194	0.0368	0	25	1.1e+02	1	ETGAWASMVFVPPAFVADAVMEAASSGIK + Oxidation (M)
~	113	944.0300	2829.0682	2829,4669	-0.3988	2	25	1.3e+02	1	GIRHLKLIDLCTIPVSYAWAEAMR + Oxidation (M)
~	115	947.1350	2038.3832	2838.4182	-0.0350	1	25	1.3e+02	1	TTSDAALSGGPDPAPAPRAILMSGLQGSGK + Oxidation (M)
~	46	563.4510	1687.3312	1687.8199	-0.4887	0	24	1.3e+02	1	SSMAQAGKPIEPATER + Oxidation (M)
~	202	883.8770	2648.6092	2648.3129	0.2963	2	24	57	1	LQAVRFMWEGLVAGETGSPGRSER + Oxidation (M)
-	99	881.5150	2641.5232	2640.3619	1.1612	0	24	1.6e+02	1	FLSQAQLSQAEQINTANAQPNIVR
7	149	1059,9540	3176.8402	3176.6713	0.1689	1	24	1.3e+02	1	DLLKEIMESAIPVTMQDVVLVFANVSGVK + 2 Oxidation (M
~	151	1067.5050	3199.4932	3198.5734	0.9198	2	24	1.5e+02	1	KTEETLSSSYRVQFNFRPVASTADYFR
7	94	573,3000	1716.8782	1716,9860	-0.1078	2	24	1.2e+02	1	GRLHLDAGAVAAVVGRR
7	101	599.0420	1794.1042	1794.8788	-0.7746	2	24	99	1	DWIELKADKNASYDK
~	54	615.6450	1843.9132	1843.8332	0.0800	0	23	2.2e+02	1	VDVYGTMDEASAAMGLAK + Oxidation (M)
4	152	1067.5820	2133.1494	2133.0815	0.0680	0	23	1.90+02	1	ANPYTQOPPGSSLGTPSPAATR
7	117	952.4810	1902.9474	1904.0441	-1.0967	1	23	1.2e+02	1	MTPEQLQGKVLTGVLYK
7	89	847.3550	2539.0432	2538.4866	0.5566	2	23	2e+02	1	MALVNKVLIIGGGIGGMSAAILLRR + Oxidation (M)

(MATRIX) Mascot Search Results

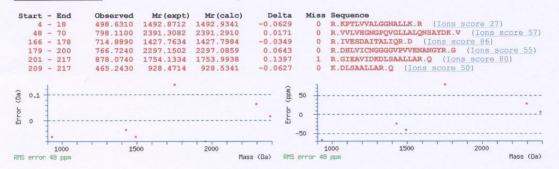
Taxonomy: Enterobacter cancerogenus ATCC 35316

Protein View

Match to: gil261339130 Score: 355 carbamate kinase [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\280808\SSP 5607_RH20_01_448.d\SSP 5607_RH20_01_448.mgf

Nominal mass (M_r): **32346**; Calculated pI value: **5.13** NCBI BLAST search of $\underline{gi[261339130}$ against nr Unformatted <u>sequence string</u> for pasting into other applications

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 29%


Matched peptides shown in Bold Red

1 MERKPTLVVA LGGNALLKRG EPLEAEIQRQ NIELAARTIA GLTAQWRVVL 51 VHGNGPQVGL LALQNSAYDK VTPYPLDILG AESQGMIGYM LQQALKNNLP 101 QREVSVLLTQ VEVDPADPAF TNPTKYIGFI YTDAQAKALA AEKGWIFKAD 151 GSAFRVVPS PQKRTVES ATTALQRDH LVICNGGGV PVVENANGYR 201 GIEAVIDKDL SAALLARQIE ADALLITDA DAVYLDWGKP TQRPLAQVTP 251 ALLNDMQFDA GSMGPKVAAC REFVEACGGI AGIGALADGA EILAGEKGTL 201 DR

301 IRN

Show predicted peptides also

Sort Peptides By @ Residue Number O Increasing Mass O Decreasing Mass

LOCUS DEFINITION ACCESSION	ZP_05966988 303 aa linear BCT 15-OCT-2009 carbamate kinase [Enterobacter cancerogenus ATCC 35316]. ZP 05966988	
VERSION	ZP 05966988.1 GI:261339130	
DBLINK	Project:28663	
DBSOURCE	REFSEQ: accession NZ ABWM02000004.1	
KEYWORDS		
SOURCE	Enterobacter cancerogenus ATCC 35316	
ORGANISM	Enterobacter cancerogenus ATCC 35316	
	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;	
	Enterobacteriaceae; Enterobacter.	
REFERENCE	1 (residues 1 to 303)	
AUTHORS	Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B.,	
	Courtney, L., Fronick, C., Harrison, M., Strong, C., Farmer, C.,	
	Delahaunty, K., Markovic, C., Hall, O., Minx, P., Tomlinson, C.,	
	Mitreva, M., Nelson, J., Hou, S., Wollam, A., Pepin, K.H., Johnson, M.,	
	Bhonagiri, V., Nash, W.E., Warren, W., Chinwalla, A., Mardis, E.R. and	
TITLE	Wilson,R.K. Direct Submission	
JOURNAL	Submitted (06-OCT-2009) Genome Sequencing Center, Washington	
JUORNAL	University School of Medicine, 4444 Forest Park, St. Louis, MO	
	63108, USA	
REFERENCE	2 (residues 1 to 303)	
AUTHORS	Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H.,	
	Johnson, M., Thiruvilangam, P., Bhonagiri, V., Nash, W.E., Mardis, E.R.	
	and Wilson, R.K.	
TITLE	Direct Submission	
JOURNAL	Submitted (17-SEP-2008) Genome Sequencing Center, Washington	
	University School of Medicine, 4444 Forest Park, St. Louis, MO	
	63108, USA	
COMMENT	WGS <u>REFSEQ</u> : This record is provided to represent a collection of	
	whole genome shotgun sequences. The reference sequence was derived from ABWM02000004.	

http://www.matrixscience.com/cgi/protein view.pl?file=./data/20100105/FtmmSrcT... 21/01/2010

Page 2 of 2

Annotation was added by the NCBI Prokaryotic Genomes Automatic Annotation Pipeline Group. Information about the Pipeline can be found here: http://www.ncbi.nlm.nlh.gov/genomes/static/Pipeline.html. Please be ware that the annotation is done automatically with little or no manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S TDNA gene: 396078, the 16S TDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from Arcc (Arcc 35316). We have performed one round of automated sequence improvement (re-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible. This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project DACC. Genome Coverage: 29,7 Sequencing Technology: 454. Method: conceptual translation. FETURES Source 1..303 /organism="Enterobacter cancerogenus ArCC 35316" /strain="ArCC 35316" /de xref="taxon:500639" /red 1..303 /product="carbamate kinase" /gc number="2.7.2.2" /dc number="2.7.2.2" /dc number="2.7.2.2" /region name="NAK_CK" /note="NAK_CK" Carbamate kinase (CK) catalyzes both the ArP-phosphorylation of carbamate and carbamyl phosphate (CP) utilization with the production of ATP from ADP and

/region_name="AAK_CK"
/region_name="AAK_CK"
/region_name="AAK_CK"
/note="AAK_CK: Carbamate kinase (CK) catalyzes both the
ATP-phosphorylation of carbamate and carbamoyl phosphate
(CP) utilization with the production of ATP from ADP and
CP. Both CK (this CD) and nonhomologous CP synthetase
synthesize carbamoyl phosphate, an...; cd04235"
/db_xref="CDD:58601"
/site_type="other"
/note="nucleotide binding site"
/db_xref="CDD:58601"
/site_type="other"
/note="nondolmer interface"
/note="nondolmer interface"
/note="nondolmer interface"
/cdb_xref="CDD:58601"
/site_type="other"
/note="nondolmer interface"
//db_xref="CDD:58601"
/site_type="other"
//db_xref="CDD:58601"
/site_type="other"/>site_type="other"
//db_xref="CDD:58601"
/site_type="other"/>site_type="

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSrcT... 21/01/2010

Peptide Summary Report (SSP 5701)

Page 2 of 7

754.9170 1507.8194 1507.7518 0.0676 1 67 0.006 K. SLYEADLVDEAKR I. 1 81
 0.0508
 1
 24
 1.1e+02
 3
 K.ALKEPARPMAIVGGSK.V + Oxidation (M)

 0.0633
 0
 97
 5.8e+06
 1
 K.ISYISTGGGAFLEFVSGK.V

 0.0214
 0
 55
 0.084
 1
 K.TILWNGPVGVFEFPNFR.K
 580,6830 1739,0272 1738,9763 135 147 938.0120 1874.0094 665.0230 1992.0472 1873.9462 687.3070 2058.8992 K.YAALCDVFVMDAFGTAHR.A + Oxidation (M) 4 163 1030.5570 2059.0994 2060.0136 (32) 16 K. FADVACAGPLLADELEALGK.A 687.3740 2059.1002 2060.0136 -0.9134 817.4700 2449.3882 2449.3078 0.0804 -0.9134 0 50 0.22 1 K.FADVACAGPLLADELEALGK.A 0.0804 0 80 0.00022 1 K.IADQLIVGGGIANTFVAAQGHNVGK.S 1 164 з. gi|156932627 gil156932627 Mass: 41426 Score: 613 Queries matched: phosphoglycerate kinase [Enterobacter sakazakii ATCC BAA-894] Queries matched: 11 emPAI: 1.00 ☐ Check to include this hit in error tolerant search Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide Ouerv R.ASLPTIELALK.Q K.VLPAVAMLEER.A + Oxidation (M) K.SLYEADLVDEAK.R 578.3620 1154.7094 622.3450 1242.6754 676.8330 1351.6514 1154.6910 1242.6642 1351.6507 47 0.62 53 0.17 58 0.042 0.0184 0 0.0113 0 754,9170 1507.8194 67 67 0.000 24 1.1e+02 97 5.8e-06 55 0.084 580.6830 1739.0272 1738.9763 0.0508 K.ALKEPARPMVAIVGGSK.V + Oxidation (M)
 111
 580.630
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212
 173.0212

 <th 1 Proteins matching the same set of peptides: <u>gi]260599261</u> Mass: 41470 Score: 613 Queries matched: 11 Phosphoglycerate kinase [Cronobacter turicensis] <u>gi]242238006</u> Mass: 41399 Score: 435 Queries matched: 7 emPAI: 0.54 Phosphoglycerate kinase [Dickeya dadantii Ech703] gi1242238006 4. ☐ Check to include this hit in error tolerant search Delta Miss Score Expect Rank Peptide 0.0184 0 47 0.62 1 R.ASLPTIEIALK.Q Mr (calc) Query Observed Mr (expt)
 Delta Miss Score
 Expect Name
 Peptide

 0.0184
 0
 47
 0.62
 1
 R.ASLPTIETALK.Q

 0.0478
 0
 112
 1.9e-07
 1
 R.VATEFSETATATLK.S

 0.0663
 0
 228
 40
 1
 R.VATEFSETATATLK.S

 0.0633
 97
 5.8e-06
 1
 K.ISYISTGGAFLEFVEGK.K

 0.0214
 0.55
 0.084
 1
 K.TLINNEPVGVFEFPNER.K

 -1.0140
 49
 0.31
 1
 K.YAALCDVFVMDAFGTAHR.A + Oxidation (M)

 0.0804
 0
 0.00022
 1
 R.IADQLIVGGGIANTFVAAQGHNVGK.S
 578.3620 1154.7094 1154.6910 734.9040 1467.7934 1467.7457 490.2880 1467.8422 1467.7457 938.0120 1874.0094 1873.9462 147 162 665.0230 1992.0472 1992.0258 687.3070 2058.8992 2059.9132 233 817.4700 2449.3882 2449.3078 5. qi1227114292 Mass: 41338 Score: 362 Queries matched: 6 emPAI: 0.54 phosphoglycerate kinase [Pectobacterium carotovorum subsp. brasiliensis PBR1692] ☐ Check to include this hit in error tolerant search Query Observed *Delta Miss Score Expect Rank Peptide Mr(expt) Mr(calc)
 uery
 observed
 Mr (expt)
 Mr (calc)
 ·Delta Miss
 Score
 Expect Rank
 Peptide

 56
 578.362
 1154.709
 1154.709
 1154.6910
 0.0184
 0
 47
 0.62
 1
 R.ASLPTIEIALK.Q

 135
 938.0120
 1874.0094
 1873.9462
 0.0633
 97
 5.8e-06
 1
 K.ISVISTIGGGAFLEFVEGK.K

 147
 665.0230
 1992.0472
 1992.0258
 0.0214
 0
 55
 0.084
 1
 K.TILMNGFVEVFEFNER.K

 162
 687.370
 2058.8992
 2059.9132
 -1.0140
 0
 93
 1
 K.YAALCDVFVEMBFTARLR.A + 0xidatic

 233
 817.4700
 2449.3082
 2449.3078
 0.0804
 80
 0.00022
 1
 K.IADQLIVGGGIANTFVAAQGHNVGK.S

 242
 903.9790
 2708.9152
 2708.3545
 0.5607
 0
 38
 2.3
 1
 R.ATAEBDAFSIAGGDTLAAIDLPGIADK.I
 K.YAALCDVFVMDAFGTAHR.A + Oxidation (M) Proteins matching the same set of peptides: gi1253690062 Mass: 41334 Score: 362 Queries matched: 6 Phosphoglycerate kinase [Pectobacterium carotovorum subsp. carotovorum PC1] gi 261823130 Mass: 41340 Score: 362 Queries matched: 6 Phosphoglycerate kinase [Pectobacterium wasabiae WPP163] gil157372179 Mass: 41484 Score: 319 Queries matched: 5 emPAI: 0.30 phosphoglycerate kinase [Serratia proteamaculans 568] 6. □ Check to include this hit in error tolerant search Observed Mr(expt) Mr(calc) 622.3450 1242.6754 1242.6642 Delta Miss Score Expect Rank Peptide 0.0113 0 28 45 2 K.ALPAVVMLEER.A + Oxidation (M) Query
 Observed
 Mr (calc)
 Delta Miss Score
 Expect Rank
 Peptide

 622.3450
 1242.6754
 1242.6754
 0.2013
 0
 28
 45
 2
 K.ALPAVVMLEER.A + 0xidat:

 938.0120
 1874.0094
 1873.9462
 0.0633
 0
 97
 5.8e-06
 1
 K.ISYISTGGGAFLEFVEGK.A

 665.0230
 1992.0472
 1992.0256
 0.0214
 0
 55
 0.084
 1
 K.TILMNGPYGYPEFPNFR.K

 667.3070
 2058.8932
 2059.9132
 -1.0140
 0
 38
 4
 2
 K.YALCHYVMDAFCTHR.A

 1109.6410
 2217.2674
 2217.1165
 0.510
 0
 102
 1.5e-06
 1
 K.DYLEGVDWAEGELVVLENVR.F
 147 200 1109.6410 2217.2674 2217.1165 7. gi1238759311 Mass: 39537 Score: 306 Queries matched: 5 emPAI: 0.44 nosphoglycerate kinase [Yersinia aldovae ATCC 35236] ☐ Check to include this hit in error tolerant search Mr(calc) Delta Miss Score Expect Rank Peptide Query Observed Mr(expt) K.ISYISTGGGAFLEFVEGK.K K.TILWNGPVGVFEFPNFR.K 5.8e-06 1 0.084 1 4 2 0.0633 0 97 0.0214 0 55 938.0120 1874.0094 665.0230 1992.0472 1873.9462 1992.0258 147 687.3070 2058.8992 2059.9132 -1.0140 0 38 K.YAALCDVYVMDAFGTAHR.A
 202
 087.5070
 2050.8952
 2059.9152
 -1.0140

 233
 817.4700
 2449.3882
 2449.3078
 0.0804

 242
 903.9790
 2708.9152
 2708.3545
 0.5607
 80 K.IADQLIVGGGIANTFVAAQGHNVGK.S
 R.AIAESDAFSIAGGGDTLAAIDLFGIADK.I 0 38

(MATRIX) SCIENCE/ Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 5701
MS data file	: D:\Data\Lakshmy\120808\190808\SSF 5701_RF24_01_363.d\SSF 5701_RF24_01_363.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:02:00 GMT
Protein hits	: gil146312978 phosphoglycerate kinase [Enterobacter sp. 638]
	gi[261342323] phosphoglycerate kinase [Enterobacter cancerogenus ATCC 35316]
	gi 156932627 phosphoglycerate kinase [Enterobacter sakazakii ATCC BAA-894]
	gi[242238006 Phosphoglycerate kinase [Dickeya dadantii Ech703]
	gi/227114292 phosphoglycerate kinase [Pectobacterium carotovorum subsp. brasiliensis PBR1692]
	gi[157372179 phosphoglycerate kinase [Serratia proteamaculans 568]
	gi 238759311 Phosphoglycerate kinase [Yersinia aldovae ATCC 35236]
	gi 261346331 phosphoglycerate kinase [Providencia rustigianii DSM 4541]
	gi[268592003 phosphoglycerate kinase [Providencia rettgeri DSM 1131]
	gi[53733312 COG0126: 3-phosphoglycerate kinase [Haemophilus influenzae R2866]
	gi183601149 hypothetical protein PROSTU_04779 [Providencia stuartii ATCC 25827]
	gi[22127184 phosphoglycerate kinase [Yersinia pestis KIM]
	gi[220936052 Phosphoglycerate kinase [Thioalkalivibrio sp. HL-EbGR7]
	gi 15640504 phosphoglycerate kinase [Vibrio cholerae Ol biovar El Tor str. N16961]
	gi[261210056 phosphoglycerate kinase [Vibrio sp. RC341]

Probability Based Mowse Score

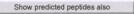
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Fom	hat As	Standard sco	threshold p<	PIT scoring		re or e	xpect c	-	ire 💌	Help Show sub-sets Require bold red
Selec	t All	Select None	Sean	ch Selected] □ Erro	r tole	rant			
	gi 146	5312978 N	dass: 41414	Score:	713 Qu	eries	match	ed: 13	emPAI	: 1.00
	phosph	noglycerate	kinase [End	erobacter s	sp. 638)					
Г	Check	to include	this hit in	n error tole	erant sea	rch				
	Query	Observed	Mr(expt)	Mr(calc)	Dolta	Mies	Score	Expect	Pank	Peptide
7	S6	578,3620	1154.7094	1154, 6910	0.0184	0	47	0.62	1	R.ASLPTIELALK.Q
F	58	622.3450	1242.6754	1242,6642	0.0113	0	53	0.17	1	K.VLPAVAMLEER.A + Oxidation (M)
1	72	734,9040	1467.7934	1467.7457	0.0478	0	112	1.90-07	1	R.VATEFSETATATLK.S
17	73	490,2880	1467,8422	1467.7457	0.0965	0	(28)	40	1	R.VATEFSETATATLE.S
100	111	580.6830	1739.0272	1738.9763	0.0508	1	24	1.1e+02	3	K.ALKEPARPMVAIVGGSK.V + Oxidation (M)
~	135	938.0120	1874.0094	1873.9462	0.0633	0	97	5.8e-06	1	K.ISYISTGGGAFLEFVEGK.V
1	147	665.0230	1992.0472	1992.0258	0.0214	0	55	0.084	1	K.TILWNGFVGVFEFPNFR.K
1	162	687.3070	2058.8992	2059.9132	-1.0140	0	49	0.31	1	K.YAALCDVFVMDAFGTAHR.A + Oxidation (M)
	163	1030.5570	2059.0994	2060.0136	-0.9141	0	(19)	3.5e+02	7	K.FADVACAGPLLAEELDALGK.A
	164	687.3740	2059.1002	2060.0136	-0.9134	0	34	9.3	2	K. FADVACAGPLLAEELDALGK. A
4	200	1109.6410	2217.2674	2217.1165	0.1510	0	102	1.5e-06	1	R. DYLDGVEVAEGELVVLENVR. F
4	220	772.7840	2315.3302	2315.1492	0.1809	1	68	0.0031	1	K. SVNDIKDEEQILDLGDVSAQK. L
2	233	817.4700	2449.3882	2449.3078	0.0804	0	80	0.00022	1	K. IADQLIVGGGIANTFVAAQGHNVGK. S
-			Mass: 41343	Score: (ed: 13	emPAI	: 1.19
				erobacter o			TCC 35	316]		
C	Check	to include	this hit in	n error tole	erant sea	rch				
	Query	Observed	Mr (expt)	Mr(calc)		Miss	Score		Rank	Peptide
	56	578.3620	1154.7094	1154.6910	0.0184	0	47	0.62	1	R.ASLPTIELALK.Q
	58	622.3450	1242.6754	1242.6642	0.0113	0	53	0.17	1	K.VLPAVAMLEER.A + Oxidation (M)
4	<u>65</u> 72	676.8330 734.9040	1351.6514 1467.7934	1351.6507 1467.7457	0.0008	0	58	0.042		R. SLYEADLVDEAK.R R. VATEFSETATATLK.S
					0.0478	0	112	1.9e-07	1	

(MATRIX) Mascot Search Results

Protein View

Match to: gi/261342323 Score: 684 phosphoglycerate kinase [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\190808\SSP 5701 RF24 01 363.d\SSP 5701 RF24 01 363.mgf


Nominal mass (M_z): 41343; Calculated pI value: 5.08 NCBI BLAST search of gi1261342323 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316 Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **42**%

Matched peptides shown in Bold Red

- 1 MSVIKMTDLD LAGKRVFIRA DLNVPVKDGK VTSDARIRAS LPTIELALKQ

- 1 MSVIKNTDLD LAGKKVFIRA DLNVFVKUSK VISDARIKAS LETIELALKO 51 GAKWVTSHL GRPTGEVNE EFSLEVVNU LKOKLSEVR LVKDILDGVE 101 VAAGELVVLE NVRFNKGEKK DDETLSKKYA ALCDVFVMDA FGTAHRAQAS 151 THGIGKFADV ACAGPLIADE LARLGKAIKE PAREWAIVG GSKVSTKLTV 201 LDSLSKIADQ LIVGGGIANT FVAAQGHNVG KSLYEADLVD EAKKLLTTCD 251 FVPTDVRVA TEFSETATAT LKSVNDIKOD EQILDLGDVS AQKLAEILKN 301 AKTILWNGFV GVFEFPNFRK GTEIVANAIA DSEAFSIAGG GDTLAAIDLF 351 GIADKISYIS TGGGAFLEFV EGKVLPAVAM LEERAKQ

Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass Miss Sequence 0 R.ASLPTIELALK.Q (Ions score 47) 0 K.YAALCDVFVMDAFGTAHR.A Oxidation (M) (Ions score 49) 0 K.FADVACAGPLLADELEALGK.A (Ions score 32) 0 K.FADVACAGPLLADELEALGK.A (Ions score 50) 1 K.ALKEPAREMVAIVGGSK.V Oxidation (M) (Ions score 24) 0 C. CONTRACTIONERA CONTRACT OF C
 Observed
 Mr (expt)
 Mr (calc)

 578.3620
 1154.7094
 1154.6910

 687.3070
 2058.8992
 2059.9132
 Start - End Mr (calc) Delta 39 - 49 0.0184 -1.0140 129 - 146123 - 146 157 - 176 157 - 176 177 - 1932059.0994 2059.1002 1739.0272 1030.5570 687.3740 2060.0136 -0.9141 -0.9134 0.0508 2060.0136 580.6830 1738.9763 1 K.ALKEPARPAVATVGGSK.V Oxidation (M) (Ions scor 0 K.IADQLIVGGGIANTEVAAQGENVGK.S (Ions score 80) 0 K.SLYEADLVDEAK.R (Ions score 58) 1 K.SLYEADLVDEAK.R (Ions score 67) 0 R.VATEFSETATATIK.S (Ions score 112) 0 R.VATEFSETATATIK.S (Ions score 28) 0 K.TILWNGPVGVFEFPNFR.K (Ions score 97) 0 K.VLPAVAMLEER.A Oxidation (M) (Ions score 53) 1739.0272 2449.3882 1351.6514 1507.8194 1467.7934 1467.8422 1992.0472 1874.0094 817.4700 676.8330 754.9170 207 - 231 2449.3078 0.0804 1351.6507 1507.7518 0.0008 232 - 243 232 244 259 - 272734,9040 1467,7457 0.0478 259 - 272 303 - 319 490.2880 665.0230 1467.7457 1992.0258 0.0965 0.0214 938,0120 0.0633 356 - 373 1873,9462 622.3450 1242.6754 1242.6642 374 - 384 0.0113 -0 (wdd) (Da) 0 Error -0.5 -250 2500 -1 -500 1500 2000 1500 2000 2500 Mass (Da) Mass (Da) RMS error 223 ppm RMS error 223 ppm ZP_05970181 387 aa linear BCT 15-0CT-2009 phosphoglycerate kinase [Enterobacter cancerogenus ATCC 35316]. ZP_05970181 ZP_05970181.1 GI:261342323 Project:28663 REFSE0: account LOCUS DEFINITION ACCESSION VERSION DBLINK REFSEQ: accession NZ_ABWM02000033.1 DBSOURCE KEYWORDS SOURCE Enterobacter cancerogenus ATCC 35316 ORGANISM Enterobacter cancerogenus ATCC 35316 Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Enterobacter. 1 (residues 1 to 387) 1 (residues 1 to 387) Weinstock,G., Sodergren,E., Clifton,S., Fulton,L., Fulton,B., Courtney,L., Fronick,C., Harrison,M., Strong,C., Farmer,C., Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C., Mitreva,M., Nelson,J., Hou,S., Wollam,A., Pepin,K.H., Johnson,M., Bhonagiri,V., Nash,W.E., Warren,W., Chinwalla,A., Mardis,E.R. and Wilson,R.K. Direct Submission Submitted (06-0CT-2009) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA 2 (residues 1 to 387) REFERENCE AUTHORS TITLE JOURNAL (residues 1 to 387) REFERENCE Z (residues 1 to 387) Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H., Johnson,M., Thiruvilangam,P., Bhonagiri,V., Nash,W.E., Mardis,E.R. and Wilson,R.K. AUTHORS Direct Submission Submitted (17-SEP-2008) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA TITLE JOURNAL

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100106/FtmmSxSt... 21/01/2010

Page 2 of 2

IMENT	WGS <u>REFSEQ</u> : This record is provided to represent a collection of whole genome shotgun sequences. The reference sequence was derived	
	from <u>ABWM02000033</u> .	
	Annotation was added by the NCBI Prokaryotic Genomes Automatic	
	Annotation Pipeline Group. Information about the Pipeline can be found here:	
	http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be	
	aware that the annotation is done automatically with little or no	
	manual curation.	
	Enterobacter cancerogenus (GenBank Accession Number for 165 rDNA	
	gene: Z96078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the	
	Proteobacteria division of the domain bacteria and has been	
	isolated from human feces. The sequenced strain was obtained from	
	ATCC (ATCC 35316).	
	We have performed one round of automated sequence improvement	
	(pre-finishing), along with manual improvement that includes	
	breaking apart any mis-assembly, and making manual joins where	
	possible. Manual edits also are made where the consensus appears to	
	be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.	
	This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project	
	http://nhroadmap.nih.gov/hmp/].	
	This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC.	
	Genome Coverage: 29.7x	
	Sequencing Technology: 454.	
	Method: conceptual translation.	
ATURES	Location/Qualifiers	
source	1387 /organism="Enterobacter cancerogenus ATCC 35316"	
	/strain="ATCC 35316"	
	/db xref="taxon:500639"	
Proteir		
	/product="phosphoglycerate kinase"	
	/EC_number="2.7.2.3" /calculated mol wt=41063	
Region	6.383	
	/region_name="Phosphoglycerate_kinase"	
	/note="Phosphoglycerate kinase (PGK) is a monomeric enzyme	
	which catalyzes the transfer of the high-energy phosphate	
	group of 1,3-bisphosphoglycerate to ADP, forming ATP and 3-phosphoglycerate. This reaction represents the first of	
	the two substrate-level; cd00318"	
	/db_xref="CDD:29400"	
Site	order (21, 23, 36, 59, 113)	
	/site_type="other"	
	/note="substrate binding site" /db xref="CDD: <u>29400</u> "	
Site	order (178181,359361)	
	/site type="other"	
	/note="hinge regions"	
	/db_xref="CDD:2 <u>9400"</u>	
Site	order(216,283,307,309,311314,341343) /site type="other"	
	/site_type_ onder /note="ADP binding site"	
	/db xref="CDD:29400"	
Site	342	
	/site_type="other"	
	/note="catalytic site" /db.wrof="CDB.20400"	
CDS	/db_xref="CDD: <u>29400</u> " 1387	
01/0	/	
	/locus_tag="EcanA3_020100017782"	
	/coded_by="complement(NZ_ABWM02000033.1:273242274405)"	
	/note="COG0126 3-phosphoglycerate kinase"	
	/transl_table= <u>11</u> /db xref="CDD: <u>134081</u> "	

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100106/FtmmSxSt... 21/01/2010

Peptide Summary Report (SSP 5702)

Page 1 of 6

(MATRIX) Mascot Search Results

User Email Search title MS data file Database Taxonomy Timestamp Protein hits	<pre>: Lakshmy Manickan : lakshmy.manickan@unn.ac.uk : SSP 5702 : Dr\Data\Lakshmy\120808\280808\SSP 5702_R112_01_475.d\SSP 5702_R112_01_475.mgf : NCBInr 20100102 (10272453 sequences; 3505279183 residues) : Bacteria (Eubacteria) (5690016 sequences) : 5 Jan 2010 at 11:34:50 GMT : gil165932734 phosphopyruvate hydratase [Enterobacter sp. 638] gil156932734 phosphopyruvate hydratase [Enterobacter sokazaki ATCC BAA-694] gil151248317 phosphopyruvate hydratase [Citrobacter koseri ATCC BAA-695] gil260771907 enolase [Vibrio metschnikovii CIP 69:14] gil198241971 phosphopyruvate hydratase [Salmonella enterica subsp. enterica serovar Dublin str. CT_02021853] gil2624243 phosphopyruvate hydratase [Vibrio cholerae Ol biovar El Tor str. N16961] gil54310177 phosphopyruvate hydratase [Photobacterium profundum SS9]</pre>
Probability Ba	sed Mowse Score
Individual ions so	Log(P), where P is the probability that the observed match is a random event. ores > 57 indicate identity or extensive homology (p<0.05). derived from ions scores as a non-probabilistic basis for ranking protein hits.
Mutter of Hits	100 200 300 Probability Based House Score
Peptide Summ	ary Report
Format As	Peptide Summary
	ignificance threshold p< 0.05 Max. number of hits AUTO
	tandard scoring • MudPIT scoring C Ions score or expect cut-off O Show sub-sets O
S	how pop-ups @ Suppress pop-ups C Sort unassigned Decreasing Score 🔄 Require bold red 🗆
Select All	Select None Search Selected From tolerant
1. gi 1463 phosphor	12074 Mass: 45497 Score: 270 Queries matched: 4 emPAI: 0.15 pyruvate hydratase [Enterobacter sp. 638]
	p include this hit in error tolerant search
Query C	, bserved Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
the second s	78,8270 955,6394 955,6066 0.0328 0 45 0.95 1 K.GIVNSILIK.F 33,3860 1464,7574 1463,8460 0.9114 0 55 0.091 2 K.AVGAVNGPIAQAVLGK.D
✓ 117 7	81.9560 1561.8974 1561.8352 0.0623 0 92 2e-05 1 K.IQLVGDDLFVTNTK.I
₽ <u>177</u> 9	57.9100 1913.8054 1913.9047 -0.0993 0 79 0.00031 1 K.AFTSEEFTHFLEDLTK.Q
	32734 Mass: 45573 Score: 262 Queries matched: 4 emPAI: 0.23 oyruvate hydratase [Enterobacter sakazakii ATCC BAA-894] o include this hit in error tolerant search
Query C	bserved Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
	33,3860 1464,7574 1463,8460 0.9114 0 69 0.0032 1 K.AVGAVMGPIAQAIVGK.D 81,9560 1561,8974 1561,8352 0.0623 0 92 2e-05 1 K.IQLVGDDLFVTNTK.I
148 8	75.8420 1749.6694 1750.7430 -1.0735 0 22 1.2e+02 5 K.DITLAMDCAASEFYK.D + Oxidation (M) 57.9100 1913.8054 1913.9047 -0.0993 0 79 0.00031 1 K.AFTSEEFTHFLEDLTK.Q
g1 2605	s matching the same set of peptides: 99132 Mass: 45516 Score: 262 Queries matched: 4 [Cronobacter turicensis]
	18317 Mass: 45646 Score: 238 Queries matched: 4 emPAI: 0.15 pyruvate hydratase [Citrobacter koseri ATCC BAA-895] p include this hit in error tolerant search
	bserved Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
	78.8270 955.6394 955.6066 0,0328 0 45 0.95 1 K.GIVNSILIK.F 81.9560 1561.8974 1561.8352 0,0623 0 92 2e-05 1 K.IQLVGDDLFVTNTK.I
148 8	175.8420 1749.6694 1750.7430 -1.0735 0 22 1.2e+02 5 K.DITLAMDCAASEFYK.D + Oxidation (M)
1// 9	57.9100 1913.8054 1913.9047 -0.0993 0 79 0.00031 1 K.AFTSEEFTHFLEDLTK.Q
Protein	s matching the same set of peptides:
gi 2613	
huoshuo	

(MATRIX) Mascot Search Results

Protein View

Match to: gi|261342208 Score: 238 phosphopyruvate hydratase [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\280808\SSP 5702_RI12_01_475.d\SSP 5702_RI12_01_475.mgf

Nominal mass (M_r): **45644**; Calculated pI value: **5.19** NCBI BLAST search of <u>gi[261342208</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **12%**

Matched peptides shown in Bold Red

1 MSKIVKVIGR EIIDSRGNPT VEAEVHLEGG FVGMAAAPSG ASTGSREALE 51 LRDCDKSRFM GKGVLKAVGA VNGPIAQAIL GKDAKDQAGI DKIMIDLDGT 101 ENKSNFGANA ILAVSLANAK AAAAAKGOPL FEHIAELNGF FGKYSMPVPM 151 MNIINGGEHA DNNVDIQEFM IQPVGAKTLK EAVRMGSEVF HNLAKVLKAK 201 GMTAVGDEG GYAFNLGSNA EALAVIAEAV KAAGYELGKD ITILAGCAAS 251 EFYKDGKYVL AGEGNKAPTS EEFTHFLEDL TKQVPIVSIE DGLDESDWDG 301 FAYQTKVLGA KIQLVGDDLF VINTKILKEG IEKGIVNSII IKFNGIGSLT 351 EILAAIKMAK DAGYTAVISH RSGETEDATI ADLAVGTAAG QIKTGSMSRS 401 DRVAKYNQLI RIEEALGEKA PYNGRKEIKG QA

Show predicted peptides also

Sort Peptides By
Residue Number C Increasing Mass C Decreasing Mass

	Start	-	End	Observed	Mr (expt)	Mr (calc)	Delta	Miss	Sequence
	240		254	875.8420	1749.6694	1750.7430	-1.0735	0	K.DITLAMDCAASEFYK.D Oxidation (M) (Ions score 22)
	267		282	957.9100	1913.8054	1913.9047	-0.0993	0	K.AFTSEEFTHFLEDLTK.Q (Ions score 79)
	312	-	325	781.9560	1561.8974	1561.8352	0.0623	0	K. IQLVGDDLFVTNTK. I (Ions score 92)
	334	-	342	478.8270	955.6394	955.6066	0.0328	0	K.GIVNSILIK.F (Ions score 45)
	(Da)	*					(wdd)	0 7-	
	-0.5	-					Error	-250	
		-						-500	
	-1	+	1 1 1	1 1 1 1 1	1 1 1 1	, , , , , ,		1	
1	RMS erro		1000 108 ppm	1250	1500	1750 Ma	ass (Da) RMS	i error 30	000 1250 1500 1750 18 ppm Mass (Da)

zr 05970066 432 aa linear BCT 15-OCT-2009 phosphopyruvate hydratase [Enterobacter cancerogenus ATCC 35316]. ZP 05970066. GI:261342208 Project:28663 REFSEQ: accession LOCUS DEFINITION ACCESSION VERSION DBLINK KEYWORDS . Enterobacter cancerogenus ATCC 35316 <u>Enterobacter cancerogenus ATCC 35316</u> Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; SOURCE ORGANISM Bacteria, Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Enterobacter. 1 (residues 1 to 432) Weinstock,G., Sodergren,E., Clifton,S., Fulton,L., Fulton,B., Courtney,L., Fronick,C., Harlson,M., Strong,C., Farmer,C., Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C., Mitreva,M., Nelson,J., Hou,S., Wollam,A., Pepin,K.H., Johnson,M., Bhonagiri,V., Nash,W.E., Warren,W., Chinwalla,A., Mardis,E.R. and Wilson E K. REFERENCE AUTHORS Wilson,R.K. Direct Submission Submitted (06-0CT-2009) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO TTTLE JOURNAL University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA 2 (residues 1 to 432) Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H., Johnson,M., Thiruvilangam,P., Bhonagiri,V., Nash,W.E., Mardis,E.R. and Wilson,R.K. Direct Submission Submitted (17-SEP-2008) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA WGS REFSE: This record is provided to represent a collection of whole genome shotgun sequences. The reference sequence was derived from ARWM02000033. REFERENCE AUTHORS TITLE JOURNAL COMMENT Annotation was added by the NCBI Prokaryotic Genomes Automatic Annotation Pipeline Group. Information about the Pipeline can be found here: http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSrcO... 21/01/2010

Peptide Summary Report (SSP 5702)

Page 2 of 6

4. gi[260771907 Mass: 45789 Score: 136 Queries matched: 2 emPAI: 0.07 enolase [Vibrio metschnikovii CIP 69.14] Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
 68
 478.8270
 955.6394
 955.6066
 0.0328
 0
 45
 0.95
 1
 K.GIVNSILIK.F

 117
 781.9560
 1561.8974
 1561.8352
 0.0623
 0
 92
 2e=05
 1
 K.LQLVGDDLFVINK.I
 gi[198241971 Mass: 45627 Score: 126 Queries matched: 2 emPAI: 0.07 phosphopyruvate hydratase [Salmonella enterica subsp. enterica serovar Dublin str. CT_02021853] 5. Check to include this hit in error tolerant search
 Query
 Observed
 Mr(expt)
 Mr(calc)
 Delta Miss
 Score
 Expect Rank
 Peptide

 117
 781.9560
 1561.8974
 1561.8352
 0.0623
 0
 92
 2e-05
 1
 K.IQLVGDDLFVTNTK.I

 148
 875.8420
 1749.6694
 1749.7589
 -0.0895
 0
 34
 7.8
 1
 K.NITLAMDCRASEFYK.D + Oxidation (M)
 g1|15642443 Mass: 45836 Score: 92 Oueries matched: 1 emPAI: 0.07 6 osphopyruvate hydratase [Vibrio cholerae Ol biovar El Tor str. N16961] ☐ Check to include this hit in error tolerant search
 Query
 Observed
 Mr(expt)
 Mr(calc)
 Delta Miss Score Expect Rank
 Peptide

 117
 781.9560
 1561.8974
 1561.8352
 0.0623
 0
 92
 2e-05
 1
 K.IQIVGI
 1 K.IQIVGDDLFVTNTK.I Proteins matching the same set of peptides: 1 29839249 Mass: 45848 Score: 92 Queries matched: 1 RecName: Full=Enclase; AltName: Full=2-phosphoglycerate dehydratase; AltName: Full=2-phospho-D-glycerate hydro-lyase gi[77918634 Mass: 46350 Score: 92 enolase [Pelobacter carbinolicus DSM 2380] Queries matched: 1 Queries matched: 1 Mass: 45596 Score: 92 gi|90412096 phosphopyruvate hydratase [Photobacterium profundum 3TCK] gij117617509 Mass: 45750 Score: 92 Queries matched: 1 phosphopyruvate hydratase [Aeromonas hydrophila subsp. hydrophila ATCC 7966] gi|121591783 Mass: 33004 Sco enolase [Vibrio cholerae 2740-80] Score: 92 Queries matched: 1 gi]145300350 Mass: 45766 Score: 92 Queries matched: 1 phosphopyruvate hydratase [Aeromonas salmonicida subsp. salmonicida A449] Mass: 17966 gi|153803630 Score: 92 Queries matched: 1 enolase, C- TIM barrel domain [Vibrio cholerae MZO-3] g1]153827653 Mass: 40048 Score: 92 Queries matched: 1 enolase [Vibrio cholerae MZO-2] Score: 92 Queries matched: 1 Mass: 45850 gi|229527053
 G1/22702/U03
 MASS: 43550
 SCOTE: 92
 Queries matched: 1

 enclase [Vibrio cholerae 12129(1)]
 d1/237609481
 Mass: 45583
 Score: 92
 Queries matched: 1

 enclase [Tolumonas auensis DSM 9187]

 <u>gi|255626906</u> Mass: 45864 Score: 92 Queries matched: 1 Enolase [Vibrio mimicus VM603] <u>gi|261211542</u> Mass: 45820 Score: 92 Queries matched: 1 enolase [Vibrio sp. RC341] Mass: 46259 Score: 92 qi|269123733 Queries matched: 1 enolase [Streptobacillus moniliformis DSM 12112] Score: 92 7. gi|54310177 Queries matched: 1 phosphopyruvate hydratase [Photobacterium profundum SS9] ☐ Check to include this hit in error tolerant search
 Query
 Observed
 Mr(expt)
 Mr(calc)
 Delta Miss Score Expect Rank
 Peptide

 117
 781.9560
 1561.8974
 1561.8352
 0.0623
 0
 92
 2e-05
 1
 K.LQIVGI
 K.LOIVGDDLFVTNTK.I Proteins matching the same set of peptides: qi/84390114Score: 92Queries matched: 1qi/86146349Score: 92Queries matched: 1
 gi 218710558
 Score:
 92
 Queries matched:
 1

 gi 260888598
 Score:
 92
 Queries matched:
 1
 Peptide matches not assigned to protein hits: (no details means no match)
 Query
 Observed
 Mr (expt)
 Mr (calc)
 Delta Miss Score
 Ex

 Image: Score and Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 0.56 1 3.2 1 KTFADIGQTIAK OKPONAGALETLDTIKFLLK 27 1 SGLDGGGMITGSAGAFLVLESRK + Oxidation (M) 55 1 DLTSIDHSTCECGRTLPRISK 73 1 TTTLOORSTANVWDRFCEWITSTENR 75 1 LTMKGRAPDVLAMSATPIPR + Oxidation (M) 46 1 MTDVTATPASADPVAAYDPTSK + Oxidation (M) 96 1 SSPDVGGVLAMLPAGATLSLTGCMIR + Oxidation (m)
 96 1 SSPDVGGVLAMLPAGATLSLTGCMIR + Oxidation (M)
 71 1 TTFCVPLKAMLPYGMEYSRGTK
 54 1 IATVLPDK
 54 1 VEAEKAFSTINTEFQNLAAK
 216
 737.7060
 2210.1022
 2210.1219
 -0.0197
 1
 26
 54
 1
 VEREARSTINTEFUNLARK

 93
 666.3130
 2055.9172
 2057.0542
 -1.1370
 0
 26
 1.3e+02
 1
 VEREARSTINTEFUNLARK

 107
 738.0360
 2213.4862
 2214.2115
 -0.7254
 1
 26
 1.3e+02
 1
 MSAVELLGINRDEVALISHIN

 214
 729.3010
 2184.8862
 2184.1397
 0.7415
 0
 25
 54
 1
 FILGFIMGAVLMCAIPSLAK

 92
 683.7950
 1365.65754
 1365.6268
 -0.0514
 0
 25
 1.4e+02
 1
 MTGSILVDDEMR
 1 17 54 1 FILGFIMGAVLMCAIPSLAK + 2 Oxidation (M) 1 835.7180 834.7107 834.3905 0.3202 1 49 0 25 SLEGLCE

(MATRIX) Mascot Search Results

	Bacteria (Eubacteria) (5590016 sequences) 5 Jan 2010 at 11:47:136 GMT gi 129164 RecName: Full=Outer membrane protein X; Flags: Precursor gi 440183 similar to outer membrane protein X from Enterobacter cloacae, Swiss-Prot Accession Number P25253; ORF2 [Es-
Probability Based	Mowse Score
individual ions scores	g(P), where P is the probability that the observed match is a random event. > 57 indicate identity or extensive homology ($p < 0.05$).
	rived from ions scores as a non-probabilistic basis for ranking protein hits.
5	50 100 Probability Based House Score
eptide Summary	
	ide Summary Help
	ficance threshold p< 0.05 Max. number of hits AUTO
	dard scoring @ MudPIT scoring C Ions score or expect cut-off 0 Show sub-sets 0 v pop-ups @ Suppress pop-ups C Sort unassigned Decreasing Score Require bold red
Show	polyada - odobreza bolyada - oore anneaigned loos const a reduite oord red r
Select All Sele	act None Search Selected Fror tolerant
Check to in Query Obse 78 708.	Mass: 18700 Score: 129 Queries matched: 2 emPAI: 0.39 ill=Outer membrane protein X; Flags: Precursor iclude this hit in error tolerant search vred Mr(calc) Delta Miss Score Expect Rank Peptide 7790 1415.5434 1415.6834 -0.1399 0 66 0.0056 1 K.GQYYGITAGPATR.L 9310 795.8474 1796.9097 -1.0623 0 63 0.014 1 R.INNWASIYGVQYGYGK.F
Proteins ma gi 16759751	atching the same set of peptides: Mass: 18541 Score: 129 Queries matched: 2
outer membr	ane protein X [Salmonella enterica subsp. enterica serovar Typhi str. CT18] 30 Mass: 18452 Score: 129 Queries matched: 2
outer membr	rane protein X [Klebsiella pneumoniae subsp. pneumoniae MGH 78578]
	<u>20</u> Mass: 18554 Score: 129 Queries matched: 2 rane protein X [Salmonella enterica subsp. arizonae serovar 62:z4,z23:]
	55 Mass: 18640 Score: 129 Queries matched: 2 rane protein X [Salmonella enterica subsp. enterica serovar Dublin str. CT 02021853]
	38 Mass: 18540 Score: 129 Queries matched: 2 rane protein X [Salmonella enterica subsp. enterica serovar Gallinarum str. 287/91]
gi 20657883	
gi 21358369	24 Mass: 14338 Score: 129 Queries matched: 2
g1/22458264	
gi[26134140	rane protein X [Salmonella enterica subsp. enterica serovar Paratyphi C strain RKS4594] 20 Mass: 15248 Soore: 129 Queries matched: 2 rane protein X [Enterobacter cancerogenus ATCC 35316]
. gi 440183	Mass: 14762 Score: 63 Queries matched: 1 emPAI: 0.23
similar to	outer membrane protein X from Enterobacter cloacae, Swiss-Prot Accession Number P25253; ORF2 [Escherichia coli] Aclude this hit in error tolerant search
	rved Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 9310 1795.8474 1796.9097 -1.0623 0 63 0.014 1 R.INDWRSIYGVVGVGVGYGK.F
gi16435772 Chain A, Cr gi115800566 outer membr gi126246790 outer membr g1130749947	atching the same set of peptides: Mass: 16350 Score: 63 Queries matched: 1 cystal Structure Of The Outer Membrane Protein Ompx From Escherichia Coli 6 6 Mass: 18649 Score: 63 Queries matched: 1 cane protein X [Escherichia coli 0157:H7 EDL933] 0 Mass: 18879 Score: 63 Queries matched: 1 cane protein X [Escherichia coli CFT073] 1 1 1 1 2 Mass: 16390 Score: 63 Queries matched: 1 1 7 Mass: 16390 Score: 63 Queries matched: 1 1
unain A, Nn	mr Fold Of The Outer Membrane Protein Ompx In Dhpc Micelles

Page 2 of 2

aware that the annotation is done automatically with little or no manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: 256078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316). We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes brocking apart automated sequence argument includes

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

	This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC.
	Genome Coverage: 29.7x
	Sequencing Technology: 454.
	Method: conceptual translation.
FEATURES	Location/Qualifiers
source	1432
	/organism="Enterobacter cancerogenus ATCC 35316" /strain="ATCC 35316"
	/db xref="taxon:500639"
Protei	
	/product="phosphopyruvate hydratase" /EC number="4.2.1.11"
	/calculated mol wt=45484
Region	1432
110 94 011	/region name="eno"
	<pre>/note="phosphopyruvate hydratase; Provisional; PRK00077" /db_xref="CDD:134085"</pre>
Region	6414
	/region_name="enolase"
	/note="Enolase: Enolases are homodimeric enzymes that
	catalyse the reversible dehydration of
	2-phospho-D-glycerate to phosphoenolpyruvate as part of
	the glycolytic and gluconeogenesis pathways. The reaction is facilitated by the presence of metal ions; cd03313"
	/db_xref="CDD: <u>48188</u> "
Site	order(8,1018,22,34,160162,183184,187188,191192, 205206,213,215,374376,399401,403404,407,410411,
	414)
	/site_type="other"
	/note="dimer interface"
	/db_xref="CDD:48188"
Site	order(42,246,290,317)
	/site_type="metal-binding"
	/db_xref="CDD: <u>48188</u> "*
Site	order(159,209,342,370372,393)
	/site_type="other"
	/note="substrate binding pocket"
	/db_xref="CDD: <u>48188</u> "
CDS	1432
	/gene="eno"
	/locus_tag="EcanA3_020100017202"
	/coded_by="complement(NZ_ABWM02000033.1:143450144748)"
	/note="COG0148 Enclase"
	/transl_table=11
	/db_xref="CDD: <u>134085</u> "

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSrcO... 21/01/2010

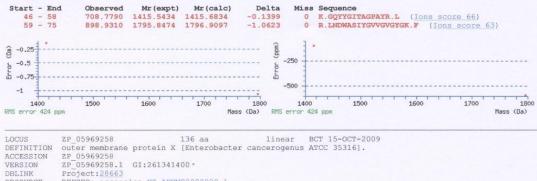
(MATRIX) Mascot Search Results

Protein View

Match to: gil261341400 Score: 129 outer membrane protein X [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\241108\SSP 6203_RD22_01_943.d\SSP 6203_RD22_01_943.mgf

Nominal mass (M_): 15248; Calculated pI value: 5.38 NCBI BLAST search of $\underline{gi}|261341400$ against nr Unformatted sequence string for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316


Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **22**%

Matched peptides shown in Bold Red

1 MQGVMNKTNG FNLKYRYEQD NNPLGVIGSF TYTEKDRTEN GAYNKGQYYG 51 ITAGPAYRLN DWASIYGVVG VGYGKFQQTE NEGLNRTASN SDYGFSYGAG 101 MQFNPIENVA LDFSYEQSRI RNVDVGTWIA GVGYRF

Show predicted peptides also

Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass

VERSION DBLINK DBSOURCE REFSEQ: accession NZ ABWM02000020.1 KEYWORDS . Enterobacter cancerogenus ATCC 35316 <u>Enterobacter cancerogenus ATCC 35316</u> Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; SOURCE Enterobacteriaceae; Enterobacter. 1 (residues 1 to 136) 1 (residues 1 to 136) Weinstock,G., Sodergren,E., Clifton,S., Fulton,L., Fulton,B., Courtney,L., Fronick,C., Harrison,M., Strong,C., Farmer,C., Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C., Mitreva,M., Nelson,J., Hou,S., Wollam,A., Pepin,K.H., Johnson,M., Bhonagiri,V., Nash,W.E., Warren,W., Chinwalla,A., Mardis,E.R. and Wilson,R.K. Direct Submission Submitted (06-007-2009) Canora Sequencies Context Martinet REFERENCE AUTHORS TITLE Submitted (06-OCT-2009) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA JOURNAL b3108, USA 2 (residues 1 to 136) Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H., Johnson,M., Thiruvilangam,P., Bhonagiri,V., Nash,W.E., Mardis,E.R. and Wilson,R.K. REFERENCE AUTHORS Direct Submission Submitted (17-SEP-2008) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO TITLE JOURNAL 63108. USA COMMENT

WGS <u>REFSEC</u>: This record is provided to represent a collection of whole genome shotgun sequences. The reference sequence was derived from <u>ABWM02000020</u>. Annotation was added by the NCBI Prokaryotic Genomes Automatic Annotation Pipeline Group. Information about the Pipeline can be found here: http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be aware that the annotation is done automatically with little or no manual curation.

manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: Z96078, the 16S rDNA gene of a related strain of Enterobacter

http://www.matrixscience.com/cgi/protein view.pl?file=./data/20100105/FtmmSram... 21/01/2010

FEATURES

Page 2 of 2

cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. source Protein Region <1..136 /region_name="Surface_Ag_2" /note="Surface_antigen; cl01155" /db_xref="CDD:141128" 1..136 /gene="ompX" /locus_tag="EcanA3_020100013096" /coded_by="NZ_ABWM02000020.1:323158..323568" /note="COG3637 Opacity protein and related surface antigens"

/transl_table=11
/db_xref="CDD:137256"

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSram... 21/01/2010

(MATRIX) SCIENCE/ Mascot Search Results

```
: Lakshmy Manickan
: lakshmy.manickan@unn.ac.uk
: SSP 6306
: D:\Data\Lakshmy\120806\SSP 6306_RB6_01_719.d\SSP 6306_RB6_01_719.mgf
: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
: Bacteria (Eubacteria) (5500016 sequences)
: 5 Jan 2010 at 11:53:30 GMT
: gill52972668 hypothetical protein KPN 04168 [Klebsiella pneumoniae subsp. pneumoniae MGH 78578]
gil50582463 oxidoreductase [Exiguobacterium acetylicum]
User
Email
Search title
MS data file
 Database
 Taxonomy
 Timestamp
 Protein hits
 Probability Based Mowse Score
Ions score is -10*Log(P), where P is the probability that the observed match is a random event.
Individual ions scores > 57 indicate identity or extensive homology (p<0.05).
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.
 11 20
     15
 Number
10
     5
                                                                                  100
                                                          Probability Based Mouse Score
 Peptide Summary Report
  Format As Peptide Summary
                                                                            *
                                                                                                                                                                                   Help
                             Significance threshold p< 0.05 Max. number of hits AUTO
                                                                                                                                                                            Show sub-sets 0
                             Standard scoring @ MudPIT scoring C Ions score or expect cut-off
                             Show pop-ups @ Suppress pop-ups O Sort unassigned Decreasing Score 💽 Require bold red
 Select All Select None Search Selected Error tolerant
 1. gi|152972668 Mass: 10606 Score: 91
                                                                                                             Oueries matched: 3 emPAI: 0.75
                hypothetical protein KPN_04168 [Klebsiella pneumoniae subsp. pneumoniae MGH 78578]
         \Box Check to include this hit in error tolerant search

        Query
        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss
        Score
        Expect Rank
        Peptide

        [7
        104
        753.3170
        1504.6194
        1504.7595
        -0.1401
        0
        48
        0.43
        1
        K.EFELNIAGFLQK.L + Oxidation (M)

        [7
        123
        840.9220
        1679.8294
        1679.9246
        -0.0952
        0
        43
        1.3
        1
        R.INEVIELLQPANQK.E

        124
        560.9530
        1679.8372
        1679.9246
        -0.0874
        0
        (29)
        36
        3
        R.INEVIELLQPANQK.E

              Proteins matching the same set of peptides:

Verse: 10388 Score: 91 Queries matched: 3
              hypothetical protein KPK_5514 [Klebsiella pneumoniae 342]
              gi1261342932
                                               Mass: 10363
                                                                                 Score: 91
                                                                                                                Oueries matched: 3
              hypothetical protein EcanA3_20877 [Enterobacter cancerogenus ATCC 35316]
        gi[50582463 Mass: 27360 Score: 83
2.
                                                                                                                Queries matched: 3 emPAI: 0.12
               oxidoreductase [Exiguobacterium acetylicum]
         \hfill \square Check to include this hit in error tolerant search

        Query
        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss
        Score
        Expect
        Rank
        Peptide

        174
        677.2520
        2028.7342
        2028.9752
        -0.2411
        0
        24
        67
        9
        K.SVDLADNQNVHDLYEGLK.E

        7
        250
        984.4460
        2950.3162
        2950.4236
        -0.1075
        0
        58
        0.025
        1
        K.ELDIETWINNAGFGDEDLVQDIELGK.I

         ▼ 162 984.7600 2951.2582 2950.4236 0.8345 0 (55) 0.096 1 K.ELDIETWINNAGFGDFDLVQDIELGK.I
 Peptide matches not assigned to protein hits: (no details means no match)

        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss
        Score
        Expect Rank
        Peptide

        610.2760
        1218.5414
        1218.6972
        -0.1558
        0
        41
        2.7
        1
        LTDTGLFLR

        948.4010
        1894.7874
        1894.9312
        -0.1438
        0
        39
        2.9
        1
        IGDTAPAQYQTPEYTIK

        761.6840
        2282.0302
        2282.2867
        -0.2565
        0
        35
        6.5
        1
        LLEYGLGIGYLLIFIPFWR

        563.2460
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1686.7162
        1202.4431
        10.1607
        1
        32
        19
        1
        LTDAQVKAAMR

        629.2630
        1226.5114
        1255.6996
        0.8118
        1
        32
        18
        1
        ARLRQGATLAR
        972.1250
        2913.3532
        2912.4425
        0.9107
        1
        30
        16
        1
        V
                              Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
             Query
         17
        ₽ 149
         ~
                 220
         1
                 124
         1
                   75
         1
                 234
         V
                   82
         7
                   88
         17
                 248
         V
         1
         V
                 174
         1
         V
                 118
mhtml:file://C:\Documents and Settings\larcje1\Local Settings\Temp\Peptide Summar... 21/01/2010
```

Page 1 of 2

(MATRIX) Mascot Search Results

Protein View

Match to: gi|261342932 Score: 91
hypothetical protein EcanA3_20877 [Enterobacter cancerogenus ATCC 35316]
Found in search of D:\Data\Lakshmy\120808\SSP 6306_RB6_01_719.d\SSP 6306_RB6_01_719.mgf

Nominal mass $(M_{\rm x}):$ 10363; Calculated pI value: 5.02 NCBI BLAST search of gil261342932 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **298**

Matched peptides shown in Bold Red

1 MKCKRINEVI ELLQPAWQKE PEINIMQFLQ KLAKESGFDG ELTDLSDDIL 51 IYQLKMRDSA KDAVIPGIQK DYEEDFKTAL LRARGVIKE

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

Start - End		Mr (expt)		Delta		Sequence		
6 - 19		1679.8294	1679.9246	-0.0952	0	R. LNEVIELLQPAWQK. E	(Ions score	43)
6 - 19	560.9530	1679.8372	1679.9246	-0.0874	0	R. LNEVIELLQPAWQK. E	(Ions score	29)
20 - 31	753.3170	1504.6194	1504.7595	-0.1401	0	K.EPELNLMQFLQK.L	Oxidation (M)	(Ions score 48
-0.08				~	3			
-0.1				(wdd)	-60			
-0.1				5				
				p.	-70			
-0.12				5	-80			
-0.14					-90			
1500	1550	1600	1650		1500	1550	1600	1650
		1000					2000	
1500 IS error 69 pp			Mas		Proor 69	10/08		Maee (IIa)
	n		Mas	is (Da) RMS	error 69	bbe		Mass (Da)
	•		Mas	is (Da) RTC	6 error 69	bba		Mass (Da)
1S error 69 pp								Mass (Da)
ts error 69 pp	ZP_05970790	rotein Fran	89 aa	lin	ear B(CT 15-0CT-2009		Mass (Da)
1S error 69 pp		rotein Ecani	89 aa	lin	ear B(Mass (Da)

VERSION	ZP 05970790.1 GI:261342932 *
DBLINK	Project: 28663
DBSOURCE	REFSEQ: accession NZ ABWM02000045.1
KEYWORDS	
SOURCE	Enterobacter cancerogenus ATCC 35316
ORGANISM	Enterobacter cancerogenus ATCC 35316
	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
	Enterobacteriaceae; Enterobacter.
REFERENCE	1 (residues 1 to 89)
AUTHORS	Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B.,
	Courtney,L., Fronick,C., Harrison,M., Strong,C., Farmer,C.,
	Delahaunty, K., Markovic, C., Hall, O., Minx, P., Tomlinson, C.,
	Mitreva, M., Nelson, J., Hou, S., Wollam, A., Pepin, K.H., Johnson, M.,
	Bhonagiri, V., Nash, W.E., Warren, W., Chinwalla, A., Mardis, E.R. and
	Wilson,R.K.
TITLE	Direct Submission
JOURNAL	Submitted (06-OCT-2009) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
REFERENCE	2 (residues 1 to 89)
AUTHORS	Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H.,
	Johnson, M., Thiruvilangam, P., Bhonagiri, V., Nash, W.E., Mardis, E.R.
	and Wilson, R.K.
TITLE	Direct Submission
JOURNAL	Submitted (17-SEP-2008) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
COMMENT	WGS <u>REFSEQ</u> : This record is provided to represent a collection of
	whole genome shotgun sequences. The reference sequence was derived
	from <u>ABWM02000045</u> .
	Annotation was added by the NCBI Prokaryotic Genomes Automatic
	Annotation Pipeline Group. Information about the Pipeline can be
	found here:
	http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be
	aware that the annotation is done automatically with little or no
	manual curation.
	Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA
	gene: Z96078, the 16S rDNA gene of a related strain of Enterobacter

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSraw... 21/01/2010

FEATURES

CDS

Page 2 of 2

cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

[http://nihroadmap.nih.gov/hmp/].
This is a reference genome for the Human Microbiome Project.
This project is co-owned with the Human Microbiome Project DACC.
Genome Coverage: 29.7x
Sequencing Technology: 454.
Method: conceptual translation.
Location/Qualifiers
1..89
/organism="Enterobacter cancerogenus ATCC 35316"
/db xref="taxon: 500639"
1..89
/product="hypothetical protein"
/calculated_mol_wt=10181
1..86
/region_name="DUF1040"
/note="Protein of unknown function (DUF1040); cl01176"
/db xref="CDD:120451"
1..89
/locus_tag="EcanA3 020100020877"
/coded_by="NZ_ABWM02000045.1:1664..1933"
/note="CGG3084 Uncharacterized protein conserved in
bacteria"
/transl_table=11
/db_xref="CDD:114979" source Protein Region

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein view.pl?file=../data/20100105/FtmmSraw... 21/01/2010

(MATRIX) Mascot Search Results

```
User
                                     Lakshmy Manickan
User
Email
Search title
MS data file
Database
Taxonomy
Timestamp
                                     lakshmy.manickan@unn.ac.uk
SSP 6401
                                     SSP 6401
D:\backlashmy\120808\280808\SSP 6401 RK4 01 560.d\SSP 6401 RK4 01_560.mgf
MCBInr 20100102 (10272453 sequences; 3505279183 residues)
Bacteria (Eubacteria) (5650016 sequences)
5 Jan 2010 at 11:56:40 GMT
gil95940647 cytidylate kinase [Escherichia coli 0157:H7 str. EC4024]
gil6137462 Chain A, Cmp Kinase From Escherichia Coli Free Enzyme Structure
gil15296494 cytidylate kinase [Klebslella pneumoniae subsp. pneumoniae MGH 78578]
gil261339244 cytidylate kinase [Enterobacter cancerogenus ATCC 35316]
 Protein hits
Probability Based Mowse Score
lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 58 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.
 Hits
      35
      30
 Number
52 50
     15
                                    100
                                                       Probability Based Mowse Score
 Peptide Summary Report
                                                                         *
  Format As Peptide Summary
                                                                                                                                                                       Help
                                                                                          Max. number of hits AUTO
                           Significance threshold p< 0.05
                                                                                                                                                                Show sub-sets 0
                           Standard scoring @ MudPIT scoring C Ions score or expect cut-off
                           Show pop-ups @ Suppress pop-ups C Sort unassigned Decreasing Score 💽 Require bold red 🗆
 Select All Select None Search Selected 
Fror tolerant
             <u>gi]195940647</u> Mass: 24783 Score: 297 Queries matched: 5 emPAI: 0.46 cytidylate kinase [Escherichia coli 0157:H7 str. EC4024]
          gi|195940647 Mass: 24783 Score: 297
 1.
         ☐ Check to include this hit in error tolerant search

        Query
        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss
        Score
        Expect Rank
        Peptice

        V
        130
        696.3070
        1390.5994
        1390.6803
        -0.0808
        0
        68
        0.0041
        R.DMSTVVFPDAPVK.I + 0x

        V
        150
        784.4830
        1566.9514
        1566.8617
        0.0897
        7 9
        0.00031
        M.TAIAPVITIDGPSGAGK.G

        V
        150
        1458.8554
        1658.8376
        0.0178
        0
        90
        2.9e-05
        1
        R.TQEVANASQVAAFPR.V

                                                                                                                                                               R.DMGTVVFPDAPVR.I + Oxidation (M)

        247
        793.4150
        2377.2232
        2377.1649
        0.0583
        0
        40
        2.4
        1
        R.FVSTDGNLEVILEGEDVSGEIR.T

        250
        940.8840
        2819.6302
        2820.5372
        -0.9070
        0
        20
        1.5e+02
        3
        R.AVAPLVPAEDALVLDSTSLTIEQVIEK.A

             gil6137462 Mass: 24759 Score: 264 Queries matched: 4 emPAI: 0.46
 2
              Chain A, Cmp Kinase From Escherichia Coli Free Enzyme Structure
         □ Check to include this hit in error tolerant search

        Marcing
        Marcing
        Marcing
        Delta
        Miss
        Score
        Expect Rank

        130
        696.3070
        1390.5994
        1390.6803
        -0.0808
        0
        68
        0.0041
        1

        150
        784.4830
        1566.8514
        1566.8617
        0.0897
        79
        0.00031
        1

        161
        830.4350
        1658.8554
        1658.8376
        0.0178
        0
        90
        2.9e-05
        1

                                                                                                 Delta Miss Score Expect Rank Peptide
0.0808 0 68 0.0041 1 R.DMGTVVFPDAPVK.I + Oxidation (M)
             Query Observed
                                                                                                                                                                M.TAIAPVITIDGPSGAGK.G
R.TQEVANAASQVAAFPR.V
                                                                                                                        90 2.9e-05
27 49
                                                                                                                                                         1 R.TOEVARADS CONTROL STREET
                 247 793,4150 2377,2232 2376,1809 1.0423 0
                                                                                                                                              49
              Proteins matching the same set of peptides:
gi[15800771 Mass: 24789 Score: 264 Queries matched: 4
cytidylate kinase [Escherichia coli 0157:H7 EDL933]
              gil24112319 Mass: 24803 Score: 264 Queries matched: 4
cytidylate kinase [Shigella flexneri 2a str. 301]
              gi 74311467 Mass: 24805 Score: 264
cytidylate kinase [Shigella sonnei Ss046]
                                                                                                   Queries matched: 4
                                          Mass: 24729
                                                                         Score: 264
              gi182777567
                                                                                                        Queries matched: 4
              cytidylate kinase [Shigella dysenteriae Sd197]

    gi[88129772
    Mass: 24764
    Score: 264
    Queries matched: 4

    Chain A, Mutant R188m Of The Cytidine Monophosphate Kinase From E. Coli
    gi[157146404
    Mass: 24818

             gi 157146404 Mass: 24818 Score: 264 Queries
cytidylate kinase [Citrobacter koseri ATCC BAA-895]
 3.
             gi|152969494
                                         Mass: 24917 Score: 158
                                                                                                        Queries matched: 2
                                                                                                                                                    emPAI: 0.29
               cytidylate kinase [Klebsiella pneumoniae subsp. pneumoniae MGH 78578]
         Check to include this hit in error tolerant search
```

Peptide Summary Report (SSP 6401)

Page 2 of 5

 Arry
 Observed
 Mr (capt)
 Mr (calc)
 Delta Miss
 Score
 Expect Rank
 Peptide

 130
 696.3070
 1390.5994
 1390.6803
 -0.0808
 68
 0.0041
 R.DMGTVVFPDAPVK.I + Oxidation (M)

 161
 830.4350
 1658.8554
 1658.8740
 -0.0185
 1
 90
 2.9e-05
 1
 R.TQEVANAASKVAAFPR.V
 Query Observed Mr(expt) Proteins matching the same set of peptides: gi1206579846 Mass: 24874 Score: 158 Queries matched: 2 cytidylate kinase [Klebsiella pneumoniae 342] gi1238893966 Mass: 24931 Score: 158 Oueries matched: 2 cytidylate kinase [Klebsiella pneumoniae NTUH-K2044] Mass: 27105 Score: 156 Queries matched: 2 cytidylate kinase [Klebsiella pneumoniae subsp. rhinoscleromatis ATCC 13884] 4. <u>qi[261339244</u> Mass: 24768 Score: 115 Queries matched: 3 emPAI: 0.14 cytidylate kinase [Enterobacter cancerogenus ATCC 35316] ☐ Check to include this hit in error tolerant search Delta Miss Score Expect Rank Peptide 0.0808 0 68 0.0041 1 R.DMGTVVFPDAPVK.I + Oxidation (M) Query Observed Mr(expt) Mr(calc) R.AVAPLVPAEDALVLDSTSLTIEQVIEK.A Peptide matches not assigned to protein hits: (no details means no match) Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide Ouerv 13 971.0240 1940.0334 1939.8266 0.2068 1 46 737.7190 2210.1352 2210.1439 -0.0087 1 30 0.71 1 MNFEKFGEMYLQSCR 1 238 30 DAYLIIGGGTIISMOAGMKGAK + Oxidation (M)
 223
 1043.4990
 2084.9834
 2084.0432
 0.9402
 1
 30

 106
 565.3480
 1693.0222
 1693.8471
 -0.8249
 2
 30

 243
 747.0480
 2238.1222
 2238.0409
 0.0813
 1
 28
 17 SERSNGAGAVLMHALESAIR + Oxidation (M) 45 1 1 EMTRSFQLGRWQR 63 1 1 36 1 40 1 90 1 LEQMTRSEASQWLEMQGAR + Oxidation (M)
 623.0330
 1866.0772
 1865.7148
 0.3624
 0

 759.4010
 2275.1812
 2276.0295
 -0.8484
 0
 ODGAGESDGSGDGAESGDGAK 1 189 28 1 142 28 MMNWYWQAWQLGLSFSGR + Oxidation (M)
 1/35.8010
 2273.1011
 2273.1011
 2273.1011
 1010
 0

 742.3940
 2224.1602
 2223.2020
 1.1362
 2
 2
 6
 1
 MPRGGAPARGSERTQTDAEGE + Oxidation (M)

 771.9940
 2312.9602
 2313.0954
 -0.1352
 2
 2
 6
 1.3e+02
 1
 GGRDEVMARLHQELVACAEE + Oxidation (M)

 647.6310
 1939.8712
 1939.9356
 -0.0644
 1
 25
 84
 1
 MLEQAIHQRDAGACLAR

 642.3800
 1924.1182
 1924.0088
 0.1094
 2
 24
 2e+02
 1
 VKSTINVAQTGGDGKYAIK
 V 241 61 1 MPRGGAFAWGGSRTQTDAEGR + Oxidation (M) 1 144 V 1 1 24 64 TRASTIMHGEWILLEAVPEAGLVEK + Oxidation (M) 1 972.5850 2914.7332 2914.4297 0.3035 24 1.6e+02 1 VHPYRLNAFASGEAGPLGWMEEGRVR + Oxidation (M) 199 0.7875 1 1 910.0500 2727.1282 2726.3407 24 1.8e+02 1 LMLQKAATLYDAGQEFAAAEAANMAK 1 1002.0500 2002.0854 2000.9480 1 1375 0 23 1.2e+02 1 LITWSSDYDDGFSVALGR
 491.3570
 1471.0492
 1470.8042
 0.2450
 1

 879.1510
 2634.4312
 2634.4315
 -0.0004
 2
 17 93 23 2.1e+02 1 AVTAREGIRASVEK 1 YAAMPHLKKAELIEGVVHLSSAVR + Oxidation (M) 23 1,9e+02 1 230 1072.9460 2143.8774 2143.1830 KLYVSLVKNGYPEVEVDR 1 0.6944 2 1e+02 23 1 1 645.3600 1933.0582 1932.9615 0.0967 0 23 1.4e+02 1 DITTLAAAMAALAPDFDAR 1 587 8760 1760 6062 1760 9156 -0 3094 1 23 2.7e+02 1 VTVNESDLAALGEKSTK 1 126 676.0180 2025.0322 2025.8846 -0.8524 0 23 2.4e+02 1 SEYSGVHEVMAMPMGIEK + 2 Oxidation (M) 1 691.9220 1381.8294 1380.7222 1.1072 1 22 1.6e+02 1 GVRGGAGGPAGLAEGR 129 22 3e+02 1 22 2e+02 1 17 118 632.3890 1894.1452 1894.9981 -0.8530 1 QARGVAALMRMLANEHR 970.7840 2909.3302 2910.4592 -1.1291 2 ~ LNOGMRLOTDPTVIYGMGSAYNGRIR 196 1 982.2250 2943.6532 2944.4569 -0.8037 1 22 2.1e+02 1 MSAMDAGIPAGTTVAAVMQRAPVAQLEAR + 2 Oxidation (M) 1 375.1880 1122.5422 1123.6349 -1.0928 0 48 22 3.6e+02 1 VQALLEAAPGR ~ 190 936.7680 2807.2822 2806.3068 0.9754 2 22 2.3e+02 FGHRYGGCGSPLRVPGYGDVPAAVCR 240 1110.5770 3328.7092 3327.7615 1 0.9477 GEVRPYYQAVGSEEAVFKAAYRQGLSLVLK 22 2.5e+02 1
 735.8300
 2204.4682
 2203.9700
 0.4981
 1

 853.9570
 2558.8492
 2559.3526
 -0.5034
 2
 1 22 2.8e+02 1 GOHSICCVMTEAFLRYSK + Oxidation (M) 1 248 22 98 1 VGGATYOVFVEVRPARRMALAMR + 2 Oxidation (M) 1 231 1075.6540 3223.9402 3223.6005 0.3396 2 22 2.3e+02 1 VLWKQNIYAESGMGCTGPIIRVSDANLSK + Oxidation (M) 1 1042.1070 2082.1994 2083.0334 -0.8340 22 1.6e+02 1 SGYERVDIVENKGEFSVR 1 2 811.2030 2430.5872 2431.2529 -0.6657 2 21 2.5e+02 NPLMIIGGFARSLLENSDENDK 1 128 680,9010 1359,7874 1359,6895 0.0980 0 21 3.4e+02 1 EALEAEGHTHVR 1 911.8940 2732.6602 2732.3922 0.2680 2 21 2.9e+02 1 LREFFSSRSYSPTIIGYTNELPR 184 1 162 838.7720 2513.2942 2514.1155 -0.8213 1 21 3.2e+02 1 SPMFNGNIQSTGPRYCPSIEDK + Oxidation (M) 391.1710 1170.4912 1171.5330 -1.0418 1 1 21 4.2e+02 1 AQQGNGPSSRGN 1 194 964.0440 2889.1102 2889.3744 -0.2643 1 21 3.20+02 1 MKLTQLFASLMVAGALTACAONGADMK + 3 Oxidation (M) 1 166 844.0780 2529.2122 2530.3465 -1.1344 1 21 3.4e+02 1 LGAAGVMVIGDNLOVVFGPKSDSIK + Oxidation (M) 514.3690 1540.0852 1539.7682 0.3170 0 ~ 21 3.9e+02 1 VPADVASPWLSDAGR 98 1 860.3590 2578.0552 2577.3360 QPELVEVLDTHLLPQDKDTIMK + Oxidation (M) 0.7192 21 3.4e+02 1 1 233 1082.6550 3244.9432 3245.6179 -0.6747 2 21 2.8e+02 1 EHQFEFKQGPIFTQILLADEINRCSPK 553.9120 1105.8094 1106.5179 -0.7084 0 21 1 2e+02 1 GYNIVACGPR 1 557.3730 1669.0972 1668.7930 0.3042 1 21 4.4e+02 1 HSGYMVGGTSPFGTKK + Oxidation (M) 104 902.2060 2703.5962 2703.3438 0.2523 0 1 179 20 3.1e+02 1 LAALMONLGEYNVQLEEIHHTHK + Oxidation (M) V 849.9520 2546.8342 2546.3162 0.5179 1 ARSASPEVVLITAYGTPAAAVEAMR + Oxidation (M) 168 20 3.8e+02 1 17 145 772.8310 2315.4712 2316.1420 -0.6708 1 20 3.90+02 1 DEETPUNTIPIDAMESPIRE + Oxidation (M) 1 226 1047,7250 3140,1532 3140,6401 -0,4869 1 20 2.6e+02 1 AASSAGVLHGVSGLFMAGITIAKGANGAGALTDR 1 479.2060 1434.5962 1435.7459 -1.1498 0 20 2.4e+02 1 AWLPIDPATPAER

 790.3940
 2368.1602
 2359.1222
 -0.9621
 0
 20
 2.480+02
 1
 NVNIHARATARH

 1046.0650
 3135.1732
 3135.6434
 -0.4702
 1
 20
 3.80+02
 1
 GGHASHDIANADPVPVAAEIVLAL

 824.1480
 2469.4222
 2470.1917
 -0.7695
 2
 20
 40+02
 1
 DKDGGPLIPMDGPESAFEANKR

 895.7880
 2684.3422
 2683.2661
 1.0761
 1
 20
 4.10+02
 1
 GQVCGLKWSDVDLDAGQITVHDNR

 1 NVNILMPAEYAPHHNSYIDR + Oxidation (M) GGHASMPHAAADPVPVAAEIVLALQAMVTRR 17 224 1 158

1

Page 2 of 2

Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: Z96078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454.

	Method:	conceptual translation.				
FEATURES		Location/Qualifiers				
source		1227				
		/organism="Enterobacter	cancerogenus	ATCC	35316"	
		/strain="ATCC 35316"				

	/db xref="taxon:500639"
Protein	1227
	/product="cytidylate kinase"
	/calculated mol wt=24594
Region	5225
	/region_name="cmk"
	<pre>/note="cytidylate kinase; Provisional; PRK00023"</pre>
	/db_xref="CDD: <u>134038</u> "
Region	7205
	/region_name="CMPK"
	/note="Cytidine monophosphate kinase (CMPK) catalyzes the
	reversible phosphorylation of cytidine monophosphate (CMP)
	to produce cytidine diphosphate (CDP), using ATP as the
	preferred phosphoryl donor; cd02020"
	/db_xref="CDD: <u>73296</u> "
Site	order(110,131132,188)
	/site_type="other"
	/note="CMP-binding site"
	/db_xref="CDD: <u>73296</u> "
Site	order(181,185)
	/site_type="other"
	/note="The sites determining sugar specificity"
	/db_xref="CDD: <u>73296</u> "
CDS	1227
	/locus_tag="EcanA3_020100002225" /coded_by="NZ_ABWM02000004.1:495167495850"
	/note="COG0283 Cytidylate kinase"
	/transl_table= <u>11</u> /db xref="CDD:134038"
	\dD xtet=_CDD:134030

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSraat.... 21/01/2010

(MATRIX) Mascot Search Results

Protein View

Match to: gi|261339244 Score: 115
cytidylate kinase [Enterobacter cancerogenus ATCC 35316]
Found in search of D:\Data\Lakshmy\120808\280808\SSP 6401_RK4_01_560.d\SSP 6401_RK4_01_560.mgf

Nominal mass (M $_{\rm p}):$ 24768; Calculated pI value: 5.32NCBI BLAST search of gi261339244 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **27%**

Matched peptides shown in Bold Red

1 MTAVAPVITI DGPSGAGKGT LCKAMAEALQ WHLLDSGAIY RVLALAALHH 51 HYDVASEEAL VPLAAHLDVR **FVSTNGNLEV ILEGEDVSGE IRT**QDVANAA 101 SQVAAFPRVR EALLRRQRGF REAPCLIADG R**DMGTVVFPD AFV**KIFLDAS 151 SEERAQRRML QLQEKGFSVN FERLLSEIKE RDDRDRNRAV APLVPAEDAL 201 VLDSTSLTIE QVIEKALQYA RQKLALA

Show predicted peptides also

Start	-	End	Observed	Mr (expt)	Mr (calc)	Delta	Miss	Sequence
71	-	92	793.4150	2377.2232	2376.1809	1.0423	0	R.FVSTNGNLEVILEGEDVSGEIR.T (Ions score 27)
132	-	144	696.3070	1390.5994	1390.6803	-0.0808	0	R.DMGTVVFPDAPVK.I Oxidation (M) (Ions score 68)
189	-	215	940.8840	2819.6302	2820.5372	-0.9070	0	R.AVAPLVPAEDALVLDSTSLTIEQVIEK.A (Ions score 20)
1 0 ⁹	+					(mdd)	250 -	•
6- 0						Error C	0	·····
-1	-						-250 -	· . · · · · · · · · . · · · · ·
		1500		2000	2500			1500 2000 2500
RMS error	n 3	15 nnn			Mas	s (Da) RMS	error 31	5 ppm Mass (Da)

LOCUS	2P_05967102 227 aa linear BCT 15-OCT-2009
ACCESSION	cytidylate kinase [Enterobacter cancerogenus ATCC 35316]. ZP 05967102
VERSION	ZP 05967102.1 GI:261339244
DBLINK	Project:28663
DBSOURCE	REFSEQ: accession NZ ABWM02000004.1
KEYWORDS	
SOURCE	Enterobacter cancerogenus ATCC 35316
ORGANISM	Enterobacter cancerogenus ATCC 35316
	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
	Enterobacteriaceae; Enterobacter.
REFERENCE	1 (residues 1 to 227)
AUTHORS	Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B.,
	Courtney, L., Fronick, C., Harrison, M., Strong, C., Farmer, C.,
	Delahaunty, K., Markovic, C., Hall, O., Minx, P., Tomlinson, C.,
	Mitreva, M., Nelson, J., Hou, S., Wollam, A., Pepin, K.H., Johnson, M.,
	Bhonagiri,V., Nash,W.E., Warren,W., Chinwalla,A., Mardis,E.R. and Wilson,R.K.
TITLE	Direct Submission
JOURNAL	Submitted (06-OCT-2009) Genome Sequencing Center, Washington
ooorden	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
REFERENCE	2 (residues 1 to 227)
AUTHORS	Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H.,
	Johnson, M., Thiruvilangam, P., Bhonagiri, V., Nash, W.E., Mardis, E.R.
	and Wilson,R.K.
TITLE	Direct Submission
JOURNAL	Submitted (17-SEP-2008) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
0010/010	63108, USA
COMMENT	WGS <u>REFSEQ</u> : This record is provided to represent a collection of whole genome shotgun sequences. The reference sequence was derived
	from ABWM02000004.
	Annotation was added by the NCBI Prokaryotic Genomes Automatic
	Annotation Pipeline Group. Information about the Pipeline can be
	found here:
	http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be
	aware that the annotation is done automatically with little or no
	manual curation.

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSraat.... 21/01/2010

Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: 296078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

	This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x
	Sequencing Technology: 454.
	Method: conceptual translation.
FEATURES	Location/Qualifiers
source	1227
	/organism="Enterobacter cancerogenus ATCC 35316" /strain="ATCC 35316"
	/db xref="taxon:500639"
Proteir	
	/product="cytidylate kinase"
	/calculated mol wt=24594
Region	5225
ine que on	/region name="cmk"
	/note="cytidylate kinase; Provisional; PRK00023"
	/db xref="CDD:134038"
Region	7205
negron	/region name="CMPK"
	/regron_name= Cerk monophosphate kinase (CMPK) catalyzes the /note="Cytidine monophosphate in cytidine monophosphate (CMP) to produce cytidine diphosphate (CDP), using ATP as the preferred phosphoryl donor; cd02020" /db xref="CDD:73296"
Site	order (110, 131132, 188)
0466	/site type="other"
	/note="CMP-binding site"
	/db xref="CDD:73296"
Site	order (181,185)
bite	/site type="other"
	/note="The sites determining sugar specificity"
	/hote="file sites determining sugar specificity /db xref="CDD:73296"
000	7db_xre1= CbD: <u>13296</u> 1227
CDS	
	/locus_tag="EcanA3_020100002225"
	/coded_by="NZ_ABWM02000004.1:495167495850"
	/note="COG0283 Cytidylate kinase"
	/transl_table=11
	/db_xref="CDD: <u>134038</u> "

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSraat.... 21/01/2010

(MATRIX) Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 6408
MS data file	: D:\Data\Lakshmy\120808\280808\SSP 6408 RI7 01 467.d\SSP 6408 RI7 01 467.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 5 Jan 2010 at 11:58:13 GMT
Protein hits	: gi[261342934 periplasmic protein disulfide isomerase I [Enterobacter cancerogenus ATCC 35316]
	gi 2558846 disulfide oxidoreductase [Salmonella enterica subsp. enterica serovar Typhimurium]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p < 0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

10- 5- 0		50	100 Probabili	150 Ly Based Mowse	200 Score					
eptide	e Sum	mary Repo	ort							
Forma	at As	Peptide Sum	many	-						Help
1 01114	urrio -						c1 [AUTO		nop
			e threshold p<				of hits			
		Standard sco	oring @ Muc	IPIT scoring	C Ions sco	ore or	expect c	cut-off 0		Show sub-sets 0
		Show pop-u	ips @ Suppre	ess pop-ups	Sort un	assign	ed Decr	reasing Score	1	Require bold red
	-		and increased							
Select	All	Select Non	e Sea	rch Selected	Erro	or tole	erant			
	gi1261	1342934	Mass: 23134	Score:	189 0	erie	s match	ned: 5 em	PAT	: 0.50
	Contraction of the second			de isomeras	500					
	Check	to include	this hit i	n error tol	erant sea	arch				
s	Query 73	Observed	Mr(expt) 1258.7434	Mr(calc) 1258.6710	Delta M 0.0724	liss S O	Core 1 42	Expect Ran 2.1 5		Peptide K.YHVEFLGPLGK.D
1	114		1599.7834	1599.7205		0	67	0.006 1		C. GEDYDAAWNSFVVK.S
17	155		1799.0332	1798.9465	D.0867	0	(44)	1.1 1		C. DLTQAWAVAIALGVEDK. V
-	156	900.5290	1799.0434	1798.9465	0.0969	0	80 0	.00024 1		C. DLTOAWAVAIALGVEDK. V
1										
ব	157 Protei gi[152	ins matchin 2972670	Mass: 23047	1798.9465 set of pept Score:	0.1849 ides: 187 Qu	0 nerie:	(50) s match	0.21 1 med: 5	2	K. DLTQAMAVAIALGVEDK. V
ष	157 Protei gi 153 peripl gi 255 disulf Check Query	ins matchin 2972670 lasmic prot 5577959 edisulfide 58846 sc fide oxidor to include Observed	g the same Mass: 23047 ein disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i Mr(expt)	1798.9465 set of pept Score: de isomeras Score: protein Ds Queries ma almonella e n error tol Mr(calc)	0.1849 ides: 187 Qu e I [Klet 187 Qu bA [Klebs tched: 2 nterica s erant sea Delta M	0 meries siells siells subsp. arch	(50) s match la pneum . enter score Es	0.21 1 med: 5 moniae sub med: 5 moniae 342] tica serova	sp.	<pre>C.DLTQAWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium] ptide</pre>
ष	157 Protei gi[152 perip] gi[206 thiol: gi[255 disulf Check Query 73	ins matchin 2972670 lasmic prot 5577959 edisulfide 58846 sc fide oxidor to include Observed	g the same Mass: 23047 ein disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i Mr(expt) 1258.7434	1798.9465 set of pept Score: de isomeras Score: protein DS Queries ma almonella e n error tol	0.1849 ides: 187 Qu e I [Kleb 187 Qu bA [Klebs tched: 2 nterica s erant sea Delta M 0.0724	0 meries siells siells subsp. arch	(50) s match la pneum s match a pneum . enter . enter 42	0.21 1 med: 5 moniae sub med: 5 moniae 342] cica serova	sp. r T Pe	K.DLYDAWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium]
	157 Protei gi[152 perip] gi[255 disulf Check Query 73 114 e matc	ins matchin 272670 islasmic prot 5577959 disulfide 58846 Sc fide oxidor to include Observed 630.3790 800.8990	g the same Mass: 23047 interchange ore: 102 eductase [S this hit i Mr (expt) 1258.7434 1599.7834	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol Mr(calc) 1258.6710 1598.7365	0.1849 ides: 187 Qt e I [Kleb 187 Qt bA [Klebs tched: 2 nterica s erant sea Delta M 0.0724 1.0469 : (no det	0 meries osiell aeries siella subsp. arch iss S 0 0	(50) s match la pneum s match a pneum . enter 42 61 (means 1	0.21 1 med: 5 summoniae sub med: 5 soniae 342] cica serova xpect Rank 2.1 5 0.025 2 no match)	sp. r T Pe K. K.	K.DLYQAWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium] yptide YHVEFELGPLGK.E GENYDAAWNSFVVK.S
	157 Protei gi 153 peripl gi 200 thiol: gi 255 disulf Check 20ery 73 114	ins matchin 2972670 : Lasmic prot 5577959 : disulfide 58846 Sc fide oxidor to include 0bserved 630.3790 800.8990	g the same Mass: 23047 ein disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i 1258.7434 1599.7834 signed to p: Mr (expt)	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol Mr(calc) 1258.6710 1598.7365 cotein hits Mr(calc)	0.1849 ides: 187 Qt e I [Kleb 187 Qt bA [Klebs tched: 2 nterica s erant sea Delta M 0.0724 1.0469 : (no det	0 meries siell subsp. arch 0 0 ails Miss	(50) s match la pneu s match a pneum . enter 42 61 (0.21 1 med: 5 summoniae sub med: 5 soniae 342] cica serova xpect Rank 2.1 5 0.025 2 no match)	sp. r T Pe K. K.	<pre>C.DITQNWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium] yptide YHVEFELGPLGK.E</pre>
v	157 Protei ai 152 peripl ai 200 thiol: ai 255 disulf Check Query 73 114 Parto 200 200 200 200 200 200 200 200 200 20	ins matchin 272670 ilasmic prot 5577959 idisulfide 58846 Sc fide oxidor to include Observed 630.3790 800.8990 when not asso	g the same Mass: 23047 ein disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i 1258.7434 1599.7834 signed to p: Mr (expt)	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol Mr(calc) 1258.6710 1598.7365 cotein hits Mr(calc)	0.1849 ides: 187 Qc e I [Klebs bA [Klebs tched: 2 nterica s erant ses Delta M 0.0724 1.0469 : (no det Delta	0 series solution subsp. arch 0 0 ailss S 0 0 0 Miss 2	(50) s match la pneum s match a pneum . enter 42 61 (means 1 s Score	0.21 1 wed: 5 sumoniae sub wed: 5 soniae 342] cica serova xpect Rank 2.1 5 0.025 2 no match) Expect R	sp. r T Pe K. K.	<pre>K.DLTQNWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium] ptide YHVEFLGPLGK.E GENYDAAWNSFVVK.S Peptide</pre>
ت ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	157 Protei gi 152 peripl gi 200 thiol: gi 255 disulf Check Query 73 114 e matc Query 70	ins matchin 2972670 alasmic prot 5577959 disulfide 58845 Sc fide oxidor to include Observed 630.3790 800.8990 thes not ass Observed 608.8640	g the same Mass: 23047 interchange ore: 102 eductase [S this hit i Mr (expt) 1258.7434 signed to p: Mr (expt) 1215.7134 1258.7434	1798.9465 set of pept Score: de isomeras Score: protein Ds Queries ma almonella e n error tol 1258.6710 1598.7365 cotein hits Mr(calc) 1215.6870	0.1849 ides: 187 Qt e I [Klebs tched: 2 nterica s erant ses Dalta M 0.0724 1.0469 : (no det Delta 0.0265	0 subsp. subsp. arch 0 0 0 Miss S 2 1	(50) s match la pneus s match a pneum . enter 42 61 (means 1 s Score 53	0.21 1 med: 5 imoniae sub- sect: 5 inoniae 342] crica serova xpect Rank 2.1 5 0.025 2 no match) Expect Ra 0.16	sp. r T K. K. ank	<pre>K.DLTQNWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium] nptide YHVEFLGPLGK.E GENYLDAAWNSFVVK.S Peptide LTAFIARRER + Oxidation (M)</pre>
ব	157 Proteid gil152 peripi gil200 disult Check 20ery 73 114 - matc 20ery 73 114 - matc 20ery 73 114 - 20ery 73 114 - 20ery 73 73 72 229 73 72 73 72 73 73 72 72 73 73 72 72 73 73 72 72 73 73 72 72 73 72 72 73 72 72 73 72 72 73 72 72 72 73 72 72 73 72 72 72 73 72 72 72 73 72 72 72 73 72 72 72 73 72 72 72 72 72 72 72 73 72 72 72 72 72 72 72 72 72 72	ins matchin 2972670 1asmic prot 5577959 disulfide 58845 Sc fide oxidor to include Observed 630.3790 800.8990 Ches not ass Observed 608.6640 630.3790 747.0790	g the same Mass: 23047 ein disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i 1256.7434 1599.7834 signed to pr Mr (expt) 1215.7134 1258.7434 1258.7434	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol 1258.6710 1598.7365 cotein hits Mr(calc) 1215.6870 1258.6128 1258.6128	0.1849 ides: 187 Qr e I [Klef 187 Qr bA [Klebs tched: 2 nterica se erant ses Delta M 0.0724 1.0469 : (no det Delta 0.0265 0.1306 0.9204 0.0950	0 series siell subsp. urch iss S 0 0 ails Miss 2 1 0 1	(50) s match la pneus s match a pneum . enter 42 61 (means : 53 51 35 34	0.21 1 med: 5 imoniae sub- sub- sect: 5 inca serova sect Rank 2.1 5 0.025 2 inco match) Expect Ra 0.16 0.25 11 8.8	ssp. r T K. K. k. l l l l	<pre>C.DITQNMAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium) ptide YHVEFLGPLGK.E GENYDAAWNSFVVK.S Poptide LTAFLMERSE + Oxidation (M) RAMGCLDVPCK ALLDGLFAPER THEVTKSTVLGEGETVSSVAX + Oxidation (M)</pre>
য	157 Protei gi 157 peripl peripl gi 255 disult Check 20ery 73 114 Protei gi 255 disult Check 20ery 73 114 Protei 20ery 73 114 Protei 20ery 73 114 Protei 20ery 73 114 Protei 20ery 73 114 Protei 20ery 73 114 Protei 20ery 73 114 Protei 20ery 73 114 Protei 20ery 73 114 Protei 20ery 73 114 Protei 20ery 73 74 74 74 74 74 74 74 74 74 74	ins matchin 272670 1435mic prot 5577959 disulfide 58845 50 5845 50 50 50 50 50 50 50 50 50 5	g the same Mass: 23047 in disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i 1258,7434 1599,7834 signed to pr Mr (expt) 1215,7134 1258,7434 1258,7434 1258,7434 1258,7434	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol Mr(calc) 1258.6710 1598.7365 rotein hits Mr(calc) 1258.6128 1258.6128 1258.6128 1258.6128	0.1849 ides: 187 Qr e I [Kleb 187 Qr bà [Klebs tched: 2 nterica s erant sec Dalta M 0.0724 1.0469 : (no det Delta 0.0255 0.1306 0.9204 0.0921	0 eeried bosiell eeried subsp. arch 0 0 miss 2 1 0 1 1	(50) s match la pneum . enter 42 61 (means 1 s Score 53 51 35 34 32	0.21 1 Med: 5 summoniae sub- sed: 5 soniae 342] crica serova xpect Rank 2.1 5 0.025 2 mo match) Expect R 0.16 0.25 11 8.8 14	ssp. r T K. K. 1 1 1	C.DLTQNWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium] ptide YHVEFLGPLGK.E GENYDAAWNSFVVK.S Peptide LTAFLMRRSR + Oxidation (M) RAWGCLDVPGK ALLDGLFAGFER THMVTKFVDLELVDGLGDFR + Oxidation (M) VMNKFVDLELVDGLGDFR + Oxidation (M)
চ pptide c c c c c c c c c c c c c c c c c c c	157 Protesi gi 152 gi 201 thiol: gi 202 disul: Glisul: Check 20ery 73 114 	ins matchin 272670 13277859 13277859 13277859 13277859 1327785 132845	g the same Mass: 23047 ein disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i 1258.7434 1599.7834 signed to p Mc(expt) 1215.7134 1258.7434 1258.7434 1258.7434	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol 1258.6710 1258.7365 Cotein hits Mr (calc) 1215.6870 1258.6128 1257.6717 2288.1202 2082.0456 2298.2947	0.1849 ides: 187 Qt 187 Qt	0 merica osiell erica subsp. arch 0 0 miss 2 1 0 0 1 1 1	(50) s match la pneus s match a pneus means 1 s core 53 51 35 34 32 32	0.21 1 med: 5 sumoniae sub- red: 5 soniae 3421 rica serova xpect Rank 2.1 5 0.025 2 mo match) Expect R 0.16 0.25 11 8.8 14 14	sp. r T K. K. 1 1 1 1	C.DLTQNWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium] ptide YHVEFLGPLGK.E GENYDAAWNSFVVK.S Peptide LTAPLMRESE + Oxidation (M) RAWGCLDVPGK ALLDGLFAGPER THMYTKSTVLGEGETVSSVAK + Oxidation (M) QKNEVDLEVDOIGDFR + Oxidation (M) QKNEVDLEVDOIGDFR + Oxidation (M) QKPQNAQALETLDTIKFLLK
চ sptide ব ব ব ব ব ব ব	157 Protesi gil152 gil203 thiol. gil203 thiol. gil203	ins matchin 272670 ilasmic prot 5577959 idisulfide 58846 Sc fide oxidor to include Observed 630.3790 800.8990 Ches not ass Observed 608.6640 630.3790 1042.0290 767.4120 762.1160	g the same Mass: 23047 ein disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i 1258.7434 isigned to p: Mr (expt) 1215.7134 1258.7434 1258.7434 1258.7434 2238.2152 2082.0434	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol 1258.6710 1258.6710 1258.6730 1215.6870 1215.6870 1258.6128 Mr(calc) 1258.6128 2288.1202 2082.0456 2289.2947 2284.0971	0.1849 ides: 187 Qr e I [Klef 187 Qr bA [Klebs tched: 2 nterica se erant ses Delta M 0.0724 1.0469 : (no det Delta 0.0265 0.1306 0.9204 0.0950 -0.0021 0.9195 -0.7710	0 meries bsiell subsp. arch diss S 0 0 0 miss 2 1 0 1 1 1 1	(50) s match la pneum s match a pneum . enter 42 61 (means 1 53 54 35 34 32 31	0.21 1 med: 5 imoniae sub- icica serova expect Rank 2.1 5 0.025 2 mon match) Expect R. 0.16 0.25 11 8.8 14 18	sp. r T K. K. 1 1 1 1 1	C.DITQNWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium) ptide YHVEFLGPLGK.E GENYDAAWNSFVVK.S Peptide LTAPIARESE + Oxidation (M) RAWGCLDVPGK ALLDGIFABER THEVTKSTVLGEGETVSSVAK + Oxidation (M) VMRKFVDIELUVDGIGDFR + Oxidation (M) VMRKFVDIELUVDGIGDFR + Oxidation (M) QKPQNAQLETLDTIKFLLK KVTIENQOSFLNSDATASTEK
र य य य य य य र	157 Protesi gil155 gil255 gil205 thiol: gil255 disulf Check 2000 73 114 0 matc 2000 72 219 197 226 223 212	ins matchin 972670 143smic prot 5577959 disulfide 58845 Sc fide oxidor to include Observed 630.3790 800.8990 Ches not assi Observed 608.6640 630.3790 420.5380 1042.0290 767.4120 1106.1540	g the same Mass: 23047 in disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i Mr (expt) 1258.7434 1599.7834 Mr (expt) 1215.7134 1258.7434 1258.7434 1258.7434 1258.7434 1258.7434 1258.7434 1258.2238 2238.2152 2238.	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol 1258.6710 1258.6710 1258.6700 1258.628 1257.6717 2238.1202 2082.0456 22082.0456 2268.2947 2210.0598	0.1849 ides: 187 Qr e I [Kleb 187 Qr bA [Klebs tched: 2 nterica s erant sec Delta M 0.0724 1.0469 : (no det Delta 0.0255 0.1306 0.9204 0.0925 -0.7710 0.2336	0 eries siella subsp. urch Miss 2 1 0 1 1 1 1 2	(50) s match la pneus s s s s s s s s s s s s s s s s s s s	0.21 1 med: 5 smoniae sub- sed: 5 soniae 342] cica serova xpoct Rank 2.1 5 0.025 2 mo match) Expect R 0.16 0.25 11 8.8 14 14 19	sp. r T K. K. 1 1 1 1 1	C.DIRONWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium] aptide YHVEFLGPLGK.E GENYDAAWNSFVVK.S Peptide LTAPIARESE + Oxidation (M) NAMGCLDVFGK ALLOGLFFAGPER THMVTESYLGEGETVSSVAK + Oxidation (M) VMNKFVDIELVDGIGDFR + Oxidation (M) VMNKFVDIELVDGIGDFR + Oxidation (M) VMNTENGOSFIANDATASTER YNQAKMPIELVDMMEEK + Oxidation (M)
। aptide द् र द	157 Protesi gil155 gil201 thiol: gil201 thiol: gil201 disul1 Check Query 73 114 Protesi gil205 disul1 Check Query 70 72 219 197 226 223 212 76	ins matchin 272670 idisulfide 58846 Sc fide oxidor to include Observed 630.3790 800.8990 thes not as: Observed 630.3790 420.5380 747.0790 1042.0290 767.4120 767.4120 768.1540 685.7070	g the same Mass: 23047 ein disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i Mr (expt) 1258.7434 1258.7434 1258.7434 1258.7434 1258.7434 1258.7434 1258.7434 1258.7434 1258.7434 1258.2062.0434 2299.2142 2263.3262 2210.2534	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol Mr(calc) 1258.6710 1258.6710 1258.6870 1258.6870 1258.6871 1258.6872 1258.6872 1258.2022 2082.0456 2298.2045 2205.41850	0.1849 ides: 187 Qt ba [Klebs tched: 2 nterica s erant see Delta M 0.0724 1.0469 : (no det Delta 0.0255 0.1306 0.9204 0.9195 -0.7710 0.2335 -0.0858	0 series sciells subsp. ails 0 0 miss 2 1 0 1 1 1 1 2 2 1	(50) s match la pneum s match s match s match core E: 42 61 (means 1 55 53 51 35 34 32 32 31 29	0.21 1 ued: 5 inoniae sub- ued: 5 inoniae 342] inica serova xpect Rank 2.1 5 0.025 2 ino match) Expect R 0.16 0.25 11 8.8 14 19 19 59	sp.	C.DIRQNWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium] yptide YHVEFLGPLGK.E GENYDAAWNSFVVK.S Peptide LTAPLWRRSR + Oxidation (M) RAWGCLDVPGK ALLOGLFAGFER THMVTKSTVLGEGETVSSVAK + Oxidation (M) VRNEVDIELVDDIGDFR + Oxidation (M) QKPQNAQALETLDTIKFLLK KWTIENQOSFLNEDATASTSK TNQAKNERLELVDMIGER + Oxidation (M) VFMLSSAVLVSLYILKQK + Oxidation (M)
। aptide द र र र र र र	157 Protei gil152 peripl gil201 thiol: gil255 disul: Check 20ery 73 114 P matc 20ery 70 73 72 219 72 226 223 2127 76 157 197 197 197 197 197 197 197 19	ins matchin 272670 ilasmic prot 5577959 cdisulfide 58846 Sc fide oxidor to include Observed 630.3790 800.8990 thes not as: Observed 638.8640 630.3790 420.5380 747.0790 1042.0290 106.1540 762.1160 1106.1540 685.7070 897.9300	g the same Mass: 23047 ein disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i 1256,7434 1599,7834 signed to p: Mr (expt) 1215,7134 1258,7434 1258,7434 1258,7434 1258,7434 1258,7434 1258,7434 1259,222 2238,2152 2032,0434 2299,2142 2283,3262 2210,2934	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol 1258.6710 1258.6710 1258.670 1255.6870 1255.6870 1255.6870 1258.6128 1257.617 2238.1202 2020.256 229.256 129.1697 228.1202 2020.1690 1793.8692	0.1849 ides: 187 Qr e I [Klef 187 Qr bA [Klebs tched: 2 nterica s erant sea Delta M 0.0724 1.0469 : (no det Delta 0.0265 0.1306 0.9204 0.0950 -0.0215 -0.0215 -0.0237	0 eeriee solella subsp. mrch iiss S 0 0 ails Miss 2 1 0 1 1 1 1 2 1 1	<pre>(50) (50) s match a pneum s match a pneum c. enter 42 61 (means s s 53 4 32 31 31 31 29 28</pre>	0.21 1 med: 5 imoniae sub- med: 5 inoniae 342] rica serova xpect Rank 2.1 5 0.025 2 mon match) Expect R 0.16 0.25 11 8.8 14 19 19 38	sp. r T K. K. ank 1 1 1 1 1 1 1	<pre>K.DLTQDWAVAIALGVEDK.V pneumoniae MGH 78578] pptide yphimurium] ptide THVEFLGPLGK.E GENYDAAWNSEVVK.S Peptide LTAPLMRRSR + Oxidation (M) RAMGCLDVPGK ALLOGLFAGPER THWYTESVUGSGETVSSVAK + Oxidation (M) VenKFVDIELVDMGEK + Oxidation (M) QKCQNAQLETLDTIKFLLK KWTIENQGSFLNSDATASTSK INQAKUPEILLVDNGEK + Oxidation (M) MKILTSYAYGDIMTR + 2 Oxidation (M)</pre>
द स द द द द द द द र	157 Protesi gil155 gil201 thiol: gil201 thiol: gil201 disul1 Check Query 73 114 Protesi gil205 disul1 Check Query 70 72 219 197 226 223 212 76	ins matchin 272670 idisulfide 58846 Sc fide oxidor to include Observed 630.3790 800.8990 thes not as: Observed 630.3790 420.5380 747.0790 1042.0290 767.4120 767.4120 768.1540 685.7070	g the same Mass: 23047 in disulfi Mass: 23034 interchange ore: 102 eductase [S this hit i 1258.7434 1599.7834 signed to p: Mr (expt) 1215.7134 1258.7434 1258.7434 1258.7434 1258.7434 1258.7434 1258.2222 2238.2152 238	1798.9465 set of pept Score: protein Ds Queries ma almonella e n error tol 1258.6710 1258.6710 1258.67365 cotein hits Mr (calc) 1215.6870 1258.6128 1257.6717 2288.1202 2082.0456 2298.2947 2210.0598 2054.1850 1793.8692 2484.3019	0.1849 ides: 187 Qt ba [Klebs tched: 2 nterica s erant see Delta M 0.0724 1.0469 : (no det Delta 0.0255 0.1306 0.9204 0.9195 -0.7710 0.2335 -0.0858	0 serie siell subsp. arch 0 0 1 1 1 1 2 1 1 2 2	(50) s match la pneum s match s match s match core E: 42 61 (means 1 55 53 51 35 34 32 32 31 29	0.21 1 wed: 5 imoniae sub- wed: 5 inoniae 342] crica serova xpect Rank 2.1 5 0.025 2 mon match) Expect Ra 0.25 11 8.8 14 14 18 19 59 38 74	sp.	C.DIRQNWAVAIALGVEDK.V pneumoniae MGH 78578] yphimurium] yptide YHVEFLGPLGK.E GENYDAAWNSFVVK.S Peptide LTAPLWRRSR + Oxidation (M) RAWGCLDVPGK ALLOGLFAGFER THMVTKSTVLGEGETVSSVAK + Oxidation (M) VRNEVDIELVDDIGDFR + Oxidation (M) QKPQNAQALETLDTIKFLLK KWTIENQOSFLNEDATASTSK TNQAKNERLELVDMIGER + Oxidation (M) VFMLSSAVLVSLYILKQK + Oxidation (M)

(MATRIX) Mascot Search Results

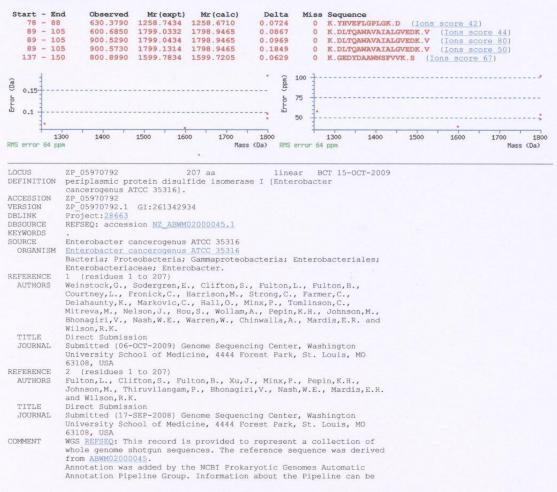
Protein View

Match to: gi|261342934 Score: 189 periplasmic protein disulfide isomerase I [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\280808\SSP 6408_RI7_01_467.d\SSP 6408_RI7_01_467.mgf

Nominal mass (M_r): 23134; Calculated pI value: 5.65 NCBI BLAST search of $\underline{gi|261342934}$ against nr Unformatted sequence string for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 20%


Matched peptides shown in Bold Red

1 MKKIWLALAG MILAFSASAA QFTDGKQYIT LDKPVAGEPQ VLEFFSFYCP 51 HCYQFEEVLH VSDNVKKKLP EGTKMTKYHV EFLGPLGKDL TQAWAVAIAL 101 GVEDKVTAPL FEAVQKTQTV QNTADIRKVF VDAGVKGEDY DAAWNSFVVK 151 SLVAQQEKAA ADLQLQGVPA MFVNGKYQLN MQGMDTSSMD IFVQQYADTV 201 KYLVEKK

Show predicted peptides also

Sort Peptides By

Residue Number C Increasing Mass C Decreasing Mass

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSranE... 21/01/2010

Page 2 of 2

found here: found here: http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be aware that the annotation is done automatically with little or no manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: 296078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316). We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible. This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/]. This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454.

	sequencing recimology. 454.
	Method: conceptual translation.
FEATURES	Location/Qualifiers
source	1207
	/organism="Enterobacter cancerogenus ATCC 35316"
	/strain="ATCC 35316"
	/db xref="taxon:500639"
Proteir	
2200021	
	/product="periplasmic protein disulfide isomerase I"
Deviden	/calculated_mol_wt=22901
Region	24202
	/region_name="DsbA_DsbA"
	<pre>/note="DsbA family, DsbA subfamily; DsbA is a monomeric</pre>
	thiol disulfide oxidoreductase protein containing a redox
	active CXXC motif imbedded in a TRX fold. It is involved
	in the oxidative protein folding pathway in prokaryotes,
	and is the strongest thiol; cd03019"
	/db xref="CDD:48568"
Region	40197
(1977) Syndrove Statistic	/region name="DSBA"
	/note="DSBA-like thioredoxin domain; pfam01323"
	/db xref="CDD:110334"
Site	
DILE	order(49,5152,169)
	/site_type="other"
	/note="catalytic residues"
-	/db_xref="CDD: <u>48568</u> "
Site	8284 .
	/site_type="other"
	/note="hinge region"
	/db xref="CDD:48568"
Site	order(8997,102121,124132,138147)
	/site type="other"
	/note="alpha helical domain"
	/db xref="CDD:48568"
CDS	1207
	/locus tag="EcanA3 020100020887"
	/coded by="NZ ABWM02000045.1:30233646"
	/note="COG0526 Thiol-disulfide isomerase and thioredoxins"
	/transl_table=11
	/db_xref="CDD: <u>138304</u> "

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSranE... 21/01/2010

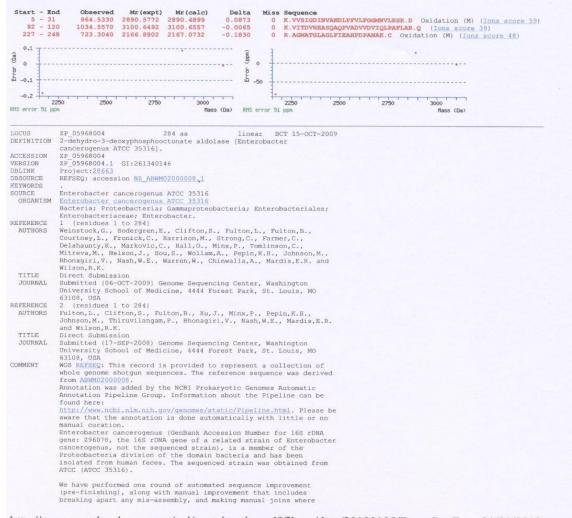
(MATRIX) Mascot Search Results Lakshmy Manickan Lakshmy manickan@unn.ac.uk SSP 6605 D:\Data\Lakshmy\120808\241108\SSP 6605 RC3_01_783.d\SSP 6605_RC3_01_783.mgf MCBInr 20100102 (10272453 sequences: 3505279183 residues) Bacteria (Bubacteria) (569016 sequences) 5 Jan 2010 at 12:01:23 GMT gil263140166 2-dehydro-3-deoxyphosphooctonate aldolase [Enterobacter cancerogenus ATCC 35316] gil50582463 oxidorductase [Exiguobacterium acetylicum] ri1146311979 2-dehydro-3-deoxyphosphooctonate aldolase [Enterobacter sp. 638] User Email Search title MS data file Database Taxonomy Timestamp Protein hits gi | 146311979 2-dehydro-3-deoxyphosphooctonate aldolase [Enterobacter sp. 638] **Probability Based Mowse Score** Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits. Hi ts ¥ 30 -Number o 15 10 5 100 150 Probability Based Mowse Score **Peptide Summary Report** Format As Peptide Summary * Help Significance threshold p< 0.05 Max. number of hits AUTO Show sub-sets 0 Standard scoring @ MudPIT scoring C Ions score or expect cut-off 0 Show pop-ups @ Suppress pop-ups C Sort unassigned Decreasing Score 🔄 Require bold red 🗆 1. gil261340146 Mass: 30917 Score: 144 Queries matched: 3 emPAI: 0.23 2-dehydro-3-deoxyphosphooctonate aldolase [Enterobacter cancerogenus ATCC 35316] $\hfill \square$ Check to include this hit in error tolerant search Query Observed Query Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide ▼ 194 723.3040 2166.8902 2167.0732 -0.1830 0 48 0.32 1 R.AGMATGLAGLFIEAHPDPANAR.C + Oxidation (M) ▼ 248 964.5330 2890.5772 2890.4899 0.0873 0 59 0.023 1 K.VVSIGDINVANDLPFVLFGGMNVLESR.D + Oxidation (M) ▼ 174 1034.5570 3100.6557 -0.0065 0 39 5.1 1 K.VITDVHEASQAQPVADVUDVLQLPAFLAR.Q <u>gi]50582463</u> Mass: 27360 Score: 118 Queries matched: 2 emPAI: 0.12 oxidoreductase [Exiguobacterium acetylicum] 2 ☐ Check to include this hit in error tolerant search Query Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 133 859.3740 1716.7334 1716.8570 -0.1236 0 86 6.4e-05 1 K.YTVITGASSGIGYETAK.L 12 89 677.2430 2028.7072 2028.9752 -0.2681 0 32 25 1 K.SVDLADHQNVHDLYEGLK.E 3. <u>gill46311979</u> Mass: 31019 Score: 107 Queries matched: 2 emPAI: 0.23 2-dehydro-3-deoxyphosphooctonate aldolase [Enterobacter sp. 638] Check to include this hit in error tolerant search Query Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 194 723.3040 2166.8902 2167.0732 -0.1830 0 48 0.32 1 R.AGMATGIAGLFIEAHPDPANAK.C + Oxidation (M) 248 964.5330 2890.5772 2890.4899 0.0873 0 59 0.023 1 K.VVSIGDINVANDLPFVLFGGMNVLESR.D + Oxidation (M) Peptide matches not assigned to protein hits: (no details means no match) Query Observed Mr (expt) Mr (calc) 169 676.8940 2027.6602 2027.0510 Delta Miss Score Expect Rank Peptide 0.6092 0 38 0.0407 1 34 0.8733 2 33 17 2.8 1 IALDQGMDIHSVFELLAR 14 1 VTDLDKAGAWAR 651.8640 1301.7134 1301.6728 1 85 1 1 1 IEAFFHGAGYAMHRHDTYAIGR + Oxidation (M) 7 1 V 742.2930 2223.8572 2223.0049 0.8523 0 29 665.2980 1992.8722 1993.9745 -1.1023 0 28 24 1 QMPAGYETQIGEGGGMLSGGQR 33 1 ELIGAEDQFFEIGGNSLR 1 17 161 mhtml:file://C:\Documents and Settings\larcje1\Local Settings\Temp\Peptide Summar... 21/01/2010

(MATRIX) Mascot Search Results

Protein View

Match to: gi]261340146 Score: 144 2-dehydro-3-deoxyphosphooctonate aldolase [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\241108\SSP 6605_RC3_01_783.d\SSP 6605_RC3_01_783.mgf

Nominal mass (M_r) : **30917**; Calculated pI value: **5.63** NCBI BLAST search of <u>gi[261340146</u> against nr Unformatted <u>sequence string</u> for pasting into other applications


Taxonomy: Enterobacter cancerogenus ATCC 35316 Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **27**%

Matched peptides shown in Bold Red

1	MKQKVVSIGD	INVANDLPFV	LFGGMNVLES	RDLAMRICEH	YVTVTQKLGI
51	PYVFKASFDK	ANRSSINSYR	GPGLEEGMKI	FQELKQTFGV	KVITDVHEAS
101	QAQPVADVVD	VIQLPAFLAR	QTDLVAAMAK	TGAVINVKKP	QFVSPGQMGN
151	IVDKFIEGGN	DKVILCDRGA	NFGYDNLVVD	MLGFSVMKNV	SNQSPVIFDV
201	THALQCRDPF	GAASGGRRAQ	VTELARAGMA	TGLAGLFIEA	HPDPANARCE
251	GPSALPLDKL	EPFLKQIKAI	DDLVKSFDEL	DTSN	

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSratE.... 21/01/2010

Page 2 of 2

possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

Institute and the NIH Roadmap Human Microbiome Project (http://ihroadmap.nth.gov/hmp/l. This is a reference genome for the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. Method: conceptual translation. Location/Qualifiers 1..284 /organisme"Enterobacter cancerogenus ATCC 35316" /dt_wref="taxon:500639" in 1..284 /organisme"Enterobacter cancerogenus ATCC 35316" /dt_wref="taxon:500639" in 1..284 /product="2-dehydro-3-deoxyphosphooctonate aldolase" /CC_number="2.5.1.55" /calculated_mol_wre50573 a 9..274 /region_name="NeuB" /note="CDD:140752" n 10..276 /region_name="DAHP synth_1" /note="TecDD:140752" 1..284 /locus_tag="EcanA3_020100006759" /coded_by="complement(NZ_ABMM02000006.1:68..922)" /note="CDD:135264" FEATURES source Protein Region Region CDS

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSratE.... 21/01/2010

(MATRIX) Mascot Search Results

ser	: Lakshmy Manickan
mail	: lakshmy.manickan@unn.ac.uk
Search title 15 data file	: SSP 6711 : D:\Data\Lakshmy\120808\SSP 6711 RB5 01 717.d\SSP 6711 RB5 01 717.mgf
atabase	: D: Data (Laksinny (12000)(SSF 5/11_KS_01_1/1.d(SSF 5/11_KS_01_1/1.ing) : NCBIn: 20100102 (10272453 sequences; 3505279183 residues)
Caxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 5 Jan 2010 at 12:02:31 GMT
Protein hits	: gi 157147228 elongation factor Tu [Citrobacter koseri ATCC BAA-895]
	gi[261819559 translation elongation factor Tu [Pectobacterium wasabiae WPP163]
	gi[110807172 elongation factor Tu [Shigella flexneri 5 str. 8401]
	gil16272522 elongation factor Tu [Haemophilus influenzae Rd KW20]
	gi[261341842 elongation factor Tu [Enterobacter cancerogenus ATCC 35316]
	gij259906922 Elongation factor Tu-A [Erwinia pyrifoliae Ep1/96]
	gi137524441 elongation factor Tu [Photorhabdus luminescens subsp. laumondii TTO1]
	gi[237809513 translation elongation factor Tu [Tolumonas auensis DSM 9187]
	gi[270341211 elongation factor Tu [Pectobacterium carotovorum subsp. carotovorum]
	gi[78358029 elongation factor Tu [Desulfovibrio desulfuricans subsp. desulfuricans str. G20]
	gi/24371815 elongation factor Tu [Shewanella oneidensis MR-1]
	gi 78189809 elongation factor Tu [Chlorobium chlorochromatii CaD3]
	gi 119468170 protein chain elongation factor EF-Tu; GTP-binding factor [Alteromonadales bacterium TW-7]
	gi 2369692 elongation factor Ef-Tu [Buchnera aphidicola]
	gi 88861465 protein chain elongation factor EF-Tu; GTP-binding factor [Pseudoalteromonas tunicata D2]
	gi[19551739 elongation factor Tu [Corynebacterium glutamicum ATCC 13032]
	gi 76786395 elongation factor Tu [endosymbiont of Haematomyzus elephantis]
	gi 270341139 elongation factor Tu [Aeromonas molluscorum]
	gi[57238897 elongation factor Tu [Ehrlichia ruminantium str. Welgevonden]
	gi 15839217 elongation factor Tu [Xylella fastidiosa 9a5c]
	gi 119947040 elongation factor Tu [Psychromonas ingrahamii 37]

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report (SSP 6711)

Page 2 of 8

Ouerv Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 737.4140 1472.8134 1472.8755 -0.0621 0 14 1.2e+03 R.QVGVPFIIVFLNK.C K.MVVTLIHPIAMDDGLR.F + 2 Oxidation (M) R.ELLSQYDFPGDDTPVIR.G 164 1963,8314 61 R.AIDKPFLLPIEDVFSISGR.G 0.42
 195
 706.3510
 2116.0312
 2116.1568
 -0.1257

 196
 1059.0410
 2116.0674
 2116.1568
 -0.0894
 R.AIDKPFLLPIEDVFSISGR.G R ATDKPELLPTEDVESTSGR G B60.0200 2577.0382 2577.2190 -0.1808 926.6500 2776.9282 2776.3194 0.6088 0.066 R.TTDVTGTIELPEGVEMVMPGDNIK.M + 2 Oxidation (M) 246 K.NMITGAAQMDGAILVVAATDGPMPQTR.E + 3 Oxidation (M) gi|110807172 gi]110807172 Mass: 43429 Score: 304 Queries matched: 8 emPAI: 0.44 elongation factor Tu [Shigella flexner: 5 str. 8401] 3. □ Check to include this hit in error tolerant search Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide Observed Query
 In Certagy
 -0.3264
 0
 62
 0.014

 1801.9274
 -0.1382
 0
 39
 2.8

 1963.9527
 -0.1213
 0
 61
 0.019
 K.TULTAAITTVLAK.T K.MVVTLIHPIAMDDGLR.F + 2 Oxidation (M) R.ELLSQYDFPGDDTPIVR.G 2.8 1 982.9230 1963.8314 706.3230 2115.9472 1963.9527 2116.1568 164 R.AIDKPFLLPIEDVFSISGR.G 0.42
 706.3510
 2116.0312
 2116.1568
 -0.1257
 0

 1059.0410
 2116.0674
 2116.1568
 -0.0894
 0

 860.0200
 2577.0382
 2576.2350
 0.8032
 0
 706.3510 2116.0312 1059.0410 2116.0674 (48) R.AIDKPFLLPIEDVFSISGR.G R.AIDKPFLLPIEDVFSISGR.G 32 11 2 R.TTDVTGTIELPEGVQMVMPGDNIK.M + 2 Oxidation (M) 0.026 246 926.6500 2776.9282 2776.3194 0.6088 0 1 K.NMITGAAQMDGAILVVAATDGPMPQTR.E + 3 Oxidation (M) gi 16272522 Mass: 43443 Score: 286 Queries matched: 7 emPAI: 0.55 4. alongation factor Tu [Haemophilus influenzae Rd KW20] □ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide K.TTLTAAITTVLAK.H R.ELLSQYDFPGDDTPIVR.G R.AIDQPFLLPIEDVFSISGR.G -0.3264 0 -0.1213 0 62 0.014 61 0.019 1963.8314 1963.9527 982.9230 194 11 0.42 0.15 0.066 2116.1205 -0.0893 2116.1205 -0.0530 2577.2190 -0.1808 706.3510 2116.0312 R.AIDOPFLLPIEDVFSISGR.G 1059.0410 2116.0674 860.0200 2577.0382 R.AIDQPFLLPIEDVFSISGR.G R.TTDVTGTIELPEGVEMVMPGDNIK.M + 2 Oxidation (M) 54 926.6500 2776.9282 2776.3194 K.NMITGAAOMDGAILVVAATDGPMPQTR.E + 3 Oxidation (M) 246 0 Proteins matching the same set of peptides: gi[53733337] Mass: 43469 Score: 286 Queries matched: 7 COG0050: GTPases - translation elongation factors [Haemophilus influenzae R2866] gi1145629756 Mass: 43442 Score: 286 Queries matched: 7 tRNA-dihydrouridine synthase A [Haemophilus influenzae 22.1-21] gi[145640555 Mass: 43471 Score: 286 Queries matched: hypothetical protein CGSHiR3021_10866 [Haemophilus influenzae R3021] gi|15603222 Mass: 43442 Score: 284 Queries matched: 7 gllbouszzz Mass: 43442 Score: 204 Queries matched: /
elongation factor Tu [Pasteurella multocida subsp. multocida str. Pm70]
gil42630895 Mass: 43386 Score: 284 Queries matched: 7
COG0050: GTPases - translation elongation factors [Haemophilus influenzae R2866]
gil251793266 Mass: 43438 Score: 224 Queries matched: 7
translation elongation factor Tu [Aggregatibacter aphrophilus NJ8700] gi1261341842 Mass: 38502 Score: 246 Queries matched: 7 elongation factor Tu [Enterobacter cancerogenus ATCC 35316] 5. emPAI: 0.51 ☐ Check to include this hit in error tolerant search
 Observed
 Mr(expt)
 Mr(calc)
 Delta Miss Score
 Expect Rank
 Peptide

 652.2320
 1302.4494
 1302.7759
 -0.3264
 0
 62
 0.014
 1
 K.TTLTAAITTVLAK.T
 Query
 652.2320
 1302.749
 1302.759
 -0.3264
 0
 62
 0.014
 1
 K.TTLTAAITTVLAK.T

 737.4140
 1472.8134
 1472.8755
 -0.0621
 0
 14
 1.2e+03
 6
 R.QVGVPFIIVFLNK.C

 982.9230
 1963.8314
 1963.9527
 -0.1213
 0
 61
 0.019
 1
 R.LLSQVDFFGDPTFV

 706.3230
 2115.9472
 2116.1568
 -0.2277
 0
 (33)
 11
 1
 R.AIDKPFLLPIEDVFST

 706.3510
 2116.0574
 2116.1568
 -0.0894
 0
 52
 0.15
 1
 R.AIDKPFLLPIEDVFST

 1059.0410
 2116.0674
 2116.1568
 -0.0894
 52
 0.15
 1
 R.AIDKPFLLPIEDVFST

 926.6500
 2776.9282
 2776.3194
 0.6088
 57
 0.026
 1
 K.NMITGRACMDGAILVW
 99 R.ELLSQYDFPGDDTPIVR.G R.AIDKPFLLPIEDVFSISGR.G 11 1 R.AIDKPFLLPIEDVFSIGR.G 0.42 1 R.AIDKPFLLPIEDVFSIGR.G 0.15 1 R.AIDKPFLLPIEDVFSIGR.G 195 196 K.NMITGAAQMDGAILVVAATDGPMPQTR.E + 3 Oxidation (M) g1/259906922 Mass: 43465 Score: 233 Queries matched: 7 emPAI: 0.34 Elongation factor Tu-A [Erwinia pyrifoliae Ep1/96] 6. Check to include this hit in error tolerant search Delta Miss Score Expect Rank Peptide Mr (expt) Mr(calc) Query
 Observed
 Mit (apt)
 Mit(all)
 Dirth miss sofre
 Saper and softe

 652.2320
 1302.4494
 1302.759
 -0.3264
 0
 62
 0.014
 1

 737.4140
 1472.8134
 1472.8755
 -0.0621
 0
 14
 1.2e+03
 6

 982.9220
 1963.8314
 1963.9527
 -0.1213
 0
 47
 0.45
 4

 706.3230
 2115.9472
 2116.1568
 -0.2097
 0
 (33)
 11
 1

 706.3230
 2116.0312
 2116.1568
 -0.1257
 (48)
 0.42
 1
 99 R. OVGVPFIIVFLNK.C R.DLLTQYDFPGDDTPIVR.G R.AIDKPFLLPIEDVFSISGR.G 164 194 11 1 R.AIDKPFLLPIEDVFSISGR.G 0.42 1 R.AIDKPFLLPIEDVFSISGR.G 195 1059.0410 2116.0674 2116.1568 -0.0894 926.6500 2776.9282 2776.3194 0.6088 0.15 R.AIDKPFLLPIEDVFSISGR.G
 K.NMITGAAQMDGAILVVAATDGPMPQTR.E + 3 Oxidation (M) 1059.0410 0 52 0 57 gi]<u>37524441</u> Mass: 43321 Score: 232 Queries matched: 6 emPAI: 0.44 elongation factor Tu [Photorhabdus luminescens subsp. laumondii TTO1] 7. Check to include this hit in error tolerant search

(MATRIX) Mascot Search Results

Protein View

Match to: gi]261341842 Score: 246 elongation factor Tu [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\SSP 6711_RB5_01_717.d\SSP 6711_RB5_01_717.mgf

Nominal mass (M_r) : **38502**; Calculated pI value: **5.17** NCBI BLAST search of <u>gil261341842</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **25**%

Matched peptides shown in Bold Red

- 1 MSKEKFERTK PHVNVGTIGH VDHGKTTLTA AITTVLAKTY GGAARAFDQI 51 DNAPEEKANG ITINTSHVEY DYPTHYAHV DCPGHADYK MMITGAAQMO 101 GAILVVAATD GPMPQTREHI LLGRQVGVPF ILVVINKCOM VDDEELLELV 151 EMEVRELLSQ TDPPGDDPFI VNGSALKALE GEAEWEEKII ELAGFLDSYI 201 PEPERAIDKP FLLPIEDVFS ISGRGTVVTG RVENGIKVG EEVEIVGIKE 251 TAKSFITGYE MFRKLDEGR AGEWGVLLG (KREELERG QULARFGSIK 301 PHTKFESEVY ILSKDEGGRH TPFFKGYRPQ FYFRTTDVTG TIELPEG

Show predicted peptides also

Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass

5	tart	-	End	Observed	Mr (expt)	Mr(calc)	Delta	Miss	Sequence
	26	-	38	652.2320	1302.4494	1302.7759	-0.3264	0	K.TTLTAAITTVLAK.T (Ions score 62)
	91		117	926.6500	2776.9282	2776.3194	0.6088	0	K.NMITGAAQMDGAILVVAATDGPMPQTR.E 3 Oxidation (M) (Ions score 57)
	125	-	137	737.4140	1472.8134	1472.8755	-0.0621	0	R.QVGVPFIIVFLNK.C (Ions score 14)
	156	-	172	982.9230	1963.8314	1963.9527	-0.1213	0	R.ELLSQYDFPGDDTPIVR.G (Ions score 61)
	206	-	224	706.3230	2115.9472	2116.1568	-0.2097	0	R.AIDKPFLLPIEDVFSISGR.G (Ions score 33)
	206	-	224	706.3510	2116.0312	2116,1568	-0.1257	0	R.AIDKPFLLPIEDVFSISGR.G (Ions score 48)
	206	-	224	1059.0410	2116.0674	2116.1568	-0.0894	0	R.AIDKPFLLPIEDVFSISGR.G (Ions score 52)

Error: try setting browser cache to automatic.

Error: try setting browser cache to automatic.

Sarramand 1	
LOCUS	ZP_05969700 347 aa linear BCT 15-OCT-2009 elongation factor Tu [Enterobacter cancerogenus ATCC 35316].
ACCESSION	ZP 05969700
VERSION	ZP 05969700.1 GI:261341842
DBLINK	Project:28663
DBSOURCE	REFSEQ: accession NZ_ABWM02000029.1
KEYWORDS	
SOURCE	Enterobacter cancerogenus ATCC 35316
ORGANISM	Enterobacter cancerogenus ATCC 35316
	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
	Enterobacteriaceae; Enterobacter.
AUTHORS	<pre>1 (residues 1 to 347) Weinstock,G., Sodergren,E., Clifton,S., Fulton,L., Fulton,B.,</pre>
AUTHORS	Courtney, L., Fronick, C., Harrison, M., Strong, C., Farmer, C.,
	Delahaurty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C.,
	Mitreva,M., Nelson,J., Hou,S., Wollam,A., Pepin,K.H., Johnson,M.,
	Bhonagiri, V., Nash, W.E., Warren, W., Chinwalla, A., Mardis, E.R. and
	Wilson,R.K.
TITLE	Direct Submission
JOURNAL	Submitted (06-OCT-2009) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
REFERENCE	2 (residues 1 to 347)
AUTHORS	Fulton, L., Clifton, S., Fulton, B., Xu, J., Minx, P., Pepin, K.H.,
	Johnson,M., Thiruvilangam,P., Bhonagiri,V., Nash,W.E., Mardis,E.R. and Wilson,R.K.
TITLE	and wilson, K.K. Direct Submission
JOURNAL	Submitted (17-SEP-2008) Genome Sequencing Center, Washington
OUNNAD	University School of Medicine, 4444 Forest Park, St. Louis, MO
	Galos, usa
COMMENT	WGS REFSEQ: This record is provided to represent a collection of
	whole genome shotgun sequences. The reference sequence was derived
	from ABWM02000029.
	Annotation was added by the NCBI Prokaryotic Genomes Automatic
	Annotation Pipeline Group. Information about the Pipeline can be
	found here:
	http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be
	aware that the annotation is done automatically with little or no
	manual curation. Enterobacter cancerogenus (GenBank Accession Number for 165 rDNA
	gene: 296078, the 16S rDNA gene of a related strain of Enterobacter
	cancerogenus, not the sequenced strain), is a member of the
	Proteobacteria division of the domain bacteria and has been
	isolated from human feces. The sequenced strain was obtained from
	ATCC (ATCC 35316).
	We have performed one round of automated sequence improvement
1.1. 11-	

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSratR... 21/01/2010

Page 2 of 2

(pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: $29.7 \times$ Sequencing Technolagy: 454.

	Sequencing Technology: 454.
	COMPLETENESS: incomplete on the carboxy end.
	Method: conceptual translation.
FEATURES	Location/Qualifiers
source	1347
	/organism="Enterobacter cancerogenus ATCC 35316" /strain="ATCC 35316"
	/db xref="taxon: 500639"
Protein	
	/product="elongation factor Tu"
	/EC number="3.6.5.3"
	/calculated_mol_wt=38221
Region	11203
	/region_name="EF_Tu"
	<pre>/note="EF-Tu subfamily. This subfamily includes orthologs of translation elongation factor EF-Tu in bacteria,</pre>
	mitochondria, and chloroplasts. It is one of several
	GTP-binding translation factors found in the larger family
	of GTP-binding elongation factors; cd01884"
	/db_xref="CDD: <u>133284</u> "
Site	1926
	/site_type="other"
	/note="G1 box" /db xref="CDD:133284"
Site	order (20, 22, 2627, 30, 3334, 38, 6667, 8586, 109110,
ULL'S	112115,118,149,153,177178)
	/site type="other"
	/site_type="other" /note="GEF interaction site"
	/db xref="CDD:133284"
Site	order (2227, 47, 136137, 139, 174)
	/site_type="other"
	/note="GTP/Mg2+ binding site" /db_xref="CDD:133284"
Site	5666
MIN.M.M.	/site type="other"
	/site_type="other" /note="Switch I region"
	/db_xref="CDD: <u>133284</u> "
Site	62
	/site_type="other"
	/note="G2 box" /db xref="CDD:133284"
Site	8184
MALAN.	/site_type="other"
	/note="G3 box"
	/db_xref="CDD: <u>133284</u> "
Site	83101
	/site_type="other" /note="Switch II region" *
	/db xref="CDD:133284"
Site	136139
	/site_type="other"
	/note="G4 box"
	/db_xref="CDD: <u>133284</u> "
Region	211297
	/region_name="EFTU_II"
	<pre>/note="EFTU_II: Elongation factor Tu domain II. Elongation factors Tu (EF-Tu) are three-domain GTPases with an</pre>
	essential function in the elongation phase of mRNA
	translation. The GTPase center of EF-Tu is in the
	N-terminal domain (domain I), also known as the;
	cd03697"
	/db_xref="CDD: <u>58088</u> "
Region	300>347
	/region name="Translation factor_III" /note="Domain III of Elongation factor (EF) Tu (EF-TU) and
	EF-G. Elongation factors (EF) EF-Tu and EF-G participate
	in the elongation phase during protein biosynthesis on the
	ribosome. Their functional cycles depend on GTP binding
	and its hydrolysis. The EF; cl02786"
	/db_xref="CDD: <u>121545</u> "
CDS	1347
	/locus_tag="EcanA3_020100015362" /coded_by="complement(NZ_ABWM02000029.1:<11040)"
	/note="COG0050 GTPases - translation elongation factors"
	/transl table=11
	/db_xref="CDD: 134063"
Г	

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSratR... 21/01/2010

(MATRIX) Mascot Search Results

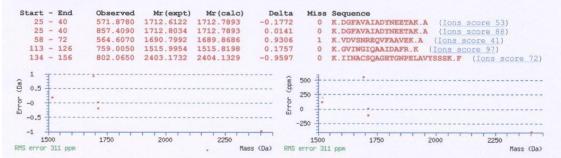
atabase axonomy imestamp rotein hits	<pre>: lakshmy.manickan@unn.ac.uk : SSP 7602 : D:\Data\Lakshmy\120808\260808\SSP 7602_RH1_01_413.d\SSP 7602_RH1_01_413.mgf : NCBInr 20100102 (10272453 sequences; 3505279183 residues) : Bacteria (Eubacteria) (5690016 sequences) : 5 Jan 2010 at 12:05:52 GMT : gil465311681 acetoin reductase [Enterobacter sp. 638] gil2285882 Aalpha subunit of acetyl-CoA carboxylase [Escherichia coli W3110]</pre>
robability !	Based Mowse Score
idividual ions	0*Log(P), where P is the probability that the observed match is a random event. scores > 57 indicate identity or extensive homology (p<0.05). are derived from ions scores as a non-probabilistic basis for ranking protein hits.
40 35 30 25 20 115 10 5 0 0	100 200 Probability Based Nowse Score
ptide Sum	mary Report
Format As	Peptide Summary Help
	Significance threshold p< 0.05 Max. number of hits AUTO
	Standard scoring @ MudPIT scoring C Ions score or expect cut-off O Show sub-sets O
	Show pop-ups Suppress pop-ups Sort unassigned Decreasing Score Require bold red
Select All	Select None Search Selected Fror tolerant
	311681 Mass: 26942 Score: 298 Queries matched: 5 emPAI: 0.42
	in reductase [Enterobacter sp. 638] to include this hit in error tolerant search
Query	Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GVINGIQAAIDAFR.K
Query [7 <u>104</u> [7 <u>128</u>	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GYINGIQAAIDAFR.K 564.6070 1690.7992 1689.8686 0.9306 1 41 2.1 1 K.VDVSNREQVFAVEK.A
Query	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GVIWGIQAAIDAFR.K
Query V 104 V 128 V 132	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GVIWGIQAAIDAFR.K 564.6070 1690.7992 1689.866 0.9306 1 41 2.1 1 K.VDVSNRAQVFAAVEK.A 571.8780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K.DGFAVAIADYNEETAK.A
Query V 104 V 128 V 132 V 133 V 234 Protes g1[26]	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GVIWGIQAAIDAFR.K 564.6070 1690.7992 1689.866 0.9306 1 41 2.1 1 K.VDVSNREQVFANVEK.A 571.8780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K.DGFAVAIADYNEETAK.A 857.4090 1712.8034 1712.7893 0.0141 0 88 4e-05 1 K.DGFAVAIADYNEETAK.A
Query	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GVINGIQAIDAFR.K 564.6070 1690.7992 1689.8686 0.9306 1 41 2.1 1 K.GVINGIQAIDAFR.K 571.8780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K.DGFAVAIDINEETAK.A 857.4090 1712.8034 1712.7893 0.0141 88 4e-05 1 K.DGFAVAIDINEETAK.A 802.0505 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K.IINACSQAGHTGNPELAVYSSSK.F
Query Image: Constraint of the second sec	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K. GVIWGIQAAIDAFR.K 564.6070 1669.7992 1669.8666 0.9306 1 41 2.1 1 K. VDVSNRRQVFAAVEK.A 571.6780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K. DGFAVAIADYNEETAK.A 857.4090 1712.8034 1712.7893 0.0141 0 88 4e-05 1 K. DGFAVAIADYNEETAK.A 802.0650 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K.IINACSQAGHTGNPELAVISSSK.F Insmatching the same set of peptides: 341164 Mass: 26884 Score: 298 Queries matched: 5 5 in reductase [Enterobacter cancerogenus ATCC 35316] 5 55822 Score: 59 Queries matched: 2 aubunit of acetyl-CoA carboxylase [Escherichia coli W3110]
Query Image: P 104 Image: P 128 Image: P 133 Image: P 133 Image: P 133 Image: P 111	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8986 0.1757 0 97 4.7e-06 1 K.GVIWGIQAAIDAFR.K 564.6070 1660.7992 1669.8666 0.9306 1 41 2.1 1 K.VDVSNRRQVFAAVEK.A 571.6780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K.DGFAVAIADYNEETAK.A 857.4090 1712.8034 1712.7893 0.0141 68 4e-05 1 K.DGFAVAIADYNEETAK.A 802.0650 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K.INACSQAGHTGNPELAVISSSK.F
Query v 104 28 128 128 132 133 234 133 234 126 aceto: aceto: aceto: aceto: aceto: aceto: Check Query 111 143	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GVINGIQAIDAFR.K 564.6070 1690.7992 1689.8686 0.9306 1 41 2.1 1 K.GVINGIQAIDAFR.K 571.8780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K.DGFAVALDYNEETAK.A 857.4090 1712.8034 1712.7893 0.0141 0 88 4e-05 1 K.DGFAVALDYNEETAK.A 802.0650 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K.IINACSQAGHTGNPELAVYSSSK.F
Query ▼ 104 ▼ 128 ▼ 132 ▼ 133 ▼ 234 Prote: gil26 aceto: gil26 aceto: Gil26 Query 111 143 Prote: gil155	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GVINGIQAIDAFR.K 564.6070 1690.7992 1689.8686 0.9306 1 41 2.1 1 K.GVINGIQAIDAFR.K 571.8780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K.DGFAVALADYINEFTAK.A 857.4090 1712.8034 1712.7893 0.0141 0 88 4e-05 1 K.DGFAVALADYINEFTAK.A 802.0650 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K.IINACSQAGHTGNPELAVYSSSR.F
Query ♥ 104 ♥ 128 ♥ 132 ♥ 133 ♥ 234 Prote: g1126 aceto: g1221 Aalphi Check Query 111 143 Prote: g1125; g1126; g1126; g1126;	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GVIWGIQAAIDAFR.K 564.6070 1690.7992 1689.8665 0.9306 1 41 2.1 1 K.GVIWGIQAAIDAFR.K 571.6780 1712.6122 1712.793 -0.1772 0 (53) 0.089 1 K.DGFAVAIADYNEETAK.A 857.4090 1712.8034 1712.7893 0.0141 0 88 4e-05 1 K.DGFAVAIADYNEETAK.A 802.0650 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K.ITMACSQAGHTGNPELAVYSSSK.F
Query 7 104 7 128 7 128 7 132 7 133 7 234 7 234 7 234 7 234 7 234 7 126 aceto:	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GVINGIQAIDAFR.K 564.6070 1690.7992 1689.8686 0.9306 1 41 2.1 1 K.GVINGIQAIDAFR.K 571.8780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K.DGFAVALADYNEETAK.A 857.4090 1712.8034 1712.7893 0.0141 0 88 4e-05 1 K.DGFAVALADYNEETAK.A 802.0550 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K.IINACSQAGHTONPELAVYSSSK.F
Query Image: P 104 Image: P 128 Image: P 133 Image: P 126 Image: P 121 Image: P 111 Image: P 116 Image: P 117	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8986 0.1757 0 97 4.7e-06 1 K.GVIWGIQAAIDAFE.K 564.6070 1690.7992 1689.8665 0.9306 1 41 2.1 1 K.GVIWGIQAAIDAFE.K 571.6780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K.DGFAVAIADYNEETAK.A 857.4090 1712.8034 1712.7893 0.0141 0 88 4e-05 1 K.DGFAVAIADYNEETAK.A 802.0650 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K.ITACSQAGHTGNPELAVYSSSK.F
Query ▼ 104 ▼ 128 ▼ 132 ▼ 133 ▼ 133 ▼ 234 Prote: dil26 dil26 aceto: dil21 Aalpha Check Query 111 143 Prote: dil66 dil26 dil744 dil26 dil744 dil26 dil91 dil91 dil92 dil91 dil91	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K.GVINGIQAIDAFR.K 564.6070 1690.7992 1689.8686 0.9306 1 41 2.1 1 K.GVINGIQAIDAFR.K 571.8780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K.DGFAVALADYNEETAK.A 857.4090 1712.8034 1712.7893 0.0141 0 88 4a=-05 1 K.DGFAVALADYNEETAK.A 802.0650 2403.1732 2404.1329 -0.9557 0 72 0.0014 1 K.ITMACSQACHTONPELAVYSSSK.F
Query ▼ 104 ▼ 128 ▼ 128 ▼ 132 ▼ 133 ▼ 234 Prote: dil26 aceto: dil21 dalph: Check Query 111 143 Prote: gil15: dil6: gil16: dil6: gil16: dil77; gil16: dil77;	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0050 1515.9954 1515.8198 0.1757 0 97 4.7e-06 1 K. GVINGIQAIDAFR.K 564.6070 1690.7992 1689.8686 0.9306 1 41 2.1 1 K. GVINGIQAIDAFR.K 571.8780 1712.6122 1712.7893 -0.1772 0 (53) 0.089 1 K. DGFAVALADYINEETAK.A 857.4090 1712.8034 1712.7893 -0.014 0 88 4e-05 1 K. DGFAVALADYINEETAK.A 802.0650 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K. IINACSQAdHTONPELAVISSIN.F
Query ▼ 104 ▼ 128 ▼ 132 ▼ 133 ▼ 234 Prote: dil26 dil26 aceto: dil27 Alpha Check Cuery 1111 143 Prote: dil157 dil157 dil162 dil26 dil26 dil26 dil26 dil162 dil26 dil171 dil82 dil182 dil182	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.0550 1515.9954 1515.9954 1515.9954 1515.195 0.3306 1 41 2.1 1 K.GVINGIQAAIDAFE.K 564.6070 1690.7992 1689.8666 0.9306 1 41 2.1 1 K.GVINGIQAAIDAFE.K 571.8780 1712.6122 1712.7893 -0.1172 0 (53) 0.089 1 K.DGFAVAIADYNETAK.A 802.0650 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K.INACSQAGHTGNPELAVINSER.F
Query Image: P 104 Image: P 128 Image: P 132 Image: P 133 Image: P 126 Image: P 126 Image: P 126 Image: P 126 Image: P 143	Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 759.050 1515.9954 1515.9954 1515.9954 1515.9954 1515.9954 1515.9954 1515.9954 1515.9954 1512.793 -0.1772 0 (53) 0.089 1 K. GVINGIQAIDAFR.K 571.8780 1712.6122 1712.7893 -0.1172 0 (53) 0.089 1 K. DGFAVAIADYNEETAK.A 807.4090 1712.8034 1712.7893 0.0141 0 88 4e-05 1 K. DGFAVAIADYNEETAK.A 802.0550 2403.1732 2404.1329 -0.9597 0 72 0.0014 1 K. ITRACSQAGHTONPELAVYSSSK.F

(MATRIX) Mascot Search Results

Protein View

Match to: gi|261341164 Score: 298 acetoin reductase [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\260808\SSP 7602_RH1_01_413.d\SSP 7602_RH1_01_413.mgf

Nominal mass (M_r): 26884; Calculated pI value: 6.17 NCBI BLAST search of $\underline{gi[261341164}$ against nr Unformatted sequence string for pasting into other applications


Taxonomy: Enterobacter cancerogenus ATCC 35316

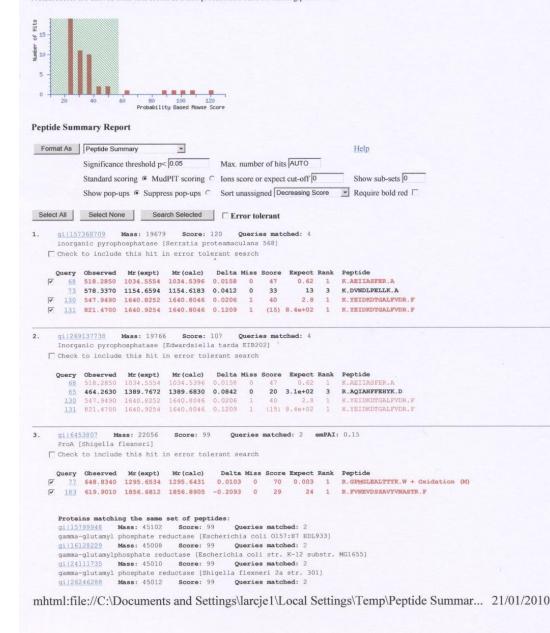
Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **26**%

Matched peptides shown in Bold Red

1 MQKVALVTGS GQGIGKAIAL RLVKDGFAVA IADYNEETAK AVAEEIVRSG 51 GKAVAVKVDV SNREQVFAAV EKARTALGGF NVIVNNAGVA PSTFIESITP 101 DIVDKVYNIN VKGVIMGIQA ATDAFRKEGH GGKIINACSQ AGHYONPELA 151 VYSSSKFAVR GLTQTAARDL APLGITVNAY CPGIVKTPMW AEIDRQVSEA 201 AGKPLGVGTE TFAKRITLGR LSEPEDVAAC VSYLAGPDSD YMTGQSLLID 251 GGMVFN

Show predicted peptides also

LOCUS	ZP 05969022 256 aa linear BCT 15-OCT-2009
DEFINITION	acetoin reductase [Enterobacter cancerogenus ATCC 35316].
ACCESSION	ZP_05969022
VERSION	ZP_05969022.1 GI:261341164
DBLINK	Project:28663
DBSOURCE	REFSEQ: accession NZ ABWM02000020.1
KEYWORDS	
SOURCE	Enterobacter cancerogenus ATCC 35316
ORGANISM	Enterobacter cancerogenus ATCC 35316
	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
	Enterobacteriaceae; Enterobacter.
REFERENCE	1 (residues 1 to 256)
AUTHORS	Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B.,
	Courtney, L., Fronick, C., Harrison, M., Strong, C., Farmer, C.,
	Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C.,
	Mitreva, M., Nelson, J., Hou, S., Wollam, A., Pepin, K.H., Johnson, M.,
	Bhonagiri, V., Nash, W.E., Warren, W., Chinwalla, A., Mardis, E.R. and
	Wilson, R.K.
TITLE	Direct Submission
JOURNAL	Submitted (06-OCT-2009) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
REFERENCE	2 (residues 1 to 256)
AUTHORS	Fulton, L., Clifton, S., Fulton, B., Xu, J., Minx, P., Pepin, K.H.,
	Johnson, M., Thiruvilangam, P., Bhonagiri, V., Nash, W.E., Mardis, E.R.
	and Wilson, R.K.
TITLE	Direct Submission
JOURNAL	Submitted (17-SEP-2008) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
COMMENT	WGS REFSEQ: This record is provided to represent a collection of
	whole genome shotgun sequences. The reference sequence was derived
	from ABWM02000020.
	Annotation was added by the NCBI Prokaryotic Genomes Automatic
	Annotation Pipeline Group. Information about the Pipeline can be


http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSruE... 21/01/2010

(MATRIX) Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 7707
MS data file	: D:\Data\Lakshmy\120808\280808\SSP 7707 RI2 01 457.d\SSP 7707 RI2 01 457.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 5 Jan 2010 at 12:11:18 GMT
Protein hits	: gi[157368709 inorganic pyrophosphatase [Serratia proteamaculans 568]
	gi[269137738 Inorganic pyrophosphatase [Edwardsiella tarda EIB202]
	gij6453807 ProA [Shigella flexneri]
	gi 1943414 Chain A, Inorganic Pyrophosphatase
	gi 258634603 gamma-glutamyl phosphate reductase [Pantoea sp. At-9b]
	gil2781250 Chain A. Structure Of Inorganic Pyrophosphatase Mutant D42n

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores >57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Page 2 of 2

found here:

found here: http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be aware that the annotation is done automatically with little or no manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: Z96078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome ${\rm Project}$ [http://nihroadmap.nih.gov/hmp/].

This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. Method: conceptual translation. Location/Qualifiers

FEATURES

source	1256
	/organism="Enterobacter cancerogenus ATCC 35316"
	/strain="ATCC 35316"
	/db_xref="taxon: <u>500639</u> "
Protein	1256
	/product="acetoin reductase"
	/calculated_mol_wt=26595
Region	1256
	/region_name="PRK08643"
	/note="acetoin reductase; Validated; PRK08643"
	/db xref="CDD:136931"
Region	1253
	/region name="NADB Rossmann"
	/note="Rossmann-fold NAD(P)(+)-binding proteins; c109931"
	/db xref="CDD:143725"
CDS	1256
	/locus tag="EcanA3 020100011911"
	/coded by="NZ ABWM02000020.1:7025871028"
	/note="COG1028 Dehydrogenases with different specificities
	(related to short-chain alcohol dehydrogenases)"
	/transl table=11
	/db xref="CDD:136931"

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein view.pl?file=../data/20100105/FtmmSruE... 21/01/2010

Peptide Summary Report (SSP 7707)

Page 2 of 6

gamma-glutamyl gil82775822	
gi182775822	Mass: 45013 Score: 99 Queries matched: 2 phosphate reductase [Shigella boydii Sb227]
	Mass: 44980 Score: 99 Queries matched: 2
	phosphate reductase [Shigella dysenteriae Sd197]
	Mass: 44954 Score: 99 Queries matched: 2
	phosphate reductase [Escherichia coli UTI89]
	Mass: 44959 Score: 99 Queries matched: 2 phosphate reductase [Escherichia coli 536]
	Mass: 44879 Score: 99 Queries matched: 2
	phosphate reductase [Citrobacter koseri ATCC BAA-895]
	Mass: 45008 Score: 99 Queries matched: 2
	phosphate reductase [Escherichia coli E24377A]
	Mass: 45038 Score: 99 Queries matched: 2
gamma-glutamyl	phosphate reductase [Escherichia coli SMS-3-5]
gi 170767876	Mass: 45086 Score: 99 Queries matched: 2
	phosphate reductase [Escherichia albertii TW07627]
	Mass: 45397 Score: 99 Queries matched: 2
	phosphate reductase [Erwinia tasmaniensis Et1/99]
	Mass: 44978 Score: 99 Queries matched: 2
	phosphate reductase [Shigella dysenteriae 1012]
	Mass: 45038 Score: 99 Queries matched: 2
	phosphate reductase [Escherichia coli 101-1] Mass: 45012 Score: 99 Queries matched: 2
	hosphate reductase [Escherichia col ol27:16 str. E2348/69]
	Mass: 44924 Score: 99 Queries matched: 2
	phosphate reductase [Escherichia fergusonii ATCC 35469]
	Mass: 45012 Score: 99 Queries matched: 2
gamma-glutamyl	phosphate reductase [Escherichia coli EDla]
gi 218693726	Mass: 45039 Score: 99 Queries matched: 2
	phosphate reductase [Escherichia coli 55989]
	Mass: 45038 Score: 99 Queries matched: 2
	phosphate reductase [Escherichia coli IAI39]
	Mass: 44996 Score: 99 Queries matched: 2
	phosphate reductase [Escherichia coli UMN026] Queries matched: 2
	hosphate reductase [Citrobacter sp. 30 2]
	Mass: 44994 Score: 99 Queries matched: 2
	phosphate reductase [Escherichia coli 0111:H- str. 11128]
	Mass: 45000 Score: 99 Queries matched: 2
gamma-glutamy1	phosphate reductase [Escherichia coli SE15]
gi 156935257	Mass: 45461 Score: 97 Queries matched: 2
	phosphate reductase [Enterobacter sakazakii ATCC BAA-894]
	Mass: 45425 Score: 97 Queries matched: 2
	phosphate reductase [Erwinia pyrifoliae Ep1/96]
	Mass: 45456 Score: 97 Queries matched: 2
	phosphate reductase [Cronobacter turicensis] Mass: 45230 Score: 97 Queries matched: 2
	hosphate reductase [Enterobacter cancerogenus ATCC 35316]
gamma grucamyr	phosphate reductase (anteropacter cancerogenus Arcc 55510)
g1 1943414	Score: 93 Queries matched: 3
	Score: 93 Queries matched: 3 anic Pyrophosphatase
Chain A, Inorg	
Chain A, Inorg	anic Pyrophosphatase
Chain A, Inorg Check to inclu Query Observed	anic Pyrophosphatase de this hit in error tolerant search 1 Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
Chain A, Inorg Check to inclu Query Observed 73 578.337	anic Pyrophosphatase de this hit in error tolerant search 1 Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 1 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A
Chain A, Inorg Check to inclu Query Observed 73 578.3370 85 464.2630	anic Pyrophosphatase de this hit in error tolerant search 1 Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 0 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A 0 1389.7672 1389.6830 0.0842 0 20 3.1e+02 3 K.AQIAHFFEHYK.D
Chain A, Inorg Check to inclu Query Observed 73 578.3370 85 464.2630	anic Pyrophosphatase de this hit in error tolerant search 1 Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 1 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A
Chain A, Inorg Check to inclu Query Observed 73 578.3370 85 464.2630	anic Pyrophosphatase de this hit in error tolerant search 1 Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 0 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A 0 1389.7672 1389.6830 0.0842 0 20 3.1e+02 3 K.AQIAHFFEHYK.D
Chain A, Inorg Check to inclu Query Observe 73 578.337 <u>85</u> 464.263 130 547.949	anic Pyrophosphatase de this hit in error tolerant search d Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide D 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A D 1389.7672 1389.6830 0.0842 0 20 3.Le002 3 K.AgIARFFEHYK.D D 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F
Chain A, Inorg Check to inclu Query Observed 73 578.337 85 464.263 130 547.949	anic Pyrophosphatase de this hit in error tolerant search i Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 0 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A 0 1389.7672 1389.6830 0.0842 0 20 3.1e+02 3 K.AQIAHFFEHYK.D 0 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F ing the same set of peptides:
Chain A, Inorg Check to inclu Query Observer 73 578.337 65 464.263 130 547.949 Proteins match g1/2554846	anic Pyrophosphatase de this hit in error tolerant search d Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide D 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A D 1389.7672 1389.6830 0.0842 0 20 3.Le002 3 K.AgIARFFEHYK.D D 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F
Chain A, Inorg Check to inclu Query Observee 7.3 578.337 85 464.263 130 547.949 Proteins match gi12554846 gi12781252 gi12781254	anic Pyrophosphatase de this hit in error tolerant search i Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 0 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A 0 1389.7672 1389.6830 0.0842 0 20 3.1e+02 3 K.AQIAHFFEHYK.D 0 1640.8252 1640.8046 0.0206 1 4Q 2.8 1 K.YEIDKESGALPVDR.F ing the same set of peptides: Score: 93 Queries matched: 3 Score: 93 Queries matched: 3
Chain A, Inorg Check to inclu Query Observe 73 578.3377 B5 464.263 130 547.9499 Proteins match gi12554846 gi12781252 gi12781254 gi12781254 gi12781254	anic Pyrophosphatase de this hit in error tolerant search d Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide D 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A D 1389.7672 1389.6830 0.0842 0 20 3.1e+02 3 K.AQIAHFFEHYK.D D 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F ing the same set of peptides: Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Score: 93 Queries matched: 3
Chain A, Inorg Check to inclu Query Observe 73 578.337 15 464.263 130 547.949 Proteins match gi12554846 gi12554846 gi12781252 gi12781252 gi12781254 gi115804817 gi126251130	anic Pyrophosphatase de this hit in error tolerant search 1 Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 0 1154,6534 1154,6133 0.0412 0 33 13 3 K.DVNDLPELLK.A 0 1369,7672 1389,6630 0.0842 0 20 3.1e+02 3 K.AQIAHFFEHYK.D 0 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F ing the same set of peptides: Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Score: 93 Queries matched: 3
Chain A, Inorg Check to inclu Query Observer 7.3 578.3377 85 464.2633 130 547.9499 Proteins match gi12781252 gi12781254 gi128254817 gi126251130 gi130055484	anic Pyrophosphatase de this hit in error tolerant search i Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide D 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A D 1369.7672 1389.6830 0.0842 0 20 3.1e+02 3 K.AQIAHFFEHYK.D D 1640.8252 1640.8046 0.0206 1 4Q 2.8 1 K.YEIDKESGALPVDR.F ing the same set of peptides: Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Score: 93 Queries matched: 3
Chain A, Inorg Check to inclu Query Observer 73 578.3377 85 464.263 130 547.9490 Proteins match 61/2554846 61/2781252 91/2781252 91/2781254 91/15804817 91/26251130 01/30065484 91/157813975	anic Pyrophosphatase de this hit in error tolerant search A Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide D 1154.61594 1154.6183 0.0412 0 33 13 3 K.DUNDLPELLK.A D 1369.7672 1389.6683 0.0842 0 20 3.1e+02 3 K.AGLAHFFEHYK.D D 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F Ming the same set of peptides: Score: 93 Queries matched: 3 Score: 94 QUERIES MARCHERIES Score: 95 Score: 95 QUERIES MARCHERIES Score: 95 Score: 95 Score
Chain A, Inorg Check to inclu Query Observer 73 578.3377 85 464.2633 130 547.9499 Proteins match 91/2254846 gi12781252 gi12781254 gi126251130 gi130055484	anic Pyrophosphatase de this hit in error tolerant search i Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide D 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A D 1369.7672 1389.6830 0.0842 0 20 3.1e+02 3 K.AQIAHFFEHYK.D D 1640.8252 1640.8046 0.0206 1 4Q 2.8 1 K.YEIDKESGALPVDR.F ing the same set of peptides: Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Score: 93 Queries matched: 3
Chain A, Inorg Check to inclu Query Observes 73 578.3377 85 464.263 130 547.949 Proteins match g112554846 g112781252 g112781254 g115804817 g1126251130 g1130055484 g1157804817 g1115809572 g11215489572 g11215489572 g11215489572	anic Pyrophosphatase de this hit in error tolerant search A Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide D 1154.6534 1154.6183 0.0412 0 33 13 3 K.DUNDLPELLK.A D 1369.7672 1389.6630 0.0842 0 20 3.1e+02 3 K.AGLAHFFEHYK.D D 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F ing the same set of peptides: Score: 93 Queries matched: 3 Score: 94 Queries matched: 3 Score: 95 Q
Chain A, Inorg Check to inclu Query Observed 73 578.3377 85 464.2633 130 547.9499 Proteins match 91/2554846 91/2781252 91/2781254 91/15804817 91/26251130 91/310055484 91/157831975 91/1170766732 91/215489572	anic Pyrophosphatase de this hit in error tolerant search i Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide D 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A D 1389.7672 1389.6830 0.0842 0 20 3.1e+02 3 K.AQIAHFFEHYK.D D 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALPVDR.F ing the same set of peptides: Score: 93 Queries matched: 3 Score: 93 Queries matched: 3
Chain A, Inorg Check to inclu Query Observer 73 578.3377 85 464.263 130 547.9490 Proteins match gi12554846 gi12781252 gi12781252 gi12781254 gi130065484 gi130065484 gi110766732 gi1218551521 gi128551521 gi128551521 gi1256019879	anic Pyrophosphatase de this hit in error tolerant search 1 Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 1 1154.61594 1154.6183 0.0412 0 33 13 3 K.DUNDLPELLK.A 1 1389.7672 1389.6630 0.0842 0 20 3.1e+02 3 K.AQIARFFEHYK.D 1 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F ing the same set of peptides: Score: 93 Queries matched: 3 Score: 94 Queries matched: 3 Score: 95 Queries matched: 3 Score: 95 Queries matched: 3 Score: 96 Queries matched: 3 Score: 97 Queries matched: 3 Score: 98 Queries matched: 3 Score: 99 Queries matched: 3 Score: 90 Queries matched: 3 Score: 91 Queries matched: 3 Score: 92 Queries matched: 3 Score: 93 Queries matched: 3 Score: 94 Queries Matched: 3 Score: 95 Queries Matched: 3 Score: 95 Queries Matched: 3 Score: 96 Queries Matched: 3 Score: 97 Queries Matched: 3 Score: 98 Queries Matched: 3 Score: 98 Queries Matched: 3 Score: 99 Queries Matched: 3 Score: 99 Queries Matched: 3 Score: 90 Queries Matched: 3 Score: 91
Chain A, Inorg Check to inclu Query Observe 73 578.337 15 464.263 130 547.949 Proteins match di12554846 di12781252 di12781252 di12781252 di137804817 di135804817 di135055484 di135781375 di1170766732 di1254951521 di1254051521 di1256019879 di1258634603	anic Pyrophosphatase de this hit in error tolerant search A Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 0 1154,6534 1154,6133 0.0412 0 33 13 3 K.DUNDLPELLK.A 1 1389,7672 1389,6630 0.0842 0 20 3.1e+02 3 K.AJCHAFFEHYK.D 0 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F score: 93 Queries matched: 3 Score: 94 Queries matched: 3 Score: 95 Queries matched: 3 Score: 95 Queries matched: 3 Score: 96 Queries matched: 3 Score: 97 Queries matched: 3 Score: 98 Queries Matched: 4 Score: 98 Queries Matched: 4 Score: 98 Queries Matched: 4 Score: 98 Queries Matched: 4 Score: 98
Chain A, Inorg Chain A, Inorg Check to inclu Query Observed 73 578.3377 B5 464.2633 130 547.9499 Proteins match G1/2781252 g1/2781252 g1/2781252 g1/2781252 g1/2781252 g1/2781251 g1/25852180 g1/258524603 gamma-glutamyl	anic Pyrophosphatase de this hit in error tolerant search i Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 0 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A 0 1389.7672 1389.6830 0.0842 0 20 3.1e+02 3 K.AQIAHFFEHYK.D 1 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F ing the same set of peptides: Score: 93 Queries matched: 3 Score: 94 Queries matched: 3 Score: 95 Queries matched: 3 Score: 96 Queries matched: 3 Score: 97 Queries matched: 3 Score: 98 Queries matched: 3 Score: 99 Queries matched: 3 Score: 99 Queries matched: 3 Score: 91 Queries matched: 3 Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Score: 94 Queries matched: 3 Score: 95 Queries matched: 3 Score: 96 Queries matched: 3 Score: 97 Queries matched: 3 Score: 98 Queries matched: 3 Score: 98 Queries matched: 3 Score: 99 Queries matched: 3 Score: 90 Queries matched: 3 Score: 91 Queries matched: 3 Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Score: 94 Queries matched: 3 Score: 95 Queries matched: 3 Score: 95 Q
Chain A, Inorg Chain A, Inorg Check to inclu Query Observed 73 576.3377 B5 464.263 130 547.949 Proteins match gi12554846 gi12781252 gi12781252 gi12781254 gi130065484 gi157831975 gi121549572 gi121551521 gi1258624603 gamma-glutamy1	anic Pyrophosphatase de this hit in error tolerant search A Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 0 1154,6534 1154,6133 0.0412 0 33 13 3 K.DUNDLPELLK.A 1 1389,7672 1389,6630 0.0842 0 20 3.1e+02 3 K.AJCHAFFEHYK.D 0 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F score: 93 Queries matched: 3 Score: 94 Queries matched: 3 Score: 95 Queries matched: 3 Score: 95 Queries matched: 3 Score: 96 Queries matched: 3 Score: 97 Queries matched: 3 Score: 98 Queries Matched: 4 Score: 98 Queries Matched: 4 Score: 98 Queries Matched: 4 Score: 98 Queries Matched: 4 Score: 98
Chain A, Inorg Check to inclu Query Observes 73 578.337 15 464.263 130 547.949 Proteins match gi/2554846 gi/254846 gi/2781252 gi/15804817 gi/156251130 gi/15604817 gi/1560572 gi/12569572 gi/256019879 gi/256019879 gi/256019879 gi/256019879 gi/256019879	anic Pyrophosphatase de this hit in error tolerant search A Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide D 1154.6594 1154.6183 0.0412 0 33 13 3 K.DUNDLPELLK.A D 1389.7672 1389.6683 0.0842 0 20 3.1e+02 3 K.AGLAHFFEHYK.D D 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F Ming the same set of peptides: Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Mas: 45492 Score: 88 Queries matched: 2 emPAI: 0.07 phosphate reductase [Pantoea sp. At-9b] de this hit in error tolerant search
Chain A, Inorg Check to inclu Query Observed 73 576.3377 B5 464.2633 130 547.9499 Proteins match d12254846 d12781252 g12781254 g112781252 g12781254 d115804817 g112654847 d1157831975 g11215489572 g11215489572 g11258634603 gamma-glutamyl Check to inclu Query Observed	anic Pyrophosphatase de this hit in error tolerant search 1 Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 2 1154.6594 1154.6183 0.0412 0 33 13 3 K.DVNDLPELLK.A 3 1389.7672 1389.6830 0.0842 0 20 3.1e+02 3 K.AQTAHFFEHYK.D 1 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F ing the same set of peptides: Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Mass: 45492 Score: 88 Queries matched: 2 emPAI: 0.07 phosphate reductase [Pantoea sp. At-9b] de this hit in error tolerant search
Chain A, Inorg Chain A, Inorg Check to inclu Query Observer 73 578.3377 15 464.263 130 547.9499 Proteins match gi12554846 gi12781252 gi125284846 gi12568446 gi130065484 gi130065484 gi130065484 gi1258634603 gi258634603 gamma-glutamyl Check to inclu Query Observer 77 648.834	anic Pyrophosphatase de this hit in error tolerant search A Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide D 1154.6594 1154.6183 0.0412 0 33 13 3 K.DUNDLPELLK.A D 1389.7672 1389.6683 0.0842 0 20 3.1e+02 3 K.AGLAHFFEHYK.D D 1640.8252 1640.8046 0.0206 1 40 2.8 1 K.YEIDKESGALFVDR.F Ming the same set of peptides: Score: 93 Queries matched: 3 Score: 93 Queries matched: 3 Mas: 45492 Score: 88 Queries matched: 2 emPAI: 0.07 phosphate reductase [Pantoea sp. At-9b] de this hit in error tolerant search
Chain A, Inorg Chain A, Inorg Check to inclu Query Observer 73 578.3377 15 464.263 130 547.9499 Proteins match gi12554846 gi12781252 gi125284846 gi12568446 gi130065484 gi130065484 gi130065484 gi1258634603 gi258634603 gamma-glutamyl Check to inclu Query Observer 77 648.834	anic Pyrophosphatase de this hit in error tolerant search

☐ Check to include this hit in error tolerant search

(MATRIX) SCIENCE/ Mascot Search Results

Protein View

Match to: gil261340945 Score: 97 gamma-glutamyl phosphate reductase [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\280808\SSP 7707_RI2_01_457.d\SSP 7707_RI2_01_457.mgf

Nominal mass $(M_{\rm r}):$ 45230; Calculated pI value: 5,60 NCBI BLAST search of $g_{1/261340945}$ against nr Unformatted sequence string for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **6%**

Matched peptides shown in Bold Red

1 MLEQMGAAAK AASYKLALLS SREKNRVLEK IADYLESQAS EILLANEQDL 51 LEARRNGLSE AMLDRIALNP ARLKSIADDV RQVCNLADEV GQVIDGGLLD 101 SGLRLERRKV PLGVIGVIYE ARPNYTVDVA SLCLKTGNAA ILRGGKETWR 151 TNAATVKVIQ QALEECGLPA GAVQAIESPD RALVNEMLRM DKYIDMLIPR 201 GGAGLKKLCR EQSTIPVITG GIGVCHLIVD DTAEIDPALK IIVNAKTQRP 251 STCNTVETLL VHQGIARTFL PALSQOMAQS GVTLHADASA LALLKDGPAN 01 VVPVKAEQVD DEFISLDLNV KVVADLDDAI AHIREKGON SDALLTRTLR 351 NANRFVNEVD SSAVIVNAST RFTDGGQFGL GAEVAVSTQK LHARGPMGLE 401 ALTTYKWIGF GDDTIRA

Show predicted peptides also

	- Er	nd Ob	served	Mr (expt)	Mr (cal	lc)	Delta	Miss	Sequence
355	- 37	71 61	9.9010	1856.	6812 1	856.890	05 -0	.2093	0	R.FVNEVDSSAVYVNASTR.F (Ions score 29)
395	- 40	06 64	8.8340	1295.	6534 1	295.643	31 0	.0103	0	R.GPMGLEALTTYK.W Oxidation (M) (Ions score
-0	<u>}:</u>	•						(wdd)	0]-	
5 -0.1								5.	-50	
									-100	
-0.2	1							-	-100	

DEFINITION	gamma-glutamyl phosphate reductase [Enterobacter cancerogenus ATCC 35316].	
ACCESSION	ZP 05968803	
VERSION	ZP 05968803.1 GI:261340945	
DBLINK	Project:28663	
DBSOURCE	REFSEQ: accession NZ ABWM02000017.1	
KEYWORDS		
SOURCE	Enterobacter cancerogenus ATCC 35316	
ORGANISM	Enterobacter cancerogenus ATCC 35316	
	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;	
	Enterobacteriaceae; Enterobacter.	
REFERENCE	1 (residues 1 to 417)	
AUTHORS	Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B.,	
	Courtney,L., Fronick,C., Harrison,M., Strong,C., Farmer,C.,	
	Delahaunty, K., Markovic, C., Hall, O., Minx, P., Tomlinson, C.,	
	Mitreva, M., Nelson, J., Hou, S., Wollam, A., Pepin, K.H., Johnson, M.,	
	Bhonagiri, V., Nash, W.E., Warren, W., Chinwalla, A., Mardis, E.R. and	
	Wilson, R.K.	
TITLE	Direct Submission	
JOURNAL	Submitted (06-OCT-2009) Genome Sequencing Center, Washington	
	University School of Medicine, 4444 Forest Park, St. Louis, MO	
	63108, USA	
REFERENCE	2 (residues 1 to 417)	
AUTHORS	Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H.,	
	Johnson,M., Thiruvilangam,P., Bhonagiri,V., Nash,W.E., Mardis,E.R.	
	and Wilson, R.K.	
TITLE	Direct Submission	
JOURNAL	Submitted (17-SEP-2008) Genome Sequencing Center, Washington	
	University School of Medicine, 4444 Forest Park, St. Louis, MO	
00101000	63108, USA	
COMMENT	WGS REFSEQ: This record is provided to represent a collection of	
	whole genome shotgun sequences. The reference sequence was derived	
	from <u>ABWM02000017</u> .	
	Annotation was added by the NCBI Prokaryotic Genomes Automatic Annotation Pipeline Group. Information about the Pipeline can be	
	Annotation riperine Group. Information about the Pipeline can be	

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSruT... 21/01/2010

Page 2 of 2

found here:

Tound nere: http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be aware that the annotation is done automatically with little or no aware that the annotation is done detailed in a manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: 296078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from the target (AFCC 35316). We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible. This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/]. This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: $29.7 \mathrm{x}$ Sequencing Technology: 454. Method: conceptual translation. Location/Oualifiers FEATURES Location/Qualitiers 1..417 /organism="Enterobacter cancerogenus ATCC 35316" /strain="ATCC 35316" /db xref="taxon:500639" 1..417 source Protein /product="gamma-glutamyl phosphate reductase" /EC_number="1.2.1.41" /calculated_mol_wt=44778 22..412
/region_name="ALDH_F18-19_ProA-GPR"
/note="Gamma-glutamyl phosphate reductase (GPR), aldehyde
dehydrogenase families 18 and 19; cd07079"
/db_xref="CDD:143398"
22..406
/region_name="proA"
/note="gamma-glutamyl phosphate reductase; TIGR00407"
/db_xref="CDD:129501"
253 Region 22..412 Region Site /site_type="other"
/note="putative catalytic cysteine"
/db_xref="CDD1143398"
1.417
/gene="proA"
/ and a contropation of the contropation of t /gene="proA" /locus_tag="EcanA3_020100010808" /coded_by="NZ_ABWM02000017.1:31515..32768" /note="COG0014 Gamma-glutamyl phosphate reductase" /transl_table=11 /db_xref="CDD:134165"

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein view.pl?file=../data/20100105/FtmmSruT... 21/01/2010

(MATRIX) Mascot Search Results

MS da Datah Taxor Times	ch title ata file base nomy	: laks e : SSP (e : D:\D : NCBI : Bacto : 5 Jan	ata\Lakshmy nr 20100102 eria (Eubac n 2010 at 13	n@unn.ac.uk \120808\2808 (10272453 s teria) (5690 2:12:48 GMT	sequences 0016 seque	; 3505279 ences)	183 residu	ies)	05_RJ23_01_550.mgf ATCC 35316]
Prob	ability	Based Mow	vse Score						
Indivi	idual ion	s scores > 57	indicate identi	brobability that ity or extensive es as a non-pro	e homology	(p<0.05).			
st 35 - 4 - 25 - 		nmary Rep		150 20 ty Based Howse 1					
	rmat As	Peptide Sun							Help
		- Contract	e threshold p<		Max nu	mber of hi	ts AUTO		events
				PIT scoring			ct cut-off 0		Show sub-sets 0
			30			-	ecreasing Sc	ore	Require bold red
		Show pop-u	ups • Suppre	ess pop-ups	Soft una	issigned [C	ecreasing oc		
Sel	ect All	Select Non	ie Sea	rch Selected	Erro	r tolerant			
1.	YfaZ	family prot		Score: bacter canc n error tol	erogenus	ATCC 353	tched: 3 16]	emPAI	C: 0.65
	Query		Mr (expt)	Mr (calc)			e Expect		Peptide
			1295.5974 1440.7014	1295.6180 1440.6885	-0.0205	0 55		1	K.NFTNLNLEMGK.S + Oxidation (M) K.SSSGLYAESNWLK.N
	✓ 100		2031.8122	2030.9810	0.8311	0 79		1	K.DGRPNHTLIDGAYVGGGVSF
Pept:	ide mat	ches not as	signed to p	rotein hits:	: (no deta	ails mean	is no match	1)	
	Query		Contraction of the second second	Mr (calc)		Miss Sco			
	▼ <u>82</u> ▼ <u>74</u>			1106.5720			8 8.1 7 6.5		LAEAGEFSKR VLDELDSLK
	R 88			1178.6546		2 3	13 14	1 1	YEELLKEKK
1	216	737.6970	2210.0692	2210.0062	0.0630	2 3	12 14	1	NGDLMKEWTFDEVRANAAQ + Oxidation (M)
	225			2237.0646			2 15		GLGPAAGGRGGPGGGAGSGGTGGSGGAAGR
	229			2283.0664			1 20		MESPGAVSLWFGNGTSEMVLR + Oxidation (M)
	₹ <u>232</u> ₹ <u>81</u>			2300.0896			10 23		FLRNYHTDFEVSNVCAISK DLNTMLDLR + Oxidation (M)
	✓ 112				-1.0513		9 36		FNKEQLDIIKTK
						2 2	8 73		ILETNKELKR
1	217	737.7010	2210.0812	2211.0598	-0.9787	0 2	8 39	1	EHPRPPVMMSTASQMLVER + Oxidation (M)
	201			2128.9657	0.1098		7 77		TFDNGMICASEQSVIVVDK + Oxidation (M)
	78		1070.5774		1.0912		7 1.1e+02		MIDNYSTAR KATVLVLK
	マ <u>42</u> マ 94			870.5902 1265.5267			7 89		QENDMENEIK
	▼ 17			769.4195			6 45		
	▼ 139			2625.2964			6 84		LARGMILDPSELISMSDFLRGCR + Oxidation (M)
1	38	428.7700	855.5254	855.4814	0.0440	0 2	6 75	5 1	LATLHSSK
	220			2223.0240			6 60		
	₹ <u>37</u>			855.5793			6 81		
	 ✓ 156 ✓ 207 			2802.2524 2158.1780			5 1.3e+02	2 1	
	▼ 103			2138.1780			5 1.4e+02		
	248			2779.3466					EIHNSNLDFPPSNHSFRVEHYLK
	238			2364.1743			4 69		KQGPTSVAYVEVNNNSMLNVGK + Oxidation (M)
				3465.6441					QTMTNMMKYLHQVMPPFIPADVIDDIETR + 2 Oxidation (M)
				1485.8766			4 1.6e+02		
	✓ 108	727.7670	2180.2792	2180.1048	0.1744	1 2	4 1.7e+02	1	MANDTALANNLLPYVENFK + Oxidation (M)

(MATRIX) Mascot Search Results

Protein View

Match to: gil261339072 Score: 195 YfaZ family protein [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\280808\SSP 8205_RJ23_01_550.d\SSP 8205_RJ23_01_550.mgf

Nominal mass (M_r): 18559; Calculated pI value: 6.82NCBI BLAST search of $\underline{gi}|\underline{261339072}$ against nr Unformatted $\underline{sequence\ string}$ for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 24%

Matched peptides shown in Bold Red

1 MKKLNVLLLS ALTVVSGSAL AMGGSIEQGK NFTNINLEMG KSSSGLYAES 51 NWLKNTDDGT OTGGVGAGYN LEVGPVMINA GAKAIYIGPK KGDNGVAPPI 101 GGGVNVALTD SIHVFGEGYV APDGLNNSVK NYVEANGGVS WTPIKPVTLK 151 VGYRHVSVDG KDGRPNHTLI DGAYVGGGVS F

Show predicted peptides also

Start	_	End	Observed	Mr (expt)	Mr(calc)	Delta	Miss
31			648,8060	1295.5974	1295.6180	-0.0205	20127
							0
42	-	54	721.3580	1440.7014	1440.6885	0.0130	0
162	-	181	678,2780	2031,8122	2030,9810	0.8311	0

		Sequence
5	0	K.NFTNLNLEMGK.S Oxidation (M) (Ions score 55)
0	0	K.SSSGLYAESNWLK.N (Ions score 61)
1	0	K.DGRPNHTLIDGAYVGGGVSF (Ions score 79)

Error: try setting browser cache to automatic.

LOCUS	ZP_05966930 181 aa linear BCT 15-0CT-2009 YfaZ family protein [Enterobacter cancerogenus ATCC 35316].
ACCESSION	ZP 05966930
VERSION	ZP 05966930.1 GI:261339072
DBLINK	Project:28663
DBSOURCE	REFSEQ: accession NZ ABWM02000004.1
KEYWORDS	•
SOURCE	Enterobacter cancerogenus ATCC 35316
ORGANISM	
	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
the state of the s	Enterobacteriaceae; Enterobacter.
REFERENCE	1 (residues 1 to 181)
AUTHORS	Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B.,
	Courtney,L., Fronick,C., Harrison,M., Strong,C., Farmer,C., Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C.,
	Mitreva, M., Nelson, J., Hou, S., Wollam, A., Pepin, K.H., Johnson, M.,
	Bhonagiri, V., Nash, W.E., Warren, W., Chinwalla, A., Mardis, E.R. and
	Wilson, R.K.
TITLE	Direct Submission
JOURNAL	Submitted (06-OCT-2009) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
REFERENCE	2 (residues 1 to 181)
AUTHORS	Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H.,
	Johnson, M., Thiruvilangam, P., Bhonagiri, V., Nash, W.E., Mardis, E.R.
r au march Marcall (and Wilson,R.K.
TITLE	Direct Submission
JOURNAL	Submitted (17-SEP-2008) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA
COMMENT	WGS REFSEQ: This record is provided to represent a collection of
COMPENSI	whole genome shotgun sequences. The reference sequence was derived
	from ABWM02000004.
	found here:
	http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be
	aware that the annotation is done automatically with little or no
	manual curation.
	Annotation was added by the NCBI Prokaryotic Genomes Automatic Annotation Pipeline Group. Information about the Pipeline can be found here: http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be aware that the annotation is done automatically with little or no

http://www.matrixscience.com/cgi/protein_view.pl?file=./data/20100105/FtmmSruT... 21/01/2010

Page 2 of 2

Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: Z96078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316). We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible. This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/]. (http://nihroadmap.nih.gov/hmp/].
This is a reference genome for the Human Microbiome Project.
This project is co-owned with the Human Microbiome Project DACC.
Genome Coverage: 29.7%
Sequencing Technology: 454.
Method: conceptual translation.
Location/Qualifiers
1..181
/organism="Enterobacter cancerogenus ATCC 35316"
/strain="ATCC 35316"
/db_xref="taxon:500639"
1..181
/product="YfaZ family protein"
/calculated mol_wt=18440
1..181
/region_name="YfaZ"
/note="YfaZ family protein"
/calculated mol_wt=18440
1..181
/region_name="YfaZ"
/note="YfaZ family protein"
/calculated_mol_wt=18440
1..181
/region_name="YfaZ"
/note="Code" Second source Protein

Region

FEATURES

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSruT... 21/01/2010

(MATRIX) Mascot Search Results

User Email										
dagent		: laksh		n n@unn.ac.uk						
Search MS data	title a file	: SSP 8 : D:\Da		120808\2411	LOSASSP R	206 P	B19 01	769.d\s	SP 82	06_RB19_01_769.mgf
atabas	se	: NCBIr	nr 20100102	(10272453 s	sequences	; 350	527918	3 residu	es)	ou_rors_or_ros.mgr
laxonom limesta				teria) (5690 2:14:59 GMT	016 seque	ences)			
	n hits	: gi 23	37732258 ec	otin [Citrob idoreductase				cetulicu	nl	
				ruoreduccase	s (Enryuo	Dacte	LTON A	ceryiicu	u)	
robab	bility B	ased Mow	se Score							
Individu	ual ions	scores > 57 i	indicate ident	probability that ity or extensive	e homology	y (p<0	.05).			
Protein s	scores a	re derived fr	om ions score	es as a non-pro	babilistic b	oasis fo	or ranki	ng protein	hits.	
ST 20-										
H 20 -										
15 -										
10-										
5 -										
0	una is	50	100		50					
				ty Based Mowse S						
Pentid	e Sum	mary Repo	ort							
epuu	e oum	mary repe								
Forma	at As	Peptide Sum	nmary	*						Help
		Significance	e threshold p<	0.05	Max. nu	mber	of hits	AUTO		
		Standard sco	oring @ Mud	IPIT scoring	Ions sco	re or e	expect o	ut-off 0		Show sub-sets 0
				ess pop-ups C				reasing Sco	re	Require bold red
		onon pop u	ips of output	so pop ups	Dort un	L351 BIN	cu j			
Select	All	Select Non	e Sea	rch Selected	Erro	r tole	rant			
1.		722250	Manar 10051		147 0			ad. 5		1: 0.63
	gi 237 ecotin		Mass: 19051 ter sp. 30		147 Qu	eries	match	100: 5	empal	. 0.83
			1000	n error tol	erant sea	rch				
							_			
۲	l111	Observed 529.2380	Mr(expt) 1584.6922	Mr (calc) 1584.8763	Delta 1 -0.1841	0	(33)	Expect 1	1	Peptide K.LPIVVYTPENVDVK.Y
2	113			1584.8763		0	60	0.026	1	K.LPIVVYTPENVDVK.Y
1	114		1584.7814			0	(57)	0.057	1	K.LPIVVYTPENVDVK.Y
2	115			1584.8763		0				
4	197	878.2990					(39)	3.3	1	K. LPIVVITPENVDVK. Y
			1/59.5834	1754.7828	-0.1994	0		3.3 4.4e-05	1 1	K.LPIVVTTPENVDVK.Y K.TLEGWGYDYYVFDK.V
	Protei	ns matchin				0				
	gi 261	340622	g the same Mass: 18823	set of pept Score:	ides: 147 Qu			4.4e-05		
	gi 261	340622	g the same Mass: 18823	set of pept	ides: 147 Qu		86	4.4e-05		
2.	gi 261 ecotin gi 505	340622 [Enteroba 82463 M	g the same Mass: 18823 cter cancer Mass: 27360	set of pept Score: cogenus ATCC Score: 1	ides: 147 Qu 35316] 29 Que	eries	86 match	4.4e-05 ned: 5	1	
2.	gi 261 ecotin gi 505 oxidor	340622 [Enteroba 82463 M eductase [g the same Mass: 18823 cter cancer Mass: 27360 Exiguobacte	set of pept Score: cogenus ATCC Score: 1 crium acetyl	ides: 147 Qu 35316] 29 Que icum]	eries	86 match	4.4e-05 ned: 5	1	K. TLEGWGYDYYYFDK. V
2.	gi 261 ecotin gi 505 oxidor	340622 [Enteroba 82463 M eductase [g the same Mass: 18823 cter cancer Mass: 27360 Exiguobacte	set of pept Score: cogenus ATCC Score: 1	ides: 147 Qu 35316] 29 Que icum]	eries	86 match	4.4e-05 ned: 5	1	K. TLEGWGYDYYYFDK. V
2.	gi 261 ecotin gi 505 oxidor Check Query	340622 [Enteroba 82463 M eductase [to include Observed	g the same Mass: 18823 cter cancer lass: 27360 Exiguobacte this hit i Mr(expt)	set of pept Score: ogenus ATCC Score: 1 rrium acetyl n error tol Mr(calc)	ides: 147 Qu 35316] 29 Que icum] erant sea Delta	eries ries rch Miss	86 matche matche Score	4.4e-05 ned: 5 ed: 2 e Expect	1 mPAI:	R. TLEGWGYDYYYPDK.V 20.26 Peptide
2.	gi 261 ecotin gi 505 oxidor Check Query 138	340622 Image: Second state [Enteroba 82463 M eductase [to include Observed 859.3720	g the same Mass: 18823 cter cancer lass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294	set of pept Score: orgenus ATCC Score: 1 rrium acetyl n error tol- Mr(calc) 1716.8570	ides: 147 Qu 35316] 29 Que icum] erant sea Delta -0.1276	eries ries rch Miss 0	86 match matche Score 87	4.4e-05 ned: 5 ed: 2 e Expect 5.1e-05	1 mPAI: Rank 1	<pre>k.tlegwgydyfyfdk.v 0.26 Peptide k.tyfurgassoigyetak.l</pre>
2.	gi 261 ecotin gi 505 oxidor Check Query	340622 Image: Second state [Enteroba 82463 M eductase [to include Observed 859.3720	g the same Mass: 18823 cter cancer lass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294	set of pept Score: ogenus ATCC Score: 1 rrium acetyl n error tol Mr(calc)	ides: 147 Qu 35316] 29 Que icum] erant sea Delta -0.1276	eries ries rch Miss 0	86 matche matche Score	4.4e-05 ned: 5 ed: 2 e Expect	1 mPAI: Rank 1	R. TLEGWGYDYYYPDK.V 20.26 Peptide
2. 2. 2 9 9 9	gi 261 ecotin gi 505 oxidor Check <u>Query</u> <u>138</u> <u>198</u>	340622 (Enteroba (Enteroba 82463 M eductase [to include 0bserved 859.3720 1015.4730	g the same Mass: 18823 cter cancer lass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294 2028.9314	set of pept Score: orgenus ATCC Score: 1 rrium acetyl n error tol Mr(calc) 1716.8570 2028.9752	ides: 147 Qu 35316] 29 Que icum] erant sea Delta -0.1276 -0.0438	eries ries rch Miss 0 0	86 matche matche Score 87 42	4.4e-05 hed: 5 hed: 2 e Expect 5.1e-05 1.5	1 mPAI: Rank 1 1	<pre>k.tlegwgydyfyfdk.v 0.26 Peptide k.tyfurgassoigyetak.l</pre>
2. 2. 2 9 9 9	gi 261 ecotin gi 505 oxidor Check <u>Query</u> <u>138</u> <u>198</u>	340622 (Enteroba (Enteroba 82463 M eductase [to include 0bserved 859.3720 1015.4730	g the same Mass: 18823 cter cancer lass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294 2028.9314	set of pept Score: orgenus ATCC Score: 1 rrium acetyl n error tol- Mr(calc) 1716.8570	ides: 147 Qu 35316] 29 Que icum] erant sea Delta -0.1276 -0.0438	eries ries rch Miss 0 0	86 matche matche Score 87 42	4.4e-05 hed: 5 hed: 2 e Expect 5.1e-05 1.5	1 mPAI: Rank 1 1	<pre>k.tlegwgydyfyfdk.v 0.26 Peptide k.tyfurgassoigyetak.l</pre>
2. V V Peptide	gi 261 ecotin gi 505 oxidor Check <u>338</u> <u>198</u> e matcl Query	340622 (Enteroba (Enteroba 82463 M eductase [to include Observed 859.3720 1015.4730 mes not ass Observed	g the same Mass: 18822 cter cancer ass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294 2028.9314 signed to p Mr (expt)	set of pept Score: rogenus ATCC Score: 1 brium acetyl n error tol Mr(calc) 1716.6570 2028.9752 rotein hits: Mr(calc)	ides: 147 Qu 35316] 29 Que icum] erant sea Delta -0.1276 -0.0438 : (no det: Delta	eries ries rch Miss 0 0 0 ails	86 matche Score 87 42 means Score	4.4e-05 med: 5 med: 2 e Expect 5.1e-05 1.5 no match Expect	1 mPAI: 1 Rank	K. TLEGWGYDYYYFDK.V 0.26 Peptide K. TYVITGASSGIGYETAK.L K. SVDLADNONVHDLYEGLK.E Peptide
2.	gi 261 ecotin gi 505 oxidor Check <u>138</u> <u>198</u> e match Query 68	340622 [Enteroba 82463 M eductase [to include 0bserved 859.3720 1015.4730 nes not ass 0bserved 455.0960	g the same Mass: 18823 cter cancer tass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294 2028.9314 signed to p Mr (expt) 1362.2662	set of pept Score: Score: 1 Score: 1 Frium acety1 n error tol- Mr(calc) 1716.8570 2028.9752 rotein hits: Mr(calc) 1362.6204	ides: 147 Qu 35316] 29 Que icum) erant sea Delta -0.1276 -0.0438 : (no det: Delta -0.3543	eries ries rch Miss 0 0 ails Miss 0	86 matche Score 87 42 means Score 43	4.4e-05 aed: 5 aed: 2 e Expect 1.5 no match: Expect 1.7	1 mPAI: 1 Rank 1 Rank 1	K. TLEGWGYDYYYFDK.V 0.26 Poptide K. TYVITGASSGIGYETAK.L K. SVDLADNQNVHDLYEGLK.E Poptide FEDTPLSDFHR
2. Septide	gi 261 ecotin gi 505 oxidor Check <u>338</u> <u>198</u> e matcl Query	340622 (Enteroba [Enteroba 82463 M eductase [to include 859.3720 1015.4730 0bserved 455.0960 675.2970	g the same Mass: 18823 cter cancer tass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294 2028.9314 signed to p Mr (expt) 1362.2662	set of pept Score: cogenus ATCC Score: 1 rrium acetyl n error tol. Mr(calc) 1716.8570 2028.9752 rotein hits: Mr(calc) 1362.6204 2023.0520	ides: 147 Qu 35316] 29 Que icum) erant sea Delta -0.0438 : (no det: Delta -0.3543 -0.1829	ries rch Miss 0 0 ails Miss 0 1	86 matche Score 87 42 means Score	4.4e-05 med: 5 med: 2 e Expect 5.1e-05 1.5 no match Expect	1 mPAI: 1 Rank	K. TLEGWGYDYYYFDK.V 0.26 Peptide K. TYVITGASSGIGYETAK.L K. SVDLADNONVHDLYEGLK.E Peptide
2. V V V Peptide V V V V V V V V V V V V V V V V V V V	gi [261 ecotin gi [505 oxidor Check Query 138 198 e matcl Query 68 194 178 117	340522 : [Enteroba 82463 M eductase [to include Observed 859.3720 1015.4730 0bserved 455.0960 675.2970 644.9340 800.8320	g the same Mass: 18823 cter cancer lass: 27360 Exiguobacte this hit i Mr (expt) 1362.2662 2022.8692 1931.7802 1599.6494	set of pept Score: Score: 1 Score: 1 Frium acetyl n error tol. Mr(calc) 1716.8570 2028.9752 rotein hits: Mr(calc) 1362.6204 2033.0520 1932.0720 1599.7927	ides: 147 Qu 35316) 29 Que icum] erant sea Delta -0.1276 -0.0438 : (no det: Delta -0.3543 -0.1829 -0.2919 -0.2192	ries rch Miss 0 0 0 Miss 0 1 0 0 0	86 matche Score 87 42 means Score 43 40 39 36	4.4e-05 aed: 5 aed: 2 e Expect 5.1e-05 1.5 no match: Expect 1.7 2.1 2.6 6	1 mmPAI: Rank 1 1 1 1	K. TLEGWGYDYYYFDK.V 0.26 Poptido K. TYUTIGASSGIGYETAK.L K. SVDLADNQNVHDLYEGLK.E Poptide PEDTPLEDFWR VELLIQZTLKVDCNQHR IDLLATFMEGIGVR + Oxidation (M)
2. V V V V V V V V V V V V V V V V V V V	gi [261 ecotin gi [505 oxidor Check Query 138 198 e matcl Query 68 194 178 117 93	340622 : [Enteroba 82463 M eductase [to include 0bserved 859.3720 1015.4730 hes not as: 0bserved 455.0960 675.2970 644.9340 800.8320 681.7720	g the same Mass: 18822 cter cancer lass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294 2028.9314 eigned to p Mr (expt) 1362.2662 2022.8692 1931.7802 1599.6494 1361.5294	set of pept Score: cogenus ATCC Score: 1 Score: 1 rrium acetyl 1716.8570 2028.9752 rotein hits: Mr(calc) 1362.6204 2023.0520 1352.0720 1559.7927	ides: 147 Qu 35316] 29 Que icum] erant sea Delta -0.1276 -0.0438 : (no det: Delta -0.3543 -0.1829 -0.2919 -0.2919 -0.1432 -1.1274	ries rich Misss 0 0 ails 1 0 0 0 0 0 0	86 matche Score 87 42 means Score 43 40 39 36 36	4.4e-05 Med: 5 Expect 5.1e-05 1.5 no match: Expect 1.7 2.1 2.6 6 13	1 Rank 1 1 1 1 1 1	K. TLEGWGYDYYYFDK.V 0.26 Poptide K. TYUTGABSGIGYETAK.L K. SVDLADNQNVHDLYEGLK.E Poptide FEDTPLEDFHR VELLIGQTLKVDCNQHR IDLLLATPEGWVLTDHK GDPALERTYMEGIGVR + Oxidation (M) HGYAFNELIGK
2. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	gi [261 ecotin gi [505 oxidor Check 138 198 e matcl Query 68 194 178 117 93 200	340522 : [Enteroba 82463 M eductase [to include 859.3720 1015.4730 0bserved 455.0960 675.2970 644.9340 800.8320 681.7720 681.7720	g the same Mass: 18822 cter cancer lass: 27360 Exiguobacte this hit 1 Mr (expt) 1716.7294 2028.9314 signed to p Mr (expt) 1362.2662 2022.8692 1931.7802 1599.6494 1361.5294 2037.5302	set of pept Score: rogenus ATCC Score: 1 rrium acetyl 1716.8570 2028.9752 rotein hits: Mr (calc) 1362.6204 2023.0520 1932.0720 1599.7927 1362.6568 2037.0565	ides: 147 Qu 35316) 29 Que icum 29 Que erant sea -0.1276 -0.0438 : (no det. Delta -0.3543 -0.1829 -0.2919 -0.2919 -0.1432 -1.1274 0.4737	eries rich Misss 0 0 ails 1 0 0 0 1 0 0 1	86 matche 87 42 87 42 87 42 87 42 87 42 87 42 93 6 36 35	4.4e-05 med: 5 Expect 2 e Expect 1.5 no match: Expect 1.7 2.6 6 13 4.8	1 Rank 1 1 1 1 1 1 1 1	K. TLEGWGYDYYYFDK.V 0.26 Poptide K. TYVITGASSGIGYETAK.L K. SVDLADNQNVHDLYEGLK.E Peptide PEDTPLEDFHR VELLIGGTLKVDCNQHR IDLLATFEGWLUDHK GDPALPATTHEGIGVR + Oxidation (M) HGYAFNELDGK GASVRDIMGGLDGFLSISVK + Oxidation (M)
2. V V V V V V V V V V V V V V V V V V V	gi [261 ecotin gi [505 oxidor Check Query 138 198 e matcl Query 68 194 178 117 93	340522 : [Enteroba 82463 M eductase [to include 0bserved 859.3720 1015.4730 1015.4730 1015.4730 0bserved 455.0960 675.2970 864.9340 800.8320 681.8440 453.2220	g the same Mass: 18822 cter cancer fass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294 2028.9314 signed to p Mr (expt) 1362.2662 2022.8692 1931.7802 1599.6494 1361.5294 2037.5302 904.4294	set of pept Score: rogenus ATCC Score: 1 rrium acetyl 1716.8570 2028.9752 rotein hits: Mr (calc) 1362.6204 2023.0520 1932.0720 1599.7927 1362.6568 2037.0565	ides: 147 Qu 35316) 29 Que icum erant sea Delta -0.1276 -0.0438 : (no det: Delta -0.3543 -0.1829 -0.2919 -0.1432 -	eries ries 0 0 ails 1 0 0 0 0 1 1	86 matche Score 87 42 means Score 43 40 39 36 36	4.4e-05 Med: 5 Expect 5.1e-05 1.5 no match: Expect 1.7 2.1 2.6 6 13	1 Rank 1 1 1 1 1 1	K. TLEGWGYDYYYFDK.V 0.26 Poptide K. TYVITGASSGIGYETAK.L K. SVDLADNQNVHDLYEGLK.E Peptide PEDTPLEDFHR VELLIGGTLKVDCNQHR IDLLATFEGWLUDHK GDPALPATTHEGIGVR + Oxidation (M) HGYAFNELDGK GASVRDIMGGLDGFLSISVK + Oxidation (M)
2. 고 및 모	gi [261 ecotin gi [505 oxidor Check 138 198 e matcl Query 68 194 178 117 93 200 67	340522 : [Enteroba 22463 M eductase [to include Observed 859.3720 1015.4730 1015.4730 0058rved 455.0960 675.2970 644.9340 800.8320 681.7720 680.1840 453.2220 546.8830	g the same Mass: 18823 cter cancer lass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294 2028.9314 signed to p Mr (expt) 1362.2662 2022.8692 1931.7802 1939.6494 1361.5294 2037.5302 904.4294	set of pept score: cogenus ATCC Score: 1 rrium acetyl n error tol Mr (calc) 1716.8570 2028.9752 rotein hits: Mr (calc) 1362.6204 2023.0520 1932.0720 1599.7927 1362.6568 2037.0565 905.4389	ides: 147 Qu 35316) 29 Que icum] erant sea Delta -0.1276 -0.0438 : (no det: Delta -0.3543 -0.1829 -0.1432 -1.1274 0.4737 -1.0944 -0.1665	eries ries 0 0 ails 1 0 0 0 0 1 1 1	86 matche 87 42 80 40 40 40 40 40 40 40 40 40 40 40 40 40	4.4e-05 Med: 5 med: 2 e Expect 5.1e-05 1.5 no match Expect 1.7 2.6 6 13 4.8 27	1 mPPAI: 1 1 1 1 1 1 1 1 1 1	K. TLEGWGYDYYYPDK.V c. 0.26 Poptide K. YTVITGASSGIGYETAK.L K. SVDLADNQNVHDLYEGLK.E Poptide PEDTPLSDFHR VELLIGGTLKVDCNQHR IDLLLATPEGWVLIDHK GDPALPATTMEGIGVR + Oxidation (M) HGYAFNELDIGK GASVRDLMGGIDGFLSISVK + Oxidation (M) MQEAAGRK + Oxidation (M)
	gi [26] gi [505 oxidor Check 138 198 198 e matcl Query 68 194 198 198 198 200 67 124 117 193 200 67 124 110 111	340522 : [Enteroba 82463 M eductase [to include 0bserved 859.3720 1015.4730 1015.4730 1015.4730 0bserved 455.0960 675.2970 644.9340 800.8320 681.7720 680.1840 453.2220 546.8830 714.5440 864.8670	g the same Mass: 18822 cter cancer this hit i Mr (expt) 1716.7294 2028.9314 signed to p Mr (expt) 1362.2662 2022.8692 1931.7802 1599.6494 1361.5294 2037.5302 904.4294 1637.6272	set of pept score: cogenus ATCC Score: 1 frium acetyl n error tol 1716.8570 2028.9752 rotein hits: Mr (calc) 1362.6204 2023.0520 1932.0720 1599.7927 1362.6568 2037.0565 905.4389 1637.7397 1427.7191	ides: 147 Qu 35316) 29 Que icum erant sea -0.1276 -0.0438 : (no det: Delta -0.3543 -0.1829 -0.1829 -0.1432 -1.1274 0.4337 -1.0094 -0.1665 -0.6655 -0.2409	rries rch Misss 0 0 0 Miss 0 1 1 0 0 0 1 1 1 0 1	86 matche 87 42 means 8 corre 43 40 39 36 35 34 33 33 33 32	4.4e-05 med: 5 med: 2 e Expect 5.1e-05 1.5 no match: Expect 1.7 2.6 6 13 4.8 27 9.9 20 16	1 Rank 1 1 1 1 1 1 1 1 1 1 1 1	K. TLEGWGYDYYYFDK.V 0.26 Poptide K. TTVITGASSGIGYETAK.L K. SVDLADNGNVHDLYEGLK.E Peptide PEDTPLSDFHR VELLIGGTLKVDCNGHR IDLLLATPEGWVLIDHK GDPALPATTMEGIGVR + Oxidation (M) HGYAFNELDGK GASVEDIMGGLDGFLSISVK + Oxidation (M) MgEAAGHK + Oxidation (M) KADEYPITFGDGTPK ADVFYAGLESGMDER INLKIPAGIESGMTLR + Oxidation (M)
2. 	gi [26] ecotin gi [505 coxidor Check 138 198 e matcl 200 guery 68 194 178 194 178 194 178 200 67 124 101 225	340522 : [Enteroba 82463 M eductase [to include 0bserved 659.3720 1015.4730 1015.4730 0bserved 455.0960 675.2970 684.9340 800.8320 680.1840 453.2220 546.8830 714.5440 664.8670 7447.0320	g the same Mass: 18823 cter cancer lass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294 2028.9314 signed to p Mr (expt) 1362.2662 2022.8692 1931.7802 1959.6494 1361.5294 1359.6494 1361.5294 1637.6272 1427.0734	set of pept score: cogenus ATCC Score: 1 brium acetyl n error tol 1716.6570 2028.9752 rotein hits: Mr (calc) 1362.6204 2023.0520 1599.7927 1362.5568 2037.0565 905.4389 1637.7937 1427.7191 1727.9604 2239.1174	ides: 147 Qu 35316) 29 Que icum Delta -0.1276 -0.0438 : (no det: Delta -0.3543 -0.3543 -0.1229 -0.1432 -0.1432 -0.1432 -0.1665 -0.6457 -0.2409 -0.2499 -0.	ries rch Miss 0 0 0 miss 0 1 1 1 1 1 1 1 1 1	86 matche Score 87 42 means Score 43 40 39 36 35 34 33 33 33 33 33 22 31	4.4e-05 med: 5 med: 2 e Expect 5.1e-05 1.5 1.5 1.7 2.1 2.6 6 13 4.8 27 9.9 20 16 20	1 mPAI: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	K. TLEGWGYDYYYFDK.V R. TLEGWGYDYYYFDK.V Poptide K. TYVITGASSGIGYETAK.L K. SVDLADNQNVHDLYEGLK.E PEDTPLSDFHR VULLGGTLKVDCNQHR IDLLLATFRGWVLIDHK GDPALFATTHEGIGVR + Oxidation (M) HGYAPNELDLGK GASVEDINGGLESISTK + Oxidation (M) KADEYPITFGDGTPK ADVEVAQLSGGMQR INLKTFRGESGMTLR + Oxidation (M) QGPNLVGYEYQNWFLKQR
2. 양 영 명 명 Peptide 양 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명	gi [26] gi [505 oxidor Check 138 198 198 e matcl Query 98 194 194 194 194 194 194 194 194 195 194 194 194 194 194 194 194 194 194 194	340522 : [Enteroba 22463 M eductase [to include Observed 859.3720 1015.4730 1015.4730 1015.4730 1015.4730 10587ved 455.0960 675.2970 644.9340 800.8320 680.1840 453.2220 546.8830 714.5440 864.670 747.0320 570.6700	g the same Mass: 18822 cter cancer lass: 27360 Exiguobacte this hit i Mr (expt) 1716.7294 2028.9314 eigned to p Mr (expt) 1362.2662 2022.8692 1931.7802 2092.8692 1931.7802 1599.6494 1361.5294 2037.5302 904.4294 1637.6272 1427.0734 1727.7194	set of pept Score: cogenus ATCC Score: 1 Score: 1 rrium acetyl n error tol. Mr (calc) 1716.8570 2028.9752 rotein hits: Mr (calc) 1362.6204 2023.0520 1352.0720 1362.6568 2037.0565 905.4389 1637.7937 1427.7191 1727.9604 2239.1174	ides: 147 Qu 35316] 29 Que icum] erant sea Delta -0.1276 -0.0438 : (no det: Delta -0.3543 -0.1829 -0.2919 -0.1432 -1.1274 0.4737 -1.0094 -0.16457 -0.6457 -0.2409 -1.0432 -0.2204	ries rch Miss 0 0 ails 1 0 0 0 1 1 1 1 1 1 1	86 matche 87 42 means 8000 43 40 39 6 36 36 35 34 43 33 32 23 1 30	4.4e-05 Med: 5 Expect 5.1e-05 1.5 1.5 Expect 1.7 2.1 2.6 6 13 4.8 27 9.9 20 16 20 41	1 mPAI: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	K. TLEGWGYDYYYFDK.V K. TLEGWGYDYYYFDK.V 20.26 Poptide R. TYVITGABSOIGYETAK.L K. SVDLADNQNVHDLYEGLK.E Peptide PEDTPLEDHR VELLIGQTLAVDCHQHR IDLLATPEGWVLDHK GDPALFYTFEDIGK GDPALFYTFEDIGK GASYNDIMGELGELISIYK + Oxidation (M) MgEAAGRK + Oxidation (M) MGENIGESGMIR + Oxidation (M) DSSKGDVTGFK
-2. 	gi [26] ecotin gi [505 coxidor Check 138 198 e matcl 200 guery 68 194 178 194 178 194 178 200 67 124 101 225	340522 : [Enteroba 82463 M eductase [to include 859,3720 1015.4730 1015.4730 1015.4730 1015.4730 105.4730 105.4730 105.4730 645.0960 657.2970 644.9340 800.8320 668.1840 453.2220 546.8630 714.5440 864.8670 714.5310	g the same Mass: 18822 cter cancer lass: 27360 Exiguobacte this hit 1 Mr (expt) 1716.7294 2028.9314 signed to p Mr (expt) 1362.2662 2022.8692 1931.7802 1599.6494 1361.5294 2037.5302 904.4294 1361.5294 1427.0734 1427.0734 1427.0734 1427.0734	set of pept score: cogenus ATCC Score: 1 brium acetyl n error tol 1716.6570 2028.9752 rotein hits: Mr (calc) 1362.6204 2023.0520 1599.7927 1362.5568 2037.0565 905.4389 1637.7937 1427.7191 1727.9604 2239.1174	ides: 147 Qu 35316) 29 Que icum 29 Que erant sea 0.1276 -0.0438 : (no det. Delta -0.3543 -0.1829 -0.2919 -0.2919 -0.1432 -1.1274 0.4737 -1.0944 -0.665 -0.6457 -0.2409 -1.0432 -0.2240 -0.2240 -0.2380 -0.2480 -0.2580 -0.2480 -0.	ries rch Miss 0 0 1 1 1 1 1 1 1 1 1	86 matche Score 87 42 means Score 43 40 39 36 35 34 33 33 33 33 33 22 31	4.4e-05 med: 5 med: 2 e Expect 5.1e-05 1.5 1.5 1.7 2.1 2.6 6 13 4.8 27 9.9 20 16 20	1 mPAI: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	K. TLEGWGYDYYYFDK.V R. TLEGWGYDYYYFDK.V Poptide K. TYVITGASSGIGYETAK.L K. SVDLADNQNVHDLYEGLK.E PEDTPLSDFHR VULLGGTLKVDCNQHR IDLLLATFRGWVLIDHK GDPALFATTHEGIGVR + Oxidation (M) HGYAPNELDLGK GASVEDINGGLESISTK + Oxidation (M) KADEYPITFGDGTPK ADVEVAQLSGGMQR INLKTFRGESGMTLR + Oxidation (M) QGPNLVGYEYQNWFLKQR

aware that the annotation is done automatically with little or no aware that the annotation is done automatically with little or no manual curation. Enterobacter cancerogenus (GenBank Accession Number for 16S rDNA gene: 296078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).

We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.

This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].

This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: $29.7 \times$ Sequencing Technology: 454. Method: conceptual translation.

1.10.6	nou. conceptual translation.
FEATURES	Location/Qualifiers
source	1167
	/organism="Enterobacter cancerogenus ATCC 35316"
	/strain="ATCC 35316"
	/db xref="taxon:500639"
Protein	1167
	/product="ecotin"
	/calculated mol wt=18529
Region	30165
	/region name="Ecotin"
	/note="Protease Inhibitor Ecotin; homodimeric protease
	inhibitor which binds two chymotrypsin-like serine
	proteases to form a heterotetramer. Found in bacterial
	periplasm. Inhibits a broad range of serine proteases
	including collagenase, trypsin, chymotrypsin; cd00242"
	/db xref="CDD:29318"
Site	order(9195,133138)
	/site type="other"
	/note="secondary substrate binding site"
	/db xref="CDD:29318"
Site	107110
	/site type="other"
	/note="primary substrate binding site"
	/db xref="CDD:29318"
Site	109.110
	/site type="inhibition"
	/note="inhibition loop"
	/db xref="CDD:29318"
Site	155165
	/site type="other"
	/note="dimerization interface"
	/db xref="CDD:29318"
CDS	1167
	/locus tag="EcanA3 020100009153"
	/coded_by="NZ_ABWM02000010.1:6704867551"
	/note="COG4574 Serine protease inhibitor ecotin"
	/transl_table=11
	/db_xref="CDD: <u>134928</u> "

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSruO... 21/01/2010

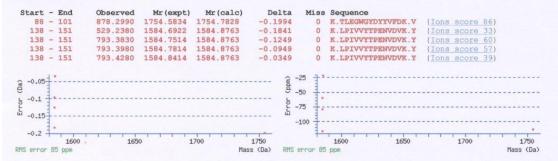
(MATRIX) Mascot Search Results

Protein View

Match to: gi|261340622 Score: 147 match to: gripolstops scole: 147 ecotin [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\241108\SSP 8206_RB19_01_769.d\SSP 8206_RB19_01_769.mgf

Nominal mass $({\rm M}_{\rm r}):$ 18823; Calculated pI value: 8.33

NCBI BLAST search of $\underline{gi|261340622}$ against nr Unformatted sequence string for pasting into other applications


Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 16%

Matched peptides shown in Bold Red

- 1 MKNAPKFAIA LLAAACVSTS AFATDTKNDQ PLEKVAPYPQ AEKGMKRQVI 51 QVPAQENEAN FKVELLIGQT LEVDCNHRRL GGKLESKTLE GWGYDYYVFD 101 KVTSPVSTMM ACPDGKKEKK FVTAYLGDNS LLRYNSKLPI VVYTPENVDV 151 KYRIWKADEN VGQAVIR

Show predicted peptides also

LOCUS DEFINITION	ZP_05968480 167 aa linear BCT 15-OCT-2009 ecotin [Enterobacter cancerogenus ATCC 35316].
ACCESSION	ZP_05968480 ZP_05968480.1 GI:261340622
DBLINK	Project:28663
DBSOURCE	REFSEQ: accession NZ ABWM02000010.1
KEYWORDS	KEIDER. GEESSION NEIDENGEOOOTVIT
SOURCE	Enterobacter cancerogenus ATCC 35316
ORGANISM	Enterobacter cancerogenus ATCC 35316
01001112011	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
	Enterobacteriaceae; Enterobacter.
REFERENCE	1 (residues 1 to 167)
AUTHORS	Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B.,
	Courtney, L., Fronick, C., Harrison, M., Strong, C., Farmer, C.,
	Delahaunty,K., Markovic,C., Hall,O., Minz,P., Tomlinson,C.,
	Mitreva, M., Nelson, J., Hou, S., Wollam, A., Pepin, K.H., Johnson, M.,
	Bhonagiri, V., Nash, W.E., Warren, W., Chinwalla, A., Mardis, E.R. and
	Wilson, R.K.
TITLE	Direct Submission
JOURNAL	Submitted (06-OCT-2009) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
REFERENCE	2 (residues 1 to 167)
AUTHORS	Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H.,
	Johnson, M., Thiruvilangam, P., Bhonagiri, V., Nash, W.E., Mardis, E.R.
	and Wilson,R.K.
TITLE	Direct Submission
JOURNAL	Submitted (17-SEP-2008) Genome Sequencing Center, Washington
	University School of Medicine, 4444 Forest Park, St. Louis, MO
	63108, USA
COMMENT	WGS REFSEQ: This record is provided to represent a collection of
	whole genome shotgun sequences. The reference sequence was derived
	from ABWM02000010.
	Annotation was added by the NCBI Prokaryotic Genomes Automatic
	Annotation Pipeline Group. Information about the Pipeline can be
	found here:
	http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be
122 NOV 122	

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSruO... 21/01/2010

(MATRIX) Mascot Search Results User Email Search title MS data file Database Taxonomy Timestamp Protein hits : Lakshmy Manickan : lakshmy.manickan@unn.ac.uk : SSP 8707 : D:\Data\Lakshmy\120808\200808\SSP 8707_RK17_01_587.d\SSP 8707_RK17_01_587.mgf : NCBInr 20100102 (10272453 sequences; 3505279183 residues) : Bacteria (Eubacteria) (5590016 sequences) : 5 Jan 2010 at 12:23:26 GMT : gil261341330 translocation protein TolB [Enterobacter cancerogenus ATCC 35316] gil10120890 Chain A, Crystal Structure Of The E. Coli Tolb Protein rit6217322 translocation protein TolB [Salmenela enterics when enterics as gi[62179322 translocation protein TolB [Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67] gi[157369522 translocation protein TolB [Serratia proteamaculans 568] gi 152969308 translocation protein TolB [Klebsiella pneumoniae subsp. pneumoniae MGH 78578] gi 242238602 Tol-Pal system beta propeller repeat protein TolB [Dickeya dadantii Ech703] **Probability Based Mowse Score** lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits. Hits 30 Number 50 15 10 100 Probability Based Mowse Score **Peptide Summary Report** Format As Peptide Summary * Help Significance threshold p< 0.05 Max. number of hits AUTO Show sub-sets 0 Standard scoring @ MudPIT scoring C Ions score or expect cut-off Show pop-ups @ Suppress pop-ups C Sort unassigned Decreasing Score 🔄 Require bold red Select All Select None Search Selected Fror tolcrant translocation protein TolB [Enterobacter cancerogenus ATCC 35316] Check to include this hit in arrow to the second 1. <u>gi|261341330</u> Mass: 45999 Score: 271 Queries matched: 7 Check to include this hit in error tolerant search Query Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 50 571.7910 1141.5674 1141.5768 -0.0093 0 70 0.0028 1 K.LAYVTFESGR.S 51 571.7940 1141.5734 1141.5768 -0.0033 0 (70) 0.0035 1 K.LAYVTFESGR.S V ~ 3.1 1 62 714.9110 1427.8074 1427.8096 -0.0022 0 F 40 R. SALVIOTLSNGAVR. O № gil10120890 Mass: 42745 Score: 170 Queries matched: 4 emPAI: 0.16 Chain A, Crystal Structure Of The E. Coli Tolb Protein 2. Check to include this hit in error tolerant search Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 50 571.7910 1141.5674 1141.5768 -0.0093 0 70 0.0028 1 K.LAYVTFESGR.S 51 571.7940 1141.5734 1141.5768 -0.0033 0 (70) 0.0028 1 K.LAYVTFESGR.S 49 567.5860 1699.7362 1699.8206 -0.0844 0 34 18 1 R.SPQPLFSPAWSPDGSK.L 90 850.9250 1699.8354 1699.7876 0.0479 0 69 0.0033 1 R.SPQPLMSPAWSPDGSK.L + Oxidation (M) Query Observed <u>gi 62179322</u> Mass: 46150 Score: 164 Queries matched: 5 emPAI: 0.15 translocation protein TolB [Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67] 3. Check to include this hit in error tolerant search Query Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide try Observed Mr(car) Delta Miss Score Expect Rank Peptide 50 571.7910 1141.5674 1141.5768 -0.0093 0 70 0.0028 1 K.LAYVTFESGR.5 51 571.7940 1141.5774 1141.5768 -0.0033 0 (70) 0.0028 1 K.LAYVTFESGR.5 521 571.7940 1141.5774 1141.5768 -0.0033 0 (70) 0.0025 1 K.LAYVTFESGR.5 521 571.7940 1142.78096 -0.0022 0 24 1.2e+02 3 R.SALVIQTLANGSVR.Q 49 567.5860 1699.7362 1699.7876 -0.014 0 (34) 18 1 R.SPQLMSPAWSPDGSK.L + Oxidation (M) 90 850.9250 1699.8354 1699.7876 0.0479 0 69 0.0033 1 R.SPQPLMSPAWSPDGSK.L + Oxidation (M) Proteins matching the same set of peptides: gil224582567 Mass: 46584 Score: 164 Queries matched: 5 translocation protein TolB precursor [Salmonella enterica subsp. enterica serovar Paratyphi C strain RKS4594]

(MATRIX) Mascot Search Results

Taxonomy: Enterobacter cancerogenus ATCC 35316

Protein View

Match to: gi|261341330 Score: 271 translocation protein TolB [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\280808\SSP 8707_RK17_01_587.d\SSP 8707_RK17_01_587.mgf

Nominal mass ($\text{M}_{r}):$ **45999;** Calculated pI value: 6.98NCBI BLAST search of $\underline{gi}/261341330$ against nr Unformatted sequence string for pasting into other applications

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **16%**

Matched peptides shown in Bold Red

1	MMKQALRVAF	GFLMLWAAVL	HAEVRIEITQ	GVDSARPIGV	VPFQWAGPGA
51	APEDIGGIVA	ADLRNSGKFN	PLDRSRLPQQ	PGTAQEVQPA	AWSALGIDAV
101	VVGQVTPAPD	GGYNVAYQLV	DTGGAPGTVL	AQNTYKVNKQ	WLRYAGHTAS
151	DEVFEKLTGI	KGAFRTRIAY	VVQTNGGQFP	YELRVSDYDG	YNQFTVHRSP
201	QPLMSPAWSP	DGSKLAYVTF	ESGRSALVIQ	TLSNGAVRQV	ASFPRHNGAP
251	AFSPDGTKLA	FALSKTGSLN	LYVMDIGSGQ	IRQITDGRSN	NTEPTWFPDS
301	QNLAFTSDQA	GRPQVYKVNI	NGGAAQRITW	EGSQNQDADI	SADGKTMVMV
351	STAGGQQHIA	KQDLVTGGVQ	VLSSTFLDET	PSLAPNGTMV	IYSSSQGMGS
401	VLNLVSTDGR	FKARIPATDG	QVKSPAWSPY	L	

Show predicted peptides also

Sort Peptides By
 Residue Number C Increasing Mass C Decreasing Mass

Start	-	End	Observed	Mr (expt)	Mr (calc)	Delta	Miss	Sequence
185	-	198	850.9190	1699.8234	1699.7591	0.0644	0	R.VSDYDGYNQFTVHR.S (Ions score 37)
199	-	214	567.5860	1699.7362	1699.7876	-0.0514	0	R.SPQPLMSPAWSPDGSK.L Oxidation (M) (Ions score 34)
199	-	214	850.9250	1699.8354	1699.7876	0.0479	0	R.SPOPLMSPAWSPDGSK.L Oxidation (M) (Ions score 69)
215	-	224	571.7910	1141.5674	1141.5768	-0.0093	0	K.LAYVTFESGR.S (Ions score 70)
215	-	224	571.7940	1141.5734	1141.5768	-0.0033	0	K.LAYVTFESGR.S (Ions score 70)
225	-	238	714.9110	1427.8074	1427.8096	-0.0022	0	R. SALVIQTLSNGAVR.Q (Ions score 40)
266	-	282	912.4500	1822.8854	1822.9247	-0.0393	0	K.TGSLNLYVMDIGSGQIR.Q (Ions score 59)

Error: try setting browser cache to automatic.

Error: try setting browser cache to automatic.

ZP_05969188 LOCUS DEFINITION ZP_05969188 431 aa linear BCT 15-0CT-2009 translocation protein TolB [Enterobacter cancerogenus ATCC 35316]. ZP_05969188 ZP_05969188.1 GI:261341330 Project:<u>28663</u> ACCESSION VERSION DBLINK DBSOURCE REFSEQ: accession NZ_ABWM02000020.1 KEYWORDS Enterobacter cancerogenus ATCC 35316
 Enterobacter cancerogenus ATCC 35316
 Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriaces; Enterobacteriaces; Enterobacter.
 (residues 1 to 431)
 Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B., Courtney, J., Fronick, C., Harrison, M., Strong, C., Farmer, C., Delahaunty, K., Markovic, C., Hall, O., Minx, P., Tomlinson, C., Mitreva, M., Nelson, J., Hou, S., Wollam, A., Pepin, K.H., Johnson, M., Bhonagiri, V., Nash, W.E., Warren, W., Chinwalla, A., Mardis, E.R. and Wilson, R.K. Direct Submission
 Submitted (06-OCT-2009) Genome Sequencing Center, Washington
 University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA
 (residues 1 to 431)
 Fulton, L., Clifton, S., Fulton, B., Xu, J., Minx, P., Pepin, K.H., Johnson, M., Thiruvilangam, P., Bhonagiri, V., Nash, W.E., Mardis, E.R. and Wilson, R.K.
 Direct Submission Enterobacter cancerogenus ATCC 35316 SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL REFERENCE AUTHORS Direct Submission Submitted (17-SEP-2008) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA TITLE JOURNAL WGS REFERENCE: This record is provided to represent a collection of whole genome shotgun sequences. The reference sequence was derived COMMENT from A Annotation was added by the NCBI Prokaryotic Genomes Automatic

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSrune... 21/01/2010

Region

Page 2 of 2

Annotation Pipeline Group. Information about the Pipeline can be found here: Found nere: http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be aware that the annotation is done automatically with little or no Enterobacter cancerogenus (GenBank Accession Number for 165 rDNA Enterobacter Caliberogenus (Genbank Accession Number 101 105 105 104 gene: 296078, the 16S rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316). We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible. This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/]. This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454. Method: conceptual translation. Location/Qualifiers 1.431 /organisme"Enterpherter cancercorece PTCC 25216" 1..431 /organism="Enterobacter cancerogenus ATCC 35316" /strain="ATCC 35316" /db_xref="taxon:500639" 1..431 /product="translocation protein TolB" /calculated_mol_wt=45897 2..431 /region_name="tolB" /note="translocation protein TolB; Provisional; PRK03629" /db_xref="CDD:134902" 31..174 /region_name="TolB N" FEATURES source Protein Region Region /region_name="TolB_N" /note="TolB_amino-terminal_domain; pfam04052" /db_xref="CDD:<u>112850</u>" 238..273 Region

238..273 /region_name="PD40" /note="WD40-like Beta Propeller Repeat; pfam07676" /db_xref="CDD:116290" 282..317 /region_name="PD40" /note="WD40-like Beta Propeller Repeat; pfam07676" /db_xref="CDD:116290" 1..431 /gene="tolB" /locus_tag="EcanA3_020100012746" /coded by="WZ_ABWM02000020.1:251385..252680" /note="C0G0823 Periplasmic component of the Tol biopolymer transport system" /transl_table=11 /db_xref="CDD:134902"

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSrune... 21/01/2010

(MATRIX) SCIENCE/ Mascot Search Results

Email : Search title : MS data file : Database : Taxonomy : Timestamp : Protein hits :	Lakshmy Manickan lakshmy.manickan@unn.ac.uk SBP 9601 D:DatalLakshmy\120808\140808\SSP9601_RF13_01_334.d\SSP9601_RF13_01_334.mgf NCBInr 20100102 (10272453 sequences; 3505279183 residues) Bacteria (Eubacteria) (5690016 sequences) 5 Jan 2010 at 12:24:38 GMT gil14831681 octoin reductase [Enterobacter aerogenes] gil146311681 acetoin reductase [Enterobacter sp. 638] gil157146382 outer membrane protein A [Citrobacter koseri ATCC BAA-895] gil146312800 glycine betaine transporter periplasmic subunit [Enterobacter sp. 638]
Probability Based	Mowse Score
Individual ions scores	(P), where P is the probability that the observed match is a random event. > 57 indicate identity or extensive homology (p<0.05). ved from ions scores as a non-probabilistic basis for ranking protein hits.
10- 5- 0-50	100 150 Probability Based Mowse Score
Peptide Summary	Report
Format As Peptid	de Summary Help
The second secon	ficance threshold p< 0.05 Max. number of hits AUTO
	ard scoring @ MudPIT scoring C Ions score or expect cut-off Show sub-sets
Show	pop-ups 🔹 Suppress pop-ups 🔿 Sort unassigned Decreasing Score 💽 Require bold red 🗆
Select All Sele	ct None Search Selected Fror tolerant
Query Obser 90 632.6 7 112 813.5 7 235 783.3	clude this hit in error tolerant search rved Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 2000 1263.5854 1263.6460 -0.0605 0 41 3.7 2 K.DGSVVVLGFTDR.I 2580 1625.9014 1625.7937 0.1077 0 42 1.7 1 K.LGYPVTDDLDVYTR.L 3450 2347.0132 2346.1856 0.40276 69 0.0027 1 R.FGQGEDAFVVAPAPAPAPEVQTK.H tching the same set of peptides:
g1 26133928	
Check to in Query Obser	uctase [Enterobacter sp. 638] clude this hit in error tolerant search rved Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
	6150 1690.8232 1689.8686 0.9546 1 20 2.5e+02 4 K.VDVSNREQVFAAVEK.A 3840 1712.7534 1712.7893 -0.0359 0 55 0.085 1 K.DGFAVAIADYNEETAK.A
	0750 2403.2032 2404.1329 -0.9297 0 61 0.017 1 K.IINACSQAGHTGNPELAVYSSSK.F
gi 26134116	tching the same set of peptides: 4 Mass: 26084 Score: 137 Queries matched: 3 uctase [Enterobacter cancerogenus ATCC 35316]
outer membr	2 Score: 77 Queries matched: 2 ane protein A [Citrobacter koseri ATCC BAA-895] clude this hit in error tolerant search
<u>90</u> 632.8	rved Mr(expt) Mr(alc) Delta Miss Score Expect Rank Paptide 8000 1263.5854 1263.6460 -0.0605 0 41 3.7 2 K.DGSVVVLGFTDR.I 3450 2347.0132 2346.1855 0.8276 0 36 5.2 2 R.FGQQEEAAPIAPAPAPAPEVQTK.H
glycine bet	0 Mass: 36495 Score: 58 Queries matched: 1 emPAI: 0.09 aine transporter periplasmic subunit [Enterobacter sp. 638] clude this hit in error tolerant search
	rved Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
M 119 835.1	3920 1668.7694 1668.8359 -0.0665 0 58 0.043 1 R.EGTFVTGAAQGYLIDK.K

Page 1 of 2

(MATRIX) Mascot Search Results

Protein View

Match to: gi|261339284 Score: 152 outer membrane protein A [Enterobacter cancerogenus ATCC 35316] Found in search of D:\Data\Lakshmy\120808\140808\SSP9601_RF13_01_334.d\SSP9601_RF13_01_334.mgf

Nominal mass (Mr): 37561; Calculated pI value: 5.19 NCBI BLAST search of <u>gi[261339284</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Enterobacter cancerogenus ATCC 35316

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 14%

Matched peptides shown in Bold Red

1 MKKTAIAIAV ALAGFATVAQ AAPKDNTWYA GGKLGWSQFH DTGWYNSSLN 51 NDGPTHESQL GAGAFGGYQV NPYVGFEMGY DWLGRMPYKG DNVNGAFKAQ 101 GVQLTAKLGY PVTDDLDVYT RLGGMVWRAD SSNSIAGDDH DTGVSPVFAG 151 GVEWAMTRDI ATRLEYQWVN NIGDGATVGV RPDNGMLSVG VSYRFGQQED 201 APVVAFAPAP APEVQTKHFT LKSDVLFNTN KATLKPEGQQ ALDQLYTQLS 251 NLDPKDGSVV VLGFTDRIGS DAYNQGLSEK RAQSVVD/LV SKGIPANKIS 301 PRGMGESNPV TGNTCDNVKP RAALIDCLAP DRRVEIEVKG IKDVVTQPAA 351

Show predicted peptides also

Sort Peptides By
 Residue Number C Increasing Mass C Decreasing Mass

Start	-	End	Observed	Mr (expt)	Mr (calc)	Delta	Miss	Sequence
108	-	121	813.9580	1625.9014	1625.7937	0.1077	0	K.LGYPVTDDLDVYTR.L (Ions score 42)
195	-	217	783.3450	2347.0132	2346.1856	0.8276	0	R.FGQQEDAPVVAPAPAPAPEVQTK.H (Ions score 69)
256	-	267	632.8000	1263.5854	1263.6460	-0.0605	0	K.DGSVVVLGFTDR.I (Ions score 41)

Error: try setting browser cache to automatic.

LOCUS

Error: try setting browser cache to automatic.

ZP_05967142 350 aa linear BCT 15-0CT-2009 outer membrane protein A [Enterobacter cancerogenus ATCC 35316]. ZP_05967142. ZP_05967142.1 GI:261339284 Project:28663 DEFINITION ACCESSION VERSION DBLINK DBSOURCE REFSEQ: accession NZ ABWM02000004.1 KEYWORDS Enterobacter cancerogenus ATCC 35316 SOURCE ORGANISM Enterobacter cancerogenus ATCC 35316 Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Enterobacter. 1 (residues 1 to 350) Weinstock,G., Sodergren,E., Clifton,S., Fulton,L., Fulton,B., Courtney,L., Fronick,C., Harrison,M., Strong,C., Farmer,C., Delahaunty,K., Markovic,C., Hall,O., Minx,P., Tomlinson,C., Mitreva,M., Nelson,J., Hou,S., Wollam,A., Pepin,K.H., Johnson,M., Bhonagiri,V., Nash,W.E., Warren,W., Chinwalla,A., Mardis,E.R. and Wilson, K. REFERENCE AUTHORS Bhonagiri,V., Nash,W.E., Warren,W., ChinWalla,A., Mardis,E.K. & Wilson,R.K. Direct Submission Submitted (06-OCT-2009) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO 63108, USA TITLE JOURNAL 03108, USA 2 (residues 1 to 350) Fulton,L., Clifton,S., Fulton,B., Xu,J., Minx,P., Pepin,K.H., Johnson,M., Thiruvilangam,P., Bhonagiri,V., Nash,W.E., Mardis,E.R. and Wilson,R.K. Direct Submission REFERENCE AUTHORS TITLE Direct Submission Submitted (17-SEP-2008) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park, St. Louis, MO JOURNAL 63108, USA WGS <u>REFSEQ</u>: This record is provided to represent a collection of COMMENT whole genome shotgun sequences. The reference sequence was derived from ABWM02000004. Annotation was added by the NCBI Prokaryotic Genomes Automatic Annotation Pipeline Group. Information about the Pipeline can be

http://www.matrixscience.com/cgi/protein view.pl?file=../data/20100105/FtmmSrsST... 21/01/2010

Page 2 of 2

	found here: http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html. Please be aware that the annotation is done automatically with little or no manual curation. Enterobacter cancerogenus (GenBank Accession Number for 165 rDNA gene: Z96078, the 165 rDNA gene of a related strain of Enterobacter cancerogenus, not the sequenced strain), is a member of the Proteobacteria division of the domain bacteria and has been isolated from human feces. The sequenced strain was obtained from ATCC (ATCC 35316).
	We have performed one round of automated sequence improvement (pre-finishing), along with manual improvement that includes breaking apart any mis-assembly, and making manual joins where possible. Manual edits also are made where the consensus appears to be incorrect. All low quality data on the ends of contigs is removed. Contigs are ordered and oriented where possible.
	This work was supported by the National Human Genome Research Institute and the NIH Roadmap Human Microbiome Project [http://nihroadmap.nih.gov/hmp/].
	This is a reference genome for the Human Microbiome Project. This project is co-owned with the Human Microbiome Project DACC. Genome Coverage: 29.7x Sequencing Technology: 454.
	Method: conceptual translation.
FEATURES	Location/Qualifiers
sourc	e 1350
	/organism="Enterobacter cancerogenus ATCC 35316"
	/strain="ATCC 35316"
	/db xref="taxon:500639"
Prote	
110CC	/product="outer membrane protein A"
	/calculated mol wt=37337
Dogie	
Regio	
	/region_name="PRK10808"
	/note="outer membrane protein A; Reviewed; PRK10808"
	/db_xref="CDD: <u>138188</u> "
Regic	
	/region_name="Surface_Ag_2"
	/note="Surface antigen; c101155"
	/db_xref="CDD: <u>141128</u> "
Regio	
	/region_name="OmpA_C-like"
	/note="Peptidoglycan binding domains similar to the
	C-terminal domain of outer-membrane protein OmpA; cd07185"
	/db_xref="CDD: <u>143586</u> "
Site	order(229230,265266,269,273274,277,328,332)
	/site_type="other"
	/note="ligand binding site"
000	/db_xref="CDD: <u>143586</u> "
CDS	1350
	/locus_tag="EcanA3_020100002425"
	/coded_by="complement(NZ_ABWM02000004.1:545400546452)"
	/note="COG2885 Outer membrane protein and related
	peptidoglycan-associated (lipo)proteins"
	/transl_table=11
	/db_xref="CDD: <u>138188</u> "

Mascot: http://www.matrixscience.com/

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20100105/FtmmSrsST... 21/01/2010

G3 Mass spectrometric analysis data for differentially expressed spots *B. fragilis*

(MATRIX) SCIENCE/ Mascot Search Results

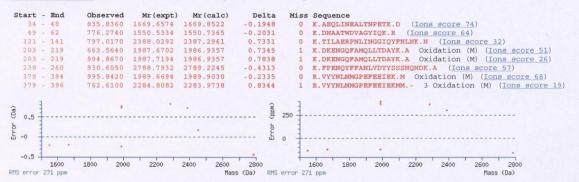
CSCIEN	CEJ	wiasce	n Seal	cn kes	uns					
User Email Search MS data	file	: laks : SSP : : D:\D	1104 ata\Lakshmy	n@unn.ac.uk						1396.d\SSP (1104) 10_RJ17_01_1396.mgf
Databas Taxonom Timesta Protein	ny ump	: Bact : 13 J	eria (Eubac an 2010 at 1	(10291680 ; teria) (571) 10:39:58 GM repeat-con	8488 seque r	ences)			llis YCH46]
Probat	oility I	Based Mow	se Score							
lons sco	re is -1	0*Log(P), w	here P is the r	probability that	t the observ	ed ma	atch is a	random e	vent.	
Individu	al ions	scores > 57	indicate ident	ity or extensiv es as a non-pro	e homology	/ (p<0	.05).			
Number of Hits 0 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40										
0		100	200 Probabili	300 ty Based Mowse	400 Score					
Peptide	e Sum	mary Rep	ort							
Form	at As	Peptide Sur	nmary	-						Help
			e threshold p		Max. nu	mber	of hits	AUTO		
				dPIT scoring						Show sub-sets 0
		Show pop-u	ips @ Suppre	ess pop-ups	Sort una	issigne	ed Deci	easing Sco	ore	Require bold red
Select	All	Select Non	e Sea	rch Selected	□ Erro	r tole	rant			
1.	gi 531	713703 M	lass: 46634	Score: 3	66 Oue	ries	matche	d: 8 e	mPAI:	0.51
	TPR re	epeat-conta	ining prote	in [Bactero	ides frag	ilis				
U	Check	to include	this hit i	in error tol	erant sea	rch				
2	Query 125	Observed 776.2740	Mr(expt)	Mr(calc)	Delta 1 -0.2031	Miss	Score 64	Expect 1	Rank	Peptide K.DNAATWDVAGYIQK.R
ম	140		1669.6574	1669.8522		0		0.00086	1	K.AEQLINEALTNPETK.D
2	185	663.5640	1987.6702	1986.9357		1	51	0.13		K.DKENGQFAMQLLTDAYK.A + Oxidation (M)
ব	<u>186</u> 187	994.8670 995.8420	1987.7194 1989.6694	1986.9357 1989.9030	0.7838	1	(26)	97 0.0026	1	K.DKENGQFAMQLLTDAYK.A + Oxidation (M) R.VYYNLNMGPEFEEIEK.M + Oxidation (M)
	233		2284.8082		0.8344	1		2.1e+02		R.VYYNLNMGPEFEEIEKMM + 3 Oxidation (M)
2	238	797.0170	2388.0292	2387.2961	0.7331	0	32	12		K.TILAERPNLINGGIQYFNLNK.N
A	248	930.6050	2788.7932	2789.2245	-0.4313	0	57	0.03	1	K. FPENQYFFANLVDYYSSSNQNDK. A
	Protei	ins matchin	g the same	set of pept	ides:					
	gi 600	581974 N	lass: 45773	Score: 3	66 Que		matche			
		-		rotein hits		0010-000)	
	Query	Observed								Peptide
য	221			2210.1115		0	34	6.3	1	MYILGINSVYHESAVCLLK
2	131			1607.8125			33	14	1	MPIYNELMLMPLK + Oxidation (M)
ব ব	<u>234</u> 80			2299.0790 1885.9707			32 32		1	LNGYWEIDKMRSLTDDAEK + Oxidation (M) SIMDNLGLPVIDDEIVK + Oxidation (M)
1				2255.0205						LNEPDFDGDDWKIEMFLR + Oxidation (M)
2	225	1113.0610	2224.1074	2224.0437	0.0638	0	30	25	1	DISWGSTWGAGDNVDIYQLK
2	44			1169.6227						LLAMEGVNPAR
র ব	<u>88</u> 157			1298.7921 1752.9312			27 27	44		KNESLKLVLQK VIGGNFKRFQFTPDK
ম	108			1412.7848			27			VAVATEEGRRVAR
2	79			1865.8263			26	91		LWGGYAKGMTAMDYMR + Oxidation (M)
2	229			2240.2277					1	YQVDLLTLHATAGRQALTAAK
2	126			2336.1722				1.1e+02		GYEVFLINALSGEGLPELMER
2	<u>209</u> 196			2099.9941 2040.9350				49	1	TINDMQMYIECVQLVVK + Oxidation (M) VEEIPDMYGWKKETAET + Oxidation (M)
2	145			1685.9365			25	56		AGLIHAFFNDRKVAK
~	112	721.6110	2161.8112	2162.0578	-0,2466	2	25	1.1e+02		ATYSDEFYMARALELARR
2	204			2081.9795			25		1	MAEMVIGEKVTLEEMGGAR + 2 Oxidation (M)
2	142 213			2511.2329 2129.9721				1.4e+02 82		SVIYEMHVGGFTRHPNSGVAPEK CDTEEIRKYAICSLSOR
P.S							~~			

(MATRIX) Mascot Search Results

Protein View

Match to: gi|60681974 Score: 366 hypothetical protein BF2494 [Bacteroides fragilis NCTC 9343] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (1104) 10_RJ17_01_1396.d\SSP (1104) 10_RJ17_01_1396.mgf

Nominal mass (M_r): **45773**; Calculated pI value: **5.24** NCBI BLAST search of <u>gi | 60681974</u> against nr Unformatted <u>sequence string</u> for pasting into other applications


Taxonomy: <u>Bacteroides fragilis NCTC 9343</u> Links to retrieve other entries containing this sequence from NCBI Entrez: gi|60493408 from <u>Bacteroides fragilis NCTC 9343</u>

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **27%**

Matched peptides shown in Bold Red

1	MVLLMAVSFA	FAQEKNVKEA	KSIAGEVKPD	FAKAEQLINE	ALTNPETKDN
51	AATWDVAGYI	QKRINEKEME	NAYLRKPYDT	LKVYNSVLNM	YNYYVKCDEL
101	AQIPNEKGKI	KNKYRSANSK	TILAERPNLI	NGGIQYFNLN	KNEDALKYFA
151	AYVDAATLPM	MEKENLLEKD	TILPQVAYYA	TLAADRVGDK	DAVMKYAQYA
201	LKDKENGQFA	MOLLTDAYKA	KGDTAKWVEK	LQEGIVKFPE	NQYFFANLVD
251	YYSSSNQNDK	AMQFADDMLA	KDPNNKLYLY	VKAYLYHNMK	DYEKAIEFYK
301	KTLDIDPAYA	EACSNLGLVY	LLQAQEYADK	APADINDPNY	ATAQAEIKKF
351	YEAAKPYYEK	ARELKPDQKD	LWLQGLYRVY	YNLNMGPEFE	EIEKMM

Show predicted peptides also

IF_212118 396 aa linear BCT 01-MAY-2009 hypothetical protein BF2494 [Bacteroides fragilis NCTC 9343]. YP_212118 YP_212118.1 GI:60681974 Froject:46 LOCUS DEFINITION ACCESSION VERSION DBLINK DBSOURCE Project:46 REFSEQ: accession NC_003228.3 KEYWORDS SOURCE Bacteroides fragilis NCTC 9343 Bacteroides fragilis NCTC 9343 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 396) REFERENCE 1 (residues 1 to 396) Cerdeno-Tarraga,A.M., Patrick,S., Crossman,L.C., Blakely,G., Abratt,V., Lennard,N., Poxton,I., Duerden,B., Harris,B., Quail,M.A., Barron,A., Clark,L., Corton,C., Doggett,J., Holden,M.T., Larke,N., Line,A., Lord,A., Norbertczak,H., Ormond,D., Price,C., Rabbinowitsch,E., Woodward,J., Barrell,B. and Parkhill,J. Extensive DNA inversions in the B. fragilis genome control variable gene expression AUTHORS TITLE gene expression Science 307 (5714), 1463-1465 (2005) 15746427 JOURNAL. PUBMED (residues 1 to 396) REFERENCE 2 2 (residues 1 to 396) Cerdeno-Tarraga, A.M. Direct Submission Submitted (29-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom AUTHORS TITLE JOURNAL 3 (residues 1 to 396) NCBI Genome Project Direct Submission REFERENCE CONSRTM TITLE JOURNAL Submitted (08-APR-2002) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA

OMMENT I	PROVISIONAL <u>REFSEQ</u> : This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>CAH08194</u> .	
	dehod: conceptual translation.	
EATURES	Location/Qualifiers	
source	1.396	
source	/organism="Bacteroides fragilis NCTC 9343"	
	/ 0.5gm/12mm #ATCC 25285; NCTC 9343"	
	/ db xref="ATCC:25285"	
	/db_xref="taxon: <u>272559</u> "	
Protein	1396	
Procein	/product="hypothetical protein"	
	/calculated mol wt=45555	
Dection	<173>373	
Region	/region name="PEP TPR lipo"	
	/http://h	
	TIGR02917"	
	/db.xref="CDD: <u>131963</u> "	
Region	247. 323	
Region	/region name="TPR"	
	/note="Tetratricopeptide repeat domain; typically contains	
	34 amino acids	
	[WLF]-X(2)-[LIM]-[GAS]-X(2)-[YLF]-X(8)-[ASE]-X(3)-[FYL]-	
	x(2)-[ASL]-X(4)-[PKE] is the consensus sequence; found in	
	a variety of organisms including bacteria, cyanobacteria,	
	yeast, fungi; cd00189"	
	/db xref="CDD:29151"	
Site	order (247,250251,280281,283284,287288,314315,	
DICC	318319,322323)	
	/site type="binding"	
	/note="binding surface"	
	/db xref="CDD:29151"	
Site	order (249,261,265,268,283,295,299,302,317)	
DACO	/site type="other"	
	/note="TPR motif"	
	/db xref="CDD:29151"	
CDS	1396	
See Se	/locus tag="BF2494"	
	/coded_by="NC_003228.3:29019132903103"	
	/note="Similar to Bacteroides thetaiotaomicron putative	
	tetratricopeptide repeat family protein BT0900	
	SWALL:Q8A9B5 (EMBL:AE016929) (398 aa) fasta scores: E():	
	4.1e-110, 72.79% id in 397 aa"	
	/transl_table=11	
	/db_xref="GeneID: <u>3287481</u> "	

(MATRIX) SCIENCE/ Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 2101
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2101) 10 RI4 01 1304.d\SSP (2101) 10 RI4 01 1304.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:14:56 GMT
Protein hits	: gi 53715478 50S ribosomal protein L7/L12 [Bacteroides fragilis YCH46]
	gi 189460676 hypothetical protein BACCOP 01323 [Bacteroides coprocola DSM 17136]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 56 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

stiff 35 °t 30 -Vunber 25 15 10 5 6 100 Probability Based Mowse Score Peptide Summary Report Format As Peptide Summary -Help Significance threshold p< 0.05 Max. number of hits AUTO Standard scoring @ MudPIT scoring C Ions score or expect cut-off 0 Show sub-sets 0 Show pop-ups @ Suppress pop-ups C Sort unassigned Decreasing Score 💽 Require bold red 🗆 Select All Select None Search Selected Error tolerant 1. gi 53715478 Mass: 12688 Score: 265 Queries matched: 4 emPAI: 0.61 50S ribosomal protein L7/L12 [Bacteroides fragilis YCH46] Check to include this hit in error tolerant search Proteins matching the same set of peptides: gi 150003396 Mass: 12704 Score: 265 Queries matched: 4 50S ribosomal protein L7/L12 [Bacteroides vulgatus ATCC 8482] gi 153805949 Mass: 12686 Score: 265 Queries matched: 4 hypothetical protein BACCAC_00194 [Bacteroides caccae ATCC 43185] gi 189460676 Mass: 12771 Score: 165 Queries matched: 3 emPAI: 0.27 2. hypothetical protein BACCOP_01323 [Bacteroides coprocola DSM 17136] $\hfill\square$ Check to include this hit in error tolerant search
 Query
 Observed
 Mr (expt)
 Mr (calc)
 Delta
 Miss
 Score
 Expect
 Rank
 Peptide

 60
 565.2530
 1128.4914
 1128.6390
 -0.1476
 0
 33
 13
 1
 K.EVNELATILK.E

 71
 644.2390
 1286.4634
 1285.6765
 0.7869
 0
 43
 1
 2
 K.VLEEAGAEVELK.

 72
 666.8020
 1331.5894
 1331.7449
 -0.1554
 0
 88
 3.6e-05
 1
 K.AFAEQUVNLTVK.E
 Peptide matches not assigned to protein hits: (no details means no match) Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
 Query
 Observed
 Mr (carc)
 Delta Miss Score
 Expect Rank
 Peptide

 ▼
 180
 725.9040
 2174.6902
 2175.0960
 -0.4059
 0
 33
 6.2
 1
 GPLTQCYLGTPQYSAPEQLR

 ▼
 160
 1041.9470
 2081.8794
 2083.034
 -1.1540
 2
 32
 9.8
 1
 SGGTGLTDQYLGTPQYSAPEQLR

 ▼
 213
 763.0340
 2286.0802
 2287.0361
 -0.9550
 1
 29
 1
 SGGTGLTDQAFYRAMMEAQNGGE

 ▼
 146
 673.3010
 2016.8812
 2017.0844
 -0.2032
 0
 29
 21
 1
 TOLYESTNGTQALDLIR

 ▼
 250
 970.7500
 2909.2282
 2908.6320
 0.5962
 0
 29
 13
 1
 QRPILAEGPATILVNPQLPENIGMVAR

 65
 584.5490
 1750.6252
 174.99050
 0.7202
 0
 27
 51
 1
 HLVTALFELEGGGPR

(MATRIX) Mascot Search Results

Protein View

Match to: gi|53715478 Score: 265 505 ribosomal protein L7/L12 [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2101) 10_RI4_01_1304.d\SSP (2101) 10_RI4_01_1304.mgf

Nominal mass (M_r): **12688**; Calculated pI value: **4.71** NCBI BLAST search of $\underline{gi} | \underline{53715478}$ against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60683451 from Bacteroides fragilis NCTC 9343 gi 25356657 from Bacteroides fragilis 3_12 gi 255011634 from Bacteroides fragilis 3_12 gi 81313501 from Bacteroides fragilis NCTC 9343 gi 81608231 from Bacteroides fragilis NCTC 9343 gi 81608231 from Bacteroides fragilis NCTC 9343 gi 8160494855 from Bacteroides fragilis NCTC 9343 gi 255944829 from Bacteroides fragilis NCTC 9343 gi 253252840 from Bacteroides gragilis NCTC 9343 gi 253252840 from Bacteroides gragilis NCTC 9343 gi 253252840 from Bacteroides gragilis NCTC 9343

Fixed modifications: Carboxymethyl (C) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 50%

Matched peptides shown in Bold Red

1 MADLKAFAEQ LVNLTVKEVN ELATILKEEY GIEPAAAAVA VAAGPAAGAA 51 AAEEKSSFDV VLKSAGAAKL QVVKAVKEAC GLGLKEAKDM VDGAPSVVKE 101 GLAKDEAESL KKTLEEAGAE VELK

Show predicted peptides also

Sort Peptides By
 Residue Number C Increasing Mass C Decreasing Mass

Start			Observed	Mr(expt)	Mr(calc)	Delta		Sequence
6			666.8020	1331.5894	1331.7449	-0.1554	0	K.AFAEQLVNLTVK.E (Ions score 88)
18	-	27	565.2530	1128.4914	1128.6390	-0.1476	0	K.EVNELATILK.E (Ions score 33)
28	-	55	852.4230	2554.2472	2554.2550	-0.0079	0	K.EEYGIEPAAAAVAVAAGPAAGAAAAEEK.S (Ions score 91
113		124	644.2390	1286.4634	1287.6558	-1.1923	0	K.TLEEAGAEVELK (Ions score 52)
-0 -							0	
(Da)	•					(udd)		•
	1					5	-250	
-0.5 -	1-						-500	
120	1					لت ا	-750	
-1 -	1-						100	
1	+	1 1 1	1500	2000	1 1 1 1	2500	+	1500 2000 2500
		71 ppm		2000	Ma		error 47	

YP_101470 124 aa linear BCT 26-APR-2009 505 ribosomal protein L7/L12 [Bacteroides fragilis YCH46]. LOCUS DEFINITION YP_101470 YP_101470.1 GI:53715478 ACCESSION VERSION DBLINK Project: 13067 REFSEQ: accession NC_006347.1 DBSOURCE KEYWORDS SOURCE ORGANISM Bacteroides fragilis YCH46 Bacteroides fragilis YCH46 Bacteroides fragilis YCH46 Bacteroides facteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 124) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., REFERENCE AUTHORS Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA TITLE Genomic analysis of Bacteroides fragilis reveals extensive inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) <u>15466707</u> 2 (residues 1 to 124) NCBI Genome Project Direct Submission Submitted (01-0CT-2004) National Center for Biotechnology JOURNAL PUBMED REFERENCE CONSRTM TITLE JOURNAL Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 124) REFERENCE AUTHORS TITLE Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T. Direct Submission Direct Submission Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan REVIEWED <u>REFSEQ</u>: This record has been curated by NCBI staff. The reference sequence was derived from <u>BAD50936</u>. JOURNAL COMMENT

FEATURES	conceptual translation. Location/Qualifiers
source	1124
Dource	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db xref="taxon:295405"
Protein	1124
	/product="50S ribosomal protein L7/L12"
	/calculated mol wt=12506
Region	2123
	/region name="Ribosomal L7 L12"
	/note="Ribosomal protein L7/L12. Ribosomal protein L7/L12
	refers to the large ribosomal subunit proteins L7 and L12,
	which are identical except that L7 is acetylated at the N
	terminus. It is a component of the L7/L12 stalk, which is
	located at the surface of; cd00387"
	/db_xref="CDD: <u>100102</u> "
Site	order(2,1517,2021,24,27,42,4546,4850,5657,78,
	8081,83,8586,100101,103,106)
	/site_type="other"
	/note="core dimer interface"
	/db_xref="CDD: <u>100102</u> "
Site	order(5,8,12,25,30)
	/site_type="other"
	/note="peripheral dimer interface"
	/db_xref="CDD:100102"
Site	order(19,2223,27,30)
	/site_type="other"
	/note="L10 interface"
	/db_xref="CDD:100102"
Site	order(6970,7374,77,8485,88)
	/site_type="other"
	/note="Lll interface"
	/db_xref="CDD:100102"
Site	order(70,74,77,8485,88)
	/site_type="other"
	/note="putative EF-Tu interaction site"
	/db_xref="CDD: <u>100102</u> "
Site	order (70, 7374, 77)
	/site_type="other"
	/note="putative EF-G interaction site"
ana	/db_xref="CDD: <u>100102</u> "
CDS	1124
	/gene="rplL" /locus tag="BF4193"
	/coded by="complement(NC 006347.1:47908044791178)"
	/note="present in two forms; L12 is normal, while L7 is
	aminoacylated at the N-terminal serine; the only multicopy
	ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two
	L12 dimers bind L10; critically important for translation
	efficiency and fidelity; stimulates GTPase activity of
	translation factors"
	/transl table=11
	/db xref="GeneID: <u>3085275</u> "

Mascot: http://www.matrixscience.com/

(MATRIX) SCIENCE/ Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 2102
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2102) RE11 01 1007.d\SSP (2102) RE11 01 1007.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Bubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:16:07 GMT
Protein hits	: gi 53715478 505 ribosomal protein L7/L12 [Bacteroides fragilis YCH46]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

- turbulation	,	100 mary Rep		300 Ity Based Mowse	Score					
orm	at As	Peptide Sur			-				-	Help
		-	e threshold p	1.00	Max. n	umber	r of hits	AUTO		
		Standard sc	coring @ Mu	dPIT scoring	C Ions sc	ore or	expect	cut-off 0		Show sub-sets 0
		Show pop-	ups 🖲 Suppr	ess pop-ups	Sort un	nassign	ned De	creasing So	core	Require bold red
	Interesting		and an							
elect	All	Select Nor	ne Sea	arch Selected	Err	or tol	erant			
	gi 537	15478	Mass: 12688	Score:	347 011	eries	match	ed: 30	emPA	I: 1.05
	710			12 [Bactero					GILL PA.	. 1.05
				in error to	-					
(Query 33	Observed 447.6820	Mr(expt) 893.3494	Mr(calc) 893.4858	Delta -0.1364	Miss	Score (35)	Expect 8.2	Rank 2	Peptide
2	34	447.6950	893.3494	893.4858	-0.1364	0	(35)	8.2	1	K.SSFDVVLK.S K.SSFDVVLK.S
1	35	447.7160	893.4174	893.4858	-0.0684	0	47	0.54	1	K.SSFDVVLK.S
1. Sector	36	447.7320	893.4494	893.4858	-0.0364	0	(41)	2.2	2	K.SSFDVVLK.S
1	37	447.7340	893.4534	893.4858	-0.0324	0	(36)	6.3	1	K.SSFDVVLK.S
~	38	447.7350	893.4554	893.4858	-0.0304	0	(42)	1.9	1	K.SSFDVVLK.S
2	39	447.7600	893.5054	893.4858	0.0196	0	(32)	16	1	K.SSFDVVLK.S
2	65	565.2660	1128.5174	1128.6390	-0.1216	0	34	12	1	K.EVNELATILK.E
2	66	567.2240	1132.4334	1132.5434	-0.1100	0	41	2.6	1	K.DMVDGAPSVVK.E + Oxidation (M)
2	69	644.7600	1287.5054	1287.6558	-0.1503	0	(48)	0.42	1	K.TLEEAGAEVELK
5	70	644.7780	1287.5414	1287.6558	-0.1143	0	(63)	0.016	1	K.TLEBAGAEVELK
N	71 72	644.7810 644.7840	1287.5474 1287.5534	1287.6558 1287.6558	-0.1083	0	(51)	0.24	1	K.TLEEAGAEVELK K.TLEEAGAEVELK
2	73	644.7860	1287.5574	1287.6558	-0.0983	0	82	0.00022	1	K.TLEEAGAEVELK
F	74	644.8000	1287.5854	1287.6558	-0.0703	0	(68)	0.0054	1	K.TLEEAGAEVELK
2	75	644.8140	1287.6134	1287.6558	-0.0423	0	(44)	2.2	1	K.TLEEAGAEVELK
ব	76	644.8420	1287.6694	1287.6558	0.0137	0	(66)	0.0086	1	K.TLEEAGAEVELK
2	82	444.8610	1331.5612	1331.7449	-0.1837	0	(42)	1.7	1	K.AFAEQLVNLTVK.E
2	83	666.8020	1331.5894	1331.7449	-0.1554	0	(84)	0.00011	1	K.AFAEQLVNLTVK.E
1	84	666.8030	1331.5914	1331.7449	-0.1534	0	97	5.7e-06	1	K.AFABQLVNLTVK.E
	85	666.8080	1331.6014	1331.7449	-0.1434	0		0.00091	1	K.AFAEQLVNLTVK.E
2	86	666.8130 666.8320	1331.6114	1331.7449	-0.1334	0	(77)	0.00054	1	K.AFAEQLVNLTVK.E
র ব	87	666.8340	1331.6494	1331.7449	-0.0954	0		3.8e-05 5.1e-05	1	K.AFAEQLVNLTVK.E K.AFAEQLVNLTVK.E
ন ন ন		666.8400	1331.6654	1331.7449	-0.0914	0		0.00033	1	K.AFAEQLVNLTVK.E K.AFAEQLVNLTVK.E
ব ব ব ব	89		1331.6694	1331.7449	-0.0754	0	(88)	4.6e-05	1	K.AFABOLVNLTVK.E
ন ন ন		666.8420			and the second	0	1.5.6	1.2e-05	1	K.AFAEQLVNLTVK.E
র র র র	89	666.8420 666.8660	1331.7174	1331.7449	-0.0274					
র ব ব ব ব	<u>89</u> 90			1331.7449 1331.7449	-0.0274	0	(80)	0.00029	1	K.AFAEQLVNLTVK.E
द द द द द द द	<u>89</u> 90 91	666.8660	1331.7174					0.00029	1 1	K.AFAEQLVNLTVK.B K.EAKDMVDGAPSVVK.E + Oxidation (M)

Protein View

Match to: gi|53715478 Score: 347 505 ribosomal protein L7/L12 [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2102)_RE11_01_1007.d\SSP (2102)_RE11_01_1007.mgf

Nominal mass (M_z): 12688; Calculated pI value: 4.71 NCBI BLAST search of gi 53715478 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60683451 from Bacteroides fragilis NCTC 9343 gi 253566657 from Bacteroides sp. 3 2 5 gi 255011634 from Bacteroides fragilis 3 1 12 gi 265767535 from Bacteroides fragilis NCTC 9343 gi 81608231 from Bacteroides fragilis NCTC 9343 gi 81608231 from Bacteroides fragilis NCTC 9343 gi 6160494885 from Bacteroides fragilis NCTC 9343 gi 251944825 from Bacteroides fragilis NCTC 9343 gi 251944825 from Bacteroides sp. 3 2 5 gi 263252840 from Bacteroides sp. 2 1.16

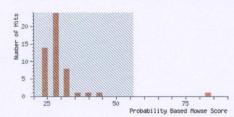
Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **48%**

Matched peptides shown in Bold Red

1 MADLKAFARQ LVNLTVKEVN ELATILKEEY GIEFAAAAVA VAAGPAAGAA 51 AAEEKSSFDV VLKSAGAAKL QVVKAVKEAC GIGLKEAKDM VDGAPSVVKE 101 GLAKDEAESL KKTLEEAGAE VELK

Show predicted peptides also

tart			Observed	Mr(expt)	Mr(calc)	Delta	Miss	Sequence
		17	880.4590	1758.9034	1758.9880	-0.0845	1	M.ADLKAFAEQLVNLTVK.E (Ions score 12)
6	-	17	444.8610	1331.5612	1331.7449	-0.1837	0	K.AFAEQLVNLTVK.E (Ions score 42)
6		17	666.8020	1331.5894	1331.7449	-0.1554	0	K.AFAEQLVNLTVK.E (Ions score 84)
6		17	666.8030	1331.5914	1331.7449	-0.1534	0	K.AFAEQLVNLTVK.E (Ions score 97)
6	-	17	666.8080	1331.6014	1331.7449	-0.1434	0	K.AFAEQLVNLTVK.E (Ions score 75)
6	-	17	666.8130	1331.6114	1331.7449	-0.1334	0	K.AFAEQLVNLTVK.E (IONS score 77)
6	-	17	666.8320	1331.6494	1331.7449	-0.0954	0	K.AFAEQLVNLTVK.E (Ions score 89)
6	-	17	666.8340	1331.6534	1331.7449	-0.0914	0	K.AFAEQLVNLTVK.E (Ions score 88)
6		17	666.8400	1331.6654	1331.7449	-0.0794	0	K.AFAEQLVNLTVK.E (Ions score 80)
6		17	666.8420	1331.6694	1331.7449	-0.0754	0	K.AFAEQLVNLTVK.E (Ions score 88)
6		17	666.8660	1331.7174	1331.7449	-0.0274	0	K.AFAEQLVNLTVK.E (Ions score 94)
6	-	17	666.8780	1331.7414	1331.7449	-0.0034	0	K.AFAEOLVNLTVK.E (Ions score 80)
18	-	27	565.2660	1128.5174	1128.6390	-0.1216	0	K.EVNELATILK.E (Ions score 34)
56	-	63	447.6820	893.3494	893.4858	-0.1364	0	K.SSFDVVLK.S (Ions score 35)
56		63	447.6950	893.3754	893.4858	-0.1104	0	K.SSFDVVLK.S (Ions score 34)
56	1	63	447.7160	893.4174	893.4858	-0.0684	0	K.SSFDVVLK.S (Ions score 47)
56			447.7320	893.4494	893.4858	-0.0364	0	K.SSFDVVLK.S (Ions score 41)
56			447.7340	893.4534	893.4858	-0.0324	0	K.SSFDVVLK.S (Ions score 36)
56			447.7350	893.4554	893.4858	-0.0304	0	K.SSFDVVLK.S (Ions score 42)
56			447.7600	893.5054	893.4858	0.0196	0	K.SSFDVVLK.S (Ions score 32)
86			730.8450	1459.6754	1460.7181	-1.0426	1	K.EAKDMVDGAPSVVK.E Oxidation (M) (Ions score 3
89			567.2240	1132.4334	1132.5434	-0.1100	0	K.DMVDGAPSVVK.E Oxidation (M) (Ions score 41)
113			644.7600	1287.5054	1287.6558	-0.1503	0	K.TLEEAGAEVELK (Ions score 48)
113			644.7780	1287.5414	1287.6558	-0.1143	0	K.TLEEAGAEVELK (IONS SCOTE 43)
113			644.7810	1287.5474	1287.6558	-0.1083	0	K.TLEEAGAEVELK (IONS SCOLE 53)
113			644.7840	1287.5534	1287.6558	-0.1023	0	K.TLEBAGAEVELK (IONS SCORE 51) K.TLEBAGAEVELK (IONS SCORE 69)
113			644.7860	1287.5574	1287.6558	-0.0983	0	K.TLEEAGAEVELK (IONS SCORE 82)
113			644.8000	1287.5854	1287.6558	-0.0703	0	· · · · · · · · · · · · · · · · · · ·
113			644.8140	1287.6134	1287.6558		0	
113			644.8420			-0.0423		K.TLEEAGAEVELK (Ions score 44)
113	-	124	044.8420	1287.6694	1287.6558	0.0137	0	K.TLEEAGAEVELK (Ions score 66)
-0 -	{	+				ê	0 7-	
	-					Error (ppm)	1	* * * *
	-					5	-250	
-0.5	-					E	-	
	-					ш.	-500	
-1 -	1-						3	
-	+	1 1 1		1 1 1 1 1	1 1 1 1 1		-750	· · · · · · · · · · · · · · · · · · ·
		100	0 1	250	1500	1750	anne an	1000 1250 1500 1750
error	10	54 ppm			Mas	s (Da) RMS	error 154	4 ppm Mass (Da)
CUS		YP_	101470		124 aa	line	ar BC	CT 26-APR-2009
INIT			ribosomal					


	Mascot: http://www.matrixscience.com/
	/db_xref="GeneID: <u>3085275</u> "
	translation factors" /transl_table= <u>11</u>
	L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of
	ribosomal protein: 4:1 ratio of L7/L12 per ribosome; two
	/note="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy
	/locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)"
CDS	1124 /gene="rplL"
and the second	/db_xref="CDD: <u>100102</u> "
	/site_type="other" /note="putative EF-G interaction site"
Site	order (70, 7374, 77)
	<pre>/note="putative EF-Tu interaction site" /db xref="CDD:100102"</pre>
Site	order(70,74,77,8485,88) /site_type="other"
	/db_xref="CDD:100102" order/20_74_77_84_85_88)
	/site_type="other" /note="L11 interface"
Site	order(6970,7374,77,8485,88)
	/note="L10 interface" /db_xref="CDD: <u>100102</u> "
Site	/site_type="other"
Cito	/db_xref="CDD: <u>100102</u> " order(19,2223,27,30)
	/note="peripheral dimer interface"
Site	order(5,8,12,25,30) /site type="other".
	/note="core dimer interlace" /db_xref="CDD:100102"
	/site_type="other" /note="core dimer interface"
Site	8081,83,8586,100101,103,106)
	/db_xref="CDD: <u>100102</u> " order(2,1517,2021,24,27,42,4546,4850,5657,78,
	located at the surface of; cd00387"
	which are identical except that L7 is acetylated at the N terminus. It is a component of the L7/L12 stalk, which is
	refers to the large ribosomal subunit proteins L7 and L12,
	/region_name="Ribosomal_L7_L12" /note="Ribosomal protein L7/L12. Ribosomal protein L7/L12
Region	2123
	/product="50S filosomal protein L//Hz2" /calculated_mol_wt=12506
Protei	
	/db_xref="taxon:295405"
	/organism="Bacteroides fragilis YCH46" /strain="YCH46"
FEATURES source	1124
FEATURES	Method: conceptual translation. Location/Qualifiers
oor a rank a	reference sequence was derived from BAD50936.
COMMENT	REVIEWED REFSEQ: This record has been curated by NCBI staff. The
JOURNAL	Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
AUTHORS	Direct Submission
REFERENCE	3 (residues 1 to 124) Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T.
	Information, NIH, Bethesda, MD 20894, USA
JOURNAL	Direct Submission Submitted (01-OCT-2004) National Center for Biotechnology
CONSRTM	NCBI Genome Project
PUBMED REFERENCE	<u>15466707</u> 2 (residues 1 to 124)
JOURNAL	Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004)
TTTT	inversions regulating cell surface adaptation
TITLE	Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA
AUTHORS	Kuwahara T., Yamashita A., Hirakawa, H., Nakayama, H., Toh, H.,
REFERENCE	1 (residues 1 to 124)
	Bacteria, Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides.
OURCE	Bacteroides fragilis YCH46
KEYWORDS	Bacteroides fragilis YCH46
	stort ung .
DBLINK DBSOURCE	Project:13067 REFSEQ: accession NC_006347.1

(MATRIX) SCIENCE/ Mascot Search Results

User	: LAKSHMY MANICKAN
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 2401
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2401) 10_RK3_01_1421.d\SSP (2401) 10_RK3_01_1421.mgf
Database	: NCBInr 20090522 (8876587 sequences; 3036162093 residues)
Taxonomy	: Bacteria (Eubacteria) (4773688 sequences)
Timestamp	: 30 May 2009 at 10:35:03 GMT
Protein hits	: gi 53713032 GrpE protein [Bacteroides fragilis YCH46]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 56 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

Unna	t As	Peptide Sun	and and the second second	*						Help
		Significance	e threshold p<	0.05	Max. n	umber	of hits	AUTO		
				IPIT scoring	lons sc	ore or	expect of	cut-off 0		Show sub-sets 0
								reasing Sco		• Require bold red
		Show pop-u	ips • Suppre	ss pop-ups	Sort un	assign	ealbec	leasing Scc	ле .	- Require bold red 1
elect	AII 1	Select Non	e Sea	rch Selected	CErr		mant			
	- su	Ociect Hom		on obloated		or tore	rant			
9	ri 537	713032 M	ass: 22007	Score: 8	3 Qu	eries	matche	ed: 2		
G	GrpE p	protein [Ba	cteroides f	ragilis YCH	46]					
Г	heck	to include	this hit i	n error tol	erant sea	arch				
~		Observed	Ma (aunt)	Mr(calc)	Delte	Mina		Property D.	anla	Dambida
P	uery 119	Observed 652.2180	Mr (expt) 1302.4214	1302.6489.	-0.2275	0	48	Expect Ra		Peptide K.SILPVIDDMER.A + Oxidation (M)
F	240	860.6480	2578,9222	2579.2391	-0.3169	0	35	3.7		K.DQPLDTDYHEAIAVIPAPTEEOK.G
tide	matc	hes not as	signed to p	rotein hits	: (no det	ails	means	no match)	
	uery	Observed	Mr (expt)	Mr (calc)			Score	and the second second		Peptide
2	205	694.9240	2081,7502	2080.9338	0.8164		32	8.8	1	TGTGESEEAEEAVGFWQVR
5	228	1112.9430	2223.8714	2223.0696	0.8019		31	11	1	DYLRDDVDQVLIDSPDAFK
1	224	737.6170	2209.8292	2209.1062	0.7230		30	13	1	NSSNIFQIKKFHTNQTMR + Oxidation (M)
2	192	989.4900	1976.9654	1975.9455	1.0199		30	40	1	DMPEGVDTDKVIQRAME + Oxidation (M)
2	227	742,2680	2223.7822	2223.0049	0.7773		29	17	1	QMPAGYETQIGEGGGMLSGGQR
2	124	660.2840	1318.5534	1317.6421	0.9114		29	34	1	AAGLPVICMETR
2	54	362.3120	1083.9142	1084.6142	-0.7000		28	45	1	AVPIPGYGRR
2	162	562.7890	1685.3452	1684.7800	0.5651		27	30	1	MFTLADDATCIIGTR
2	129	671.2260	1340.4374	1339.6884	0.7490		27	35	1	EALTOFLPEHR
2	212	700.9180	2099.7322	2099.0932	0.6389		26	39	1	QSLDLNIILVTHDKESMK + Oxidation (M)
2	106	555.3090	1662.9052	1661.8195	1.0857		25	1.3e+02	1	DDWIGQAKALMRDK + Oxidation (M)
N	144	750.8970	2249.6692	2250.0773	-0.4081		25	1.2e+02	1	SSGAAVAMVPFVQNLTPQDMR + 2 Oxidation (M)
V	109	579.1220	1734.3442	1733.8836	0.4505		24	1.4e+02	1	LIETLVSENFTDPTR
N	78	438.3790	1312.1152	1311.6129	0.5023		24	1.6e+02	1	YGESPSQSMKKA
ব	173	910.6630	2728.9672	2728.3160	0.6512		24 23	1.2e+02 1.3e+02	1	QYSAQSAAMRETGVANSTLMDPKLE + 2 Oxidation MTSTTDRTTDTATAVADVLE + Oxidation (M)
2	142	705 5310	2113.5712		0.5503		23	1.30+02	1	MISTIDRITDRATAVADVLE + Oxidation (M) SSEAAPRGRGSAPGVAPPVW
1	- <u>189</u> 223	650.5210 1105.9120	1948.5412 2209.8094	1947.9915	-0.4138		23	70	1	GVLPLALLVLSGSLVLAGCDDK
1	191	656.3610	1966.0612	1967.1316	-1.0704		23	1.1e+02	1	LOAAGIGAVRGGALYPVLNK
N N	188	970.8420	1939.6694	1940.1129	-0.4434		23	76	1	QKVIKPLVSEQVVQSMK
1	195	670.0460	2007.1162	2008.0710	-0.9549		23	1.1e+02	1	IVRVGGMMVAFGTGRNVTK + Oxidation (M)
N.	241	866.3330	2595.9772	2596.2519	-0.2748		23	68	1	APFTAELDASDIEKGTYPHFMLK + Oxidation (M)
1.	219	1069.6480	3205.9222	3205.5251	0.3971		22	1.6e+02	1	EAVHETADGROFLVMHGDEFDSVVRYAK
V	nad		2125.7032	2126.1372	-0.4340		22	88	1	VAVVGFAPVANQDIGVDNLTK
ব	217									
র র র	217 169	709.5750	2710.9102	2711.3914	-0.4812		22	1.7e+02	1	TELSQYAISVLIDMGLSMGLLWQK + Oxidation (M

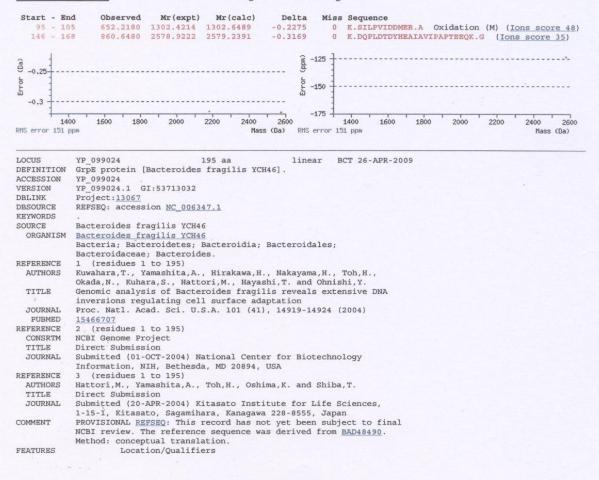
(MATRIX) SCIENCE/ Mascot Search Results

Protein View

Match to: gi|53713032 Score: 83
GrpE protein [Bacteroides fragilis YCH46]
Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2401) 10_RK3_01_1421.d\SSP (2401) 10_RK3_01_1421.mgf

Nominal mass (M_r) : 22007; Calculated pI value: 4.71 NCBI BLAST search of <u>gi | 53713032</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gi|50681311 from Bacteroides fragilis NCTC 9343</u> <u>gi|81315621 from Bacteroides fragilis NCTC 9343</u> <u>gi|81690697 from Bacteroides fragilis</u> <u>gi|52215897 from Bacteroides fragilis NCTC 9343</u>

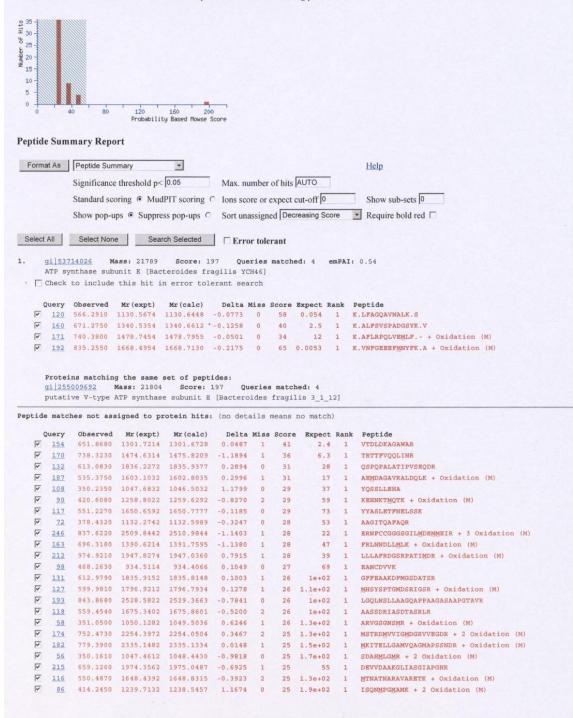

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 17%

Matched peptides shown in Bold Red

1 MDPKEKKTKQ EEELKVDDIQ DTVEGQSQNE EATEATEPLT AEEKLEKELK 51 EAQAQIEDQK DKYLRLSAEF DNYRKRTVKE KAELILNGGE KSIKSILPVI 101 DDMERALTTM ETATDVNAVK EGVELIYNKF LSILSQDGVK VIETKDQPLD 151 TDYHRALAVI PAPTEBQGK ILDCVQTGYT LNGKVIRHAK VVVGE

Show predicted peptides also

Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass



source	1195
	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db_xref="taxon:295405"
Protein	1195
	/product="GrpE protein"
	/calculated mol wt=21832
Region	56193
	/region name="GrpE"
	/note="GrpE is the adenine nucleotide exchange factor of
	Dnak (Hsp70)-type ATPases. The GrpE dimer binds to the
	ATPase domain of Hsp70 catalyzing the dissociation of ADP,
	which enables rebinding of ATP, one step in the Hsp70
	reaction cycle in protein folding; cd00446"
	/db xref="CDD:73207"
Site	order (5859, 6263, 66, 70, 7374, 88, 92, 95, 102, 106, 123, 126,
	137)
	/site type="other"
	/note="dimer interface"
	/db xref="CDD:73207"
Site	order (75, 151, 154158, 175, 184, 188)
	/site type="other"
	/note="hsp70 (ATPase domain) interactions"
	/db xref="CDD:73207"
CDS	1195
	/locus tag="BF1743"
	/coded by="complement(NC 006347.1:20505582051145)"
	/note="similar to gp:AE016931 34 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 80 in 195 aa,
	BLASTP E(): 7e-82"
	/transl table=11
	/db xref="GeneID:3082995"

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 2701
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2701) 100 RH7 01 1762.d\SSP (2701) 100 RH7 01 1762.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:17:22 GMT
Protein hits	: gi 53714026 ATP synthase subunit E [Bacteroides fragilis YCH46]

Probability Based Mowse Score

lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

(MATRIX) SCIENCE Mascot Search Results

Protein View

Match to: gi 53714026 Score: 197 ATP synthase subunit E [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2701) 100_RH7_01_1762.d\SSP (2701) 100_RH7_01_1762.mgf

Nominal mass (M_r): **21789**; Calculated pI value: **5.08** NCBI BLAST search of <u>gi[53714026</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60682222 from <u>Bacteroides fragilis NCTC 9343</u> gi 253566982 from <u>Bacteroides sp. 3 2 5</u> gi 265764376 from <u>Bacteroides sp. 2 1 16</u> gi 50493656 from <u>Bacteroides fragilis YCH46</u> gi 60493656 from <u>Bacteroides fragilis NCTC 9343</u> gi 253544106 from <u>Bacteroides sp. 3 2 5</u> gi 263256984 from <u>Bacteroides sp. 2 1 16</u>

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **25%**

Matched peptides shown in Bold Red

1 MENKIQELTD KIYREGVEKG NEEARRLIAN AQEEAKKIVE DAHKEAESII 51 ASSRKSADEL TENTKSELKI FAGQAVNALK SEIATMVTDK IVTAPVKEFA 101 QNKDFLNAFI VALASKWSVD EPIIISTSDA ESLKKYFAAN AKALLDKGVT 151 IEQVNGIKAL FSVSPADGSY KVNFGEEEFM NYFKAFLRPQ LVEMLF

Show predicted peptides also

Sort Peptides By
 Residue Number
 Increasing Mass
 Decreasing Mass

St	tart	-	End	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Sequence
	70	-	80	566.2910	1130.5674	1130.6448	-0.0773	0	K.LFAGQAVNALK.S (Ions score 58)
	159	-	171	671.2750	1340.5354	1340.6612	-0.1258	0	K.ALFSVSPADGSYK.V (Ions score 40)
	172	-	184	835.2550	1668.4954	1668.7130	-0.2175	0	K.VNFGEEEFMNYFK.A Oxidation (M) (Ions score 65)
	185	-	196	740.3800	1478.7454	1478.7955	-0.0501	0	K.AFLRPQLVEMLF Oxidation (M) (Ions score 34)
(Da)	-0.1	-					(wdd)	-50]-	
'n	-0.15						F	-75	·
		100) 120 8 ppm	0 1300	1400 1	500 1600 Mas	1700	-125	1200 1300 1400 1500 1600 1700 ppm Hass (Da)

YP_100018 196 aa linear BCT 26-APR-2009 ATP synthase subunit E [Bacteroides fragilis YCH46]. LOCUS DEFINITION ACCESSION YP_100018 YP_100018.1 GI:53714026 VERSION DBLINK Project: 13067 DBSOURCE REFSEQ: accession NC 006347.1 KEYWORDS Bacteroides fragilis YCH46 SOURCE ORGANISM Bacteroides fragilis YCH46 Bacteroidaceae; Bacteroides. 1 (residues 1 to 196) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707 2 (residues 1 to 100) Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; REFERENCE AUTHORS TITLE JOURNAL. PUBMED 1546707 2 (residues 1 to 196) NCBI Genome Project Direct Submission Submitted (01-OCT-2004) National Center for Biotechnology REFERENCE CONSRTM TITLE JOURNAL Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 196) Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. REFERENCE AUTHORS Direct Submission TITLE JOURNAL Submitted (20-APR-2004) Kitasato Institute for Life Sciences, PROVISIONAL <u>REFSEQ</u>: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD49484</u>. Method: conceptual translation. COMMENT

EATURES	Location/Qualifiers
source	1196
	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db_xref="taxon: <u>295405</u> "
Protein	1196
	/product="ATP synthase subunit E"
	/calculated mol_wt=21672
Region	1195
	/region name="ATP-synt B"
	/note="ATP synthase B/B' CF(0); cl07975"
	/db xref="CDD:143711"
Region	18196
	/region name="vATP-synt_E"
	/note="ATP synthase (E/31 kDa) subunit; pfam01991"
	/db xref="CDD:110943"
CDS	1196
000	/locus tag="BF2734"
	/coded by="complement(NC 006347.1:31396993140289)"
	/note="similar to gp:AE016931 92 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 89 in 196 aa,
	BLASTP E(): 3e-95"
	/transl table=11
	/db xref="GeneID:3083533"
	AN MONTH STREET

(MATRIX) SCIENCE/ Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 2704
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2704) 1000 RG17 01 1193.d\SSP (2704) 1000 RG17 01 1193.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:18:32 GMT
Protein hits	: gi 53714026 ATP synthase subunit E [Bacteroides fragilis YCH46]

Probability Based Mowse Score

lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

00 1////10	mumm			
- 06 Hts				
° 25-				
20 - Numpu 15 -				
2 15-				
10-				
5 -				
0			1 1 1 1	
	50	100	15)

Probability Based Mowse Score

Peptide Summary Report

Forma	at As	Peptide Sum	imary							Help
		Significance	threshold p<	0.05	Max. nu	mber	of hits	AUTO		
		Standard sco	oring Mud	PIT scoring (-	Show sub-sets 0
				-			-			
		Snow pop-u	ps • Suppre	ss pop-ups	Sort una	issigne	d Decr	easing Sc	ore	Require bold red
Select	AII 1	Select None	a l Soor	ch Selected	1 ==					
Select		Select None	Sear	ch Selected	☐ Erro	r tole	rant			
	qi 537	714026 M	ass: 21789	Score: 1	75 Que	ries	matche	d: 5	emPAI:	0.33
1	ATP sy	mthase sub	unit E [Bact	teroides fr	agilis YC	H46]				
	Check	to include	this hit in	n error tol	erant sea	rch				
	Query	Observed	Mr (expt)	Mr(calc)	Delta			Expect		Peptide
2	74	566.3400	1130.6654	1130.6448	0.0207	0	54	0.12	1	K.LFAGQAVNALK.S
2	75	566.7860	1131.5574	1130.6448	0.9127	0	(26)	82	1	K.LFAGQAVNALK.S
2	87	671.3080	1340.6014	1340.6612	-0.0598	0	30	26	1	K.ALFSVSPADGSYK.V
2	101	740.3580	1478.7014	1478.7955	-0.0941	0	33	12	1	K.AFLRPQLVEMLF + Oxidation (M)
2	155	1059.9960	2117.9774	2117.0892	0.8883	1	57	0.045	1	K.WSVDEPIIISTSDAESLKK.Y
	101.84				_	_	1			
ptide	e matc	hes not ass	igned to pr	otein hits:	(no deta	ails r	neans 1	no match	1)	
	Query	Observed	Mr (expt)	Mr(calc)	Delta		Score	Expect		
2	100	738.3090	1474.6034	1474,8395	-0.2360	1	49	0.38	1	ELIEISKFLLDR
2	167	767.3490	2299.0252	2298.2947	0.7305	1	34	7.7		QKPQNAQALETLDTIKFLLK
2	80	651.8460	1301.6774	1301.6463	0.0311	0	31	23		VTDIDVNVNEGK
2	107	786.0440	2355.1102	2354.2376	0.8725	2	31	34	1	TGDVLAAGPVLGKVRAMVDDSGAR
2	83	657.1320	1312.2494	1312.6987	-0.4492	0	29	23	1	TLPAGTSAGAPATAK
2	161	1106.0070	2209.9994	2210.1306	-0.1312	1	28	36	1	CQIVYNVLKTHIQFGAYR
2	35	370.1030	738.1914	737.3014	0.8900	0	28	59	1	SMGGEGGK + Oxidation (M)
2	163	742.6100	2224.8082	2224.0318	0.7764	2	27	31	1	DKNDFGEIVSEAVEEVCKR
2	39	379.1450	1134.4132	1135.5696	-1.1564	0	26	1.4e+02	1	HTIYTLMNK + Oxidation (M)
2	174	1209.6530	3625.9372	3624.9913	0.9459	1	26	89	1	QSNILLTELPLMTPTGTFVINGTERVVVSQIVR
2	116	836.3120	1670.6094	1671.7351	-1.1257	1	26	52	1	ESFADEHPFYRMK + Oxidation (M)
2	102	740.9110	2219.7112	2220.1653	-0.4541	0	26	1.1e+02	1	AYVLIFLLGYSLSGMGQNFK
2	153	694.3570	2080.0492	2079.9248	0.1244	2	25	72	1	MREMMEQAEAQRNAQNK + Oxidation (M)
2	112	808.6620	2422.9642	2423.3830	-0.4188	0	25	1.1e+02	1	LGQALLGPAGMLSLGGLVLMMILR
2	108	795.2000	2382.5782	2383.1655	-0.5874	2	24	1.3e+02	1	EDKSIIGYLESKEGNNDFIGR
2	79	646.9760	1937.9062	1938.9833	-1.0771	1	24	1.7e+02	1	GMIYDSTGKILVANNTSR
2	71	562.3360	1122.6574	1123.7077	-1.0503	2	24	2.1e+02	1	VVASPAKRALL
2	136	641.2960	1920.8662	1920.0316	0.8346	0	23	1.1e+02	1	LTLNLNSIDSLNAIYTR
4	120	842.6610	2524.9612	2524.3618	0.5994	1	23	1.5e+02	1	MPIAPGSTLGILGGGQLGRMTALAAR + Oxidation
1 द	124	870.3300	2607.9682	2607.3101	0.6580	0	23	1.6e+02	1	SVLEVSEIINEGLSAFLVNNADMK + Oxidation (M
2	88	672.3260	2013.9562	2013.9322	0.0240	0	23	2.7e+02	1	MPAGMSTASPSPPSLPAPMR + 2 Oxidation (M)
1 4	144	664.5690	1990.6852	1991.0146	-0.3294	1	23	86	1	KNVPMLNTFDKPELSSR + Oxidation (M)
2	31	360.2380	1077.6922	1077.6546	0.0375	0	23	3.3e+02	1	LALPPVDVVR
2	115	827.1690	2478.4852	2478.2074	0.2778	1	23	1.8e+02	1	IRLDGQDLGAQMVQAGQAWSYR + Oxidation (M)

Protein View

Match to: gi|53714026 Score: 175 ATP synthase subunit E [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2704) 1000_RG17_01_1193.d\SSP (2704) 1000_RG17_01_1193.mgf

Nominal mass (M_r) : 21789; Calculated pI value: 5.08 NCBI BLAST search of <u>gi[53714026</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gil60682222</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gil255764376</u> from <u>Bacteroides sp. 2 1 16</u> <u>gil265764376</u> from <u>Bacteroides fragilis YCH46</u> <u>gil60493656</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gil251944106</u> from <u>Bacteroides sp. 2 5</u> <u>gil263256984</u> from <u>Bacteroides sp. 2 1 16</u> <u>Fixed modifications: Carboxymethvl</u> (C)

Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 28%

Matched peptides shown in Bold Red

1 MENKIQELTD KIYREGVEKG NEEARRLIAN AQEEAKKIVE DAHKEAESII 51 ASSRKSADEL TENTKEELKI PAGQAVNALK SEIATMVTDK IVTAPVKEFA 101 QNKDFINAFI VALASKWSVD BFIIISTEDA BSLKKYPAN AKALLDKGVT 151 IEQVNGIKAL FSVSPADGSY KVNFGEEEFM NYFKAFLRPQ LVEMLF

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

```
Start - End
                    Observed
                                  Mr(expt)
                                               Mr(calc)
                                                               Delta
                                                                         Miss Sequence
                                                                          MISS Sequence
0 K.LFAGQAVNALK.S (Ions score 54)
0 K.LFAGQAVNALK.S (Ions score 26)
1 K.WSVDEPIIISTSDAESLKK.Y (Ions score 57)
                               1130.6654 1130.6448
1131.5574 1130.6448
                                                              0.0207
                    566.3400
          80
    70
          80
                    566.7860
                   1059.9960
671.3080
                                2117.9774 2117.0892
1340.6014 1340.6612
   117 - 135
159 - 171
                                                              0.8883
                                                                            0 K.ALPSVSPADGSYK.V (Ions score 30)
0 K.AFLRPQLVEMLF.- Oxidation (M) (Ions score 33)
                                                               0.0598
   185
        - 196
                    740.3580 1478.7014 1478.7955
                                                             -0.0941
   1
                                                                        750 ] .....
                                                                     (wdd)
(Da)
                                                                              _____
                                                                        500
   0.5
                                                                    Error
Error
                                                                       250
                                                                              1250 1500 1750 2000
                                  1750 2000
                                                                        0
    0
                                                                            1250
        1
                           1500
              1250
                                                         Mass (Da) RMS error 408 ppm
                                                                                                                              Mass (Da)
RMS error 408 ppm
```

LOCUS YP_100018 196 aa linear BCT 26-APR-2009 DEFINITION ATP synthase subunit E [Bacteroides fragilis YCH46]. ACCESSION YP_100018 VERSION YP_100018.1 GI:53714026 DBLINK Project:13067 DBSOURCE REFSEQ: accession NC_006347.1 KEYWORDS . . Bacteroides fragilis YCH46 <u>Bacteroides fragilis YCH46</u> Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 196) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707 SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL 15466707 2 (residues 1 to 196) NCBI Genome Project PUBMED REFERENCE CONSETM NCBI Genome Project Direct Submission Submitted (01-OCT-2004) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 196) TITLE JOURNAL REFERENCE 3 (residues 1 to 196) Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. Direct Submission Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan PROVISIONAL <u>REFSEO</u>: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD49484</u>. Method: conceptual translation. Location/Qualifiers AUTHORS TITLE JOURNAL COMMENT FEATURES

	1196	
source		
	/organism="Bacteroides fragilis YCH46"	
	/strain="YCH46"	
	/db_xref="taxon: <u>295405</u> "	
Protein	1196	
	/product="ATP synthase subunit E"	
	/calculated_mol_wt=21672	
Region	1195	
	/region_name="ATP-synt_B"	
	/note="ATP synthase B/B' CF(0); cl07975"	
	/db xref="CDD:143711"	
Region	18196	
	/region name="vATP-synt B"	
	/note="ATP synthase (E/31 kDa) subunit; pfam01991"	
	/db xref="CDD:110943"	
CDS	1196	
000	/locus tag="BF2734"	
	/coded_by="complement(NC_006347.1:31396993140289)"	
	/note="similar to gp:AE016931_92 [Bacteroides	
	thetaiotaomicron VPI-5482], percent identity 89 in 196 aa,	
	BLASTP E(): 3e-95"	
	/transl_table= <u>11</u>	
	/db xref="GeneID:3083533"	

(MATRIX) (SCIENCE) Mascot Search Results

User	: LAKSHMY MANICKAN
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 2804
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2804) 10 RJ17 01 1396.d\SSP (2804) 10 RJ17 01 1396.mgf
Database	: NCBInr 20090522 (8876587 sequences; 3036162093 residues)
Taxonomy	: Bacteria (Eubacteria) (4773688 sequences)
Timestamp	: 30 May 2009 at 10:39:02 GMT
Protein hits	: g1/53713703 TPR repeat-containing protein [Bacteroides fragilis YCH46]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 56 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

				es as a non-pro				ing protein	n hits.	
45 - 45 - 45 - 45 - 45 - 45 - 45 - 45 -		100	200 Probabili	300 ty Based House	400 Score					
Pept	ide Su	mmary Rep	ort							
Fo	rmat As	Peptide Sur	nmary	*						Help
		Significanc	e threshold p	< 0.05	Max. nu	umber	of hits	AUTO	1	
		Standard sc	oring @ Mu	dPIT scoring	lons sec	ore or	expect	cut-off 0		Show sub-sets 0
				ess pop-ups			and the second	reasing Sc	ore	
		onen pop i	abo ouppr	ees heb abs	oon an	and Bu	ed [
Sel	ect All	Select Nor	ne Sea	rch Selected	Erro	or tole	rant			
1.	ails	3713703 N	dass: 46634	Score: 3	66 Oue	ries	match	ed. 8	emPAT	• 0.51
				ein [Bactero					CHIFAL	. 0.51
1	Chec	k to include	this hit :	in error tol	erant sea	irch				
	Query	y Observed	Mr(expt)	Mr(calc)	Delta	Nice		Expect	Bank	Peptide
1	V 12		1550.5334	1550.7365	-0.2031	0	64	0.0061	1	K.DNAATWDVAGYIQK.R
1	14		1669.6574	1669.8522	-0.1948	0	74	0.00071	1	K.AEQLINEALTNPETR.D
1	18	5 663.5640	1987.6702	1986.9357	0.7345	1	51	0.11	1	K.DKENGQFAMQLLTDAYK.A + Oxidation (M)
~ 1	P 18	5 994.8670	1987.7194	1986.9357	0.7838	1	(26)	81	1	K.DKENGQFAMQLLTDAYK.A + Oxidation (M)
1	18		1989.6694	1989.9030	-0.2335	0	68	0.0022	1	R.VYYNLMMGPEFEEIEK.M + Oxidation (M)
	23		2284.8082	2283.9738	0.8344	1	19	1.7e+02	2	R.VYYNLNMGPEFEEIEKMM + 3 Oxidation (M)
	231		2388.0292	2387.2961	0.7331	0	32	9.9	1	K.TILAERPNLINGGIQYFNLNK.N
	241	930.6050	2788.7932	2789.2245	-0.4313	0	57	0.025	1	K.FPENQYFFANLVDYYSSSNQNDK.A
			lass: 45773	set of pept Score: 3		ries	match	ed: 8		
			otein BF2494	Bacteroid	es fragil	is NO	CTC 93	43]		
Pept	ide mai	tches not as	signed to n	rotein hits	(no det	ails	means	no match	1)	
4	Quer			Mr(calc) 2210.1115	Delta 0.6297	Miss	Score	Expect		: Peptide MYILGINSVYHESAVCLLK
	V 13				-0.1110	0	33	12		MPIYNELMLMPLK + Oxidation (M)
	23				-1.1609	2	32	9		LNGYWEIDKMRSLTDDAEK + Oxidation (M)
1	R 81				-0.7475	0	32	27	1	SIMDNLGLPVIDDEIVK + Oxidation (M)
1	₽ 12	752.3550	2254.0432	2255.0205	-0.9773	1	30	43	1	LNEPDFDGDDWKIEMFLR + Oxidation (M)
1	22	5 1113.0610	2224.1074	2224.0437	0.0638	0	30	21	1	DISWGSTWGAGDNVDIYQLK
1	P 4	391.1050	1170.2932	1169.6227	0.6705	0	28	49	1	LLAMEGVNPAR
	8				0.6533	2	27	37		ENESLKLVLQK
	P 15				-0.7790	2	27	33		VIGGNFKRFQFTPDK
	▼ <u>22</u>				0.2465	1	26	33		YQVDLLTLHATAGRQALTAAK
	▼ 190 ▼ 141		+		-0.8698	2	25	61		VEEIPDMYGWKKETAET + Oxidation (M) AGLIHAFFNDRKVAK
	204			2081.9795			25	46		MAEMVIGEKVTLEEMGGAR + 2 Oxidation (M)
	20			2099.0106			25		1	YNIGMAGLIGNDGKFNSNAK + Oxidation (N)
	₩ 14:			2511.2329						SVIYEMHVGGFTRHPNSGVAPEK
	F 21		2130.1822	2129.9721	0.2101	2	25	68	1	CDTEEIRKYAICSLSQR
1	F 83	632.9100	1895.7082	1896.0693	-0.3612	2	24	1.5e+02	1	FAVPDERAARNIGILVR
1	₹ <u>10</u>	707.5460	2119.6162	2119.1021	0.5140	2	24	1.2e+02	1	SGEISEQRINEAYQRIVK
	V 12			1601.7005			24			FDRHAMAGHGESGSK + Oxidation (M)
	2			1048.5414						DLNPLANHR
	P 10			2105.9299				1.4e+02		- A CARACTER AND A C
	R 81	646.1180	1935.3322	1935.0690	0.2632	1	23	1.5e+02	1	APSIESLRQAQPVVVWR

Protein View

Match to: gi 53713703 Score: 366 TPR repeat-containing protein [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2804) 10_RJ17_01_1396.d\SSP (2804) 10 RJ17 01 1396.mgf

Nominal mass (M_r) : 46634; Calculated pI value: 5.42 NCBI BLAST search of <u>gi [53713703</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi|253565651 from Bacteroides sp. 3 2 5 gi|265764027 from Bacteroides sp. 2 1 16 gi|25216568 from Bacteroides fragilis YCH46 gi|251945930 from Bacteroides sp. 3 2 5 gi|263256635 from Bacteroides sp. 2 1 16

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 26%

Matched peptides shown in Bold Red

1 MKRVLFSMVL LMAVSFAFAQ EKNVKEAKSI AGEVKPDFAK ABQLINEALT 51 NPETKNNAAT WDVAGYIQKE INEKEMENAY LREPYDILKY YNSVLNMYNY 101 YVKCDELAQI PNEKGKIKNK YRSANSKTIL AERPNLINGG IQYFMLNKNE 151 DALKYFAAYV DAATLPMMEK ENLLEKDTIL PQVAYYATLA ADRVGDKDAV 201 MKYAQYALKD KENGQFAMQI LJDAYKAKGD TAKWVEKLQE GIVKPPENQY 251 FFANLVDYYS SNONDKAMQ FADDMLAKDP NNKLYLYVKA YLYHNMKDYE 301 KAIEFYKKTL DIDPAYAEAC SNLGLVYLLQ AQEYADKAPA DINDPNYATA 351 QAEIKKFYEA AKPYYEKARE LKPDQKDLWL QGLYRVYYNL NMGPEFEEIE 401 KMM

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

Start	-	End	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Sequence
41	-	55	835.8360	1669.6574	1669.8522	-0.1948	0	K.AEQLINEALTNPETK.D (IONS SCORE 74)
56	-	69	776.2740	1550.5334	1550.7365	-0.2031	0	K. DNAATWDVAGYIQK.R (IONS SCORE 64)
128	-	148	797.0170	2388.0292	2387.2961	0.7331	0	K.TILAERPNLINGGIQYFNLNK.N (IONS SCORE 32)
210	-	226	663.5640	1987.6702	1986.9357	0.7345	1	K.DKENGQFAMQLLTDAYK.A Oxidation (M) (Ions score 51)
210	-	226	994.8670	1987.7194	1986.9357	0.7838	1	K.DKENGQFAMQLLTDAYK.A Oxidation (M) (Ions score 26)
245	-	267	930.6050	2788.7932	2789.2245	-0.4313	0	K.FPENQYFFANLVDYYSSSNONDK.A (Ions score 57)
386	-	401	995.8420	1989.6694	1989.9030	-0.2335	0	R.VYYNLNMGPEFEEIEK.M Oxidation (M) (Ions score 68)
386		403	762.6100	2284.8082	2283.9738	0.8344	1	R.VYYNLNMGPEFEEIEKMM 3 Oxidation (M) (Ions score 19
0.5						(wdd)	-	1
	t-						250	
-0 -						Error	1	
-0 -	t-					····· 🖞	0 7-	
].	
-0.5 -	-	1 1	1 1 1				+	· · · · · · · · · · · · · · · · · · ·
15 error	27	1600 71 ppm	1800 2000	2200	2400 2600 Mas:	2800 s (Da) RMS	error 27	1600 1800 2000 2200 2400 2600 2800 1 ppm Mass (Da)
	-							
CUS			099695		403 aa	line		CT 26-APR-2009
FINIT			repeat-con	taining pro	tein [Bactero	oides frag	Jilis Y	CH46].

YP_099695 YP_099695.1 GI:53713703 VERSION Project:13067 REFSEQ: accession NC_006347.1 DBLINK DBSOURCE KEYWORDS SOURCE Bacteroides fragilis YCH46 ORGANISM Bacteroides fragilis YCH46 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 403) REFERENCE 1 (Testates 1 to 405, Kuwahara, T., Yamashita, A., Hirakawa, H., Nakayama, H., Toh, H., Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA AUTHORS TITLE inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707 JOURNAL PUBMED 2 (residues 1 to 403) NCBI Genome Project REFERENCE CONSRTM Direct Submission Submitted (01-OCT-2004) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 403) Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. Direct Submission JOURNAL REFERENCE AUTHORS TITLE JOURNAL. Submitted (20-APR-2004) Kitasato Institute for Life Sciences,

MENT PR	OVISIONAL <u>REFSEO</u> : This record has not yet been subject to final
	BI review. The reference sequence was derived from <u>BAD49161</u> .
Me	thod: conceptual translation.
ATURES	Location/Qualifiers
source	1403
	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db_xref="taxon:295405"
Protein	1403
	/product="TPR repeat-containing protein"
	/calculated_mol_wt=46417
Region	<180>380
	/region_name="PEP_TPR_lipo"
	/note="putative PEP-CTERM system TPR-repeat lipoprotein;
	TIGR02917"
	/db xref="CDD: <u>131963</u> "
Region	254330
to be a second	/region name="TPR"
	/note="Tetratricopeptide repeat domain; typically contains
	34 amino acids
	[WLF] - X (2) - [LIM] - [GAS] - X (2) - [YLF] - X (8) - [ASE] - X (3) - [FYL] -
	X(2) - [ASL] - X(4) - [PKE] is the consensus sequence; found in
	a variety of organisms including bacteria, cyanobacteria,
	yeast, fungi; cd00189"
	/db xref="CDD:29151"
Site	order (254, 257258, 287288, 290291, 294295, 321322,
N.S.S.S.	325326,329330)
	/site type="binding"
	/note="binding surface"
	/db xref="CDD:29151"
Site	order (256, 268, 272, 275, 290, 302, 306, 309, 324)
0100	/site type="other"
	/note="TPR motif"
	/db xref="CDD:29151"
CDS	1403
000	/locus tag="BF2412"
	/coded by="NC 006347.1:27906702791881"
	/note="similar to gp:AE016929_170 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 72 in 397 aa,
	BLASTP E(): e-171"
	/transl table=11
	/cfalsi_colle_ii /db xref="GeneID:3083889"

•

: Lakshmy Manickan : lakshmy.manickan@unn.ac.uk
: SSP 2804
: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2804) 1000_RE7_01_1712.d\SSP (2804) 1000_RE7_01_1712.mgf
: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
: Bacteria (Eubacteria) (5690016 sequences)
: 6 Jan 2010 at 13:12:18 GMT
: gi 239636400 dihydrolipoyl dehydrogenase [Staphylococcus warneri L37603]
gi 53713703 TPR repeat-containing protein [Bacteroides fragilis YCH46]
g1 223043880 dihydrolipoyl dehydrogenase [Staphylococcus capitis SK14]
gi 70726857 dihydrolipoamide dehydrogenase [Staphylococcus haemolyticus JCSC1435]
gi 150011035 dihydrolipoamide dehydrogenase [Staphylococcus xylosus]
gi 52080062 dihydrolipoamide dehydrogenase [Bacillus licheniformis ATCC 14580]
gi 50084222 dihydrolipoamide dehydrogenase (E3 component of pyruvate and 2-oxoglutarate dehydrogenase complexes) [Acinetobacte:

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

orma	at As	Peptide Sum	arrich y	*						Help
		Significance	threshold p<	0.05	Max. nu	mber	of hits	AUTO		
			oring @ Mud							Share have 0
			-						Show sub-sets 0	
		Show pop-u	ps @ Suppre	ss pop-ups C	Sort una	ssigne	ed Decr	easing Sco	ore _	Require bold red
lect	t All	Select None	e Sear	ch Selected	Erro	r tole	rant			
1	gi 239	9636400	Mass: 49727	Score:	447 Qu	eries	match	ed: 11	emPA	E: 0.47
	Collection and the		hydrogenase	100000000000000000000000000000000000000			L37603	1		
0	Check	to include	this hit in	n error tol	erant sea	rch				
0	Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	Rank	Peptide
	113	493.7310	985.4474	985.5808	-0.1333	0	21	2.9e+02	6	K.LTGGVEGLLK.G
	141	640.7770	1279.5394	1278.6456	0.8939	0	18	4.2e+02	2	R.ALSLDDTNGFVK.L
2	123	547.5700	1639,6882	1639.8781	-0.1899	0	(22)	2.5e+02	1	R. VIDSTGALNLQEVPGK. L
4	182	820.8600	1639.7054	1639.8781	-0.1726	0	79	0.00029	1	R.VIDSTGALNLQEVPGK.L
5	127	561.9150	1682.7232	1682.8839	-0,1607	0	(52)	0.27	1	R. RPNTDELGLEELGLE. F
2	187	842.3690	1682.7234	1682.8839	-0.1604	0	60	0.026	1	R. RPNTDELGLEELGLK. F
4	230	1103.5810	2205.1474	2205.2157	-0.0683	0	37	5.3	1	R. TSINNIYAIGDIVFGLPLAHK. A
	169	751.3460	2251.0162	2251.1597	-0.1435	2	22	3.5e+02	4	K.GNKVEIVKGEAYFVDNNSLR.V
1	238	772.6800	2315.0182	2315,2022	-0.1840	0	104	9.4e-07	1	K.NAIIATGSRPIEIPNFEFGNR.V
	246	854.9440	2561,8102	2562.2602	-0.4500	0	43	0.73	1	R.FVEAQHSENLGVIAESVSLNYEK.V
14										
	247 gi 537 TPR re	713703 Ma epeat-conta	2587.1602 ass: 46634 ining prote:		ides frag	ilis	68 matche YCH46]	0.0028 d:7 e	1 mPAI:	M. VVGDPPIETDTIVIGAGPGGYVAAIR. A 0.41
	247 gi 537 TPR re Check	713703 M epeat-conta to include	ass: 46634 ining prote: this hit in	Score: 3 in [Bactero: n error tole	93 Que ides frag erant sea	ries ilis rch	matche YCH46]	di7 e	mPAI:	0.41
N	247 gi 537 TPR re Check Query	713703 Ma epeat-conta to include Observed	ass: 46634 ining prote: this hit in Mr(expt)	Score: 3: in [Bactero: n error tole Mr(calc)	93 Que ides frag erant sea Delta	ries ilis rch Miss	matche YCH46] Score	d: 7 e Expect	mPAI: Rank	0.41 Peptide
य य	247 gi 537 TPR re Check Query 129	713703 Ma epeat-conta to include Observed 582,2570	ass: 46634 ining prote this hit in Mr(expt) 1162,4994	Score: 3: in [Bactero: n error told Mr(calc) 1162.6135	93 Que ides frag erant sea Delta -0.1140	ries ilis rch Miss 0	matche YCH46] Score 44	d:7 e Expect 1.3	mPAI: Rank 1	0.41 Peptide K.DLWLQGLYR.V
<u>ब व</u> व व व	247 gi 537 TPR re Check Query 129 174	713703 Ma epeat-conta to include Observed 582.2570 776.2780	ass: 46634 ining prote this hit in Mr(expt) 1162,4994 1550,5414	Score: 3: in [Bactero: n error tole <u>Mr(calc)</u> 1162.6135 1550.7365	93 Que ides frag erant sea Delta -0.1140 -0.1951	ries ilis rch Miss 0 0	matche YCH46] Score 44 64	d: 7 e Expect 1.3 0.0087	mPAI: Rank 1 1	0.41 Peptide K.DLWLQGLYR.V K.DMAATWDVAGYIQK.R
ন ন ন ন ন ন ন ন	247 gi 537 TPR re Check Query 129 174 185	713703 M epeat-conta to include Observed 582,2570 776,2780 835,8410	ass: 46634 ining prote: this hit in Mr(expt) 1162.4994 1550.5414 1669.6674	Score: 3: in [Bactero: n error tole Mr(calc) 1162.6135 1550.7365 1669.8522	93 Que ides frag erant sea Delta -0.1140 -0.1951 -0.1848	ries ilis rch Miss 0 0 0	matche YCH46] Score 44 64 70	d: 7 e Expect 1.3 0.0087 0.0026	mPAI: Rank 1 1	0.41 Peptide K.DLHLQGLYR.V K.DHALTHVPKK.R K.AEQLINEALTHPETK.D
ন ন ন ন ন ন ন ন ন ন ন ন ন ন ন ন ন ন ন	247 gi 537 TPR re Check 0uery 129 174 185 198	713703 M epeat-conta to include 0bserved 582,2570 776,2780 935,8410 893,3540	ass: 46634 ining prote: this hit in Mr(expt) 1162,4994 1550,5414 1669,6674 1784,6934	Score: 3: in [Bactero: n error tole Mr(calc) 1162.6135 1550.7365 1669.8522 1784.8443	93 Que ides frag erant sea Delta -0.1140 -0.1951 -0.1848 -0.1509	ries ilis rch Miss 0 0 0 0	matche YCH46] Score 44 64 70 77	d: 7 e Expect 1.3 0.0087 0.0026 0.00044	mPAI: Rank 1 1 1	0.41 Peptide K.DLNLOGLYR.V K.DNAITWOVAGYIGK.R K.AEQLIMEALTHPETK.D K.VYNSVLNWYNYYK.C + Oxidation (M)
ন ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব	247 gi 537 TPR re Check 2000 129 174 185 198 211	713703 M. epeat-conta to include Observed 582,2570 776,2780 835,8410 893,3540 994,4230	ass: 46634 ining prote: this hit in Mr(expt) 1162.4994 1550.5414 1669.6674 1784.6934 1986.8314	Score: 3: in [Bactero: h error told Mr(calc) 1162.6135 1550.7365 1669.8522 1784.8443 1986.9357	93 Que ides frag erant sea Delta -0.1140 -0.1951 -0.1848 -0.1509 -0.1042	ries ilis rch Miss 0 0 0 0 1	matche YCH46] Score 44 64 70 77 72	d: 7 e Expect 1.3 0.0087 0.0026 0.00044 0.0014	mPAI: Rank 1 1 1 1	0.41 Peptide K.DLMLQGLYR.V K.DNAATMDVAGYIQK.R K.AEQLINEALTMPETK.D K.YWNSVLMMYNYYK.C + Oxidation (M) K.DKENGQFAMQLLTDAYK.A + Oxidation (M)
ন ন ন ন ন ন ন ন ন ন	247 gi 537 TPR re Check 0uery 129 174 185 198	713703 M. epeat-conta: to include Observed 582,2570 776,2780 935,8410 993,3540 994,4230 1142,9710	ass: 46634 ining prote: this hit in Mr(expt) 1162,4994 1550,5414 1669,6674 1784,6934 1986,8314 2283,9274	Score: 3: in [Bactero: n error tole Mr(calc) 1162.6135 1550.7365 1669.8522 1784.8443	93 Que ides frag erant sea Delta -0.1140 -0.1951 -0.1848 -0.1509	ries ilis rch Miss 0 0 0 0	matche YCH46] Score 44 64 70 77 72 46	d: 7 e Expect 1.3 0.0087 0.0026 0.00044	mPAI: Rank 1 1 1	0.41 Peptide K.DLNLOGLYR.V K.DNAATWOVAGYIGK.R K.AEQLIMEALTHPETK.D K.VYNSVLNWYNYYK.C + Oxidation (M)
N	247 gi 537 TPR re Check 0uery 129 174 185 198 211 236	713703 M. epeat-conta: to include Observed 582,2570 776,2780 935,8410 993,3540 994,4230 1142,9710	ass: 46634 ining prote: this hit in Mr(expt) 1162,4994 1550,5414 1669,6674 1784,6934 1986,8314 2283,9274	Score: 3: in [Bactero: n error told Mr(calc) 1162.6135 1550.7365 1669.8522 1784.8443 1986.9357 2283.9738	93 Que ides frag erant sea Delta -0.1140 -0.1951 -0.1848 -0.1509 -0.1042 -0.0463	ries ilis rch Miss 0 0 0 0 1 1	matche YCH46] Score 44 64 70 77 72 46	d: 7 e Expect 1.3 0.0087 0.0026 0.00044 0.0014 0.52	mPAI: Rank 1 1 1 1	0.41 Peptide K.DLMLQGLYR.V K.DNAATMDVAGYIQK.R K.AEQLINEALTHPETK.D K.VYNNULNYMYYYYYY.C + Oxidation (M) R.VYYNLNNGPEPEBIEKNM + 3 Oxidation (M)
বিরবরর বর	247 gi 537 TPR re Check 2000 129 174 185 198 211 236 242 Protes	713703 M epeat-contai to include Observed 582.2570 776.2780 835.8410 893.3540 994.4230 1142.9710 797.0000	ass: 46634 ining protection this hit in Mr(expt) 1162,4994 1569,6674 1569,6674 1584,6934 1586,8314 2283,9274 2387,9782 g the same r	Score: 3: in [Bactero: h error told Mr(calc) 1162.6135 1550.7365 1669.6522 1784.8443 1986.9357 2283.9738 2387.2961 set of pept:	93 Que ides frag erant sea -0.1140 -0.1951 -0.1848 -0.1042 -0.0463 0.6821 Ides:	ries ilis rch Miss 0 0 0 0 1 1 0	matche YCH46] Score 44 64 70 77 72 46 21	d: 7 e Expect 1.3 0.0087 0.0026 0.0004 0.0014 0.52 1.3e+02	mPAI: Rank 1 1 1 1	0.41 Peptide K.DLMLQGLYR.V K.DNAATMDVAGYIQK.R K.AEQLINEALTHPETK.D K.VYNNULNYMYYYYYY.C + Oxidation (M) R.VYYNLNNGPEPEBIEKNM + 3 Oxidation (M)
নন্দ্রন্দ্র ন ন ন ন	247 gi 537 TPR re Check 2000 129 174 185 198 211 236 242 Protes gi 606	713703 M epeat-conta to include 0582.2570 776.2780 093.3540 994.4230 1142.9710 797.0000 ins matching 581974 M	ass: 46634 ining protection this hit in Mr(expt) 1162.4994 1550.5414 1669.6674 1784.6934 1986.8314 2283.9274 2387.9782 g the same a ass: 45773	Score: 3: in [Bactero: h error told Mr(calc) 1162.6135 1560.7365 1669.8522 1784.8443 1986.9357 2283.9738 2387.2961 2387.2961 Score: 3:	93 Que ides frag erant sea -0.1140 -0.1951 -0.1848 -0.1509 -0.1042 -0.0463 0.6621 ides: 93 Que	ries ilis rch Miss 0 0 0 0 1 1 0	matche YCH46] Score 44 64 70 77 72 46 21 matche	d: 7 e Expect 1.3 0.0087 0.0026 0.00044 0.52 1.3e+02 d: 7	mPAI: Rank 1 1 1 1	0.41 Peptide K.DLMLQGLYR.V K.DNAATMDVAGYIQK.E K.AEQLINEALTHPETK.D K.VYNNVLNYMYYYYK.C + Oxidation (M) R.VYYNLNNNGPEPEBIEKNM + 3 Oxidation (M)
নন্দ্রন্দ্র ন ন ন ন	247 gi 537 TPR re Check 2000 129 174 185 198 211 236 242 Protes gi 606	713703 M epeat-conta to include 0582.2570 776.2780 093.3540 994.4230 1142.9710 797.0000 ins matching 581974 M	ass: 46634 ining protection this hit in Mr(expt) 1162,4994 1569,6674 1569,6674 1584,6934 1586,8314 2283,9274 2387,9782 g the same r	Score: 3: in [Bactero: h error told Mr(calc) 1162.6135 1560.7365 1669.8522 1784.8443 1986.9357 2283.9738 2387.2961 2387.2961 Score: 3:	93 Que ides frag erant sea -0.1140 -0.1951 -0.1848 -0.1509 -0.1042 -0.0463 0.6621 ides: 93 Que	ries ilis rch Miss 0 0 0 0 1 1 0	matche YCH46] Score 44 64 70 77 72 46 21 matche	d: 7 e Expect 1.3 0.0087 0.0026 0.00044 0.52 1.3e+02 d: 7	mPAI: Rank 1 1 1 1	0.41 Peptide K.DLMLQGLYR.V K.DNAATMDVAGYIQK.R K.AEQLINEALTHPETK.D K.VYNNULNYMYYYYYY.C + Oxidation (M) R.VYYNLNNGPEPEBIEKNM + 3 Oxidation (M)
ন ন ন ন ন ন ন ন ন ন ন	247 gi 537 TPR re Check 2000 129 174 185 198 211 236 242 Protes gi 606 hypoth	713703 M epeat-conta to include Observed 582.2570 776.2780 835.8410 893.3540 994.4230 1142.9710 797.0000 ins matching 581974 M hetical prot	ass: 46634 ining protection this hit in Mr(expt) 1162.4994 1550.5414 1669.6674 1784.6934 1986.8314 2283.9274 2387.9782 g the same a ass: 45773	Score: 3: in [Bactero: h error told Mr(calc) 1162.6135 1560.7365 1669.8522 1784.8443 1986.9357 2283.9738 2387.2961 2387.2961 Score: 3:	93 Que ides frag prant sea Delta -0.1140 -0.1951 -0.1648 -0.1509 -0.1042 -0.6821 0.6821 ides: -0.30463 -0.30463 Que -0.53 Que	ries Miss 0 0 0 1 1 0 ries NC	matche YCH46] Score 44 64 70 77 72 46 21 matche	d: 7 e Expect 1.3 0.0087 0.0026 0.0014 0.52 1.3e+02 d: 7 3]	mPAI: Rank 1 1 1 1 1 1	0.41 Peptide K.DLMLQGLYR.V K.DNAATMDVAGYIQK.R K.AEQLINEALTHPETK.D K.VYNNULNYMYYYYYY.C + Oxidation (M) R.VYYNLNNGPEPEBIEKNM + 3 Oxidation (M)
ন ন ন ন ন ন ন ন ন ন ন	247 gi 537 TPR re Check Query 129 174 185 198 211 236 242 Protes gi 600 hypoth gi 223	713703 Ma epeat-contation to include Observed 652.2570 776.2780 935.8410 993.3540 994.4230 1142.9710 797.0000 ins matchings 581974 Matcial prot 3043880	ass: 46634 ining prote: this hit in Mr(expt) 1162.4994 1569.6674 1569.6674 1784.6934 1986.8314 2283.9274 2387.9782 g the same r ass: 45773 tein BF2494	Score: 3: in [Bactero: n error tole Mr(calc) 1162.6135 1550.7365 1669.8522 1784.8443 1986.9357 2283.9738 2387.2961 2387.2961 set of pept: Score: 3: [Bacteroide Score: 5:	93 Que ides frag erant sea -0.1140 -0.1951 -0.1042 -0.0463 0.6821 ides: 23 Que es fragil 337 Que	ries o o o 1 1 o ries is NC	matche YCH46] Score 44 64 64 70 77 72 46 21 matche TC 934 match	d: 7 e Expect 1.3 0.0087 0.0026 0.0014 0.52 1.3e+02 d: 7 3]	mPAI: Rank 1 1 1 1 1 1	0.41 Peptide K.DLNLOGLVR.V K.DNAATMUVAGYIQK.R K.AEQLIMEALTMPETK.D K.VYNSVLNWYNYYVK.C + Oxidation (M) K.DKENGQFAMQLLTDAYK.A + Oxidation (M) R.VYYNLNWGPEPEEIEKMM + 3 Oxidation (M) K.TILAERPHLINGGIQYPHLWK.N
ন ন ন ন ন ন ন ন ন ন ন ন	247 gi 537 TFR rc Check 29 174 185 198 211 236 242 Protei gi 600 hypoth gi 227 dihydr	713703 Ma epeat-conta: to to include Observed 582.2570 776.2780 335.8410 993.3540 994.4230 994.4230 1142.9710 797.0000 1142.9710 1142.9710 797.0000 ins matching 581974 Mathia Mathia retical prot 1043880 10013001100y1 del 10501100y1 del	ass: 46634 ining prote: this hit in Mr(expt) 1162,4994 1550,5414 1569,6674 1784,6934 1986,6314 2283,9274 2387,9782 g the same in ass: 45773 tein BF2494 Mass: 49736	Score: 3: in [Bactero: h error told Mr(calc) 1162.6135 1550.7365 1569.8522 1784.8443 1986.9357 2283.9738 2387.2961 Score: 3: [Bacteroid Score: 5] [Staphylocol	93 Que ides frag prant sea Delta -0.1104 -0.1509 -0.1643 -0.1643 0.6821 ides: se fragil: 337 Que coccus cap; cocus cap;	ries ilis rch Miss 0 0 0 1 1 0 1 1 0 ries sis NC	matche YCH46] Score 44 64 64 70 77 72 46 21 matche TC 934 match	d: 7 e Expect 1.3 0.0087 0.0026 0.0014 0.52 1.3e+02 d: 7 3]	mPAI: Rank 1 1 1 1 1 1	0.41 Peptide K.DLNLOGLVR.V K.DNAATMUVAGYIQK.R K.AEQLIMEALTMPETK.D K.VYNSVLNWYNYYVK.C + Oxidation (M) K.DKENGQFAMQLLTDAYK.A + Oxidation (M) R.VYYNLNWGPEPEEIEKMM + 3 Oxidation (M) K.TILAERPHLINGGIQYPHLWK.N
그	247 gi 537 TFR rc Check 29 174 185 198 211 236 242 Protei gi 600 hypoth gi 227 dihydr	713703 Ma epeat-conta: to to include Observed 582.2570 776.2780 335.8410 993.3540 994.4230 994.4230 1142.9710 797.0000 1142.9710 1142.9710 797.0000 ins matching 581974 Mathia Mathia retical prot 1043880 10013001100y1 del 10501100y1 del	ass: 46634 ining prote: this hit in Mr(expt) 1162,4994 1550,5414 1569,6674 1784,6934 1986,8314 2283,9274 2387,9782 g the same : ass: 45773 tein BF2494 Mass: 49736 hydrogenase	Score: 3: in [Bactero: h error told Mr(calc) 1162.6135 1550.7365 1569.8522 1784.8443 1986.9357 2283.9738 2387.2961 Score: 3: [Bacteroid Score: 5] [Staphylocol	93 Que ides frag erant sea -0.1140 -0.1951 -0.1951 -0.1046 -0.1052 -0.0463 0.6821 Udes: 93 Que es fragil 337 Que occus cap erant sea	ries 0 0 0 1 1 0 ries is NC eries ittis	matche YCH46] Score 44 64 64 70 77 72 46 21 matche TC 934 match	d: 7 e Expect 1.3 0.0087 0.0026 0.0014 0.52 1.3e+02 d: 7 3]	mPAI: 1 1 1 1 1 1 1 2 emPAI:	0.41 Peptide K.DLNLOGLVR.V K.DNAATMUVAGYIQK.R K.AEQLIMEALTMPETK.D K.VYNSVLNWYNYYVK.C + Oxidation (M) K.DKENGQFAMQLLTDAYK.A + Oxidation (M) R.VYYNLNWGPEPEEIEKMM + 3 Oxidation (M) K.TILAERPHLINGGIQYPHLWK.N
그	247 gi 537 TPR re Check 129 174 185 198 211 236 242 9 gi 600 hypoth gi 227 dihydr Check	713703 M. epeat-contation to include Observed 582,2570 776,2780 993,3540 993,3540 994,4230 1142,9710 1142,9710 797,0000 797,0000 ins matching 581974 Mathematical protocol 3043880 1012921 del to include Observed 493,7310	ass: 46634 ining protect this hit in Mr(expt) 1162.4994 1550.5414 1569.6674 1784.6934 1986.8314 2283.9274 2283.9274 2387.9782 g the same n ass: 45773 tein BF2494 Mass: 45773 tein BF2494 Mass: 49736 hydrogenase this hit in Mr(expt) 985.4474	Score: 3: in [Bactero: h error told Mr(calc) 1162.6135 1550.7365 1550.7365 21794.8443 1986.9357 2283.9738 2387.2961 Score: 3: [Bacteroid: Score: 3: [Staphyloc: Staphyloc: h error told Mr(calc) 985.5808	93 Que ides frag erant sea -0.1140 -0.1951 -0.1951 -0.1046 -0.1052 -0.0463 0.6821 Udes: 93 Que es fragil 337 Que occus cap erant sea	ries 0 0 0 1 1 0 ries is NC eries ittis	matche YCH46] Score 44 64 70 77 72 46 21 matche TC 934 match SK14]	d: 7 e Expect 1.3 0.0087 0.0026 0.00044 0.0014 0.52 1.3e+02 d: 7 3] ed: 10	mPAI: 1 1 1 1 1 1 1 2 emPAI:	0.41 Peptide K.DLNLOGLVR.V K.DNAATMUVAGYIGK.R K.ACLINELITEPETK.D K.VYNSVLNHYNYYVK.C + Oxidation (M) K.DKENGGFANGLLTDAYK.A + Oxidation (M) R.VYYNLNHGPEPEEIEKHM + 3 Oxidation (M) K.TILAERPHLINGGIGYPHLMK.H
그	247 gi [537 TPR re Check 129 174 185 242 211 236 242 211 236 242 9 199 9 199 9 199 211 236 242 242 242 242 242 242 242 242 242 24	713703 Ma epeat-contation to include Observed S82.2570 776.2780 335.8410 893.3540 994.4230 994.4230 1142.9710 797.0000 1142.9710 1142.9710 797.0000 1145.9710 Ma hetical prof 1043880 1043880 10 1011poyl del to include Observed 0bserved	ass: 46634 ining prote: this hit in Mr(expt) 1162.4994 1550.5414 1569.6674 1784.6934 1784.6934 1283.9274 2387.9782 g the same : ass: 45773 tein BF2494 Mass: 49736 hydrogenase this hit in Mr(expt)	Score: 3: in [Bactero: h error told Mr(calc) 1162.6135 1550.7365 1669.8522 1784.8443 1986.9357 2283.9738 2387.2961 set of pept: Score: 3: [Bacteroid Score: 3: [Staphyloc: h error told Mr(calc) 985.5808 1278.6456	93 Que ides frag prant sea Delta -0.180 -0.1848 -0.1509 -0.1643 0.6821 0.66821 -0.6463 ddes: -0.933 0.6821 -0.3643 ddss: fragil -0.37 Que -0.58 fragil	ries 0 0 0 1 1 0 ries is NC eries itis rcch Miss	matche 44 64 70 77 72 46 21 matche TC 934 matche SX14] Score 21 18	d: 7 e Expect 1.3 0.0007 0.0026 0.00044 0.522 1.3e+02 d: 7 3] ed: 10 Expect	mPAI: 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8	0.41 Peptide K.DLHLQGLYR.V K.DNAATWOYGYIQK.R K.AEQLINEALTNPETK.D K.VYNENGOFAMQLITDAYK.A + Oxidation (M) K.UKENGQFAMQLITDAYK.A + Oxidation (M) K.TILAERPHLINGGIQYPHLAK.N : 0.38 Peptide

Protein View

Match to: gi|60681974 Score: 393 hypothetical protein BF2494 [Bacteroides fragilis NCTC 9343] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2804) 1000_RE7_01_1712.d\SSP (2804) 1000_RE7_01_1712.mgf

Nominal mass $({\rm M}_{_{\rm T}}):$ 45773; Calculated pI value: 5.24 NCBI BLAST search of gi60681974 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Bacteroides fragilis NCTC 9343 Links to retrieve other entries containing this sequence from NCBI Entrez: gi|60493408 from Bacteroides fragilis NCTC 9343

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **27%**

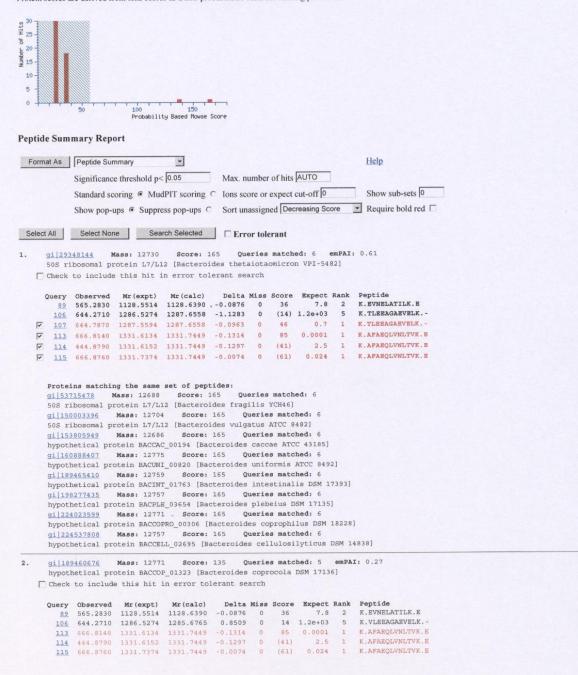
Matched peptides shown in Bold Red

- 1 MVLLMAVSFA FAQEKNVKEA KSIAGEVKPD FAKAEQLINE ALTNPETKDN 51 AATWOVAGVI OKRINEKEME NAYLAKPYDT LKVYNSVLNM YMYYVKCDEL 101 AQIPNEKGKI KNKYRSANSK TILAERPNLI NGGIQYPNLN KNEDALKYFA 151 AYVDAATLPM MEKENLLEKD TILPQVAYYA TLAADRVGDK DAVMKYAQYA 131 ANDARIDER DENERGER MUCHAELA LANDARAGEN DAVMELALIA
 140 KENGOFA MULITDAYKA KODTAKWEK LQGGIVKFPE NQYFANLUD
 251 YYSSSNQNDK AMQFADDMLA KOPINKLYLY VKAYLYHNMK DYEKALEFYK
 301 KTLDIDPAYA EACSNLGLVY LLQAQEYADK APADINDPNY ATAQAEKKKF
 351 YEAAKPYYEK ARELKPDQKD LMLQGLYKVY YNLIMGPEFE ELEKMM

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

Sta	rt	-	End	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Sequence
	34	=	48	835.8410	1669.6674	1669.8522	-0.1848	0	K. AEQLINEALTNPETK.D (Ions score 70)
	49	+	62	776.2780	1550.5414	1550.7365	-0.1951	0	K.DNAATWDVAGYIQK.R (Ions score 64)
	83	*	96	893.3540	1784.6934	1784.8443	-0.1509	0	K.VYNSVLNMYNYYVK.C Oxidation (M) (Ions score 77)
1	21	-	141	797.0000	2387.9782	2387.2961	0.6821	0	K.TILAERPNLINGGIQYFNLNK.N (Ions score 21)
2	03	-	219	994.4230	1986.8314	1986.9357	-0.1042	1	K.DKENGQFAMQLLTDAYK.A Oxidation (M) (Ions score 72)
3	70	-	378	582.2570	1162.4994	1162.6135	-0.1140	0	K.DLWLQGLYR.V (IONS SCORE 44)
3	79		396	1142.9710	2283.9274	2283.9738	-0.0463	1	R.VYYNLNMGPEFEEIEKMM 3 Oxidation (M) (Ions score 46)
Error (.5 -					······ ······	Error (ppm)	300 200 100 0	······································
-0 RMS er		1	• 1200 36 ppm	1400 1600	1800	2000 2200 Mas	2400 s (Da) RMS	-100	1200 1400 1600 1800 2000 2200 2400 б ррм Mass (Da)


LOCUS YP_212118 396 aa linear BCT 01-MP DEFINITION hypothetical protein BF2494 [Bacteroides fragilis NCTC 9343]. BCT 01-MAY-2009 YP_212118 YP_212118.1 GI:60681974 ACCESSION VERSION DBLINK Project:46 DBSOURCE REFSEQ: accession NC 003228.3 KEYWORDS Bacteroides fragilis NCTC 9343 SOURCE ORGANISM Bacteroides fragilis NCTC 9343 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroidaes; Bacteroidaia; Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 396) Cerdeno-Tarraga,A.M., Patrick,S., Crossman,L.C., Blakely,G., Abratt,V., Lennard,N., Poxton,I., Duerden,B., Harris,B., Quail,M.A., Barron,A., Clark,L., Corton,C., Doggett,J., Holden,M.T., Larke,N., Line,A., Lord,A., Norbertzak,H., Ormond,D., Price,C., Rabbinowitsch,E., Woodward,J., Barrell,B. and Parkhill,J. Extensive DNA inversions in the B. fragilis genome control variable care expression REFERENCE AUTHORS TITLE gene expression Science 307 (5714), 1463-1465 (2005) JOURNAL PUBMED 15746427 2 (resi 2 (residues 1 to 396) Cerdeno-Tarraga, A.M. REFERENCE AUTHORS TITLE Direct Submission Submitted (29-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, JOURNAL Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom REFERENCE (residues 1 to 396) NCBI Genome Project Direct Submission CONSRTM TITLE Submitted (08-APR-2002) National Center for Biotechnology JOURNAL Information, NIH, Bethesda, MD 20894, USA PROVISIONAL <u>REFSEQ</u>: This record has not yet been subject to final COMMENT

Mecho	d: conceptual translation.
EATURES	Location/Qualifiers
source	1396
	/organism="Bacteroides fragilis NCTC 9343"
	/strain="ATCC 25285; NCTC 9343"
	/db_xref="ATCC:25285"
	/db_xref="taxon:272559"
Protein	1396
	/product="hypothetical protein"
	/calculated_mol_wt=45555
Region	<173>373
	/region_name="PEP_TPR_lipo"
	<pre>/note="putative PEP-CTERM system TPR-repeat lipoprotein; TIGR02917"</pre>
	/db_xref="CDD: <u>131963</u> "
Region	247323
	/region_name="TPR"
	/note="Tetratricopeptide repeat domain; typically contains
	34 amino acids
	[WLF] - X(2) - [LIM] - [GAS] - X(2) - [YLF] - X(8) - [ASE] - X(3) - [FYL] -
	X(2)-[ASL]-X(4)-[PKE] is the consensus sequence; found in
	a variety of organisms including bacteria, cyanobacteria,
	yeast, fungi; cd00189"
	/db_xref="CDD: <u>29151</u> "
Site	order (247,250251,280281,283284,287288,314315,
	318319,322323)
	/site_type="binding"
	/note="binding surface"
	/db_xref="CDD: <u>29151</u> "
Site	order (249, 261, 265, 268, 283, 295, 299, 302, 317)
	/site_type="other"
	/note="TPR motif"
	/db_xref="CDD: <u>29151</u> "
CDS	1396
	/locus_tag="BF2494"
	/coded_by="NC_003228.3:29019132903103"
	/note="Similar to Bacteroides thetaiotaomicron putative
	tetratricopeptide repeat family protein BT0900
	SWALL:Q8A9B5 (EMBL:AE016929) (398 aa) fasta scores: E():
	4.1e-110, 72.79% id in 397 aa"
	/transl_table=11
	/db xref="GeneID:3287481"

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 2806
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2806) 10_RH14_01_1275.d\SSP (2806) 10_RH14_01_1275.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:19:44 GMT
Protein hits	: gi 29348144 50S ribosomal protein L7/L12 [Bacteroides thetaiotaomicron VPI-5482]
	gi 189460676 hypothetical protein BACCOP 01323 [Bacteroides coprocola DSM 17136]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Protein View

Match to: gi 53715478 Score: 165 50S ribosomal protein L7/L12 [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (2806) 10_RH14_01_1275.d\SSP (2806) 10_RH14_01_1275.mgf

Nominal mass $(\ensuremath{\text{M}_{r}}):$ 12688; Calculated pI value: 4.71 NCBI BLAST search of gi 53715478 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gi 60683451</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 253566657</u> from <u>Bacteroides sp. 3_2_5</u> <u>gi 25501634</u> from <u>Bacteroides fragilis 3_1</u>12 gi 265767535 from Bacteroides fragilis 3_1/2 gi 265767536 from Bacteroides gragilis NCTC 9343 gi 81608231 from Bacteroides fragilis NCTC 9343 gi 52218343 from Bacteroides fragilis YCH46 gi 60494885 from Bacteroides fragilis NCTC 9343 gi 251944829 from Bacteroides sp. 3 2 5 gi 263252840 from Bacteroides sp. 2 1 16

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 27%

Matched peptides shown in Bold Red

1 MADLKAFAEQ LVNLTVKEVN ELATILKEEY GIEPAAAAVA VAAGPAAGAA 51 AAEEKSSFDV VLKSAGAAKL QVVKAVKEAC GLGLKEAKDM VDGAPSVVKE 101 GLAKDEAESL KKTLEEAGAE VELK

Show predicted peptides also

TITLE

JOURNAL

Sort Peptides By @ Residue Number O Increasing Mass O Decreasing Mass Start - End Observed Mr(expt) Mr(calc) Delta Miss Sequence 17 17 666.8140 444.8790 1331.6134 1331.6152 1331.7449 1331.7449 -0.1314 0 K.AFAEQLVNLTVK.E (Ions score 85) 0 K.AFAEQLVNLTVK.E (Ions score 41) K.AFAEQUVNLTVK.E (Ions score 41) K.AFAEQUVNLTVK.E (Ions score 61) K.EVNELATILK.E (Ions score 36) K.TLEEAGAEVELK.- (Ions score 14) K.TLEEAGAEVELK.- (Ions score 46) - 17 - 27 666,8760 1331,7374 1331 7449 -0.0074 0 565.2830 1128.5514 1128.6390 -0.0876 0 - 124 644.2710 1286.5274 1287,6558 -1,1283 0 644.7870 1287.5594 1287.6558 -0.0963 0 -0 0 (wdd) (Da) -250 -0.5 Error ² -500 Er, -1 -750 -1320 1120 1160 1200 1240 1280 1120 1160 1200 1240 1280 1320 Mass (Da) RMS error 365 ppm Mass (Da) RMS error 365 ppm YP_101470 124 aa linear BCT 26 50S ribosomal protein L7/L12 [Bacteroides fragilis YCH46]. YP_101470 LOCUS linear BCT 26-APR-2009 DEFINITION ACCESSION VERSION YP_101470.1 GI:53715478 DBLINK Project: 13067 DBSOURCE REFSEQ: accession NC_006347.1 KEYWORDS Bacteroides fragilis YCH46 Bacteroides fragilis YCH46 SOURCE ORGANISM Bacteroides fragilis YCH46 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 124) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707 2 (residues 1 to 124) REFERENCE AUTHORS TITLE JOURNAL. PUBMED 1546707 2 (residues 1 to 124) NCBI Genome Project Direct Submission Submitted (01-0CT-2004) National Center for Biotechnology REFERENCE CONSRTM TITLE JOURNAL Information, NIH, Bethesda, MD 20894, USA
3 (residues 1 to 124) REFERENCE Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T. Direct Submission AUTHORS

Submitted (20-APR-2004) Kitasato Institute for Life Sciences,

<pre>FEATURES Location/Qualifiers source 1.124 /organism="Bacteroides fragilis YCH46" /dt.xtain="YCH46" /db.xtef="taxon:225405" Protein 1124 /product="505 ribosomal protein L7/L12" /datulated_mol_wt=12506 Region 2123 /refers to the large ribosomal subnit proteins L7 and L12, which are identical except that L7 is acetylated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of, cd00387" /db.xtef="CDD100102" Site order(2, 1517, 2021, 24, 27, 42, 4546, 4850, 5657, 78, 8061, 83, 8566, 100101, 103, 106) /site_type="other" /db.xtef="CDD100102" Site order(5, 8, 12, 25, 30) /site_type="other" /hote="peripheral dimer interface" /db.xtef="CDD100102" Site order(19, 2223, 27, 30) /site_type="other" /hote="peripheral dimer interface" /db.xtef="CDD100102" Site order(19, 2223, 27, 30) /site_type="other" /hote="Location interface" /db.xtef="CDD100102" Site order(6970, 374, 777, 8485, 88) /site_type="other" /hote="public setting" /hote="public setting" /hote="publi</pre>		L-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan REVIEWED <u>REFSEQ</u> : This record has been curated by NCBI staff. The reference sequence was derived from <u>BAD50936</u> . dethod: conceptual translation.
<pre>source 1124 source 1124 source 1124 source //strain=*CCH46* //strain=*CH46* //st</pre>		
<pre>/organism="Bacteroides fragilis YCH46" /db_yref="taxon:295405" /db_yref="taxon:295405" /rotein /.124 /product="505 ribosomal protein L7/L12" /calculated_mol_wt=12506 2123 /region_name="Ribosomal_D7_L12" /note="Ribosomal_protein L7/L12. Ribosomal protein L7/L12 refers to the large ribosomal_subunit proteins L7 and L12. refers to the large ribosomal subunit proteins L7 and L12. refers to the large ribosomal subunit proteins L7 and L12. refers to the large ribosomal subunit proteins L7 and L12. refers to the large ribosomal subunit proteins L7 and L12. refers to the large ribosomal subunit proteins L7 and L12. refers to the large ribosomal subunit proteins L7 and L12. refers to the surface of; cd0030*" /db_yref="CDD:100102" Site order(2.1517,2021,24,27,42,4546,4850,5657,78, 8081,83,8586,100101.103,106) /site_type="other" /note="peripheral dimer interface" /db_yref="CDD:100102" Site order(19,2223,27,30) /site_type="other" /note="pictor:100102" Site order(19,2223,27,30) /site_type="other" /note="pictor:100102" Site order(70,74,77,8485,88) rise_type="other" /note="pittive BF-Tn interaction site" /db_yref="CDD:100102" Site order(70,7374,77,8485,88) fiste_type="other" /note="pittive BF-Cn interaction site" /db_yref="CDD:100102" CDS 1124 /gens="tplt" /locus_tag="BPH193" /coded_by="complement(NC_006347.1:4790804.4791178)" /note="tibosomal /coded_by="complement(NC_006347.1:4790804.4791178)" //coded_by="complement(NC_006347.1:4790804.4791178)" //coded_by="complemen</pre>		
<pre>/db_xref="taxon:225405" Protein /db_conter=\$05 ribosomal protein L7/L12" /daculated_mol_wt=12506 Region 2123 /region_name="Ribosomal_L7_L12" /note="Ribosomal protein L7/L12. Ribosomal protein L7/L12 refers to the large ribosomal subunit proteins L7 and L12, which are identical except that L7 is acetylated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of, cd00387" /db_xref="CDD:100102" Site order(2,1517.2021,24,27,42.4546,4850,5657,78, 081,83,8586,100101,103,106) //site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102" Site order(19,2223,27,30) //site_type="other" /note="L10 interface" /db_xref="CDD:100102" Site order(19,.2233,.74,77,8485,88) //site_type="other" /note="L11 interface" /db_xref="CDD:100102" Site order(10,.7374,.77,8485,88) //site_type="other" /note="L11 interface" /db_xref="CDD:100102" Site order(70.7374,.77,8485,88) //site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102" Site order(10,.7374,.77,8485,88) //site_type="other" /note="L11 interface" /db_xref="CDD:100102" Site order(10,.7374,.77,8485,88) //site_type="other" /note="putative BF-G interaction site" /db_xref="CDD:100102" Site order(10,.7374,.77).4485,88) //site_type="other" /note="putative BF-G interaction site" /db_xref="CDD:100102" Site order(10,.74.77,.4445.,45,88) //site_type="other" /note="putative BF-G interaction site" /db_xref="CDD:100102" Site order(10,.74.77,.4445.,45,48] //site_type="other" /note="putative BF-G interaction site" /db_xref="CDD:100102" Site order(10,.74.77,.4445.,45,48] //site_type="other" /note="putative BF-G interaction site" /db_xref="CDD:100102" Site order(10,.74.77,.4445.,45,48] //site_type="other" /note="putative BF-G interaction site" /db_xref="CDD:100102" //site_type="other" /note="putative BF-G interaction site" /db_xref="CDD:100102" //site_type="other" //site_type="other" //site_type="other" //site_type="other" //site_type="other" //site_type="other" //site_type</pre>	Source	/organism="Bacteroides fragilis YCH46"
<pre>Protein 1124 /roduct="505 ribosomal protein L7/L12" //alculated_mol_wt=12506 Region 2123 /region_name="Ribosomal_L7_L12" /rote="Ribosomal protein L7/L12. Ribosomal protein L7/L12 refers to the large ribosomal subunit proteins L7/L12 refers to the large ribosomal subunit proteins L7/L12 refers to the large ribosomal subunit proteins L7/L12 which are identical except that L7 is acetylated at the N terminus. It is a component of the L7/L12 Stalk, which is located at the surface of; cd00387" /db_xref="CDD:100102" Site order(2, 1517, 2021, 24, 27, 42, 4546, 4850, 5657, 78, 8081, 83, 85, 80, 100103, 103, 106) /site_type="other" /note="core dimer interface" /db_xref="CDD:100102" Site order(19, 2223, 27, 30) /site_type="other" /note="pitheral dimer interface" /db_xref="CDD:100102" Site order(19, 72, .23, 27, 30) /site_type="other" /note="L11 interface" /db_xref="CDD:100102" Site order(10, 74, 77, 8485, 88) /site_tope="other" /note="putative EF-Tn interaction site" /db_xref="CDD:100102" Site order(70, 73, .74, 77). Site order(70, 74, 77, 8485, 88) /site_top="other" /note="putative EF-C interaction site" /db_xref="CDD:100102" Site order(70, 74, 77, 8485, 88) /site_top="other" /note="putative EF-C interaction site" /db_xref="CDD:100102" Site order(70, 74, 77, 8485, 88) /site_top="other" /note=spitative EF-C interaction site" /db_xref="cDD:100102" /site_top="other" /note=spitative" /coded_by="complement(%c_005447.1:47908044791178)" /note=spitative" /coded_by="complement(%c_005447</pre>		
<pre>//claim /product="505 ribosomal protein L7/L12" //calculated_mol_wt=12506 2123 /region_name="Ribosomal_L7_L12" //note="Ribosomal protein L7/L12 refers to the large ribosomal subunit proteins L7 and L12, which are identical except that L7 is acceptlated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of; cd0387" /db_xref="CDD:100102" /db_xref="CDD:100102" /db_xref="CDD:100102" //note="protein" //note="protein"</pre>	Destain	
<pre>/calculated_mol_wt=12506 2123 /region_mame="mibosomal_L7_L12" /note="mibosomal protein L7/L12. Ribosomal protein L7/L12 refers to the large ribosomal subunit proteins L7 and L12, which are identical except that L7 is acceylated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of, cd00387" /db_xref=COD:100102" Site order(2,15.17,20.21,24,27,42,4546,4850,5657,78, 80.81,83.85.86,100.100,103,106) /site_type="other" /note="core dimer interface" /db_xref="CDD:100102" Site order(5,8,12,25,30) /site_type="other" /note="repripheral dimer interface" /db_xref="CDD:100102" Site order(10,22.23,27,30) /site_type="other" /note="L0D:100102" Site order(10,22.23,27,30) /site_type="other" /note="L10 interface" /db_xref="CDD:100102" Site order(10,74,77,8485,88) /site_trpe="other" /note="putative EF-T1 interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" /site_type="other" /note="present in two forms; L12 is normal, while L7 is /note="present in two forms; L12 is normal, while L7 is /note="present in two forms; L12 is normal, while L7 is /note="present in two</pre>	PIOLEIII	
Region 2133 /region_name="Wibosomal_L7_L12" //note="Nibosomal protein L7/L12 refers to the large ribosomal subunit proteins L7 and L12, which are identical except that L7 is acctylated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of; d00387" /db_xref="CDD:100102" Site order(2,15, 17, 20, 21, 24, 27, 42, 45, .46, 48, .50, 56, .57, 78, 80, .81, 83, 85, .86, 100, .101, 103, 106) /site_type="other" /note="core dime" interface" /db_xref="CDD:100102" Site order(15, 8, 12, 25, 30) /site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102" Site order(16, 22, .23, 27, 30) /site_type="other" /note="nume"/"/note="nume"/"/note""////14, 77, 44, .85, 88) /site_type="other" /note="CDD:100102" Site order(10, 73, .74, 77, 44, .85, 88) /site_type="other" /note="putative BF-Tu interaction site" /db_xref="CDD:100102" Site order(10, 73, .74, 77) /site_type="other" /note="putative BF-G interaction site" /db_xref="CDD:100102" Site order(10, 73, .74, 77) <td< td=""><td></td><td></td></td<>		
<pre>/region_name="milosomal_L7_L12" /note="milosomal protein L7/L12. Ribosomal protein L7/L12 refers to the large ribosomal subunit proteins L7 and L12, which are identical except that L7 is acceylated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of; cd00387" /db_xref="COD:100102" order(2,15.17,20.21,24,27,42,4546,4850,5657,78, 80.81,83.85.86,100.101.103,106) /site_type="other" /note="core dimer interface" /db_xref="COD:100102" Site order(5,8,12,25,30) /site_type="other" /note="coDD:100102" Site order(19,2223,27,30) /site_type="other" /note="toDD:100102" Site order(19,2223,27,30) /site_type="other" /note="toDD:100102" Site order(6970,7374,77,8485,88) /site_type="other" /note="toDD:100102" Site order(74,77,8485,88) /site_type="other" /note="toDD:100102" Site order(70,7374,77,8485,88) /site_type="other" /note="tother" /note="tother" /note="tother" /note="tother" /note="putative BF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative BF-G interaction site" /db_xref="CDD:100102" CDS 1124 /gene="tplu" /locus_tag="BF193" /note="putative BF-G interaction site" /note="putative BF-G interaction s</pre>	Decion	
<pre>/ncte="Elbosomal protein L7/L12. Ribosomal protein L7/L12 refers to the large ribosomal subunit proteins L7 and L12, which are identical except that L7 is acctylated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of; cd00387" /db_xref="CDD:100102" Site order(2,1517,2021,24,27,42,4546,4850,5657,78, 8081,83,8586,100101,103,106) /site_type="other" /note="core dimer interface" /db_xref="CDD:100102" Site order(5,8,12,25,30) /site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102" Site order(19,2223,27,30) /site_type="other" /note="located" /db_xref="CDD:100102" Site order(5,7,7374,77,8485,88) /site_type="other" /hote="located" /db_xref="CDD:100102" Site order(70,70,73,47,77,8485,88) /site_type="other" /hote="located" /db_xref="CDD:100102" Site order(70,74,77,8485,88) /site_type="other" /hote="putative EF-Th interaction site" /db_xref="CDD:100102" Site order(70,7374,777) /site_type="other" /note="putative EF-G interaction site" /hotx="putative EF-G interaction site" /hotx="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers Dind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11</pre>	Region	
<pre>refers to the large ribosomal subunit proteins L7 and L12, which are identical except that L7 is acetylated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of; cd00387" /db xref="CDD:100102" Site order(2,1517,20.21,24,27,42,4546,4850,5657,78, 8081,83,5866,100102,103,106) /site_type="other" /hote="core dimer interface" /db xref="CDD:100102" Site order(5,8,12,25,30) /site_type="other" /hote="cCDD:100102" Site order(19,2223,27,30) /site_type="other" /hote="tCDD:100102" Site order(6970,7374.77,8485,88) /site_type="other" /hote="tCDD:100102" Site order(6970,7374.77,8485,88) /site_type="other" /hote="L11 interface" /db xref="CDD:100102" Site order(7,7374,77,8485,88) /site_type="other" /hote="L11 interface" /db xref="CDD:100102" Site order(7,7374,77,8485,88) /site_type="other" /hote="putative EF-Tu interaction site" /db xref="CDD:100102" Site order(7,7374,77) /site_type="other" /hote="putative EF-G interaction site" /db xref="CDD:100102" CDS 1124 /gene="rplL" /locus_tag="BF4133" /locus_tag="BF4135" /locus_tag="BF4135" /locus_tag="BF4135" /locus_tag="BF4135" /locus_tag="BF4135" /locus_tag="Bf413</pre>		/region_names_rel_protein_L7/L12, Ribosomal_protein_L7/L12
<pre>which are identical except that L7 is acetylated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of; cd00387" /db_xref="CDD:100102" /db_aref="CDD:100102" /site_type="other" /note="core dimer interface" /db_xref="CDD:100102" /site_type="other" /note="core dimer interface" /db_aref="CDD:100102" /site_type="other" /note="peripheral dimer interface" /db_aref="CDD:100102" /site_type="other" /note="core dimer interface" /db_aref="CDD:100102" /site_type="other" /note="core dimer interface" /db_aref="CDD:100102" /site_type="other" /note="core dimer interface" /db_aref="CDD:100102" /site_type="other" /note="L10 interface" /db_aref="CDD:100102" /site_type="other" /note="L11 interface" /db_aref="CDD:100102" /site_type="other" /note="putative SF-Tu interaction site" /db_aref="CDD:100102" /site_type="other" /note=putative SF-Tu interaction site" /db_aref="CDD:100102" /site_type="other" /db_aref="CDD:100102" /db_aref="CDD:100102" /site_type="other" /note=putative SF-Tu interaction site" /db_aref="CDD:100102" /site_type="other" /db_aref="CDD:100102" /site_type="other" /note=putative SF-Tu interaction site" /db_aref="CDD:100102" /db_aref="CDD:100102" /db_aref="CDD:100102" /db_aref="CDD:100102" /db_aref="CDD:100102" /db_aref="CDD:100102" //db_aref="CDD:100102" //dc_aref="CDD:100102" //dc_aref="CDD:100102" //dc_aref="CDD:1001</pre>		
<pre>terminus. It is a component of the L7/L12 stalk, which is located at the surface of, cd00387" /db_xref="CD0:100102" Site order(2,1517,2021,24,27,42,4546,4850,5657,78, 8081,83,8586,100101,103,106) /site_type="other" /note="core dimer interface" /db_xref="CD0:100102" Site order(5,8,12,25,30) /site_type="other" /note="peripheral dimer interface" /db_xref="CD0:100102" Site order(19,2223,27,30) /site_type="other" /note="l10 interface" /db_xref="CD0:100102" Site order(6,70,7374,77,8485,88) /site_type="other" /note="l10 interface" /db_xref="CD0:100102" Site order(6,70,7374,77,8485,88) /site_type="other" /note="l10 interface" /db_xref="CD0:100102" Site order(70,73.74,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CD0:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CD0:100102" CDS 1124 /gene="rpl1" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind 10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=1]</pre>		
located at the surface of; cd00387"/db_xref="CDD:100102"Siteorder(2, 1517, 2021, 24, 27, 42, 4546, 4850, 5657, 78, 8081, 83, 8586, 100101, 103, 106)/site_type="other" /note="core dimer interface" /db_xref="CDD:100102"Siteorder(5, 8, 12, 25, 30)/site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102"Siteorder(16, 9, 2232, 73, 30)/site_type="other" /note="Lope="other" /note="Lope="other" /note="Lope="other" /note="Lope="other" /note="Lope="other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="Lope"other" /note="putative EF-0 interaction site" /db_xref="CDD:100102"Siteorder(70, 7374, 77, 8485, 88) /site_type="other" /note="putative EF-0 interaction site" /db_xref="CDD:100102"Siteorder(70, 7374, 77) /site_type="other" /note="putative EF-0 interaction site" /db_xref="CDD:100102"CDS1124 /gene="rplL" /locus_tag="BF4193" /locus_tag="BF4193" /locus_tag="BF4193" /locus_tag="BF4193" /locus_tag="BF4193" /locus_tag=tage then"interinal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L0; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11		torning It is a component of the L7/L12 stalk, which is
<pre>/db_xref="CDD:100102" Site order(2,1517,2021,24,27,42,4546,4850,5657,78, 8081,83,8586,100101,103,106) /site_type="other" /note="core dimer interface" /db_xref="CDD:100102" Site order(5,8.12,25.30) /site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102" Site order(19,2223,27,30) /site_type="other" /note="L10 interface" /db_xref="CDD:100102" Site order(570,7374,77,8485,88) /site_type="other" /note="L10 interface" /db_xref="CDD:100102" Site order(76,.70,7374,77,8485,88) /site_type="other" /note="L11 interface" /db_xref="CDD:100102" Site order(70,7374,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" /site_type="other" //site_type="other" //site_type="other" //site_type="</pre>		located at the surface of cd00387"
Siteorder(2, 1517, 2021, 24, 27, 42, 4546, 4850, 5657, 78, 8081, 83, 8586, 100101, 103, 106) /site_type="other" /note="core dimer interface" /db_xref="CDD:100102"Siteorder(5, 8, 12, 25, 30) /site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102"Siteorder(19, 2223, 27, 30) /site_type="other" /note="L10 interface" /db_xref="CDD:100102"Siteorder(6970, 7374, 77, 8485, 88) /site_type="other" /note="L10 interface" /db_xref="CDD:100102"Siteorder(6970, 7374, 77, 8485, 88) /site_type="other" /note="L11 interface" /db_xref="CDD:100102"Siteorder(70, 74, 77, 8485, 88) /site_type="other" /note="L10 interface" /db_xref="CDD:100102"Siteorder(70, 74, 77, 8485, 88) /site_type="other" /note="L11 interface" /db_xref="CDD:100102"Siteorder(70, 74, 77, 8485, 88) /site_type="other" /note="Dutative EF-T0 interaction site" /db_xref="CDD:100102"Siteorder(70, 74, 77, 8485, 88) /site_type="other" /note="periphera" /note="Dutative EF-T0 interaction site" /db_xref="CDD:100102"CDS1124 /gene="tplu" /db_xref="CDD:100102"CDS1124 /gene="tplu" /coded_by="complement(NC_006347.1:47908044791178)" /coded_by="complement(NC_006347.1:47908044791178)" /coded_by="complement(NC_006347.1:47908044791178)" /coded_by="complement(NC_006347.1:47908044791178)" /coded_by="complement(NC_006347.1:47908044791178)" /coded_by="complement(NC_006347.1:47908044791178)" /coded_by="complement(NC_006347.1:47908044791178)" /coded_by="complement(NC_006347.1:47908044791178)" /coded_by="complement(NC_006347.1:47908044791178)" /		
<pre>8081.83.8586,100103,105) /site_type="other" /note="core dimer interface" /db_xref="CDD:100102" Site order(5,8.12,25.30) /site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102" Site order(19.2223.27.30) /site_type="other" /note="li10 interface" /db_xref="CDD:100102" Site order(5970.7374,77,8485,88) /site_type="other" /note="li11 interface" /db_xref="CDD:100102" Site order(70.7374,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70.7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" Site order(70.74.77,8485,88) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" Site order(70.74.77,8485,88) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" /site_type="other" /note="putative EF-G interaction site" /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:10102" /site_type="other" /note="present in two forms, L12 is normal, while L7 is aminacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11</pre>	Cit-	$/00_x = 10^{-10} = 10^{-10} = 10^{-21} = 24^{-27} = 42^{-45} = 46^{-48} = 50^{-56} = 57^{-78}$
<pre>/site_type="other" /note="core dimer interface" /db_xref="CDD:100102" Site order(5,8,12,25,30) /site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102" Site order(19,22.23,27,30) /site_type="other" /note="L10 interface" /db_xref="CDD:100102" Site order(6970,7374,77,8485,88) /site_type="other" /note="L11 interface" /db_xref="CDD:100102" Site order(70,74,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" CDS 1124 /gene="rplt" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10, critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>	site	
<pre>/not="core dimer interface"</pre>		
<pre>/db_xref="CDD:100102" Site order(5,8,12,25,30) /site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102" Site order(19,2223,27,30) /site_type="other" /note="L10 interface" /db_xref="CDD:100102" Site order(6970,7374,77,8485,88) /site_type="other" /note="putalive EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" CDS 1124 /gene="rplL" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, 1L2 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosome; two L12 dimers bind L10, critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>		
Site order(5,8,12,25,30) //site_type="other" /note="peripheral dimer interface" /db_xref="CDD:100102" Site order(19,22.23,27,30) /site_type="other" /note="TI0 interface" /db_xref="CDD:100102" Site order(6970,7374,77,8485,88) /site_type="other" /note="TI1 interface" /db_xref="CDD:100102" Site order(70,7374,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" 1124 /gene="rplt" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activi		
<pre>// // // // // // // // // // // // //</pre>	01 H H	
<pre>/note="peripheral dimer interface" /db_xref="CDD:100102" /db_xref="CDD:100102"</pre>	Site	
<pre>/db_xref="CDD:100102" Site order(19,22.23,27,30) /site_type="other" /note="TL10 interface" /db_xref="CDD:100102" Site order(5970,7374,77,8485,88) /site_type="other" /note="LL1 interface" /db_xref="CDD:100102" Site order(70,7374,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" CDS 1124 /gene="rplt" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>		/site_type=other interface"
Site order(19,2223,27,30) /site_type="other" /note="lil0 interface" /db_xref="CDD:100102" Site order(6970,7374,77,8485,88) /site_type="other" /note="Lil interface" /db_xref="CDD:100102" Site order(70,74,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" /code_typ="complement(NC_006347.1:47908044791178)" /nocet="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11		
<pre>/site_type="other" /note="L10 interface" /db_xref="CDD:100102" site order(6970,7374,77,8485,88) /site_type="other" /note="L11 interface" /db_xref="CDD:100102" site order(70,74,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" cDs 1124 /gene="rplL" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>		
<pre>/note="il0 interface" /db_xref="CDD:100102" Site order(5970,7374,77,8485,88) /site_type="other" /note="Ll1 interface" /db_xref="CDD:100102" Site order(70,7374,77) Site order(70,7374,77) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" CDS 1124 /gene="rplt" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein: 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>	Site	
<pre>/db_xref="CDD:100102" Site order(6970,7374,77,8485,88) /site_type="other" /note="Lll interface" /db_xref="CDD:100102" Site order(70,74,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" CDS 1124 /gene="rplL" /locus_tag="BF4193" /code_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, Ll2 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/Ll2 per ribosome, two Ll2 dimers bind Ll0; critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>		
Site order(6970,7374,77,8485,88) /site_type="other" /note="L11 interface" /db_xref="CDD:100102" /db_xref="CDD:100102" Site order(70,74,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /hote="putative EF-G interaction site" /db_xref="CDD:100102" /note="putative EF-G interaction site" /db_xref="CDD:100102" /cDS 1124 /gene="tpll" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11 //delegaa		
<pre>/site_type="other" /note="L11 interface" /db_xref="CDD:100102" Site order(70,74,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" CDS 1124 /gene="rplL" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>	<i>aiiiii</i>	
<pre>/note="L11 interface"</pre>	Site	
<pre>/db_xref="CDD:100102" Site order(70,74,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" CDS 1124 /gene="rplt" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="putative the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>		
Site order(70,74,77,8485,88) /site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" Site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" 1124 /gene="rplL" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11		
<pre>/site_type="other" /note="putative EF-Tu interaction site" /db_xref="CDD:100102" site order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" 1124 /gene="tplL" /locus_tag="BF4193" /code_by="complement(NC_006347.1:47908044791178)" /note="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11</pre>	Cites	
<pre>/note="putative EF-Tu interaction site" /db_xref="CDD:100102" order(70,7374,77) /site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" 1124 /gene="rplL" /locus_tag="BF4193" /codd_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>	Site	
<pre>/db_xref="CDD:100102" order(70,7374,77) /site_type="otcher" /note="putative EF-G interaction site" /db_xref="CDD:100102" 1124 /gene="rplL" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome, two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11</pre>		
<pre>site order(70,7374,77) /site_type="other" /notce="putative EF-G interaction site" /db_xref="CDD:100102" /de_me="rplL" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /notce="present in two forms, L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>		
<pre>/site_type="other" /note="putative EF-G interaction site" /db_xref="CDD:100102" 1124 /gene="rplL" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of transl_table=11</pre>	Sito	
<pre>/note="putative EF-G interaction site" /db_xref="CDD:100102" /db_xref="CDD:100102" 1124 /gene="rplL" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11</pre>	5100	
<pre>/db_xref="CDD:100102" 1124 /gene="rplL" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11</pre>		
CDS 1124 /gene="rplL" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms; Ll2 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/Ll2 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11		
<pre>/gene="rplL" /locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms; Ll2 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/Ll2 per ribosome; two Ll2 dimers bind Ll0; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11</pre>	CDS	
<pre>/locus_tag="BF4193" /coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms, Ll2 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/Ll2 per ribosome; two Ll2 dimers bind Ll0; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11</pre>	0000	
<pre>/coded_by="complement(NC_006347.1:47908044791178)" /note="present in two forms; L12 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11</pre>		
<pre>/note="present in two forms; Ll2 is normal, while L7 is aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/Ll2 per ribosome; two Ll2 dimers bind Ll0; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table=11</pre>		/coded by="complement(NC 006347.1:47908044791178)"
aminoacylated at the N-terminal serine; the only multicopy ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table= <u>11</u>		/note="present in two forms; L12 is normal, while L7 is
ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table= <u>11</u>		aminoacylated at the N-terminal serine; the only multicopy
L12 dimers bind L10; critically important for translation efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table= <u>11</u>		ribosomal protein; 4:1 ratio of L7/L12 per ribosome; two
efficiency and fidelity; stimulates GTPase activity of translation factors" /transl_table= <u>11</u>		L12 dimers bind L10; critically important for translation
translation factors" /transl_table= <u>11</u>		efficiency and fidelity; stimulates GTPase activity of
/transl_table=11		

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 3303
MS data file	: D:\Data\Lakshmy\PROTBOMICS 3- 151208\SSP (3303) 10 RJ5 01 1367.d\SSP (3303) 10 RJ5 01 1367.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:24:24 GMT
Protein hits	: gi 53711794 cationic outer membrane protein precursor [Bacteroides fragilis YCH46]

Probability Based Mowse Score

lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

13 35 TIME			
Number of Hits			
t 25 -			
qu 20 -			
2 15 -			
10-			
5			
0 1000	50	100 15	0 200
			sed Mowse Score

Peptide Summary Report

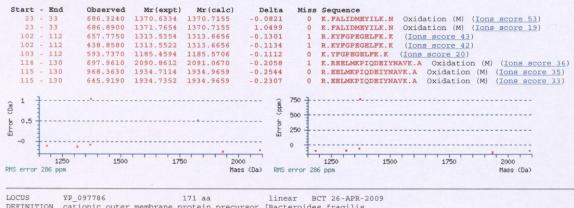
		Peptide Sun		-						Help
		Significance	e threshold p<	(0.05	Max. ni	umber	of hits	AUTO		
		Standard sc	oring @ Mu	dPIT scoring	C Ions sco	ore or	expect	cut-off 0		Show sub-sets 0
		Show pop-u	ips @ Suppre	ess pop-ups	Sort un	assign	ed Dec	reasing Sc	ore	Require bold red
elect	t All	Select Non	e Sea	rch Selected	Erre	or tole	rant			
	gi 531		ass: 19149	Score: 1						
				otein precur			matche		emPAI: CH461	1.24
			and the second second	n error tol	Constitution and an other			-9		
-	Query	Observed	Mr (expt)	Mr(calc)	Delta			Expect		Peptide
17	110	593.7370	1185.4594	1185.5706	-0.1112	0	20	3.3e+02	7	K.YFGPEGELFK.K
1	126		1313.5354 1313.5522	1313.6656		1	43	1.3	1	R.KYFGPEGELFK.K
17	127				-0.1134	1	(42)		2	R.KYFGPEGELFK.K
~	138 139		1370.6334 1371.7654	1370.7155 1370.7155	-0.0821	0	53	0.14 4.1e+02	1	<pre>K.FALIDMEYILK.N + Oxidation (M) K.FALIDMEYILK.N + Oxidation (M)</pre>
V	197		1934.7114	1934.9659	-0.2544	0	35	6.1	1	R. EELMKPIQDEIYNAVK.A + Oxidation (M)
V	198		1934.7352	1934.9659	-0.2307	0	(33)	9.1	1	R.EELMKPIQDEIYNAVK.A + Oxidation (M)
V	142		2090.8612	2091.0670	-0.2058	1	36	12	1	K.REELMKPIQDEIYNAVK.A + Oxidation (M)
	gi 255 putati gi 265	5009916 ive cationi 5765175	Mass: 19218 c 19 kDa ou Mass: 19077	ter membran Score:	184 Qu le proteir 184 Qu	n prec	match	[Bactero	oides	fragilis 3_1_12]
	gi 255 putat: gi 265 cation	5009916 ive cationi 5765175 nic outer m	Mass: 19218 c 19 kDa ou Mass: 19077 embrane pro	Score:	184 Qu e proteir 184 Qu roides sp	n prec neries	matcl	[Bactero ned: 8		fragilis 3_1_12]
tid	gi 255 putati gi 265 cation e matc	5009916 ive cationi 5765175 nic outer m thes not as:	Mass: 19218 c 19 kDa ou Mass: 19077 membrane pro signed to p	Score: ter membran Score: otein [Bacte rotein hits	184 Qu le proteir 184 Qu croides sp ; (no det	ails	means	[Bactero ned: 8 no match	1)	
tid	gi 255 putat: gi 265 cation	5009916 ive cationi 5765175 nic outer m	Mass: 19218 c 19 kDa ou Mass: 19077 embrane pro	Score: ater membran Score: otein [Bacte	184 Qu le proteir 184 Qu croides sp ; (no det	ails	matcl	[Bactero ned: 8 no match	i) : Rank	
tid	gi 255 putati gi 265 cation e matc Query	5009916 ive cationi 5765175 nic outer m thes not as Observed	Mass: 19218 c 19 kDa ou Mass: 19077 membrane pro signed to p Mr(expt)	Score: Ater membran Score: Stein [Bacte rotein hits Mr(calc)	184 Qu e proteir 184 Qu roides sp : (no det Delta	ails Miss	means Score	[Bactero ned: 8 no match	i) : Rank 1	Peptide
tid F	gi 255 putati gi 265 cation e mato Query 127	5009916 ive cationi 5765175 nic outer m thes not as Observed 438.8580	Mass: 19218 c 19 kDa ou Mass: 19077 membrane pro signed to p Mr(expt) 1313.5522	Score: Ater membran Score: Stein [Bacter rotein hits Mr(calc) 1313.5962	184 Qu te proteir 184 Qu roides sp : (no det Delta -0.0440	n prec neries 0. 2_1 ails Miss 0	means Score 43	[Bactero ned: 8 no match Expect 1.5	i) Rank 1 1	Peptide QYFGPEGELMK + Oxidation (M)
tid হি	gi 255 putati gi 265 cation e matc Query 127 221	5009916 ive cationi 5765175 nic outer m thes not as: Observed 438.8580 700.9150	Mass: 19218 c 19 kDa ou Mass: 19077 membrane pro signed to p Mr(expt) 1313.5522 2099.7232	Score: ater membran Score: otein [Bacter rotein hits Mr(calc) 1313.5962 2100.1262	184 Qu e proteir 184 Qu rroides sp : (no det Delta -0.0440 -0.4031	n prec neries 0. 2_1 ails Miss 0 2	means Score 43 39	[Bactero ned: 8 no match : Expect 1.5 2.2	i) : Rank 1 1 1	Peptide QYFGFEGELMK + Oxidation (M) YLMVGGDVVDPRVAAQVRR
tid राय	gi 255 putat: gi 265 cation e matc Query 127 221 233	5009916 ive cationi 5765175 nic outer m thes not as: Observed 438.8580 700.9150 741.9410	Mass: 19218 c 19 kDa ou Mass: 19077 membrane pro signed to p Mr (expt) 1313.5522 2099.7232 2222.8012	Score: tter membran Score: ttein [Bacte rotein hits Mr(calc) 1313.5962 2100.1262 2223.1310	184 Qu te proteir 184 Qu troides sp : (no det Delta -0.0440 -0.4031 -0.3299	n prec neries 0. 2_1 ails Miss 0 2 2 2	means Score 43 39 37	[Bactero ned: 8 no match : Expect 1.5 2.2 3.2	i) : Rank 1 1 1	Peptide QYFGPEGELMK + Oxidation (M) YLMVGGDVVDPRVAAQVRR BLLIGKTDYDIFPKEEADK
राव रा	gi 255 putati gi 265 cation e matc Query 127 221 233 82	5009916 ive cationi 5765175 nic outer m thes not as: Observed 438.8580 700.9150 741.9410 431.2590	Mass: 19218 c 19 kDa or Mass: 19077 embrane pro signed to p Mr (expt) 1313.5522 2099.7232 2222.8012 1290.7552	<pre>Score: tter membran Score: btein [Bacte rotein hits Mr(calc) 1313.5562 2100.1262 2223.1310 1289.6364</pre>	184 Qu e protein 184 Qu rroides sp : (no det Delta -0.0440 -0.4031 -0.3299 1.1188	n prec neries 0. 2_1 ails Miss 0 2 2 1	sursor means Score 43 39 37 32	[Bacteroned: 8 no match Expect 1.5 2.2 3.2 40	i) : Rank 1 1 1 1	Peptide QYFGPEGELMK + Oxidation (M) YLMVGGDVVDRVAAQVRR ELLIGKTDYDIPPKEEADK QKPDAEGFDKR
रा रा रा रा	gi 259 putati gi 269 cation e matc Query 127 221 233 82 217	5009916 ive cationi 5765175 nic outer m thes not as: Observed 438.8580 700.9150 741.9410 431.2590 694.9340	Mass: 19218 c 19 kDa ou Mass: 19077 eembrane pro- signed to p Mr (expt) 1313.5522 2099.7232 2222.8012 1290.7552 2081.7802	Score: iter membran score: 'Score: score: 'stein [Bacter score: rotein hits mr(calc) 1313.5562 2100.1262 2223.1310 1289.6364 2080.9371 1	184 Qu e protein 184 Qu rroides sp : (no det Delta -0.0440 -0.4031 -0.3299 1.1188 0.8430	n prec neries (). 2_1 ails () 2 2 2 1 0	sursor means Score 43 39 37 32 31	[Bacteroned: 8 no match Expect 1.5 2.2 3.2 40 15	1) Rank 1 1 1 1 1	Peptide QYFGPEGELMK + Oxidation (M) YLMVGGDVVDFRVAAQVRR ELLIGKTDYDIFPKEEADK QKPDAEGFDKR SGETIFENNQANDLTGPMK + Oxidation (M)
ति त त त त व	gi 255 putat: gi 265 cation e matc Query 127 221 233 82 217 108	5009916 ive cationi 5765175 nic outer m thes not as: Observed 438.8580 700.9150 741.9410 431.2590 694.9340 584.9800	Mass: 19218 c 19 kba or Mass: 19077 eembrane pro signed to p Mr (expt) 1313.5522 2039.7322 2222.8012 2222.8012 2222.8012 22081.7802 1751.9182	Score: tter membran Score: vtein [Bacte rotein hits Mr (calc) 1313.5562 2100.1262 2223.1310 1289.6364 2080.9371 1751.6879	184 Que protein 184 Que protein 184 Que protein : (no det Delta -0.0440 -0.4031 -0.3299 1.1188 0.8430 0.2302	n precedentes p. 2_1 ails Miss 0 2 2 1 0 0	sursor means score 43 39 37 32 31 31	[Bactero ned: 8 Expect 1.5 2.2 3.2 40 15 37	i) Rank 1 1 1 1 1 1	Peptide QYFGPEGELMK + Oxidation (M) YLWVGGDVVDFVVAAQVER ELLIGKTDYDIFPKEEADK QKPDAEGFDKR SGETIFENNQANDLTGPMK + Oxidation (M) ATCSDACDHLFPSGGR
र द द द द द द ^{tid}	gi 255 putat: gi 265 cation e matc Query 127 221 233 82 217 108 111	5009916 ive cationi 5765175 hic outer m thes not as 0bserved 438.8580 700.9150 741.9410 431.2590 694.9340 584.9800 607.0930	Mass: 19218 c 19 kba or Mass: 19077 signed to p Mr (expt) 1313.5522 2099.7332 2222.8012 1290.7552 2081.7802 1751.9182 1818.2572	<pre>Score: tter membran Score: vtein [Bacter rotein hits Mr(calc) 1313.5962 2100.1262 2223.1310 1289.6364 2080.9371 1751.6879 1817.9035</pre>	184 Que protein 184 Que protei	n pred meries). 2_1 ails Miss 0 2 2 1 0 0 0 0	sursor means score 43 39 37 32 31 31 29	[Bacterrand: 8 no match 1.5 2.2 3.2 40 15 37 47	() : Rank 1 1 1 1 1 1 1	Peptide QYFGFEGELMK + Oxidation (M) YLMVGGDVVDPRVAAQVRR ELLIGKTDYDIPPKEEADK QKPDAEGFDKR SCETIFENNQANDLTGPMK + Oxidation (M) ATCSDACDHLPFSGGR WAATHAPEHWGLMLAK
र द द द द द द द	gi 255 putat: gi 265 cation e matc Query 127 221 233 82 217 108 111 215	5009916 ive cationi 5765175 nic outer m thes not as: 0bserved 438.8580 700.9150 741.9410 431.2590 694.9340 694.9340 694.9340 694.9340 697.0930 687.9070	Mass: 19218 c 19 kDa or Mass: 1907 embrane pro- signed to p Mr (expt) 1313.5522 2029.7322 2222.8012 1290.7552 2081.7802 1751.9182 1818.2572 2060.6992	Score: tter membran score: ttein [Bacte rotein hits Mr (calc) 1313.5962 2100.1262 2223.1310 1289.6364 2060.9371 1751.6879 1817.9035 2060.0559	184 Que protein 184 Querroides sp : (no det Delta -0.0440 -0.4299 1.1188 0.8430 0.2302 0.3537 0.6333	n pred neries 0. 2_1 ails 0 2 2 1 0 0 0 2 2 1 0 0 0 2	means score 43 39 37 32 31 31 29 29	[Bacteronad: 8 no match : Expect 1.5 2.2 3.2 40 15 37 47 22	() : Rank 1 1 1 1 1 1 1 1	Peptide QYPGPEGELMK + Oxidation (M) YLMVGGDVVDPRVAAQVRR BLLIGKTDYDIPPKEEADK QKPDAEGPDKR SGETIFENNQANDLTGPMK + Oxidation (M) ATCSDACDLPFPSGGR WAATHAPEHWOLMLAK MSRPKKVPMPELPPHER + 2 Oxidation (M)
द द द द द द द द द द क ^{t t}	gi 259 putat: gi 265 cation e matc Query 127 221 233 82 217 108 111 215 128	5009916 live cationi 5765175 Thes not as Observed 438.8580 700.9150 741.9410 431.2590 694.9340 584.9800 697.9930 687.9070 658.3940	Mass: 19218 c 19 kba or Mass: 1907 embrane pro- signed to p Mr (expt) 1313.5522 2099.7232 2222.8012 1290.7552 2081.7802 1751.9182 1818.2572 2060.6592 1972.1602	Score: tter membran x Score: x Score: ttein [Bacter rotein hits Mr (calc) 1313.5962 2100.1262 223.1310 1289.6364 2080.9371 1751.6879 1817.9035 2060.0659 1972.9784	184 Que protein 184 Que rroides sp rroides sp -0.0400 -0.4031 0.8430 0.2302 0.3537 0.6333 -0.8182	n pred neries). 2_1 ails 0 2 2 1 0 0 0 2 0 0	means score 43 39 37 32 31 31 29 29 29	[Bacterrand: 8 no match Expect 1.5 2.2 3.2 40 0 15 37 47 22 74	1) Rank 1 1 1 1 1 1 1 1 1 1 1 1	Peptide QYPGPEGELMK + Oxidation (M) YLMVGGDVVDFRVAAQVER ELLIGKTDYDIFPKEEADK QKPDAEGFDKR SGETIFENNQANDLTGPMK + Oxidation (M) ATCSDACDHLPFSGGR WAATHAPEHWGIMLAK MSRFKKVPMPELPPHER + 2 Oxidation (M) MVAIGMNSMLLNSYILR + 3 Oxidation (M) GVLPLALLVLSGSLVLAGCDDK
दा दा दा दा दा दा दा दा मा	gi 259 putat: gi 265 cation e mato Query 127 221 233 82 217 108 111 215 128 231	5009916 ive cationi 5765175 iic outer m thes not as: Observed 438.8580 700.9150 741.9410 431.2590 694.9340 584.9800 607.0930 667.9070 658.3940 1105.9580	Mass: 19218 c 19 kba or Mass: 1907 signed to p Mr (expt) 1313.5522 2099.7232 2222.8012 1290.7552 2081.7802 1751.9182 1818.2572 2060.6592 1972.1602 2209.9014	Score: tter membran x Score: x Score: ttein [Bacter rotein hits Mr (calc) 1313.5962 2100.1262 223.1310 1289.6364 2080.9371 1751.6879 1817.9035 2060.0659 1972.9784 2210.2232	184 Que protein 184 Que roides sp : (no det Delta -0.0440 -0.4031 -0.3299 1.1188 0.8430 0.2302 0.3537 0.6333 -0.8182 -0.3218	ails Miss 0 2 2 1 0 0 0 2 0 0 0	means score 43 39 37 32 31 31 29 29 29 28	[Bacteroned: 8 no match Expect 1.5 2.2 3.2 40 15 37 40 15 37 40 22 274 28	1) Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	Peptide QYFGFEGELMK + Oxidation (M) YLMVGGDVVDPRVAAQVRR ELLIGKTDYDIPPKEEADK QKPDAEGFDKR SGETIFENNQANDLTGPMK + Oxidation (M) ATCSDACHLPFSGGR WAATHAPEHWGLMLAK MSRPKKVPMPELPPHER + 2 Oxidation (M) MVAIGMNSMLLNSYILR + 3 Oxidation (M)
रा रा रा रा रा रा रा रा रा	gi 255 putati gi 265 cation e matc 201 233 82 217 108 111 215 128 231 235	5009916 ive cationii 5765175 nic outer m thes not as: Observed 438.8580 700.9150 741.9410 431.2590 694.9340 584.9800 607.0930 687.9070 658.3940 1105.9580 748.5640	Mass: 19218 c 19 kba or Mass: 19077 signed to p Mr (expt) 1313.5522 2099.7232 2222.8012 1290.7552 2081.7802 1751.9182 1818.2572 2066.6992 1972.1602 2209.9014 2242.6702	Score: tter membran score: ttein [Bacte rotein hits Mr (calc) 1313.5962 2100.1262 2223.1310 1289.6364 2060.0371 1751.6879 1817.9035 2060.0659 1972.9784 2210.2232 2420.1600 1777.9323	184 Que protein 184 Que roides sp : (no det -0.0440 -0.4031 -0.3202 0.3537 0.6333 -0.8182 -0.3218 0.5101	A pred ails Miss 0 2 1 0 0 0 2 1 0 0 0 2 0 0 2 0 0 2 1 0 0 2 2 1 0 0 2 2 1 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1	means score 43 39 37 32 31 31 29 29 29 28 27	[Bacteroned: 8 no match Expect 1.5 2.2 3.2 3.2 40 0 15 37 47 22 74 4 28 29	<pre>i) Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </pre>	Peptide QYFGFEGELMK + Oxidation (M) YLMVGGDVVDFRVAAQVRR ELLIGKTDYDIFPKEEADK QKPDAEGFDKR SCRTIFENQANDLTGFMK + Oxidation (M) ATCSDACDHLPFSGGR WAATHAPEHWGLMLAK MSRPKKVPMPELPPHER + 2 Oxidation (M) MVAIGMNSMLLNSYILR + 3 Oxidation (M) GVLPLALLVLSGSLVLAGCDDK TIEGRPALPDTRMTQQRR + Oxidation (M) TEQVVGTDHPMTLVLR
रा दा का म	gi 255 putat: gi 265 cation e matc 221 233 82 217 108 111 215 128 231 235 109	5009916 ive cationi 5765175 nic outer m thes not as: Observed 418.8580 700.9150 741.9410 431.2590 694.9340 694.9340 607.0930 687.9070 658.3940 1105.9580 1105.9580 593.4080	Mass: 19218 c 19 kDa or Mass: 1907 embrane pro- signed to p Mr (expt) 1313.5522 2029.7322 2029.7322 2029.7322 2029.7322 2021.7822 2021.7822 1818.2572 2020.6992 1972.1602 2209.9014 2242.6702 1777.2022 2935.1812	Score: tter membran score: stein [Bacte rotein hits Mr (calc) 1313.5962 2100.1262 2223.1310 1289.6364 2060.0371 1751.6879 1817.9035 2060.0559 1972.9784 2242.1600 1777.9323 2934.4164	184 Que protein 184 Que protein 184 Que revides sg 0.0400 -0.0400 -0.0400 -0.3299 1.1188 0.8430 0.2302 0.3537 0.6333 -0.8182 -0.3218 0.5101 -0.7301	<pre>in preceiver is a preceiver is preceiver is preceiver is a preceiver is a preceiver is a pr</pre>	means score 43 39 37 32 31 29 29 29 28 27 27	[Bacteroned: 8 no match 5 Expect 1.5 2.2 3.2 40 15 37 47 22 74 28 29 87	i) Rank 1	Peptide QYFGFEGELMK + Oxidation (M) YLMVGGDVVDPRVAAQVRR ELLIGKTDYDIPPKEEADK QKPDAEGFDKR SGETIFENNQANDLTGPMK + Oxidation (M) ATCSDACDHLPPSGGR WAATHAPEHWGLMLAK MSRPKKVPMPELPPHER + 2 Oxidation (M) MVAIGMNSMLLNSYILR + 3 Oxidation (M) GVLPLALLVLSGSLVLAGCDDK TEGQRPALFDTRMTQQRR + Oxidation (M) TEQVVGTDHPNTLVLR HMGVSALRVINDDMVMPGKGFGTHGHR + Oxidation
रा क	gi 255 putat: putat: cation e matc Query 127 221 127 223 217 108 111 215 128 231 235 231 235 231 235 231 235 231 235 231 235 231 235 231 235 231 235 231 235 231 235 231 235 231 235 231 235 231 235 231 235 235 235 235 235 235 235 235 235 235	5009916 live cationi 5765175 nic outer m observed 438.8580 700.9150 741.9410 431.2590 694.9340 694.9340 694.9340 687.9070 658.3940 1105.9580 748.5640 593.4080 979.4010	Mass: 19218 c 19 kba or Mass: 1907 embrane pro- signed to p Mr (expt) 1313.5522 2022.8012 1290.7552 2081.7802 1751.9182 2060.6992 1972.1602 2209.9014 2242.6702 1777.2022 2935.1812 1331.6734	Score: tter membran score: stern btein flats rotein hits Mr (calc) 1313.5962 2100.1262 2223.1310 1289.6364 2060.9371 1751.6879 1817.9035 2060.0659 1972.9784 2210.2232 2242.1600 1777.9233 2934.4164 1331.7231	184 Que protein 184 Que roides sp c (no det Delta -0.0440 -0.4031 0.8430 0.2302 0.3537 0.6333 -0.8182 -0.3218 0.5101 -0.7301 0.7648 -0.0497	a prece meries (). 2_1 ails (). 2 2 1 0 0 2 2 1 0 0 0 2 0 0 2 0 2 0 2 2 0 2	sursor means Score 43 39 37 32 31 31 29 29 29 29 29 29 29 29 29 29 29 29 29	[Bacteroned: 8 no match Expect 1.5 2.2 3.40 15 37 47 22 74 28 29 87 66 58) Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	Peptide QYFGPEGELMK + Oxidation (M) YLMVGGDVVDPRVÄAQVRR ELLIGKTDYDIPPKEEADK QYFDAEGFDKR SGETIFENNQANDLTGPMK + Oxidation (M) ATCSDACDHLPFSGGR WAATHAPEHWGLMLAK MSRPKKVPMFELPPHER + 2 Oxidation (M) MVAIGMNSMLLNSYILR + 3 Oxidation (M) GVLPLALLVLSGSULAGCODK TIEGRPALPDTRMTTQQRR + Oxidation (M) TRQVVOTDHPMTLVLR HMGVSALRVINDDMYMFGKGFGTHGHR + Oxidation AMLQSGSGSLLLR
रा मा	gi 255 putat: gi 265 cation e matc Query 221 233 82 217 108 111 215 128 231 235 109 203	5009916 live cationi 5765175 nic outer m thes not as 0bserved 438.8580 700.9150 741.9410 431.2590 694.9340 694.9340 697.9070 658.3940 1105.9580 748.5640 979.4010 666.8440	Mass: 19218 c 19 kDa or Mass: 1907 embrane pro- signed to p Mr (expt) 1313.5522 2029.7322 2029.7322 2029.7322 2029.7322 2021.7822 2021.7822 1818.2572 2020.6992 1972.1602 2209.9014 2242.6702 1777.2022 2935.1812	Score: tter membran score: stein [Bacte rotein hits Mr (calc) 1313.5962 2100.1262 2223.1310 1289.6364 2060.0371 1751.6879 1817.9035 2060.0559 1972.9784 2242.1600 1777.9323 2934.4164	184 Que protein 184 Que protein 184 Que protein 184 Que protein -0.0400 -0.4031 -0.3209 1.1188 0.8430 0.2302 0.3537 0.6333 -0.8182 -0.3218 0.3218 0.3218 0.3218 0.3218	a prece meries (). 2_1 ails (). 2 2 1 0 0 2 2 1 0 0 0 2 0 0 2 0 2 0 2 0	means score 43 39 37 32 31 31 29 29 29 29 28 27 27 27 27	[Bacteroned: 8 no match : Expect 1.5 2.2 3.2 40 15 37 47 22 74 29 87 66) Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	Peptide QYPGFEGELMK + Oxidation (M) YLMVGGDVVDPRVAAQVRR ELLIGKTDYDIFFKEEADK QKPDAEGFDKR SGETIFENNQANDLIGPMK + Oxidation (M) ATCSDACDHLPFSGGR WAATHAPEHWGLMLAK MSRFKKVPMPELPPHER + 2 Oxidation (M) MVAIGMNSMLLNSYILR + 3 Oxidation (M) GVLPLALLVLSGSLVLAGCDDK TIEQRPLPDTMMTQQR + Oxidation (M) TEQVVGTDHPNTLVIE HMGVSALRVINDDMVMPGKGFGTHGHR + Oxidation

(MATRIX) SCIENCE/ Mascot Search Results

Protein View

Match to: gi 53711794 Score: 184 cationic outer membrane protein precursor [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (3303) 10_RJ5_01_1367.d\SSP (3303) 10_RJ5_01_1367.mgf

Nominal mass (M_r) : **19149**; Calculated pI value: **6.43** NCBI BLAST search of <u>gi 53711794</u> against nr Unformatted <u>sequence string</u> for pasting into other applications


Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gi[26080025</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi[253564138</u> from <u>Bacteroides fragilis YCH46</u> <u>gi[60491459</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi[251947914</u> from <u>Bacteroides sp. 3_2_5</u>

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 22%

Matched peptides shown in Bold Red

1 MKKSVLFIIL LFAVGMTAQA QKPALIDMEY ILKNIPAYER ANEQLSQATK 51 QWQGEVEVLA KEAQIMFKDY QAASAKLTAA QKTQKEDAIV EKEKAASELK 101 RKYFGPEGEL FKKREELMKP IQDEIYNAVK AVAEENGYAV VVDRASASSI 151 IFATPRIDVS NEVLAKLGYS N

Show predicted peptides also

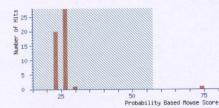
20000	11 uu IIIIcui Dei 20 Aric 2009
DEFINITION	cationic outer membrane protein precursor [Bacteroides fragilis YCH461.
ACCESSION	YP 097786
VERSION	YP 097786.1 GI:53711794
DBLINK	Project:13067
DBSOURCE	REFSEQ: accession NC 006347.1
KEYWORDS	
SOURCE	Bacteroides fragilis YCH46
ORGANISM	Bacteroides fragilis YCH46
	Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
	Bacteroidaceae; Bacteroides.
REFERENCE	1 (residues 1 to 171)
AUTHORS	Kuwahara, T., Yamashita, A., Hirakawa, H., Nakayama, H., Toh, H.,
	Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y.
TITLE	Genomic analysis of Bacteroides fragilis reveals extensive DNA
	inversions regulating cell surface adaptation
JOURNAL	Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004)
PUBMED	15466707
REFERENCE	2 (residues 1 to 171)
CONSRTM	NCBI Genome Project
TITLE	Direct Submission '
JOURNAL	Submitted (01-OCT-2004) National Center for Biotechnology
	Information, NIH, Bethesda, MD 20894, USA
REFERENCE	3 (residues 1 to 171)
AUTHORS	Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T.
TITLE	Direct Submission
JOURNAL	Submitted (20-APR-2004) Kitasato Institute for Life Sciences,
COMMENT	1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
COMMENT	PROVISIONAL <u>REFSEQ</u> : This record has not yet been subject to final
	NCBI review. The reference sequence was derived from <u>BAD47252</u> .

ATURES	Location/Qualifiers
source	1171 /organism="Bacteroides fragilis YCH46"
	/organism- Saccerolices fragilis ferres-
	/db xref="taxon:295405"
Protein	1171
	/product="cationic outer membrane protein precursor"
	/calculated_mol_wt=19030
Region	4167
	/region_name="HlpA"
	<pre>/note="Outer membrane protein [Cell envelope biogenesis, outer membrane]; cl08146"</pre>
	/db xref="CDD:142087"
Region	7168
nogrom	/region name="OmpH"
	/note="Outer membrane protein (OmpH-like); pfam03938"
	/db_xref="CDD:112737"
CDS	1171
	/locus_tag="BF0503"
	/coded_by="complement(NC_006347.1:578464578979)"
	/note="similar to gp:AE016941_210 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 71 in 171 aa, BLASTP E(): 2e-63"
	/transl table=11
	/db xref="GeneID:3082496"

```
User
Email
Search title
MS data file
Database
                                       : Lakshmy Manickan
                                          lakshmy.manickan@unn.ac.uk
SSP 3404
                                     : SSP 3404

: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (3404) 10_RJ16_01_1392.d\SSP (3404) 10_RJ16_01_1392.mgf

: NCBInr 20100108 (10291680 sequences) 3511877860 residues)


: Bacteria (Eubacteria) (5718488 sequences)

: 13 Jan 2010 at 10:33:08 GMT

: gi|143945 Fe-superoxide dismutase [Bacteroides fragilis]
 Taxonomy
 Timestamp
 Protein hits
```

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits

Peptide Summary Report

Format As	Peptide Summary		Help
	Significance threshold p< 0.05	Max. number of hits AUTO	
	Standard scoring @ MudPIT scoring C	Ions score or expect cut-off 0	Show sub-sets 0
	Show pop-ups @ Suppress pop-ups C	Sort unassigned Decreasing Score	Require bold red

Select All Select None Search Selected Error tolerant

1. gi 143945 Mass: 21736 Score: 74 Queries matched: 2 emPAI: 0.15 Fe-superoxide dismutase [Bacteroides fragilis] Check to include this hit in error tolerant search

 Query
 Observed
 Mr(expt)
 Mr(calc)
 Delta Miss
 Score
 Expect Rank
 Peptide

 138
 545.5980
 1089.1814
 1089.4767
 -0.2953
 0
 14
 8.6e+02
 7
 R.DFGSFENFK.K

 Image: Transmission of the state of the stat

Proteins matching the same set of peptides: gi 533307 Mass: 21715 Score: 74 Qu

Queries matched: 2 superoxide dismutase [Bacteroides fragilis] gi 53713818 Mass: 23124 Score: 74 Queries matched: 2 superoxide dismutase [Bacteroides fragilis YCH46] gi 60682036 Mass: 21758 Score: 74 Queries matched: 2 Queries matched: 2 superoxide dismutase [Fe] [Bacteroides fragilis NCTC 9343] gil150006035 Mass: 23299 Score: 74 Queries a superoxide dismutase [Bacteroides vulgatus ATCC 8482] Queries matched: 2 dil212692986 Mass: 21962 Score: 74 Queries matched: 2 hypothetical protein BACDOR_02487 [Bacteroides dorei DSM 17855] Queries matched: 2 gi 237709817 Mass: 23300 Score: 74 Queries matched: 2 superoxide dismutase [Bacteroides sp. 9_1_42FAA] gi[237725616 Mass: 23274 Score: 74 Queries matched: 2 superoxide dismutase [Bacteroides sp. D4] Queries matched: 2 gi 255009481 Mass: 21757 Score: 74 superoxide dismutase [Bacteroides fragilis 3_1_12]

Peptide matches not assigned to protein hits: (no details means no match)

	Query	Observed	Mr (expt)	Mr(calc)	Delta	Miss	Score	Expect	Rank	Peptide
F	171	509.2150	1524.6232	1523.6596	0.9636	0	28	41	1	MMTQSGNPEIQEK + 2 Oxidation (M)
F	223	663.3920	1987.1542	1987.9851	-0.8309	1	27	44	1	DAEKAGQNPVDYVVENLK
F	81	389.8350	1166.4832	1167.5455	-1.0623	0	27	97	1	RPAGTYSGGMR + Oxidation (M)
F	7 116	473.3980	944.7814	944.5443	0.2371	1	26	56	1	HKLLGYSK
F	190	563.4840	1687.4302	1687.9522	-0.5220	1	26	52	1	AIGHIAPIQALEDWR
	180	803.5730	2407.6972	2407.3084	0.3888	1	25	1e+02	1	AVAAHVASTAGIAGLNVEGAAFVRR
F	225	1006.5690	3016.6852	3017.7391	-1.0540	0	25	1.2e+02	1	LLLGIFALFGLATLACAVAPSFISLLVAR
F	192	847.9400	2540.7982	2540.1826	0.6155	1	25	1.4e+02	1	QGCIESWVSGPGVAADHARTTGQR
F	204	887.8930	1773.7714	1773,9593	-0.1879	2	24	1.5e+02	1	VRKSQVAMMAEVAQVK
F	145	590,9250	1769.7532	1769.0352	0.7180	0	24	1.8e+02	1	VIAAVHPGLWQPAVLAK
F	247	1313.3280	3936.9622	3935.8128	1.1494	2	24	1.1e+02	1	QDHPGQCPKCGMTLEPILPSVDEGENPELIDFRR
F	240	777.6720	2329.9942	2330.0916	-0.0974	2	24	82	1	SSTQIVEMSTQRMMVKDTDK + Oxidation (M)
F	183	811.4540	2431.3402	2431.0063	0.3339	1	24	2.1e+02	1	DEYSQYKDYDLMQDFYHR + Oxidation (M)
F	118	473.9190	1418.7352	1417.7599	0.9753	1	24	2.3e+02	1	AMTIGSESPLIER + Oxidation (M)

Protein View

Match to: gi|60682036 Score: 74
superoxide dismutase [Fe] [Bacteroides fragilis NCTC 9343]
Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (3404) 10_RJ16_01_1392.d\SSP (3404) 10_RJ16_01_1392.mgf

Nominal mass $(\mbox{M}_{\rm r}):~21758;$ Calculated pI value: 6.07NCBI BLAST search of <u>gi 60682036</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis NCTC 9343 Taxonomy: <u>Bacteroides fragilis NCTC 9343</u> Links to retrieve other entries containing this sequence from NCBI Entrez: gi 253565789 from <u>Bacteroides sp. 3 25</u> gi 265764163 from <u>Bacteroides fragilis</u> gi 65077805 from <u>Bacteroides fragilis NCTC 9343</u> gi 251946068 from <u>Bacteroides sp. 3 25</u> gi 263256771 from <u>Bacteroides sp. 2 16</u>

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 10%

Matched peptides shown in Bold Red

- 1 MTYEMPKLPY ANNALEPVIS QQTIDYHYGK HLQTYVNNLN SLVPGTEYEG 51 KTVEAIVASA FDGAIFNNAG QVLNHTLYFL QFAPKPAKNE PACKLGEAIK 101 RDFGSFENFK KEFNAASVGL FGSGWAWLSV DKDGKLHITK EPNGSNPVRA 151 GLKPLLGFDV WEHAYYLDYQ NRRADHVNKL WEIDWDVVE KRL

Show predicted peptides also

Sort Peptides By @ Residue Number O Increasing Mass O Decreasing Mass

110			Mr(calc)	Delta	MISS	Sequence
110	545.5980	1089.1814	1089.4767	-0.2953	0	R.DFGSFENFK.K (Ions score 14)
191	773.3660	1544.7174	1543.7922	0.9252	0	K.LWEIIDWDVVEK.R (Ions score 60)
				····· Gud	500 -	
				or (p	250	
					0	
100	1200	1300 1	400 1500) 	11	00 1200 1300 1400 1500 64 ppm Mass (Da)
1		00 1200	00 1200 1300 1	00 1200 1300 1400 1500	00 1200 1300 1400 1500	

LOCUS DEFINITION ACCESSION	YP_212180 193 aa linear BCT 01-MAY-2009 superoxide dismutase [Fe] [Bacteroides fragilis NCTC 9343]. YP 212180
VERSION	YP_212180.1 GI:60682036
DBLINK	Project:46
DBSOURCE KEYWORDS	REFSEQ: accession NC_003228.3
SOURCE	Bacteroides fragilis NCTC 9343
ORGANISM	
	Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
	Bacteroidaceae; Bacteroides.
REFERENCE	1 (residues 1 to 193)
AUTHORS	Cerdeno-Tarraga, A.M., Patrick, S., Crossman, L.C., Blakely, G.,
	Abratt, V., Lennard, N., Poxton, I., Duerden, B., Harris, B.,
	Quail, M.A., Barron, A., Clark, L., Corton, C., Doggett, J.,
	Holden, M.T., Larke, N., Line, A., Lord, A., Norbertczak, H., Ormond, D., Price, C., Rabbinowitsch, E., Woodward, J., Barrell, B. and Parkhill, J.
TITLE	Extensive DNA inversions in the B. fragilis genome control variable
TTTTE	gene expression
JOURNAL	Science 307 (5714), 1463-1465 (2005)
PUBMED	15746427
REFERENCE	2 (residues 1 to 193)
AUTHORS	Cerdeno-Tarraga, A.M.
TITLE	Direct Submission
JOURNAL	Submitted (29-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United
	Kingdom
REFERENCE	3 (residues 1 to 193)
CONSRTM	NCBI Genome Project
TITLE	Direct Submission
JOURNAL	Submitted (08-APR-2002) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA
COMMENT	PROVISIONAL REFSEQ: This record has not yet been subject to final
	NCBI review. The reference sequence was derived from <u>CAH08256</u> .

Method ATURES	d: conceptual translation. Location/Qualifiers
source	1193
Source	/organism="Bacteroides fragilis NCTC 9343"
	/strain="ATCC 25285; NCTC 9343"
	/db xref="ATCC:25285"
	/db xref="taxon: 272559"
Protein	1193
	/product="superoxide dismutase [Fe]"
	/EC number="1.15.1.1"
	/calculated mol wt=21640
Region	1193
	/region name="SodA"
	/note="Superoxide dismutase [Inorganic ion transport and
	metabolism]; COG0605"
	/db_xref="CDD: <u>30950</u> "
Region	283
	/region_name="Sod_Fe_N"
	/note="Iron/manganese superoxide dismutases, alpha-hairpin
	domain; pfam00081"
	/db_xref="CDD: <u>109149</u> "
Region	90192
	/region_name="Sod_Fe_C"
	/note="Iron/manganese superoxide dismutases, C-terminal
	domain; pfam02777"
90.0	/db_xref="CDD: <u>111650</u> "
CDS	1193
	/gene="sodB"
	/locus_tag="BF2556" /gene_synonym="sod"
	/coded by="NC 003228.3:29823522982933"
	/note="Similar to Bacteroides fragilis superoxide
	dismutase [Fe] SodB or Sod SWALL:SODF BACFR (SWALL:P53638)
	(193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa,
	and to Escherichia coli, Escherichia coli 06, Escherichia
	coli 0157:H7, and Shigella flexneri superoxide dismutase
	[Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684
	or S1816 SWALL:SODF ECOLI (SWALL:P09157) (192 aa) fasta
	scores: E(): 1.6e-37, 51.04% id in 192 aa"
	/transl table=11
	/db xref="GeneID:3287245"

```
User : Lakshmy Manickan
Email : lakshmy.manickan@unn.ac.uk
Search title : SSF 4202
MS data file : D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4202) 10_RN10_01_1584.d\SSP (4202) 10_RN10_01_1584.mgf
Database : NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy : Bacteria (Eubacteria) (5690016 sequences)
Timestamp : 6 Jan 2010 at 13:25:46 GMT
Protein hits : gi 53711794 cationic outer membrane protein precursor [Bacteroides fragilis YCH46]
```

Probability Based Mowse Score

lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

45 mm 40 mm 20 mm 10 mm										
5 - 0	100	-	200	1	300 Probak	ilit	400 J Base	d Mow	500 se Sco	re

Peptide Summary Report

Format As	Peptide Summary		Help
	Significance threshold p< 0.05	Max. number of hits AUTO	
	Standard scoring @ MudPIT scoring C	Ions score or expect cut-off	Show sub-sets 0
	Show pop-ups @ Suppress pop-ups C	Sort unassigned Decreasing Score	Require bold red

Select All Select None Search Selected Fror tolerant

	Quer	y Observed	Mr (expt)	Mr (calc)	Delta	Miss	Score	Expect	Rank	Peptide
ſ	- 8	593.7220	1185.4294	1185.5706	-0.1412	0	48	0.38	1	K.YFGPEGELFK.K
F	- 9	610.7910	1219.5674	1219.6561 .	-0.0886	0	56	0.071	1	R.ASASSIIFATPR.I
	2	610.8180	1219.6214	1219.6561	-0.0346	0	(18)	7.2e+02	4	R.ASASSIIFATPR.I
ſ	· <u>9</u>	611.2710	1220.5274	1219.6561	0.8714	0	(45)	0.86	1	R.ASASSIIFATPR.I
ſ	- 10	438.8460	1313.5162	1313.6656	-0.1494	1	49	0.34	1	R.KYFGPEGELFK.K
I	- 10	657.7710	1313.5274	1313.6656	-0.1381	1	(42)	1.6	1	R.KYFGPEGELFK.K
F	- 11	686.3220	1370.6294	1370.7155	-0.0861	0	73	0.0015	1	K.FALIDMEYILK.N + Oxidation (M)
I	7 12	746.7550	1491.4954	1490.7365	0.7589	0	50	0.19	1	K.AVAEENGYAVVVDR.A
ſ	16	968.3790	1934.7434	1934.9659	-0.2224	0	37	3.5	1	R.EELMKPIQDEIYNAVK.A + Oxidation (M)
I	20	697.9660	2090.8762	2091.0670	-0.1908	1	45	0.67	1	K.REELMKPIQDEIYNAVK.A + Oxidation (M)
F	23	786.3270	2355.9592	2356.2023	-0.2431	1	46	0.44	1	R.ANEQLSQATKQWQGEVEVLAK.E
ſ	24	L 898.4020	2692.1842	2692.3820	-0.1978	1	47	0.36	1	K.AVAEENGYAVVVDRASASSIIFATPR.I
ſ	25	991.4350	2971.2832	2971.4385	-0.1554	2	23	85	1	K.QWOGEVEVLAKEAOTMFKDYQAASAK.L + Oxidation (M)

Proteins matching the same set of peptides: <u>gi|265765175</u> Mass: 19077 Score: 473 Queries matched: 13 cationic outer membrane protein [Bacteroides sp. 2_1_16]

ç	uery	Observed	Mr (expt)	Mr(calc)	Delta	Miss	Score	Expect	Rank	Peptide
2	100	635.2560	1268.4974	1268.5997	-0.1022	0	40	2.6	1	SVAGDEVADAHAK
2	182	666.0470	1995.1192	1994.0666	1.0526	0	35	8.3	1	YAYVPYSHFPIGAVLVAK
2	132	805.8850	1609.7554	1609.9001	-0.1446	0	33	12	1	ISLDTYMSLLVVLK + Oxidation (M)
2	194	1028.3360	3081.9862	3081.5739	0.4123	1	33	14	1	VACPPRAEIVAGLQAMPPGAEILVAEEHR
2	234	1181.9720	3542.8942	3542.9397	-0.0456	1	32	20	1	IGLCGLVVSPVGISIVKLFHAPETAIFALAMFR + Oxidation
2	168	646.8500	1937.5282	1936.8917	0.6364	2	32	11	1	SGADDLLICGPRMMGRR + 2 Oxidation (M)
2	160	947.3360	2838.9862	2838.3818	0.6044	0	31	26	1	DLANAGGNASDILMNLPSIAVDPEGNVR + Oxidation (M)
~	175	979.3210	2934.9412	2935.4493	-0.5081	1	29	41	1	QMILMAKMLTSEQDINDLLTHINTF + Oxidation (M)
~	180	663.0380	1986.0922	1986.0945	-0.0023	1	28	37	1	QARETLSIPVHPMVRPR
2	173	650.3710	1948.0912	1946.9230	1.1682	0	28	38	1	MIDIHCHIIPGIDDGPK + Oxidation (M)
2	190	674.2500	2019.7282	2019.8713	-0.1431	1	28	27	1	CPAFAAHAAEGMARAMADR + Oxidation (M)
2	110	673.9490	1345.8834	1345.7388	0.1447	0	28	81	1	GLTLAQTSVMGIR
2	108	662.2560	1322.4974	1322.6983	-0.2008	1	28	42	1	VFDGLNKDLFR
4	246	957.2550	2868.7432	2868.3283	0.4149	1	26	33	1	MADSLSHIAQSGARGFYEGDLAQAMAR + Oxidation (M)

Protein View

Match to: gi | 53711794 Score: 473 cationic outer membrane protein precursor [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4202) 10_RN10_01_1584.d\SSP (4202) 10_RN10_01_1584.mgf

Nominal mass (M_r) : 19149; Calculated pI value: 6.43 NCBI BLAST search of \underline{gi} [53711794 against nr Unformatted sequence string for pasting into other applications

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gi 60680025</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 253564138</u> from <u>Bacteroides sp. 3 2 5</u> <u>gi 52214659</u> from <u>Bacteroides fragilis YCH46</u> <u>gi 60491459</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 251947914</u> from <u>Bacteroides sp. 3 2 5</u>

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 59%

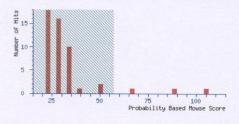
Matched peptides shown in Bold Red

- 1 MKKSVLFIIL LFAVGMTAQA QKFALIDMEY ILKNIPAYER ANEQLSQATK 51 QMQGEVEVLA KEAQTMFKDY QAASAKLTAA QKTQKEDAIV EKEKAASELK 101 RKYFGPEGEL FKKREELMKF IQDEIYNAVK AVAEENGYAV VVDRASASSI 151 IFATFRIDVS NEVLAKLGYS N

Show predicted peptides also

Start	-	End	Observed	Mr (expt)	Mr(calc)	Delt	a Miss	Sequence
23			686.3220	1370.6294	1370.7155	-0.086	1 0	K.FALIDMEYILK.N Oxidation (M) (Ions score 73)
41			786.3270	2355.9592	2356.2023	-0.243	1 1	R.ANEQLSQATKQWQGEVEVLAK.E (Ions score 46)
51			991.4350	2971.2832	2971.4385	-0.155	4 2	K.QWQGEVEVLAKEAQTMFKDYQAASAK.L Oxidation (M) (Ions score 23)
102	-	112	438.8460	1313.5162	1313.6656	-0.149	4 1	R.KYFGPEGELFK.K (Ions score 49)
		112	657.7710	1313.5274	1313.6656	-0.138	1 1	R.KYFGPEGELFK.K (Ions score 42)
		112	593.7220	1185,4294	1185.5706	-0.141	2 0	K.YFGPEGELFK.K (Ions score 48)
		130	697,9660	2090.8762	2091.0670	-0.190	8 1	K.REELMKPIQDEIYNAVK.A Oxidation (M) (Ions score 45)
		130	968.3790	1934.7434	1934.9659	-0.222	4 0	R.EELMKPIQDEIYNAVK.A Oxidation (M) (Ions score 37)
		144	746.7550	1491,4954	1490.7365	0.758	9 0	K.AVAEENGYAVVVDR.A (Ions score 50)
		156	898.4020	2692.1842	2692.3820	-0.197	8 1	K.AVAEENGYAVVVDRASASSIIFATPR.I (Ions score 47)
		156	610.7910	1219,5674	1219.6561	-0.088	6 0	R.ASASSIIFATPR.I (Ions score 56)
		156	610,8180	1219.6214	1219.6561	-0.034	6 0	R.ASASSIIFATPR.I (Ions score 18)
		156	611.2710	1220.5274	1219.6561	0.871	4 0	R.ASASSIIFATPR.I (Ions score 45)
							750	
-	-						500	
(Ba)	1						500	
	1						5	
Error	1						250	
ũ -0	1.						1	
-0						1.41	0 =	A LA CALLER AND A
	+	1 1		1 1 1 1 1	· · · · · ·		+	1500 2000 2500 3000
			1500	2000	2500	3000		1000
RMS error	- 2	256 ppm			Ma	iss (Da) R	MS error 25	ing http://www.com/

YP_097786 171 aa linear BCT 26-APR-cationic outer membrane protein precursor [Bacteroides fragilis BCT 26-APR-2009 LOCUS DEFINITION YCH46]. YP_097786 YP_097786.1 GI:53711794 Project:<u>13067</u> ACCESSION VERSION DBLINK REFSEQ: accession NC_006347.1 DBSOURCE KEYWORDS ABIWORDS - SOURCE Bacteroides fragilis YCH46 ORGANISM <u>Bacteroides fragilis YCH46</u> Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacterides fragilis YCH46 Bacteria; Bacteroidetes; Bacteroidia; Bacteria; Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteria; Bacteroides, I (1997) Ruwahara, T., Yamashita, A., Hirakawa, H., Nakayama, H., Toh, H., Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707 2 (residues 1 to 171) NCBI Genome Project Direct Submission Submitted (01-OCT-2004) National Center for Biotechnology Information, NH, Bethesda, MD 20894, USA 3 (residues 1 to 171) Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T. Direct Submission Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan PROVISIONAL <u>REFERSO</u>: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD47252</u>. Method: conceptual translation. Location/Qualifiers REFERENCE AUTHORS TITLE JOURNAL PUBMED REFERENCE CONSRTM JOURNAL REFERENCE AUTHORS TITLE JOURNAL COMMENT FRATURES


source	1171	
	/organism="Bacteroides fragilis YCH46"	
	/strain="YCH46"	
	/db xref="taxon: <u>295405</u> "	
Protein	1171	
	/product="cationic outer membrane protein precursor"	
	/calculated_mol_wt=19030	
Region	4167	
	/region_name="HlpA"	
	/note="Outer membrane protein [Cell envelope biogenesis,	
	outer membrane]; cl08146"	
	/db_xref="CDD: <u>142087</u> "	
Region	7168	
	/region_name="OmpH"	
	/note="Outer membrane protein (OmpH-like); pfam03938"	
	/db_xref="CDD: <u>112737</u> "	
CDS	1171	
	/locus_tag="BF0503"	
	/coded_by="complement(NC_006347.1:578464578979)"	
	/note="similar to gp:AE016941_210 [Bacteroides	
	thetaiotaomicron VPI-5482], percent identity 71 in 171 aa,	
	BLASTP E(): 2e-63"	
	/transl_table=11	
	/db xref="GeneID: <u>3082496</u> "	

(MATRIX) SCIENCE/ Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 4302
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4302) 10 RJ2 01 1361.d\SSP (4302) 10 RJ2 01 1361.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:32:16 GMT
Protein hits	: gi 29349795 adenylate kinase [Bacteroides thetaiotaomicron VPI-5482]
	gi 260910267 adenylate kinase [Prevotella sp. oral taxon 472 str. F0295]
	gi 260593579 adenvlate kinase [Prevotella veroralis F0319]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

Format As Peptide Summary	Help
Significance threshold $p < 0.05$ Max. number of hits AUTO	
Standard scoring MudPIT scoring Ions score or expect cut-off	Show sub-sets 0
Show pop-ups Suppress pop-ups Sort unassigned Decreasing Score	Require bold red
Show pop-ups (* Suppress pop-ups (* Soft unassigned [becreasing score	Require bold red
Select All Select None Search Selected Frror tolerant	
1. gi 29349795 Mass: 21073 Score: 105 Queries matched: 2	
adenylate kinase [Bacteroides thetaiotaomicron VPI-5482]	
Check to include this hit in error tolerant search	
Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Pe	ptide
	GVIFDGFPR.T
171 710.2580 1418.5014 1418.7592 -0.2577 0 54 0.088 1	MLNIVIFGAPGSGK.G + Oxidation (M)
Proteins matching the same set of peptides:	
gi 53712412 Mass: 21018 Score: 105 Oueries matched: 2	
adenylate kinase [Bacteroides fragilis YCH46]	
gi 150004241 Mass: 20871 Score: 105 Queries matched: 2	
adenylate kinase [Bacteroides vulgatus ATCC 8482]	
gi 153809272 Mass: 21085 Score: 105 Queries matched: 2	
hypothetical protein BACCAC_03584 [Bacteroides caccae ATCC 43185]	
gi 154495021 Mass: 20930 Score: 105 Queries matched: 2	
hypothetical protein PARMER 04067 [Parabacteroides merdae ATCC 43184]	
gi 160887206 Mass: 21071 Score: 105 Queries matched: 2	
hypothetical protein BACOVA_05222 [Bacteroides ovatus ATCC 8483]	
gi 160891012 Mass: 21165 Score: 105 Queries matched: 2	
hypothetical protein BACUNI_03459 [Bacteroides uniformis ATCC 8492]	
gi 167765207 Mass: 20977 Score: 105 Queries matched: 2	
hypothetical protein BACSTE_03595 [Bacteroides stercoris ATCC 43183]	
gi 189462905 Mass: 20867 Score: 105 Queries matched: 2	
hypothetical protein BACCOP_03606 [Bacteroides coprocola DSM 17136]	
gi 189467969 Mass: 21048 Score: 105 Queries matched: 2	
hypothetical protein BACINT_04363 [Bacteroides intestinalis DSM 17393]	
gi 198274218 Mass: 20879 Score: 105 Queries matched: 2	
hypothetical protein BACPLE_00358 [Bacteroides plebeius DSM 17135]	
<u>gi 212690825</u> Mass: 20901 Score: 105 Queries matched: 2	
hypothetical protein BACDOR_00312 [Bacteroides dorei DSM 17855]	
gi 218129349 Mass: 20933 Score: 105 Queries matched: 2	
hypothetical protein BACEGG_00926 [Bacteroides eggerthii DSM 20697] gi 218262912 Mass: 20944 Score: 105 Oueries matched: 2	
gi 218262912 Mass: 20944 Score: 105 Queries matched: 2 hypothetical protein PRABACTJOHN_02899 [Parabacteroides johnsonii DSM 183	151
gi 224025342 Mass: 20870 Score: 105 Queries matched: 2	10]
hypothetical protein BACCOPRO_02081 [Bacteroides coprophilus DSM 18228]	
gi 224538342 Mass: 21028 Score: 105 Queries matched: 2	

hypothetical protein BACCELL_03233 [Bacteroides cellulosilyticus DSM 14838] <u>gi 237708208</u> Mass: 21143 Score: 105 Queries matched: 2 LOW QUALITY PROTEIN: adenylate kinase [Bacteroides sp. 9_1_42FAA] gi 237715693 Mass: 21657 Score: 105 Queries matched: 2 adenylate kinase [Bacteroides sp. D1] gi 254884741 Mass: 20813 Score: 105 Queries matched: 2 adenylate kinase [Bacteroides sp. 4_3_47FAA] gi 255007910 Mass: 21018 Score: 105 Queries matched: 2 adenylate kinase [Bacteroides fragilis 3_1_12] gi 255693744 Mass: 20986 Score: 105 Queries matched: 2 adenylate kinase [Bacteroides finegoldii DSM 17565] 2. gi|260910267 Mass: 21197 Score: 89 Queries matched: 2 adenylate kinase [Prevotella sp. oral taxon 472 str. F0295] Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
 117
 504.2000
 1006.3854
 1006.5236
 -0.1382
 0
 51
 0.23
 1

 171
 710.2580
 1418.5014
 1417.7751
 0.7263
 1
 38
 3.7
 3
 K. GVIFDGFPR. 7 - .MKNIVIFGAPGSGK.G Proteins matching the same set of peptides: gi 261880713 Mass: 21228 Score: 89 Queries matched: 2 adenylate kinase [Prevotella bergensis DSM 17361] Mass: 21183 gi|281298521 Score: 89 Queries matched: 2 adenylate kinase [Prevotella buccalis ATCC 35310] 3. gi|260593579 Mass: 21280 Score: 69 Queries matched: 2 adenylate kinase [Prevotella veroralis F0319] Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
 117
 504.2000
 1006.3854
 1006.5236
 -0.1382
 0
 51
 0.23
 1

 105
 467.9130
 1400.7172
 1401.7802
 -1.0631
 1
 18
 7.9e+02
 5
 K.GVIFDGFPR. - .MKNIVIFGAPGAGK.G Proteins matching the same set of peptides: gi 252119831 Mass: 21127 Score: 67 Queries matched: 2 adenylate kinase [Prevotella melaninogenica ATCC 25845] gi 281423652 Mass: 20936 Score: 67 Oueries matched: 2 adenylate kinase [Prevotella oris F0302] Peptide matches not assigned to protein hits: (no details means no match) be matches not assigned to protein hits: (no details means no match) Covery observed Mr(expt) Mr(eal) Delta Miss Score Repet Rank Peptide 122 450.5700 1465.0702 1465.0701 1 3 35 10 11 05TINKOTLPAGK 122 500.5800 778.1014 779.4654 -1.1639 0 33 15 1 LANAGPVR 122 659.5800 1975.7362 1976.1147 -0.3005 2 3 31 1 6 1 LLSIGEMEATAGENELTGOGG 122 500.5700 1270.7082 1706.9313 0.8969 0 23 7 7 1 ENYMYSELIGYDFF + Oxidation (M) 130 570.2700 1707.7882 1706.9313 0.8969 0 2 29 7 7 1 1 ENYMYSELIGYDFF + Oxidation (M) 132 949.7150 1897.4224 1896.9074 0.5161 0 26 7 4 1 NVSIENFOMLENNOQUY + Oxidation (M) 139 415.1260 1242.352 1241.6614 0.6946 0 26 57 1 VSIENGLANQCER 139 74.8490 1547.3541 1546.030 0.5531 1 26 51 1 A MCMALEGYDFK 131 445.1260 1242.3541 1244.6150 0.6946 0 2 25 7.7 1 VSIENFOMLENNOQUY + Oxidation (M) 132 415.1260 1342.3552 1241.6614 0.5946 0 2 25 1.7e+02 1 DIMERTENTER 131 493.4410 1478.5012 1477.7446 0.7566 2 25 1.7e+02 1 DIMERTENTER 131 493.4410 1478.5012 1477.7446 0.7566 2 25 1.7e+02 1 DIMERTENTER 131 493.4410 1478.5012 1477.7446 0.7566 2 25 1.7e+02 1 DIMERTENTER 131 493.4410 1478.5012 1477.7446 0.7566 2 25 1.7e+02 1 DIMERTENTER 131 493.4410 1478.5012 1477.7446 0.7566 2 25 1.7e+02 1 DIMERTENTER 131 493.4410 1478.5012 1477.7446 0.7566 2 25 1.7e+02 1 DIMERTENTER 132 50.050 1002.9329 1002.6440 0.3444 1 23 8 41 FULTENAGE 133 497.4400 1478.5012 127.001 -0.2479 1 24 2.2e+02 1 GILLTMAGE 134 50.050 1002.9320 1002.6440 0.3444 1 23 8 41 FULTENAGE 135 607.4400 1350.559 2325.403 0.4189 0 23 1.7e+02 1 GILLTMAGE 135 607.4400 1350.559 2325.403 0.4189 0 23 1.7e+02 1 GILLTMAGE 136 637.3300 264.5712 205.0184 -0.0472 1 22 3.ee+02 1 GILLTMAGE 136 637.4450 1302.757 132.205.0184 -0.0472 1 22 3.ee+02 1 MILLANAGENTATION 135 640.4400 1317.716 1318.895 -1.1794 1 22 1.1e+02 1 MILLANAGENTATION 135 640.440 1317.716 1318.895 -0.1791 1 22 1.2e+02 1 MILLANAGENTATION 135 647.430 2455.959 235.6459 0.3272 2 2 2.7e+02 1 MILLANAGENTATION 145 477.930 1464.677 65.444.9038 -0.2742 2 22 3.ee+02 1 MILLANAGENTATION 145 477.930 1464.6 Observed Mr(expt) Mr(calc) Query Delta Miss Score Expect Rank Peptide 1 1 ~ 2 1 ~ ~ ~ 2 2 2 2 2 2 ~ 1 1 2 1 1 ~ 2 1 ~ 2 2 2 2 ~ 1 2 ~ 5 MNTLPTDNDPVQAWMALGVQSAILARTMPAVR + Oxidation (M) 1

Protein View

Match to: gi|53712412 Score: 105
adenylate kinase [Bacteroides fragilis YCH46]
Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4302) 10_RJ2_01_1361.d\SSP (4302) 10_RJ2_01_1361.mgf

Nominal mass (M_r) : 21018; Calculated pI value: 5.10 NCBI BLAST search of <u>gi|53712412</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi 253563556 from Bacteroides fragilis NCTC 9343 gi 253563556 from Bacteroides sp. 2 1 16 gi 68568759 from Bacteroides fragilis gi 81316357 from Bacteroides fragilis NCTC 9343 gi 52215277 from Bacteroides fragilis NCTC 9343 gi 250497332 from Bacteroides fragilis NCTC 9343 gi 251947332 from Bacteroides gragilis NCTC 9343 gi 25355205 from Bacteroides sp. 2 1 16

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 12\$

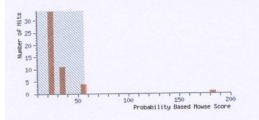
Matched peptides shown in Bold Red

1 MLNIVIFGAP GSGKGTQSER IVEKYGINHI STGDVLRAEI KNGTELGKTA 51 KGYIDQQQLI PDELMYDILA SVFDSFKDSK GVIPDGFPRT IPQAEALKVM 101 LKERGQDISV MLDLDVPEEE LMTRLIKRGK ESGRADDNEE TIKKRLVVYN 151 TGTSPLKEYY KGEGKYQHIN GLGTMEGIFE DICKAVDTL

Show predicted peptides also

Sort Peptides By @ Residue Number O Increasing Mass O Decreasing Mass

Miss Sequence 0 -.MLNIVIFGAPGSGK.G Oxidation (M) (<u>Ions score 54</u>) 0 K.GVIFDGFPR.T (<u>Ions score 51</u>) Start - End Observed Mr(expt) Mr(calc) Delta 710.2580 1418.5014 1418.7592 504.2000 1006.3854 1006.5236 -0.2577 1 - 14 81 - 89 -0.1382 G -140 ĝ -0.15 -150 Error Error -160 -0.2 -170 -180 - 1000 1100 1200 1300 1400 -0.25-1300 1400 1300 1100 1000 1200 RMS error 161 ppm Mass (Da) RMS error 161 ppm Mass (Da)


YP_098404 189 aa lin adenylate kinase [Bacteroides fragilis YCH46]. LOCUS linear BCT 26-APR-2009 DEFINITION YP_098404 YP_098404.1 GI:53712412 ACCESSION VERSION DBLINK Project:13067 REFSEQ: accession NC_006347.1 DBSOURCE KEYWORDS KETWORGE SOURCE Bacteroides fragilis ICDATE ORGANISM Bacteroides fragilis YCH46 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H.,
 Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y.
 Genomic analysis of Bacteroides fragilis reveals extensive DNA AUTHORS TITLE inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707 JOURNAL PUBMED 2 (residues 1 to 189) NCBI Genome Project REFERENCE CONSRTM Direct Submission Submitted (01-OCT-2004) National Center for Biotechnology TITLE JOURNAL Information, NIH, Bethesda, MD 20894, USA
3 (residues 1 to 189) REFERENCE Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. Direct Submission AUTHORS TITLE Direct Submitssion Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan REVIEWED <u>REFERO</u>: This record has been curated by NCBI staff. The reference sequence was derived from <u>BAD47870</u>. Method: conceptual translation. JOURNAL COMMENT

EATURES	Location/Qualifiers	
source	1189	
	/organism="Bacteroides fragilis YCH46"	
	/strain="YCH46"	
	/db_xref="taxon:295405"	
Protein	1189	
	/product="adenylate kinase"	
	/EC_number=" <u>2.7.4.3</u> "	
	/calculated_mol_wt=20842	
Region	2187	
	/region_name="adk"	
	/note="adenylate kinase; Reviewed; PRK00279"	
	/db_xref="CDD:134202"	
Region	3178	
	/region_name="ADK"	
	/note="Adenylate kinase (ADK) catalyzes the reversible	
	phosphoryl transfer from adenosine triphosphates (ATP) to	
	adenosine monophosphates (AMP) and to yield adenosine	
	diphosphates (ADP). This enzyme is required for the	
	biosynthesis of ADP and is essential for; cd01428"	
	/db_xref="CDD: <u>30189</u> "	
Site	order(32,37,60,8586,8889,93)	
	/site_type="other"	
	/note="AMP-binding site"	
	/db_xref="CDD: <u>30189</u> "	
Site	order(37,85,89,128,145,149)	
	/site_type="other"	
	/note="ATP-AMP (Ap5A)-binding site"	
	/db_xref="CDD: <u>30189</u> "	
CDS	1189	
	/gene="adk"	
	/locus_tag="BF1120"	
	/coded_by="NC_006347.1:13440431344612"	
	/note="essential enzyme that recycles AMP in active cells;	
	converts ATP and AMP to two molecules of ADP"	
	/transl_table=11	
	/db_xref="GeneID: <u>3081739</u> "	

User Email Search title MS data file Database Taxonomy Timestamp Protein hits	<pre>: LAKSHMY MANICKAN : lakshmy.manickan@unn.ac.uk :SSP 4502 : D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4502) 10_RN2_01_1570.d\SSP (4502) 10_RN2_01_1570.mgf : NCBInr 20090522 (8876587 sequences; 3036162093 residues) : Bacteria (Eubacteria) (4773688 sequences) : 30 May 2009 at 10:44:47 GMT : qi_53715240 triosephosphate isomerase [Bacteroides fragilis YCH46] gi 21674265 triosephosphate isomerase [Chlorobium tepidum TLS] gi_34763378 Triosephosphate isomerase [Fusobacterium nucleatum subsp. vincentii ATCC 49256] gi / 78223155 triosephosphate isomerase [Geobacter metallireducens GS-15] gi / 189461507 hypothetical protein BACCOP_02166 [Bacteroides coprocola DSM 17136]</pre>
--	---

Probability Based Mowse Score

lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 56 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

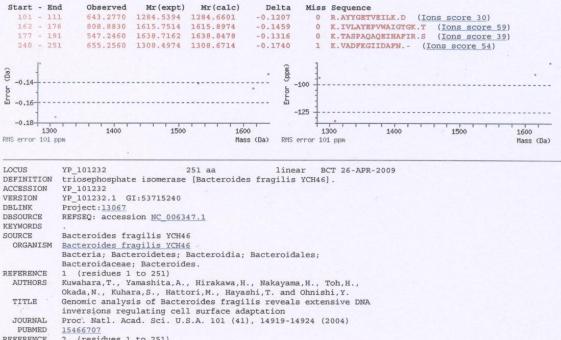
-	ormat A					-			Luro.	-			
				e threshold p		Max. nu							
		St	tandard sc	oring @ M	udPIT scoring	C lons sco	ore or	expect	cut-off 0		Show sub-sets 0		
					ress pop-ups						· Require bold red		
		31	now pop-	ups - Supp	ress pop aps								
Sel	lect All	1	Select Nor	ne Se	earch Selected	□ Erro	or tole	erant					
00						_							
	gi	53715		Mass: 2686				match	ed: 4	emPAI	I: 0.42		
					[Bacteroide			46]					
	┌ Ch	eck to	o include	e this hit	in error to	lerant sea	arch						
	-		haaruad	Mr (expt)	Mr (calc)	Delta	Miss	Score	Expect	Rank	Peptide		
	Que		bserved 43.2770	1284.5394		-0.1207	0	30	24	1	R.AYYGETVEILK.D		
	2		55.2560	1308.4974		-0.1740	1	54	0.074	1	K.VADFKGIIDAFN		
			08.8830	1615.751		-0.1459	0	59	0.027	1	K.IVLAYEPVWAIGTGK.	T	
			47.2460	1638.7163	1638.8478	-0.1316	0	39	2.7	1	K.TASPAQAQEIHAFIR.	S	
	C Ch	neck to	o includ Observed	e this hit		Delta	arch	Score 59	Expect		Peptide K.LVIAYEPVWAIGTGK	т	
2.	tr Cch Qu Pr gt	ery C	o includ Observed 308.8830 s matchi 95498	Mr(expt 1615.751	in error to) Mr(calc) 4 1615.8974 ne set of per) Queries) Queries	Delta Delta -0.1459 Detides: a matched: a matched:	Miss 0					T	
2.	tr Cch Qu Pr gi gi	ery C 118 8 rotein	o includ Observed 308.8830 s matchi 95498 87582	Mr (expt 1615.751 ang the sam Score: 55	in error to) Mr(calc) 4 1615.8974 ne set of per) Queries) Queries	Delta Delta -0.1459 Dtides: a matched:	Miss 0					T	
	tr Ctr Qu Pr gi gi	neck to ery C 118 8 rotein i 2182 i 2279 i 2292	o includ Observed 808.8830 s matchi 95498 87582 31135 3378	Mr (expt 1615.751 ang the sam Score: 55 Score: 55 Score: 59	in error to Mr(calc) A 1615.8974 De set of per Queries Queries Oueries	Delta -0.1459 Delta -0.1459 Dtides: s matched: s matched: matched:	Miss 0 1 1 1	59	0.027	1	K.LVIAYEPVWAIGTGK	T	
	Cr Qu Pr gi gi gi gi gi gi gi Tr	neck to ery C 118 8 rotein i 2182 i 2279 i 2292 i 3476 riosep	o includ Observed 808.8830 as matchi 95498 87582 31135 3378 Shosphate	Mr (expt 1615.751 ang the sam Score: 55 Score: 55 Score: 59 e isomerase	in error to Mr(calc) 4 1615.8974 the set of per Queries Queries Queries Queries 2 Queries	Delta -0.1459 otides: s matched: s matched: matched: matched: rium nucle	Miss 0 1 1 1 1 atum	59	0.027	1	K.LVIAYEPVWAIGTGK	T	
	Cr Qu Pr gi gi gi gi gi gi gi Tr	neck to ery C 118 8 rotein i 2182 i 2279 i 2292 i 3476 riosep	o includ Observed 808.8830 as matchi 95498 87582 31135 3378 Shosphate	Mr (expt 1615.751 ang the sam Score: 55 Score: 55 Score: 59 e isomerase	in error to Mr(calc) A 1615.8974 De set of per Queries Queries Oueries	Delta -0.1459 otides: s matched: s matched: matched: matched: rium nucle	Miss 0 1 1 1 1 atum	59	0.027	1	K.LVIAYEPVWAIGTGK	T	
		rotein i 2182 i 2279 i 2292 i 3476 riosep heck t	o includ observed 308.8830 as matchi 95498 87582 31135 3378 ohosphate to includ	Mr (expt 1615.751 ang the sam Score: 55 Score: 55 Score: 59 a isomerase Je this hit	in error to) Mr (calc) 4 1615.8974 we set of pep Queries Queries Queries E [Fusobacter : in error to	Delta Delta -0.1459 otides: s matched: s matched: matched: rium nucle oblerant se	Miss 0 1 1 1 1 atum arch	59 subsp	0.027	l ntii A	K.LVIAYEPVWAIGTGK	т	
		neck to ery C 118 8 rotein i 2182 i 2279 i 2292 i 3476 riosep heck t	o includ observed sos.8830 s matchi 95498 87582 33135 3378 obosphate co includ observed	Mr (expt 1615.751 Ang the sam Score: 55 Score: 55 Score: 59 a isomerase de this hit Mr (expt	in error to Mr(calc) Mr(calc) He set of per Queries Queries (Queries (Pusobacter t in error to Mr(calc) Mr(calc)	Delta Delta -0.1459 Dtides: s matched: s matched: matched: rium nucle blerant se Delta	Miss 0 1 1 1 1 atum arch Miss	59 subsp	0.027	1 ntii A : Rank	K.LVIAYEPVWAIGTGK		
		neck to ery C 118 8 rotein i 2182 i 2292 i 2292 i 3476 riosep heck t sery (o includ Observed 308.8830 as matchi 95498 87582 31135 3378 ohosphate to includ	Mr (expt 1615.751 Ang the sam Score: 55 Score: 55 Score: 59 a isomerase de this hit Mr (expt	in error to Mr(calc) Mr(calc) He set of per Queries Queries (Queries (Pusobacter t in error to Mr(calc) Mr(calc)	Delta Delta -0.1459 otides: s matched: s matched: matched: rium nucle oblerant se	Miss 0 1 1 1 1 atum arch Miss	subsp	0.027 . vincer	1 ntii A : Rank	K.LVIAYEPVWAIGTGK TCC 49256] Peptide		
	trr Qu Qu gj gj gj gj Tr Cl Qu	neck to ery C 118 s rotein i[2182 i[2279 i]2292 i]3476 riosep heck t 118 s	o includ observed so atchi 95498 87582 31135 3378 shosphate co includ 808.8830	Mr (expt 1615.751 Ang the sam Score: 55 Score: 55 Score: 59 a isomerase de this hill 1615.751	in error to Mr (calc) Mr (calc) 4 1615.8974 te set of per 9 Queries 9 Queries 9 Queries 10 (Fusobacter 10 error to 10 Mr (calc) 4 1615.8974	Delta Delta -0.1459 Ditides: matched: matched: matched: matched: rium nucle blerant se Delta -0.1459	Miss 0 1 1 1 1 atum arch Miss	subsp	0.027 . vincer	1 ntii A : Rank	K.LVIAYEPVWAIGTGK TCC 49256] Peptide		
	trr C Ct Qu Pr gi gi gi gi gi Gu Qu Qu Pr C C Qu Qu Pr Pr C Ct Pr C Ct C Ct C Ct C Ct C Ct	neck to ery C 118 s rotein i[2182 i[2279 i[2292 i]3476 riosep heck t 118 s rotein	o includ observed so atchi 95498 87582 31135 3378 shoosphate o includ 00served 808.8830	Mr (expt 1615.751 ang the sam Score: 55 Score: 55 Score: 59 a isomerase de this hit 1615.751 ing the sam	in error to Mr (calc) Mr (calc) 4 1615.8974 He set of per 0 Queries 0 Queries 0 Queries 1 (Pusobacter 1 in error to 1 Mr (calc) 4 1615.8974 He set of per 1 me set of per	Delta -0.1459 otides: a matched: a matched: a matched: cium nucle blerant se Delta -0.1459 ptides:	Arch Miss 0 1 1 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 1 3 1 1 1 1 3 1	subsp	0.027 . vincer	1 ntii A : Rank	K.LVIAYEPVWAIGTGK TCC 49256] Peptide		
	trr C Cr Qu gi gi gi gi gi Tr Tr C Cr Qu Qu Qu Qu Qu Qu Qu Qu Qu Qu Qu Qu Qu	neck to ery C 118 8 rotein i 2182 i 2279 i 2279 i 2279 i 2476 riosep heck t 118 8 rotein in i 2182 i 2279 i 2476 riosep heck to 118 8 rotein i 2182 i 2279 i 2476 riosep heck to 118 8 rotein i 2182 i 2279 i 2476 riosep heck to 118 8 rotein i 2182 i 2279 i 2476 riosep heck to 118 8 rotein riosep heck to 118 8 rotein riosep rotein i 218 rotein riosep rotein i 218 rotein riosep rotein riosep rotein riosep rotein riosep rotein riosep rotein riosep rotein riosep rotein riosep rotein riosep rotein riosep rotein riosep rotein riosep rotein riosep rotein riosep rotein rotein riosep	o includ observed sos.830 s matchi 95498 87582 331135 331135 331135 33135 0bserved 808.8830 ns matchi 021144	Mr (expt 1615.751 ang the sam Score: 55 Score: 55 Score: 59 a isomerase de this hit 1615.751 ing the sam Score: 57	in error to Mr (calc) Mr (calc) Me set of per Queries Queries Queries (puries (puries)	Delta -0.1459 otides: s matched: s matched: s matched: rium nucle oblerant se Delta -0.1459 ptides: s matched:	arch Miss 0 1 1 1 1 atum arch Miss 0	subsp	0.027 . vincer	1 ntii A : Rank	K.LVIAYEPVWAIGTGK TCC 49256] Peptide		
	trr Qu Qu Pr gj gj gj Tr Tr Cu Qu Qu Qu Qu	neck to i rotein i 2182 i 2279 i 2292 i 3476 riosep heck t iery (118 rotein i 1500 i 1977	o includ observed some smatchi 95498 87582 31135 3378 obosphate co includ Observed 808.8830 observed 808.8830 observed 132144	Mr (expt 1615.751 ang the sam Score: 55 Score: 55 Score: 59 a isomerase de this hit 1615.751 ing the sam	in error to Mr (calc) Mr (calc) Mr (calc) Mr (calc) Queries Queries Queries (Fusobacter in error to Mr (calc) Mr (calc)	Delta -0.1459 otides: a matched: a matched: a matched: cium nucle blerant se Delta -0.1459 ptides:	Arch Miss 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	subsp	0.027 . vincer	1 ntii A : Rank	K.LVIAYEPVWAIGTGK TCC 49256] Peptide		
3.		neck to ery C 118 8 rotein i 2182 i 2279 i 2279 i 2279 i 2476 riosep heck t 118 8 rotein in i 2182 i 2279 i 2476 riosep heck to 118 8 rotein i 2182 i 2279 i 2476 riosep heck to 118 8 rotein i 2182 i 2279 i 2476 riosep heck to 118 8 rotein i 2182 i 2279 i 2476 riosep heck to 118 8 rotein riosep heck to 118 8 rotein riosep rios	o includ bbserved so atchi 95498 87582 31135 3378 co includ 0058erved 808.8830 bosented 808.8930 bosented 808.890	Mr (expt 1615.751 Ang the sam Score: 55 Score: 55 Score: 59 e isomerase le this hit 1615.751 ing the sam Score: 55 Score: 55 165.751 Score: 55 165.751	in error to Mr (calc) Mr (calc) Mr (calc) Queries Queries Queries Queries (puries (puries) (purie	Delta -0.1459 otides: s matched: s matched: s matched: matched: rium nucle oblerant se Delta -0.1459 ptides: s matched: s matched: s matched:	Arch Miss 0 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1	subsp	0.027 . vincer	1 ntii A : Rank	K.LVIAYEPVWAIGTGK TCC 49256] Peptide		

Protein View

Match to: gi 53715240 Score: 183 triosephosphate isomerase [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4502) 10_RN2_01_1570.d\SSP (4502) 10_RN2_01_1570.mgf

Nominal mass (Mr): 26867; Calculated pI value: 5.14 NCBI BLAST search of gi 53715240 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60683174 from Bacteroides fragilis NCTC 9343 gi 81313773 from Bacteroides fragilis NCTC 9343 gi 81824915 from Bacteroides fragilis gi 52218105 from Bacteroides fragilis YCH46 gi 60494608 from Bacteroides fragilis NCTC 9343


Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 21%

Matched peptides shown in Bold Red

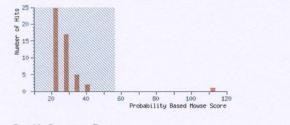
1 MRKNIVAGNW KMNKTLQEGI ALAKELNEAL ANEKPNCDVI ICTPFIHLAS 51 VTPLVDAAKI GVGAENCADK ESGAYTGEVS AAMVASTGAK YVILGHSERR 101 AYYGETVEIL KDKVKLALAN GLTPIFCIGE VLEEREANKQ NEVVAAQLAS 151 VFDLSAEDFS KIVLAYEPVW AIGTGKTASP AQAQEIHAFI RSAVAEKYGK 201 EIADNTSILY GGSCKPSNAK ELFANPDVDG GLIGGAALKV ADFKGIIDAF 251 N

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

TITLE

JOURNAL PUBMED 2 (residues 1 to 251) NCBI Genome Project REFERENCE CONSRTM TITLE Direct Submission Submitted (01-OCT-2004) National Center for Biotechnology JOURNAL Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 251) REFERENCE Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. Direct Submission AUTHORS TITLE


Submitted (20-APR-2004) Kitasato Institute for Life Sciences, JOURNAL. 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan

OMMENT	PROVISIONAL <u>REFSEQ</u> : This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD50698</u> .
	Method: conceptual translation.
EATURES	Location/Qualifiers
source	1251
	/organism="Bacteroides fragilis YCH46" /strain="YCH46"
	/db_xref="taxon:295405"
Protein	
	/product="triosephosphate isomerase"
	/EC_number=" <u>5.3.1.1</u> "
	/calculated_mol_wt=26462
Region	5248
	/region_name="TIM"
	/note="Triosephosphate isomerase (TIM) is a glycolytic
	enzyme that catalyzes the interconversion of
	dihydroxyacetone phosphate and
	D-glyceraldehyde-3-phosphate. The reaction is very
	efficient and requires neither cofactors nor metal ions.
	TIM, usually; cd00311"
	/db_xref="CDD:73362"
Site	order(9,11,96,167,173,213,232,234235)
	/site_type="other"
	/note="substrate binding site"
	/db_xref="CDD:73362"
Site	order(9,12,4547,49,52,65,83,8687,9899)
	/site_type="other"
	/note="dimer interface"
	/db_xref="CDD: <u>73362</u> "
Site	order(11,96,167)
	/site_type="other"
	/note="catalytic triad"
	/db xref="CDD:73362"
CDS	1251
	/gene="tpiA"
	/locus tag="BF3956"
	/coded_by="complement(NC_006347.1:45115824512337)"
	/note="Reversibly isomerizes the ketone sugar
	dihydroxyacetone phosphate to the aldehyde sugar
	glyceraldehyde-3-phosphate"
	/transl table=11
	/db xref="GeneID:3085037"

User	: LAKSHMY MANICKAN
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 4601
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4601) 10 RJ4 01 1365.d\SSP (4601) 10 RJ4 01 1365.mgf
Database	: NCBInr 20090522 (8876587 sequences; 3036162093 residues)
Taxonomy	: Bacteria (Eubacteria) (4773688 sequences)
Timestamp	: 30 May 2009 at 10:46:21 GMT
Protein hits	: gi 29346739 putative thiol peroxidase [Bacteroides thetaiotaomicron VPI-5482]

Probability Based Mowse Score

lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 56 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

Form	at As	Peptide Sum	mary	•						Help
		Significance	threshold p<	0.05	Max. nu	mber o	of hits	AUTO		
		Standard sco	ring @ Mud	PIT scoring	lons sco	ore or e	expect c	ut-off 0		Show sub-sets 0
		Show pop-u	ps @ Suppre	ss pop-ups C	Sort una	assigne	dDecr	easing Scor	re	Require bold red
Selec	t All	Select None	Sear	ch Selected	□ Erro	or toler	rant			
	a construction	ve thiol pe		Score: 1 Bacteroides n error tol	thetaiot	aomic	matche ron VP		nPAI:	0.19
1.0	CHECK	co include	CHIS HIC I	il error con	crant Sea	iren				
	Query	Observed	Mr(expt)	Mr(calc)				Expect Ra		Peptide
ব	104 114			1102.6386	-0.1232	0	46	2002		K.LIGEFIQVGK.V R.MADGPLAGLLAR.A + Oxidation (M)
	gi 537 putati gi 153 hypoth gi 160 hypoth gi 212	14055 Mail ive thiol person person 8808277 person netical prob person 0882643 person netical prob person 2700035 person	ass: 18042 eroxidase [dass: 18064 tein BACCAC dass: 18079 tein BACOVA dass: 17981	_02565 [Bac Score: _00596 [Bac	12 Que fragilis 112 Qu teroides 112 Qu teroides 112 Qu	YCH4 eries cacca eries ovatu eries	match e ATCC match s ATCC match	ed: 2 43185] ed: 2 8483] ed: 2	51	
		-		otein hits:					_	
	e marc	nes not ass	igned to pi	otein hits:						
	Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss		Expect		
ন	237	766.9440	2297.8102	2298.1380	-0.3278	1	38	2	1	FDFRGVDASIELSGDDTITLK
	2001200	766.9440	and the second se	2298.1380		Miss 1 1 2		the second s		

 IP
 195
 647.5700
 1939.6882
 1939.0093
 0.6789
 1
 31
 11
 1
 MLFSMAVGLNAVSMAAKAK

 IP
 231
 748.5940
 2242.7602
 2243.0892
 -0.3290
 0
 31
 10
 1
 TLDNMGAAPEPNITLINSER + Oxidation (M)

 IP
 226
 1113.5200
 2225.0244
 2224.0035
 1.0260
 2
 30
 19
 1
 MCAEVARGGELVDGDLMR + 2 Oxidation (M)

 IP
 226
 1113.5200
 2225.0244
 2244.0035
 1.0260
 2
 30
 19
 1
 MCAEVARGGELVDGDLMR + 2 Oxidation (M)

 IP
 221
 1105.9620
 2209.9094
 2210.2232
 -0.3380
 27
 50
 1
 NESTRESIPPLYENNTFIYAECGGLMYLGK + Oxidation (M)

 IP
 230
 746.9420
 2237.8042
 2238.1408
 -0.3366
 1
 27
 29
 1
 MFIGHPAPAIAAAYSRGEK + Oxidation (M)

 IP
 134
 679.3990
 2035.1752
 2035.0347
 0.1405
 2
 25
 1.3ee02
 1
 RYBHRALEAVIQEHER

 II
 701.9750
 2156.2372
 2156.1590
 0.7055
 2
 <td

Protein View Match to: gi 53714055 Score: 112 Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4601) 10_RJ4_01_1365.d\SSP (4601) 10_RJ4_01_1365.mgf Nominal mass (M_r): 18042; Calculated pI value: 5.55 NCBI BLAST search of gi[53714055 against nr Unformatted sequence string for pasting into other applications Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60682249 from Bacteroides fragilis NCTC 9343 gi 200682249 from Bacteroides fragilis with 9445 gi 253564697 from Bacteroides sp. 3 2 5 gi 265766326 from Bacteroides sp. 2 1 16 gi 52216920 from Bacteroides fragilis YCH46 gi 60493683 from Bacteroides fragilis NCTC 9343 gi 251946162 from Bacteroides sp. 3 2 5 gi 263253994 from Bacteroides sp. 2 1 16 Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 13% Matched peptides shown in Bold Red 1 MATTNFKGQP VKLIGEFIQV GKVAPDFELV KSDLSSFALK DLKGKNIVLN 51 IFFSLDTGVC ATSVRKFNKM AAGMKDTVVL AISKDLPFAQ GRFCTTEGIE 101 NVIPLSDFRF SDFDESYGVR MADGPLAGLL ARAVVVIGKD GKVAYTELVP 151 EITQEPDYEK ALAAVK Show predicted peptides also Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass Mr (expt) Mr(calc) Delta Miss Sequence Observed Start - End 552.2650 1102.5154 1102.6386 600.7170 1199.4194 1199.6332 K.LIGEFIOVGK.V (Ions score 46) -0.1232 0 13 - 22121 - 132-0.2138 0 R.MADGPLAGLLAR.A Oxidation (M) (Ions score 67) B -125 e -0.15-Error Error -150 -0.2 -175 ----1200 1200 1150 1100 RMS error 148 ppm 1150 1175 1125 1175 1125 1100 Mass (Da) Mass (Da) RMS error 148 ppm YP_100047 . 166 aa linear BCT putative thiol peroxidase [Bacteroides fragilis YCH46]. BCT 26-APR-2009 LOCUS DEFINITION YP_100047 YP_100047.1 GI:53714055 ACCESSION VERSION DBLINK Project: 13067 REFSEQ: accession NC 006347.1 DBSOURCE KEYWORDS Bacteroides fragilis YCH46 SOURCE ORGANISM Bacteroides fragilis YCH46 Bacteria: Bacteroidetes: Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides. Bacteroldaceae; Bacteroldes. 1 (residues 1 to 166) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA REFERENCE AUTHORS TITLE inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) JOURNAL PUBMED 15466707 2 (residues 1 to 166) NCBI Genome Project Direct Submission REFERENCE CONSRTM TITLE Submitted (01-OCT-2004) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 166) JOURNAL REFERENCE Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T. Direct Submission AUTHORS TITLE Submitted (20-APR-2004) Kitasato Institute for Life Sciences, JOURNAL 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan PROVISIONAL <u>REFSEQ</u>: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD49513</u>. COMMENT

EATURES	d: conceptual translation. Location/Oualifiers
source	1166
	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db_xref="taxon:295405"
Protein	1166
	/product="putative thiol peroxidase"
	/calculated_mol_wt=17807
Region	19164
	/region_name="PRX_Atyp2cys"
	/note="Peroxiredoxin (PRX) family, Atypical 2-cys PRX
	subfamily; composed of PRXs containing peroxidatic and
	resolving cysteines, similar to the homodimeric thiol
	specific antioxidant (TSA) protein also known as
	TRX-dependent thiol peroxidase (Tpx). Tpx is a;
	cd03014"
	/db_xref="CDD: <u>48563</u> "
Site	order(54,56,8586,92,108,127128)
	/site_type="other"
	/note="dimer interface"
	/db_xref="CDD: <u>48563</u> "
Site	order (57,60,132)
	/site_type="other"
	/note="catalytic triad"
	/db_xref="CDD: <u>48563</u> "
Site	order (60,94)
	/site_type="other"
	/note="peroxidatic and resolving cysteines"
an a	/db_xref="CDD: <u>48563</u> " 1166
CDS	/locus tag="BF2763"
	/coded by="complement(NC 006347.1:31752643175764)"
	/note="similar to qp:AE016931 120 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 92 in 166 aa,
	BLASTP E(): 9e-84"
	/transl table=11
	/db xref="GeneID:3083562"

```
Lakshmy Manickan
User
                                  lakshmy.manickan@unn.ac.uk
SSP 4605
Email
Search title
                             : SSP 4605

: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4605) 10_RI7_01_1311.d\SSP (4605) 10_RI7_01_1311.mgf

: NCBInr 20100102 (10272453 sequences; 3505279183 residues)

: Bacteria (Eubacteria) (5590016 sequences)

: 6 Jan 2010 at 13:36:18 GMT

: gi[53712002 thioredoxin [Bacteroides fragilis YCH46]
MS data file
Database
Taxonomy
Timestamp
Protein hits
Probability Based Mowse Score
Ions score is -10*Log(P), where P is the probability that the observed match is a random event.
Individual ions scores > 57 indicate identity or extensive homology (p<0.05).
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits
 11 ts
 $ 25
 Number
15
    10
    5
                                                   Probability Based Mowse Sc
Peptide Summary Report
 Format As Peptide Summary
                                                                     *
                                                                                                                                                            Help
                         Significance threshold p< 0.05 Max. number of hits AUTO
                         Standard scoring @ MudPIT scoring C Ions score or expect cut-off
                                                                                                                                                      Show sub-sets 0
                         Show pop-ups @ Suppress pop-ups O Sort unassigned Decreasing Score 🔄 Require bold red 🗆
 Select All Select None Search Selected Error tolerant
 1. gi 53712002 Mass: 11637 Score: 140 Queries matched: 5 emPAI: 0.30
            thioredoxin [Bacteroides fragilis YCH46]
        Check to include this hit in error tolerant search

        Under
        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss Score
        Expect Rank
        Peptide

        70
        539.7250
        1077.4354
        1077.6223
        -0.1868
        0
        34
        11
        1
        R.NIPTVI

        80
        501.2670
        1200.5194
        1200.6424
        -0.1229
        0
        48
        0.47
        1
        K.MYOPU

        81
        601.2980
        1200.5814
        1200.6424
        *-0.0609
        0
        (41)
        2.6
        1
        K.MYOPU

            Query Observed
                                                                                                                                  11 1 R.NIPTVLFFK.N
0.47 1 K.MVGPIIDELAK
        1
        2
                                                                                                                                                      K.MVGPIIDELAK.E + Oxidation (M)
                                                                                                                                             1 K.MVGPIIDELAK.E + Oxidation (M)
        1

        152
        918.0010
        1835.5874
        1836.7836
        -1.1962
        0
        58
        0.031
        1
        K.CDVDENSDLPAEFGIR.N

        153
        612.8830
        1835.6272
        1836.7836
        -1.1564
        0
        (24)
        66
        3
        K.CDVDENSDLPAEFGIR.N

        1
             Proteins matching the same set of peptides:
                                           Mass: 11635
                                                                        Score: 138
                                                                                                   Oueries matched: 5
             gi 255007522
             putative thioredoxin [Bacteroides fragilis 3_1_12]
 Peptide matches not assigned to protein hits: (no details means no match)
                            Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
            Query
                                                                                                                                   4.2 1 VINEDTVIADLK

        ♥
        90
        665.2880
        1328.5614
        1328.7187
        -0.1573
        0
        38

        ♥
        126
        819.8490
        1637.6834
        1637.7897
        -0.1062
        0
        38

                                                                                                                                     3.5
                                                                                                                                                 1
                                                                                                                                                          SESASFTPNTDIITR
                          692.2880 1382.5614 1382.8245 -0.2631 2
                                                                                                                                       13
                                                                                                                                                          LSIALGKGSKNPAK
        2
                                                                                                                      33
                96

        83
        609.2310
        1216.4474
        1215.6611
        0.7863
        1

        89
        651.7980
        1301.5814
        1302.7408
        -1.1594
        1

        227
        761.9600
        2282.8582
        2282.0558
        0.8023
        2

                                                                                                                                                          KAYDPLIGPSR
        1
                                                                                                                      32
                                                                                                                                        18 1
                                                                                                                                                         FIRGIVTDLGGR
        7
                                                                                                                      31
                                                                                                                                      23 1

    13
    1
    DMKEASKSIWLDMENQVDK + Oxidation (M)

    27
    1
    DAELIKQAFTALR

    25
    1
    AGRYKEASEYMPEYQR + Oxidation (M)

                                                                                                                      31
        7
               227
        1

        106
        738.2980
        1474.5814
        1474.8143
        -0.2329
        1

        173
        997.4120
        1992.8094
        1992.8999
        -0.0905
        2

                                                                                                                     30
        1
                                                                                                                      29

        173
        997.4120
        1992.8094
        1992.8999
        -0.0995
        2

        153
        612.9830
        1835.6272
        1835.8975
        -0.2703
        0

        71
        548.7450
        1095.5474
        1095.5448
        -0.0693
        1

        87
        639.2820
        1276.5494
        1277.6867
        -1.1372
        1

        186
        1032.4920
        2062.9694
        2062.9636
        0.0058
        2

        156
        926.7690
        1851.5234
        1851.8859
        -0.3624
        1

        166
        646.0030
        1934.9872
        1935.0178
        -0.03662
        2

                                                                                                                                                         CNLSSEPIENAILFTK
        1
                                                                                                                      28
                                                                                                                                        30 1
                                                                                                                                       43 1 DAETLEKYK
        1
                                                                                                                      28
                                                                                                                                       57
                                                                                                                                                 1 GKLIDELFSEK
        1
                                                                                                                      27
                                                                                                                                      48 1 QRDVQRELAAMSMGDNAR + Oxidation (M)
        1
                                                                                                                      27
                                                                                                                                                          MKIMTHSNDGFVISEK + Oxidation (M)
        2
                                                                                                                       27
                                                                                                                                        38 1
                                                                                                                                        62 1 KMGGMGTILGLMPGMGKIK + Oxidation (M)
51 1 MNDLTQTPEMLIATMGAR
                                                                                                                      26
         2
        V
                           665.2790 1992.8152 1991.9478 0.8673 0
                                                                                                                       26
                174

        240
        837.2560
        2508.7462
        2508.1382
        0.6080
        2

        112
        782.0590
        2343.1552
        2342.1801
        0.9751
        2

                                                                                                                       26 41 1 MAGGAOMPSPPSKSTDMMRIGAR + 2 Oxidation (M)
25 1.3e+02 1 REVLAMTAVIYARYSSDNQR
        1
        ~
                                                                                                                                                          IFEHSGHAPHIEEPEAFMNYYLNFLK

        190
        1045.0920
        3132.2542
        3132.4803
        -0.2262
        0

        73
        551.6520
        1651.9342
        1651.8286
        0.1055
        2

        1
                                                                                                                       25 1.2e+02 1
                                                                                                                                                         MNKVIFACVRNAGR + Oxidation (M)
         V
                                                                                                                       25 1.6e+02 1
                  78 572.7520 1143.4894 1143.5448 -0.0554 0
                                                                                                                      25 1.7e+02 1 VTDDYAVFSK
         1
                                                                                                                     25 60 1 AKKYLTQVSEGGSLVLFVGTK

        216
        742.2870
        2223.8392
        2224.2467
        -0.4075
        2

        213
        737.9170
        2210.7292
        2210.0718
        0.6574
        0

         1
                                                                                                                      24
                                                                                                                                       62 1
                                                                                                                                                          SEVEFAMYFPEVHLLNAAK + Oxidation (M)
         1
                                                                                                                                73 1 GTDYNMPTORSMNLGLFK + Oxidation (M)
                          696.6030 2086.7872 2087.9768 -1.1897 1
                                                                                                                      24
         12
                188
```

Protein View

Match to: gi|53712002 Score: 140
thioredoxin [Bacteroides fragilis YCH46]
Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4605) 10_RI7_01_1311.d\SSP (4605) 10_RI7_01_1311.mgf

Nominal mass (M_r) : **11637**; Calculated pI value: **4.51** NCBI BLAST search of <u>gi | 53712002</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60680203 from Bacteroides fragilis NCTC 9343 gi 253563963 from Bacteroides sp. 3 2 5 gi 265765340 from Bacteroides sp. 2 1 16 gi 50214867 from Bacteroides fragilis YCH46 gi 60491637 from Bacteroides fragilis NCTC 9343 gi 251947739 from Bacteroides sp. 3 2 5 gi 263254724 from Bacteroides sp. 2 1 16

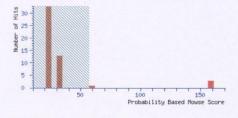
Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 34%

Matched peptides shown in Bold Red

1 MALEITDNNF KEILAEGSPV VIDFWAPWCG PCKMVGPIID ELAKEYEGKV 51 IMGKCDVDEN SDLPAEFGIR NIPTVLPFKN GELVDKQVGA VGKPAFVEKV 101 EKLL

Show predicted peptides also

Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass Start - End Observed Mr(expt) Mr(calc) Delta Miss Sequence Miss Sequence 0 K.MVGPIIDELAK.E Oxidation (M) (Ions score 48) 0 K.MVGPIIDELAK.E Oxidation (M) (Ions score 41) 0 K.CDVDENSDLPAEFGIR.N (Ions score 58) 0 K.CDVDENSDLPAEFGIR.N (Ions score 24) 2 C. CDVDENSDLPAEFGIR.N (Ions score 24) 34 - 44 34 - 44 1200.5194 1200.6424 1200.5814 1200.6424 601.2670 -0.1229 601.2980 -0.0609 - 70 1835.5874 1836.7836 -1.1962 55 918.8010 - 70 - 79 1835.6272 1077.4354 55 612.8830 1836.7836 -1.1564 539.7250 1077.6223 -0.1868 0 R.NIPTVLFFK.N (Ions score 34) -0 : (wdd) (Da) -250 -0.5 Error Error -500 -1 -1250 1500 1750 1250 1500 1750 RMS error 415 ppm Mass (Da) RMS error 415 ppm Mass (Da) LOCUS YP 097994 104 aa linear BCT 26-APR-2009 DEFINITION thioredoxin [Bacteroides fragilis YCH46]. ACCESSION YP_097994 YP_097994.1 GI:53712002 VERSION DBLINK Project: 13067 DBSOURCE REFSEQ: accession NC 006347.1 KEYWORDS SOURCE Bacteroides fragilis YCH46 Bacteroides fragilis YCH46 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; ORGANISM Bacteroidaceae; Bacteroides; Bacteroidal; Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 104) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA invarsions reculting coll surface admitting REFERENCE AUTHORS TITLE inversions regulating cell surface adaption reveals extensive Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707 2 (residues 1 to 104) JOURNAL PUBMED


REFERENCE 2 (residues 1 to 104) NCBI Genome Project CONSRTM TITLE Direct Submission Submitted (01-OCT-2004) National Center for Biotechnology JOURNAL Information, NIH, Bethesda, MD 20894, USA REFERENCE 3 (residues 1 to 104) Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T. Direct Submission AUTHORS TITLE JOURNAL Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan

	ISIONAL <u>REFSEQ</u> : This record has not yet been subject to final review. The reference sequence was derived from <u>BAD47460</u> .
	d: conceptual translation.
EATURES	Location/Qualifiers
source	1104
	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db xref="taxon:295405"
Protein	1104
	/product="thioredoxin"
	/calculated mol wt=11339
Region	8101
	/region name="TRX family"
	/note="TRX family; composed of two groups: Group I, which
	includes proteins that exclusively encode a TRX domain;
	and Group II, which are composed of fusion proteins of TRX
	and additional domains. Group I TRX is a small ancient
	protein that alter the redox; cd02947"
	/db xref="CDD:48496"
Site	order (29,32)
	/site_type="other"
	/note="catalytic residues"
	/db_xref="CDD:48496"
CDS	1104
	/locus_tag="BF0713"
	/coded_by="NC_006347.1:838887839201"
	/note="similar to gp:AE016935_76 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 81 in 104 aa,
	BLASTP E(): 6e-47"
	/transl_table= <u>11</u>
	/db_xref="GeneID:3082512"

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 4607
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4607) 10 RJ18 01 1401.d\SSP (4607) 10 RJ18 01 1401.mgf
Database	: NCBInr 20100108 (10291680 sequences; 3511877860 residues)
Taxonomy	: Bacteria (Eubacteria) (5718488 sequences)
Timestamp	: 11 Jan 2010 at 10:40:03 GMT
Protein hits	: gi 53715262 malate dehydrogenase [Bacteroides fragilis YCH46]
	gi 224536272 hypothetical protein BACCELL_01139 [Bacteroides cellulosilyticus DSM 14838]
	gi 160890687 hypothetical protein BACUNI_03132 [Bacteroides uniformis ATCC 8492]
	gi 150002856 malate dehydrogenase [Bacteroides vulgatus ATCC 8482]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

```
Format As Peptide Summary
                                                                                -
                                                                                                                                                                                            Help
                             Significance threshold p< 0.05 Max. number of hits AUTO
                              Standard scoring @ MudPIT scoring C Ions score or expect cut-off
                                                                                                                                                                                    Show sub-sets 0
                              Show pop-ups @ Suppress pop-ups C Sort unassigned Decreasing Score 💽 Require bold red 🗆
Select All Select None Search Selected Error tolerant
       gi 53715262 Mass: 32945 Score: 159 Queries matched: 4 emPAI: 0.21
1.
              malate dehydrogenase [Bacteroides fragilis YCH46]
         Check to include this hit in error tolerant search

        Query
        Observed
        Mr (expt)
        Mr (calc) +
        Delta
        Miss
        Score
        Expect Rank
        Peptide

        ▼
        121
        621.2850
        1240.5554
        1240.7027
        -0.1472
        0
        41
        2.3
        1
        R.BELIGVNAGIVK.S

        ▼
        175
        853.8230
        1705.6314
        1705.8920
        -0.2606
        0
        56
        0.055
        1
        K.LNEVVASTMVGGATLTK.L + Oxidation (M)

        178
        862.6630
        2584.9672
        2585.3121
        -0.3449
        0
        21
        2.9e+02
        2
        K.YSPNAIIVVISNPMDTMTVLALK.S + 2 Oxidation (M)

        ▼
        248
        906.0490
        2715.1252
        2715.4020
        -0.2769
        0
        41
        1.2
        1
        K.LLGTSAWYAPGAAGAYVVESIIHNOK.K

              Proteins matching the same set of peptides:
               gi 255011805 Mass: 32932
                                                                                     Score: 159
                                                                                                                      Queries matched: 4
              malate dehydrogenase [Bacteroides fragilis 3_1_12]
2.
             qi|224536272
                                                 Mass: 33016
                                                                                     Score: 159
                                                                                                                      Oueries matched: 4 emPAI: 0.21
               hypothetical protein BACCELL_01139 [Bacteroides cellulosilyticus DSM 14838]
         \hfill \Box Check to include this hit in error tolerant search
             Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide

        Usery Observed
        Mr (expt)
        Mr (calc)
        Delta Miss Score
        Expect Rank
        Peptide

        121
        621.2850
        1240.5554
        1240.7027
        -0.1472
        0
        41
        2.3
        1
        R.EELIGVNAGIVK.T

        175
        953.8230
        1705.6314
        1705.8920
        -0.2606
        0
        56
        0.055
        1
        K.LMEVVASTMV0GATLTK.L + Oxidation (M)

        178
        862.6630
        2584.9672
        2585.3121
        -0.3449
        0
        21
        2.9e+02
        2
        K.YSPNAILVVISNPMDTMTYLALK.S + 2 Oxidation (M)

        248
        906.0490
        2715.1252
        2715.4020
        -0.2769
        41
        1.2
        1
        K.LLGTSAWYAPGAAGAVVESIIHNOK.K

    gi 160890687 Mass: 33051 Score: 159 Queries matched: 4 emPAI: 0.21
hypothetical protein BACUNI 03132 [Bacteroides uniformis ATCC 8492]

         \hfill \Box Check to include this hit in error tolerant search

        Query
        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss
        Score
        Expect Rank
        Peptide

        121
        521.285
        1240.555
        1240.7027
        -0.1472
        0
        41
        2.3
        1
        R.EELIGYNAGIVK.S

        125
        853.8230
        1705.6314
        1705.8920
        -0.2606
        56
        0.55
        1
        K.IMEVVASTMVGGATLTK.L + Oxidation (M)

        178
        862.6630
        2581.9672
        2585.3121
        -0.3449
        0
        20
        3e+02
        4
        K.YSPNALUVVISNPMDTMTVLSLK.S + Oxidation (M)

        248
        906.0490
        2715.1252
        2715.4020
        -0.2769
        0
        41
        1.2
        1
        K.LIGTSAWAPGAAGAYVESIIHNOK.K

         gi 150002856 Mass: 33174 Score: 62 Queries matched: 2
4.
               malate dehydrogenase [Bacteroides vulgatus ATCC 8482]
         \hfill \Box Check to include this hit in error tolerant search
```

Protein View

Match to: gi|53715262 Score: 159 malate dehydrogenase [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4607) 10_RJ18_01_1401.d\SSP (4607) 10_RJ18_01_1401.mgf

Nominal mass $(\rm M_r)\colon$ 32945; Calculated pI value: 5.14 NCBI BLAST search of gi[53715262 against nr Unformatted sequence string for pasting into other applications

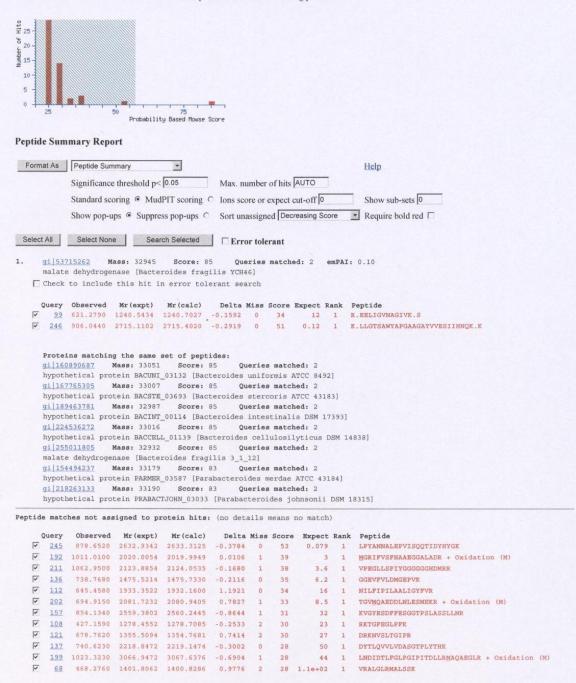
Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi[80683199 from Bacteroides fragilis NCTC 9343 gi[253567153 from Bacteroides sp. 3.2.5 gi[265767749 from Bacteroides fragilis NCTC 9343 gi[73920986 from Bacteroides fragilis NCTC 9343 gi[39208127 from Bacteroides fragilis NCTC 9343 gi[251943384 from Bacteroides fragilis NCTC 9343 gi[251943384 from Bacteroides sp. 3.2.5 gi[251943984 from Bacteroides sp. 3.2.5 gi[253252421 from Bacteroides sp. 2.1.16]

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 24%

Matched peptides shown in Bold Red

- 1 MSKVTVVGAG NVGATCANVL AFNEVADEVV MLDVKEGVSE GKAMDMMQTA 51 QLLGFDTTIV GCTNDYAQTA NSDVVVITSG IPRKPGMTRE ELIGVNAGIV 101 KSVAENLLKY SPNAIIVVIS NPMDTMTYLA LKSLGLPKNR VIGMGGALDS 151 SKRKYFLSQA LGCNANEVEG MVIGGHGDTT MIPLARLATY KGQPVSTLLS 201 EKELNEVVAS TMVGGATLTK LGTSAWYAP GAAGYVVES IINNCKKWP 251 CSVMLEGEYG ESDLCIGVPV ILGKNGIEKI VELELNADEK AKFAASAAAV 301 HKTNAALKEV GAL

Show predicted peptides also


90 - 103	
204 - 220	
221 - 246	
1	
-0.2	
1	<u>b</u> -125
-0.3	
1	-150
	<u>1500</u> <u>2000</u> <u>2500</u> <u>1500</u> <u>2000</u> <u>2500</u>
is error 128 p	pm Mass (Da) RMS error 128 ppm Mass (Da)
ocus	YP 101254 313 aa linear BCT 26-APR-2009
EFINITION	malate dehydrogenase [Bacteroides fragilis YCH46].
CCESSION	VP 101254
ERSION	Y_101254.1 GI:53715262
BLINK	Project:13067
BSOURCE	REFSEQ: accession NC 006347.1
EYWORDS	
OURCE	Bacteroides fragilis YCH46
ORGANISM	Bacteroides fragilis YCH46
	Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
	Bacteroidaceae; Bacteroides.
EFERENCE	1 (residues 1 to 313)
AUTHORS	Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H.,
	Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y.
TITLE	Genomic analysis of Bacteroides fragilis reveals extensive DNA
	inversions regulating cell surface adaptation
JOURNAL PUBMED	Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004)
EFERENCE	15465707 2 (residues 1 to 313)
CONSRIM	2 (Testades 1 to 313) NCBI Genome Project
TITLE	Most Genome roject
JOURNAL	Submitted (01-OCT-2004) National Center for Biotechnology
	Information, NIH, Bethesda, MD 20894, USA
EFERENCE	3 (residues 1 to 313)
AUTHORS	Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T.
TITLE	Direct Submission
JOURNAL	Submitted (20-APR-2004) Kitasato Institute for Life Sciences,
	1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
OMMENT	PROVISIONAL REFSEQ: This record has not yet been subject to final
	NCBI review. The reference sequence was derived from <u>BAD50720</u> .
	Method: conceptual translation.
	Location/Qualifiers
EATURES	
EATURES source	1313 /organism="Bacteroides fragilis YCH46"

	/strain="YCH46"
	/db_xref="taxon: <u>295405</u> "
Protein	1313
	/product="malate dehydrogenase"
	/calculated_mol_wt=32545
Region	20286
	/region_name="LDH-like_MDH"
	/note="L-lactate dehydrogenase-like malate dehydrogenase
	proteins; cd01339"
	/db_xref="CDD: <u>133424</u> "
Site	order(22,3738,41,4445,4748,52,5456,151152,154,
	156,221,227229,232233,236)
	/site_type="other"
	/note="dimer interface"
	/db_xref="CDD: <u>133424</u> "
Site	order(3334,7881,99,119,121,144,148,176)
	/site_type="other"
	/note="NAD(P) binding site"
	/db_xref="CDD: <u>133424</u> "
Site	order (54, 56, 162, 167, 169, 171, 189, 191193, 243, 245248, 274
	283)
	/site_type="other"
	/note="tetramer (dimer of dimers) interface"
	/db_xref="CDD: <u>133424</u> "
Site	order(89,121,152,176,215,226)
	/site_type="other"
	/note="substrate binding site"
	/db_xref="CDD: <u>133424</u> "
CDS	1313
	/locus_tag="BF3978"
	/coded_by="complement(NC_006347.1:45461904547131)"
	/note="similar to gp:AE016942_184 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 92 in 313 aa
	BLASTP E(): e-163"
	/transl_table=11
	/db xref="GeneID:3085059"

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 4608
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4608) 10 RJ14 01 1388.d\SSP (4608) 10 RJ14 01 1388.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 16:28:30 GMT
Protein hits	: g1 53715262 malate dehydrogenase [Bacteroides fragilis YCH46]

Probability Based Mowse Score

lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Protein View

Match to: gi|53715262 Score: 85 malate dehydrogenase [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4608) 10_RJ14_01_1388.d\SSP (4608) 10_RJ14_01_1388.mgf

Nominal mass (M_r) : **32945**; Calculated pI value: **5.14** NCBI BLAST search of <u>gi[53715262</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60683199 from Bacteroides fragilis NCTC 9343 gi 253567153 from Bacteroides sp. 3 2 5 gi 26576749 from Bacteroides fragilis NCTC 9343 gi 73920986 from Bacteroides fragilis NCTC 9343 gi 52218127 from Bacteroides fragilis NCTC 9343 gi 60494633 from Bacteroides fragilis NCTC 9343 gi 251943984 from Bacteroides sp. 3 2 5 gi 263252421 from Bacteroides sp. 2 1 16

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 12%

Matched peptides shown in Bold Red

1 MSKVTVVGAG NVGATCANVL AFNEVADEVV MLDVKEGVSE GKAMDMMQTA 51 QLLGFDTTIV GCTNDYAQTA NSDVVVITSG IPRKPGMTRE ELIGVNAGIV 101 KSVAENLIKY SPNAIIVVIS NPMDTMTYLA LKSLGLPKNR VIGMGGALDS 51 SRFKYFLSQA LGCNAREVEG MVIGGGADT MTPLARLATY KGQPVSTLLS 201 EEKLNEVVAS TMVGGATLTK LLGTSAWYAP GAAGAYVVES IIHNQKKMVP 251 CSVMLEGEVG ESDLCIGVPV ILGKNGIEKI VELELNADEK AKFAASAAAV 301 HKTNAALKEV GAL

Show predicted peptides also

Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass

90 - 10	d Observed Mr(expt) Mr(calc) Delta Miss Sequence 1 621.2790 1240.5434 1240.7027 -0.1592 0 R.EELIGVNAGIVK.S (Ions score 34)
221 - 24	6 906.0440 2715.1102 2715.4020 -0.2919 0 K.LLGTSAWYAPGAAGAYVVESIIHNQK.K (Ions score 51
	<u>ь</u>
-0.25	£ -120
-0.3	-130
	1500 2000 2500 1500 2000 2500 Long (D) 1500 2000 2500 Long (D)
15 error 118 p	pm Mass (Da) RMS error 118 ppm Mass (Da)
ocus	YP 101254 313 aa linear BCT 26-APR-2009
FINITION	malate dehydrogenase [Bacteroides fragilis YCH46].
CESSION	YP 101254
RSION	YP 101254.1 GI:53715262
BLINK	Project:13067
BSOURCE	REFSEQ: accession NC 006347.1
EYWORDS	KARDAY, GOODELIN MC DODALLY
OURCE	Bacteroides fragilis YCH46
ORGANISM	Bacterioldes fragilis ICH46
ORGANISM	Bacterioldes Hagilis (LA40 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
	Bacteriolaceae, Bacterioles, Bacteriola, Bacteriolales,
DEPENDENCE	acterolaceae; sacterolaes.
EFERENCE	
AUTHORS	Kuwahara, T., Yamashita, A., Hirakawa, H., Nakayama, H., Toh, H.,
	Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y.
TITLE	Genomic analysis of Bacteroides fragilis reveals extensive DNA
	inversions regulating cell surface adaptation
JOURNAL	Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004)
PUBMED	15466707
EFERENCE	2 (residues 1 to 313)
CONSRTM	NCBI Genome Project
TITLE	Direct Submission
JOURNAL	Submitted (01-OCT-2004) National Center for Biotechnology
	Information, NIH, Bethesda, MD 20894, USA
REFERENCE	3 (residues 1 to 313)
AUTHORS	Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T.
TITLE	Direct Submission

COMMENT	PROVISIONAL <u>REFSEQ</u> : This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD50720</u> . Method: conceptual translation.
FEATURES	Location/Qualifiers
source	
	/organism="Bacteroides fragilis YCH46" /strain="YCH46"
	/db_xref="taxon:295405"
Protei	
	/product="malate dehydrogenase"
	/calculated_mol_wt=32545
Region	20286
	/region_name="LDH-like_MDH"
	/note="L-lactate dehydrogenase-like malate dehydrogenase
	proteins; cd01339"
	/db xref="CDD:133424"
Site	order(22,3738,41,4445,4748,52,5456,151152,154,
	156,221,227229,232233,236)
	/site type="other"
	/note="dimer interface"
	/db xref="CDD:133424"
Site	order (3334,7881,99,119,121,144,148,176)
	/site type="other"
	/note="NAD(P) binding site"
	/db xref="CDD:133424"
Site	order (54,56,162,167,169,171,189,191193,243,245248,274, 283)
	/site type="other"
	/note="tetramer (dimer of dimers) interface"
	/db xref="CDD:133424"
Site	order(89,121,152,176,215,226)
0400	/site type="other"
	/note="substrate binding site"
	/db xref="CDD:133424"
CDS	1313
0.00	/locus tag="BF3978"
	/coded by="complement(NC 006347.1:45461904547131)"
	/note="similar to gp:AE016942 184 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 92 in 313 aa,
	BLASTP E(): e-163"
	/transl table=11
	/db xref="GeneID:3085059"
	/ W_ALOT - SOUTH - KANAGAN

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 4702
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4702) 10 RJ11 01 1379.d\SSP (4702) 10 RJ11 01 1379.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:37:28 GMT
Protein hits	: gi 53715294 elongation factor Ts [Bacteroides fragilis YCH46]
	gi 255011774 elongation factor Ts [Bacteroides fragilis 3 1 12]
Probability Ba	sed Mowse Score
lons score is -10*	Log(P), where P is the probability that the observed match is a random event.
	2 - 5(7) indicate identity or extensive homology (p<0.05).
	e derived from ions scores as a non-probabilistic basis for ranking protein hits.
Frotem scores are	served non-non-scores as a non-probabilistic basis for ranking protein hits.
2 40 -	
- Intellin	

5 200 300 Probability Based Mowse Score Peptide Summary Report Format As Peptide Summary * Help Significance threshold p< 0.05 Max. number of hits AUTO Standard scoring @ MudPIT scoring C Ions score or expect cut-off O Show sub-sets O Show pop-ups @ Suppress pop-ups @ Sort unassigned Decreasing Score 🔄 Require bold red 🗆 Select All Select None Search Selected Fror tolerant 1. gi 53715294 Mass: 36339 Score: 331 Queries matched: 7 emPAI: 0.69 elongation factor Ts [Bacteroides fragilis YCH46] ☐ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
 Output
 Observed
 Mr (expt)
 Mr (calc)
 Delta Miss Score
 Expect Rank
 Peptide

 Image: Score Line Score gi 255011774 Mass: 36340 Score: 257 Queries matched: 6 emPAI: 0.55 elongation factor Ts [Bacteroides fragilis 3_1_12] ☐ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
 Display observed
 Alterny
 Alterny
 Detra plos score spect white repute

 139
 686, 3340
 1370.7405
 -0.0871
 0
 61
 0.023
 1
 K.LTQDILDAAVANK.C

 182
 847.2930
 1692.5714
 1693.7539
 -1.1824
 0
 39
 2.5
 1
 K.EVCLLAQEDIMDAK.K + Oxidation (M)

 244
 772.6100
 2314.8082
 2315.1679
 -0.3597
 0
 41
 1.2
 1
 K.TLEEVLALPMODATVAQAVTDR.S + Oxidation (M)

 244
 772.6100
 2314.8082
 2315.1679
 -0.3597
 0
 41
 1.2
 1
 K.TLEEVLALPHGDATVAQAVTDR.S + Oxidation (M)

 184
 849.5650
 2545.6732
 2546.1239
 -0.4508
 0
 (52)
 0.24
 2
 K.MELDGYMVLEGATISAYNHMNR.N + 2 Oxidation (M)

 248
 849.6500
 2545.9282
 2546.1239
 -0.1958
 0
 56
 0.04
 1
 K.MELDGYMVLEGATISAYNHMNR.N + 2 Oxidation (M)

 249
 954.6580
 2560.9522
 2561.1989
 -0.2467
 0
 64
 0.0067
 1
 K.QVAMQVAAMNPIAVDEDGVSEEVK.Q + 2 Oxidation (M)
 7 Peptide matches not assigned to protein hits: (no details means no match) Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
 Costs
 <th P 234

 \$\vert\$
 234
 742.3310
 2223.9712
 2225.0825
 -1.1113
 2
 30
 22
 1
 SSPFGNDTKVGSSAFQQANKR

 \$\vert\$
 101
 537.0890
 1610.6452
 1610.6338
 -0.1886
 1
 30
 56
 1
 DKVSQITTGSNAAK

 \$\vert\$
 168
 822.2630
 1642.5114
 1641.7742
 0.7372
 0
 29
 25
 1
 YVELMTSFVINDGR + 2
 0.xidation (M)

 \$\vert\$
 168
 822.2630
 1642.5114
 1641.7742
 0.7372
 0
 29
 43
 1
 SMTGDVANATK + 0.xidation (M)

 \$\vert\$
 132
 655.2201
 1328.5694
 1328.7122
 0.1428
 0
 27
 62
 1
 QVDIFAMLVATK + 0.xidation (M)

 \$\vert\$
 231
 742.2680
 2223.7822
 2223.725
 0.5096
 2
 26
 37
 1
 KNILPQEKLTLLEIEVSEK

 \$\vert\$
 138
 679.3950
 2035.1632
 2033.9952
 1.1679
 1
 26
 1.2e+02
 1
 ARNVTIAEFPMSADAGAAR + 0.xidation (M)

 \$\vert\$
 208
 970.7680
 1939.5214
 1939.9053
 <

Protein View

Match to: gi|53715294 Score: 331 elongation factor Ts [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4702) 10_RJ11_01_1379.d\SSP (4702) 10_RJ11_01_1379.mgf

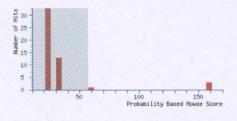
Nominal mass (M_r) : 36339; Calculated pI value: 5.09 NCBI BLAST search of <u>gi 53715294</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi[265767185 from Bacteroides sp. 3.2.5 gi[265767781 from Bacteroides fragilis gi[8131719 from Bacteroides fragilis gi[8131719 from Bacteroides fragilis NCTC 9343 gi[8131719 from Bacteroides fragilis NCTC 9343 gi[816494663 from Bacteroides fragilis NCTC 9343 gi[816494663 from Bacteroides fragilis NCTC 9343 gi[8151944016 from Bacteroides fragilis NCTC 9343 gi[816494663 from Bacteroides sp. 2.2.5 gi]263252453 from Bacteroides sp. 2.1.16

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 32%

Matched peptides shown in Bold Red

		Bold Red				
51 RSDF 101 ANKO 151 YNHM 201 KEIH 251 EDVA	MADITK LRKMTGAG EASEGC VLVKVEEG KTLEEV LALPMGDA INRNGLC TMVAPNKK VVAVEKT KVEQVQKA IKAKEII ATVSAEKA TVREVL KEADPELK	FG AIIALKCE ATV AQAVTDRT VD EQLAKQVA AVE AALKKANI AAN MPEQMIQN	TD FVAQNADFV GI TGEKMELDG MQ VAAMNPIAV NP AHVDSEDHM IA KGRLAKFLK	K LTQDILDAN Y MVLEGATIN D EDGVSEEVN E SNMAKGWI		
Show p	predicted peptides al	so				
Sort Pepti	des By @ Resi	idue Number	C Increasing N	lass C Deci	ing Mass	
Start - Er	d Observed	Mr (expt)	Mr (calc)	Delta	liss Sequence	
65 - 76		1245.5154	1245.6969	-0.1814	0 K VEEGFGA	IIALK.C (Ions score 68)
91 - 10	686.3340	1370.6534	1370.7405	-0.0871	0 K.LTQDILD	
106 - 13		2314.8082	2315.1679	-0.3597		LPMGDATVAQAVTDR.T Oxidation (M) (Ions score 41)
135 - 15		2545.6732	2546.1239	-0.4508		AVLEGATIAAYNHMNR.N 3 Oxidation (M) (Ions score 61)
135 - 19		2545.9282 2560.9522	2546.1239 2561.1989	-0.1958		<pre>AVLEGATIAAYNHMNR.N 3 Oxidation (M) (Ions score 52) AAMNPIAVDEDGVSEEVE.0 2 Oxidation (M) (Ions score 64)</pre>
290 - 30		1692.5714	1693.7539	-1.1824		EDIMDAK.K Oxidation (M) (Ions score 39)
-0						
				(wdd)	1.	
(Da)					+	
LO-0.5				Error	-	
5				<u>ل</u> ة _	4	
-1					1	
	1000	1 1 2000		2500	1500	2000 2500
RMS error 288	1500	2000			or 288 ppm	Mass (Da)
1110 1110 400	leftere.					
LOCUS	YP_101286		330 aa	line	BCT 26-APR-	-2009
DEFINITION						
* CORCATON		ctor Ts [Bac	teroides fra	gilis YCH4		
ACCESSION	YP_101286		teroides fra	gilis YCH4		
VERSION	YP_101286 YP_101286.1 (teroides fra	gilis YCH4		
	YP_101286	GI:53715294		gilis YCH4		
VERSION DBLINK	YP_101286 YP_101286.1 0 Project: <u>13067</u>	GI:53715294		gilis YCH4		
VERSION DBLINK DBSOURCE KEYWORDS SOURCE	YP_101286 YP_101286.1 (Project: <u>13067</u> REFSEQ: access Bacteroides fr	GI:53715294 sion <u>NC_0063</u> ragilis YCH4	<u>47.1</u> 6	gilis YCH4		
VERSION DBLINK DBSOURCE KEYWORDS	YP_101286 YP_101286.1 (Project:13067 REFSEQ: access Bacteroides fr Bacteroides fr	GI:53715294 sion <u>NC_0063</u> ragilis YCH4 ragilis YCH4	<u>47.1</u> 6 <u>6</u>			
VERSION DBLINK DBSOURCE KEYWORDS SOURCE	YP_101286 YP_101286.1 (C Project:13067 REFSEQ: access Bacteroides fr Bacteroides fr Bacteria; Bact	GI:53715294 sion <u>NC_0063</u> ragilis YCH4 ragilis YCH4 teroidetes;	<u>47.1</u> 6 <u>6</u> Bacteroidia;			
VERSION DBLINK DBSOURCE KEYWORDS SOURCE ORGANISM	YP_101286 YP_101286.1 (Project:13067 REFSEQ: access Bacteroides fr Bacteroides fr Bacteria; Bact Bacteria; Bact	GI:53715294 sion <u>NC_0063</u> ragilis YCH4 ragilis YCH4 teroidetes; e; Bacteroid	<u>47.1</u> 6 <u>6</u> Bacteroidia;			
VERSION DBLINK DBSOURCE KEYWORDS SOURCE ORGANISM REFERENCE	YP_101286 YP_101286.1 (Project:13067 REFSEQ: access Bacteroides fr Bacteroides fr Bacteroidacea Bacteroidacea 1 (residues 1	GI:53715294 sion <u>NC_0063</u> ragilis YCH4 ragilis YCH4 teroidetes; e; Bacteroid 1 to 330)	<u>47.1</u> 6 <u>6</u> Bacteroidia; es.	Bacteroid	:S;	
VERSION DBLINK DBSOURCE KEYWORDS SOURCE ORGANISM	YP_101286 YP_101286.1 (Project:13067 REFSEQ: access Bacteroides fr Bacteroides fr Bacteria; Bact Bacteria; Bact	GI:53715294 sion <u>NC 0063</u> ragilis YCH4 ragilis YCH4 teroidetes; e; Bacteroid to 330) Yamashita,A.	47.1 6 6 Bacteroidia; les. , Hirakawa,H	Bacteroid	s; 1., Toh,H.,	
VERSION DBLINK DBSOURCE KEYWORDS SOURCE ORGANISM REFERENCE	YP_101286 YP_101286.1 (Project: <u>13067</u> REFSEQ: access Bacteroides fr Bacteroides fr Bacteroidacear Bacteroidacear 1 (residues 1 Kuwahara,T., D	GI:53715294 sion NC_0063 ragilis YCH4 teroidetes; e; Bacteroid 1 to 330) Yamashita,A. ara,S., Hatt	47.1 6 Bacteroidia; les. , Hirakawa,H ori,M., Haya	Bacteroid 1., Nakayam shi,T. and	ss; 1., Toh.H., mishi.Y.	
VERSION DBLINK DBSOURCE KEYWODS SOURCE ORGANISM REFERENCE AUTHORS TITLE	YP_101286 YP_101286.1 (0 Project:13067 REFSEQ: access Bacteroides fr Bacteria: Bact Bacteria: Bact Bacteria: Bact Bacteria: Composition Bacteria: Bact Bacteria: Bacteria: Bacteria	SI:53715294 sion NC_0063 ragilis YCH4 ragilis YCH4 taroidetes; e; Bacteroid 1 to 330) Yamashita,A. ara,S., Hatt sis of Bacte gulating cel	47.1 6 Bacteroidia; les. , Hirakawa,H .ori,M., Haya roides fragi 1 surface ad	Bacteroid 1., Nakayam shi,T. and lis reveal laptation	es; M., Toh,H., mishi,Y. extensive DNA	
VERSION DBLINK DBSOURCE KEYWORDS SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL	YP_101286.1 YP_101286.1 Project:13067 REFSR0: access Bacteroides fi Bacteroides fi Bacteroidaceat (residues: Kuwahara,T., Y Okada,N., Kuh Genomic analy inversions reg Proc. Natl. Ak	SI:53715294 sion NC_0063 ragilis YCH4 ragilis YCH4 taroidetes; e; Bacteroid 1 to 330) Yamashita,A. ara,S., Hatt sis of Bacte gulating cel	47.1 6 Bacteroidia; les. , Hirakawa,H .ori,M., Haya roides fragi 1 surface ad	Bacteroid 1., Nakayam shi,T. and lis reveal laptation	es; M., Toh,H., mishi,Y. extensive DNA	
VERSION DBLINK DBSOURCE KEYWORDS SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL PÜBMED	YP_101286 YP_101286.1 (Project:13067 REFSEQ: access Bacteroides fr Bacteroidaceas I (residues 1 Kuwahara,T., Y Okada,N., Kuh Genomic analyy inversions reg Proc. Natl. An 15466707	GI:53715294 sion NC 0063 ragilis YCH4 ragilis YCH4 teroidetes; e; Bacteroid to 330) Yamashita,A. ara,S., Hatt sis of Bacte gulating cel cad. Sci. U.	47.1 6 Bacteroidia; les. , Hirakawa,H .ori,M., Haya roides fragi 1 surface ad	Bacteroid 1., Nakayam shi,T. and lis reveal laptation	es; M., Toh,H., mishi,Y. extensive DNA	
VERSION DBLINK DBSOURCE KEYMORDS SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL PÜBMED REFERENCE	YP_101286 YP_101286.1 (C Project:13067 REFSEQ: access Bacteroides fn Bacteria; Bact Bacteria; Bacteria;	GI:53715294 sion NC_0063 ragilis YCH4 ragilis YCH4 taroidetes; e; Bacteroid 1 to 330) Yamashita,A. ara,S., Hatt sis of Bacte gulating cel cad. Sci. U. 1 to 330)	47.1 6 Bacteroidia; les. , Hirakawa,H .ori,M., Haya roides fragi 1 surface ad	Bacteroid 1., Nakayam shi,T. and lis reveal laptation	es; M., Toh,H., mishi,Y. extensive DNA	
VERSION DBLINK DBSOURCE KEYWORDS SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL PÜBMED REFERENCE CONSRTM	YP_101286 YP_101286.1 (Project:13067 REFSRQ: access Bacteroides fr Bacteroidaceat (residues 1 Kuwahara,T., T) Okada,N., Kuh Genomic analys inversions ree Proc. Natl. Ac 15466707 2 (residues 1 NCEI Genome P	GI:53715294 sion NC 0063 ragilis YCH4 teroidetes; e; Bacteroid to 330) Yamashita,A. ara,S., Hatt sis of Bacte gulating cel cad. Sci. U. 1 to 330) roject	47.1 6 Bacteroidia; les. , Hirakawa,H .ori,M., Haya roides fragi 1 surface ad	Bacteroid 1., Nakayam shi,T. and lis reveal laptation	es; M., Toh,H., mishi,Y. extensive DNA	
VERSION DBLINK DBSOURCE KEYMORDS SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL PÜBMED REFERENCE	YP_101286 YP_101286.1 (C Project:13067 REFSEQ: access Bacteroides fn Bacteria; Bact Bacteria; Bacteria; Bacte	GI:53715294 sion NC 0063 ragilis YCH4 ragilis YCH4 targilis YC	47.1 6 6 Bacteroidia; les. , Hirakawa,H ori,M., Haya roides frava roides frava l surface ad S.A. 101 (41	Bacteroid 1., Nakayam shi,T. and lis reveal laptation), 14919-1	s; I., Toh,H., mishi,Y. xtensive DNA 24 (2004)	


Information, NIH, Bethesda, MD 20894, USA REFERENCE 3 (residues 1 to 330) AUTHORS Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. Direct Submission JOURNAL Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan COMMENT PROVISIONAL REFEQ: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD50752</u>. Method: conceptual translation. FEATURES Location/Qualifiers

source	1330
	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db_xref="taxon: <u>295405</u> "
Protein	1330
	/product="elongation factor Ts"
	/calculated_mol_wt=35884
Region	1327
	/region_name="tsf"
	/note="elongation factor Ts; Provisional; PRK09377"
	/db_xref="CDD: <u>137239</u> "
Region	56225
	/region_name="EF_TS"
	/note="Elongation factor TS; pfam00889"
	/db_xref="CDD: <u>109927</u> "
Region	<294327
	/region_name="EF_TS"
	/note="Elongation factor TS; pfam00889"
	/db_xref="CDD:109927"
CDS	1330
	/gene="tsf"
	/locus_tag="BF4010"
	/coded_by="complement(NC_006347.1:45799844580976)"
	/note="EF-Ts; functions during elongation stage of protein
	translation; forms a dimer; associates with EF-Tu-GDP
	complex and promotes exchange of GDP to GTP resulting in
	regeneration of the active form of EF-Tu"
	/transl_table=11
	/db_xref="GeneID: <u>3085091</u> "

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 4705
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4705) 10 RJ18_01_1401.d\SSP (4705) 10_RJ18_01_1401.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Bubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:38:38 GMT
Protein hits	: gi 53715262 malate dehydrogenase [Bacteroides fragilis YCH46]
	g1 224536272 hypothetical protein BACCELL_01139 [Bacteroides cellulosilyticus DSM 14838]
	gi 160890687 hypothetical protein BACUNI_03132 [Bacteroides uniformis ATCC 8492]
	gi 150002856 malate dehydrogenase [Bacteroides vulgatus ATCC 8482]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

		Significanc	e threshold p	< 0.05	Max. n	umber	of hits	AUTO]	
		Standard so	coring @ Mu	dPIT scoring	C Ions sc	ore or	expect	cut-off 0		Show sub-sets 0
		Show pop-	ups @ Suppr	ess pop-ups	Sort un	assign	ed Dec	creasing Se	core	Require bold red
Sele	ct All	Select Nor	ne Sea	arch Selected	□ Err	or tole	rant			
	gi 53		Mass: 32945	Score:			match	ed: 4	emPAI	: 0.21
				eroides frag in error to						
1	CHECK	co inciude	e unis nic .	in error co.	rerant se	aren				
	Query	Observed	Mr (expt)	Mr (calc)	- Delta	Miss	Score	Expect	Rank	Peptide
		621.2850	1240.5554	1240.7027	-0.1472	0	41	2.2	1	R.EELIGVNAGIVK.S
1	175	853,8230	1705.6314	1705.8920	-0.2606	0	56	0.054	1	K.LNEVVASTMVGGATLTK.L + Oxidation (M)
	178	862.6630	2584.9672	2585.3121	-0.3449	0	21	2.9e+02	2	K.YSPNAIIVVISNPMDTMTYLALK.S + 2 Oxidation (M
2		906.0490	2715.1252	2715.4020	-0.2769	0	41	1.2	1	K.LLGTSAWYAPGAAGAYVVESIIHNQK.K
	gi 224	e dehydroge 1536272 hetical pro	Mass: 3301					hed: 4 lyticus		J: 0.21 4838)
	gi 224 hypotl Check	4536272 hetical pro to include Observed 621.2850	Mass: 3301 otein BACCE	6 Score:	acteroide	s cell arch Miss 0 0	Score 41 56	lyticus	DSM 1 Rank 1 1	4838] Peptide R.EELIGVNAGIVK.T K.LNEVVASTMVGGATLTK.L + Oxidation (M)
	gi 224 hypotl Check Query 121 175	4536272 hetical pro to include Observed 621.2850 853.8230 862.6630	Mass: 3301 otein BACCE e this hit Mr(expt) 1240.5554 1705.6314	6 Score: LL_01139 [B: in error to Mr(calc) 1240.7027 1705.8920	acteroide lerant se Delta -0.1472 -0.2606	s cell arch Miss 0 0	Score 41 56	Expect 2.2 0.054	DSM 1 Rank 1 2	4838] Peptide R.EELIGVNAGIVK.T
E	gi 224 hypotl Check Query 121 175 178 248 gi 16	1536272 hetical protection of the second sec	Mass: 3301 otein BACCE e this hit Mr(expt) 1240.5554 1705.6314 2584.9672 2715.1252 Mass: 3305	6 Score: LL_01139 [B; in error to Mr(calc) 1240.7027 1705.8920 2585.3121 2715.4020 1 Score:	acteroide lerant se Delta -0.1472 -0.2606 -0.3449 -0.2769	s cell arch Miss 0 0 0 0	Score 41 56 21 41 s matc	Expect 2.2 0.054 2.9e+02 1.2 	DSM 1 Rank 1 2 1 emPA	4838] Peptide R.EELIGVNAGIVK.T K.LNEVVASTRVGGATLTK.L + Oxidation (M) K.YSPNAILVVISNPMDTMTYLALK.S + 2 Oxidation (M
г	gi 224 hypotl Check Query 121 175 178 248 gi 161 hypotl	4536272 hetical pro- to include Observed 621.2850 853.8230 862.6630 906.0490 0890687 hetical pro-	Mass: 3301 otein BACCE e this hit Mr (expt) 1240.5554 1705.6314 2584.9672 2715.1252 Mass: 3305 otein BACUN	6 Score: LL_01139 (B; in error to Mr(calc) 1240.7027 1705.8920 2585.3121 2715.4020 1 Score: I_03132 [Bas	acteroide lerant se Delta -0.1472 -0.2606 -0.3449 -0.2769 159 Q cteroides	s cell arch Miss 0 0 0 0 0 0 ueries unifo	Score 41 56 21 41 s matc	Expect 2.2 0.054 2.9e+02 1.2 	DSM 1 Rank 1 2 1 emPA	4838] Peptide R.EELIGVNAGIVK.T K.LNEVVASTMVGGATL/TK.L + Oxidation (M) K.YSPNAILVVISNPMDTMTYLALK,S + 2 Oxidation (M K.LLGTSAWYAPGAAGAYVVESIIHNQK.K
г	gi 224 hypotl Check Query 121 175 178 248 gi 161 hypotl	4536272 hetical pro- to include Observed 621.2850 853.8230 862.6630 906.0490 0890687 hetical pro-	Mass: 3301 otein BACCE e this hit Mr (expt) 1240.5554 1705.6314 2584.9672 2715.1252 Mass: 3305 otein BACUN	6 Score: LL_01139 [B; in error to Mr(calc) 1240.7027 1705.8920 2585.3121 2715.4020 1 Score:	acteroide lerant se Delta -0.1472 -0.2606 -0.3449 -0.2769 159 Q cteroides	s cell arch Miss 0 0 0 0 0 0 ueries unifo	Score 41 56 21 41 s matc	Expect 2.2 0.054 2.9e+02 1.2 	DSM 1 Rank 1 2 1 emPA	4838] Peptide R.EELIGVNAGIVK.T K.LNEVVASTMVGGATL/TK.L + Oxidation (M) K.YSPNAILVVISNPMDTMTYLALK.S + 2 Oxidation (M K.LLGTSAWYAPGAAGAYVVESIIHNQK.K
г	gi 224 hypotl Check <u>Query</u> 121 175 178 248 gi 161 hypotl Check	4536272 hetical pro- to include Observed 621.2850 853.8230 862.6630 906.0490 0890687 hetical pro-	Mass: 3301 otein BACCE e this hit Mr (expt) 1240.5554 1705.6314 2584.9672 2715.1252 Mass: 3305 otein BACUN	6 Score: LL_01139 (B; in error to Mr(calc) 1240.7027 1705.8920 2585.3121 2715.4020 1 Score: I_03132 [Bas	acteroide lerant se Delta -0.1472 -0.2606 -0.3449 -0.2769 159 Q cteroides lerant se	s cell arch Miss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Score 41 56 21 41 s matc	Expect 2.2 0.054 2.9e+02 1.2 	DSM 1 Rank 1 2 1 emPA 22]	4838] Peptide R.EELIGVNAGIVK.T K.LNEVVASTMVGGATLTK.L + Oxidation (M) K.YSPNAILVVISNPMDTMTYLALK.S + 2 Oxidation (M K.LLGTSAWYAPGAAGAYVVESIIHNOK.K JI: 0.21
г	gi 224 hypotl Check <u>Query</u> 121 175 178 248 gi 161 hypotl Check	4536272 hetical prot to include 621.2850 853.8230 862.6630 906.0490 0890687 hetical prot to include	Mass: 3301 otein BACCE e this hit Mr (expt) 1240.554 2584.9672 2715.1252 Mass: 3305 otein BACUN e this hit Mr (expt)	6 Score: LL_01139 (B. in error to 1240.7027 1705.8920 2585.3121 2715.4020 1 Score: I_03132 (Basin error to	acteroide lerant se Delta -0.1472 -0.2606 -0.3449 -0.2769 159 Q cteroides lerant se	s cell arch Miss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Score 41 56 21 41 s matc	lyticus Expect 2.2 0.054 2.9e+02 1.2 hed: 4 ATCC 845	DSM 1 Rank 1 2 1 emPA 22]	4838] Peptide R.EELIGVNAGIVK.T K.LNEVVASTMVGGATLTK.L + Oxidation (M) K.YSPNAILVVISNPMDTMTYLALK.S + 2 Oxidation (M) K.LLGTSAWYAPGAAGAYVVESIIHNQK.K JI: 0.21
г	gi 224 hypot] Check Query 121 175 178 248 gi 164 hypot] Check Query	4536272 hetical proto include 621.2850 853.8230 862.6630 906.0490 0890687 hetical proto include Observed	Mass: 3301 otein BACCE e this hit Mr (expt) 1240.554 2584.9672 2715.1252 Mass: 3305 otein BACUN e this hit Mr (expt)	6 Score: LL_01139 (Bi in error to Mr(calc) 1240.7027 1705.8920 2585.3121 2715.4020 1 Score: I_03132 (Ba in error to Mr(calc)	acteroide lerant se Delta -0.1472 -0.2606 -0.3449 -0.2769 159 Q ccteroides lerant se Delta	s cell arch Miss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Score 41 56 21 41 s matc ormis Score	lyticus Expect 2.2 0.0540 2.9e402 1.2 hed: 4 ATCC 845 Expect	DSM 1 Rank 1 2 1 emPA 22] Rank	4838] Peptide R.EELIGVNAGIVK.T K.LNEVVASTKYGGATLTK.L + Oxidation (M) K.YSPNALIVVISNPMDTMTYLALK.S + 2 Oxidation (M K.LLGTSAWYAPGAAGAYVVESIIHNQK.K J: 0.21 Peptide
г	gi 22 hypotl Check Query 121 175 178 248 di 16 hypotl Check Query 121	4536272 hetical prot to include 621,2850 853,8230 862,6630 906,0490 00890687 hetical pro- to include 0bserved 621,2850 853,8230	Mass: 3301 otein BACCE e this hit 1240.5554 1705.6314 2584.9672 2715.1252 Mass: 3305 otein BACUN e this hit Mr(expt) 1240.5554	6 Score: LL_01139 [B. in error to 1240.7027 1705.8920 2585.3121 2715.4020 1 Score: I_03132 [Ba in error to Mr(calc) 1240.7027	acteroide lerant se Delta -0.1472 -0.2606 -0.3449 -0.2769 159 Q cteroides lerant se Delta -0.1472	s cell arch Miss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Score 41 56 21 41 s matc ormis Score 41	lyticus Expect 2.2 0.054 2.9e+02 1.2 hed: 4 ATCC 845 Expect 2.2	DSM 1 Rank 1 2 1 emPA 22] Rank 1	4838] Peptide R. BELIGVNAGIVK.T K. LNEVVASTMYGGATLTK.L + Oxidation (M) K. YSPNAILVVISNPMDTMTYLALK.S + 2 Oxidation (M) K. LLGTSAWYAPGAAGAYVVESIIHNOK.K I: 0.21 Peptide R. EELIGVNAGIVK.S
•	gi 222 hypotl Check Query 121 175 178 248 gi 169 hypotl Check Query 121 175	4536272 hetical prot to include 621.2850 853.8230 862.6630 906.0490 0890687 hetical prot to include 621.2850 0890687 hetical prot to include 621.2850 853.8230 862.6630	Mass: 3301 otein BACCE e this hit 1240.5554 1705.6314 2584.9672 2715.1252 Mass: 3305 otein BACUN e this hit Mr(expt) 1240.5554 1705.6314	6 Score: LL_01139 (Bi in error to 1240.7027 1705.8920 2585.3121 2715.4020 1 Score: I_03132 (Ba in error to Nr(calc) 1240.7027 1705.8920 2585.3121	acteroide lerant se Delta -0.1472 -0.2606 -0.3449 -0.2769 159 Q cteroides lerant se Delta -0.1472 -0.2606	s cell arch Miss 0 0 0 0 0 0 0 ueries unifo arch Miss 0 0 0 0	Score 41 56 21 41 s matc ormis Score 41 56	lyticus Expect 2.2 0.054 2.9e+02 1.2 hed: 4 ATCC 845 Expect 2.2 0.054	DSM 1 Rank 1 2 1 emPA 22] Rank 1 1	4838] Peptide R. EELIGVNAGIVK.T K. LNEVVASTMVGGATLTK.L + Oxidation (M) K. YSPNAILVVISNPMDTMTYLALK.S + 2 Oxidation (M) K. LLGTSAWYAPGAAGAYVVESIIHNQK.K I: 0.21 Peptide R. EELIGVNAGIVK.S K. LNEVVASTMVGGATLTK.L + Oxidation (M)

Protein View

Match to: gi|53715262 Score: 159
malate dehydrogenase [Bacteroides fragilis YCH46]
Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4705) 10_RJ18_01_1401.d\SSP (4705) 10_RJ18_01_1401.mgf
Nominal mass (M_r): 32945; Calculated pI value: 5.14
NCBI BLAST search of gi|53715262 against nr
Unformatted sequence string for pasting into other applications

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gi 60683199</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 265567153</u> from <u>Bacteroides sp. 2 16</u> <u>gi 73920985</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 73920986</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 52218127</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 265767127</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 263252421</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 263252421</u> from <u>Bacteroides sp. 3 2 5</u> <u>gi 263252421</u> from <u>Bacteroides sp. 2 16</u>

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 24%

Matched peptides shown in Bold Red

- 1 MSKVTVVGAG NVGATCANVL AFNEVADEVV MLDVKEGVSE GKAMDMMQTA 51 QLLGFDTTIV GCTNDYAQTA NSDVVVITSG IPRKPGMTRE ELIGVNAGIV 101 KSVAENLLKY SPNAIIVVIS NPMDTMTYLA LKSLGLPKNR VIGMGGALDS 151 SSFKYFLSQA LGCNANEVEG MVIGGHGDTT MIPLARLATY KQQPVSTLS 201 EEKLMEVVAS TMVGGATLTK LLGTSAWYAP GAAGAYVVES IIHNQKKMVP 251 CSVMLEGEYG ESDLCIGVPV ILGKNGIEKI VELELNADEK AKFAASAAAV 301 HKTNAALKEV GAL
- Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

Start 90 110 204 221		End 101 132 220 246	Observed 621.2850 862.6630 853.8230 906.0490	Mr (expt) 1240.5554 2584.9672 1705.6314 2715.1252	Mr(calc) 1240.7027 2585.3121 1705.8920 2715.4020	Delta -0.1472 -0.3449 -0.2606 -0.2769	0 0	Sequence R.EELIGVNAGIVK.S (<u>Ions score 41</u>) K.YSPKAIIVVISNPMDIMTYLALK.S 2 Oxidation (M) (<u>Ions score 21</u>) K.LNEVVASIMVGGATLIK.L Oxidation (M) (<u>Ions score 56</u>) K.LLGISAWYAFGAAGAYVVESIIHNOK.K (<u>Ions score 41</u>)
Error (Da) 2.0- 5.0-		•			·····	Error (ppm)	-100	······································
RMS erro	1	128 ppm	1500	2000	2500 Mas	s (Da) RMS	-150	1500 2000 2500 8 ppm Mass (Da)

YP_101254 313 aa linear malate dehydrogenase [Bacteroides fragilis YCH46]. YP_101254 VP_101254.1 GI:53715262 Project:<u>13067</u> REFSEQ: accession <u>NC_006347.1</u> YP_101254 313 aa linear BCT 26-APR-2009 LOCUS DEFINITION ACCESSION VERSION DBLINK DBSOURCE KEYWORDS . Bacteroides fragilis YCH46 SOURCE Bacteroides fragilis YCH46 Bacteroides fragilis YCH46 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 313) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15465707 2 (residues 1 to 313) ORGANTSM REFERENCE AUTHORS TITLE JOURNAL PUBMED (residues 1 to 313) REFERENCE 2 (Festures 1 to 313) NCBI Genome Project Direct Submission Submitted (01-0CT-2004) National Center for Biotechnology CONSRTM JOURNAL Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 313) Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. Direct Submission REFERENCE AUTHORS TITLE Direct Submission Submitted (20-APF-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan PROVISIONAL <u>REFERO</u>: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD50720</u>. Method: conceptual translation. Location/Qualifiers JOURNAL COMMENT FEATURES source 1..313 /organism="Bacteroides fragilis YCH46"

	/strain="YCH46"
	/db xref="taxon: <u>295405</u> "
Protein	1313
	/product="malate dehydrogenase"
	/calculated_mol_wt=32545
Region	20286
	/region_name="LDH-like_MDH"
	/note="L-lactate dehydrogenase-like malate dehydrogenase
	proteins; cd01339"
	/db_xref="CDD: <u>133424</u> "
Site	order (22, 3738, 41, 4445, 4748, 52, 5456, 151152, 154,
	156,221,227229,232233,236)
	/site_type="other"
	/note="dimer interface"
	/db_xref="CDD: <u>133424</u> "
Site	order (3334,7881,99,119,121,144,148,176)
	/site_type="other"
	/note="NAD(P) binding site"
-	/db_xref="CDD: <u>133424</u> " order(54,56,162,167,169,171,189,191193,243,245248,274,
Site	
	283) /site type="other"
	/site_vpte="other" /note="tetramer (dimer of dimers) interface"
	/db ref="CDD:133424"
Site	order (89, 121, 152, 176, 215, 226)
BILE	/sit type=""
	/note="substrate binding site"
	/db xref="CDD:133424"
CDS	1313
000	/locus tag="BF3978"
	/coded by="complement(NC_006347.1:45461904547131)"
	/note="similar to gp:AE016942_184 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 92 in 313 aa,
	BLASTP E(): e-163"
	/transl table=11
	/db xref="GeneID: 3085059"

(MATRIX) SCIENCE/ Mascot Search Results

(Science) Mascot Search Results
User : Lakshmy Manickan Email : lakshmy.manickan@unn.ac.uk Search title MS data file : Dr.Data/Lakshmy/PROTEOMTCS 3- 151208/SSP (4804) 100_RE5_01_1707.d\SSP (4804) 100_RE5_01_1707.mgf Database : NCBInr 20100102 (10272453 sequences; 3505279183 residues) Taxonomy : Bacteria (Bubacteria) (5590016 sequences) imestamp : 6 Jan 2010 at 13:39:46 GMT Protein hits : dj223043066 pyridoxine biosynthesis protein [Staphylococcus capitis SK14] gi1228475242 pyridoxine biosynthesis protein [Staphylococcus aureus subsp. aureus Mu50] gi153715262 malate dehydrogenase [Bacteroides fragilis YCH46] gi1264755305 hypothetical protein BACSTE_03693 [Bacteroides stercoris ATCC 43183] gi126556272 hypothetical protein BACSTE_03693 [Bacteroides cellulosilyticus DSM 14838] gi12699687 hypothetical protein BACSTE_03693 [Bacteroides uniformis ATCC 43183] gi12699687 hypothetical protein BACSTE_03693 [Bacteroides uniformis ATCC 43183] gi126996787 hypothetical protein BACSTE_03693 [Bacteroides uniformis ATCC 43183] gi126996787 hypothetical protein DACUNI_03132 [Bacteroides uniformis ATCC 4329] gi1269947252 hypothetical protein PEMUL_01185 [Parvimonas micra ATCC 43270] gi1239517197 pyridoxine biosynthesis protein [Kosmotoga olearia TEF 19.5.1] gi183592546 malate dehydrogenase [Rhodospirillum rubrum ATCC 11170]
Probability Based Mowse Score
lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology ($p<0.05$). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.
5 35 30 30 30 30 30 30 30 30 30 30 30 30 30
Peptide Summary Report
Format As Peptide Summary
Significance threshold p< 0.05 Max. number of hits AUTO
Standard scoring MudPIT scoring Ions score or expect cut-off Show sub-sets
Show pop-ups © Suppress pop-ups © Sort unassigned Decreasing Score 🔄 Require bold red
Select All Select None Search Selected Error tolerant
1. <u>gi[223043068</u> Mass: 32030 Score: 244 Queries matched: 5 emPAI: 0.48 pyridoxine biosynthesis protein [Staphylococcus capitis SK14] Check to include this hit in error tolerant search
Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
✓ 155 693.7620 1385.5094 1385.7150 -0.2056 0 55 0.083 1 K.GLDINQISLEER.M ✓ 169 773.3010 1544.5874 1544.7868 -0.1994 0 83 0.00013 1 K.IAEEAGAVAVMALER.V + Oxidation (M)
202 650.5870 1948.7392 1948.9894 -0.2503 0 (21) 1.4e+02 2 K.AIVQATTHYQDYELIGK.L 7 203 975.4180 1948.8214 1948.9894 -0.1680 0 42 1.4 1 K.AIVQATTHYQDYELIGK.L
Proteins matching the same set of peptides: gi[239535916 Mass: 31970 Score: 244 Queries matched: 5 pyridoxine biosynthesis protein [Staphylococcus warneri L37603] gi[242372735 Mass: 32072 Score: 244 Queries matched: 5 pyridoxine (vitamin B6) biosynthesis protein [Staphylococcus epidermidis M23864:W1] gi[27469180 Mass: 32048 Score: 242 Queries matched: 5 pyridoxine biosynthesis protein [Staphylococcus epidermidis ATCC 12228] gi[251809935 Mass: 32038 Score: 242 Queries matched: 5 pyridoxine (vitamin B6) biosynthesis protein [Staphylococcus epidermidis BCM-HMP0060]
 gi 228475242 Mass: 32014 Score: 215 Queries matched: 5 emPAI: 0.35 pyridoxine biosynthesis protein [Staphylococcus hominis SK119]
Check to include this hit in error tolerant search
Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
155 693.7620 1385.5094 1385.7514 -0.2420 1 55 0.083 1 K.GLDINKISLEER.M 169 773.3010 1544.5874 1544.7868 -0.1994 0 83 0.00013 1 R.IAEEAGAVAVMALER.V + Oxidation (M)
179 830.2580 1658.5014 1658.7531 -0.2517 0 35 5.4 2 R.ITVMNDDEIMTYAK.E + Oxidation (M) 202 650.5870 1948.7392 1948.9894 -0.2503 0 (21) 1.4e+02 2 K.AIVQATTHYQDYELIGK.L
202 650.5870 1948.7392 1948.9894 -0.2503 0 (21) 1.48402 2 K.HIVQATHRQDIELIGK.L 203 975.4180 1948.8214 1948.9894 -0.1680 0 42 1.4 1 K.AIVQATHYQDYELIGK.L *

```
gi 15923509 Mass: 32088 Score: 202 Oueries matched: 3 emPAI: 0.34
3.
               pyridoxal biosynthesis lyase PdxS [Staphylococcus aureus subsp. aureus Mu50]
          ☐ Check to include this hit in error tolerant search

        Ouery
        Observed
        Mr(expt)
        Mr(calc)
        Delta Miss
        Score
        Expect Rank
        Peptide

        155
        693.7620
        1385.5094
        1385.7150
        -0.2056
        0
        55
        -0.083
        1
        K.GLDINQLSLEER.M

        169
        773.3010
        1544.5874
        1544.7868
        -0.1994
        0
        83
        0.00013
        1
        R.IAREARAVAWALER.V + Oxidation (M)

        179
        630.2560
        1658.5514
        1658.7532
        -0.2517
        0
        64
        0.0066
        1
        R.ITWINDELIMITRAK.D + 2 Oxidation (M)

                Proteins matching the same set of peptides:
                 pyridoxine biosynthesis protein [Staphylococcus aureus RF122]
        gi 53715262 Mass: 32945 Score: 171 Queries matched: 5 emPAI: 0.21
malate dehydrogenase [Bacteroides fragilis YCH46]
 4
           Check to include this hit in error tolerant search

        Ouer
        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss Score
        Expect Rank
        Peptide

        136
        621.2730
        1240.5314
        1240.7027
        -0.1712
        0
        33
        15
        1
        R.EELIGVNAGUVK.S

        141
        636.733
        1271.4514
        1271.6609
        -0.2094
        0
        78
        0.004
        1
        K.IVELEUNADEK.A

        247
        862.6770
        2585.0092
        2585.3121
        -0.3029
        0
        21
        1.2e+02
        1
        K.YSPNAITVYJSNMDTMTYJALK.S + 2 0xidation (M)

        258
        992.4190
        2974.4752
        2974.5533
        -0.0781
        1
        40
        1.6
        1
        K.GOPVSTLLSEEKLNEVVASTMVGGATLTK.L + 0xidation (M)

        251
        992.4990
        2974.4752
        2974.553
        -0.0781
        1
        (17)
        3.6e+02
        2
        K.GOPVSTLLSEEKLNEVVASTMVGGATLTK.L + 0xidation (M)

                                                      Mass: 33007
 5. gi|167765305
                                                                                             Score: 130 Queries matched: 3 emPAI: 0.10
                 hypothetical protein BACSTE_03693 [Bacteroides stercoris ATCC 43183]
           ☐ Check to include this hit in error tolerant search

        Query
        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss
        Score
        Expect Rank
        Peptide

        136
        621.2730
        1240.5314
        1240.7027
        -0.1712
        0
        33
        15
        1
        R.EELIGVNAGIVK.S

        141
        636.7330
        1271.4514
        1271.6609
        -0.2094
        0
        78
        0.0004
        1
        K.IVELELNADEK.A

        247
        862.6770
        2585.0092
        2585.3121
        -0.3029
        0
        20
        1.6e+02
        3
        K.YSPNAILVVISNPMDTMTYLSLK.S + Oxidation (M)

                 Proteins matching the same set of peptides:

<u>gi|218128506</u> Mass: 32901 Score: 130 Queries matched: 3

hypothetical protein BACEGG_00076 [Bacteroides eggerthii DSM 20697]
  6.
                 gi 224536272 Mass: 33016 Score: 93
                                                                                                                             Queries matched: 4 emPAI: 0.10
                  hypothetical protein BACCELL_01139 [Bacteroides cellulosilyticus DSM 14838]
           Check to include this hit in error tolerant search
                                                                                                                        Delta Miss Score Expect Rank Peptide
                 Query Observed Mr(expt) Mr(calc)

        Usery conserved
        ar(expt)
        ar(expt)
        ar(expt)
        ar(expt)
        ar(expt)
        beta ALSS score
        Expect Kank
        Peptde

        136
        621.2730
        1240.5314
        1240.7027
        -0.1712
        0
        33
        15
        1
        R.EELIGVNAGIVK.T

        247
        866.6770
        2585.0092
        2585.3121
        -0.3029
        0
        21
        1.2e+02
        1
        K.YSPNAILVVISNPMDTMTYLALK.S + 2 Oxidation (M)

        250
        992.4190
        2974.2352
        2974.5533
        -0.3181
        40
        1.6
        1
        K.GQPVSTLLSEEKLNEVVASTMVGGATLTK.L + Oxidation (M)

        251
        992.4990
        2974.4752
        2974.5533
        -0.0781
        1
        (17)
        3.6e+02
        2
        K.GQPVSTLLSEEKLNEVVASTMVGGATLTK.L + Oxidation (M)

  7. gi 160890687 Mass: 33051 Score: 92 Queries matched: 4 emPAI: 0.10
                  hypothetical protein BACUNI_03132 [Bacteroides uniformis ATCC 8492]
            □ Check to include this hit in error tolerant search

        Very
        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss Score
        Expect Rank
        Peptide

        136
        621.2730
        1240.5314
        1240.7027
        -0.1712
        0
        33
        15
        1
        R.EELIGVNAGIVK.S

        247
        862.6770
        2585.3121
        -0.3029
        0
        20
        1.6e+02
        3
        K.YSPNALUVISNPMDTMTYLSLK.S + Oxidation (M)

        250
        992.4190
        2974.2352
        2974.553
        -0.3181
        40
        1.6
        1
        K.OGOPVSTLISEEKLNEVVASTMVGGATLTK.L + Oxidation (M)

        251
        992.4990
        2974.4752
        2974.5533
        -0.0781
        1
        (17)
        3.6e+02
        2
        K.GOPVSTLISEEKLNEVVASTMVGGATLTK.L + Oxidation (M)

                 Query Observed Mr(expt) Mr(calc)

    gi 229542250 Score: 83 Queries matched: 1
pyridoxine biosynthesis protein [Bacillus coagulans 36D1]

           ☐ Check to include this hit in error tolerant search

        Query
        Observed
        Mr(capt)
        Mr(calc)
        Delta Miss Score
        Expect Rank
        Peptide

        169
        773.3010
        1544.5874
        1544.7868
        -0.1994
        0
        83
        0.00013
        1
        K.LAEEAGAVAVMALER.V + Oxidation (M)

   9. gi|23100142 Score: 82 Queries matched: 1
                   pyridoxine biosynthesis protein [Oceanobacillus iheyensis HTE831]
             Check to include this hit in error tolerant search

        Query
        Observed
        Mr(expt)
        Mr(calc)
        Delta Miss Score
        Expect Rank
        Peptide

        169
        773.3010
        1544.5874
        1543.8028
        0.7847
        0
        82
        0.00013
        3
        K.IAEQAGAVAVMALER.V + Oxidation (M)

  10. gi 160947252 Score: 82
                                                                                              Oueries matched: 1
                  hypothetical protein PEPMIC_01185 [Parvimonas micra ATCC 33270]
             ☐ Check to include this hit in error tolerant search

        Query
        Observed
        Mr(expt)
        Mr(calc)
        Delta Miss Score
        Expect Rank
        Peptide

        169
        773.3010
        1544.5874
        1543.8392
        0.7483
        1
        82
        0.00013
        3
        K.IAEKAGAVAVMALER.I + Oxidation (M)

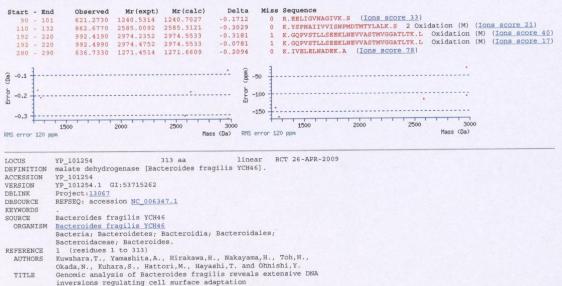
   11. gi 239617197 Score: 80 Queries matched: 1
```

Protein View

Match to: gi|53715262 Score: 171 malate dehydrogenase [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (4804) 100_RE5_01_1707.d\SSP (4804) 100_RE5_01_1707.mgf

Nominal mass (M_r): 32945; Calculated pI value: 5.14 NCBI BLAST search of gi 53715262 against nr Unformatted sequence string for pasting into other applications

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gil63687153</u> from <u>Bacteroides gp. 3 2 5</u> <u>gil255567749</u> from <u>Bacteroides gp. 2 1 16</u> <u>gil73320985</u> from <u>Bacteroides fragilis NCT 9343</u> <u>gil7320986</u> from <u>Bacteroides fragilis NCT 9343</u> <u>gil7320986</u> from <u>Bacteroides fragilis NCT 9343</u> <u>gil251218127</u> from <u>Bacteroides fragilis NCT 9343</u> <u>gil251943984</u> from <u>Bacteroides gp. 3 2 5</u> <u>gil251943984</u> from <u>Bacteroides gp. 3 2 5</u> <u>gil263252421</u> from <u>Bacteroides gp. 2 1 16</u>


Pixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 23%

Matched peptides shown in Bold Red

1 MSKVTVVGAG NVGATCANVL AFNEVADEVV MLDVKEGVSE GKAMDMMOTA 51 OLLGFDTTIV GCINDVAQTA NSDVVVITSG IPRKPGMTRE ELIGVMAGIV 101 %SVAENLLKY SPNAIIVVIS NPMDTMTYLA LKSLGLPKRM VUGMGGALDS 51 SRFKYFLSQA LGCNANEVEG MVIGGHGDTY MIPLARLATY KGQPVSTLLS 201 BEKLNEVVAS TMVGGATLTK LLGTSAWYAP GAAGAYVVSS IINNQKKMVP 251 CSVMLGECYG ESDLCIGYPV ILGKNGIEKI VELELNADEK AKFAASAAAV 301 HKTNAALKEV GAL

Show predicted peptides also

Sort Peptides By @ Residue Number O Increasing Mass O Decreasing Mass

Okada,K., Kumara,S., mattorr,M., mayasirr, and omisarr, a Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15465707 2 (residues 1 to 313) NCBI Genome Project Direct Submitssion Submitted (01-OCT-2004) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 313) Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. Direct Submitssion Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan PROVISIONAL REFSEQ: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD50720</u>. Method: conceptual translation. Location/Qualifiers 1..313 JOURNAL PUBMED REFERENCE CONSRTM TITLE JOURNAL REFERENCE AUTHORS TITLE JOURNAL COMMENT FEATURES location; gatifies /organism="Bacteroides fragilis YCH46" /strain="XCH46" /db_xref="taxon:<u>295405</u>" source

Protein	1313 /product="malate dehydrogenase"	
	/calculated mol wt=32545	
legion	20.286	
CE. D. R. K. L	/region name="LDH-like MDH"	
	/note="L-lactate dehydrogenase-like malate dehydrogenase	
	proteins; cd01339"	
	/db_xref="CDD: <u>133424</u> "	
lite	order(22,3738,41,4445,4748,52,5456,151152,154,	
	156,221,227.229,232.233,236)	
	/site_type≈"other" /note="dimer interface"	
	/db.gref="CDD:l33424"	
lite	/ um_xteta = CbD_x53tet order (3334,7881,99,119,121,144,148,176)	
<u>tre</u>	/site type="other"	
	/note="NAD(P) binding site"	
	/db xref="CDD:133424"	
lite	order (54,56,162,167,169,171,189,191193,243,245248,274,	
	283)	
	/site_type="other"	
	/note="tetramer (dimer of dimers) interface"	
	/db_xref="CDD:133424"	
lite	order(89,121,152,176,215,226) /site type="other"	
	/ste_vpp=-other /note="substrate binding site"	
	/db == substrate binding site	
DS	1313	
	/locus tag="BF3978"	
	/coded_by="complement(NC_006347.1:45461904547131)"	
	/note="similar to gp:AE016942_184 [Bacteroides	
	thetaiotaomicron VPI-5482], percent identity 92 in 313 aa,	
	BLASTP E(): e-163"	
	/transl_table=11	
	/db_xref="GeneID:3085059"	

(MATRIX) SCIENCE Mascot Search Results

User	: LAKSHMY MANICKAN
Email	: lakshmy.manickan@unn.ac.uk
Search title	: 5106 bf
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (5106) 10 RI5 01 1306.d\SSP (5106) 10 RI5 01 1306.mgf
Database	: NCBInr 20090528 (8915381 sequences; 3049521622 residues)
Taxonomy	: Bacteria (Bubacteria) (4801653 sequences)
Timestamp	: 6 Jun 2009 at 11:30:52 GMT
Protein hits	: gi 126496 RecName: Full=Lysostaphin; AltName: Full=Glycyl-glycine endopeptidase; Flags: Precursor
	gi 29348144 50S ribosomal protein L7/L12 [Bacteroides thetaiotaomicron VPI-5482]
	gi 53713908 hypothetical protein BF2616 [Bacteroides fragilis YCH46]
	Televenter albergere brocen proces (passererere realized reals)

Probability Based Mowse Score

lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 56 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

st st b b b b b b b b b b b b b b b b b b b	
Peptide Summary Report	
Format As Peptide Summary	Help
Significance threshold $p < 0.05$ Max. number of hits AUTO	
Standard scoring @ MudPIT scoring C Ions score or expect cut-off	Show sub-sets 0
Show pop-ups @ Suppress pop-ups @ Sort unassigned Decreasing Score	Require bold red □
Select All Select None Search Selected Ferror tolerant	
1. <u>gi 126496</u> Mass: 51656 Score: 142 Queries matched: 3 emPAI: 0 RecName: Full=Lysostaphin; AltName: Full=Glycyl-glycine endopeptidase; Check to include this hit in error tolerant search	
Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank ▶ 104 819.8400 1637.6654 1637.7697 -0.1242 0 57 0.044 1 ▶ 166 1023.3990 2044.7834 2044.9234 -0.1400 0 86 4.2e-05 1 ▶ 167 682.6050 2044.7932 2044.9234 -0.1302 0 (30) 16 1	Peptide K.SESASFTPHTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (N)
Proteins matching the same set of peptides: <u>gi 153047</u> Mass: 42213 Score: 142 Queries matched: 3 lysostaphin (ttg start'codon) <u>gi 3287967</u> Mass: 53058 Score: 142 Queries matched: 3 RecName: Full=Lysostaphin; AltName: Full=Glycyl-glycine endopeptidase;	Flags: Precursor
2. gi 29348144 Mass: 12730 Score: 93 Queries matched: 1 emPAI 50S ribosomal protein L7/L12 [Bacteroides thetaiotaomicron VPI-5482] Check to include this hit in error tolerant search	0.27
Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank	Peptide K.AFAEQLVHLTVK.E
Proteins matching the same set of peptides: <u>gi[53715478</u> Mass: 12688 Score: 93 Queries matched: 1 50S ribosomal protein L7/L12 [Bacteroides fragilis YCH46] <u>gi[110639543</u> Mass: 12652 Score: 93 Queries matched: 1	
50S ribosomal protein L7/L12 [Cytophaga hutchinsonii ATCC 33406] gil42278891 Mass: 12813 Score: 93 Queries matched: 1 50S ribosomal protein L7/L12 [Pedobacter sp. BAL39] gil50003396 Mass: 12704 Score: 93 Queries matched: 1 50S ribosomal protein L7/L12 [Bacteroides vulgatus ATCC 8482] gil50008875 Mass: 12727 Score: 93 Queries matched: 1 50S ribosomal protein L7/L12 [Barbacteroides distasonis ATCC 8503] gil53805949 Mass: 12686 Score: 93 Queries matched: 1 hypothetical protein BACCAC_00194 [Bacteroides caccae ATCC 43185] gil15491722 Mass: 12679 Score: 93 Queries matched: 1 hypothetical protein PARMER_01333 [Parabacteroides merdae ATCC 43184] gil150888407 Mass: 12775 Score: 93 Queries matched: 1	

hypothetical protein BACUNI_00820 [Bacteroides uniformis ATCC 8492] gill39460675 Mass: 12771 Score: 93 Queries matched: 1 hypothetical protein BACCOP_01323 [Bacteroides coprocola DSM 17136] gill3946510 Mass: 12759 Score: 93 Queries matched: 1 hypothetical protein BACINI_01763 [Bacteroides intestinalis DSM 17393] gill39277435 Mass: 12757 Score: 93 Queries matched: 1 hypothetical protein BACPLE_03654 [Bacteroides plebeius DSM 17135] gil224023599 Mass: 12771 Score: 93 Queries matched: 1 hypothetical protein BACCOPRO_00306 [Bacteroides coprophilus DSM 18228] gil224537808 Mass: 12757 Score: 93 Queries matched: 1 hypothetical protein BACCEL_02695 [Bacteroides cellulosilyticus DSM 14838] gil22413422 Mass: 13015 Score: 93 Queries matched: 1 LSU ribosomal protein L12P [Dyadobacter fermentans DSM 18053]

3. <u>gi[53713908</u> Mass: 12967 Score: 60 Queries matched: 3 hypothetical protein BF2616 [Bacteroides fragilis YCH46] Check to include this hit in error tolerant search

	Que	ery	Observed	Mr (expt)	Mr (calc)	Delta	Miss	Score	Expect	Rank	Peptide
F	7 1	120	590.5810	1768.7212	1768.9723	-0.2511	0	33	8.8	1	K.LPKPNLIAAQEYVEGK.I
F	7]	121	885.4150	1768.8154	1768.9723	-0.1568	0	(17)	4.9e+02	1	K.LPKPNLIAAQEYVEGK.I
F	7 2	219	763.3310	2286.9712	2287.0756	-0.1045	1	28	25	1	K.KLAEFASYNDNLEEVFENR.E

Peptide matches not assigned to protein hits: (no details means no match)

(Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	Rank	Peptide
5	88	681.0850	2040.2332	2040.0528	0.1804	1	39	4	1	EVFVSGLREYLGDTAGSLK
1 V	108	559.9450	1676.8132	1676.8958	-0.0827	1	37	4.7	1	DGVVAVVRSHSPDLAR
5	179	1041.9630	2081.9114	2080.9955	0.9159	1	36	5	1	TMREEIDAMEVMGVSVIR + Oxidation (M)
ম	109	843.7830	2528.3272	2528.2693	0.0579	1	30	33	1	IWSAGVAASPLGKMVAEQAGVEADR + Oxidation (M)
2	204	737.6530	2209.9372	2211.0598	-1.1227	0	29	23	1	EHPRPPVMMSTASQMLVER + Oxidation (M)
1	209	742.3440	2224.0102	2225.2063	-1.1961	2	28	32	1	MLLSLPVQQGEGGVNLSRRR + Oxidation (M)
5	205	1105.9790	2209.9434	2210.1306	-0.1872	1	28	30	1	CQIVYNVLKTHIQFGAYR
1 V	243	929.9330	2786.7772	2787.4627	-0.6855	1	26	30	1	HSIPLTAALALGAGAARAAQAPTSTDEAR
5	236	878.4340	2632.2802	2633.3517	-1.0715	1	26	48	1	MDLNLQDKVVIVTGGASGIGGAISMR + 2 Gxidation (M)
14	37	819,1320	818.1247	817.4480	0.6767	1	26	55	1	MGIDKVR
5	202	731.8270	2192.4592	2192.1114	0.3478	0	26	39	1	QLDPSGAVGWPVVAALADGLGAE
V	70	572.2670	1713.7792	1713.8210	-0.0418	0	25	1.6e+02	1	DIIEHPEBQSGGYIK
5	231	834.3320	2499.9742	2499.3261	0.6481	1	25	43	1	LTAEQVLDKTIVLFNYVYENK
V	247	968.7290	2903.1652	2903.5604	-0.3952	2	24	42	1	RARLFQDEASVEDLATILTILLSSDK
4	184	700.9170	2099.7292	2100.1263	-0.3971	1	24	52	1	GGFRHLIVTSGGGVAGILSMR + Oxidation (M)
14	126	608.5840	1822.7302	1821,8508	0.8793	1	24	68	1	FAEGWMARVGYGTAYK + Oxidation (M)
14	163	675.9900	2024.9482	2026.0769	-1.1287	0	24	86	1	GAVINMTGPSVDVNLGALTVV
2	172	688.2020	2061.5842	2062.0272	-0.4431	1	24	61	1	WPGSDYDGLWVVTIRNGK
5	178	694.9630	2081.8672	2081.0800	0.7872	2	24	78	1	GHDLSGRRITVSTCGIVPR
1	235	866.7260	2597.1562	2597.2386 -	-0.0825	2	23	79	1	MIAKDGEGATKLIECTVMNVSGEK + Oxidation (M)
5	73	592.7900	1183.5654	1184.6765	-1.1110	1	23	1.2e+02	1	LKPTGNKVTLD
1	171	688.1910	2061.5512	2062.0259	-0.4747	0	23	70	1	IDVLNNSLIGSTFSYBYR
14	240	914.1200	2739.3382	2739.3717	-0.0335	0	23	88	1	YFIVPEYHILTLTPDSISMEDLK + Oxidation (M)
2	146	647.6210	1939.8412	1940.0599	-0.2287	1	23	le+02	1	LRLLANVLPAMLDQMAR + Oxidation (M)
P	139	945.0180	2832.0322	2831.4424	0.5898	1	23	1.7e+02	1	MEIAALVIVMGMQFAVYAPIYKADR + 2 Oxidation (M)
2	246	937.0270	2808,0592	2807.4449	0.6143	1	23	62	1	TSAITGWEIVGVSPEAEMTSGVIMLSE + Oxidation (M)
~	203	1103.5350	3307.5832	3307.7346	-0.1514	2	22	1.9e+02	1	VLNAKYHEKEAEIIAQAGAPGALTIATNMAGR
2	220	767.3070	2298.8992	2299.1193	-0.2201	1	22	83	1	KVSNEWHGNLTVSGNVTESNK
~	248	978.0340	2931.0802	2930.4670	0.6132	2	22	67	1	LKADCDSPLKVYAHISPYMGGPEIIR
~	218	1130.4240	3388.2502	3387.5509	0.6993	2	22	1.4e+02	1	EQTEVPMVMWMSPGFAASFGVNKDCLQRR + Oxidation (M)
2	227	813.3450	2437.0132	2438.1060	-1.0928	0	22	1e+02	1	GFGFVEMPNDEEGNAAIAALNEK + Oxidation (M)
N	148	976.3900	2926.1482	2926.4519	-0.3038	1	22	1.9e+02	1-	SRDIDEGLALALAAADLTGDDLEAGLDR
2	113	864.0980	2589.2722	2588.3996	0.8726	1	21	2.5e+02	1	LGMGKPLGLGSVAINYELQLTDRE + Oxidation (M)
N	140	632.7910	1895.3512	1894.8447	0.5064	2	21	1.1e+02	1	SADRANDMNGMMRDIAK
2	180	695.6620	2083.9642	2083.9844	-0.0203	1	21	1.5e+02	1	DNIGKMLSFTTENGQGQTK + Oxidation (M)
ম	101	804.1330	2409.3772	2409.3168	0.0603	2	21	2.6e+02	1	LVELVEAALPGARDGWLYPGRK
ম্	154	663.5160	1987.5262	1988.0626	-0.5364	2	21	1.2e+02	I	VRVDYANGVLQVMGPKAR + Oxidation (M)
2	102	809.7900	2426.3482	2425.3428	1.0054	2	21	2.8e+02	1	ANIIAKSGKAVEVAGDIDTVVLDK
2	250	989.7350	2966.1832	2966.5059	-0.3227	2	21	93	1	NSDYVIFVQNKIYSVSLNKSLMSSSK + Oxidation (M)
되.	133	618.7790	1853.3152	1853.8465	-0.5313	0		1.2e+02	1	LESVLDEAEAMANSFGR + Oxidation (M)
ব	196	1081.5960	3241.7662	3240.8632	0.9030	2	21	2.8e+02	1	MTLDKLGSAFLLGIALASLGVPALARGISTLR + Oxidation (M)
2	74	623.6370	1867.8892	1866.9112	0.9780	0		3.3e+02	1	YLNDPSYAGSIIGPTSGR
2	115	874.7990	2621.3752	2621.3418	0.0334	1	21	2.9e+02	1	GMEVAAAGGHNLLMTGPPGAGKTLLAR + 2 Oxidation (M)
4	221	771.7050	2312.0932	2312.0590	0.0341	1		1.7e+02	1	TADLGSCSRQDIVNAYDNSLL
ম	190	704.7750	2111.3032	2111.0371	0.2661	1		1.4e+02	1	FSHFMGAVVLEARGGFSAGR + Oxidation (M)
ঘ	149	656.6840	1967.0302	1966.9935	0.0367	1		1.9e+02	1	MPDGKHWVIGTVIDAQGK + Oxidation (M)
14	194	1075.9480	3224.8222	3224.6032	0.2190	0		2.7e+02	1	MNGLAYSGAVLATAVGGFDPAPMIIMAAALGAR + 3 Oxidation (M)
ঘ	75	624.5210	1870.5412	1870.9398	-0.3986	2		3.3e+02	1	DFGATHEELAGRLGRSR
ঘ	206	1105.2650	3315.7732	3315.5621	0.2111	1		2.8e+02	1	GQGIANIVNGFFGGMAGCAMIGQSMINVKSGGR + Oxidation (M)
ঘ	111	854.3570	1705.5994	1706.8125	-0.1130	1		2.1e+02	1	NARYASSFDVGEHVR
ম .	71	581.2250	1740.6532	1741.7968	-1.1436	0		4.4e+02	1	ILDDYIEMEEELSK + Oxidation (M)
4	197	1082.6650	3244.9732	3245.5746	-0.6014	1	20	2.8e+02	1	VAGVGDAMVMGVDYSMRIWLKPDVMAQYK + Oxidation (M)

Protein View

Match to: gi|53715478 Score: 93 50S ribosomal protein L7/L12 [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (5106) 10_RI5_01_1306.d\SSP (5106) 10_RI5_01_1306.mgf

Nominal mass (M_r) : 12688; Calculated pI value: 4.71 NCBI BLAST search of <u>gi |53715478</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60683451 from Bacteroides fragilis NCTC 9343 gi 25356657 from Bacteroides fragilis 3_1 12 gi 255011634 from Bacteroides fragilis 3_1 12 gi 81313501 from Bacteroides fragilis NCTC 9343 gi 81608231 from Bacteroides fragilis NCTC 9343 gi 81608231 from Bacteroides fragilis YCH46 gi 60494885 from Bacteroides fragilis NCTC 9343 gi 251944829 from Bacteroides sp. 3_2_5 gi 251944829 from Bacteroides sp. 3_2_5 gi 263252840 from Bacteroides sp. 2_16

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 9%

Matched peptides shown in Bold Red

1 MADLKAPABQ LVNLTVKEVN ELATILKEEY GIEPAAAAVA VAAGPAAGAA 51 AAEEKSSFDV VLKSAGAAKL QVVKAVKEAC GLGLKEAKDM VDGAPSVVKE 101 GLAKDEAESL KKTLEEAGAE VELK

Show predicted peptides also

Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass Start - End Observed Mr(expt) Mr(calc) Delta Miss Sequence - 17 666.8460 1331.6774 1331.7449 -0.0674 0 K.AFAEQLVNLTVK.E (Ions score 93) -0.06 (Da) (wdd) -50 Error Error -0.07 -52.5 -0.08-1300 1350 1400 1300 1350 1400 RMS error 50 ppm Mass (Da) RMS error 50 ppm Mass (Da) YP_101470 124 aa linear BCT 26 50S ribosomal protein L7/L12 [Bacteroides fragilis YCH46] LOCUS linear BCT 26-APR-2009 DEFINITION ACCESSION YP_101470 VERSION YP 101470.1 GI:53715478 DBLINK Project: 13067 DBSOURCE REFSEQ: accession NC_006347.1 KEYWORDS Bacteroides fragilis YCH46 SOURCE ORGANISM Bacteroides fragilis YCH46 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroidas, Bacteroidales; Bacteroidaceae; Bacteroidas. 1 (residues 1 to 124) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., REFERENCE AUTHORS Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA TITLE inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) JOURNAL 15466707 2 (residues 1 to 124) NCBI Genome Project Direct Submission PUBMED REFERENCE CONSRTM TITLE Submitted (01-OCT-2004) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 124) Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T. Direct Submission Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1215-12 Kitasato Corpusation Constitute for Life Sciences, JOURNAL REFERENCE AUTHORS TITLE JOURNAL REVIEWED REFSEQ: This record has been curated by NCBI staff. The COMMENT

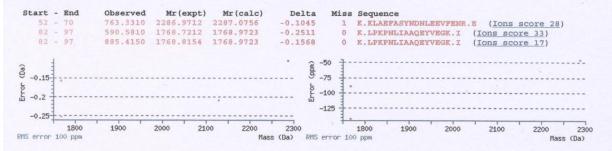
	eference sequence was derived from <u>BAD50936</u> .
	thod: conceptual translation.
FEATURES	Location/Qualifiers
source	1124
	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db_xref="taxon: <u>295405</u> "
Protein	1124
	/product="50S ribosomal protein L7/L12"
	/calculated_mol_wt=12506
Region	2123
	/region_name="Ribosomal_L7_L12"
	/note="Ribosomal protein L7/L12. Ribosomal protein L7/L12
	refers to the large ribosomal subunit proteins L7 and L12,
	which are identical except that L7 is acetylated at the N
	terminus. It is a component of the L7/L12 stalk, which is
	located at the surface of; cd00387"
	/db xref="CDD:100102"
Site	order(2,1517,2021,24,27,42,4546,4850,5657,78,
	8081,83,8586,100101,103,106)
	/site type="other"
	/note="core dimer interface"
	/db xref="CDD:100102"
Site	order(5,8,12,25,30)
and the second sec	/site type="other"
	/note="peripheral dimer interface"
	/db xref="CDD:100102"
Site	order(19,2223,27,30)
DAUG	/site type="other"
	/note="L10 interface"
	/db xref="CDD:100102"
Site	order(6970,7374,77,8485,88)
DICC	/site type="other"
	/note="L11 interface"
	/db xref="CDD:100102"
Site	order(70,74,77,8485,88)
DICE	/site_type="other"
	/note="putative EF-Tu interaction site"
	/db xref="CDD:100102"
Site	order (70, 7374, 77)
SILE	/site_type="other"
	/note="putative EF-G interaction site"
	/db xref="CDD: <u>100102</u> "
CDS	1124
CDS	/gene="rplL"
	/locus tag="BF4193"
	/coded by="complement(NC 006347.1:47908044791178)"
	/note="present in two forms; L12 is normal, while L7 is
	aminoacylated at the N-terminal serine; the only multicopy
	ribosomal protein, 4:1 ratio of L7/L12 per ribosome; two
	L12 dimers bind L10; critically important for translation
	efficiency and fidelity; stimulates GTPase activity of translation factors"
	/transl_table=11 /db wrof="ConoTD.2005275"
	/db_xref="GeneID: <u>3085275</u> "

Protein View

Match to: gi|53713908 Score: 60 hypothetical protein BF2616 [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (5106) 10_RI5_01_1306.d\SSP (5106) 10_RI5_01_1306.mgf

Nominal mass (M_r) : 12967; Calculated pI value: 5.28 NCBI BLAST search of <u>gi[53713908</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60682117 from Bacteroides fragilis NCTC 9343 gi 253567099 from Bacteroides sp. 3 2 5 gi 265764254 from Bacteroides sp. 2 1 16 gi 60493551 from Bacteroides fragilis YCH46 gi 60493551 from Bacteroides fragilis NCTC 9343 gi 251944223 from Bacteroides sp. 3 2 5 gi 263256862 from Bacteroides sp. 2 1 16


Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 31%

Matched peptides shown in Bold Red

1 MDYKKTNAPT NTITRDMMDL CADTGNVYET VAIIGKRANQ ISVEIKNDLS 51 KKLAEPASYN DNLEEVFENR EQIEISRYYE KLPKPNLIAA QEYVEGKIYY 101 RNPAKEKEKL Q

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

LOCUS DEFINITION ACCESSION VERSION DBLINK	YP_099900 . 111 aa linear BCT 26-APR-2009 hypothetical protein BF2616 [Bacteroides fragilis YCH46]. YP_099900 YP_099900.1 GI:53713908 Project:13067
DBSOURCE	REFSEQ: accession NC 006347.1
KEYWORDS	
SOURCE	Bacteroides fragilis YCH46
ORGANISM	and a second sec
	Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides.
REFERENCE	1 (residues 1 to 111)
AUTHORS	Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y.
TITLE	Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation
JOURNAL PUBMED	Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707
REFERENCE	2 (residues 1 to 111)
CONSRTM	NCBI Genome Project
TITLE	Direct Submission
JOURNAL	Submitted (01-OCT-2004) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA
REFERENCE	3 (residues 1 to 111)
AUTHORS	Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T.
TITLE	Direct Submission
JOURNAL	Submitted (20-APR-2004) Kitasato Institute for Life Sciences,
	1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
COMMENT	PROVISIONAL <u>REFSEQ</u> : This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD49366</u> .

Metho	od: conceptual translation.
ATURES	Location/Qualifiers
source	1111
	/organism="Bacteroides fragilis YCH46" /strain="YCH46"
	/db xref="taxon:295405"
Protein	1111
	/product="hypothetical protein"
	/calculated mol wt=12785
CDS	1111
	/locus tag="BF2616"
	/coded by="complement(NC 006347.1:30088163009151)"
	/note="similar to qp:AE016928 87 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 93 in 111 aa,
	BLASTP E(): 3e-55"
	/transl table=11
	/db xref="GeneID:3083721"

(MATRIX) SCIENCE/ Mascot Search Results

And and and and and	
User	: Lakshmy Manickan
Email	lakshmy.manickan@unn.ac.uk
Search title	: SSP 5205
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (5205) 10 RJ7 01 1371.d\SSP (5205) 10 RJ7 01 1371.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy -	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:41:02 GMT
Protein hits	: gi 53712495 hypothetical protein BF1203 [Bacteroides fragilis YCH46]
	gi 255007972 hypothetical protein Bfra3_02458 [Bacteroides fragilis 3_1_12]
	gi 153807766 hypothetical protein BACCAC_02049 [Bacteroides caccae ATCC 43185]
Probability Ba	sed Mowse Score
lons score is -10*	Log(P), where P is the probability that the observed match is a random event.
Individual ions sc	ores > 57 indicate identity or extensive homology (p<0.05).
Protein scores are	derived from ions scores as a non-probabilistic basis for ranking protein hits.
40	
1 35 H ts	
8 30 -	
25 - 20 -	
E 20 -	
15-	
10-	
5 -	
	00 200 300 400
	Probability Based Mowse Score
Peptide Summ	ary Report
Format As	Peptide Summary Help
ç	ignificance threshold $p < 0.05$ Max. number of hits AUTO
	tandard scoring • MudPIT scoring • Ions score or expect cut-off • Show sub-sets •
S	how pop-ups 📀 Suppress pop-ups 🔿 Sort unassigned Decreasing Score 🔄 Require bold red 🗆
Select All	Select None Search Selected
	Select None Search Selected Frror tolerant
1. gi 53712	Mass: 15517 Score: 403 Queries matched: 7 emPAI: 1.69
	ical protein BF1203 [Bacteroides fragilis YCH46]
L Check to) include this hit in error tolerant search
Query	Observed Mr(expt) Mr(calc). Delta Miss Score Expect Rank Peptide
	Observed Mr(expt) Mr(calc), Delta Miss Score Expect Rank Peptide 667.2930 1332.5714 1332.6959 -0.1244 0 49 0.35 1 K.NMLIVETIDAAK.K + Oxidation (M)

 Visit
 <th

2. gi 255007972 Mass: 15498 Score: 352 Queries matched: 6 emPAI: 1.69 hypothetical protein Bfra3_02458 [Bacteroides fragilis 3_1_12]
Check to include this hit in error tolerant search

 Query
 Observed
 Mr (expt)
 Mr (calc)
 Delta Miss
 Score
 Expect Rank
 Peptide

 146
 688.8010
 1375.8874
 1375.8075
 -0.2200
 0
 40
 4.6
 1
 K.TILSISGRPGLYK.L

 159
 733.7710
 1465.5274
 1464.7249
 0.8026
 0
 56
 0.055
 2
 R.QYLAEVLPDFDR.D

 186
 579.8860
 1736.6362
 1735.8529
 0.7832
 1
 37
 3.7
 1
 R.QYLAEVLPDFDRDR.V

 224
 712.9460
 2135.8162
 2136.0772
 -0.2611
 0
 (60)
 0.017
 1
 K.TISLADIAMYTNDSEVPLR.D + Oxidation (M)

 225
 1068.9160
 2135.8174
 2136.0772
 -0.2598
 0
 102
 1.1e-06
 1
 K.TISLADIAMYTNDSEVPLR.D + Oxidation (M)

 248
 874.0220
 2619.0442
 2619.3578
 -0.3136
 1
 119
 2e-08
 1
 K.TISLADIAMYTNDSEVPLR.DYLR.S + Oxidation (M)

3. gi 153807766 Mass: 16006 Score: 77 Queries matched: 2 emPAI: 0.21 hypothetical protein BACCAC_02049 [Bacteroides caccae ATCC 43185]
Check to include this hit in error tolerant search

 Query
 Observed
 Mr (expt)
 Mr (calc)
 Delta Miss
 Score
 Expect Rank
 Peptide

 146
 688.8010
 1375.5874
 1375.8075
 -0.2200
 0
 40
 4.6
 1
 K.TILSISGKPGLYK.L

 186
 579.8860
 1736.6362
 1735.8529
 0.7833
 1
 37
 4.2
 3
 R.EYLAEVLPNFDRDR.V

Peptide matches not assigned to protein hits: (no details means no match)

Protein View

Match to: gi|53712495 Score: 403
hypothetical protein BF1203 [Bacteroides fragilis YCH46]
Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (5205) 10_RJ7_01_1371.d\SSP (5205) 10_RJ7_01_1371.mgf

Nominal mass (M_r) : 15517; Calculated pI value: 5.15 NCBI BLAST search of gi 53712495 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi[25562474 from Bacteroides fragilis NCTC 9343 gi[25562474 from Bacteroides sp. 2_1_16 gi[265762658 from Bacteroides fragilis YCH46 gi[2619212560 from Bacteroides fragilis NCTC 9343 gi[251947250 from Bacteroides sp. 3_2_5 gi[263255266 from Bacteroides sp. 2_1_16

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 44%

Matched peptides shown in Bold Red

1 MLKTILSISG KPGLYKLISQ GKNMLIVETI DAAKKRFPAY GNEKIISLAD 51 IAMYTNDSEV PLRDVLRSIK EKENAAIASI DVKKATSEQL REYLAEVLPD 101 FDRDRVYTND IKKLILWYNI LVSNGITDFG EETAVEAE

Show predicted peptides also

Sort Peptides By @ Residue Number O Increasing Mass O Decreasing Mass

Start	- End	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Sequence
4	- 16	688.8010	1375.5874	1375.8075	-0.2200	0	K.TILSISGKPGLYK.L (Ions score 40)
23	- 34	667.2930	1332.5714	1332.6959	-0.1244	0	K.NMLIVETIDAAK.K Oxidation (M) (Ions score 49)
45	- 63	712.9460	2135.8162	2136.0772	-0.2611	0	K.IISLADIAMYTNDSEVPLR.D Oxidation (M) (Ions score 60)
45	- 63	1068.9160	2135.8174	2136.0772	-0.2598	0	K.IISLADIAMYTNDSEVPLR.D Oxidation (M) (Ions score 102)
45	- 67	874.0220	2619.0442	2619.3578	-0.3136	1	K.IISLADIAMYTNDSEVPLRDVLR.S Oxidation (M) (Ions score 119)
92	- 103	733.7710	1465.5274	1465.7089	-0.1814	0	R.EYLAEVLPDFDR.D (IONS SCORE 56)
92	- 105	579.8860	1736.6362	1736.8369	-0.2008	1	R.EYLAEVLPDFDRDR.V (Ions score 37)
-0.15					(wdd)	-100	
-0.2					Error	-125 -	
-0.3		· · · · ·		·		-150	
error	123 ppr	1500	2000	2500 Ma		S error 12	1500 2000 2500 3 ppm Mass (Da)

LOCUS DEFINITION	YP_098487 138 aa linear BCT 26-APR-2009 hypothetical protein BF1203 [Bacteroides fragilis YCH46].
ACCESSION	YP 098487
VERSION	YP 098487.1 GI:53712495
DBLINK	Project:13067
DBSOURCE	REFSEQ: accession NC 006347.1
KEYWORDS	
SOURCE	Bacteroides fragilis YCH46
ORGANISM	Bacteroides fragilis YCH46
	Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
	Bacteroidaceae; Bacteroides.
REFERENCE	1 (residues 1 to 138)
AUTHORS	Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H.,
	Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y.
TITLE	Genomic analysis of Bacteroides fragilis reveals extensive DNA
	inversions regulating cell surface adaptation
JOURNAL	Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004)
PUBMED	15466707
REFERENCE	2 (residues 1 to 138)
CONSRTM	NCBI Genome Project
TITLE	Direct Submission
JOURNAL	Submitted (01-OCT-2004) National Center for Biotechnology
	Information, NIH, Bethesda, MD 20894, USA
REFERENCE AUTHORS	3 (residues 1 to 138) Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T.
TITLE	Direct Submission
JOURNAL	Submitted (20-APR-2004) Kitasato Institute for Life Sciences,
JOORNAL	1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
COMMENT	PROVISIONAL REFSEQ: This record has not yet been subject to final
COMMENT	NCBI review. The reference sequence was derived from BAD47953.
	Method: conceptual translation.
FEATURES	Location/Qualifiers
source	
	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db xref="taxon:295405"
Protei	n 1138

CDS

/product="hypothetical protein" /calculated_mol_wt=15396 1..138 /locus_tag="BF1203" /coded_by="NC_006347.1:1436306..1436722" /note="similar to gp:AE016945_239 [Bacteroides thetaiotaomicron VPI-5482], percent identity 78 in 138 aa, BLASTP E(): 8e-56" /transl_table=11 /db_xref="GeneID: <u>3083031</u>"

(MATRIX) SCIENCE/ Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 5402
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (5402) 10_RF5_01_1076.d\SSP (5402) 10_RF5_01_1076.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:42:08 GMT
Protein hits	: gi 53712495 hypothetical protein BF1203 [Bacteroides fragilis YCH46]
	g1 255007972 hypothetical protein Bfra3_02458 [Bacteroides fragilis 3_1_12]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

35	umili:									
30 -										
25 -										
20-										
5-										
5										
40					400					
0		100	200 Probability	300 y Based Mowse S						
ptid	le Sum	mary Repo	rt							
Form	nat As	Peptide Sum	mary	•						Help
		Significance	threshold p<	0.05	Max. nu	mber	of hits	AUTO		
		Standard sco	ring @ Mud	PIT scoring	Ions sco	re or e	expect c	ut-off 0		Show sub-sets 0
		Show pop-up	ps Suppres	ss pop-ups C	Sort una	ssigne	d Decr	easing Sco	re 👱	Require bold red
Selec	t All	Select None	Sear	ch Selected	□ Erro	r tole	rant			
	gi 537 hypoth		ein BF1203	Score: 36 [Bacteroide			matche H46]	ar y e	mPAI:	1.20
	Check	to include	this hit in	n error tole	erant sea	rch				
	Query	Observed	Mr(expt)	Mr(calc)	Delta			Expect		Peptide
	103	565.3110	1128.6074	1129.5979	-0.9904	0	30	36	5	K.ENAAIASIDVK.K
ব	120 122	659.3070 667.2980	1316.5994 1332.5814	1316.7010 1332.6959	-0.1015	0	(49)	0.35	1	K.NMLIVETIDAAK.K K.NMLIVETIDAAK.K + Oxidation (M)
2	142	733.8000	1465.5854	1465.7089	-0.1144	0	56	0.067	1	R.EYLAEVLPDFDR.D
2	173	579.8940	1736.6602	1736.8369	-0.1768	1	43	1.1	1	R. EYLAEVLEDEDRDE .V
2	220	712.9900	2135.9482	2136.0772	-0.1291	0	(42)	1.3	1	K.IISLADIAMYTNDSEVPLR.D + Oxidation (M)
1	221	1068.9820	2135.9494	2136.0772	-0.1278	0		6.1e-05	1	K.IISLADIAMYTNDSEVPLR.D + Oxidation (M)
1	222	713.0160	2136.0262	2136.0772	-0.0511	0	(33)	13	1	K.IISLADIAMYTNDSEVPLR.D + Oxidation (M)
	247				-0.5116	1				
2	411	873.9560	2618.8462	2619.3578	-0.5110	*	93	7.1e-06	1	K.IISLADIAMYTNDSEVFLRDVLR.S + Oxidation (M)
			~ 3	1. 1. 1						
	gi 255 hypoth	0007972 D metical prot	Mass: 15498 tein Bfra3_(Score: 2 2458 [Bacte	271 Qu eroides f	eries ragil	match	ed: 6	l emPAI:	
	gi 255 hypoth	0007972 D metical prot	1ass: 15498	Score: 2 2458 [Bacte	271 Qu eroides f	eries ragil	match	ed: 6		
	gi 255 hypoth Check Query	0007972) netical prot to include Observed	Mass: 15498 ein Bfra3_(this hit in Mr(expt)	Score: 2 02458 [Bacte h error tole Mr(calc)	271 Qu eroides f erant sea Delta	eries ragil rch Miss	match is 3_1 Score	ed: 6 _12] Expect	emPAI: Rank	Peptide
	gi 255 hypoth Check Query 142	boorger boots and boots an	Mass: 15498 cein Bfra3_(this hit in Mr(expt) 1465.5854	Score: 2 02458 [Bacte h error tole Mr(calc) 1464.7249	271 Qu eroides f erant sea Delta 0.8606	eries ragil rch Miss 0	match is 3_1 Score 49	ed: 6 _12] Expect 0.29	emPAI: Rank 2	Peptide R.QYLAEVLPDFDR.D
	gi 255 hypoth Check Query <u>142</u> <u>173</u>	0007972 M metical prot to include Observed 733.8000 579.8940	Mass: 15498 tein Bfra3_(this hit in Mr(expt) 1465.5854 1736.6602	Score: 2 02458 [Bacte h error tole Mr(calc) 1464.7249 1735.8529	271 Qu eroides f erant sea Delta 0.8606 0.8072	eries ragil rch Miss 0 1	score 49 43	ed: 6 _12] Expect 0.29 1.1	emPAI: Rank 2 1	Peptide R.QYLAEVLPDFDR.D R.QYLAEVLPDFDRDR.V
	gi 255 hypoth Check Query 142	boorger boots and boots an	Mass: 15498 cein Bfra3_(this hit in Mr(expt) 1465.5854	Score: 2 02458 [Bacte h error tole Mr(calc) 1464.7249	271 Qu eroides f erant sea Delta 0.8606	eries ragil rch Miss 0	match is 3_1 Score 49	ed: 6 _12] Expect 0.29	emPAI: Rank 2	Peptide R.QYLAEVLPDFDR.D
	gi 255 hypoth Check Query 142 173 220	0007972 hetical prot to include Observed 733.8000 579.8940 712.9900	<pre>dass: 15498 cein Bfra3_(this hit in Mr(expt) 1465.5854 1736.6602 2135.9482</pre>	Score: 2 02458 [Bacte h error tole Mr(calc) 1464.7249 1735.8529 2136.0772	271 Qu eroides f erant sea Delta 0.8606 0.8072 -0.1291	eries ragil rch Miss 0 1 0	match is 3_1 Score 49 43 (42)	ed: 6 _12] Expect 0.29 1.1 1.3	emPAI: Rank 2 1 1	Peptide R.QYLAEVLPDFDR.D R.QYLAEVLPDFDRDR.V K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M)
	gi 255 hypoth Check Query 142 173 220 221	0007972 letical prot to include Observed 733,8000 579,8940 712,9900 1068,9820	<pre>tass: 15498 ein Bfra3_(this hit ir Mr(expt) 1465.5854 1736.6602 2135.9482 2135.9494</pre>	Score: 2 02458 [Bactr h error tole Mr(calc) 1464.7249 1735.8529 2136.0772 2136.0772	271 Qu eroides f erant sea Delta 0.8606 0.8072 -0.1291 -0.1278	eries ragil rch Miss 0 1 0 0	match is 3_1 Score 49 43 (42) 86	ed: 6 _12] Expect 0.29 1.1 1.3 6.1e-05	emPAI: Rank 2 1 1 1	Peptide R.QYLAEVLPDFDR.D R.QYLAEVLPDFDRDR.V K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M)
	gi 255 hypoth Check Query 142 173 220 221 222 247	5007972 N hetical prot to include Observed 733.8000 579.8940 712.9900 1068.9820 713.0160 873.9560	Mass: 15498 cein Bfra3_(this hit ir Mr(expt) 1465.5854 1736.6602 2135.9482 2135.9494 2136.0262	Score: 2 22458 [Bact h error tole Mr(calc) 1464.7249 1735.8529 2136.0772 2136.0772 2136.0772 2136.0772 2136.772	271 Qu eroides f erant sea Delta 0.8606 0.8072 -0.1291 -0.1278 -0.0511 -0.5116	eries ragil rch Miss 0 1 0 0 1	score 49 43 (42) 86 (33) 93	ed: 6 _12] Expect 0.29 1.1 1.3 6.1e-05 13 7.1e-06	Rank 2 1 1 1	Peptide R.QYLAEVLPDFDR.D R.QYLAEVLPDFDRDR.V K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M)
•	gi 255 hypoth Check Query 142 173 220 221 222 247 de matc Query	5007972 N hetical prot to include Observed 733.8000 579.8940 712.9900 1068.9820 713.0160 873.9560 hes not ass Observed	Mass: 15498 eein Bfra3_ this hit ir Mr(expt) 1465.5854 1736.6602 2135.9482 2135.9494 2136.0262 2618.8462 igned to pr Mr(expt)	Score: 2 22458 [Bact h error tole Mr(calc) 1464.7249 1735.8529 2136.0772 2136.0772 2136.0772 2136.0772 2619.3578 totein hits: Mr(calc)	271 Queroides f erant sea Delta 0.8806 0.8072 -0.1291 -0.1293 -0.25116 (no det: Delta	eries ragil rch Miss 0 1 0 0 1 1 1 2 1	<pre>s match is 3_1 Score 49 43 (42) 86 (33) 93 means 1 Score</pre>	ed: 6 _12] Expect 0.29 1.1 1.3 6.1e-05 13 7.1e-06 no match: Expect	Rank 2 1 1 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Peptide R.QYLAEVLPDFDR.D R.QYLAEVLPDFDRDR.V K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLRDVLR.S + Oxidation (M)
• Eptid	gi 255 hypoth Check Query 142 173 220 221 222 247 de matc Query 59	5007972 b hetical prot to include Observed 733.8000 579.8940 712.9900 1068.9820 713.0160 873.9560 hes not ass Observed 409.7360	Mass: 15498 cein Bfra3_ this hit ir Mr (expt) 1465.5854 1736.6602 2135.9494 2135.9494 2136.0262 2618.8462 igned to pr Mr (expt) 817.4574	Score: 2 22458 [Bactrine of the second secon	271 Qu percides f erant sea 0.8806 0.8072 -0.1291 -0.1278 -0.5116 (no det: Delta 0.0029	eries ragil rch Miss 0 1 0 0 1 1 ails 1 Miss 0	s match is 3_1 Score 49 43 (42) 86 (33) 93 means 1 Score 34	ed: 6 _12] Expect 0.29 1.1 1.3 6.1e-05 13 7.1e-06 ho match; Expect 13	Rank 2 1 1 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Peptide R.QYLAEVLPDFDR.D R.QYLAEVLPDFDRDR.V K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLRDVLR.S + Oxidation (M) K.IISLADIAMYTNDSEVPLRDVLR.S + Oxidation (M)
• চাবছা নি	gi 255 hypoth Check 9 142 173 220 221 222 247 de matc 9 9 9 9 9 103	5007972 b hetical prot to include Observed 733.8000 579.8940 712.9900 1068.9820 713.0160 873.9560 hes not ass Observed 409.7360 565.3110	<pre>tass: 15498 cein Bfra3_ this hit if Mr (expt) 1465.5854 1736.6602 2135.9494 2135.9494 2136.0262 2618.8462 igned to pr Mr (expt) 817.4574 1128.6074</pre>	Score: 2 22458 [Bact h error tole 1464.7249 1735.8529 2136.0772 2136.0772 2619.3578 cotein hits: Mr(calc) 817.4545 1128.6437	271 Qu proides f erant sea Delta 0.8506 0.8072 -0.1291 -0.1278 -0.05116 (no det: Delta 0.0029 -0.0363	eries ragil rch Miss 0 1 0 0 1 1 Miss 0 1	match is 3_1 Score 49 43 (42) 86 (33) 93 means 1 Score 34 32	ed: 6 _12] Expect 0.29 1.1 1.3 6.1e-05 13 7.1e-06 No match, Expect 13 20	Rank 2 1 1 1 1 1 1 1 1 1 1 1 1	<pre>r 0.81 Peptide R.QYLAEVLPDFDR.D R.QYLAEVLPDFDRDR.V K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLRDVLR.S + Oxidation (M) K.IISLADIAMYTNDSEVPLRDVLR.S + Oxidation (M) Peptide DVITVSGK IEAALVRMAR</pre>
় চাব্ৰৰ অ অ	gi 255 hypoth Check Query 142 173 220 221 222 247 de matc Query 59 103 176	5007972 b betical prototical prototical prototical prototical protocical proto	<pre>4ass: 15498 .ein Bfra3_(this hit ir Mr (expt) 1465.5854 1736.6602 2135.9494 2135.9494 2136.0262 2618.8462 igned to pr Mr (expt) 817.4574 1128.6074 1774.5952</pre>	Score: 2 22458 [Bact h error tole 1464.7249 1735.8529 2136.0772 2136.0772 2136.0772 23619.3578 otein hits: Mr(calc) 817.4545 1128.6437 1774.9478	271 Qu proides f prant sea Delta 0.8606 0.8072 -0.1291 -0.5116 (no det: Delta 0.0029 -0.0363 -0.3527	eries ragil rch Miss 0 1 0 0 0 1 1 Miss 0 1 1	s match is 3_1 49 43 (42) 86 (33) 93 means 1 Score 34 32 32	ed: 6 _12] Expect 0.29 1.1 1.3 6.1e-05 13 7.1e-06 no match Expect 13 20 13	Rank 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peptide R.QVLAEVLPDFDR.D R.QVLAEVLPDFDR.D K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) Peptide DVITVSGK IEAALVRMAR LYGINASGWTPARLTR
় bitge ঘ ঘ ঘ ঘ	gi 255 hypoth Check Query 142 220 221 222 247 de matc Query 52 103 176 151	0007972 N intical prot to to include Observed 733,8000 579,8940 712,9900 1068,9820 713,0160 873,9560 873,9560 hes not ass Observed 409,7360 55,3110 592,5390 521,1690	Aass: 15498 cein Bfra3_(this hit if Mr(expt) 1465.5854 1736.6602 2135.9482 2135.9494 2136.0262 2618.8462 igned to pr Mr(expt) 817.4574 1128.6074 1174.5952 1560.4852	Score: 2 22458 [Bactor h error tole 1464.7249 1735.8529 2136.0772 2136.0772 2619.3578 otein hits: Mr(calc) 817.4545 1128.6437 1774.9478 1559.9623	271 Queroides f erant sea 0.8606 0.8072 -0.1291 -0.1278 -0.0511 -0.5116 (no det: Delta 0.0029 -0.033 -0.3527 0.5228	eries ragil rch Miss 0 1 0 0 1 1 Miss 0 1 1 2	match is 3_1 Score 49 43 (42) 86 (33) 93 means 1 Score 34 32 31	ed: 6 _12] Expect 0.29 1.1 1.3 6.1e-05 13 7.1e-06 no match 13 20 13 15	emPAI: Rank 2 1 1 1 1 1 1 1 1 1 1	<pre>reptide R.QYLAEVLPDPDR.D R.QYLAEVLPDPDRDR.V R.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLRDVLR.S + Oxidation (M) Peptide DVITVSGK IEAALVRMAR LYGINASGWTPARLTR VNIILQLAQKHKR</pre>
· Ditge 너 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모	gi 255 hypoth Check Query 142 220 221 222 247 de matc Query 59 103 176 151 125	5007972 No betical protection protection to include 0bserved 733.8000 579.8940 713.9900 713.0160 873.9560 713.0160 best not ass 0bserved 409.7360 565.3110 592.5390 521.1690 677.4280 577.4280	Mass: 15498 eein Bfra3_t this hit ir Mr (expt) 1465.5854 1736.6602 2135.9482 2135.9494 2136.0262 2618.8462 igned to pr Mr (expt) 817.4574 1128.6074 1774.5952 1560.4852 2029.2622	Score: 2 22458 [Bact h error tole Mr(calc) 1464.7249 1735.8529 2136.0772 2136.0772 2136.0772 2619.3578 totein hits: Mr(calc) 817.4545 1128.6437 1774.9478 1559.9623 2029.2339	271 Queroides f erant sea 0.8806 0.8072 -0.1291 -0.1278 -0.0511 -0.5116 (no det: Delta 0.0029 -0.0363 -0.3527 0.5228 0.0282	eries ragil rch Miss 0 1 0 0 1 1 Miss 0 1 1 2 2	match is 3_1 Score 49 43 (42) 86 (33) 93 means 1 Score 34 32 31 30	ed: 6 _12] Expect 0.29 1.1 1.3 6.1e-05 13 7.1e-06 no match Expect 13 20 13 15 43	emPAI: 2 1 1 1 1 1 1 1 1 1 1 1 1	Peptide R.QYLAEVLPDFDR.D R.QYLAEVLPDFDRDR.V K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLRDVLR.S + Oxidation (M)
· eptid 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모	gi 255 hypoth Check 200 221 222 247 de matc 202 247 de matc 202 217 125 103 176 151 125 188	0007972 N intical prot to to include Observed 733,8000 579,8940 712,9900 1068,9820 713,0160 873,9560 873,9560 hes not ass Observed 409,7360 55,3110 592,5390 521,1690	Aass: 15498 cein Bfra3_(this hit if Mr(expt) 1465.5854 1736.6602 2135.9482 2135.9494 2136.0262 2618.8462 igned to pr Mr(expt) 817.4574 1128.6074 1174.5952 1560.4852	Score: 2 22458 [Bactor h error tole 1464.7249 1735.8529 2136.0772 2136.0772 2619.3578 otein hits: Mr(calc) 817.4545 1128.6437 1774.9478 1559.9623	271 Queroides f erant sea 0.8606 0.8072 -0.1291 -0.1278 -0.0511 -0.5116 (no det: Delta 0.0029 -0.033 -0.3527 0.5228	eries ragil rch Miss 0 1 0 0 1 1 Miss 0 1 1 2	match is 3_1 Score 49 43 (42) 86 (33) 93 means 1 Score 34 32 31	ed: 6 _12] Expect 0.29 1.1 1.3 6.1e-05 13 7.1e-06 no match 13 20 13 15	emPAI: Rank 2 1 1 1 1 1 1 1 1 1 1	<pre>reptide R.QYLAEVLPDPDR.D R.QYLAEVLPDPDRDR.V R.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLR.D + Oxidation (M) K.IISLADIAMYTNDSEVPLRDVLR.S + Oxidation (M) Peptide DVITVSGK IEAALVRMAR LYGINASGWTPARLTR VNIILQLAQKHKR</pre>

Protein View

Match to: gi|53712495 Score: 361
hypothetical protein BF1203 [Bacteroides fragilis YCH46]
Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (5402) 10_RF5_01_1076.d\SSP (5402) 10_RF5_01_1076.mgf

Nominal mass (M_r) : 15517; Calculated pI value: 5.15 NCBI BLAST search of gi | 53712495 against nr Unformatted sequence string for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Taxonomy: <u>Bacterioldes Indenies Containing this sequence from NCBI Entrez:</u> Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60680695 from <u>Bacteroides fragilis NCTC 9343</u> g1 b0680635 from Bacteroides sp. 3 2.5 gi 25562474 from Bacteroides sp. 3 2.5 gi 265762658 from Bacteroides sp. 2 1.16 gi 50215360 from Bacteroides fragilis YCH46 gi 60492129 from Bacteroides fragilis NCTC 9343 gi 251947250 from Bacteroides sp. 3 2.5 gi 263255266 from Bacteroides sp. 2 1.16

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 43%

Matched peptides shown in Bold Red

- 1 MLKTILSISG KPGLYKLISQ GKNMLIVETI DAAKKRFPAY GNEKIISLAD 51 IAMYTNDBEV PLRVVLRSIK EKENAAIASI DVKKATSEQL REYLAEVLPD 101 PDRDRVYTND IKKLILWYNI LVSNGITDFG EETAVEAE

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

Star	rt	- End	i o	bserved	Mr(expt)	Mr(calc)	Delta	Miss	Sequence
7	23	- 34	6	59.3070	1316.5994	1316.7010	-0.1015	0	K.NMLIVETIDAAK.K (Ions score 49)
-	23	- 34	6	67.2980	1332.5814	1332.6959	-0.1144	0	K.NMLIVETIDAAK.K Oxidation (M) (Ions score 54)
1	4.5	- 63	7	12.9900	2135.9482	2136.0772	-0.1291	0	K.IISLADIAMYTNDSEVPLR.D Oxidation (M) (Ions score 42)
1	45	- 63	10	68.9820	2135.9494	2136.0772	-0.1278	0	K.IISLADIAMYTNDSEVPLR.D Oxidation (M) (Ions score 86)
		- 63		13.0160	2136.0262	2136.0772	-0.0511	0	K.IISLADIAMYTNDSEVPLR.D Oxidation (M) (Ions score 33)
		- 67		73.9560	2618.8462	2619.3578	-0.5116	1	K.IISLADIAMYTNDSEVPLRDVLR.S Oxidation (M) (Ions score 93)
		- 83		65.3110	1128.6074	1129.5979	-0.9904	0	K.ENAAIASIDVK.K (Ions score 30)
		- 10		33.8000	1465,5854	1465.7089	-0.1234	0	R.EYLAEVLPDFDR.D (Ions score 56)
		- 10		79.8940	1736.6602	1736.8369	-0.1768	1	R.EYLAEVLPDFDRDR.V (Ions score 43)
		1					2	0 T	
(ga -0	.25-						(wdd)		· · · · · · · · · · · · · · · · · · ·
0 -0	.6.5	10.000					0	-250	
\$ -0.	5						5	-500	
EL.							Er.	-300 T	
··· -0	.75-							-750 -	
								-750 -	
-1		-	1 1	1 1 1		250		T	1500 2000 2500
		306 r		1500	2000	2500		s error 3	1000

LOCUS YP_098487 138 aa linear BCT 2 DEFINITION hypothetical protein BF1203 [Bacteroides fragilis YCH46]. ACCESSION YP_098487. VERSION YP_098487.1 GI:53712495 DBLINK Project:13067 DBSOURCE REFSEQ: accession NC_006347.1 KEYWORDS BCT 26-APR-2009 . Bacteroides fragilis YCH46 <u>Bacteroides fragilis YCH46</u> Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; SOURCE ORGANISM Bacteroidaceae; Bacteroida; Bacteroidaes; Bacteroidaceae; Bacteroides. 1 (residues 1 to 138) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell.surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707 2 (residues 1 to 138) REFERENCE AUTHORS TITLE JOURNAL FIGL: Mark Mark Sch. Status (1997) 1997 (1997) 2 (residues 1 to 138) NCBI Genome Project Direct Submission Submitted (01-OCT-2004) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 138) Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. Direct Submission Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan PROVISIONAL <u>REFERO</u>: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD47953</u>. Method: conceptual translation. Location/Qualifiers PUBMED REFERENCE CONSRTM JOURNAL REFERENCE AUTHORS TITLE JOURNAL COMMENT FEATURES Location/Qualifiers 1..138 source

Protein CDS /organism="Bacteroides fragilis YCH46"
/strain="XCH46"
/db_xref="taxon:295405"
1..138
/product="hypothetical protein"
/calculated_mol_wt=15396
1..138
/locus_tag="BF1203"
/coded_by="NC_006347.1:1436306..1436722"
/note="similar to gp:AE016945_239 [Bacteroides
thetaiotaomicron VPI-5482], percent identity 78 in 138 aa,
BLASTP E(): 8e-56"
/transl_table=11
/db_xref="GeneID:3083031"

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 6102
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6102) 10_RF4_01_1074.d\SSP (6102) 10_RF4_01_1074.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:44:14 GMT
Protein hits	: gi 53714011 putative RNA-binding protein [Bacteroides fragilis YCH46]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

\$ 45 T	11111111	
〒 40 - 꿍 35 -		
Laguny 25 - 20 - 20 -		
15-		
10-5-		
0	50	100 150
	30	Probability Based Mowse Score

Peptide Summary Report

		Significance	threshold p<	0.05	Max. nu	mber of hit	S AUTO		
				PIT scoring	Ions scor	re or expec	t cut-off 0		Show sub-sets 0
							ecreasing Sci	270	▼ Require bold red □
		Snow pop-u	ps • Suppre	ss pop-ups	Sort una	ssigned [De	creasing ou	JIE	Kequite bola led l
-1	AH 1	Select Non	- 1	ch Selected	1 ===				
elect	All	Select North	e Jear	ch Selected	J L Erro	r tolerant			
	qi 537	14011 M	ass: 12893	Score: 1	59 Oue	ries matc	hed: 4	MPAT	1.03
				n [Bacteroid					
-				n error tole					
-									
¢	uery	Observed	Mr (expt)	Mr(calc)	Delta M	liss Scor	Expect	Rank	Peptide
2	231	813.6560	2437.9462	2438.1060	-0.1598	0 50	0.15	1	K.GFGFVEMPNDEEGNAAIAALNEK.E + Oxidation (M)
1	244	885.2950	2652.8632		-0.3698	1 70	0.0013	1	R.SKGFGFVEMPNDEEGNAAIAALNEK.E + Oxidation (M)
2	250	994.3830	2980.1272	2980.3760	-0.2488	1 39	1.8	1	K.GFGFVEMPNDEEGNAAIAALNEKEIDGK.T + Oxidation ()
	251	994.8610	2981.5612	2980.3760	1.1852	1 (14	7.5e+02	7	K.GFGFVEMPNDEEGNAAIAALNEKEIDGK.T + Oxidation (N
				antain hitra.	Ino dot-	ile mean	no match	1	
tide	e matc	hes not as	signed to pr	rotein hits:	(no deta	ils mean	s no match	1)	
	e matc Query	Observed	Mr (expt)	Mr (calc)	Delta	Miss Sco	re Expect	Rank	
2	Query 131	Observed 665.0350	Mr (expt) 1992.0832	Mr(calc) 1991.9775	Delta 0.1057	Miss Sco 1 3	re Expect	Rank	IYKSSFTAMYTAVTTHR + Oxidation (M)
ন ন	Query 131 146	Observed 665.0350 723.3000	Mr (expt) 1992.0832 2166.8782	Mr(calc) 1991.9775 2165.9794	Delta 0.1057 0.8988	Miss Sco 1 3 2 3	re Expect) 43) 52	Rank	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M)
র র র	Query 131 146 98	Observed 665.0350 723.3000 370.9340	Mr(expt) 1992.0832 2166.8782 1109.7802	Mr(calc) 1991.9775 2165.9794 1110.6761	Delta 0.1057 0.8988 -0.8959	Miss Sco 1 3 2 3 0 2	re Expect) 43) 52 7 46	Rank	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M) GILAGLGLLER
ন ন ন ন	Query 131 146 98 110	Observed 665.0350 723.3000 370.9340 609.5880	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422	Mr(calc) 1991.9775 2165.9794 1110.6761 1824.9734	Delta 0.1057 0.8988 -0.8959 0.7688	Miss Sco 1 3 2 3 0 2 1 2	re Expect 0 43 0 52 7 46 5 1e+02	Rank	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK
ব ব ব ব ব	Query 131 146 98 110 201	Observed 665.0350 723.3000 370.9340 609.5880 655.2180	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516	Miss Sco 1 3 2 3 0 2 1 2 1 2	re Expect 0 43 0 52 7 46 5 1e+02 5 43	: Rank	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK EATGALNDEVLRNLYER
ব ব ব ব ব ব	Query 131 146 98 110 201 63	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516 -0.4672	Miss Sco 1 3 2 3 0 2 1 2 1 2 1 2 0 2	ce Expect 0 43 0 52 7 46 5 1e+02 5 98	: Rank	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGCDGCATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK EATGALNDEVLRNLYER DFSMDALYAR + Oxidation (M)
ন ন ন ন ন ন ন	Query 131 146 98 110 201 63 62	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 383.3540	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402 1147.0402	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516	Miss Sco 1 3 2 3 0 2 1 2 1 2	ce Expect 0 43 0 52 7 46 5 1e+02 5 98 5 1.2e+02	: Rank	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK EATGALNDEVLRNLYER
ব ব ব ব ব ব ব ব	Query 131 146 98 110 201 63 62 180	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 383.3540 909.1040	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402 1147.0402 2724.2902	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516 -0.4672 -0.5836	Miss Sco 1 3' 2 3' 0 2' 1 2' 1 2' 0 2 0 2 0 2 0 2 0 2	re Expect 0 43 0 52 7 46 5 1e+02 5 43 5 98 5 1.2e+02 4 1.4e+02	Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK EATGALNDEVLRNLYER DPSMDLYAR + Oxidation (M) LVLVGDYVDR
ন ন ন ন ন ন ন	Query 131 146 98 110 201 63 62	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 383.3540	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402 1147.0402	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516 -0.4672 -0.5836 -1.1207	Miss Sco 1 3' 2 3' 0 2' 1 2' 1 2' 0 2 0 2 1 2' 1 2 1 2 1 2 1 2 1 2 1 2	re Expect 0 43 0 52 7 46 5 1e+02 5 98 5 1.2e+02 4 1.4e+02 4 1.1e+02	Rank	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK EATGALNDEVLRNLYER DPSMDLYAR + Oxidation (M) LVLVGDYVDR LDFVAKVAMITNLLTEDNLPSYHR + Oxidation (M)
त द द द द द द द द द	200ery 131 146 98 110 201 63 62 180 130	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 383.3540 909.1040 658.3130	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1952.6322 1153.0402 1147.0402 2724.2902 1314.6114	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109 1314.6568	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516 -0.4672 -0.5836 -1.1207 -0.0454	Miss Sco 1 3 2 3 0 2 1 2 1 2 0 2 0 2 1 2 0 2 1 2 0 2	ce Expect 0 43 0 52 5 1e+02 5 1.2e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02	Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK EATGALNDEVLRNLYER DPSMDALYAR + Oxidation (M) LVLVGSYVDR LDPVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEPDWQR
च द द द द द द द द द	200ery 131 146 98 110 201 63 62 180 130 99	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 383.3540 909.1040 658.3130 563.1690	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402 2724.2902 1314.6114 1686.4852	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109 1314.6568 1686.7631	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516 -0.4672 -0.5836 -1.1207 -0.0454 -0.2780	Miss Sco 1 3 2 3 0 2 1 2 1 2 0 2 0 2 1 2 0 2 1 2 1 2 1 2	ce Expect 0 43 0 52 5 1e+02 5 1.2e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02	Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M) GILAGLGLLER PGACNDSGPPPQVTLKIK EATGALNDEVLRNLYER DPSMDALYAR + Oxidation (M) LVLVGDYVDR LDPVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEPDWQR TSGSPSSLFSSSARCR
ब च ब ब ब ब ब ब ब ब ब	200ery 131 146 98 110 201 63 62 180 130 99 172	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 385.3540 909.1040 658.3130 563.1690 878.1610	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402 1147.0402 2724.2902 1314.6114 1686.4852 2631.4612	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109 1314.6568 1686.7631 2630.3486	Delta 0.1057 0.8958 -0.8959 0.7688 0.6516 -0.4672 -0.5836 -1.1207 -0.0454 -0.2780 1.1126	Miss Sco 1 3 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	ce Expect 0 43 5 1e+02 5 1e+02 5 1e+02 5 1.2e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.5e+02	Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGCDGCATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK EATGALNDEVLRNLYER DFSMDALYAR + Oxidation (M) LVLVGDYVDR LDFVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEFDWQR TSGSPSSLFSSSARCR IAPDENAGSLHDRLMHLGSDLILK + Oxidation (M)
य दा दा दा दा दा दा दा दा दा ्र	200ery 131 146 98 110 201 63 62 180 130 99 172 145	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 383.3540 909.1040 658.3130 658.3130 563.1690 878.1610 715.1790	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402 1147.0402 2724.2902 1314.6114 1686.4852 2631.4612 1428.3434	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109 1314.6568 1686.7631 2630.3486 1427.7732	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516 -0.4672 -0.5836 -1.1207 -0.0454 -0.2780 1.1126 0.5702	Miss Sco 1 3 2 3 0 2 1 2 1 2 1 2 0 2 0 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2	ce Expect 0 43 0 52 7 46 5 1e+02 5 43 5 98 5 1.2e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 2.e+02	Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVILKIK EATGALMDEVLRNLYER DPSMDALYAR + Oxidation (M) LVLVGDYVDR LDEVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEPDWQR TSGSPSSLFSSSARCR IAPDENAGSLHDRLMMLGSDLILK + Oxidation (M) ERLNVGKAEDAVK
रा रा रा रा रा रा रा रा रा रा 	200ery 131 146 98 110 201 63 62 180 130 99 172 145 139	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 383.3540 909.1040 658.3130 563.1690 878.1610 715.1790 678.9820	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402 1147.0402 2724.2902 1314.6114 1686.48552 2631.4612 1428.3434 2033.9242	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109 1314.6568 1686.7631 2630.3486 1427.7732 2034.0343	Delta 0.1057 0.8988 0.6516 -0.4672 -0.5836 -1.1207 -0.0454 0.2780 1.1126 0.5702 -0.1101	Miss Sco 1 3) 2 3) 0 2) 1 2) 1 2) 0 2 1 2) 1 2) 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2	ce Expect 0 43 0 52 7 46 5 1e+02 5 43 5 98 5 1.2e+02 4 1.4e+02 5 2e+02 4 1.8e+02	Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGCDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPFQVIKIK EATGALNDEVLRNLYER DPSMDALYAR + Oxidation (M) LVLVGDYVDR LDEVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEPDWQR TSGSPSSLFSSSARCR IAPDENAGSLHORLMHLGSDLILK + Oxidation (M) ERLNVGKAEDAVK DIMQELNYELPDLKAVK + Oxidation (M)
र र र र र र र र र र र र र र .	20000000000000000000000000000000000000	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 385.3540 383.3540 909.1040 658.3130 563.1690 878.1610 715.1790 678.9820 837.5110	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402 1147.0402 2724.2902 1314.6114 1686.4852 2631.4612 1428.3434 2033.9242 2509.5112	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109 1314.6568 1686.7631 2630.3486 1427.7732 2034.0343 2508.3635	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516 -0.4672 -0.5836 -1.1207 -0.0454 0.2780 1.1126 0.5702 -0.1101 1.1477	Miss Sco 1 3 2 3 0 2' 1 2' 1 2' 0 2 1 2' 1 2' 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2	ce Expect 0 43 0 52 7 46 5 1e+02 5 98 5 1.2e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.5e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 2e+02 4 2e+03 4 3	Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGCDGGATMDSMDLER + Oxidation (M) GILAGLGLLER PGAGNDSGPPPQVTLKIK EATGALMDEVLRNLYER DPSMDALYAR + Oxidation (M) LVLVGDYVDR LDPVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEPDWQR TSGSPSSLFSSSARCR IAPDENAGSLHDRLMHLGSDLILK + Oxidation (M) ERLNVGKAEDAVK DIMQELNYELPDLKAVK + Oxidation (M) MMQNSITVPLKKLAQVAHSVSR + Oxidation (M) TDLAALLAATER LAGIAGLGSAAFGSENK
त द द द द द द द द द द द द द द द द द .	20000000000000000000000000000000000000	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 383.3540 909.1040 658.3130 563.1690 878.1610 715.1790 678.9920 837.5110 622.6150	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1952.6322 1153.0402 2724.2902 1314.6114 1666.4852 2631.4612 1428.3434 2033.9242 2509.5112 1243.2154	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6337 2725.4109 1314.6568 1666.7631 2630.3486 1427.7732 2034.0343 2508.3635 1243.6772	Delta 0.1057 0.8988 -0.8959 0.7688 0.5616 -0.5836 -0.5857 -0.5836 -0.5857 -0.5836 -0.5857 -0.5836 -0.5857 -0.5957 -0.5957 -0.5957 -0.5957 -0.5957 -0.5957 -0.5957 -0.5957 -0.5957 -0.5957 -0.5957 -0.5957 -0.5957 -0.5957 -0.5977 -0.5957 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.5977 -0.59777 -0.5977 -0.5977 -0.5977 -0.59777 -0.59777 -0.59777 -0.59777 -0.59777 -0.59777 -0.59777 -0.59777 -0.59777 -0.59777 -0.59777 -0.59777 -0.597777 -0.597777 -0.597777 -0.59777777777777777777777777777777777777	Miss Sco 1 3 2 3 0 2 1 2 1 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 2 2 0 2	ce Expect 0 43 0 52 7 46 5 1e+02 5 98 5 1.2e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.5e+02 4 1.5e+02 4 1.8e+02 4 1.8e+02 4 1.8e+02 4 1.8e+02 4 1.8e+02	Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGCDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK EATGALMDEVLENLYER DPSMDALYAR + Oxidation (M) LVLVGDYVDR LDPVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEPDWQR TSGSPSSLFSSSARCR IAPDENAGSLHDRLMHLGSDLILK + Oxidation (M) ERLNVGKAEDAVK DIMGELMYELPDLKAVK + Oxidation (M) WMQNSITVPLKKLAQVAHSVSR + Oxidation (M) TDLAALLAATER LAGIAGGSAAFGSENK KGSDGMGSGGMGSGGKGSDKPK + Oxidation (M)
रा दा	20000000000000000000000000000000000000	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 383.3540 909.1040 658.3130 658.3130 658.31630 878.1610 715.1790 678.9820 837.5110 622.6150 521.4730 666.6390 763.6760	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402 1147.0402 2724.2902 1314.6114 1686.4852 2631.4612 1428.3434 203.9242 2509.5112 1243.2154 1561.3972 1996.0952 2288.0062	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109 1314.6568 1686.7631 2630.3486 1427.7732 2034.0343 2508.3635 1243.6772 1561.8100 1996.6943 2287.0903	Delta 0.1057 0.8988 -0.8559 0.7688 0.6516 -0.4675 -0.0454 -0.2780 1.1126 0.5702 -0.1101 1.1477 -0.4617 -0.4617 -0.4518 0.0009 0.9158	Miss Sco 1 3 2 3 0 2' 1 2: 1 2: 0 2 1 2: 0 2 1 2: 1 2: 2 2: 1 2: 2 2: 1 2: 2 2: 2 2: 2 2: 2 2: 2 2: 2 2: 2 2: 2 2: 1 2:	Expect 0 43 0 52 7 46 5 1e+02 5 12e+02 4 1.4e+02 4 2e+02 4 2e+02 3 2e+02 3 2e+02	: Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGCDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPPOVILKIK EATGALMDEVLRNIYER DPSMDALYAR + Oxidation (M) LVLVGDYVDR LDEVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEPDWQR TSGSPSSLFSSSARCR IAPDENAGSLHDRLMMLGSDLILK + Oxidation (M) ERLNVGKAEDAVK DIMQELNYELPDLKAVK + Oxidation (M) WMONSITVELKKLAQVAHSVSR + Oxidation (M) TDLAALLAATER LAGIAGLGSAAFGSEMK KGSDGMCSGGMCSGGKGSDKPK + Oxidation (M) MTSPDRFGGTGSVNIQSGFSVK + Oxidation (M)
र द द द द द द द द द द द द द द द द द द द	20000000000000000000000000000000000000	Observed 665.0350 723.3000 370.9340 609.5880 855.2180 385.3540 383.3540 909.1040 658.3130 658.3130 678.1610 715.1790 678.9820 837.5110 622.6150 521.4730 521.4730 66.6390 663.4090	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1962.6322 1153.0402 1147.0402 2724.2902 1314.6114 1686.4852 2631.4612 1428.3434 2033.9242 2509.5112 1243.2154 1541.3972 1996.8952 2288.0062 1807.2052	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109 1314.6568 1686.7631 2630.3486 1427.7732 2034.0343 2508.3635 1243.6772 1561.8100 1996.8943 2287.0903 1806.9224	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516 -1.1207 -0.0454 -0.2780 1.11207 -0.0454 0.5702 -0.1101 1.1477 -0.4617 -0.4617 -0.4617 -0.4617 -0.4518 0.0009 0.9158	Miss Sco 1 3 2 3 0 2 1 2 1 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 1 2	ce Expect 0 43 0 52 7 46 5 1e+02 5 98 5 1.2e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.8e+02 4 1.8e+02 4 1.8e+02 3 1.8e+02 3 2.e+02 3 2.e+02 3 2.e+02 3 2.e+02	: Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGCDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK EATGALNDEVLENLYER DPSMDALYAR + Oxidation (M) LVLVGDYVDR LDEVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEFDWQR TSGSFSSLFSSARCR IAPDENAGSLHDELMHLGSDLILK + Oxidation (M) ERLNVGKAEDAVK DIMQELNYELPDLKAVK + Oxidation (M) MMONSITVPLKKLAQVAHSVSR + Oxidation (M) TDLAALLAATER LAGIAGLGSAAFGSENK KGSDGMGSGGMGSGENKPK + Oxidation (M) MTSPDRFGGTGSVNIQSGFSVK + Oxidation (M)
र र र र र र र र र र र र र र र र र र र	2000000 131 146 98 110 201 63 62 180 130 130 155 133 133 133 133 133 133 133	Observed 665.0350 723.3000 370.9340 609.5880 655.2180 385.3540 383.3540 909.1040 658.3130 563.1690 878.1610 715.1790 678.9920 837.5110 622.6150 521.4730 666.6390 763.6760 603.4090 377.1540	Mr (expt) 1992.0832 2166.8782 1109.7802 1825.7422 1952.6322 1153.0402 2724.2902 1314.6114 1686.4852 2631.4612 1428.3434 2033.9242 2509.5112 1243.2154 1561.3972 1996.8952 2288.0062 1807.2052 752.2934	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109 1314.6568 1686.7631 2630.3486 1427.7732 2034.0343 2508.3635 1243.6772 1561.8100 1996.8943 2287.0903 1806.9224 752.3276	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516 -0.4672 -0.5836 -1.1207 -0.0454 -0.2780 1.1126 0.5702 0.5101 1.1477 -0.4617 -0.4128 0.0099 0.9158 0.2828 -0.0341	Miss Sco 1 3 2 3 0 2' 1 2 0 2 0 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 1 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2	Expect 0 43 0 52 7 46 5 1e+02 5 98 5 1.2e+02 4 1.4e+02 4 2.e+02 3 2.e+02 3 2.e+02 3 2.e+02 3 2.e+02 3 1.e+02	Rank 1	IYKSSFTAMYTAVTTHR + Oxidation (M) VREVRGCDGGATMDSMDLER + Oxidation (M) GILAGLGLLER FGAGNDSGPPPQVTLKIK EATGALNDEVLENLYER DPSMDALYAR + Oxidation (M) LVLVGDYVDR LDFVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEPDWQR TSGSPSSLFSSSARCR IAPDENAGSLHDRLMHLGSDLILK + Oxidation (M) ERLMVGKAEDAVK DIMQELNYELPDLKAVK + Oxidation (M) WMQNSITVPLKKLAQVAHSVSR + Oxidation (M) TDLAALLAATER LAGIAGLGSAAFGSENK KGSDGMGSGGMGSGGKSDKPK + Oxidation (M) MISPDRFGGTGSVNIOSGFSVK + Oxidation (M) LDGEALHGKSPNELATR AMFGGDR
र द द द द द द द द द द द द द द द द द द द	20000000000000000000000000000000000000	Observed 665.0350 723.3000 370.9340 609.5880 855.2180 385.3540 383.3540 909.1040 658.3130 658.3130 678.1610 715.1790 678.9820 837.5110 622.6150 521.4730 521.4730 66.6390 663.4090	Mr (expt) 1992.0832 2166.6782 1109.7802 1825.7422 1952.6322 1153.0402 2724.2902 1314.6114 1666.4852 2651.4612 1428.3434 2033.9242 2509.5112 1243.2154 1561.3972 1996.0952 288.0062 1807.2052 752.2934 2455.1692	Mr (calc) 1991.9775 2165.9794 1110.6761 1824.9734 1961.9806 1153.5074 1147.6237 2725.4109 1314.6568 1686.7631 2630.3486 1427.7732 2034.0343 2508.3635 1243.6772 1561.8100 1996.8943 2267.0903 286.924 752.3276 2455.1914	Delta 0.1057 0.8988 -0.8959 0.7688 0.6516 -1.1207 -0.0454 -0.2780 1.11207 -0.0454 0.5702 -0.1101 1.1477 -0.4617 -0.4617 -0.4617 -0.4617 -0.4518 0.0009 0.9158	Miss Sco 1 3 2 3 0 2 1 2 1 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 1 2	ce Expect 0 43 0 52 7 46 5 1e+02 5 1.2e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.4e+02 4 1.8e+02 4 2.e+02 3 1.8e+02 3 1.8e+02 3 1.8e+02 3 1.8e+02 3 1.8e+02 4 1.8e+02 5 2.e+02 3 1.8e+02 3 1.8e+02 3 1.8e+02 3 1.8e+02 4 1.8e+02 4 2.e+02 3 1.8e+02 4 1.8e+02 4 1.8e+02 4 1.8e+02 4 1.8e+02 4 1.8e+02<	: Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	IYYSSFTAMYTAVTTHR + Oxidation (M) VREVRGGDGGATMDSMDLER + Oxidation (M) GILAGLALLER FGAGNDSGPPPQVTLKIK EATGALNDEVLRNLYER DPSMDALYAR + Oxidation (M) LVLVGDYVDR LDFVAKVAMITNLLTEDNLPSYHR + Oxidation (M) LISATEFDWQR TSGSPSSLFSSARCR IAPDENAGSLHDRLMHLGSDLILK + Oxidation (M) ERLNVGKAEDAVK DIMOELNYELPDLKAVK + Oxidation (M) MMONSITVPLKKLAQVAHSVSR + Oxidation (M) TDLAALLAATER LAGIAGLGSAAFGSENK KGSDGMGSGGMGSGKSDKPK + Oxidation (M) MTSPDRFGGTGSVNIOSGFSVK + Oxidation (M)

Protein View

Match to: gi|53714011 Score: 159 putative RNA-binding protein [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6102) 10_RF4_01_1074.d\SSP (6102) 10_RF4_01_1074.mgf

Nominal mass $(M_{\rm r})$: 12893; Calculated pI value: 5.24 NCBI BLAST search of gi 53714011 against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: gil265762207 from <u>Bacteroides fragilis NCTC 9343</u> gil265764361 from <u>Bacteroides fragilis YCH46</u> gil60493641 from <u>Bacteroides fragilis NCTC 9343</u> gil263256969 from <u>Bacteroides sp. 2_16</u>

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 24%

Matched peptides shown in Bold Red

- 1 MNIFIAGISY NLSNADLGEL FEEFGEVISA KIVMDRETGR SKGFGFVEMP 51 NDEBGNAAIA ALNEKEIDGK TLAVSVARPR EEGPRRNSNY GGGNRGGYGN 101 NRGGGYGGGGN RGGGYGGGRD RY
- Show predicted peptides also

Delta Miss Sequence Start - End Observed Mr (expt) Mr(calc) Nlss sequence
1 R.SKOFGFVEMPNDEEGNAAIAALNEK.E Oxidation (M) (<u>Ions score 70</u>)
0 K.GFGFVEMPNDEEGNAAIAALNEK.E Oxidation (M) (<u>Ions score 50</u>)
1 K.GFGFVEMPNDEEGNAAIAALNEKEIDGK.T Oxidation (M) (<u>Ions score 39</u>)
1 K.GFGFVEMPNDEEGNAAIAALNEKEIDGK.T Oxidation (M) (<u>Ions score 14</u>) 2652.8632 2653.2330 2437.9462 2438.1060 2980.1272 2980.3760 -0.3698 -0.1598 -0.2488 1.1852 - 65 - 65 - 70 - 70 885.2950 813.6560 994.3830 2981.5612 2980.3760 43 994.8610 (PO) 1 (wdd) 250 -0.5 Error Error -0 0 00 3000 2400 Mass (Da) RMS error 217 ppm 2700 2700 2800 2400 2500 2600 2800 2900 2500 2600 2900 3000 RMS error 217 ppm Mass (Da) YP_100003 122 aa linear BCT 26-APR-2009 putative RNA-binding protein [Bacteroides fragilis YCH46]. YP_100003 YP_100003.1 GI:53714011 Project:13067 REFSEQ: accession NC_006347.1 LOCUS DEFINITION ACCESSION VERSION DBLINK DBSOURCE Bacteroides fragilis YCH46 SOURCE Bacteroides fragilis YCH46 Bacteria; Bacteroidets; Bacteroidia; Bacteroidaes; Bacteria; Bacteroidets; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 122) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707 ORGANISM REFERENCE AUTHORS TITLE JOURNAL Proc. Natl. Acad. Sci. U.S.A. 191 (317) (327) 15465707 2 (residues 1 to 122) NCBI Genome Project Direct Submission Submitted (01-0CT-2004) National Center for Biotechnology PUBMED REFERENCE CONSRTM TITLE JOURNAL Information, NIR, Bethesda, MD 20894, USA 3 (residues 1 to 122) Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T. Direct Submission REFERENCE AUTHORS TITLE Submitted (20-APR-2004) Kitasato Institute for Life Sciences, JOURNAL Justices (20-AR-2009) Altasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan PROVISIONAL <u>REFERO</u>: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD49469</u>. Method: conceptual translation. COMMENT FEATURES Location/Qualifiers Location/Qualifiers
1..122
/organism="Bacteroides fragilis YCH46"
/strain="YCH46"
/db_xref="taxon:295405"
1..122
/product="putative RNA-binding protein"
/calculated_mol_wt=12770
2..75 source Protein Region 2..75 2..75 /region_name="RRM" /note="RRM (RNA recognition motif), also known as RED (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes

(MATRIX) SCIENCE/ Mascot Search Results

User	: LAKSHMY MANICKAN
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 6103
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6103) 10 RH24 01 1296.d\SSP (6103) 10 RH24 01 1296.mgf
Database	: NCBInr 20090522 (8876587 sequences; 3036162093 residues)
Taxonomy	: Bacteria (Eubacteria) (4773688 sequences)
Timestamp	: 30 May 2009 at 10:57:36 GMT
Protein hits	: gi 53714574 lactoylglutathione lyase and related protein [Bacteroides fragilis YCH46]
	gi 126496 RecName: Full=Lysostaphin; AltName: Full=Glycyl-glycine endopeptidase; Flags: Precursor

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 56 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

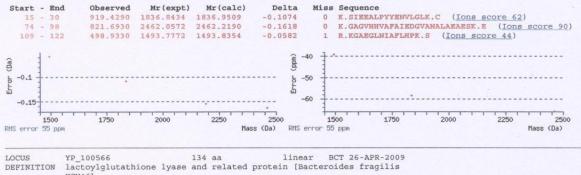
40 Mumber of Hits 10 10 10 0 10 0 0 0		40 80	120 Probabilit	150 20 JSS Zong Mowse S						
Peptid	le Sum	mary Repo	ort							
Form	nat As	Peptide Sum	nmary	-						Help
		Significance	threshold p<	0.05	Max ni	mber	of hits	AUTO		
		-	oring @ Mud							Show sub-sets 0
										-
		Show pop-u	ps @ Suppre	ss pop-ups	Sort una	assign	ed Dech	easing Scor	e .	Require bold red
Selec	t All	Select None	e Sear	ch Selected	Erro	or tole	rant			
		-				n tone	ram			
1.	gi 53*		ass: 14857	Score: 1			matche			0.85
-			ne lyase an this hit in	Charles and the second s			roides	tragilis	YCH4	6]
	CHECK	co merade	curs nic i	a crior cor	cranc bea	ii Ch				
	Query		Mr (expt)	Mr (calc)	Delta 1	Miss	Score	Expect R	lank	Peptide
2	154		1493.7772		-0.0582	1	44	1	1	R.KGAEGLNIAFLHPK.S
2					-0.1074	0	62	0.015	1	K.SIEEALPYYENVLGLK.C
1	241	821.6930	2462.0572	2462.2190	-0.1618	9	90 1	L.7e-05	1	K.GAGVHHVAFAIEDGVANALAEAESK.E
2.	gi 120 RecNar		s: 51656 sostaphin; ;	Score: 64 AltName: Fu			atched: cine en		AI: 0 ase;	.06 Flags: Precursor
기 되 모 	RecNar Check Query 161 209 Protei gi[15] lysost gi[32] RecNar	ne: Full=Lyn to include Observed 819.8350 1023.0460 Ins matching 8047 Mass caphin (ttg 87967 Maine: Full=Lyn	sostaphin; i this hit in Mr(expt) 1637.6554 2044.0774 g the same s: 42213 start codor ss: 53058 sostaphin; i	AltName: Fu n error tol. Mr (calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu	ll=Glycyl erant sea Delta -0.1342 -0.8460 ides: Queri Queri ll=Glycyl	-glyc nrch Miss 0 0 0 .es ma ies m -glyc	score 37 27 atched: matched	dopeptida Expect R 3.6 65 2 : 2 dopeptida	ase; tank 1 1	
기 되 모 	RecNar Check Query 161 209 Protei gi[15] lysost gi[32] RecNar	ne: Full=Lyn to include Observed 819.8350 1023.0460 Ins matching 8047 Mass caphin (ttg 87967 Maine: Full=Lyn	sostaphin; i this hit in Mr(expt) 1637.6554 2044.0774 g the same i s: 42213 start codo ss: 53058	AltName: Fu n error tol. Mr (calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu	ll=Glycyl erant sea Delta -0.1342 -0.8460 ides: Queri Queri ll=Glycyl	-glyc nrch Miss 0 0 0 .es ma ies m -glyc	score 37 27 atched: matched	dopeptida Expect R 3.6 65 2 : 2 dopeptida	ase; tank 1 1	Flags: Precursor Peptide K.SESASFTPNTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M)
기 되 Peptid	RecNar Check Query 161 209 Protei gi[15] lysost gi[32] RecNar	ne: Full=Lyn to include Observed 819.8350 1023.0460 Ins matching 8047 Mass caphin (ttg 87967 Maine: Full=Lyn	sostaphin; i this hit in Mr (expt) 1637.6554 2044.0774 g the same i s: 42213 start codor ss: 53058 sostaphin; i signed to pr Mr (expt)	AltName: Fu n error tol. Mr (calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu cotein hits: Mr (calc)	ll=Glycyl erant sea Delta -0.1342 -0.8460 ides: Queri Queri ll=Glycyl	-glyc rch Miss 0 0 es ma ries m -glyc	sine en 37 27 atched: matched sine en means r	dopeptida Expect R 3.6 65 2 : 2 dopeptida no match)	ase; ase;	<pre>Flags: Precursor Peptide K.SESASFTPHTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor</pre>
기 되 bitgeq 모	RecNar Check Query 161 209 Protei gi[153 lysost gi[323 RecNar le matc Query 164	ne: Full=Ly, to include 0bserved 919.8350 1023.0460 Ins matching 2047 Mas 2047 Mas 2057 Ma me: Full=Ly, thes not ass 0bserved 550.9000	sostaphin; i this hit i: Mr(expt) 1637.6554 2044.0774 g the same s: 42213 start codor ss: 53058 sostaphin; i signed to pr Mr(expt) 1699.7854	AltName: Fu n error tole Mr(calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu cotein hits: Mr(calc) 1699.8814	<pre>ll=Glycyl erant sea Delta -0.1342 -0.8460 ides: Queri Queri ll=Glycyl (no det: Delta -0.0960</pre>	-glyc arch Miss 0 0 0 es ma ies m -glyc ails 1 Miss 0	sine en 37 27 atched: means r Score 42	dopeptida Expect R 3.6 65 2 : 2 dopeptida no match) Expect 1.5	ase; tank 1 1 ase; Rank 1	<pre>Plags: Precursor Peptide K.SESASFTPNTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor Peptide ANVAEINNIIGEIEGK</pre>
기 모 bitgeq 학	RecNar Check Query 161 209 Protei gi[153 1ysost gi[326 RecNar de mato Query 164 167	ne: Full=Ly, to include Observed S19.8350 1023.0460 ins matching 1047 Mass caphin (ttg 27967 Maine: Full=Ly, thes not ass Observed S50.9000 358.2650	sostaphin; i this hit in Mr(expt) 1637.6554 2044.0774 g the same start codo start codo start codo sostaphin; i igned to pr Mr(expt) 1699.7854 1715.7114	AltName: Fu n error tol Mr(calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu Cotein hits: Mr(calc) 1699.8814 1715.8777	ll=Glycyl erant sea Delta -0.1342 -0.8460 ides: Queri Queri ll=Glycyl i (no det: Delta -0.0560 -0.1662	-glyc urch Miss 0 0 0 es ma dies m -glyc ails 1 Miss 0 2	sine en 37 27 atched: means r Score 42 41	dopeptida Expect R 3.6 65 2 2 2 2 2 2 dopeptida to match) Expect 1.5 1.8	ase; ase; Rank 1 1	<pre>Plags: Precursor Peptide K.SESASFTPNTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor Peptide ANVASINNIIGSIEGK ELLNKNHYGMDRVK</pre>
기 되 bitgeq 모 고 고	RecNar Check Query 161 209 Protes gi[155 1ysost gi[326 RecNar le mato Query 164 167 175	me: Full=Ly, to include Observed S19.8350 1023.0460 Ins matching 1047 Mass caphin (ttg 77967 Mai me: Full=Ly, Thes not ass Observed S50.9000 S58.8639 616.5650	sostaphin; i this hit in Mr(expt) 1637.6554 2044.0774 g the same is s: 42213 start codor s: 42213 start codor s: 53058 sostaphin; i figned to pr Mr(expt) 1699.7854 1715.7114 1846.6732	AltName: Fu n error tol. Mr(calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu cotein hits: Mr(calc) 1699.8814 1715.8777 1846.8479	11=G1ycy1 erant sea -0.1342 -0.8460 ides: Queri Queri 11=G1ycy1 : (no det: Delta -0.0960 -0.1662 -0.1747	-glyc rch Miss 0 0 0 es ma 	score 37 27 atched: means r Score 42 41 30	dopeptida Expect R 3.6 65 2 2 2 2 2 2 2 dopeptida 10 match) Expect 1.5 1.6 16	ase; tank 1 1 see; Rank 1 1	<pre>Plags: Precursor Peptide K.SESASFTPNTDIITR.T R.MVNSPSNSTAQDPMPPLK.S + 2 Oxidation (M) Plags: Precursor Peptide ANVABIMNIIGEIEGK ELLMKNHYGMDRVK MKQEAEANABADKQER</pre>
ন ঘ ঘ ঘ ঘ ঘ ঘ ঘ	RecNar Check Query 161 209 Proted gi[15] 1ysost gi[324 RecNar le matc Query 164 167 175 108	ne: Full=Ly, to include Observed S19.8350 1023.0460 ins matching 3047 Mass caphin (ttg 37967 Mass arger Mass me: Full=Ly, observed S50.9000 S58.9639 616.5650 374.4570	sostaphin; i this hit in Mr (expt) 1637.6554 2044.0774 g the same is s: 42213 start codor s: 53058 sostaphin; i signed to pr Mr (expt) 1699.7854 1715.7114 1846.6732 1120.3492	AltName: Fu n error tol Mr (calc) 1637.7897 2044.9234 set of pept Score: 64 al Score: 64 AltName: Fu rotein hits: Mr (calc) 1699.8814 1715.8777 1846.8479 1121.5135	ll=Glycyl erant sea -0.1342 -0.8460 ides: Queri Cueri ll=Glycyl (no det: Delta -0.0962 -0.1747 -1.1643	-glyc arch Miss 0 0 0 es ma .es ma .glyc ails 1 Miss 0 2 2 0	score 37 27 atched: matched ine en means r Score 42 41 30 29	dopeptida Expect R 3.6 65 2 2 2 2 dopeptida 10 match) Expect 1.5 1.6 16 22	ase; tank 1 1 Rank 1 1 1 1	<pre>Plags: Precursor Peptide K.SESASFTPHTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor Peptide ANVAELNNIIGEIEGK ELLNKNHYGMDRVK MKQEAENAREADEQER ASVGMNAAETE + Oxidation (M)</pre>
ন ঘ ঘ ঘ ঘ ঘ ঘ ঘ	RecNar Check Query 161 209 Protes gi[15] lysost gi[32] RecNar le matc Query 164 167 175 108 205	ne: Full=Ly, to include 0bserved 919.8350 1023.0460 ins matchin, 3047 Mass caphin (ttg 37967 Mas caphin (ttg 37967 Mas caphin (ttg 37967 Mas caphin (ttg 37967 Mas caphin (ttg 360, 3000 850, 9000 858, 8636 616, 5650 374, 4570 679, 2120	sostaphin, i this hit i Mr(expt) 1637.6554 2044.0774 g the same i s: 42213 start codo ss: 53058 sostaphin, i signed to pr Mr(expt) 1699.7854 1715.7114 1946.6732 1120.3492 2034.6142	AltName: Fu n error tol Mr (calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu cotein hits: Mr (calc) 1699.8814 1715.6777 1846.8479 1121.5135 2034.0204	ll=Glycyl erant sea _0.1342 _0.8460 // ides: Queri ll=Glycyl (no det: _0.1960 _0.0960 _0.0960 _0.1747 _1.1643 _0.5938	-glyc arch Miss 0 0 0 es ma 	score 37 27 atched: means r score 42 41 30 29 29	dopeptida Expect R 3.6 65 2 : 2 dopeptida io match) Expect 1.5 1.8 16 22 17	ase; tank 1 1 1 Rank 1 1 1 1	<pre>Plags: Precursor Peptide K.SESASPTPNTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor Peptide ANVAEIMNIIGEIEGK ELLMKINHYGMDRVK MKQEAEAANAEAKQER ASVGMNAEITK + Oxidation (M) LIAEEDAQRVIVFCNTR</pre>
ন ঘ ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব	RecNar Check Query 161 209 Proted gi[15: lysost gi[32: RecNar de matc Query 164 167 165 108 205 184	ne: Full=Ly, to include 0bserved 819.8350 1023.0460 Ins matching 0047 Mass aphin (ttg 87967 Ma me: Full=Ly, thes not ass 0bserved 850.9000 858.6639 616.5650 034.4570 679.2120 645.0580	sostaphin; i this hit i Mr(expt) 1637.6554 2044.0774 g the same s: 42213 start codor ss: 53058 sostaphin; i signed to pr Mr(expt) 1699.7854 1715.7114 1846.6732 1120.3492 2034.6142 1932.1522	AltName: Fu n error tol Mr(calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu Totein hits: Mr(calc) 1699.8814 1715.8777 1846.8479 1121.5135 2034.0204 1930.9611	<pre>ll=Glycyl erant sea Delta -0.1342 -0.8460 ides: Queri Queri ll=Glycyl (no det: Delta -0.0960 -0.1662 -0.1747 -1.1643 0.5538 1.1911</pre>	-glyc wiss 0 0 0	store 37 27 atched: matched: means r Score 42 41 30 29 29 28	dopeptida 8xpect R 3.6 65 2 2 2 3 2 4 3 4 5 1.8 16 22 17 29	ase; tank 1 1 ase; Rank 1 1 1 1 1	<pre>Plags: Precursor Peptide K.SESASFTPNTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor Peptide ANVAEIMNIIGEIEGK ELLINKNHYGRDRVK MKQEMEANAEADKQER ASVGMMAAETR + Oxidation (M) LIAEEDAQRVIVFCNTR MWITNGPHADTLVVYAK + Oxidation (M)</pre>
्य य प्राय य य य य य य य	RecNar Check Query 161 209 Protei gil152 1ysost gil32 RecNar 164 167 175 164 167 175 108 208 208 208 208 208 208 208 208 208 2	ne: Full=Ly, to include 0bserved 319.8350 1023.0460 ins matching 2047 Mass caphin (ttg 27967 Maine: Full=Ly, thes not ass 0bserved 550.9000 958.8639 616.5650 374.4570 679.2120 645.0580 465.3710	sostaphin; i this hit i Mr(expt) 1637.6554 2044.0774 g the same i start codor set store sostaphin; i signed to pr Mr(expt) 1699.7854 1715.7114 1946.6732 1120.3492 2034.6142 1932.1522 1393.0912	AltName: Fu n error tol Mr (calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu Cotein hits: Mr (calc) 1699.8814 1715.8777 1846.8479 1121.5135 2034.0204 13930.9611 1392.6495	<pre>ll=Glycyl erant sea Delta -0.1342 -0.8460</pre>	-glyc wiss 0 0 0 es ma es ma cies m -glyc ails 0 2 2 0 1 0 1	store 37 27 atched: matched: means r 8core 42 41 30 29 29 28 28	dopeptida Expect R 3.6 65 2 2 2 2 2 2 2 2 2 2 2 2 2	ase; ase; Rank 1 1 1 1 1 1 1 1	<pre>Plags: Precursor Peptide K.SESASFTPNTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor Peptide ANVABINNIIGEIEGK ELLNKNHYGMDRVK MKQEAEANARADKQER ASVGNNAAETR + Oxidation (M) LIAEEDAQRVIVFCNTR MWITMGPHADTLVVYNK + Oxidation (M) NEEKYMWIHK + Oxidation (M)</pre>
ন ঘ ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব ব	RecNar Check Query 161 209 Protes gills: 1ysost RecNar 164 197 198 198 108 107 108 107 108 108 108 108 108 108 108 108 108 108	ne: Full=Ly, to include Observed S19.8350 1023.0460 Ins matching Other for the state appling the state rest of the state observed S50.9000 S58.8639 616.5650 374.4570 679.2120 645.3710 394.2260	sostaphin; i this hit in Mr(expt) 1637.6554 2044.0774 g the same is s: 42213 start codor s: 42213 start codor s: 53058 sostaphin; i rigned to pr Mr(expt) 1699.7854 1715.7114 1846.6732 1120.3492 2034.61422 1393.0912 1179.6562	AltName: Fu n error tol Mr(calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu cotein hits: Mr(calc) 1699.8814 1715.8777 1846.8479 1121.5135 20340.0201 1392.6496 1179.4835	11=G1ycy1 erant sea -0.1342 -0.8460 ides: Queri 11=G1ycy1 : (no det: Delta -0.0960 -0.1662 -0.1747 -1.1643 0.5938 1.1911 0.4416 0.1727	-glyc wiss 0 0 0	store 37 27 atched: matched: means r Score 42 41 30 29 29 28	dopeptida 8xpect R 3.6 65 2 2 2 3 2 4 3 4 5 1.5 1.8 16 22 17 29	ase; tank 1 1 ase; Rank 1 1 1 1 1	Plags: Precursor Peptide K.SESASFTPNTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor Peptide ANVABIMNIGEIEGK ELLMKNHYGMDRVK MKQEAEANAEADKQER ASVGMNAAETR + Oxidation (M) LIABEDAQRVIVFCNTR MWITNGPHADTLVVYAK + Oxidation (M) NEEKYMWIHK + Oxidation (M) LCMMSGGHVR + 2 Oxidation (M)
त रा	RecNar Check Query 161 209 Protei gil15: 1ysost gil322 RecNar 164 167 108 205 184 184 93 84	ne: Full=Ly, to include Observed S19.8350 1023.0460 ins matching 2047 Mass caphin (ttg 27967 Mas me: Full=Ly, thes not ass Observed S50.9000 358.7639 616.5650 374.4570 679.2120 645.0580 465.3710 394.2260 667.5230	sostaphin; i this hit i Mr (expt) 1637.6554 2044.0774 g the same is s: 42213 start codor s: 42213 start codor s: 5056 sostaphin; i bigned to pr Mr (expt) 1699.7854 1715.7114 1846.6732 1120.3492 2034.6142 1939.21522 1393.0912 1179.6562 1999.5472	AltName: Fu n error tol Kr (calc) 1637.7897 2044.9234 set of pept Score: 64 altName: Fu score: 64 AltName: Fu cotein hits: Mr (calc) 1699.8814 1715.8777 1846.8479 1121.5135 2034.0204 1392.6496 1179.4835 1999.9018	ll=Glycyl erant sea -0.1342 -0.8460 ides: Queri ll=Glycyl : (no det: Delta -0.960 -0.1662 -0.1747 -1.1643 0.5938 1.1911 0.4416 0.1727 -0.3546	-glyc wrch Misss 0 0 0 es ma sies m -glyc ails 0 2 2 0 1 0 1 0 1	score 37 27 atched: means r score 42 41 30 29 28 28 28 28 28 27	dopeptida Expect R 3.6 65 2 2 2 2 dopeptida 1.5 1.5 1.6 22 1.7 29 72 1e+02 26	<pre>ase; tank 1 1 1 ase; Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	<pre>Plags: Precursor Peptide K.SESASFTPHTDIITR.T R.MVNSPSNSTAQDPMPFLK.S + 2 Oxidation (M) Plags: Precursor Peptide ANVAEINMIIGEIEGK ELLNKNHYGMDRVK MKQEAEANAEADEQER ASVGMMAAETR + Oxidation (M) LIAEEDAQRVIVYCNTR MWITNGPHADTLVVYAK + Oxidation (M) NHEKYMMIK + Oxidation (M) LCMMSGGHVR + 2 Oxidation (M) MAVDGTDHDSPTLDQARR + Oxidation (M)</pre>
त त त त त य य य य य य य य य य य य य य य	RecNar Check Query 161 209 Protei gil153 Jiysost gil21 RecNar 164 167 175 108 205 184 93 84 93 84 93 94 94 94 94 94 94	me: Full=Ly, to include Deserved S19.8350 1023.0460 Ins matchin, 2047 Mass 2047 Mass 2	sostaphin; i this hit in Mr(expt) 1637.6554 2044.0774 g the same is s: 42213 start codor s: 42213 start codor s: 53058 sostaphin; i rigned to pr Mr(expt) 1699.7854 1715.7114 1846.6732 1120.3492 2034.61422 1393.0912 1179.6562	AltName: Fu n error tol Mr(calc) 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu cotein hits: Mr(calc) 1699.8814 1715.8777 1846.8479 1121.5135 20340.0201 1392.6496 1179.4835	11=G1ycy1 erant sea -0.1342 -0.8460 ides: Queri 11=G1ycy1 : (no det: Delta -0.0960 -0.1662 -0.1747 -1.1643 0.5938 1.1911 0.4416 0.1727	-glyc wrch Miss 0 0 0 es ma -glyc ails 0 2 2 0 1 0 1 0	score 37 27 atched: means r score 42 41 30 29 29 28 28 28	dopeptida Expect R 3.6 65 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre>ase; tank 1 1 1 ase; Rank 1 1 1 1 1 1 1 1 1 1 1</pre>	Plags: Precursor Peptide K.SESASFTPNTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor Peptide ANVABIMNIGEIEGK ELLMKNHYGMDRVK MKQEAEANAEADKQER ASVGMNAAETR + Oxidation (M) LIABEDAQRVIVFCNTR MWITNGPHADTLVVYAK + Oxidation (M) NEEKYMWIHK + Oxidation (M) LCMMSGGHVR + 2 Oxidation (M)
य र र र र र र र र र र र र र र र र र र र	RecNar Check Query 161 209 Protei gil15: 1ysost gil322 RecNar 164 167 108 205 184 184 93 84	me: Full=Ly, to include Deserved S19.8350 1023.0460 Ins matchin, 2047 Mass 2047 Mass 2	sostaphin; i this hit i Mr (expt) 1637.6554 2044.0774 g the same start codor ss: 53058 sostaphin; i signed to pr Mr (expt) 1699.7854 1715.7114 1846.6732 1120.3492 2034.6142 1932.1522 1393.0912 1179.6562 1999.5472 2079.1702	AltName: Fu n error tol 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu Totein hits: Mr(calc) 1699.8814 1715.8777 1846.8479 1121.5135 2034.0204 1930.9611 1392.6496 1179.4835 199.9018 1907.9476 2079.9578	11=Glycyl erant sea -0.1342 -0.8460 ides: Queri Queri 11=Glycyl (no det: Delta -0.0960 -0.1662 -0.1747 -1.1643 0.5938 1.9311 0.4416 0.1727 -0.3546 -0.8785	-glyc wrch Misss 0 0 0	store 37 27 atched: metched: means r 8 28 28 28 28 28 28 28 28 27 27 27	dopeptida Expect R 3.6 65 2 2 2 dopeptida 10 match) Expect 1.5 1.8 16 22 17 29 72 1e+02 26 81	<pre>ase; tank 1 1 1 ase; Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	<pre>Plags: Precursor Peptide K.SESASFTPNTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor Peptide ANVABINNIGEIEGK ELLNKNHYGRDRVK MKQEAEANAEADKQER ASVGNMAETK + Oxidation (M) LIAEEDAQRVIVFCNTR MWITNGPHADTLVVYAK + Oxidation (M) NEEKYMMIHK + Oxidation (M) LCMMSGGHVR + 2 Oxidation (M) MKDGTHDBFTLDQARR + Oxidation (M) EVTLSFSEALAVGDDSIR</pre>
त त त त त त त त न त त न त त त त त त त त	RecNard Check 200 Protei 209 Protei 209 Protei 209 164 167 164 167 165 184 205 205 205 205 184 93 84 197 121 213	ne: Full=Ly, to include S19.8350 1023.0460 ins matching 2047 Mass caphin (ttg 27967 Mass caphin (ttg 2796 Mass caphin (sostaphin; i this hit i Mr (expt) 1637.6554 2044.0774 g the same start codor ss: 53058 sostaphin; i signed to pr Mr (expt) 1699.7854 1715.7114 1846.6732 1120.3492 2034.6142 1932.1522 1393.0912 1179.6562 1999.5472 2079.1702	AltName: Fu n error tol 1637.7897 2044.9234 set of pept Score: 64 n) Score: 64 AltName: Fu Totein hits: Mr (calc) 1699.8814 1715.8777 1846.8479 1121.5135 2034.0204 1392.6496 1179.4835 1999.9018 1999.9018 1997.9476 2079.9578 2300.1185	ll=Glycyl erant sea -0.1342 -0.8460 ides: Queri Ouer ll=Glycyl (no det: Delta -0.0960 -0.1662 -0.1747 -1.1643 0.5938 1.1911 0.4416 0.1727 -0.3545 -0.8785 -0.8785	-glyc rch Miss 0 0 0 es ma glyc miss 0 2 2 0 1 0 1 0 1 0 1	store 37 27 atched: matched: ine en means r 8core 42 41 30 29 28 28 28 28 28 28 27 27 26	dopeptida Expect R 3.6 65 2 2 2 2 dopeptida 10 match) Expect 1.5 1.8 16 22 17 29 72 1e+02 26 81 47	ase; tank 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>Plags: Precursor Peptide K.SESASFTPNTDIITR.T R.MVNSFSNSTAQDPMPFLK.S + 2 Oxidation (M) Flags: Precursor Peptide ANVAEIMNIIGEIEGK ELLMKNHYGMDEVK MKQGAEMARAEDRQER ASVGMMAAETR + Oxidation (M) LIAREDAQRIVFCVTR MWITNGPHADTLVVYAK + Oxidation (M) NEEKYMMIHK + Oxidation (M) NEEKYMMIHK + Oxidation (M) MAVDGTDHDSFTLDQARR + Oxidation (M) MAVDGTDHDSFTLDQARR + Oxidation (M) EVTLSFSEALAVQDDSIR NQGMEQRYANEIVGANMR</pre>

Protein View

Match to: gi |53714574 Score: 195 lactoylglutathione lyase and related protein [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6103) 10_RH24_01_1296.d\SSP (6103) 10_RH24_01_1296.mgf

Nominal mass (M_r) : 14857; Calculated pI value: 5.50 NCBI BLAST search of <u>gi[53714574</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gi 60682596 from Bacteroides fragilis NCTC 9343 gi 253565078 from Bacteroides sp. 3 2 5 gi 265765962 from Bacteroides sp. 2 1 16 gi 60494030 from Bacteroides fragilis YCH46 gi 60494030 from Bacteroides fragilis NCTC 9343 gi 251946543 from Bacteroides sp. 3 2 5 gi 263253630 from Bacteroides sp. 2 1 16


Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **41**%

Matched peptides shown in Bold Red

1 MKISHIEHLG IAVKSIERAL PYYENVLGLK CYNIETVEDQ KVRTAFLKVG 51 DTKIELLEPT CPESTIAKFI ENKGAGVHHV APAIEDGVAN ALABABSKEI 101 RLIDKAPRKG ABGLNIAFLH PKSTLGVLTE LCEH

Show predicted peptides also

Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass

DEFINITION	lactoylglutathione lyase and related protein [Bacteroides fragilis YCH46].
ACCESSION	YP 100566
VERSION	YP 100566.1 GI:53714574
DBLINK	Project:13067
DBSOURCE	REFSEQ: accession NC 006347.1
KEYWORDS	
SOURCE	Bacteroides fragilis YCH46
ORGANISM	Bacteroides fragilis YCH46
	Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
	Bacteroidaceae; Bacteroides.
REFERENCE	1 (residues 1 to 134)
AUTHORS	Kuwahara, T., Yamashita, A., Hirakawa, H., Nakayama, H., Toh, H., Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y.
TITLE	Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation
JOURNAL	Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004)
PUBMED	15466707
REFERENCE	2 (residues 1 to 134)
CONSRTM	NCBI Genome Project
TITLE	Direct Submission
JOURNAL	Submitted (01-OCT-2004) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA
REFERENCE	3 (residues 1 to 134)
AUTHORS	Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T.
TITLE	Direct Submission
JOURNAL	Submitted (20-APR-2004) Kitasato Institute for Life Sciences,
	1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
COMMENT	PROVISIONAL REFSEO: This record has not yet been subject to final
	NCBI review. The reference sequence was derived from BAD50032.
	Method: conceptual translation.
FEATURES	Location/Qualifiers

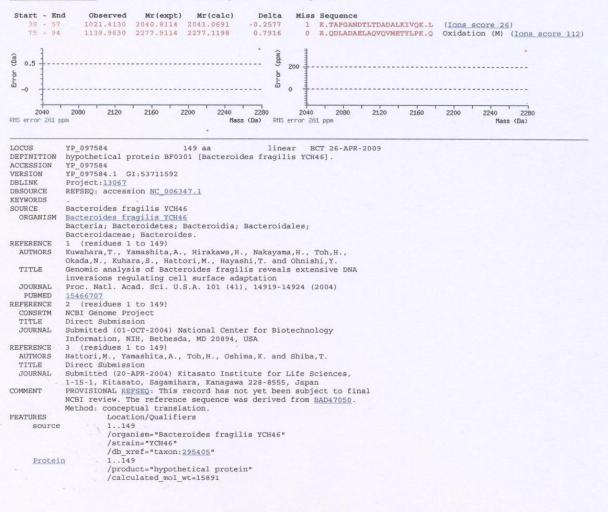
ource	1134
	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db_xref="taxon:295405"
Protein	1134
	/product="lactoylglutathione lyase and related protein" /calculated_mol_wt=14561
legion -	5133
	/region_name="Glyoxalase"
	/note="Glyoxalase/Bleomycin resistance protein/Dioxygenase
	superfamily; cl00411"
	/db_xref="CDD: <u>140684</u> "
DS	1134
	/locus_tag="BF3288"
	/coded_by="NC_006347.1:37377633738167"
	/note="similar to gp:AE016932_217 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 98 in 134 aa,
	BLASTP E(): 5e-71"
	/transl table=11
	/db xref="GeneID:3082133"

User : LAKSHMY MANICKAN Email : lakshmy.manickan@unn.ac.uk Search tile : SSP 6206 MS data file : D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6206) 10_RJ13_01_1386.d\SSP (6206) 10_RJ13_01_1386.mgf Database : NCEInr 20090522 (8876587 sequences; 3036162033 residues) Taxonomy : Bacteria (Bubacteria) (4773688 sequences) Timestamp : 30 May 2009 at 10:59:43 GMT Protein hits : gi_j5711592 hypothetical protein BF0301 [Bacteroides fragilis YCH46] gi_143945 Fe-superoxide dismutase [Bacteroides fragilis]
Probability Based Mowse Score
lons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 56 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.
st so
Peptide Summary Report
Format As Peptide Summary
Significance threshold p< 0.05 Max. number of hits AUTO
Standard scoring MudPIT scoring Store or expect cut-off Show sub-sets
Show pop-ups @ Suppress pop-ups @ Sort unassigned Decreasing Score I Require bold red
Select All Select None Search Selected Ferror tolerant
1. <u>gi[53711592</u> Mass: 16013 Score: 136 Queries matched: 2 emPAI: 0.47 hypothetical protein BF0301 [Bacteroides fragilis YCH46]
2. <u>gi[143945</u> Mass: 21736 Score: 100 Queries matched: 3 emPAI: 0.15 Fe-superoxide dismutase [Bacteroides fragilis] Check to include this hit in error tolerant search
Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
239 792.5960 2374.7662 2375.1757 -0.4095 0 27 25 1 K.HLQTYVNNLNSLVPGTEYEGK.T 245 878.6220 2632.8442 2633.3125 -0.4684 0 (25) 35 1 K.LPYANNALEPVISQQTIDYHYGK.H
✓ 246 878.6530 2632.9372 2633.3125 -0.3754 0 73 0.00055 1 K.LPYANNALEPVISQQTIDYHYGK.H
Proteins matching the same set of peptides: gi[53307] Mass: 21715 Score: 100 Queries matched: 3 superoxide dismutase [Bacteroides fragilis] gi[53713818] Mass: 23124 Score: 100 .Queries matched: 3 superoxide dismutase [Bacteroides fragilis YCH46] gi[60582036] Mass: 21758 Score: 100 Queries matched: 3 superoxide dismutase [Fe] [Bacteroides fragilis NCTC 9343]
Peptide matches not assigned to protein hits: (no details means no match) Ouery Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 214 700.8960 2099.6662 2100.1262 -0.4601 2 37 2.6 1 YLMVGGDVVDPRVAAQVRR
✓ 143 778.5110 2332.5112 2333.1798 -0.6686 1 35 11 1 MIDNIQNVTODQLRTFIER
235 767.2700 2298.7882 2299.2859 -0.4978 2 31 9.5 1 SGTIKVIGGNLTRNVTITQEAR 153 549.2230 1644.6472 1643.8519 0.7953 0 27 39 1 AFVNPDGTVAEVQVAR
V 153 549.2230 1644.6472 1643.6519 0.7933 0 27 35 1 AUMOSTRATIVE V 209 694.9150 2081.7232 2080.9338 0.7894 0 27 29 1 TGTGESEEAEEAVGFWQVR
T 135 742.1990 1482.3834 1481.6425 0.7410 0 26 36 1 TMMGLQNCLNQR + Oxidation (M) Section (M) A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
✓ <u>60</u> 396.1590 1185.4552 1184.5509 0.9043 1 26 1.2e+02 1 ANWEGHGKMR ✓ 138 757.2680 2268.7822 2268.2114 0.5708 0 26 83 1 KPHLIAILVGNDGGSETYVASK
Image: 138 757.2680 2268.7822 2268.2114 0.5708 0 26 83 1 KPHLIAILVGNDGGSETYVASK Image: 138 666.3070 1995.8992 1994.9863 0.9128 2 25 1.3e+02 1 AGGFGEAAARRFEWPAFR
184 940.8210 2819.4412 2820.4004 -0.9592 0 25 93 1 DVIALAASVALSHNTYDAAVFLGVCDK

Protein View

Match to: gi 53711592 Score: 136 hypothetical protein BF0301 [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6206) 10_RJ13_01_1386.d\SSP (6206) 10_RJ13_01_1386.mgf

Nominal mass (M_r): 16013; Calculated pI value: 5.67 NCBI BLAST search of <u>gi 53711592</u> against nr Unformatted <u>sequence string</u> for pasting into other applications


Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: gil50679842 from Bacteroides fragilis NCTC 9343 gil253564357 from Bacteroides sp. 3_2_5 gil265764976 from Bacteroides fragilis YCH46 gil50491276 from Bacteroides fragilis NCTC 9343 gil251948133 from Bacteroides sp. 3_2_5 gil26324360 from Bacteroides sp. 3_2_5 gil263254360 from Bacteroides sp. 2_1_16

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 26%

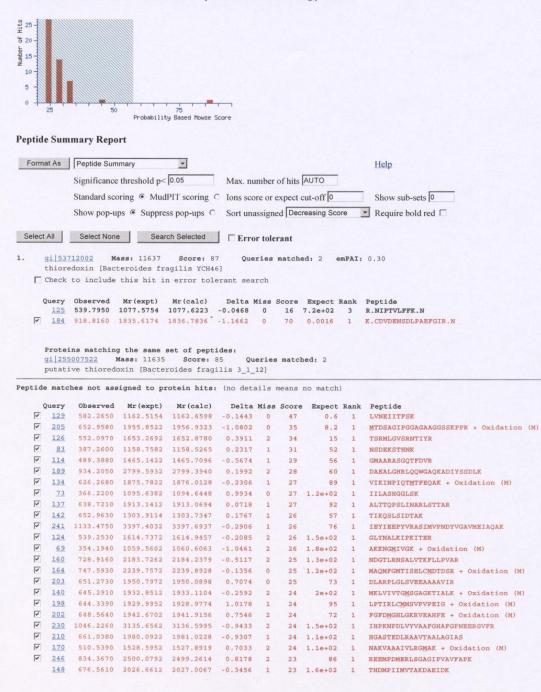
Matched peptides shown in Bold Red

1 MDLFERVSED IKNAMKAKDK VALETLRNVK KFFLEAKTAP GANDTLTDAD 51 ALKIYOKLVK QGKDAAEIYI GQGRODLADA ELAQVQVMET YLPKOMSAEE 101 LEAALKEIIA EVGATSGKDM GKVMGVASKK LAGLAEGRAI SAKVKELLG

Show predicted peptides also

Region

CDS


5..148
/region_name="GatB_Ygey"
/note="GatB domain, cll1497"
/db_xref="CDD:142702"
1..149
/locus_tag="BF0301"
/coded bp="complement(NC_006347.1:332834..333283)"
/note="similar to gp:AE016940_144 [Bacteroides
thetaiotaomicron VPI-5482], percent identity 91 in 135 aa,
BLASTP E(): le-62"
/transl_table=11
/db_xref="GeneID:3082638"

(MATRIX) SCIENCE/ Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 6301
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP 6301 (1000) RN13 01 1592.d\SSP 6301 (1000) RN13 01 1592.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 13:46:45 GMT
Protein hits	: gi 53712002 thioredoxin [Bacteroides fragilis YCH46]

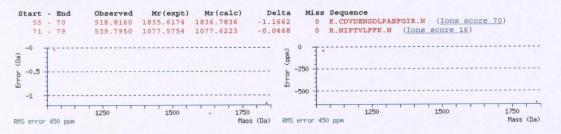
Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Protein View

Match to: gi|53712002 Score: 87 thioredoxin [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP 6301 (1000)_RN13_01_1592.d\SSP 6301 (1000)_RN13_01_1592.mgf

Nominal mass (M_r) : **11637**; Calculated pI value: **4.51** NCBI BLAST search of <u>gi [53712002</u> against nr Unformatted <u>sequence string</u> for pasting into other applications


Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gi 260680203</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 265765340</u> from <u>Bacteroides sp. 2 1 16</u> <u>gi 52214867</u> from <u>Bacteroides fragilis YCH46</u> <u>gi 50491637</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi 251947739</u> from <u>Bacteroides sp. 3 2 5</u> <u>gi 263254724</u> from <u>Bacteroides sp. 2 1 16</u>

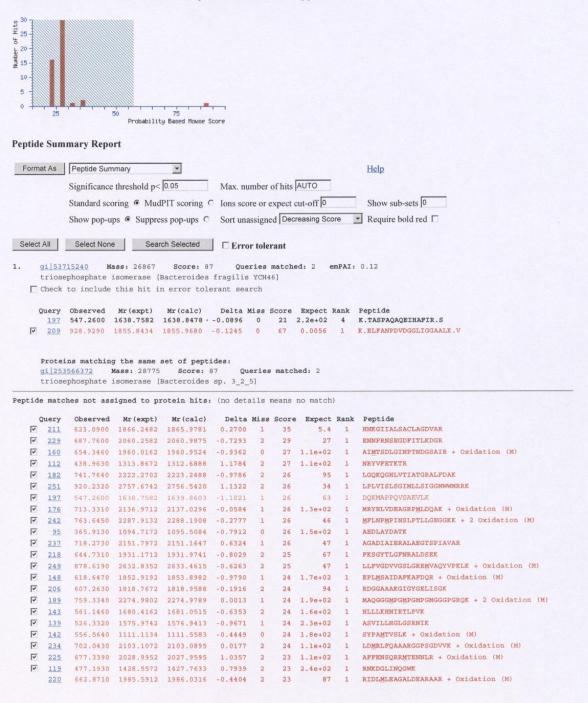
Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 24%

Matched peptides shown in Bold Red

1 MALEITDNNF KEILAEGSPV VIDFWAPWCG PCKMVGPIID ELAKEYEGKV 51 IMGKCDVDEN SDLPAEFGIR NIPTVLFFKN GELVDKQVGA VGKPAFVEKV 101 EKLL

Show predicted peptides also

LOCUS	YP 097994 104 aa linear BCT 26-APR-2009							
DEFINITION	thioredoxin [Bacteroides fragilis YCH46].							
ACCESSION	YP 097994							
VERSION	YP 097994.1 GI:53712002							
DBLINK	Project: 13067							
DBSOURCE	REFSEQ: accession NC 006347.1							
KEYWORDS								
SOURCE	Bacteroides fragilis YCH46							
ORGANISM	Bacteroides fragilis YCH46							
	Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;							
	Bacteroidaceae; Bacteroides.							
REFERENCE	1 (residues 1 to 104)							
AUTHORS	Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H.,							
	Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y.							
TITLE	Genomic analysis of Bacteroides fragilis reveals extensive DNA							
	inversions regulating cell surface adaptation							
JOURNAL	Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004)							
PUBMED	15466707							
REFERENCE	2 (residues 1 to 104)							
CONSRTM	NCBI Genome Project							
TITLE	Direct Submission							
JOURNAL	Submitted (01-OCT-2004) National Center for Biotechnology							
	Information, NIH, Bethesda, MD 20894, USA							
REFERENCE	3 (residues 1 to 104)							
AUTHORS	Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T.							
TITLE	Direct Submission							
JOURNAL	Submitted (20-APR-2004) Kitasato Institute for Life Sciences,							
	1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan							
COMMENT	PROVISIONAL REFSEQ: This record has not yet been subject to final							
	NCBI review. The reference sequence was derived from <u>BAD47460</u> .							
	Method: conceptual translation.							
FEATURES	Location/Qualifiers							
source								
	/organism="Bacteroides fragilis YCH46"							
	/strain="YCH46"							
	/db_xref="taxon: <u>295405</u> "							


Protein	1104	
- A O O O AIT	/product="thioredoxin"	
	/calculated mol wt=11339	
Region	8101	
	/region_name="TRX_family"	
	/note="TRX family; composed of two groups: Group I, which	
	includes proteins that exclusively encode a TRX domain;	
	and Group II, which are composed of fusion proteins of TRX	
	and additional domains. Group I TRX is a small ancient	
	protein that alter the redox; cd02947"	
	/db_xref="CDD: <u>48496</u> "	
Site	order (29, 32)	
	/site_type="other"	
	/note="catalytic residues"	
	/db_xref="CDD: <u>48496</u> "	
CDS	1104	
	/locus_tag="BF0713" /coded_by="NC_006347.1:838887839201"	
	/note="similar to gp:AE016935_76 [Bacteroides	
	thetaiotaomicron VPI-5482], percent identity 81 in 104 aa,	
	BLASTP E(): 6e-47"	
	/transl table=11	
	/db xref="GeneID:3082512"	

(MATRIX) SCIENCE/ Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 6302
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6302) 100_RE17_01_1733.d\SSP (6302) 100_RE17_01_1733.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 16:30:06 GMT
Protein hits	: gi 53715240 triosephosphate isomerase [Bacteroides fragilis YCH46]

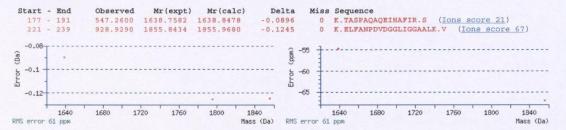
Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Protein View

Match to: gi|53715240 Score: 87 triosephosphate isomerase [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6302) 100_RE17_01_1733.d\SSP (6302) 100_RE17_01_1733.mgf

Nominal mass (M_r) : 26867; Calculated pI value: 5.14 NCBI BLAST search of <u>gi |53715240</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

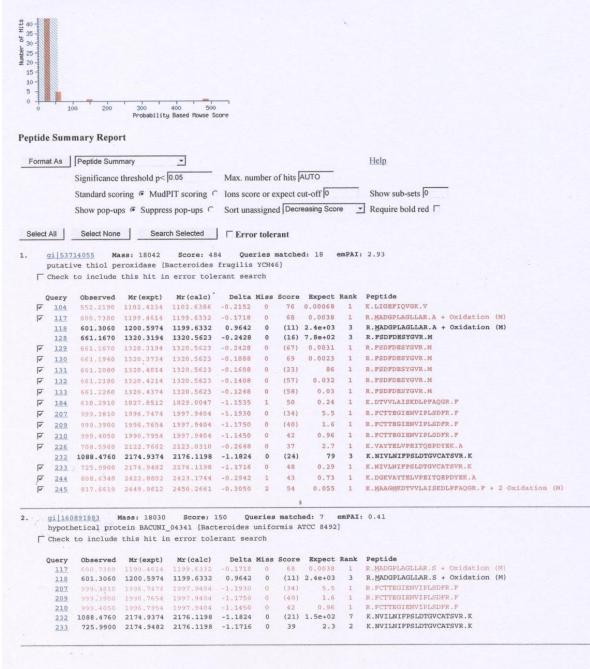

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: gi[s0683174 from Bacteroides fragilis NCTC 9343 gi[81313773 from Bacteroides fragilis NCTC 9343 gi[81824915 from Bacteroides fragilis gi[s2218105 from Bacteroides fragilis NCTC 9343]

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **13%**

Matched peptides shown in Bold Red

1 MRKNIVAGNW KMNKTLQEGI ALAKELNEAL ANEKPNCDVI ICTPFIHLAS 51 VTPLVDAAKI GVGAENCADK ESGAYTGEVS AAMVASTGAK YVILGHSERR 101 AYYGETVEIL KDKVKLALAN GLTPIPCIGE VLEEREANKQ NEVVAAQLAS 151 VFDLSAEDFS KIVLAYEPVW AIGTGKTASP AQAQEIHAFI RSAVAEKYGK 201 EIADNTSILY GGSCKPSNAK <u>ELFANPDVDG</u> GLIGGAALKV ADFKGIIDAF 251 N

Show predicted peptides also


LOCUS YP 101232 251 aa linear BCT 26-APR-2009 YP_101232 DEFINITION ACCESSION YP_101232.1 Project:13067 GI:53715240 VERSION DBLINK DBSOURCE REFSEQ: accession NC 006347.1 KEYWORDS Bacteroides fragilis YCH46 SOURCE Bacteroides fragilis YCH46 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; ORGANTSM Bacteroidaceae; Bacteroidaes; Bacteroidaceae; Bacteroida; Bacteroidaes; 1 (residues 1 to 251) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA REFERENCE AUTHORS TITLE inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) JOURNAL 15466707 2 (residues 1 to 251) PURMED REFERENCE NCBI Genome Project Direct Submission CONSRTM TITLE Submitted (01-OCT-2004) National Center for Biotechnology JOURNAL Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 251) REFERENCE Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T. Direct Submission AUTHORS TITLE Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan PROVISIONAL <u>REFERO</u>: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD50598</u>. Method: conceptual translation. JOURNAL COMMENT FEATURES Location/Qualifiers source 1..251 /organism="Bacteroides fragilis YCH46"

	/strain="YCH46"
	/db xref="taxon:295405"
Protein	1251
	/product="triosephosphate isomerase"
	/EC number="5.3.1.1"
	/calculated mol wt=26462
Region	5248
110	/region name="TIM"
	/note="Triosephosphate isomerase (TIM) is a glycolytic
	enzyme that catalyzes the interconversion of
	dihydroxyacetone phosphate and
	D-glyceraldehyde-3-phosphate. The reaction is very
	efficient and requires neither cofactors nor metal ions.
	TIM, usually; cd00311"
	/db xref="CDD:73362"
Site	order (9,11,96,167,173,213,232,234235)
	/site type="other"
	/note="substrate binding site"
	/db xref="CDD:73362"
Site	order(9,12,4547,49,52,65,83,8687,9899)
	/site_type="other"
	/note="dimer interface"
	/db_xref="CDD:73362"
Site	order(11,96,167)
	/site_type="other"
	/note="catalytic triad"
	/db_xref="CDD: <u>73362</u> "
CDS	1251
	/gene="tpiA"
	/locus_tag="BF3956"
	/coded_by="complement(NC_006347.1:45115824512337)"
	/note="Reversibly isomerizes the ketone sugar
	dihydroxyacetone phosphate to the aldehyde sugar
	glyceraldehyde-3-phosphate"
	/transl_table=11
	/db xref="GeneID:3085037"

User	: LAKSHMY MANICKAN
Email	: lakshmy.manickan@unn.ac.uk
Search title	: 6304 bf
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6302) 10_RJ3_01_1363.d\SSP (6302) 10_RJ3_01_1363.mgf
Database	: NCBInr 20090528 (8915381 sequences; 3049521622 residues)
Taxonomy	: Bacteria (Eubacteria) (4801653 sequences)
Timestamp	: 6 Jun 2009 at 11:57:12 GMT
Protein hits	: gi 53714055 putative thiol peroxidase [Bacteroides fragilis YCH46]
	gi 160891883 hypothetical protein BACUNI_04341 [Bacteroides uniformis ATCC 8492]
	gi 167762340 hypothetical protein BACSTE_00694 [Bacteroides stercoris ATCC 43183]
	gi 218130132 hypothetical protein BACEGG 01719 [Bacteroides eggerthii DSM 20697]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 56 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Protein View

Match to: gi|53714055 Score: 484 putative thiol peroxidase [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6302) 10_RJ3_01_1363.d\SSP (6302) 10_RJ3_01_1363.mgf

Nominal mass (M_r): 18042; Calculated pI value: 5.55 NCBI BLAST search of gi 53714055 against nr Unformatted sequence string for pasting into other applications

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gi[26566697 from Bacteroides sp. 2_5</u> <u>gi[265766326 from Bacteroides sp. 2_16</u> <u>gi[5049683 from Bacteroides fragilis YCH46</u> <u>gi[50495633 from Bacteroides fragilis NCTC 9343</u> <u>gi[251946162 from Bacteroides sp. 2_16</u> <u>gi[251946162 from Bacteroides fragilis NCTC 9343</u> <u>gi[251946162 from Bacteroides sp. 2_16</u>

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 68%

Matched peptides shown in Bold Red

1 MATTNFKGOP VKLIGEPIQV GKVAPDFELV KSDLSSFALK DLKGKNIVLN 51 iffsldtgvc atsvrkfnkm aagmedtvvl aiskdlpfag grfcttegte 101 nvifsdpref Sdpfdsygvr madgplagll aravvvigkd gkvaytelvp 151 eitgepdyek alaavk

Show predicted peptides also

Sort Peptides By @ Residue Number C Increasing Mass C Decreasing Mass

are .	- End	Observed	Mr (expt)	Mr(calc)	Delta	Miss	s Sequence
13	- 22	552.2190	1102.4234	1102.6386	-0.2152	0	K.LIGEFIQVGK.V (Ions score 76)
46	- 65	1088.4760	2174.9374	2176.1198	-1.1824	0	K.NIVLNIFPSLDTGVCATSVR.K (Ions score 24)
46 -	- 65	725.9900	2174.9482	2176.1198	-1.1716	0	K.NIVLNIFPSLDTGVCATSVR.K (Ions score 48)
70 -	- 92	817.6610	2449.9612	2450.2661	-0.3050	2	K.MAAGMKDTVVLAISKDLPFAQGR.F 2 Oxidation (M) (Ions score 54)
76	- 92	610.2910	1827.8512	1829.0047	-1.1535	1	K.DTVVLAISKDLPFAQGR.F (Ions score 50)
93 -	- 109	999.3810	1996.7474	1997.9404	-1.1930	0	R.FCTTEGIENVIPLSDFR.F (Ions score 34)
93 .	- 109	999.3900	1996.7654	1997.9404	-1.1750	0	R.FCTTEGIENVIPLSDFR.F (Ions score 40)
93	- 109	999.4050	1996.7954	1997.9404	-1.1450	0	R.FCTTEGIENVIPLSDFR.F (IONS SCORE 42)
110	- 120	661.1670	1320.3194	1320.5623	-0.2428	0	R.FSDFDESYGVR.M (Ions score 16)
110	- 120	561.1670	1320.3194	1320.5623	-0.2428	0	R.FSDFDESYGVR.M (Ions score 67)
110	- 120	661.1940	1320.3734	1320.5623	-0.1888	0	R.FSDFDESYGVR.M (Ions score 69)
110	- 120	661.2080	1320.4014	1320.5623	-0.1608	0	R.FSDFDESYGVR.M (Ions score 23)
110	- 120	661.2180	1320.4214	1320.5623	-0.1408	0	R.FSDFDESYGVR.M (Ions score 57)
110	- 120	661.2260	1320.4374	1320.5623	-0.1248	0	R.FSDFDESYGVR.M (Ions score 58)
121	- 132	600.7380	1199.4614	1199.6332	-0.1718	0	R.MADGPLAGLLAR.A Oxidation (M) (Ions score 68)
121	- 132	601.3060	1200.5974	1199.6332	0.9642	0	R.MADGPLAGLLAR.A Oxidation (M) (Ions score 11)
140	- 160	808.6340	2422.8802	2423.1744	-0.2942	1	K.DGKVAYTELVPEITQEPDYEK.A (Ions score 43)
143	- 160	708.5960	2122.7662	2123.0310	-0.2648	0	K.VAYTELVPEITQEPDYEK.A (Ions score 37)
1 7						1	
1					(udd)	-	
-					g	500 -	
-0 -					b	-	
-					Error	0 1	
1							
-1 -						-500	
1		1500	20	00	2500	+	1500 2000 2500
perce	400 ppm	1000	20			error 4	
A	tee blow			THE		21 1 C	

rr_100047 166 aa linear BC putative thiol peroxidase [Bacteroides fragilis YCH46]. YP_100047.1 GI:53714055 Project:13067 REFSEQ: accession LOCUS DEFINITION BCT 26-APR-2009 ACCESSION VERSION DBLINK REFSEQ: accession NC_006347.1 KEYWORDS . Bacteroides fragilis YCH46 <u>Bacteroides fragilis YCH46</u> Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; SOURCE ORGANISM Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteria; Bacteroides. 1 (residues 1 to 166) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) 15466707 2 (residues 1 to 166) NCBI Genome Project Direct Submission Submitted (01-0CT-2004) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 166) Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. REFERENCE AUTHORS TITLE JOURNAL PUBMED REFERENCE CONSRTM TITLE JOURNAL REFERENCE AUTHORS

TITLE	Direct Submission
JOURNAL	Submitted (20-APR-2004) Kitasato Institute for Life Sciences,
ooordanii	1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
COMMENT	PROVISIONAL REFSEQ: This record has not yet been subject to final
	NCBI review. The reference sequence was derived from BAD49513.
	Method: conceptual translation.
PEATURES	Location/Oualifiers
source	1166
bource	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db xref="taxon:295405"
Protei	
LANCER	/product="putative thiol peroxidase"
	/plottel glater of wt=17807
Region	19.164
negron	/region name="PRX Atyp2cys"
	/note="Peroxiredoxin (PRX) family, Atypical 2-cys PRX
	subfamily; composed of PRXs containing peroxidatic and
	resolving cysteines, similar to the homodimeric thiol
	specific antioxidant (TSA) protein also known as
	TRX-dependent thiol peroxidase (Tpx). Tpx is a;
	cd33014"
	/db xref="CDD:48563"
Site	order (54,56,85,86,92,108,127.128)
<u></u>	/site type="other"
	/note="dimer interface"
	/db xref="CDD:48563"
Site	order (57,60,132)
N.N.N.N.	/site type="other"
	/note="catalytic triad"
	/db xref="CDD:48563"
Site	order (60,94)
11.12.12.12.	/site type="other"
	/note="peroxidatic and resolving cysteines"
	/db xref="CDD:48563"
CDS	1166
	/locus tag="BF2763"
	/coded by="complement(NC 006347.1:31752643175764)"
	/note="similar to qp:AE016931 120 [Bacteroides
	thetaiotaomicron VPI-5482], percent identity 92 in 166 aa,
	BLASTP E(): 9e-84"
	/transl table=11
	/db xref="GeneID:3083562"

(MATRIX) SCIENCE Mascot Search Results

number of log (P) where P is the probability that the observed muter set and more real. This can be a set of the observed muter of the set of the muter protect muter. The observed muter of the muter of the set of the muter of the set of the muter of the set of t	atabas axonom lmesta	ny	: laks : SSP : D:\D : NCBI : Bact : 6 Ja : <u>gi 9</u> <u>gi 5</u> <u>gi 2</u> <u>gi 2</u> <u>gi 1</u>	6802 ata\Lakshmy nr 2010010 at 1 1215296 3- 3714585 fr 55010781 fr 9347101 fr 53808476 hy	PROTEOMICS (10272453) (1027255) (1027255) (1027255) (1027255) (1027255) (1027255) (1027255) (1027255) (1027255) (1027255) (1027255) (1027255) (1027255) (1027255) (1027555) (1027555) (1027555) (1027555) (10275555) (10275555) (102755555) (10275555555) (1027555555555555555555555555555555555555	3- 15120 sequences 0016 sequ ryl-CoA d hosphate hosphate protein E	dehydi aldol aldol aldol aldol	rogena lase [lase [lase [lase [c_0277	83 resid se [Psyc Bacteroi Bacteroi 0 [Bacte	ues) hrofle des fr des fr des th roides	1377.d\SSP (6802) 10_RJ10_01_1377.mgf xus torquis ATCC 700755] agilis YCH46] agilis 3_1_12] tetaiotaomicron VPI-5482] caccae ATCC 43185] tovatus ATCC 8483]
dividual ions score > 57 indicate identity or extensive homology (p=0.05): toris scores are drived from ions scores as a non-probabilistic basis for making protein hits.	robat	oility l	Based Mov	vse Score							
<pre>ind ind ind ind ind ind ind ind ind ind</pre>	dividu	al ions	scores > 57	indicate ident	tity or extensiv	ve homolog	gy (p<	0.05).			
Formal AS Peptide Summary Help Significance threshold p< 0.05 Max. number of his AUTO Standard scoring @ MudPIT scoring C Ions score or expect cut-off C Show sub-sets C Show pop-ups @ Suppress pop-ups C Sort massigned Decreasing Score W Require bold red C Steed AU Steer None Steer None Steer None Steer None Steer None Steer None Steer Nore Forror tolerant . gijj115225 Mass: 32980 Score: 205 Queries matched: 4 emPAI: 0.21 ->-ydroxybutyryl-CoA debydrogenase [Psychrofiexue torquis ATCC 700755] Check to include this hit in error tolerant search Ouery Observed Mr(expt) Mr(calc) Delta Miss Score Expect Nank Peptide P 23 1 K.ATOMILATINETY.S. 7 126 951.0012 1736.6832 -0.811 0 45 0.64 1 K.ADOMILATINETY.S. 7 126 951.0012 1255.303 130 K.ATOMILATINETY.S. 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< th=""><th>25- 20- 15- 10- 5-</th><th></th><th>40 80</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	25- 20- 15- 10- 5-		40 80								
Significance threshold p< 0.05 Max. number of his AUTO Standard scoring @ MudPIT scoring C ions score or expect cut-off 0 Show sub-sets 0 Show pop-ups @ Suppress pop-ups C Sort unassigned Decreasing Score W Require bold red [Select All Select None Search Selected [Error tolerant . gi[912152256 Mass: 32990 Score: 205 Queries matched: 4 emPAI: 0.21 3-hydroxybutyryl-CoA dehydrogenase (Psychroflexus torquis ATCC 700755) Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide [9 55 30: 2030 1736.7022 1736.8032 -0.1811 0 45 0.464 1 K.ATOHLAFUHK.E + oxidation (N) F 165 579.9080 1736.7022 1736.8032 -0.1811 0 45 0.464 1 K.ADOHLAFUHK.E + oxidation (N) F 165 579.9080 1736.7022 1736.8032 -0.2397 0 51 0.161 1 K.TVFVTNSSTLLPSQPARVTGRPEK.F F 222 856.0420 2565.1042 2565.3033 -0.2397 0 51 0.16 1 K.TVFVTNSSTLLPSQPARVTGRPEK.F F 222 856.0420 2565.1042 2565.3033 -0.2397 0 51 0.16 1 K.TVFVTNSSTLLPSQPARVTGRPEK.F gi[337/14585 Mass: 36766 Score: 196 Queries matched: 6 emPAI: 0.30 fructose-bisphosphate aldolase [Bacteroides fragilis 7CH46] Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide F 136 680.8150 1759.6174 1759.8899 -0.2071 0 35 6.1 1 R.MYVFPELAVDUDOWK.E + 2 Oxidation (N) F 162 597.500 1755.6184 13156.11562 -0.1371 1 37 6 1 K.INVLOSDMRIAS F 162 807.5100 1759.6184 1537.6114 1347.712 0 (41) 1.6 1 K.TCODSLAISIOTSHBAYK.F F 127 613.2370 1856.6193 1837.6116 -1.1625 0 74 0.00079 1 K.TCODSLAISIOTSHBAYK.F F 127 613.2370 1856.6193 1837.6116 -1.1625 0 74 0.00079 1 K.TCODSLAISIOTSHBAYK.F F 122 705.5500 2387.8022 2388.1322 -0.2840 0 49 0.18 1 K.OOVALPARMYRDBREGONALK.F. F 122 705.5500 2387.8022 2388.1322 -0.2840 0 49 0.0.18 1 K.OOVALPARMYRDBREGONALK.F F 222 705.5500 2387.8022 2388.1325 0.137 1 37 6 1 K.INVLASDMRIAS 152 597.5700 1375.6022 1375.8023 1530.292 0.778 QUERIES AND Peptide 111 603.3180 1384.6214 1384.7524 -0.1314 1 37 6 1 K.INVLASDMRIAS 152 597.5700 1375.6022 1375.8024 7758.9049 0.7633 1 32	eptid	e Sum	imary Rep								
Standard scoring @ MudPIT scoring C ions score or expect cut-off Show sub-sets 0 Show pop-ups @ Suppress pop-ups C Sort unassigned Decreasing Score Y Require bold red Side: All Select More Search Selected Perror tolerant . gij91215252 Mass: 32980 Score: 205 Oueries matched: 4 emPAI: 0.21 3-hydroxybutyry1-CoA dehydrogenase [Psychroflexus torquis ATCC 700755] C theck to include this hit in error tolerant search Ouery Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide @ 25 335.4730 117.5972 1176.4685 -0.0174 0 22 335 1 K.ATGGLADLEMK.E + Oxidation (M) @ 166 579.5000 1736.7032 1736.4892 -0.1811 0 45 0.464 1 K.DAVDERDFVTENTEXT.S @ 165 579.5000 1736.7032 1736.4892 -0.1811 0 45 0.464 1 K.DAVDERDFVTEXT.S @ 222 855.0420 2555.1042 2555.1042 2555.3439 -0.2397 0 51 0.16 1 K.TVFVTNSSTLLPSQFAEVTORPSK.F . gij537145365 Mass: 36766 Score: 196 Queries matched: 6 emFAI: 0.30 fructose-bisphosphate aldolase [Bacteroides Tragilis YCM66] C theck to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide Mill 639.51300 1356.6214 1759.62174 1 37 6 1 K.IINVLOSTMELAR Ø 168 800.8160 1759.6174 1759.8889 -0.2071 0 35 6.1 1 R.HYPPFLAFDVLOWER.E + 2 0xidation (M) Ø 126 597.5000 1759.6822 1759.6889 -0.2070 0 35 6.1 1 R.HYPPFLAFDVLOWER.E + 2 0xidation (M) Ø 126 597.5000 1759.6822 1759.6851 6 -1.1625 0 74 0.00075 1 K.FJCCDELARJENGENKI.F. Ø 127 613.3200 1386.6754 1387.5816 -1.1.1625 0 74 0.00075 1 K.FJCCDELARJENGENKI.F. Ø 122 276.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.OCVAIEARJENGENKI.F. + 2 0xidation (M) Ø 126 597.5000 1759.6822 1759.0889 -0.2840 0 49 0.18 1 K.OCVAIEARJENKIAR Ø 127 613.2370 1836.6754 1837.5816 -1.1.1625 0 74 0.00075 1 K.FJCCDELARJENGENKIAR.F Ø 122 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.OCVAIEARJENEMENGAKI.F Ø 122 105.5040 2388.1242 -0.2840 0 49 0.18 1 K.OCVAIEARJENEMENGAKI.F + 2 0xidation (M) 127 613.2570 1857.6882 1759.6882 1759.6882 1759.6882 1759.0899 0.733 0 19 2.98-02 7 7 M.WPPFLARPUHOWERKI.E + 2 0xidation (M)	Form	at As	Peptide Su	mmary	*						Help
Show pop-ups @ Suppress pop-ups C Sort unassigned [Decreasing Score ▼ Require bold red [Select All Select None Search Selected □ Error tolerant 3:-byttroxybutryy1-Coad dehydrogenames [Paychorbelaxus torquing ATCC 700755] □ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide ♥ 153 393. 6730 1178.5972 1178.6945 -0.0074 0 29 33 1 K.AfdMLAPEHKE H & Oxidation (M) ♥ 165 979.000 176.7022 1778.6982 -0.0074 0 29 33 1 K.AfdMLAPEHKE H & Oxidation (M) ♥ 165 979.000 176.022 176.6832 -0.0141 K.LowSHORGEVYTYPERAYK.8 ♥ 129 956.6420 2565.1432 -0.2578 0 51 0.16 1 K.TWYTYNERAYK.8 P 229 956.0420 2565.13439 -0.2397 0 51 0.16 1 K.TWYTYNERAYK.00 □ 164 953.3160 1364.6214 1364.7562 -0.1347 1 37 6 1			Significanc	e threshold p-	< 0.05	Max. n	umber	r of hits	AUTO	1	
Select All Select None Search Selected □ Error tolerant . gi[9]2125296 Mass: 32980 Score: 205 Queries matched: 4 emPAI: 0.21 3hydroxybutryyl-Cod Adehydrogenase (Psychotolexus torquis ATCC 700755) Check to include this hit in error tolerant search Query Observed Mr(expt) Nr(calc) Delta Miss Score Expect Rank Peptide ♥ 25 393. 0730 1178.5972 1178.6845 -0.0974 0 29 33 1 K.AfGUALAPUK.E.E + Oxidation (N) ♥ 165 979.000021 1 K.LovPMNBOVK.T ▼ ♥ 126 975.000 176.6892 -0.2878 0 79 0.00021 1 K.LovPMNBOVK.T ♥ 129 956.0420 2555.1042 2555.1339 -0.2397 0 51 0.16 1 K.TVVVTNDSTLLPSQPARVTGRPBK.F • gi[53714585 Mass: 36766 Score: 196 Queries matched: 6 emPAI: 0.30 fructore-bisphosphate aidolase [Bacteroides fragilis 10(17) .secol 1 R.VYPPTLATVLOOVSK.E + 2 Oxidation (N) ♥ 126 915.700 154.6214 154.7			Standard so	oring @ Mu	dPIT scoring	C Ions se	ore or	expect	cut-off 0		Show sub-sets 0
Select All Select None Search Selected □ Error tolerant . gi[9]2125296 Mass: 32980 Score: 205 Queries matched: 4 emPAI: 0.21 3hydroxybutryyl-Cod Adehydrogenase (Psychotolexus torquis ATCC 700755) Check to include this hit in error tolerant search Query Observed Mr(expt) Nr(calc) Delta Miss Score Expect Rank Peptide ♥ 25 393. 0730 1178.5972 1178.6845 -0.0974 0 29 33 1 K.AfGUALAPUK.E.E + Oxidation (N) ♥ 165 979.000021 1 K.LovPMNBOVK.T ▼ ♥ 126 975.000 176.6892 -0.2878 0 79 0.00021 1 K.LovPMNBOVK.T ♥ 129 956.0420 2555.1042 2555.1339 -0.2397 0 51 0.16 1 K.TVVVTNDSTLLPSQPARVTGRPBK.F • gi[53714585 Mass: 36766 Score: 196 Queries matched: 6 emPAI: 0.30 fructore-bisphosphate aidolase [Bacteroides fragilis 10(17) .secol 1 R.VYPPTLATVLOOVSK.E + 2 Oxidation (N) ♥ 126 915.700 154.6214 154.7			Show pop-	une @ Sunnr							
 gilj1215296 Mass: 32980 Score: 205 Queries matched: 4 emPAI: 0.21 3hydroxybutryl-co.d dehydrogenase [Psychroflexus torquis ATCC 700755] Check to include this hit in error tolerant search Guery Observed Nr(expt) Nr(calc) Delta Miss Score Expect Rank Peptide 95 393.0730 1178.5972 1178.6845 -0.0874 0 29 33 1 K.ADGHALFUHK.E + Oxidation (M) 165 579.9080 1756.7022 1736.48932 -0.1811 0 45 0.64 1 K.DOHALFANPENPENPENT.T 189 996.3390 1590.6634 1990.9312 -0.2678 0 79 0.00021 1 K.LGVSNGEOFYTYPEPAYK.S 229 856.0420 2565.1042 2565.3439 -0.2397 0 51 0.16 1 K.TVPVTNSSTLLPSQPARVTORFEK.F gil53714585 Mass: 36766 Score: 196 Queries matched: 6 emPAI: 0.30 fructose-bisphosphate aldolase [Bacteroides fragilis YCH46] Check to include this hit in error tolerant search Ouery Observed Nr(expt) Nr(calc) Delta Miss Score Expect Rank Peptide 131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.INPVERDENVLAE 162 587.5700 1755.6882 1759.8889 -0.2007 0 36 6.1 1 R.MYPPELAFDVLDOWKE.E + 2 Oxidation (M) 152 587.5700 1755.6882 1759.8889 -0.2007 0 36 6.1 1 R.MYPPELAFDVLDOWKE.E + 2 Oxidation (M) 152 587.5700 1755.6882 1759.8889 -0.2007 0 36 6.1 1 R.MYPPELAFDVLDOWKE.E + 2 Oxidation (M) 152 587.5700 1755.6882 1759.8889 -0.2007 1 56 6.1 1 R.MYPPELAFDVLDOWKE.E + 2 Oxidation (M) 152 597.5700 1755.6882 1759.8889 -0.2007 1 56 6.1 1 R.MYPPELAFDVLDOWKE.E + 2 Oxidation (M) 152 597.5700 1755.6882 1759.889 -0.2007 1 56 6.1 1 K.INPUGDALKE.F. 152 597.5700 1755.6882 1759.889 -0.2007 1 56 6.1 1 K.GVZHDAFNFNERGMQAILE.A 152 597.5700 1755.6882 1759.889 -0.2007 1 56 6.1 1 K.GVZHDAFNFNERGMQAILE.A 152 597.5700 1755.6882 1759.9889 -0.2007 7 1 56 6.1 1 K.GVZHDAFNFNERGMQAILE.A 152 597.5700 1755.6882 1759.989 0.0213 0 192.9202 7 R.MYPFLARVLDOWKE.E + 2 Oxidation (M) 152 597.5700 1				ups - Duppi	ess pop-ups	Sort un	nassign	ned Der	creasing Si	core	✓ Require bold red □
3-hydroxybutyryl-CoA dehydrogenase [Psychroflexus torquis ATCC 700755] ☐ Check to include this hit in error tolerant search Ouery Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide ☐ 165 579.000 1735.002 1735.6852 -0.0874 0 29 33 1 K.AGMIALPLUK.E + Oxidation (M) ☐ 165 579.000 1735.002 1735.6852 -0.1811 0 45 0.64 1 K.DADLLTRAVPEMPOVK.T ☐ 189 995.3390 1990.6534 1990.9312 -0.2578 0 79 0.00021 1 K.LOVENDEGFTTYPEPAXK.S ☐ 223 955.0420 2555.1042 2555.3439 -0.2397 0 51 0.16 1 K.TVFVTMSSTLLPSQPARVTGRPSK.F		19		upa - ouppi	ess pop-ups	Sort un	nassigr	ned Der	creasing Si	ore	Require bold red
3-hydroxybutyryl-CoA dehydrogenase [Psychroflexus torquis ATCC 700755] ☐ Check to include this hit in error tolerant search Ouery Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide ☐ 165 579.000 1735.002 1735.6852 -0.0874 0 29 33 1 K.AGMIALPLUK.E + Oxidation (M) ☐ 165 579.000 1735.002 1735.6852 -0.1811 0 45 0.64 1 K.DADLLTRAVPEMPOVK.T ☐ 189 995.3390 1990.6534 1990.9312 -0.2578 0 79 0.00021 1 K.LOVENDEGFTTYPEPAXK.S ☐ 223 955.0420 2555.1042 2555.3439 -0.2397 0 51 0.16 1 K.TVFVTMSSTLLPSQPARVTGRPSK.F	Select	All	Select Nor			1			creasing S	core	Require bold red
□ Check to include this hit in error tolerant search • 25 393.0730 1178.5972 1178.6845 -0.0874 0 29 33 1 K.ATGMIALPHK.B + Oxidation (M) ○ 165 579.9080 1736.7022 1736.8832 -0.1811 0 45 0.064 1 K.DADLLIEAVPENPUKT. S ○ 165 579.9080 1736.7022 1736.8832 -0.2678 0 79 0.00021 1 K.DADLLIEAVPENPUKT.S ○ 229 956.343 1990.6534 1990.9312 -0.2678 0 79 0.00021 1 K.DADLLIEAVPENPUKT.S ○ 229 956.0420 2565.1042 2565.3439 -0.2397 0 51 0.16 1 K.TVPVTNSSTLLPSQFAEVTGRPSK.F • 11153714595 Mass: 36766 Score: 196 Queries matched: 6 emPAI: 0.30 fructose-binghosphate aldolase [Bacteroides fragilis YCH46] □ Check to include this hit in error tolerant search Cuery Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide ○ 131 693.3180 1364.6214 1364.7562 -0.1347 1 37 6 1 K.LINVLGSDMKLAE ○ 145 915.9301 1364.6214 1364.7562 -0.1347 1 37 6 1 K.LINVLGSDMKLAE ○ 145 915.9301 1364.6214 1364.7562 -0.1347 1 37 6 1 K.LINVLGSDMKLAE ○ 145 915.9301 1364.6214 1364.7562 -0.1347 1 37 6 1 K.LINVLGSDMKLAE.+ ○ 145 915.9301 1364.6214 1364.7562 -0.1347 1 37 6 1 K.LINVLGSDMKLAE.+ ○ 145 915.9301 1364.6214 1364.7562 -0.1347 1 37 6 1 K.LINVLGSDMKLAE.+ ○ 145 915.9301 1364.6214 1364.7562 -0.2007 0 35 6.1 1 R.MYPPLATVLDOVKK.E + 2 0xidation (M) ○ 126 915.940 1364.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.GOVAIPAFMPHNMEGQAIIK.A + 2 0xidation (M) ○ 122 796.9540 1387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GOVAIPAFMPHNMEGQAIIK.A + 2 0xidation (M) <t< th=""><th></th><th></th><th></th><th>ne Sea</th><th>arch Selected</th><th>_ □ Err</th><th>or tol</th><th>erant</th><th></th><th></th><th></th></t<>				ne Sea	arch Selected	_ □ Err	or tol	erant			
		gi 91:	215296 1	ne Sea Mass: 32980	Score: 3	Err	or tole	erant match	ed: 4	emPAI	
		gi 913 3-hyda	215296 1 roxybutyry:	ass: 32980 L-CoA dehyd:	score: 3 score: 3	205 Que	or tole eries xus t	erant match	ed: 4	emPAI	
 ✓ 182 996.3390 1990.6634[∞] 1990.9312 -0.2678 0 79 0.00021 1 K.LdVSNGEGFYTYPEPAYK.S ✓ 229 956.0420 2565.1042 2565.3439 -0.2397 0 51 0.16 1 K.TVFVTNSSTLLPSOFAEVTGRPSK.F 		gi 912 3-hydi Check	215296 1 roxybutyry to include	Mass: 32980 I-CoA dehyd: e this hit :	score: : Score: : rogenase [P: in error to:	205 Que sychrofle: lerant set	eries xus t arch	erant match orquis	ed: 4 : ATCC 70	emPAI 0755]	: 0.21
 ✓ 222 956.0420 2565.1042 2565.1042 2565.3439 -0.2397 0 51 0.16 1 K.TVPVTNSSTLLPSQPAEVTGRPSK.F gi[53714585 Mass: 36766 Score: 196 Queries matched: 6 emPAI: 0.30 fructose-bisphosphate aldolase [Bacteroides fragilis YCH46] □ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide ☑ 116 93.3180 1384.6214 1384.7552 -0.1347 1 37 6 1 K.IINVLGSDNKLAE ☑ 168 800.8160 1759.6174 1759.8889 -0.2007 0 36 6.1 1 R.MVPPPLAFDVLDGVMK.E + 2 Oxidation (M) ☑ 125 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F ☑ 127 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F ☑ 222 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GGYAIPAPNFNRMEQMOAIIK.A + 2 Oxidation (M) 116 93.3180 1384.6214 1384.7552 -0.1347 1 37 6 1 K.IINVLGSDNKLAE I Check to include this hit in error tolerant search Ouery Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide I 175 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F ☑ 222 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GGYAIPAPNFNRMEQMOAIIK.A + 2 Oxidation (M) I 1693.3180 1384.6214 1384.7552 -0.1347 1 37 6 1 K.IINVLOSDNKLAE I 1693.3180 1384.6214 1384.7552 -0.1347 1 37 6 1 K.IINVLOSDNKLAE I 169 557.000 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R.MVPPPLAFNVLOGVMK.E + 2 Oxidation (M) I 176 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1 .6 1 K.TGCDSLAISIGTSHGAYK.F I 17 613.2370 1138.6692 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F I 17 613.2370 1138.6692 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F I 17 613.2370 1136.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F I 27 613.2370 1136.8692 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F<th></th><th>gi 913 3-hydr Check Query</th><th>215296 1 roxybutyry to include Observed</th><th>Mass: 32980 I-CoA dehyd: this hit : Mr(expt)</th><th>Score: : Score: : rogenase [Pa in error to] Mr(calc)</th><th>Delta</th><th>or tole eries xus t arch Miss</th><th>erant match orquis Score</th><th>ed: 4 ATCC 7(Expect</th><th>emPAI 0755] Rank</th><th>Peptide</th>		gi 913 3-hydr Check Query	215296 1 roxybutyry to include Observed	Mass: 32980 I-CoA dehyd: this hit : Mr(expt)	Score: : Score: : rogenase [Pa in error to] Mr(calc)	Delta	or tole eries xus t arch Miss	erant match orquis Score	ed: 4 ATCC 7(Expect	emPAI 0755] Rank	Peptide
 . gi 53714585 Mass: 36766 Score: 196 Queries matched: 6 emPAI: 0.30 fructose-bisphosphate aldolase [Bacteroides fragilis YCH46] □ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide ☑ 131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE ☑ 168 880.8160 1759.6174 1759.8889 -0.2714 0 (17) 3.5e+02 1 R.MVPPELAPDVLDGVMK.E + 2 Oxidation (N) ☑ 152 587.5700 1759.6882 1759.8889 -0.2017 0 36 6.1 1 R.MVPPELAPDVLDGVMK.E + 2 Oxidation (N) ☑ 125 919.3450 1836.6754 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F ☑ 127 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F ☑ 222 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GGYAIPAPNPHNMECMQAIIK.A + 2 Oxidation (M) . gi 255010781 Mass: 36694 Score: 179 Queries matched: 5 emPAI: 0.30 fructose-bisphosphate aldolase [Bacteroides fragilis 3_1_12] □ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 131 693.3180 1384.6214 1384.7552 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 169 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R.MVPPPLAPNVLDGVMK.E + 2 0xidation (M) 175 919.3450 1836.6754 1837.8516 -1.1622 0 (41) 1.6 1 K.TGCDSLAISIOTSHGAYK.F 197 613.2370 1836.6754 1837.8516 -1.1762 0 (41) 	। ।	gi 912 3-hyda Check Query <u>95</u>	215296 1 roxybutyry to include Observed 393.8730	Mass: 32980 L-CoA dehyd: this hit: Mr(expt) 1178.5972	Score: : rogenase [P: in error to: Mr(calc) 1178.6845	205 Que sychrofle: lerant set Delta -0.0874	or tole eries xus t arch Miss 0	erant match orquis Score 29	ed: 4 ATCC 70 Expect 33	emPAI 0755] Rank 1	Peptide K.AIGMLALPLHK.E + Oxidation (M)
fructose-bisphosphate aldolase [Bacteroides fragilis YCH46] □ Check to include this hit in error tolerant search Query Observed Nr(expt) Nr(calc) Delta Miss Score Expect Rank Peptide □ 111 633,3180 1364.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE □ 168 880.8160 1759.6174 1759.8889 -0.2714 0 (17) 3.5e+02 1 R.MVPPPLAFDVLDGVMK.E + 2 0xidation (M) □ 152 587.5700 1759.6882 1759.8889 -0.2007 0 36 6.1 1 R.MVPPPLAFDVLDGVMK.E + 2 0xidation (M) □ 126 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.IGCDSLAISIGTSHGAYK.F □ 127 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.IGCDSLAISIGTSHGAYK.F □ 222 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GGYAIPAFNFMNHEOMOAIIK.A + 2 0xidation (M) - gi[255010781 Mass: 36694 Score: 179 Queries matched: 5 emPAI: 0.30 fructose-bisphosphate aldolase [Bacteroides fragilis 3_1_12] □ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 152 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R.MVPPPLAFNVLDXWK.E + 2 0xidation (M) 126 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 126 919.3450 1836.6652 1837.8516 -1.1622 0 (41)	ন ব ন ্	gi 912 3-hyda Check Query <u>95</u> <u>166</u>	215296 1 roxybutyry: to include Observed 393.8730 579.9080	Ne Sec Mass: 32980 1-CoA dehyd: this hit this hit mr (expt) 1178.5972 1736.7022	score: : rogenase [Pa in error to] Mr(calc) 1178.6845 1736.8832	205 Que sychrofle: lerant set Delta -0.0874 -0.1811	or tole eries xus t arch Miss 0 0	erant match orquis Score 29 45	ed: 4 * ATCC 70 Expect 33 0.64	emPAI: 0755] Rank 1 1	Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T
fructose-bisphosphate aldolase [Bacteroides fragilis YCH46] □ Check to include this hit in error tolerant search Query Observed Nr(expt) Nr(calc) Delta Miss Score Expect Rank Peptide □ 111 633,3180 1364.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE □ 168 880.8160 1759.6174 1759.8889 -0.2714 0 (17) 3.5e+02 1 R.MVPPPLAFDVLDGVMK.E + 2 0xidation (M) □ 152 587.5700 1759.6882 1759.8889 -0.2007 0 36 6.1 1 R.MVPPPLAFDVLDGVMK.E + 2 0xidation (M) □ 126 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.IGCDSLAISIGTSHGAYK.F □ 127 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.IGCDSLAISIGTSHGAYK.F □ 222 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GGYAIPAFNFMNHEOMOAIIK.A + 2 0xidation (M) - gi[255010781 Mass: 36694 Score: 179 Queries matched: 5 emPAI: 0.30 fructose-bisphosphate aldolase [Bacteroides fragilis 3_1_12] □ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 152 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R.MVPPPLAFNVLDXWK.E + 2 0xidation (M) 126 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 126 919.3450 1836.6652 1837.8516 -1.1622 0 (41)	ন ব ন ্	gi 91: 3-hyd: Check Query 95 166 189	215296 2 roxybutyry: to include Observed 393.8730 579.9080 996.3390	Net See Mass: 32980 L-CoA dehyd: e e this hit: hit: Mr(expt) 1178.5972 1736.7022 1990.6634	Score: Score:<	Delta -0.0874 -0.2678	eries xus t arch Miss 0 0 0	erant match orquis Score 29 45 79	ed: 4 * ATCC 70 Expect 33 0.64 0.00021	emPAI 0755] Rank 1 1 1	Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S
Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide ☑ 131 633.3180 1384.6214 1384.7552 -0.1347 1 37 6 1 K.IINVLGSDNKLAE ☑ 168 880.8160 1759.6174 1759.8889 -0.2714 0 (17) 3.5e+02 1 R.MVPPPLAFDVLDGVMK.E + 2 Oxidation (M) ☑ 162 587.5700 1759.6882 1759.8889 -0.2007 0 36 6.1 1 R.MVPPPLAFDVLDGVMK.E + 2 Oxidation (M) ☑ 126 913.3450 1836.6754 1837.8516 -1.1752 0 (41) 1.6 1 R.MVPPPLAFDVLDGVMK.E + 2 Oxidation (M) ☑ 126 913.3450 1836.6754 1837.8516 -1.1655 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F ☑ 222 796.9540 2387.8402 2387.1812 -0.2840 0 49 0.18 1 K.OGYAIPAPNFNNIMECMQAIIK.A + 2 Oxidation (M) I 12525010781 Mass: 36694 Score: 179 Queries matched: 5 emPAI: 0.30 6 1 K.IINVLGSDNKLAE I Check to include this hit in error tole	ন ব ন ্	gi 91: 3-hyd: Check Query 95 166 189	215296 2 roxybutyry: to include Observed 393.8730 579.9080 996.3390	Net See Mass: 32980 L-CoA dehyd: e e this hit: hit: Mr(expt) 1178.5972 1736.7022 1990.6634	Score: Score:<	Delta -0.0874 -0.2678	eries xus t arch Miss 0 0 0	erant match orquis Score 29 45 79	ed: 4 * ATCC 70 Expect 33 0.64 0.00021	emPAI 0755] Rank 1 1 1	Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S
Query Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide □ 131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE ♥ 166 880.8160 1759.6174 1759.8889 -0.2017 0 36 6.1 1 R.MVPPPLAFDVLDGVMK.E + 2 Oxidation (M) ♥ 162 587.5700 1759.6882 1759.8889 -0.2007 0 36 6.1 1 R.MVPPPLAFDVLDGVMK.E + 2 Oxidation (M) ♥ 126 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F ♥ 127 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F ♥ 222 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GGYAIPAFNFNNMEQMQAIIK.A + 2 Oxidation (M) . gi[255010781 Mass: 36694 Score: 179 Queries matched: 5 emPAI: 0.30 fructose-bisphosphate aldolase	অববরু	gi 912 3-hydr Check 95 166 189 229 gi 537	215296 P roxybutyry: to include Observed 393.8730 579.9080 996.3390 856.0420 714585 P	Nr Sez Mass: 32980 1-CoA dehyd: 6 a this hit: 1 Mr(expt) 1178.5972 1736.7022 1990.6634 2565.1042 2 44ass: 36766	Score: Score:<	Delta -0.0874 -0.297 -0.2678 -0.2397	or toke eries xus t arch Miss 0 0 0 0 0 0 0 0	erant match orquis Score 29 45 79 51 match	ed: 4 Expect 33 0.64 0.00021 0.16	emPAI 0755] Rank 1 1 1	Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F
	बत्रव,	gi 912 3-hydr Check 95 166 189 229 gi 532 fructo	215296 1 roxybutyry: to include Observed 393.8730 579.9080 996.3390 856.0420 714585 1 pse-bisphor	Ne Sea 4ass: 32980 1-coA dehyd: 6 a this hit 1 Mr (expt) 1178.5972 1178.5972 1990.6634 2565.1042 2 4ass: 36766 sphate aldo:	Score: Score:<	Delta -0.0874 -0.2057 -0.2678 -0.2679 -0.2397	or tole eries xus t arch Miss 0 0 0 0 0 0 eries agili	erant match orquis Score 29 45 79 51 match	ed: 4 Expect 33 0.64 0.00021 0.16	emPAI 0755] Rank 1 1 1	Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F
▼ 168 880.8160 1759.6174 1759.8889 -0.2714 0 (17) 3.5e+02 1 R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) ▼ 169 587.5700 1759.6882 1759.8889 -0.2007 0 36 6.1 1 R.MYPPLAFDVLDGVMK.E + 2 Oxidation (M) ▼ 169 587.5700 1759.6882 1759.8889 -0.2007 0 36 6.1 1 R.MYPPLAFDVLDGVMK.E + 2 Oxidation (M) ▼ 172 613.2370 1836.6754 1837.8516 -1.1625 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F ▼ 222 796.9540 2388.1242 -0.2840 49 0.18 1 K.GGYAIPAFNFNNMKEQMQAIIK.A + 2 Oxidation (M) Tructose-bisphosphate aldolase [Bacteroides fragilis 3_1_12] □ Check to include this hit in error tolerant search emPAI: 0.30 131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 159 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R.MYPPPLAFNVLDGVMK.E + 2 Oxidation (M) 126 587.5700	बत्रव,	gi 912 3-hydr Check 95 166 189 229 gi 537 fructo	215296 1 roxybutyry: to include Observed 393.8730 579.9080 996.3390 856.0420 714585 1 pse-bisphor	Ne Sea 4ass: 32980 1-coA dehyd: 6 a this hit 1 Mr (expt) 1178.5972 1178.5972 1990.6634 2565.1042 2 4ass: 36766 sphate aldo:	Score: Score:<	Delta -0.0874 -0.2057 -0.2678 -0.2679 -0.2397	or tole eries xus t arch Miss 0 0 0 0 0 0 eries agili	erant match orquis Score 29 45 79 51 match	ed: 4 Expect 33 0.64 0.00021 0.16	emPAI 0755] Rank 1 1 1	Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F
▼ 152 587.5700 1759.6882 1759.6882 1759.6882 1759.6882 1759.6882 1759.6882 1759.6882 1837.6516 -1.1752 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F ▼ 177 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F ▼ 222 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GGYAIPAFNFNNMEQMOAILK.A + 2 Oxidation (M)	बबबर्जु ।	gi 912 3-hyda Check 95 166 189 229 gi 537 fructo Check	215296 2 roxybutyry; to include Observed 393.8730 579.9080 996.3390 956.0420 556.0420 714585 2 rose-bisphorito include 10	See tass: 32980 L-CoA dehyd: this hit a this hit 1178.5972 1736.7022 1990.6634 2565.1042 2565.1042 tass: 36766 sphate aldo: athis hit	Arch Selected Score: : rogenase [Pi in error to: Mr (calc) 1178.6845 1736.8832 1990.9312 2565.3439 Score: : lase [Bacte: in error to:	Delta -0.0874 -0.1811 -0.2678 -0.2397 -0.2397 -0.2397 -0.2397	or tole eries xus t arch 0 0 0 0 eries agili arch	erant match orquis Score 29 45 79 51 51 match s YCH4	ed: 4 Expect 33 0.64 0.00021 0.16 ed: 6 6]	emPAI 0755] Rank 1 1 1 emPAI	<pre>Peptide K.ATGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGROFTTYPEPAYK.S K.TVPVTNSSTLLPSQFAEVTGRPSK.F : 0.30</pre>
▼ 175 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F ▼ 177 613.2370 1836.692 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F ▼ 222 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GGYAIPAPNFNNMEQMQAIIK.A + 2 Oxidation (M) . gil255010781 Mass: 36694 Score: 179 Queries matched: 5 fructose-bisphosphate aldolase [Bacteroides fragilis 3_1_2] □ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVIGSDNKLAE 169 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R.M.VPFPLARVNUDXYK.E + 2 Oxidation (M) 176 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F	র ু । ররররু ।	gi 912 3-hydr Check Query 95 166 189 229 gi 537 fructo Check Query 131	215296 2 roxybutyry; to include Observed 333.8730 579.9080 996.3390 856.0420 714585 2 rose-bisphor to include Observed 693.3180	Sec 4ass: 32980 1-CoA dehyd: this hit a this hit 1178.5972 1736.7022 1990.6634 2565.1042 2565.1042 4ass: 36766 sphate aldo: this hit Mr (expt) 1384.6214	Score: Score:<	Delta -0.0374 -0.0874 -0.0874 -0.1811 -0.2678 -0.2397 -0.2397 Delta -0.21347	or toke eries xus t arch Miss 0 0 0 0 0 eries agili arch Miss 1	erant match orquis Score 29 45 79 51 match s YCH4 Score 37	ed: 4 Expect 33 0.64 0.00021 0.16 ed: 6 6] Expect 6	emPAI 0755] Rank 1 1 1 1 8 emPAI Rank 1	<pre>Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S K.TUPVVTNSSTLLPSQFAEVTGRPSK.F Peptide K.IINVLGSDNKLAE</pre>
▼ 177 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F ▼ 222 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GGYAIPAFNFNNMEQMQAIK.A + 2 Oxidation (M) • gi[255010781 Mass: 36694 Score: 179 Queries matched: 5 fructose-bisphosphate aldolase [Bacteroides fragilis 3_1_12] • emPAI: 0.30 □ Check to include this hit in error tolerant search • fructose-bisphosphate aldolase [Bacteroides fragilis 3_1_12] □ Check to include this hit in error tolerant search • fructose-bisphosphate 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 156 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R.MVPFPLARYNLDXVKK.E + 2 Oxidation (M) 176 919.3450 1836.6754 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F 177 613.2370 1836.6692 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F	बद्र्या . बडाडार्या .	gi 912 3-hydr Check 2000 95 166 189 229 gi 537 fructo Check 0000 131 168	215296 roxybutyryy to include Observed 393.8730 579.9080 996.3390 856.0420 714585 to include Observed 693.3180 880.8160	Ne Sec tass: 32980 L-CoA dehyd: this hit a this hit this hit Mr (expt) 1178.5972 1736.7022 1990.6634 2565.1042 2565.1042 tass: 36766 aphate aldo this hit Mr (expt) 1384.6214 1759.6174 1759.6174	arch Selected Score: : rogenase [P; in error to: Mr(calc) 1178.6845 1736.8832 1990.9312 2565.3439 Score: : lase [Bacte: in error to: Mr(calc) 1384.7562 1759.8889	Delta -0.0874 -0.0874 -0.2678 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2374	or toke eries xus t arch Miss 0 0 0 0 0 0 0 eries agili arch Miss 1 0	erant match orquis Score 29 45 79 51 match s YCH4 Score 37 (17)	ed: 4 Expect 33 0.64 0.0021 0.16 ed: 6 6] Expect 63 3.5e+02	emPAI. 1 1 1 1 1 Rank Rank 1 1 1	Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGROFTTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F : 0.30 Peptide K.IINVLGSDNKLAE R.MVPFPLAFDVLDGVMK.E + 2 Oxidation (M)
▼ 222 796.9540 2387.8402 2388.1242 -0.2840 0 49 0.18 1 K.GGYAIPAPNFNNMEQMQAIIK.A + 2 Oxidation (M) gi[25501078] Mass: 36694 Score: 179 Queries matched: 5 emPAI: 0.30 fructose-bisphosphate aldolase [Bacteroides fragilis 3_1_12] □ Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 111 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 165 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R.MVPPPLARNULDGVMK.E + 2 Oxidation (M) 175 919.3450 1837.6516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F 177 613.2370 1837.6516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F	ब ब ब ब ब ब ब ब ब ब ब ब	gi 912 3-hyda Check 2000 95 165 189 229 gi 537 fructo Check 2000 700 71 100 131 168 169	215296 2 roxybutyryy to include 393.8730 579.9080 996.3390 856.0420 7/14585 2 rose-bisphor to include 693.3180 880.8160 587.5700	Ne See dass: 32980 L-CoA dehyd: this hit athis hit 178.5972 1736.7022 1990.6634 2565.1042 2565.1042 dass: 36766 sphate aldo: athis hit Mr (expt) 1384.6214 1759.6174 1759.6882	Arch Selected Score: : rogenase [P; in error to: Mr (calc) 1178.6845 1736.8832 1990.9312 2565.3439 Score: : lase [Bacter; in error to: Mr (calc) 1384.7562 1759.8889 1759.8889	Delta -0.0874 -0.0874 -0.1811 -0.2678 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2314 -0.2014 -0.2014	or told eries xus t arch Miss 0 0 0 0 0 0 0 eries agili arch Miss 1 0 0	erant match 29 45 79 51 match \$core 37 (17) 36	ed: 4 Expect 33 0.64 0.0021 0.16 ed: 6 5 Expect 6 3.5e+02 6.1	emPAI 0755] Rank 1 1 1 emPAI Rank 1 1	<pre>Peptide K.ATGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGROFTTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M)</pre>
fructose-bisphosphate aldolase [Bacteroides fragilis 3_1_12] Check to include this hit in error tolerant search Query Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Peptide 131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 159 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R_MVPFPLAFNVLDGVMK.E + 2 Oxidation (M) 126 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F 127 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F	ব ব ব ব ব ় া ব ব ব ব ় া	gi 912 3 - hyds Ccheck 95 166 189 229 gi 533 fructo Ccheck 229 gi 533 fructo Ccheck 131 168 169 176	215296 2 roxybutyry; to include roxybutyry; to include Observed 393.8730 393.8730 996.3390 856.0420 996.3390 714585 2 roxybutyry; 1 0bserved 693.3180 860.8160 807.5700 919.3450 919.3450	Nr Cont Mr (expt) 1178.5972 1736.7022 1990.6634 2565.1042 Mr (expt) 1384.6214 1759.6174 1759.6174 1759.6174 1536.6822 1836.6754	Score: Score:<	Delta -0.0874 -0.0874 -0.1811 -0.2678 -0.2397 -0.2397 -0.2397 -0.2377 -0.2147 -0.2147 -0.2147 -0.2017	or told eries xus t arch Miss agili arch Miss 1 0 0 0 0	erant match orquis Score 29 45 51 match Score 37 (17) 36 (41)	ed: 4 Expect 33 0.64 0.00021 0.16 ed: 6 3.5e+02 6.1 1.6	emPAI Rank 1 1 emPAI Rank 1 1 1 1 1 1	<pre>Peptide K.AIGMLALFLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGRGFYTYPEPAYK.S K.TVFVTNSSTLLPSOFAEVTGRPSK.F * 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAPDVLDGVMK.E + 2 Oxidation (M) R.MYPPPLAPDVLDGVMK.F + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F</pre>
fructose-bisphosphate aldolase [Bacteroides fragilis 3_1_12] Check to include this hit in error tolerant search Query Observed Mr.(expt) Mr.(calc) Delta Miss Score Expect Rank Peptide 131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 165 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R.MVPPPLARNULDGVMK.E + 2 Oxidation (M) 176 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F 177 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F	ব ব ব ব ব 🤇 🗍	gi 912 3 - hydr Check 95 166 189 229 gi 533 fructo Check 131 168 169 136 168 169 176	215296 2 roxybutyry: to include Observed 333.8730 579.9080 956.3390 856.0420 714585 2 rose-bisphor to include Observed 693.3180 880.8160 587.5700 919.3450 613.2370	Set 4ass: 32980 1-CoA dehyd: this hit a this hit 1178.5972 1736.7022 1990.6634 2565.1042 2565.1042 4ass: 36766 aphate aldoi a this hit a this hit 1384.6214 1759.6174 1396.6754 1836.6754 1836.6754	Score: Score:<	Delta -0.0874 -0.0874 -0.0874 -0.1811 -0.2678 -0.2397 -0.2397 -0.2397 -0.2397 -0.2314 -0.2147 -0.2144 -0.2072 -1.1625	or told eries xus t arch Miss o o o eries agili arch Miss 1 0 0 0 0 0	erant match orquis Score 29 45 79 51 match Score 37 (17) 36 (41) 74	<pre>ted: 4</pre>	emPAI 1 1 1 emPAI Rank 1 1 1 1 1 1 1 1	<pre>Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.TGCDSLAISIGTSHGAYK.F</pre>
Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 111 693.3180 1384.6214 1384.7552 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 159 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R_MVPPPLARNVLDGVMX.E + 2 Oxidation (M) 175 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F 177 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F	ব ব ব ব ব 🤇 🗍	gi 912 3 - hydr Check 95 166 189 229 gi 533 fructo Check 131 168 169 136 168 169 176	215296 2 roxybutyry: to include Observed 333.8730 579.9080 956.3390 856.0420 714585 2 rose-bisphor to include Observed 693.3180 880.8160 587.5700 919.3450 613.2370	Set 4ass: 32980 1-CoA dehyd: this hit a this hit 1178.5972 1736.7022 1990.6634 2565.1042 2565.1042 4ass: 36766 aphate aldoi a this hit a this hit 1384.6214 1759.6174 1396.6754 1836.6754 1836.6754	Score: Score:<	Delta -0.0874 -0.0874 -0.0874 -0.1811 -0.2678 -0.2397 -0.2397 -0.2397 -0.2397 -0.2314 -0.2147 -0.2144 -0.2072 -1.1625	or told eries xus t arch Miss o o o eries agili arch Miss 1 0 0 0 0 0	erant match orquis Score 29 45 79 51 match Score 37 (17) 36 (41) 74	<pre>ted: 4</pre>	emPAI 1 1 1 emPAI Rank 1 1 1 1 1 1 1 1	<pre>Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.TGCDSLAISIGTSHGAYK.F</pre>
131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 169 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R_MVPPPLAFNVLDXVMK.E + 2 Oxidation (M) 176 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F 177 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F	ন বরবর, ☐ . বরবর, ☐ . বরবর, ☐	gi 913 3 - hydr Check 95 166 189 229 gi 533 fructo Check Check 2000 131 168 169 170 168 169 177 222	215296 2 roxybutyry; to include Observed 333.8730 579.9080 956.3390 856.0420 714585 2 rose-bisphor to include Observed 693.3180 880.8160 587.5700 919.3450 613.2370 796.9540	Ne See dass: 32980 L-CoA dehyd: this hit a this hit 1178.5972 1178.5972 1736.7022 1990.6634 2565.1042 dass: 36766 aphate aldo: athis hit mr (expt) 1384.6214 1759.6174 1759.682 1836.6592 2387.8402 Mass: 3669	arch Selected Score: : rogenase (Pr in error to: Mr (calc) 1178.6845 1736.8832 1990.9312 2565.3439 Score: : lase [Bacter in error to: Mr (calc) 1384.7562 1759.8889 159.8889 1837.8516 2388.1242 4 Score: :	Delta -0.0874 -0.0874 -0.1811 -0.2678 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2307 -0.2144 -0.1347 -0.2714 -0.2007 -1.1625 -0.2840	or tokeries xus t arch Miss 0 0 0 0 0 eries agili arch Miss 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match 29 45 79 51 match 8 s YCH 45 37 (17) 36 (41) 74 49	ed: 4 Expect 33 0.64 0.0021 0.16 ed: 6 6] Expect 61 1.6 0.00079 0.18 ethed: 5	emPAI (1) Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAPNFNNMEOMOAIIK.A + 2 Oxidation (M)</pre>
131 693.3180 1384.6214 1384.7562 -0.1347 1 37 6 1 K.IINVLGSDNKLAE 159 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R_MVPPPLAFNVLDGVMK.E + 2 Oxidation (M) 176 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F 177 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F	ন ব ব ব ব ব ব ্ া ব ব ব ব ব ় া .	gi 913 3-hydr Check 20ery 95 166 189 229 gi 53 fructo Check 20ery 131 168 169 176 222 gi 257 fructo	215296 2 roxybutyry? to include yas.8730 579.9080 996.3390 856.0420 714585 2 yase-bisphore 10 to include 693.3180 880.8160 587.5700 919.3450 613.2370 796.9540 5510781	Ne See dass: 32980 1-CoA dehyd: a this hit . mr (expt) 1178.5972 1736.7022 1990.6634 2565.1042 2565.1042 dass: 36766 apphate aldo: athit 1384.6214 1759.6174 1759.6682 1836.6754 1836.6754 1836.6892 2387.8402 2387.8402	arch Selected Score: : rogenase [P; in error to: Mr (calc) 1178.6845 1736.8832 1990.9312 2565.3439 Score: : lase [Bacte: in error to: Mr (calc) 1394.7562 1759.8889 1354.7562 2388.1242 4 Score: lase [Bacte:	Delta -0.0874 -0.0874 -0.0874 -0.1811 -0.2678 -0.2397 -0.2397 -0.2397 -0.2397 -0.1347 -0.1347 -0.2714 -0.2007 -1.1762 -0.2840 -0.2840	or tokeries xus t arch Miss 0 0 0 0 eries agilii arch Miss 1 0 0 0 0 0 0 0 0 uerie	erant match 29 45 79 51 match 8 s YCH 45 37 (17) 36 (41) 74 49	ed: 4 Expect 33 0.64 0.0021 0.16 ed: 6 6] Expect 61 1.6 0.00079 0.18 ethed: 5	emPAI (1) Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAPNFNNMEOMOAIIK.A + 2 Oxidation (M)</pre>
169 587.5700 1759.6882 1758.9049 0.7833 0 19 2.9e+02 7 R.MVPPPLAFNVLDGVMK.E + 2 Oxidation (M) 176 919.3450 1836.6754 1837.8516 -1.1762 0 (41) 1.6 1 K.TGCDSLAISIGTSHGAYK.F 177 613.2370 1836.6692 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F	া ব্যবহার _ু । ব্যবহার _ু । ব্যবহার _ু ।	gi 913 3 - hydd Check 20ery 95 166 189 229 gi 537 fructo Check 20ery 131 168 169 176 177 222 gi 255 fructo Check Check	215296 2 coxybutyry; to include Observed 333.8730 579.9080 596.3390 956.3390 856.0420 714585 10 pase-bisphor to include Observed 693.3180 880.8160 587.5700 919.3450 613.2370 796.9540 5010781 cose-bisphor to include	Ne See 4ass: 32980 1-CoA dehyd: this hit a this hit ifference a this hit ifference ifference ifference ifere iference i	Arch Selected Score: rogenase (Print Print PrintP	Delta -0.0874 -0.0874 -0.0874 -0.1811 -0.2678 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2314 -0.2014	or toke eries xus t arch Miss agilii arch Miss 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match 29 45 79 51 match s yCH4 Score 37 (17) 36 (41) 74 49 s match 5 3_1_	ed: 4 Expect 33 0.64 0.00021 0.16 66] Expect 6 3.5e+02 6.1 1.66 0.00079 0.18 Thed: 5 12]	emPAI 00755] Rank 1 1 1 emPAI 1 1 1 1 1 1 1 2	<pre>s 0.21 Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFYTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F s 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAFNFNNMEOMOAIIK.A + 2 Oxidation (M) t: 0.30 </pre>
177 613.2370 1836.6892 1837.8516 -1.1625 0 74 0.00079 1 K.TGCDSLAISIGTSHGAYK.F	া ব্যবহার _ু । ব্যবহার _ু । ব্যবহার _ু ।	gi 913 3 - hydr Check 2000 95 166 189 229 gi 533 fructo Check 131 168 169 176 177 222 gi 253 fructo Check 2000 131 168 169 176 176 177 222 22 22 20 20 20 20 20 20 20 20 20 20	215296 2 roxybutyry: to include Observed 393.8730 579.9080 996.3390 956.3390 856.0420 714585 2 rose-bisphor to include 693.3180 880.8160 587.5700 919.3450 613.2370 796.9540 5010781 ose-bisphor coinclude Observed	Ne See dass: 32980 L-CoA dehyd: this hit a this hit ifferent state a this hit ifferent state a this state 1786.5972 1736.7022 1990.6634 2565.1042 1990.6634 dass: 36766 sphate aldo: a this hit ifferent state ifferent state	arch Selected Score: : rogenase (P) in error to: Mr (calc) 1178.6845 1736.8832 1990.9312 2565.3439 Score: : lase [Bacte: in error to: Mr (calc) 1384.7562 1759.8889 1759.8889 1759.8889 1837.8516 2388.1242 4 Score: lase [Bacte: in error to: Mr (calc) Mr (calc)	Delta -0.205 Qua sychrofie: lerant set -0.0874 -0.1811 -0.2678 -0.2397 -0.23	or toke eries xus t arch Miss aqili arch Miss 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match 29 45 79 51 match 8 s YCH4 \$ \$ \$ (17) 36 (41) 74 49 \$ \$ match 5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ed: 4 Expect 33 0.64 0.00021 0.16 ed: 6 6] Expect 61 1.6 0.00079 0.18 ethed: 5 12]	emPAI 0755] Rank 1 1 1 emPAI 1 1 1 1 1 1 2 Rank Rank	<pre>r 0.21 Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGROFTTYPEPAYK.S K.TVVFVTNSSTLLPSQFAEVTGRPSK.F r 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) R.MYCPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAPNFNNMEOMOAIIK.A + 2 Oxidation (M) K: 0.30 Peptide </pre>
	া বরররর _ু । বরররর, া বররর, া	gi 911 3 - hyd Check 2000 95 166 189 229 gi 537 fructo Check 2000 131 168 169 176 177 222 gi 259 fructo Check 2000 131	215296 2 roxybutyry; to include roxybutyry; to include Observed 393.8730 579.9080 996.3390 956.0420 996.3390 714585 1 roxybutyry; to include Observed 693.3180 613.2370 796.9540 5010781 5010781 5010781 5010210 to include 693.3180	Ne See dass: 32980 1-CoA dehyd: this hit a this hit if a this hit if a this hit if if this hit if dass: 36766 sphate aldo: if if this hit if	arch Selected Score: : rogenase [P; in error to: Mr (calc) 1178.6845 1736.8832 1990.9312 2565.3439 Score: : lase [Bactes] in error to: Mr (calc) 1384.7562 4 Score: lase [Bactes] in error to: Mr (calc) 1384.7562	Delta -0.205 Out -0.0874 -0.0874 -0.1811 -0.2678 -0.2397 -0.2344 -0.2397 -0.2344 -0.2646 -0.2647 -0.2646 -0.2647 -0.2646 -0.2647 -0.2646 -0.2647 -	or toke eries xus t arch Miss agilii arch Miss agilii arch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match orquis 29 45 79 51 match s yCH4 Score 37 (17) 36 (41) 74 49 s match s s 3_1_ 5 Score 37 37	ed: 4 Expect 33 0.64 0.0021 0.16 ed: 6 3.5e+02 6.1 1.6 0.00079 0.18 bed: 5 12] Expect 6	emPAI. 0755] Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 Rank Rank Rank 1	<pre>Peptide K.ATGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGROFYTYPEPAYK.S K.TVFVTNSSTLLPSOFAEVTGRPSK.F 0.30 Peptide K.IINVLGSDNKLAE R.MVPPPLAFDVLDGVMK.E + 2 Oxidation (M) R.MVPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAPNNMMEQMQAIIK.A + 2 Oxidation (M) t: 0.30 Peptide K.IINVLGSDNKLAE</pre>
THE PERSON STOLENE STOLENE STOLENE STOLENE STOLENE STOLENES	া বরররর _ু । বরররর, া বররর, া	gi 913 3 - hydr Check 295 166 189 229 gi 533 fructo Check 131 168 169 176 222 2000 131 168 169 176 222 2000 131 168 169 176 Check	215296 2 roxybutyry: to include Observed 393.8730 579.9080 996.3390 956.3390 856.0420 714585 1 roxe-bisphor to include Observed 693.3180 880.8160 587.5700 919.3450 613.2370 613.2370 796.9540 Cobserved 693.3180 5010781 Dose-bisphor co include 693.3180 587.5700 919.3450	Ne See dass: 32980 L-CoA dehyd: this hit a this hit ifferent state a this hit ifferent state a this hit ifferent state ifferent state iffereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	arch Selected Score: : rogenase [Pr in error to: Mr (calc) 1178.6845 1736.8832 1990.9312 2565.3439 Score: : lase [Bactes] in error to: Mr (calc) 1384.7562 1399.8889 159.8889 159.8889 159.8889 1637.8516 2388.1242 4 Score: lase [Bactes] in error to: Mr (calc) 1384.7562 158.9049 1637.8516	Delta -0.205 Qua sychrofie: lerant set -0.0874 -0.1811 -0.2678 -0.2397 -0.23	or toke eries xus t arch Miss aqili arch Miss 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match 29 45 79 51 match 8 s YCH4 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<pre>ed: 4</pre>	emPAI 0755] Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGROFTTYPEPAYK.S K.TVFVTNSSTLLPSQFAEVTGRPSK.F : 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAFNFNNMEOMOAIIK.A + 2 Oxidation (M) K: 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAFNVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F</pre>
	া বরররর _ু । বরররর, া বররর, া	gi 912 3 - hyd Check 200 95 166 189 229 gi 53 7 fructo Check 200 200 200 200 200 200 200 200 200 20	215296 2 roxybutyry: to include 393.8730 579.9080 996.3390 856.0420 714585 2 714585 2 7	Nr Cass: 32980 1-CoA dehyd: this hit attass: 32980 1178.5972 1736.7022 1990.6634 1990.6634 2565.1042 4ass: 36766 sphate aldo: 1384.6214 1759.6174 1384.6214 1759.6174 1384.6214 Mr (expt) 1384.6214 1384.6214 Mass: 3669: athis hit Mass: 3669: 1384.6214 1384.6214 1384.6214 1384.6214 1384.6214 1384.6214 1384.6214 1384.6214 .	arch Selected Score: : rogenase [P; in error to: Mr (calc) 1178,6845 1736,8832 1990,9312 2565,3439 Score: : lase [Bacter in error to: Mr (calc) 1384,7562 1759,8889 1637,8516 2388,1242 4 Score: lase [Bacter in error to: Mr (calc) 1384,7562 1758,9049 1837,8516 1837,8516	Delta -0.0874 -0.0874 -0.0874 -0.1811 -0.2678 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2374 -0.1347 -0.2714 -0.2007 -1.1762 -0.2840	or toke eries xus t arch Miss 0 0 0 0 eries agili arch Miss 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match orquis \$ \$ 29 45 79 51 * * * * * * * * * * * * * * * * * *	ed: 4 Expect 33 0.64 0.0021 0.16 ed: 6 3.5e+02 6.1 1.6 0.00079 0.18 hed: 5 12] Expect 6 2.9e+02 1.6 0.00079	emPAI: 0755] Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1	<pre>Peptide K.ATGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LGVSNGEGFTTYPEPAYK.S K.TVPVTNSSTLLPSQFAEVTGRPSK.F * 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAPNFNNMEOMOAIIK.A + 2 Oxidation (M) f: 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.GGVAIPAPNFNNMEOMOAIIK.A + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.MYPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.TGCDSLAIFSIGTSHGAYK.F K.TGCDSLAISIGTSHGAYK.F K.TGCDSLAISIGTSHGAY</pre>
. <u>gi 29347101</u> Mass: 36791 Score: 160 Queries matched: 4 emPAI: 0.30	् ा दिवदावत् ा दिवदात् ा	gi 912 3 - hyd Check 295 166 189 229 gi 53:3 fructo Check 200 200 131 168 169 176 177 222 gi 255 fructo Check 200 91 131 168 169 176 177 222	215296 2 roxybutyry: to include 393.8730 579.9080 996.3390 856.0420 714585 2 00ser-bisphor to include 693.3180 880.8160 587.5700 919.3450 613.2370 796.9540 25010781 Dee-bisphor to include 00served 693.3180 587.5700 919.3450 613.2370 796.9540	Ne See dass: 32980 1-CoA dehyd: this hit a this hit 178.5972 1736.7022 1990.6634 2565.1042 2565.1042 dass: 36766 aphate aldo: a this hit in r(expt) 1384.6214 1759.6174 1596.6892 1836.6754 1836.6992 aphate aldo: a this hit is this hit is Mr (expt) 1384.6214 1759.6174 1366.6992 2387.8402 1384.6214 1759.6182 1384.6214 1759.6882 1836.6754 1384.6214 1759.6882 1384.6214 1759.6882 1384.6214 1359.6892 1836.6754 1836.6754	arch Selected Score: : rogenase [P; in error to: Mr (calc) 1178.6845 1736.8832 1990.9312 2565.3439 Score: : lase [Bacte: in error to: Mr (calc) 1384.7562 1759.8889 1359.8889 1359.8889 1359.8889 1359.8889 1359.8889 1359.8889 1359.8889 1359.8889 1359.8889 1359.8889 1359.8889 1359.8889 1359.8889 1359.8516 2388.1242 Mr (calc) 1384.7562 1758.9049 1837.8516 2388.1242	Delta -0.1347 -0.2840 -0.2878 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.2397 -0.1347 -0.2714 -0.2007 -1.1762 -0.2840 -0.2840 -0.1347 0.7833 -0.2840	or toke eries xus t arch Miss agili arch Miss agili arch Miss 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match orquis \$ 29 45 79 51 match \$ \$ \$ 29 45 79 51 ***********************************	ed: 4 Expect 33 0.64 0.0021 0.16 ed: 6 3.5e+02 6.1 1.6 0.00079 0.18 expect 6 2.9e+02 1.6 0.00079 0.18	emPAI: 0755] Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>* 0.21 Peptide K.AIGMLALPLHK.E + Oxidation (M) K.DADLLIEAVPENPDVK.T K.LAVSNGEOFYTYPEPAYK.S K.TVYVYNSSTLLPSOPAEVTGRPSK.F * 0.30 Peptide K.IINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAPNFNNMEOMOAIIK.A + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.LINVLGSDNKLAE R.MYPPPLAFDVLDGVMK.E + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAPNFNNMEOMOAIIK.A + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAPNFNNMEOMOAIIK.A + 2 Oxidation (M) K.TGCDSLAISIGTSHGAYK.F K.GGYAIPAPNFNNMEOMOAIIK.A + 2 Oxidation (M)</pre>

Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
 Observed
 nit(exp())
 nit(calc)
 Delta miss score
 Expect Kank

 693.3180
 1384.6214
 1384.7562
 -0.1347
 1
 37
 6
 1

 919.3450
 1836.6754
 1837.8516
 -1.1762
 0
 (41)
 1.6
 1
 K.ILNVLGSDNKLAE. 131 693.3180 176 R. TGCDSLAISIGTSHGAYK, F R.TGCDSLAISIGTSHGAYK.F 74 0.00079 222 796,9540 2387,8402 2388,1242 -0,2840 49 0.18 1 K.GGYAIPAFNFNNMEOMOAIIK.A + 2 Oxidation (M) 5. gi 153808476 Mass: 36778 Score: 148 Queries matched: 4 emPAI: 0.30 hypothetical protein BACCAC_02770 [Bacteroides caccae ATCC 43185] Check to include this hit in error tolerant search Ouery Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 0.8493 1 25 1e+02 3 -1.1762 0 (41) 1.6 1 -1.1625 0 74 0.00079 1 <u>131</u> 693.3180 1384.6214 1383.7722 K.ILNVLGSDNKLAQ.
 176
 919.3450
 1836.6754
 1837.8516

 177
 613.2370
 1836.6892
 1837.8516
 R.TGCDSLAISIGTSHGAYK.F R.TGCDSLAISIGTSHGAYK.F 796,9540 2387,8402 2388,1242 -0.2840 49 K.GGYAIPAFNFNNMEOMOAIIK.A + 2 Oxidation (M) 222 0.18 Proteins matching the same set of peptides: gi 255693155 Mass: 36831 Score: 148 Queries matched: 4 fructose-1,6-bisphosphate aldolase, class II [Bacteroides finegoldii DSM 17565] Queries matched: 4 gi 260173446 Mass: 36803 Score: 148 Queries matched: 4 fructose-bisphosphate aldolase [Bacteroides sp. D2] Mass: 36875 Score: 148 Queries matched: 4 emPAI: 0.29 6. gi|160886425 hypothetical protein BACOVA_04436 [Bacteroides ovatus ATCC 8483] ☐ Check to include this hit in error tolerant search
 Marcing
 Observed
 Mr (expt)
 Mr (calc)
 Delta Miss
 Score
 Expect Rank

 131
 693.3180
 1384.6214
 1383.7722
 0.8493
 1
 25
 1e+02
 3

 176
 919.3450
 1836.6754
 1837.8516
 -1.1762
 0
 (41)
 1.6
 1

 177
 613.2701
 1836.6892
 1837.8516
 -1.1625
 0
 74
 0.00079
 1

 222
 796.9540
 2387.8402
 2388.1242
 -0.2840
 0
 49
 0.18
 1
 Query Observed Delta Miss Score Expect Rank Peptide K. IINVLGSDNKLAO. -R.TGCDSLAISIGTSHGAYK.F R. TGCDSLAISIGTSHGAYK, F K.GGYAIPAFNFNNMEQMQAIIK.A + 2 Oxidation (M) Proteins matching the same set of peptides: Score: 148 gi|237713705 Mass: 36861 Queries matched: 4 fructose-bisphosphate aldolase [Bacteroides sp. D1] Mass: 36773 gi 237723289 Score: 148 Queries matched: 4 fructose-bisphosphate aldolase [Bacteroides sp. 2_2_4] Peptide matches not assigned to protein hits: (no details means no match) Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide Query 0.7121 2 1 SEALFRNMMTGFKYTLPIK + Oxidation (M) 755.2960 2262.8662 2262.1541 50 144 33 1 5 RDGMLIPYMTLSPAIHQGIVARTK + Oxidation (M) 895.1500 2682.4282 2683.4302 -1.0020 170 29 1 AGAEAKPEAKSEAKSAPAPEK 1033.8310 2065.6474 2066.0643 -0.4169 27 63 197 2 ~ 584.8950 1751.6632 1751.8045 -0.1413 27 85 MDTGMVYINHPTMVK + Oxidation (M) 91 ~ 147 766.4820 2296.4242 2295.2773 1.1469 2 27 98 1 44 1 PLPKRALLAGFSNVLEQAMPK + Oxidation (M) 1 210 735.6100 2203.8082 2202.9807 0.8275 0 25 VMSTDLSNGMMATTVOGSDVK + 2 Oxidation (M) 25 1.1e+02 1 25 1.3e+02 1 1 88 563.1570 1686.4492 1685.7984 0.6508 0 AAYGMPPHTWLTDAR 2 656.7810 1967.3212 1966.8587 MPADHMVLMAGFTAGNEK + 3 Oxidation (M) 116 0.4625 0 ~ 634.6000 1900.7782 1901.9694 IDLTGSSSGNGTLSDPLLR 105 -1.1913 25 1.4e+02 0 ILIVGLGVIGGSFAMALK + Oxidation (M) ~ 592.6870 1775.0392 1774.0427 0.9965 24 1.9e+02 96 1 915.6430 2743.9072 2743.3534 0.5538 24 1.3e+02 DMPHRLQFTGPTGTNAVEAAMKLAR + 2 Oxidation (M) 175 2 406.0880 1215.2422 1214.6003 0.6418 24 1.5e+02 GSPOAGGSEARAK 58 1 1 1 64 831,2410 830,2337 830,4610 -0,2273 1 24 1.4e+02 VRGSGDIK 582.5710 1744.6912 1744.8903 -0.1991 1 RSNAILAMRNSYHGR 167 24 96 2 1 1 751.7510 2252.2312 2251.0475 1.9e+02 MLFNGLCLFEQASLCFRK + Oxidation (M) 143 1.1836 24 1 ~ 70 453.7260 905.4374 905.4463 -0.0088 24 1.5e+02 DLMLAGMR 2e+02 1 640.6990 1919.0752 1918.9232 0.1520 KAVADVAGESSISDVSGDGR 109 24 ~ 152 798.8320 2393.4742 2393.2638 0.2104 23 1.9e+02 AMLLKPTKDDVQGLGFHSHKR + Oxidation (M) 2 ~ 165 865,3170 2592,9292 2592,3193 0.6099 23 1.6e+02 ANMTFHKGKLYGODVVAVVCGIGK 2 1 800.5750 2398.7032 2398.2566 EYGELMRAAAGGGLITVATVYLK + Oxidation (M) 223 0.4466 1 23 77 1 23 1.9e+02 APAAPAMDPSMGMGGMM + 4 Oxidation (M) 563.0610 1686.1612 1685.6228 0.5384 0 87 1 212 1126.9670 2251.9194 2251.1267 0.7928 QAFSDLTATLLDNLGMETRR 1 23 96 ~ 647.4630 1939.3672 1939.8218 2e+02 MSEFGDSASAGTAGRPTSPD 112 -0.4546 23 5 137 479.2240 1434.6502 1435.7558 -1.1057 23 1.5e+02 LTDADVGALASYLK 0 1 150 780.5170 2338.5292 2339.1411 -0.6119 23 2.20+02 YRVOMMFAVPTMYRMLVR + 3 Oxidation (M) 2 7 498.2930 994.5714 994.4906 MGIFAAAGGGK + Oxidation (M) 75 0.0808 0 22 1.5e+02 858.1400 2571.3982 2571.2751 ~ VRAAFEDQDAMVVVHDAIVTNQK + Oxidation (M) 163 0.1230 22 2.3e+02 1 2 191 996.9930 2987.9572 2988.4970 -0.5398 22 2.2e+02 SLHTIKSDVLNLTDDTMPSMMLVNGIK + Oxidation (M) 912.2700 2733.7882 2733.3771 VMGGLLATGIASAPFLWSMLHDYQR ~ 173 0.4111 22 1.8e+02 1 190 664.5630 1990.6672 1989.9353 0.7318 22 1e+02 EEEVPDWKOMODSILK + Oxidation (M) 1 ~ 139 731.8500 2192.5282 2193.2191 -0.6909 2 22 2.88+02 1 MPDAKPVVPKDGAKITLVNGK + Oxidation (M) 2 135 475,2010 1422,5812 1423,6806 -1,0994 22 1.6e+02 1 YFGMNKGITSYK + Oxidation (M) 1 V 562.7810 1123.5474 1122.7125 IVLQAQKVPK 0.8350 22 1.7e+02 86 1 1 181 942.9120 2825.7142 2826.3705 -0.6563 2 22 2.4e+02 NSYDMAETSRDTAVELLKEILEQR + Oxidation (M) 710.8680 2129.5822 2129.2321 PEPRILVLGAGPAGTATALGLR 1 203 0.3501 22 1.1e+02 ~ 208 1091.6490 3271.9252 3271.6673 0.2579 1 22 2.3e+02 OVPGLPAOPGAGGGHMSPALVAOAWNRYAGGLK + Oxidation (M) ~ 184 641.3350 1920.9832 1921.9720 -0.9888 1 22 1.8e+02 1 RAGYATVVAMLDLDHFK + Oxidation (M) 1 76 499.2150 996.4154 995.4971 0.9184 2 22 1.7e+02 1 RMKAFGDR + Oxidation (M) <u>193</u> 1009.2650 3024.7732 3024.4507 0.3224 2 21 2.2e+02 1 KLFGSQATVVTSGHAWLDMMPMSADKGK + 2 Oxidation (M)

(SCIENCE) Mascot Search Results

Protein View

Match to: gi|53714585 Score: 196
fructose-bisphosphate aldolase [Bacteroides fragilis YCH46]
Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6802) 10_RJ10_01_1377.d\SSP (6802) 10_RJ10_01_1377.mgf

Nominal mass ($\rm M_{r}):$ 36766; Calculated pI value: 5.37 NCBI BLAST search of $\underline{gi} | \underline{53714585}$ against nr Unformatted sequence string for pasting into other applications

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gi|60682607</u> from <u>Bacteroides fragilis NCTC 9343</u> gi 253555089 from Bacteroides sp. 3 2 5 gi 2535550851 from Bacteroides sp. 2 1 16 gi 52217430 from Bacteroides fragilis YCH46 gi 60494041 from Bacteroides fragilis NCTC 9343 gi 251946554 from Bacteroides sp. 3 2 5 gi 263253619 from Bacteroides sp. 2 1 16

Fixed modifications: Carboxymethyl (C) Variable modifications: Calboxymetry (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 20%

Matched peptides shown in Bold Red

- 1 MVNYKDLGLV NTRDMFAKAI KGGYAIPAFN FNNMEQMQAI IKAAVETKSP 51 VILQVSKGAR QYANATLLRY MAQGAVEYAK ELGCKMPEIV LHLDHGDTFE 101 TCKSCIDSGF SSVMIDGSHL PYDENVALTK KVVEYAHQFD VTVEGELGVL 151 AGVEDEVSSD HHTYTEPDEV VDFVTKTGCD SLAISIGTSH GAYKFTPEQC 201 HIDPKTGRMV PPPLAFVDLD GVMKELEVGFP IVLHGSSSVP EEEVATINOF 251 GGALKAAIGI PEEELRKAAK SAVCKINIDS DSRLAMTAAI RKVFAEKPAE 301 FDPRKYLGPA RDNMEKLYKH KIINVLGSDN KLAE

```
Show predicted peptides also
```

Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass

```
Start - End
                           Observed
                                              Mr(expt)
                                                                Mr(calc)
                                                                                     Delta Miss Sequence
                                                                                                            K.GGYAIPAFNFNNMEQMQAIIK.A 2 Oxidation (M) (<u>Ions score 49</u>)
K.TGCDSLAISIGTSHGAYK.F (<u>Ions score 41</u>)
K.TGCDSLAISIGTSHGAYK.F (<u>Ions score 74</u>)
                           796.9540
919.3450
                                           2387.8402
1836.6754
                                                             2388.1242
1837.8516
                                                                                   -0.2840
             42
194
     22
177
                                           1836.6892
1759.6174
1759.6882
             194
                           613.2370
                                                              1837.8516
                                                                                   -1.1625
                           880.8160
587.5700
                                                                                   -0.2714
                                                                                                      0 R.MYPPPLAFDVLDGVMK.E 2 Oxidation (M) (Ions score 17)
0 R.MYPPPLAFDVLDGVMK.E 2 Oxidation (M) (Ions score 36)
1 K.IINVLGSDNKLAE.- (Ions score 37)
              224
                                                             1759.8889
                                                             1759.8889
              224
                           693.3180
                                          1384.6214 1384.7562
                                                                                    -0.1347
                                                                                                                                      :
                                                                                            (ppm)
(Da)
                                                                                                -250
    -0.5
Error
                                                                                             E,
                                                                                                -500
    -1
                                                                                                                                        1800
                                                                                                                          1600
                                                                                                                                                      2000
                                                                                                                                                                     2200
                                                                                                                                                                                   2400
                                                        2000
                                                                                     2400
                                                                                                            1400
                             1600
                                           1800
               1400
                                                                       2200
                                                                                                                                                                          Mass (Da)
RMS error 381 ppm
                                                                            Mass (Da) RMS error 381 ppm
```

YP_100577 334 aa linear BCT 26-APR-2009 fructose-bisphosphate aldolase [Bacteroides fragilis YCH46]. LOCUS DEFINITION ACCESSION VERSION YP_100577 YP_100577.1 GI:53714585 DBLINK Project:13067 DBSOURCE KEYWORDS REFSEQ: accession NC_006347.1 . Bacteroides fragilis YCH46 SOURCE Bacteroides fragilis YCH46 Bacteroides fragilis YCH46 Bacteroidaceae; Bacteroides, Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 334) Kuwahara,T., Yamashita,A., Hirakawa,H., Nakayama,H., Toh,H., Okada,N., Kuhara,S., Hattori,M., Hayashi,T. and Ohnishi,Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversione republic gradel surface adaptation ORGANTSM REFERENCE AUTHORS TITLE Genomic analysis of Bacteroides fragilis reveals extensive inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004) <u>15466707</u> 2 (residues 1 to 334) NCBI Genome Project Direct Submission Orbitication (01 007 2004) National Center for Biotechnology JOURNAL PUBMED REFERENCE CONSRTM TITLE Submitted (01-OCT-2004) National Center for Biotechnology TOURNAL. Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 334) REFERENCE 3 (residues 1 to 334) Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. Direct Submission Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan PROVISIONAL <u>REFSEQ</u>: This record has not yet been subject to final NCBI review. The reference sequence was derived from <u>BAD50043</u>. Method: conceptual translation. Location/Qualifiers AUTHORS TITLE JOURNAL COMMENT FEATURES Location/Qualifiers

source	1334
000200	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db xref="taxon:295405"
Protein	1334
12000211	/product="fructose-bisphosphate aldolase"
	/EC number="4.1.2.13"
	/calculated mol wt=36311
Region	12330
ne gron	/region_name="TBP_aldolase_IIB"
	/note="Tagatose-1,6-bisphosphate (TBP) aldolase and
	related Type B Class II aldolases. TBP aldolase is a
	tetrameric class II aldolase that catalyzes the reversible
	condensation of dihydroxyacetone phosphate with
	glyceraldehyde 3-phsophate to produce tagatose;
	cd00947"
	/db xref="CDD: 29573"
014-0	order (3335, 38, 58, 6163, 67, 71, 7475, 154, 280281,
Site	283284,287,291,294)
	/site type="other"
	/note="intersubunit interface"
	/db_xref="CDD: <u>29573</u> " order(9495,189191,193,234235,237,277,279280)
Site	/site type="active"
	/db xref="CDD:29573"
Site	order (95, 190, 234)
	/site_type="other" /note="zinc binding site"
	/db_xref="CDD: <u>29573</u> "
Site	order(189,191,193,235,237)
	/site_type="other"
	/note="Na+ binding site"
	/db_xref="CDD: <u>29573</u> "
CDS	1334
	/locus_tag="BF3299"
	/coded_by="complement(NC_006347.1:37509773751981)"
	/note="catalyzes the formation of glycerone phosphate and
	glyceraldehyde 3-phosphate from fructose 1,6,
	bisphosphate"
	/transl_table= <u>11</u> /db xref="GeneID: <u>3082144</u> "

```
User
                                                        Lakshmy Manickan
Email
                                                        lakshmy.manickan@unn.ac.uk
SSP 6807
Search title
                                                 : SSP 6807

: SSP 6807

: D:\DataLLakshmy\PROTEOMICS 3- 151208\SSP (6807) 10_RJ8_01_1373.d\SSP (6807) 10_RJ8_01_1373.mgf

: NCBInr 20100012 (10272453 sequences; 3505279183 residues)

: Bacteria (Bubacteria) (5690016 sequences)

: 6 Jan 2010 at 13:49:18 GMT

: gi 53712366 hypothetical protein BF1074 [Bacteroides fragilis YCH46]
 MS data file
Database
Taxonomy
Timestamp
 Protein hits
                                                        gi 255007873 hypothetical protein Bfra3_01963 [Bacteroides fragilis 3_1_12]
Probability Based Mowse Score
Ions score is -10*Log(P), where P is the probability that the observed match is a random event.
Individual ions scores 57 indicate identity or extensive homology (p<0.05).
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.
 10
                                                                                                  500
                                                               250
                                                                                  Probability Based Mowse Score
 Peptide Summary Report
  Format As Peptide Summary
                                                                                                                -
                                                                                                                                                                                                                                                           Help
                                                                                                                                      Max. number of hits AUTO
                                         Significance threshold p< 0.05
                                                                                                                                                                                                                                                Show sub-sets 0
                                         Standard scoring @ MudPIT scoring C Ions score or expect cut-off
                                         Show pop-ups @ Suppress pop-ups @ Sort unassigned Decreasing Score 💌 Require bold red 🗆
  Select All Select None Search Selected Error tolerant
                    gi 53712366 Mass: 49095 Score: 610 Queries matched: 14 emPAI: 0.68
 1.
                    hypothetical protein BF1074 [Bacteroides fragilis YCH46]
             Check to include this hit in error tolerant search

        Observed
        Mr (expt)
        Mr (calc)
        Delta Miss
        Score
        Expect Rank
        Peptide

        501,7010
        1001.3874
        1001.4892
        -0.1017
        0
        38
        4.8
        1
        K.DLFMLGYK.A + Oxidation (M)

        547.7660
        1093.5174
        1093.5808
        -0.0633
        0
        70
        0.0026
        1
        K.AVDYIAPAPK.V

        575
        7000
        1349.5654
        1349.6616
        -0.0961
        55
        0.082
        1
        K.VDVNQAYDWLK.K

                   Query
             2
                        88

      ▼
      90
      547.766
      1093.5174
      1093.5808
      -0.0633
      0
      70
      0.0026
      1
      K.AVDYLAPAPK.V

      ▼
      108
      675.7900
      1349.5554
      1349.6616
      -0.0961
      0
      55
      0.082
      1
      K.AVDYLAPAPK.V

      121
      493.5310
      1477.5752
      1477.7565
      -0.1853
      1
      (20)
      2.2e+02
      4
      K.VDWQAYDMLK.S

      ▼
      122
      739.8240
      1477.6334
      1477.7565
      -0.1231
      1
      21
      2.4e+02
      1
      K.VDWQAYDMLK.S

      ▼
      123
      752.3240
      1502.6334
      1502.8093
      -0.1758
      0
      58
      0.043
      1
      R.ITIGGWIGESTIR.-

      130
      518.3990
      1552.1752
      1552.6980
      -0.5228
      0
      12
      1.1e+03
      10
      K.YPDEIMNTHDLR.M

      ▼
      137
      813.7950
      1625.5754
      1625.5757
      -0.1176
      0
      74
      0.00066
      1
      K.CTDSDAYQOASFYVK.I

      ▼
      195
      973.3220
      1944.6224
      1945.8040
      -1.1478
      0
      (24)
      1.7e+02
      1
      K.CTDSDAYQOASFYVK.I
      <t
             ~
                            90
                    Proteins matching the same set of peptides:
                      conserved hypothetical protein [Bacteroides fragilis NCTC 9343]
            gi 255007873 Mass: 49151 Score: 267 Queries matched: 4 emPAI: 0.21 hypothetical protein Bfra3_01963 [Bacteroides fragilis 3_1_12]
 2
             Check to include this hit in error tolerant search

        Query
        Observed
        Mr (expt)
        Mr (calc)
        Delta
        Miss
        Score
        Expect
        Rank
        Peptide

        88
        501.7010
        1001.3874
        1001.4892
        -0.1017
        0
        38
        4.8
        1
        K.DLPMLGYK.A + Oxidation (M)

        90
        547.7660
        1093.5174
        1093.5808
        -0.0633
        0
        70
        0.0026
        1
        K.AVDYIAFAPK.M

        137
        813.7950
        1625.7574
        1625.7573
        -0.1818
        0
        110
        2e-07
        1
        K.FFDEAINLETDNAK.K

        139
        981.2920
        1960.5694
        1959.8196
        0.7498
        0
        49
        0.23
        1
        K.CTDSEAYQQASFYVYK.I

 Peptide matches not assigned to protein hits: (no details means no match)

        Query
        Observed
        Mr(expt)
        Mr(calc)

        232
        766.9760
        2297.9062
        2297.1321

                                                                                                                                                 Delta Miss Score Expect Rank Peptide

        Image: system
        Software
        Software
```

Protein View

Match to: gi|60491969 Score: 610
conserved hypothetical protein [Bacteroides fragilis NCTC 9343]
Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6807) 10_RJ8_01_1373.d\SSP (6807) 10_RJ8_01_1373.mgf

Nominal mass (M_r): 48413; Calculated pI value: 5.79 NCBI BLAST search of <u>gi 60491969</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: Bacteroides fragilis NCTC 9343

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **35%**

Matched peptides shown in Bold Red

1 MAVLFLSAGA TTVVAQDDAN CNSNSSISHE AVKAGNFKDA YTPWKAVLEN 51 CPTLRFYTFT DGYKILKGLL GQIKDRNSAE YKKYPDELMN THDLRMKYTQ 101 EFLGKGYKVS SEDEALGIKA VDYIAFAFKV DVNQAYDMLK KSVDAAKAES 151 AAATLFYFLQ MSHDKLKEDP AHKEOFIQDY LAASEYADDA IAAADKESVK 201 KAFGGIKDNL VALFINSGTA DCESLQGIYG FKVETNQTDL NYLKKVISIM 251 KMMKCTDSDA YQQASFYVYK IEPSAEAATG CAYQAYKKGD IDGSVKFFDE 301 AINLETDNAK KAEKAYAAAS VLTTAKKLSQ ARSYAQKAIS FNENYGAPYI 351 LIANLYAMSP NWSDESALNK CTYFAVIDKL QKAKSVDFSV TEEVNKMISR 401 YSAYTPQAKD LFMLGYKAGD RITIGGWIGE STTIR

```
Show predicted peptides also
```

Sort Peptides By
 Residue Number
 Increasing Mass
 Decreasing Mass Start - End Observed Mr(expt) Mr(calc) Delta Miss Sequence s Sequence K.YPDELMMTHDLR.M (Ions score 12) K.AVDYIAFAPK.V (Ions score 70) K.VDVNQAYDWLK.K (Ions score 55) K.VDVNQAYDWLKK.S (Ions score 21) 1552.1752 1093.5174 1552.6980 1093.5808 -0.5228 518.3990 547.7660 0 95 129 675.7900 493.5310 1349.5654 1477.5712 1349.6616 1477.7565 -0.0961 -0.1853 140 0 141 130 141 165 165 130 739.8240 1477,6334 1477.7565 -0.1231 1 148 682.6080 1023.4270 2044.8022 2044.8394 2044.9564 2044.9564 -0.1542 00 K.AESAAATLFYFLQMSHDK.L Oxidation (M) (Ions score 30) K.AESAAATLFYFLQMSHDK.L Oxidation (M) (Ions score 61) 148 K.SOFIOTLASSYADDALAADKESVK.K (Ions score 55) K.DNLVALFINSGTADCESLQGIYGPK.V (Ions score 57) K.CTDSDAYQQASFYVVK.I (Ions score 74) K.CTDSDAYQQASFYVVK.I (Ions score 24) K.FTDEAINLETDNAK.K (Ions score 110) K.DLFMLGYK.A Oxidation (M) (Ions score 38) 200 232 987.7030 894.9800 2960.0872 2681.9182 174 2960.3927 -0.3055 1 2682.2847 -0.3665 208 -1.1746 973.3220 1944.6294 1945.8040 0 270 310 649.2260 813.7950 1944.6562 1625.5754 1945.8040 1625.7573 -1.1478 -0.1818 0 410 417 501.7010 1001.3874 1001.4892 -0.1017 0 0 R.ITIGGWIGESTTIR. -435 752.3240 1502.6334 1502.8093 -0.1758 (Ions score 58) -0 (mqq) (Da) -250 -0.5 Error or F -500 -1 2400 1600 2000 2800 1600 2000 2400 1200 2800 1200 RMS error 258 ppm Mass (Da) RMS error 258 ppm Mass (Da)

linear BCT 13-MAY-2009 LOCUS CAH06730 435 aa conserved hypothetical protein [Bacteroides fragilis NCTC 9343] CAH06730 DEFINITION ACCESSION CAH06730.1 GI:60491969 VERSION DBSOURCE embl accession CR626927.1 KEYWORDS SOURCE Bacteroides fragilis NCTC 9343 Bacteroides fragilis NCTC 9343 ORGANISM Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides. 1 (residues 1 to 435) REFERENCE 1 (residues 1 to 435) Cerdeno-Tarraga,AM., Patrick,S., Crossman,L.C., Blakely,G., Abratt,V., Lennard,N., Poxton,I., Duerden,B., Harris,B., Quail,M.A., Barron,A., Clark,L., Corton,C., Doggett,J., Holden,M.T., Larke,N., Line,A., Lord,A., Norbertczak,H., Ormond,D., Price,C., Rabbinowitsch,E., Woodward,J., Barrell,B. and Parkhill,J. Extensive DNA inversions in the B. fragilis genome control variable even evenesion. AUTHORS TITLE gene expression Science 307 (5714), 1463-1465 (2005) 15746427 JOURNAL PUBMED REFERENCE 2 (residues 1 to 435) Cerdeno-Tarraga, A.M. TITLE Direct Submission Submitted (29-JUL-2004) Cerdeno-Tarraga A.M., submitted on behalf of the Pathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA E-mail: JOURNAL

amcto	Msanger.ac.uk
JRES	Location/Qualifiers
source	1435
	/organism="Bacteroides fragilis NCTC 9343"
	/strain="ATCC 25285 = NCTC 9343"
	/db_xref="taxon:272559"
Protein	1435
	/product="conserved hypothetical protein"
CDS	1435
	/locus_tag="BF0991"
	/coded by="CR626927.1:12413981242705"
	/note="Similar to Bacteroides thetaiotaomicron
	hypothetical protein BT4368 SWALL:Q89ZK9 (EMBL:AE016945)
	(433 aa) fasta scores: E(): 8.7e-145, 85.21% id in 433 aa"
	/transl table=11
	/db xref="GOA:Q5LGK9"
	/db xref="InterPro: IPR013026"
	/db_xref="UniProtKB/TrEMBL:Q5LGK9"

er	. Lake	hmy Manicka							
ail arch title	: SSP								
data file		ata\Lakshmy nr 20100102	PROTEOMICS	3- 1512	08\55	P (690	1) 10_RH2	23_01	_1294.d\SSP (6901) 10_RH23_01_1294.mgf
conomy	: Bact	eria (Eubac	teria) (569	0016 seg			.05 residi	ies/	
nestamp otein hits		in 2010 at 1			arbox	vkinas	e (Bacter	oide	s fragilis YCH46]
									s vulgatus ATCC 8482]
									oides distasonis ATCC 8503]
									nas gingivalis W83] nterocolitica subsp. enterocolitica 8081]
									copri DSM 18205]
obability	Based Mov	Coons							
Juanty 1	Dased MOV	vse Score							
s score is -1	10*Log(P), w	here P is the j	probability that	it the obser	rved n	natch is	a random e	event.	
		indicate ident rom ions score					cing protein	hits	
	are derived i	10111 10113 30011	es us a non pr	obuomstie	04313	Ior rain	ting protei	i mus.	
10-10									
5	-								
0									
5	-								
5-									
0-									
0	250 -		00 ty Based Mowse	750 Scone					
ptide Sum	mary Rep	ort							
	1								
Format As	Peptide Su	mmary	-						Help
	Significanc	e threshold p<	0.05	Max. n	umbe	r of hits	AUTO		
	Standard sc	oring @ Muc	PIT scoring	O Ions se	ore or	expect	aut off 0		
								222	Show sub-sets 0
elect All		ups @ Suppre			assign	ned De	creasing Sci	ore	Show sub-sets [0 Require bold red
gi 537	Show pop-i Select Nor	ups C Suppre	css pop-ups	Sort un	assign or tole eries	erant	creasing Sci ed: 14		
gi 537 phospi	Show pop-r Select Nor 715725 M noenolpyruv	ups 🖲 Suppre	cch Selected Score: 6 kinase [Bac	Sort un Err 63 Que teroides	or tole eries	erant	creasing Sci ed: 14		Require bold red
gi 537 phospi	Show pop-i Select Nor <u>715725</u> Noenolpyruv to include	ups Suppre Sea tass: 59339 vate carboxy this hit i	ss pop-ups C rch Selected Score: 6 kinase [Bac n error tol	Sort un Err 63 Qua teroides grant sea	or tole eries frag arch	erant match	creasing Sco led: 14 'CH46]	emPA	Require bold red
gi 537 phospi	Show pop-r Select Nor 715725 M noenolpyruv to include Observed	ups • Suppre e Sea Mass: 59339 vate carboxy e this hit i	cch Selected Score: 6 kinase (Bac n error tol Mr(calc)	Sort un Err 63 Qua teroides grant sea	or tole eries frag arch Miss	erant	creasing Sco ed: 14 'CH46]	emPA Ran)	Require bold red
gi 537 phosph Check Query 115 F 120	Show pop-u Select Nor Deenolpyruv to include Observed 684.2770 708.3170	ne Sea fass: 59339 vate carboxy this hit i Mr (expt) 1366.5394 1414.6194	sss pop-ups C score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304	Sort un Sort un Err 63 Qui teroides grant sea Delta 0.8717	or tole eries frag arch Mise	erant match ilis y s Scor	creasing Sc ed: 14 'CH46] e Expect	emPA Ran)	Require bold red I: 0.71 Peptide
gi 537 phosph Check Query 115 V 120 V 141	Show pop-th Select Nor N15725 M to include Observed 684.2770 708.3170 811.3150	Support Sea Seas: Source	sss pop-ups C score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098	Sort un Err 63 Qua teroides prant sea 0.8717 -0.1109 -0.0944	or tole eries frag arch Miss 7 0 0 0	erant match illis Y s Scor. 24	creasing Sco med: 14 'CH46] e Expect 89 1.4e-05 0.4	emPA Ran) 3	Require bold red I: 0.71 Peptide K.AYLVNTGWNGSGK.R
gi 537 phosph □ Check Query 115 ▼ 120 ▼ 141 ▼ 142	Show pop-n Select Nor hoenolpyruv to include Observed 684.2770 708.3170 815.350 818.3880	Mass: Support tass: 59339 yate carboxy this hit i i Mr(expt) 1366.5394 1414.6194 1620.6154 1634.7614 1634.7614	sss pop-ups C score: 6 kinase (Bac n error tol Ms (calc) 1414.7304 1620.7098 1634.8515	Sort un Sort un 63 Qua teroides prant sea 0.8717 -0.1109 -0.0944 -0.0901	or tole eries frag arch Mise 7 0 0 0 0	erant match ilis y s Scor 24 93 47 110	e Expect 89 1.4e-05 0.4 2.5e-07	emPA Ran) 3 1 1	 Require bold red Peptide K.AYLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.GMFSIKNYKNPLR.G + 3 Oxidation (M) K.BLGLNSETATVPNLK.T
gi 537 phosph □ Check Query 115 ♥ 120 ♥ 141 ♥ 142 ♥ 151	Show pop-n Select Nor hoenolpyruv to include Observed 684.2770 708.3170 811.3150 818.3880 843.3600	Mr (expt) 1366.5394 1414.6194 1624.7614 1634.7614	sss pop-ups C sch Selected score: 6 kinase (Bac n error tol 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719	Sort un 53 Quiteroides prant sei 0.8717 -0.1109 -0.0944 -0.0901 -1.0665	or tole eries frag arch Miss 7 0 0 0 0 0 0 0	erant match ilis y s Scor 24 93 47 110 32	ed: 14 (CH46) e Expect 89 1.4e-05 0.4 2.5e-07 15	emPA Ran) 3 1 1 1	Require bold red I: 0.71 C Peptide K.AXLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.GMFSILMYYMPLR.G + 3 Oxidation (M) K.EUGLNSETATVPHLK.T R.LFVVDTFCGANEGTR.M
gi 537 phosph □ Check Query 115 ♥ 120 ♥ 141 ♥ 142	Show pop-n Select Nor hoenolpyruv to include Observed 684.2770 708.3170 815.350 818.3880	ups & Suppro a Sea (ass: 59339 (ate carboxy this hit i Mr (expt) 1366.5394 1414.6194 1620.6154 1634.7614 1684.7054 1725.8254	xxx pop-ups C xxx Selected Score: 6 kinase (Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512	Sort un Sort un Control des pelta 0.8717 -0.1109 -0.0944 -0.0901 -1.0665 -0.1258	or tole eries frag arch Miss 7 0 0 0 0 0 0 0 1 0	erant match ilis y s Scor 24 93 47 110	e Expect 0.4 2.5 0.029	emPA Ran) 3 1 1 1 1 1	Require bold red I: 0.71 Peptide K.AYLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.GMFSIKNYKNPLR.G + 3 Oxidation (M) K.BLGLNSETATVPNLK.T
gi 537 phosph Check Query 115 7 120 7 141 7 142 7 141 7 142 7 151 7 153	Show pop-n Select Nor Doenolpyruv to include Observed 684.2770 708.3170 815.3580 843.3680 863.9200 972.9460	ups & Suppro a Sea (ass: 59339 (ate carboxy this hit i Mr (expt) 1366.5394 1414.6194 1620.6154 1634.7614 1684.7054 1725.8254	xxx pop-ups C xxx pop-ups C xxx pop-ups C xxx (calc) xx (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.5512 1944.0204	Sort un Sort un Control des pelta 0.8717 -0.1109 -0.0944 -0.0901 -1.0665 -0.1258	or tole eries frag arch Mise 0 0 0 0 0 1 0	erant match ilis y s Scor 24 93 47 110 32 60	e Expect 89 1.4e-05 0.4 2.5e-05 0.4 2.5e-05 0.4 2.5e-05 0.4 2.5e-05 0.4 2.5e-05 0.4	emPA Ran) 3 1 1 1 1 1	Require bold red I: 0.71 C Peptide K.AYLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.OMFSIRWYNMPLE.G + 3 Oxidation (M) K.ELGLNSETATUPNLK.T R.LEVUNTFGGANEGTR.M R.GIIDAILDGSIDKAPTK.V
gi [537] phosph Check Query 115 F 120 F 141 F 151 F 151 F 151 F 155 F 156 F 190 F	Show pop-n Select Nor 715725 % to include 058erved 684.2770 708.3170 811.3150 818.3880 843.3500 843.3500 843.3500 972.9460 656.6100 984.4190	ne Sea Aass: 59339 yate carboxys this hit i Mr(expt) 1366.5394 1414.6194 1634.7614 1684.7054 175.8254 1943.8774 1966.0082 1966.8234	sss pop-ups C sch Selected score: 6 kinase (Bac n error tol 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783	Sort un Sort un 63 Quiteroides grant sei Delta 0.8717 -0.1109 -0.0944 -0.0901 -1.0665 -0.1258 -0.1258 -0.1701 -0.1548	assign or tolo eries frag arch Miss 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	erant match match s Scor 24 93 47 110 32 60 53	ed: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 15 0.029 0.14	emPA Ran) 3 1 1 1 1 1	Require bold red I: 0.71 C Peptide K.AYLVNTGWNSSGK.R R.DALLENVTVAADGK.I K.GHFSIMNYMMPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LFVVDTFGGANEGTR.M R.GIDAILDGSIDKAPTK.V K.VINLDKESEPDIFNAIK.R
gi [53] phospi Check Query 115 V 120 V 142 V 151 V 151 V 152 V 153 V 190 V 191 V 195	Show pop-n Select Nor Doenolpyruv to include Observed 684.2770 708.3170 811.31500 818.3880 843.3500 972.9460 656.6100 984.4190 993.4470	ups & Suppro	xxx pop-ups C xxx po	Sort un Sort un Sor	assign or tolo eries frag arch Missarch 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	erant match ilis Y s Scor 24 93 47 110 32 60 53 (46) 115 (59)	<pre>ted: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 15 0.029 0.14 0.52 6.2e-08) 0.05</pre>	emPA 3 1 1 1 1 1 1 1 1 1 1	Require bold red I: 0.71 C Peptide K. AXLVNTGWNGSGK.R R. DALLENVTVAADGK.I K. GATSTATVFNLK.T R.LEVNDTFCGANEGTR.M R.GIDAILDGSIDKAPTK.V K.VINLDKESEPDIFNAIK.R K.GQVTELGAVNVWTGVYTGR.S + Oxidation (M) K.GQVTELGAVNVWTGVYTGR.S + Oxidation (M) R.VSYPIYHIENIVKPVSK.G
gi 537 phospi Check Query 115 F 120 F 142 F 151 F 152 F 151 F 152 F 153 F 156 F 190 F 125 F 125 F 126	Show pop-n Select Nor Doenolpyruv to include Observed 684.2770 708.3170 811.3150 818.38800 863.9200 972.9460 656.6100 984.4190 983.4470 662.6660	ups & Suppro	xxx pop-ups C xxx pop-ups C xxx pop-ups C xxx (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1965.0986 1985.0986 1985.0986	Sort un Sort un Sor	assign or tol- eries frag arch Missi 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0	erant match illis y s Scor 24 93 47 110 32 60 53 (46) 115 (59) 62	<pre>ed: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 0.14 0.52 6.2e-08 0.015 0.015</pre>	emPA 3 1 1 1 1 1 1 1 1 1 1 1 1	 Require bold red Require bold red I: 0.71 Peptide K.AYLVNTGKNGSGK.R R.DALLENVTVAADGK.I K.GMFSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LPVVDTFGGANEGTR.M R.GIDAILDGSIDKAPTK.V K.VINLDKESEPDIFNAIK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.VSYPIYHIENIVKPVSK.G R.VSYPIYHIENIVKPVSK.G
gi [537 phosph Check Query 115 F 12 F 151 F 151 F 151 F 152 F 190 F 191 F 195 F 195 F 215	Show pop-n Select Nor 715725 W to include 684.2770 708.3170 811.3150 818.3880 843.3600 972.9460 656.6100 984.4190 993.4470 662.6660 705.9670	Mr Support ne Sea Aass: 59339 yate carboxys this hit i i Mr (expt) 1366.5394 1414.6194 1620.6154 1634.7614 1684.7054 1943.8774 1966.8082 1966.8234 1984.8774 1984.8794 1984.8794 1984.8794 1984.8794 1984.8794 1984.8794 1984.8794 1984.8794 1984.8794 1984.8794	sss pop-ups C score: 6 kinase [Bac n error tol 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1966.9783 1965.0986 2115.1293	Sort un Sort un 63 Qua teroides grant sei 0.8717 -0.1109 -0.0944 -0.0901 -1.0658 -0.1249 -0.1701 -0.1548 -0.2191 -0.1244 -0.2501	assign or tol- eries frag arch i Missi 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	erant match illis y s Scorr 24 93 47 110 32 60 53 (46) 115 (59) 622 (16)	<pre>sed: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 15 0.029 0.14 0.0.52 6.2e-08 0.015 0.015) 5.5e+02</pre>	emPA 3 1 1 1 1 1 1 1 1 1 1 5	 Require bold red Require bold red I: 0.71 Peptide K.AYLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.GMFSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LFVVDTFCGANEGTR.M R.GIDAILDGSIDEAPTK.Y K.VINLDKESEPDIFNAIK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.VGSYPIHIENIVKPVSK.G R.VGSYPIHIENIVKPVSK.G K.VIPFPDFVVPTELPGVDPK.I
gi [537 phosph Check Query 115 F 120 F 141 F 151 F 151 F 153 F 151 F 152 F 190 F 191 F 192 193 215 F 215 F 215 F 215 F 216	Show pop-n Select Nor 715725 % to include 058-2770 708.3170 811.3150 818.3880 843.3600 843.3600 972.9460 656.6100 984.4190 993.4470 626.660 070.5670 1058.5150	ups & Suppro	Score: 6 kinase [Bac n error tol Mr(calc) 1365.66771 1414.7304 1620.7098 1634.8515 1665.7719 1725.9512 1944.0204 1966.9783 1965.0986 1985.0986 1985.0986 2115.1293 2115.1293	Sort un Sort un Sort un Carteroides grant sei Delta 0.8717 -0.1109 -0.0944 -0.0901 -1.0665 -0.1258 -0.1558 -0.1558 -0.1558 -0.1558 -0.1558 -0.1558 -0.1558 -0.15588	assign or tole frag arch a Miss o 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0	erant match match match s Scorr 24 93 47 110 53 (46) (52) 62 (52) 62 (16) 41	<pre>ed: 14 (CH46] e Expect</pre>	emPA 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 Require bold red Require bold red 1: 0.71 Peptide K.AYLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.GMFSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LEVVDTFCGANEOTR.M R.GIDAILDGSIDKAPTK.V K.VINLDKESEPDIFNATK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.VSYPIYHIENIVKPVSK.G R.VSPFYHELINVKPVSK.G K.VIPFFDFVVPTELPGVDFK.I K.VIPFFDFVVPTELPGVDFK.I
gi [537 phosph Check Query 115 F 120 F 151 F 151 F 151 F 153 F 151 F 190 F 191 F 192 F 215 F 215 F 215 F 215 F 215 F 215	Show pop-n Select Nor 715725 % to include 058-2770 708.3170 811.3150 818.3880 843.3600 843.3600 972.9460 656.6100 984.4190 993.4470 626.660 070.5670 1058.5150	ne Sea Aass: 59339 yate carboxys this hit i Mr (expt) 1366.5394 1414.6194 1620.6154 1634.7614 1634.7614 1634.7614 1634.7614 1634.7614 1965.8254 1943.8774 1966.8082 1966.8234 1984.8794 1984.9762 2114.8792 2115.0154	Score: 6 kinase [Bac n error tol Mr(calc) 1365.66771 1414.7304 1620.7098 1634.8515 1665.7719 1725.9512 1944.0204 1966.9783 1965.0986 1985.0986 1985.0986 2115.1293 2115.1293	Sort un Sort un Sort un Carteroides grant sei Delta 0.8717 -0.1109 -0.0944 -0.0901 -1.0665 -0.1258 -0.1558 -0.1558 -0.1558 -0.1558 -0.1558 -0.1558 -0.1558 -0.15588	assign or tole frag arch a Miss o 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0	erant match match match s Scorr 24 93 47 110 53 (46) (52) 62 (52) 62 (16) 41	<pre>ed: 14 (CH46] e Expect</pre>	emPA 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 Require bold red Require bold red 1: 0.71 Peptide K.AYLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.GMFSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LEVVDTFCGANEOTR.M R.GIDAILDGSIDKAPTK.V K.VINLDKESEPDIFNATK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.VSYPIYHIENIVKPVSK.G R.VSPFYHELINVKPVSK.G K.VIPFFDFVVPTELPGVDFK.I K.VIPFFDFVVPTELPGVDFK.I
gi [537 phosph Check Query 115 F 120 F 142 F 151 F 152 F 18 F 190 F 191 F 195 F 215 F 216 F 215	Show pop-1 Select Nor Deenol pyruv to include Observed 684.2770 708.3170 811.3150 843.3600 843.3600 972.9460 656.6100 993.4470 662.6660 705.9670 1059.5150 1059.3890	ups & Suppro	rch Selected Score: 6 kinase (Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1965.0986 2115.1293 2155.1293 2155.1293 2155.1293	Sort un Sort un Sor	assign or tol- eries frag arch Missi 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match illis y s Scorr 24 93 47 100 53 47 100 53 47 60 53 60 53 60 53 60 53 62 (16) 41 33 8 8 match	eed: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 15 0.029 0.14 0.52 6.2e-08 0.05 0.015 0.015 0.015 0.55e+02 1.9 7.2 hed: 6	emPA Ranj 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1	 Require bold red Reptide K.AYLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.GMFSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LFVVDTFCGANEGTR.M R.GIDAILDGSIDKAPTK.V K.VINLDKESEPDIPNATK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.SYPIPHIENIVKPVSK.G R.VSPIPHIENIVKPVSK.G K.VIPFFDFVVPTELPGVDFK.I K.VIPFFDFVVPTELPGVDFK.I R.GIASMHCSANTDMEGTSSAIPFGLSGTGK.T + 2 Oxidation (M)
gi [537] phosph Check Query 115 F 120 F 142 F 151 F 152 F 151 F 152 F 190 F 191 F 195 F 215 F 214 F 250 gi 150 phosph	Show pop-n Select Nor Deenolpyruv to include Observed 684.2770 708.3170 811.3150 843.3600 843.3600 972.9460 656.6100 972.9460 656.6100 983.4470 662.6660 705.9670 1058.5150 989.3890	ups & Suppro ne Sea fass: 59339 vate carboxy t this hit i Mr (expt) 1366.5394 1414.6194 1620.6154 1624.7614 1634.7054 1943.8774 1943.8774 1966.8022 1966.8034 1984.9762 2114.8792 2115.0154 2965.1452 Mass: 59400 vate carboxy	sss pop-ups C score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1985.0986 2115.1293 2966.2732 2966.2732 Score: kinase [Bac	Sort un Sort un Sor	assign or tokeries frag arch Missi 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0	erant match illis y s Scorr 24 93 47 100 53 47 100 53 47 60 53 60 53 60 53 60 53 62 (16) 41 33 8 8 match	eed: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 15 0.029 0.14 0.52 6.2e-08 0.05 0.015 0.015 0.015 0.55e+02 1.9 7.2 hed: 6	emPA Ranj 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1	 Require bold red Reptide K.AYLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.GMFSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LFVVDTFCGANEGTR.M R.GIDAILDGSIDKAPTK.V K.VINLDKESEPDIPNATK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.SYPIPHIENIVKPVSK.G R.VSPIPHIENIVKPVSK.G K.VIPFFDFVVPTELPGVDFK.I K.VIPFFDFVVPTELPGVDFK.I R.GIASMHCSANTDMEGTSSAIPFGLSGTGK.T + 2 Oxidation (M)
gi [537 phosph Check Query 115 F 120 F 142 F 151 F 151 F 152 F 190 F 191 F 195 F 215 F 214 F 250 gi 150 phosph	Show pop-n Select Nor Deenolpyruv to include Observed 684.2770 708.3170 811.3150 843.3600 843.3600 972.9460 656.6100 972.9460 656.6100 983.4470 662.6660 705.9670 1058.5150 989.3890	ups & Suppro	sss pop-ups C score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1985.0986 2115.1293 2966.2732 2966.2732 Score: kinase [Bac	Sort un Sort un Sor	assign or tokeries frag arch Missi 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0	erant match illis y s Scorr 24 93 47 100 53 47 100 53 47 60 53 60 53 60 53 60 53 62 (16) 41 33 8 8 match	eed: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 15 0.029 0.14 0.52 6.2e-08 0.05 0.015 0.015 0.015 0.55e+02 1.9 7.2 hed: 6	emPA Ranj 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1	 Require bold red Reptide K.AYLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.GMFSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LFVVDTFCGANEGTR.M R.GIDAILDGSIDKAPTK.V K.VINLDKESEPDIPNATK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.SYPIPHIENIVKPVSK.G R.VSYPIPHIENIVKPVSK.G K.VIPFFDFVVPTELPGVDFK.I K.VIPFFDFVVPTELPGVDFK.I R.GIASMHCSANTDMEGTSSAIPFGLSGTGK.T + 2 Oxidation (M)
gi [537 phosph Check Query 115 F 120 F 121 F 151 F 151 F 152 F 120 F 121 F 125 F 215 F 216 F 215 Gi 150 phosph Check	Show pop-n Select Nor 715725 W to include 0684.2770 708.3170 811.3150 818.3680 843.3600 972.9460 656.6100 972.9460 656.6100 984.4190 993.4470 1058.5150 989.3890	Mass: Support 136 Sea Mass: 59339 Vate carboxy ettis hit Mass: 59339 Vate carboxy ettis hit Mass: 59339 Vate carboxy ettis hit Mass: 59309 Mass: 59400 vate carboxy ettis hit	Score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1966.9783 1965.0986 2115.1293 2115.1293 2266.2732 Score: kinase [Bac n error tol	Sort un Gamma Construction Gamma Construction Sort un Gamma Construction Construction Sort un Construction Construction Construction Sort un Construction Con	assign or toke eries frag arch i Missi 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match iilis y s Scorr 24 93 47 110 32 60 53 (46) 115 (59) (16) 41 33 s matc	<pre>creasing Sc ed: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 15 0.029 0.14 0.52 6.2e-08 0.014 0.052 6.2e-08 0.015 0.015 0.015 0.015 0.029 0.014 0.052 1.9 7.2 hed: 6 TCC 8482]</pre>	emPA 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Require bold red I: 0.71 C Peptide K.AYLVNTGWNGSGK.R R.DALLENVTVAADGK.I K.GHPSIMNYMNPLR.G + 3 Oxidation (M) K.SLGLNSETATVFNLK.T R.LFVVDTFCGANEGTR.M R.GIDALLDGSIDKAPTK.V K.VINLDKESEPDIPNAIK.R K.GVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GVTELGAVNVMTGVYTGR.S + Oxidation (M) R.GSVTELGAVNVMTGVYTGR.S + Oxidation (M) R.GVTELGAVNVMTGVYTGR.S + Oxidation (M) R.GVTELGAVNVMTGVYTGVYTGR.S + Oxidation (M) R.GVTELGAVNVMTGVYTGR.S + OXIdATION (M) R.GVTELGAVNVMTGVYTGR.SAIPFGLSGTGK.T + 2 OXIdATION (M) I: 0.31
gil537 phosph Check Query F 120 F 121 F 141 F 142 F 151 F 151 F 190 F 191 F 195 F 216 F 216 F 216 F 216 Check Query 1150 P 195 F 190 Check	Show pop-n Select Nor 25000000000000000000000000000000000000	Mr (expt) 1366.8294 1414.6194 1620.6154 1684.7614 1684.7614 1684.7614 1943.8774 1966.8234 1984.9762 2115.0154 2965.1452 Mass: 59400 rate carboxy this hit i	SSS pop-ups C rch Selected Score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1965.0986 2115.1293 2966.2732 Score: kinase [Bac n error tol Mr (calc) 1620.7098	Sort un Sort un Sort un Carlor Serant sei Delta 0.8717 -0.1109 -0.0944 -0.0901 -1.0665 -0.1258 -0.1429 -0.1429 -0.1429 -0.1429 -0.1548 -0.1224 -0.1244 -0.2501 -0.1138 -1.1281 -0.1284 -0.2104 -0.2104 -0.1138 -1.281 -0.1284 -0.2104 -0.2104 -0.21	assign or tole frag arch Miss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ned Description erant match match match s score 24 93 47 110 32 60 53 61 115 5 62 (16: 41 33 s smatcatus A Score 47	<pre>creasing Sc reasing Sc ed: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 0.14 0.52 6.2e-08 0.015 0.55e+02 1.9 7.2 hed: 6 TCC 8482] Expect 1 0.4</pre>	emPA 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Require bold red I: 0.71 C Peptide K.AYLVNTGKNGSGK.R R.DALLENVTVAADGK.I K.GUFSIMNYMNPLR.G + 3 Oxidation (M) K.EUGLNSETATVFNLK.T R.LEVVDTFGGANEGTR.M R.GIIDAILDGSIDKAPTK.V K.VINLDKESEPDIFNAIK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.VSYPIYHIENIVKPVSK.G R.VSYPIYHIENIVKPVSK.G K.VIPFPDFVVPTELPGVDFK.I K.VIPFFDFVVPTELPGVDFK.I R.GIASMHCSANTDMEGTSSAIFFGLSGTGK.T + 2 Oxidation (M) I: 0.31 Peptide K.GUFSIMNYMPPLR.G + 3 Oxidation (M)
gi [537 phosph Check Query J15 F 120 F 121 F 151 F 151 F 190 F 191 F 195 F 215 Check Query 141 142	Show pop-n Select Nor 715725 P 0000010000000000000000000000000000000	Mr Support Mass: 59339 vate carboxys sthis hit Mr (expt) 1366.5394 1414.6194 1620.6154 1634.7614 1634.7614 1684.7054 1945.8254 1943.8774 1966.8234 1984.8794 1984.8794 1984.8794 2115.0154 2965.1452 Mass: 59400 rate carboxys this hit i 1 Mr (expt) 1620.6154 1620.6154 1634.7614	Score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1966.9783 1966.9783 1965.0986 2115.1293 2115.1293 2115.1293 2266.2732 Score: kinase [Bac n error tol Mr (calc) 1620.7098	Sort un Sort un Carlot Erro 63 Qua teroides grant sei 0.8717 -0.1109 -0.0944 -0.0901 -0.1548 -0.1258 -0.1288 -0.0904 -0.0904 -0.0904 -0.0901	A Missign A Missign	Image Image erant match match match illis y s s Scorr 24 93 47 110 32 60 53 (46) 115 (16) 62 (16) 41 33 s matc s s matc atus A Scorre 47 110 10	<pre>creasing Sc reasing Sc ed: 14 (CH46] e Expect 1 9 1.4e-05 0.4 2.5e-07 0.4 0.52 6.2e-08 0.015 0.00</pre>	emPA Ranh 3 1 1 1 1 1 1 1 1 1 1 1 1 1	Require bold red I: 0.71 I: 0.71 C Peptide K.AYLVNTGKNGSGK.R R.DALLENVTVADCK.I K.GMPSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVPNLK.T R.GIDALLEGSIDKAPTK.V K.VINLDKESEPDIPNAIK.R K.GQVTELGAVNYMTGVYTGR.S + Oxidation (M) K.GQVTELGAVNYMTGVYTGR.S + Oxidation (M) R.VSYPIYHLENVKPVSK.G K.VIPFPDFVVPTELPGVDK.I K.VIPFPDFVVPTELPGVDK.I R.UIPFFDFVVPTELPGVDK.I R.GIASMMCSANTDMEGTSSAIPFGLSGTGK.T + 2 Oxidation (M) I: 0.31
gi [537 phosph ☐ Check Query 115 F 120 F 120 F 141 F 151 F 136 F 190 F 190 F 190 F 195 F 216 F 216 F 226 F 250 ghosph ☐ Check Query 141 153 F 120 P 142 F 153 F 120 P 142 F 153 F 153 F 155 F 155	Show pop-1 Select Nor Deenolpyruv to include Observed 684.2770 708.3170 811.3150 843.3500 843.3500 843.3500 972.9460 656.6100 984.4190 993.4470 662.6660 705.9670 1058.5150 989.3890 D003549 D	Mass: Support Mass: Solar Aussi: 59339 Aata carboxy Aata carboxy Atta carboxy Athis hit i Mr (expt) 1366.5394 1414.6194 1620.6154 1634.7614 1644.7054 1943.8774 1946.8082 1966.8082 2115.0154 2965.1452 2115.0154 2965.1452 Mass: Mass: 59400 Act carboxy This hit i Mr (expt) 1620.6154 1634.7614 1725.8254	sss pop-ups C sch Selected Score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1725.9512 1944.0204 1966.9783 1966.9783 1965.0986 2115.1293 2066.2732 Score: kinase [Bac n error tol Mr (calc) 1620.7098 1634.8515 1725.9512	Sort un Sort un Sort un Carlor Carlor Serant sei Delta 0.8717 -0.1109 -0.0944 -0.0901 -0.1586 -0.1258 -0.1429 -0.1701 -0.1586 -0.12581 -0.12501 -0.12581 -0.12581 -0.12581 -0.12581 -0.0944 -0.0901 -0.12581 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.01581 -0.1588 -0.12581 -0.125	assign or tol- eries frag arch Miss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match match s Score 24 93 47 1100 32 60 53 47 110 62 (166 (155) 62 (166) 41 33 33 s matc 44 (15) 62 44 110 33 55 55 62 62 44 115 8 55 8 55 75 115 115 115 115 115 115 115 115 1	ed: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 0.52 0.029 0.14 0.52 6.2e-08 0.015 0.015 0.015 0.015 0.015 0.015 0.029 0.14 0.55 0.029 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	emPA 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 8 8 8 8	Require bold red I: 0.71 I: 0.71 C Peptide K.AYLVNTGKNGSGK.R R.DALLENVTVAADGK.I K.OMFSIMMYMPLE.G + 3 Oxidation (M) K.ELENVTOTPCGANEGTR.M R.GIIDAILDGSIDKAPTK.V K.VINLDKESEPDIPNATK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.VSYPIYHIENIVKPVSK.G K.VIPFPDFVVPTELPGVDFK.I K.VIPFPDFVVPTELPGVDFK.I R.GIASMHCSANTDMEGTSSAIPFGLSGTGK.T + 2 Oxidation (M) I: 0.31 Peptide K.GMPSIMNYMPLR.G + 3 Oxidation (M) K.ELGUNSETATVFNLK.T R.GIDAILDGSIDKAPTK.V
gil537 phosph Check Query F 120 F 121 F 141 F 142 F 151 F 151 F 190 F 191 F 195 F 216 F 216 F 216 F 216 Check Query 1150 Check	Show pop-n Select Nor 25000000000000000000000000000000000000	Mr (expt) 1366.8294 1414.6194 1620.6154 1634.7614 1634.7614 1634.7614 1684.7054 1943.8774 1966.8234 1984.9762 2115.0154 2965.1452 Mass: 59400 This hit i Mr (expt) 1620.6154 1634.7614 1984.9762 2115.0154 2965.1452 Mass: 59400 This hit i Mr (expt) 1620.6154 1634.7614 1725.8254	sss pop-ups C schedel Score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1965.9783 1965.9783 2965.2732 Score: kinase [Bac n error tol Mr (calc) 1620.7098 1634.8515 1725.9512 1762.9783	Sort un Sort un Sort un Sort un Carlor Serant sei Delta 0.8717 -0.1109 -0.944 -0.0901 -0.1258 -0.1258 -0.1281 -0.1281 -0.1284 -0.2101 -0.138 -1.1281 -0.0944 -0.0901 -0.0944 -0.0901 -0.1258 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.1258 -0.1558 -0.1558 -0.1558 -0.1558 -0.1558 -0.1558 -0.1558 -0.155	Assignment of the series of th	Image: Non-Section 24 Image: Non-Section 24	creasing Sc ed: 14 (CH46] e Expect: 89 1.4e-05 0.4 2.5e-07 0.14 0.52 6.2e-08 0.015 5.5e+02 1.9 7.2 hed: 6 TCC 8482] Expect: 0.4 2.5e-07 0.4 0.055 1.9 7.2 Expect: 0.4 0.4 2.5e-07 0.025 0.029 0.14 0.055 1.9 7.2 Expect: 0.4 0.4 0.5 0.4 0.5 0.025	emPA 3 1 1 1 1 1 1 1 1 1 1 1 1 2 5 1 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Require bold red I: 0.71 C Peptide K.AYLVNTGKNGSGK.R R.DALLENVTVAADGK.I K.GUFSIMNYMMPLR.G + 3 Oxidation (M) K.ELGLNSETATVPNLK.T R.GIDAILDGSIDKAPTK.V K.VINLDKESEPDIPNAIK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.GSVPIHIENIVKPVSK.G R.VSYPIYHIENIVKPVSK.G K.VIPFPDFVVPTELPGVDFK.I R.VIPFPDFVVPTELPGVDFK.I R.GIASMHCSANTDMEGTSSAIFPGLSGTGK.T + 2 Oxidation (M) I: 0.31 Peptide K.GQFSIMNYMPIRLR.G + 3 Oxidation (M) K.SIGLASETATVPNLK.T R.GIIDAILDGSIDKAPTK.V K.GUFSIMNYMPYER.S + Oxidation (M) K.SIGLASETATVPNLK.T R.GIIDAILDGSIDKAPTK.V K.GQVTELGAVNVYTGVYTGR.S + Oxidation (M) K.SIGLASETATVPNLK.T
phosph Check Cuery 115 F 120 F 120 F 141 F 151 F 153 F 156 F 190 F 190 F 191 F 215 F 225 F 225 Check Query 411 F 120 phosph Check Query 115 F 120 P 141 F 120 P 141 F 120 P 142 F 120 F 120	Show pop-n Select Nor 215725 P 00003549 000000000000000000000000000000000000	Mr (expt) 1366.8294 1414.6194 1620.6154 1634.7614 1634.7614 1634.7614 1684.7054 1943.8774 1966.8234 1984.9762 2115.0154 2965.1452 Mass: 59400 This hit i Mr (expt) 1620.6154 1634.7614 1984.9762 2115.0154 2965.1452 Mass: 59400 This hit i Mr (expt) 1620.6154 1634.7614 1725.8254	sss pop-ups C score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1965.0986 2115.1293 2066.2732 Score: kinase [Bac n error tol Mr (calc) 1620.7098 1634.8515 1725.9512 1966.9783	Sort un Sort un Carlot and a service of the Sort un teroides prant service of the Carlot and a service of the Sort un Carlot and a service of the Sort un Carlot and a service of the Sort un Sort un Carlot and a service of the Sort un Sort un	A Missign A Missign	Image Image erant match match match iilis y s s Score 44 93 47 110 32 60 53 (46) 60 53 (46) 115 (22 (16) 41 33 3 s matc atus A Score 47 110 60 (46) 115	creasing Sc creasing Sc creasing Sc e Expect 1 9 1.4e-05 0.4 2.5e-07 1.5 0.029 0.14 0.52 6.2e-08 0.015 0.55e+02 1.9 7.2 hed: 6 TCC 8482] Expect 1 0.4 2.5e-07 0.029 0.52 6.2e-08 0.4 0.55 0.55e+02 1.9 7.2 1.9 7.2 1.5 0.4 0.55 1.9 7.2 1.5 0.4 1.5 0.02 0.05 0.014 0.05 0.014 0.05 0.014 0.05 0.014 0.05 0.02 0.014 0.05 0.02 0.014 0.05 0.014 0.05 0.02 0.014 0.05 0.014 0.05 0.015 0.015 0.02 0.014 0.05 0.015 0.02 0.014 0.05 0.015 0.015 0.02 0.014 0.05 0.015 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.55 0.05 0.05 0.55	emPA 3 3 1 1 1 1 1 1 1 1 1 1 1 1 2 8 Rank Rank Rank Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Require bold red Require bold red I: 0.71 S. Peptide K.AYLVNTGKNGSGK.R R.DALLENVTVADOK.I K.GUPSIMNYMPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LEVVDTFCOANEGTR.M R.GIDALLDGSIDKAPTK.V K.VINLDKESEPDIPNAIK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.GYDFILDASIDKAPTK.S K.VIPFFDFVVPTELPGVDFK.I K.VIPFFDFVVPTELPGVDFK.I R.GIASMHCSANTDMEGTSSAIPFGLSGTGK.T + 2 Oxidation (M) I: 0.31 Peptide K.GMPSIMNYMPLR.G + 3 Oxidation (M) K.ELGLMSETATVFNLK.T R.GIDALLDGSIDKAPTK.V K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GUPSIMNYMPLR.G + 3 Oxidation (M) K.GUPSIMNYMPLR.G + 3 Oxidation (M) K.GUPSIMNYMPLR.S + Oxidation (M) K.GUPSILGAVNVMTGVYTGR.S + Oxidation (M) K.GUVTELGAVNVMTGVYTGR.S + Oxidation (M)
gil537 phosph Check Query J15 Ø 141 Ø Ø 9 131 Ø	Show pop-n Select Nor 215725 P 00003549 000000000000000000000000000000000000	Mr (expt) 1366.5394 1414.6194 1620.6154 1634.7614 1634.7614 1966.8234 1984.8794 1965.1452 Mass: 59400 rate carboxy this hit i 1965.8254 1963.8774 1966.8022 1965.1452 Mass: 59400 rate carboxy this hit i Mr (expt) 1620.6154 1634.7614 1725.8254 1966.8034 1966.8034 1984.8794 1986.8032	sss pop-ups C score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1965.0986 2115.1293 2066.2732 Score: kinase [Bac n error tol Mr (calc) 1620.7098 1634.8515 1725.9512 1966.9783	Sort un Sort un Carlot and a service of the Sort un teroides prant service of the Carlot and a service of the Sort un Carlot and a service of the Sort un Carlot and a service of the Sort un Sort un Carlot and a service of the Sort un Sort un	A Missign A Missign	Image Image erant match match match iilis y s s Score 44 93 47 110 32 60 53 (46) 60 53 (46) 115 (22 (16) 41 33 3 s matc atus A Score 47 110 60 (46) 115	creasing Sc creasing Sc creasing Sc e Expect 1 9 1.4e-05 0.4 2.5e-07 1.5 0.029 0.14 0.52 6.2e-08 0.015 0.55e+02 1.9 7.2 hed: 6 TCC 8482] Expect 1 0.4 2.5e-07 0.029 0.52 6.2e-08 0.4 0.55 0.55e+02 1.9 7.2 1.9 7.2 1.5 0.4 0.55 1.9 7.2 1.5 0.4 1.5 0.02 0.05 0.014 0.05 0.014 0.05 0.014 0.05 0.014 0.05 0.02 0.014 0.05 0.02 0.014 0.05 0.014 0.05 0.02 0.014 0.05 0.014 0.05 0.015 0.015 0.02 0.014 0.05 0.015 0.02 0.014 0.05 0.015 0.015 0.02 0.014 0.05 0.015 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.55 0.05 0.05 0.55	emPA 3 3 1 1 1 1 1 1 1 1 1 1 1 1 2 8 Rank Rank Rank Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Require bold red Require bold red I: 0.71 S. Peptide K.AYLVNTGRNGSGK.R R.DALLENVTVAADGK.I K.GUPSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LIDAILDGSIDKAPTK.V K.VINLDKESEPDIFNAIK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.VSYPIYHIENIVKPVSK.G K.VIPFPDFVVPTELPGVDFK.I K.VIPFFDFVVPTELPGVDFK.I R.UIPFFDFVVPTELPGVDFK.I R.GIASMHCSANTDMEGTSSAIFFGLSGTGK.T + 2 Oxidation (M) K.GUPSIMMCNMTGVYTGR.S + Oxidation (M) K.GUPSIMMCSANTDMEGTSSAIFFGLSGTGK.T + 2 Oxidation (M) K.GUPSIDAVVYTGVYTGR.S + Oxidation (M) K.GUPSLGAVNVMTGVYTGR.S + Oxidation (M) K.GUPSLGAVNVMTGVYTGR.S + Oxidation (M) K.GUPELGAVNVMTGVYTGR.S + Oxidation (M) K.GUPELGAVNVMTGVYTGR.S + Oxidation (M)
gi 1537 phospf ☐ Check Query 115 7 120 7 141 7 142 7 151 7 136 7 190 7 191 7 195 7 216 7 216 7 216 7 216 7 250 gi 155 phosph ☐ Check Query 141 153 150 7 216 7 250 Protei	Show pop-n Select Nor 2015725 M noenolpyruv to include 05served 684.2770 708.3370 811.3150 843.3500 972.9460 656.6100 984.4190 993.4470 662.6660 705.9670 1058.5150 989.3890 2003549 2005555 2005555 20055555 20055555 200555555 200555555 20055555 200555555 20055555	Mass: Support Mass: Solar Auss: 59339 Auss: 59400 Auss:<	rch Selected Score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1965.0986 1985.	Sort un Sort un Control Control Serant sea Delta 0.8717 -0.109 -0.0944 -0.0901 -0.0944 -0.0901 -0.1528 -0.1258 -0.1258 -0.1258 -0.1250 -0.1258 -0.0944 -0.0944 -0.0944 -0.0944 -0.0944 -0.1258 -0.1400 -0.1258 -0.1400 -0.14	Assign or tol- eries frag arch Miss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erant match match s s Scorr 24 93 47 1100 32 60 53 47 110 53 47 110 53 60 53 62 (165) 62 (165) 62 (165) 62 62 (165) 62 8 53 8 55 75 75 115 8 75 115 8 75 115 8 75 115 8 75 115 8 75 115 8 75 115 8 75 115 115 115 115 115 115 115 115 115	ed: 14 (CH46] e Expect 89 1.4e-05 0.4 2.5e-07 15 0.029 0.14 0.52 6.2e-08 7.2 Expect 1 0.4 2.5e-07 7.2 Expect 1 0.4 2.5e-07 0.029 7.2	emPA 3 3 1 1 1 1 1 1 1 1 1 1 1 1 2 8 Rank Rank Rank Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Require bold red I: 0.71 I: 0.71 C Peptide K.ATLVNTGNNGSGK.R R.DALLENVTVAADGK.I K.GHPSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LIDAILDGSIDKAPTK.V K.VINLDKESEPDIFNAIK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.VSYPIYHIENIVKPVSK.G K.VIPFFDFVVPTELPGVDFK.I K.VIPFFDFVVPTELPGVDFK.I R.UIPFFDFVVPTELPGVDFK.I R.GIASMHCSANTDMEGTSSAIFFGLSGTGK.T + 2 Oxidation (M) K.ELGLNSETATVFNLK.T R.GIDAILDGSIDKAPTK.V K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.ELGLNSETATVFNLK.T R.GIDAILDGSIDKAPTK.V K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.ELGLNSETATVFNLK.T R.GIDAILDGSIDKAPTK.V K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GUTELGAVNVMTGVYTGR.S + Oxidation (M) K.GUTELGAVNVMTGVYTGR.S + Oxidation (M)
gil537 Check Query 120 121 121 122 123 124 125 125 125 125 125 125 125 125	Show pop-n Select Nor Select Nor Decenolpyruv to include Observed 684.2770 708.3170 815.3500 843.3600 843.3600 863.9200 972.9460 656.6100 989.3890 D003549 D00	Mr (expt) 1366.5394 1414.6194 1620.6154 1634.7614 1634.7614 1634.7614 1966.8034 1943.8774 1966.8034 1943.8774 1955.1452 Mass: 59400 rate carboxy this hit i 1965.1452 Mass: 59400 1620.6154 1624.7614 1725.8254 1963.834 2965.1452	sss pop-ups C rch Selected Score: 6 kinase [Bac n error tol Mr (calc) 1365.6677 1414.7304 1620.7098 1634.8515 1685.7719 1725.9512 1944.0204 1966.9783 1985.0986 2115.1293 2966.2732 Score: kinase [Bac n error tol Mr (calc) 1620.7098 1634.8515 1725.9512 1966.9783 1967.978	Sort un Sort un Sort un Carlor Sort un Sort un Carlor Sort un Sort	Assignment of the series of th	Image Image erant match match match ilis y g score 24 93 47 100 32 60 53 60 53 61 60 53 61 15 33 s s match	<pre>creasing Sc read: 14 (CH46] e Expect 8 9 1.4e-05 0.4 2.5e-07 0.52 6.2e-08 0.015 0.015 0.055 0.015 0.55e+02 1.9 7.2 hed: 6 Expect 1 0.4 2.5e-07 0.52 6.2e-08 7.2 hed: 6 7.2 hed: 6</pre>	emPA 3 3 1 1 1 1 1 1 1 1 1 1 1 1 2 8 Rank Rank Rank Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Require bold red I: 0.71 I: 0.71 C Peptide K.ATLVNTGNNGSGK.R R.DALLENVTVAADGK.I K.GHPSIMNYMNPLR.G + 3 Oxidation (M) K.ELGLNSETATVFNLK.T R.LIDAILDGSIDKAPTK.V K.VINLDKESEPDIFNAIK.R K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) R.VSYPIYHIENIVKPVSK.G K.VIPFFDFVVPTELPGVDFK.I K.VIPFFDFVVPTELPGVDFK.I R.UIPFFDFVVPTELPGVDFK.I R.GIASMHCSANTDMEGTSSAIFFGLSGTGK.T + 2 Oxidation (M) K.ELGLNSETATVFNLK.T R.GIDAILDGSIDKAPTK.V K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.ELGLNSETATVFNLK.T R.GIDAILDGSIDKAPTK.V K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.ELGLNSETATVFNLK.T R.GIDAILDGSIDKAPTK.V K.GQVTELGAVNVMTGVYTGR.S + Oxidation (M) K.GUTELGAVNVMTGVYTGR.S + Oxidation (M) K.GUTELGAVNVMTGVYTGR.S + Oxidation (M)

gi 150009397 Mass: 59213 Score: 334 Queries matched: 6 emPAI: 0.24 3 phosphoenolpyruvate carboxykinase [Parabacteroides distasonis ATCC 8503]
 Query
 Observed
 Mr(expt)
 Mr(calc)

 115
 684.2770
 1366.5394
 1365.6677
 Delta Miss Score Expect Rank Peptide 0.8717 0 -0.1109 0 0.8717 24 74 93 1.2e-05 K.AYLVNTGWNGSGK.R 3 1414.7304 1634.8515 708.3170 1414.6194 120 R.DALLENVTVAADGK.I 142 110 2.1e-07 K.ELGLNSETATVFNLK.T 153 863.9200 1725.8254 1725.9149 -0.0894 0
 0
 44
 0.91
 2
 R.GIIDAILDGSINEAPTK.K

 0
 (59)
 0.042
 1
 R.VSYPIYHIENIVKPVSK.G

 0
 62
 0.013
 1
 R.VSYPIYHIENIVKPVSK.G
 195 662.6660 1984.9762 1985.0986 gi 34541315 Mass: 59587 Score: 178 Queries matched: 4 emPAI: 0.24 phosphoenolpyruvate carboxykinase [Porphyromonas gingivalis W83] 4. gi|34541315 Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
 Line
 Construct
 Art (cap)
 Art (cap)
 Delta Alss
 Score
 Expect wank
 Peptide

 120
 708.3170
 1414.6194
 1413.7463
 0.8731
 58
 0.039
 3
 R.NALLENVTVDAAGK.I

 153
 863.9200
 1725.8254
 1725.9512
 -0.1258
 1
 60
 0.024
 1
 R.GIIDAILDCSIDKAPTK.A

 195
 993.4470
 1984.8794
 1985.0986
 -0.2191
 0
 (59)
 0.042
 1
 R.VSYPIYHENIVKPVSK.A

 196
 662.6660
 1984.9762
 1985.0986
 -0.1224
 62
 0.013
 1
 R.VSYPIYHENIVKPVSK.A
 Proteins matching the same set of peptides: gi 188994298 Mass: 59614 Score: 178 Queries matched: 4 phosphoenolpyruvate carboxykinase [Porphyromonas gingivalis ATCC 33277] <u>gi|77975053</u> Mass: 59554 Score: 84 Queries matched: 3 emPAI: 0.11 COG1866: Phosphoenolpyruvate carboxykinase (ATP) [Yersinia frederiksenii ATCC 33641] 5. ☐ Check to include this hit in error tolerant search
 uery
 Observed
 Mr (expt)
 Mr (calc)
 Delta Miss
 Score
 Expect Rank

 151
 843.3600
 1684.7054
 1685.7719
 -1.0665
 0
 22
 1.3e+02
 2

 195
 993.4470
 1984.8794
 1985.0986
 -0.2191
 0
 (59)
 0.042
 1

 196
 662.6660
 1984.9762
 1985.0986
 -0.1224
 0
 62
 0.013
 1
 Query Observed Delta Miss Score Expect Rank Peptide R. LEVVDTECGANADTR I. R.VSYPIYHIENIVKPVSK.A R.VSYPIYHIENIVKPVSK.A Proteins matching the same set of peptides: COG1866: Phosphoenolpyruvate carboxykinase (ATP) [Yersinia intermedia ATCC 29909] gi 123444162 Mass: 59550 Score: 84 Queries matched: 3 phosphoenolpyruvate carboxykinase [Yersinia enterocolitica subsp. enterocolitica 8081] 6. Score: 72 qi|223465411 Queries matched: 1 Check to include this hit in error tolerant search
 Query
 Observed
 Mr(expt)
 Mr(calc)
 Delta Miss Score
 Expect Rank
 Peptide

 120
 708.3170
 1414.6194
 1413.7463
 0.8731
 0
 72
 0.0014
 2
 R.NALLENVTVAADGK.I
 Peptide matches not assigned to protein hits: (no details means no match) Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 0 1 DNIFILIR V 502,2610 1002.5074 1002.5862 -0.0787 35 84 9.7 1 737.6640 2209.9702 2211.0221 -1.0519 227 1 33 10 1 OILCGCGSITEAOADALMKK + Oxidation (M) V 179 638.2790 1911.8152 1912.0054 -0.1902 32 13 1 AAHPGLVPPEELDALVER 0
 1041.9440
 2081.8734
 2083.0334
 -1.1600
 2

 742.3140
 2223.9202
 2223.1834
 0.7368
 2

 657.4030
 1312.7914
 1313.5935
 -0.8021
 0
 2 210 1041.9440 2081.8734 2083.0334 -1.1600 13 1 SGYERVDIVENKGEFSVR 31 19 1 7 230 29 ELFGVMAAERAKGGFIVISGR + Oxidation (M) 17 107 29 32 1 AAGGGFAPVHGCGR 41 1 56 1 7 194 661.3090 1980.9052 1979.9193 0.9859 1 27 MPSFAAASPQIAKSCONR + Oxidation (M) 2 238 1178.9000 3533.6782 3533.9259 -0.2478 2 26 ILFSRLGTPHIGPPGAFAFNVPSVRASGAITVER 1 26 41 1 TDRGFVDSIELIAMNDATAR + Oxidation (M)
88 1 SLTEGLTSGADK
 226
 1105.9920
 2209.9694
 2210.0637
 -0.0943
 1

 58
 393.3400
 1176.9982
 1177.5826
 -0.5845
 0
 1 26
 393.3400
 1176.552
 1177.302

 733.8920
 2198.6542
 2198.0175
 0.6367
 2

 692.2780
 1382.5414
 1382.7994
 -0.2579
 1
 90 1 51 1 65 1 7 130 26 1 116 26 LSGGNQQKLIIGR 1068.6810 3203.0212 3202.7614 0.2597 1 219 26 SEAGIAVLPLSARPGIYAARYIYAGIGAQVR 26 55 1 26 1.6e+02 1 17 684.2770 1366.5394 1365.7140 0.8254 1 115 DFIDQSSKVVTK 1 366.2060 1095.5962 1094.4736 1.1226 0 LADMEPMTR + 2 Oxidation (M) 43 17 506.1470 1010.2794 1010.5760 -0.2966 0 46 1 56 1 85 25 DLAOPLAVGK 1 905.7720 2714.2942 2715.3326 -1.0385 1 244 25 OTEVAIAPYDEMLFHGLRGSAPADK

 995.7720
 2714.2942
 2715.3326
 -1.0385
 1
 25
 56
 1
 QTEVAIAPYDEMLPHGLRGSAPADK

 676.4300
 2025.3682
 2024.9916
 0.3766
 2
 25
 48
 1
 IGPGPGTDVERDPTGKHHKD

 716.9830
 2147.9272
 2149.1440
 -0.2168
 2
 25
 1.3e+02
 1
 HDGHSIQKLGLPEYASKLR

 381.2650
 1140.7732
 1140.6404
 0.1328
 1
 25
 1.8e+02
 1
 WVPAKLGGQR

 1112.9580
 2223.9014
 2224.2388
 -0.3374
 2
 24
 58
 1
 LPIDVLKLDKVLVDGIEGCK

 651.8050
 1301.5954
 1300.7285
 0.6669
 2
 24
 98
 1
 KAGLAMAVADRAK

 637.3450
 1272.6754
 1273.7176
 -1.0422
 1
 24
 1e+02
 1
 LBTMORLIGR + Oxidation (M)

 897.3670
 1928.3294
 1928.0077
 0.3217
 1
 24
 .3e+02
 1
 KQOMFVXASGSVMTRGMVVVPCSMGTVGR

 654.0730
 2079.1972
 2078.0367
 1.1604
 1
 23
 90
 1
 LFTRLQSAPAMLIDHADR + Oxidation (M)
 838.081 7 204 7 123 5
 48
 381.2650
 1140.7732
 1140.6404
 0.1328
 1

 229
 1112.9580
 2223.9014
 2224.2388
 -0.3374
 2
 5 1 105 2 96 V 162 17 182 2 211 1042.0180 3123.0322 3123.4610 -0.4289 1 2 209 694.0730 2079.1972 2078.0367 ₩<u>149</u> 5 152

Protein View

Match to: gi|53715725 Score: 663
phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]
Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf Nominal mass (M,): 59339; Calculated pI value: 5.73 NCBI BLAST search of gi 53715725 against nr Unformatted sequence string for pasting into other applications Taxonomy: Bacteroides fragilis YCH46 Taxonomy: Bacteroides fragilis YCH46 Links to retrieve other entries containing this sequence from NCBI Entrez: g1[60683662 from Bacteroides fragilis NCTC 9343 g1[265767330 from Bacteroides fragilis g1[6139334 from Bacteroides fragilis NCTC 9343 g1[51216590 from Bacteroides fragilis NCTC 9343 g1[6495096 from Bacteroides fragilis NCTC 9343 g1[263252635 from Bacteroides g1_2][6 Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 35% Matched peptides shown in Bold Red 1 MANLDLSKYG ITGVTEILHN PSYDVLFAEE TKPGLEGFEK GQVTELGAVN 51 VHTGVTGRS PKDKFFVKNE ASENSVWHTS EEYKNDNKPC SEEAWADLKA 101 KAVKELSNKR LEVUDTFCGA NEGTEMKVRF IMEVAWQAHF VINMFIRTA 151 EELAWYGEDP FVCHNASKAK VDNYKELGLN SETATVFHLK TKEQVILMTW 101 YGGEMKKONF SINNYMNPLR GIASMHCSAN TDMEGTSSAI FFGLSGTGKT 251 TLSTDPKKKL IGDDEHGMDN EGYFNYEGGC YAKVINDKE SEPDIFNAIK 351 QVIFLSADAF GVLPPVSILN PEQAQYFLS GFTAKLAGTE RGITEFTFF 401 SACFGAAFLS LHPTKYAEEL VKKMEMTGAK AYLVHTGMMG SGKRISIKDT 451 RJILDAILDG SUDKAPTKVI PFYDFVVPTE LGGVDFKLLD PRDTYADPAQ 501 WNEKAKDLAG RFIKNFAKFT GNEAGKKLVA AGFKL Show predicted peptides also Sort Peptides By Residue Number C Increasing Mass C Decreasing Mass
 Observed
 Mr (expt)
 Mr (calc)

 655.6100
 1966.8082
 1966.9783

 984.4190
 1966.8234
 1966.9783

 1085.7713
 1684.7054
 1685.7713

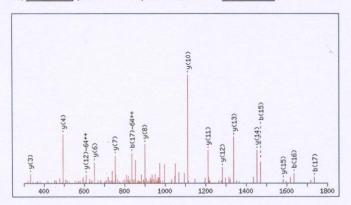
 Delta
 Miss Sequence

 0.1701
 0 K.GQVTELGAVNWMTGVYTGR.S Oxidation (M) (Ions score 45)

 0.1548
 0 K.GQVTELGAVNWMTGVYTGR.S Oxidation (M) (Ions score 115)
 Mr(calc) Start - End Delta -0.1701 -0.1548 -1.0665 -0.0901 -0.0944 -1.1281 -0.1429 -0.1109 -0.2191 0 K.GQVPELGANNWHIGVTGR.S Oxidation (M) (Ions score 115) 0 K.GQVPELGANNWHIGVTGR.S Oxidation (M) (Ions score 115) 0 K.LEVUDTFCGANEGTE.M (Ions score 110) 0 K.GMFSIMNYMMPLR.G 3 Oxidation (M) (Ions score 47) 0 R.GIASHHCSANTDMEGTSALFFGLGGTGK.T 2 Oxidation (M) (Ions score 33) 1 K.VINLDKSSFDTPTNAIK.R (Ions score 53) 0 R.OXLENVTVANDGK.I (Ions score 53) 0 R.OXYFYINIENIVKFVSK.G (Ions score 59) 0 R.SYFYINIENIVKFVSK.G (Ions score 52) 0 K.AYLVNTGWNOSSK.R (Ions score 52) 0 K.VIPFPDFVVFTELPGVDFK.I (Ions score 60) 0 K.VIPFFDFVVFTELPGVDFK.I (Ions score 16) 0 K.VIPFFDFVVFTELPGVDFK.I (Ions score 41) 904.4190 1966.8234 1966.9783 843.3600 1684.7054 1685.7719 819.380 1634.7614 1634.6515 811.3150 1620.6154 1620.7098 999.3890 2965.1452 2966.2732 972.9460 1943.8774 1944.0204 700.3170 1414.6194 1414.7304 993.4470 1984.8794 1985.0986 664.2666 1984.9762 1988.0986 664.2770 1366.5394 1365.6677 765.39200 1725.8254 1725.9512 705.9670 2114.8792 2115.1293 1059.5150 2115.0154 2115.1293 190 220 249 345 345 443 468 487 487 -0.2191 -0.1224 0.8717 -0.1258 -0.2501 -0.1138 1 g 500 -----(Da) ······ Error -0 -500 -1 1500 2000 2500 1500 2000 2500 Mage (0 30 Mass (Da) 3000 150 Mass (Da) RMS error 270 ppm RMS error 270 pps LOCUS YP_101717 535 aa linear BCT 26-APR-2009 DEFINITION phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]. ACCESSION YP_101717. VERSION YP_101717.1 GI:53715725 DBLINK Project:<u>13067</u> DBSOURCE REFSEQ: accession NC_006347.1 KEYWORDS . DBLINK DBSOURCE KEYWORDS . Bacteroides fragilis YCH46 SOURCE ORGANISM Bacteroides fragilis YCH46 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides.

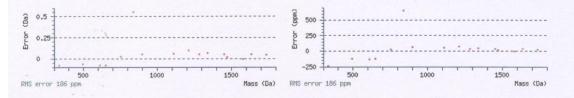
 (residues 1 to 535)
 (uwahara, T., Yamashita, A., Hirakawa, H., Nakayama, H., Toh, H., Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y.
 Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004)
 15465707
 (residues 1 to 535) REFERENCE AUTHORS TITLE JOURNAL PUBMED REFERENCE 2 (residues 1 to 535) NCBI Genome Project Direct Submission Submitted (01-OCT-2004) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA 3 (residues 1 to 535) Hattori,M., Yamashita,A., Toh,H., Oshima,K. and Shiba,T. Direct Submission Submitted (20-APR-2004) Kitasato Institute for Life Science CONSRTM TITLE JOURNAL REFERENCE AUTHORS TITLE Direct Submission Submitted (20-APR-2004) Kitasato Institute for Life Sciences, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan JOURNAL

	PROVISIONAL <u>REFSEQ</u> : This record has not yet been subject to final NCBI review. The reference sequence was derived from BAD51183.	
	Method: conceptual translation.	
ATURES	Location/Qualifiers	
source	1.535	
source	/orqanism="Bacteroides fragilis YCH46"	
	/strain="YCH46"	
	/db xref="taxon:295405"	
Protein		
F.A. O'C GLAIN	/product="phosphoenolpyruvate carboxykinase"	
	/EC number="4.1.1.49"	
	/calculated mol wt=58897	
Region	15.532	
AND DESCRIPTION	/region name="PEPCK ATP"	
	/note="Phosphoenolpyruvate carboxykinase (PEPCK), a	
	critical gluconeogenic enzyme, catalyzes the first	
	committed step in the diversion of tricarboxylic acid	
	cycle intermediates toward gluconeogenesis. It catalyzes	
	the reversible decarboxylation and; cd00484"	
	/db xref="CDD:29830"	
Site	order (59, 201, 203, 206 207, 226, 245 251, 263 264, 281, 283,	
MALCH.	292, 328, 444, 447, 450)	
	/site type="active"	
	/db xref="CDD:29830"	
Site	order(59,201,203,206207,281,328)	
	/site type="other"	
	/note="substrate-binding site"	
	/db xref="CDD:29830"	
Site	order(207,226,250,263264,281)	
	/site_type="metal-binding"	
	/db_xref="CDD: <u>29830</u> "	
Site	order(245251,292,444,450)	
	/site_type="other"	
	/note="ATP binding site"	
	/db_xref="CDD: <u>29830</u> "	
CDS	1535	
	/locus_tag="BF4446"	
	/coded_by="NC_006347.1:50886465090253"	
	/note="PEP carboxykinase; PEP carboxylase; PEPCK;	
	catalyzes the phosphorylation and decarboxylation of	
	oxaloacetate to form phosphoenolpyruvate using ATP"	
	/transl_table= <u>11</u>	
	/db xref="GeneID:3085522"	


Peptide View

MS/MS Fragmentation of GQVTELGAVNVMTGVYTGR Found in gi[53715725, phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]

Match to Query 191: 1966.823448 from(984.419000,2+) intensity(3902720.0000) Title: Cmpd 36, +MSn(984.70), 6.6 min


Data file D:Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf

 $\begin{array}{c|c} \mbox{Click mouse within plot area to zoom in by factor of two about that point} \\ \mbox{Or, Plot from } & \ensuremath{\boxed{300}} & \ensuremath{\mbox{to}} & \ensuremath{\boxed{1800}} & \ensuremath{\mbox{Da}} & \ensuremath{\boxed{\mbox{Full range}}} \end{array} \end{array}$ Or, Plot from 300

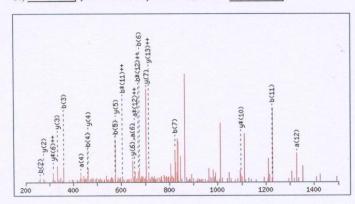
Monoisotopic mass of neutral peptide Mr(calc): 1966.9783 Fixed modifications: Carboxymethyl (C) Variable modifications: Ml2 : Oxidation (M), with neutral losses 0.0000(shown in table), 63.9983 Ions Score: 115 Expect: 5.2e-08 Matches (Bold Red): 16/312 fragment ions using 18 most intense peaks

#	a	a ⁺⁺	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y***	#
1	30.0338	15.5206			58.0287	29.5180			G					19
2	158.0924	79.5498	141.0659	71.0366	186.0873	93.5473	169.0608	85.0340	Q	1910.9640	955.9857	1893.9375	947.4724	18
3	257.1608	129.0840	240.1343	120.5708	285.1557	143.0815	268.1292	134.5682	V	1782.9055	891.9564	1765.8789	883.4431	1
4	358.2085	179.6079	341.1819	171.0946	386.2034	193.6053	369.1769	185.0921	Т	1683.8371	842.4222	1666.8105	833.9089	1
5	487.2511	244.1292	470.2245	235.6159	515.2460	258.1266	498.2195	249.6134	E	1582.7894	791.8983	1565.7628	783.3851	1
6	600.3352	300.6712	583.3086	292.1579	628.3301	314.6687	611.3035	306.1554	L	1453.7468	727.3770	1436.7202	718.8638	1
7	657.3566	329.1819	640.3301	320.6687	685.3515	343.1794	668.3250	334.6661	G	1340.6627	670.8350	1323.6362	662.3217	1
8	728.3937	364.7005	711.3672	356.1872	756.3886	378.6980	739.3621	370.1847	A	1283.6413	642.3243	1266.6147	633.8110	1
9	827.4621	414.2347	810.4356	405.7214	855.4571	428.2322	838.4305	419.7189	v	1212.6041	606.8057	1195.5776	598.2924	1
10	941.5051	471.2562	924.4785	462.7429	969.5000	485.2536	952.4734	476.7404	N	1113.5357	557.2715	1096.5092	548.7582	1
11	1040.5735	520.7904	1023.5469	512.2771	1068.5684	534.7878	1051.5419	526.2746	V	999.4928	500.2500	982.4662	491.7368	
12	1187.6089	594.3081	1170.5823	585.7948	1215.6038	608.3055	1198.5773	599.7923	Μ	900.4244	450.7158	883.3978	442.2026	Γ
13	1288.6566	644.8319	1271.6300	636.3186	1316.6515	658.8294	1299.6249	650.3161	Т	753.3890	377.1981	736.3624	368.6849	
14	1345.6780	673.3427	1328.6515	664.8294	1373.6729	687.3401	1356.6464	678.8268	G	652.3413	326.6743	635.3148	318.1610	
15	1444.7464	722.8769	1427.7199	714.3636	1472.7414	736.8743	1455.7148	728.3610	v	595.3198	298.1636	578.2933	289.6503	Γ
16	1607.8098	804.4085	1590.7832	795.8953	1635.8047	818.4060	1618.7781	809.8927	Y	496.2514	248.6293	479.2249	240.1161	
17	1708.8575	854.9324	1691.8309	846.4191	1736.8524	868.9298	1719.8258	860.4165	Т	333.1881	167.0977	316.1615	158.5844	
18	1765.8789	883:4431	1748.8524	874.9298	1793.8738	897.4406	1776.8473	888.9273	G	232.1404	116.5738	215.1139	108.0606	
19	1. N.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							R	175.1190	88.0631	158.0924	79.5498	Γ

NCBI **BLAST** search of <u>GQVTELGAVNVMTGVYTGR</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST web gateways

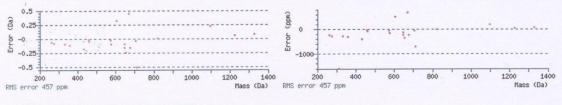
All matches to this query

Score	Mr(calc):	Delta	Sequence
115.5	1966.9783	-0.1548	GQVTELGAVNVMTGVYTGR
27.0	1966.0054	0.8180	SAEMAARAAEHVAGLPTLR
24.8	1965.9843	0.8391	AFNRSQPNMDVAGLFKR
18.9	1966.0861	0.7374	VVDAERALARFSGVALHR
18.5	1967.1350	-0.3115	AAEKERLMVLVAGLNVVR
17.8	1966.1211	0.7024	SLSPELKVTPEGRATLLR
15.6	1967.9160	-1.0925	MGQYNFDQIVDRTHTK
14.5	1965.9948	0.8286	VYTGGKADWYAAGLPLER
14.4	1967.0952	-0.2718	ARFVVELVQAVAEAVGPGR
13.6	1967.0298	-0.2064	MNKHPEFLLNKIENPK


(SCIENCE) Mascot Search Results

Peptide View

MS/MS Fragmentation of LFVVDTFCGANEGTR Found in gi|53715725, phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]


Match to Query 151: 1684.705448 from(843.360000,2+) intensity(5734853.0000) Title: Cmpd 46, +MSn(843.76), 6.9 min Data file D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 200 to 1500 Full range Da

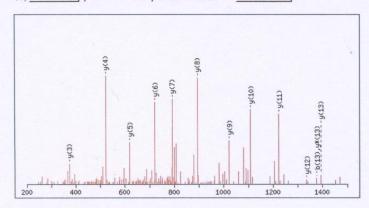
Monoisotopic mass of neutral peptide Mr(calc): 1685.7719 Fixed modifications: Carboxymethyl (C) Ions Score: 32 Expect: 13 Matches (Bold Red): 22/128 fragment ions using 61 most intense peaks

#	a	a ⁺⁺	a*	a* ⁺⁺	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y*++	#
1	86.0964	43.5519			114.0913	57.5493			L					15
2	233.1648	117.0861			261.1598	131.0835	1		F	1573.6951	787.3512	1556.6686	778.8379	14
3	332.2333	166.6203			360.2282	180.6177			V	1426.6267	713.8170	1409.6002	705.3037	13
4	431.3017	216.1545			459.2966	230.1519			V	1327.5583	664.2828	1310.5318	655.7695	12
5	546.3286	273.6679			574.3235	287.6654			D	1228.4899	614.7486	1211.4633	606.2353	11
6	647.3763	324.1918			675.3712	338.1892			Т	1113.4630	557.2351	1096.4364	548.7218	10
7	794.4447	397.7260			822.4396	411.7234			F	1012.4153	506.7113	995.3887	498.1980	9
8	955.4594	478.2333			983.4543	492.2308			C	865.3469	433.1771	848.3203	424.6638	8
9	1012.4808	506.7441			1040.4757	520.7415			G	704.3322	352.6697	687.3056	344.1565	7
10	1083.5179	542.2626			1111.5129	556.2601			Α	647.3107	324.1590	630.2842	315.6457	6
11	1197.5609	599.2841	1180.5343	590.7708	1225.5558	613.2815	1208.5292	604.7683	N	576.2736	288.6404	559.2471	280.1272	5
12	1326.6035	663.8054	1309.5769	655.2921	1354.5984	677.8028	1337.5718	669.2896	E	462.2307	231.6190	445.2041	223.1057	4
13	1383.6249	692.3161	1366.5984	683.8028	1411.6198	706.3136	1394.5933	697.8003	G	333.1881	167.0977	316.1615	158.5844	3
_			1467.6461							276.1666	138.5870	259.1401	130.0737	2
15									R	175.1190	88.0631	158.0924	79.5498	1

NCBI BLAST search of LFVVDTFCGANEGTR

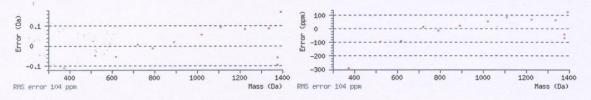
(Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST web gateways

All matches to this query


Score	Mr(calc):	Delta	Sequence
32.2	1685.7719	-1.0665	LFVVDTFCGANEGTR
22.2	1685.7719	-1.0665	LFVVDTFCGANADTR
21.9	1683.9083	0.7971	FEGVSKIYSTDVVLK
21.4	1685.8083	-1.1029	NFVFDERMSEVVSK
19.4	1685.8413	-1.1359	VIFDQFNFTDTIAR
18.6	1685.7865	-1.0810	ACQIMAGHLKENADK
17.4	1684.8056	-0.1002	GNSLSDTYIEVFANR
16.9	1684.7978	-0.0924	MIVEGTGAYTTVNGEK
16.4	1683.8502	0.8553	AENMKTTVNSFSVLK
16.3	1685.8698	-1.1644	KALFDYEMLKDVSK

Peptide View

MS/MS Fragmentation of ELGLNSETATVFNLK Found in gi[53715725, phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]


Match to Query 142: 1634.761448 from(818.388000,2+) intensity(10020720.0000) Title: Cmpd 60, +MSn(818.83), 7.6 min Data file D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 200 to 1500 Da Full range

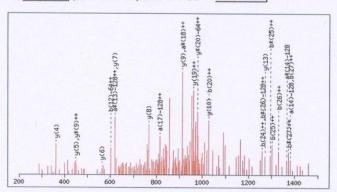
Monoisotopic mass of neutral peptide Mr(calc): 1634.8515 Fixed modifications: Carboxymethyl (C) Ions Score: 110 Expect: 2.1e-07 Matches (Bold Red): 13/152 fragment ions using 16 most intense peaks

#	a	a++	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y*++	#
1	102.0550	51.5311			130.0499	65.5286			E					15
2	215.1390	108.0731			243.1339	122.0706			L	1506.8162	753.9118	1489.7897	745.3985	14
3	272.1605	136.5839			300.1554	150.5813			G	1393.7322	697.3697	1376.7056	688.8564	13
4	385.2445	193.1259			413.2395	207.1234			L	1336.7107	668.8590	1319.6842	660.3457	12
5	499.2875	250.1474	482.2609	241.6341	527.2824	264,1448	510.2558	255.6316	N	1223.6266	612.3170	1206.6001	603.8037	11
6	586.3195	293.6634	569.2930	285.1501	614.3144	307.6608	597.2879	299.1476	S	1109.5837	555.2955	1092.5572	546.7822	10
7	715.3621	358.1847	698.3355	349.6714	743.3570	372.1821	726.3305	363.6689	E	1022.5517	511.7795	1005.5251	503.2662	9
8	816.4098	408.7085	799.3832	400.1953	844.4047	422.7060	827.3781	414.1927	Т	893.5091	447.2582	876.4825	438.7449	8
9	887.4469	444.2271	870.4203	435.7138	915.4418	458.2245	898.4153	449.7113	Α	792.4614	396.7343	775.4349	388.2211	7
10	988.4946	494.7509	971.4680	486.2376	1016.4895	508.7484	999.4629	500.2351	Т	721.4243	361.2158	704.3978	352.7025	6
11	1087.5630	544.2851	1070.5364	535.7719	1115.5579	558.2826	1098.5313	549.7693	V	620.3766	310.6919	603.3501	302.1787	5
12	1234.6314	617.8193	1217.6048	609.3061	1262.6263	631.8168	1245.5998	623.3035	F	521.3082	261.1577	504.2817	252.6445	4
13	1348.6743	674.8408	1331.6478	666.3275	1376.6692	688.8383	1359.6427	680.3250	N	374.2398	187.6235	357.2132	179.1103	3
14	1461.7584	731.3828	1444.7318	722.8696	1489.7533	745.3803	1472.7268	736.8670	L	260.1969	130.6021	243.1703	122.0888	2
15									K	147.1128	74.0600	130.0863	65.5468	1

NCBI **BLAST** search of <u>ELGLNSETATVFNLK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30)

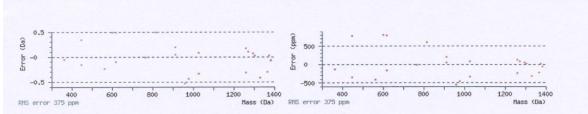
Other BLAST web gateways

All matches to this query


Score	Mr(calc):	Delta	Sequence
110.3	1634.8515	-0.0901	ELGLNSETATVFNLK
22.3	1635.8688	-1.1073	IGLSEMLTALSMKAR
20.5	1635.8356	-1.0741	EYVEVTAETVEVIR
18.9	1633.8522	0.9092	TELEIRTATLSASDK
18.6	1633.6937	1.0678	AAVGARDTCNPCNAR
18.0	1634.8562	-0.0948	FNDDKTAMVRALVR
18.0	1633.8610	0.9005	NLNIALFGATGMIGSR
18.0	1634.9178	-0.1563	TLKIALFGATGMIGSR
17.8	1635.7425	-0.9811	EMVFITWDSHMPK
16.9	1634.8562	-0.0948	KNGLGGFSVRQLCAK

Peptide View

MS/MS Fragmentation of GIASMHCSANTDMEGTSSAIFFGLSGTGK Found in gi[53715725, phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]


Match to Query 250: 2965.145172 from(989.389000,3+) intensity(3604278.0000) Title: Cmpd 55, +MSn(989.77), 7.4 min Data file D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf

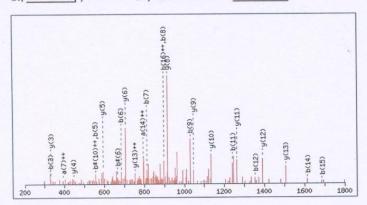
Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 200 to 1500 Full range Da

Monoisotopic mass of neutral peptide Mr(calc): 2966.2732 Fixed modifications: Carboxymethyl (C) Variable modifications: M5 : Oxidation (M), with neutral losses 0.0000(shown in table), 63.9983 M13 : Oxidation (M), with neutral losses 0.0000(shown in table), 63.9983 Ions Score: 33 Expect: 6 Matches (Bold Red): 25/520 fragment ions using 30 most intense peaks

#	a	a ⁺⁺	a*	a*++	b	b++	b*	b*++	Seq.	у	y++	y*	v*++	#
1	30.0338	15.5206			58.0287	29.5180	ł		G					29
2	143.1179	72.0626			171.1128	86.0600			I	2910.2590	1455.6332	2893.2325	1447.1199	28
3	214.1550	107.5811			242.1499	121.5786			A	2797.1750	1399.0911	2780.1484	1390.5779	27
4	301.1870	151.0972			329.1819	165.0946			S	2726.1379	1363.5726	2709.1113	1355.0593	26
5	448.2224	224.6149			476.2173	238.6123			M			2622.0793		-
6	585.2813	293.1443			613.2763	307.1418			Н	2492.0704	1246.5389	2475.0439	1238.0256	24
7	746.2960	373.6516			774.2909	387.6491			C	2355.0115	1178.0094	2337.9850	1169.4961	23
8	833.3280	417.1677			861.3230	431.1651			S	2193.9969	1097.5021	2176.9703	1088.9888	22
9	904.3652	452.6862			932.3601	466.6837			A	2106.9648	1053.9861	2089.9383	1045.4728	21
10	1018.4081	509.7077	1001.3815	501.1944	1046.4030	523.7051	1029.3764	515.1919	N	2035.9277	the second se	2018.9012	and the second se	-
11	1119.4558	560.2315	1102.4292	551.7182	1147.4507	574.2290	1130.4241	565.7157	Т	1921.8848		1904.8582	952.9328	-
12	1234.4827	617.7450	1217.4562	609.2317	1262.4776	631.7424	1245.4511	623.2292	D	1820.8371	910.9222	1803.8106	902.4089	18
13	1381.5181	691.2627	1364.4916	682.7494	1409.5130	705.2601	1392.4865	696.7469	M	1705.8102		1688.7836	844.8954	-
14	1510.5607	755.7840	1493.5342	747.2707	1538.5556	769.7814	1521.5291	761.2682	E	1558.7748		1541.7482	771.3777	-
15	1567.5822	784.2947	1550.5556	775.7814	1595.5771	798.2922	1578.5505	789.7789	G	1429.7322	715.3697	1412.7056	706.8564	-
16	1668.6298	834.8186	1651.6033	826.3053	1696.6248	848.8160	1679.5982	840.3027	Т	1372.7107	686.8590	1355.6842	678.3457	-
17	1755.6619	878.3346	1738.6353	869.8213	1783.6568	892.3320	1766.6302	883.8188	S	1271.6630	636.3352	1254.6365	627.8219	-
18	1842.6939	921.8506	1825.6673	913.3373	1870.6888	935.8480	1853.6623	927.3348	S	1184.6310	592.8191	1167.6045	584.3059	-
19	1913.7310	957.3691	1896.7045	948.8559	1941.7259	971.3666	1924.6994	962.8533	A	1097.5990	549.3031	1080.5724	540.7898	-
20	2026.8151	1013.9112	2009.7885	1005.3979	2054.8100	1027.9086	2037.7834	1019.3954	Ι	1026.5619	513.7846	1009.5353	505.2713	-
21	2173.8835	1087.4454	2156.8569	1078.9321	2201.8784	1101.4428	2184.8519	1092.9296	F	913.4778	457.2425	896.4512	448,7293	9
22	2320.9519	1160.9796	2303.9254	1152.4663	2348.9468	1174.9770	2331.9203	1166.4638	F	766.4094	383.7083	749.3828	375,1951	8
23	2377.9734	1189.4903	2360.9468	1180.9770	2405.9683	1203.4878	2388.9417	1194.9745	G	619.3410	310.1741	602.3144	301.6608	7
24	2491.0574	1246.0324	2474.0309	1237.5191	2519.0523	1260.0298	2502.0258	1251.5165	L	562.3195	281.6634	545.2930	273,1501	6
25	2578.0895	1289.5484	2561.0629	1281.0351	2606.0844	1303.5458	2589.0578	1295.0326	S	449.2354	225.1214	432.2089	216.6081	5
26	2635.1109	1318.0591	2618.0844	1309.5458	2663.1058	1332.0566	2646.0793	1323.5433	G	362.2034	181.6053	345.1769	173.0921	4
27	2736.1586	1368.5829	2719.1321	1360.0697	2764.1535	1382.5804	2747.1270	1374.0671	T	305.1819	153.0946	288.1554	144.5813	3
28	2793.1801	1397.0937	2776.1535	1388.5804	2821.1750	1411.0911	2804.1484	1402.5779	G	204.1343	102.5708	187.1077	94.0575	2
29		-							K	147.1128	74.0600	130.0863	65.5468	1

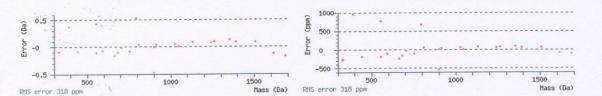
NCBI BLAST search of <u>GIASMHCSANTDMEGTSSAIFFGLSGTGK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

All matches to this query


Score	Mr(calc):	Delta	Sequence
32.7	2966.2732	-1.1281	GIASMHCSANTDMEGTSSAIFFGLSGTGK
32.7	2965.2892	-0.1440	GIASMHCSANTNMEGTSSAIFFGLSGTGK
32.0	2965.2416	-0.0965	DVMSMHCSANVGEDGDTTLFFGLSGTGK
23.5	2965.3586	-0.2135	ADVLPMHCAANVDDAGNTALFFGLSGTGK
21.3	2964.4916	0.6535	RGVFPMHASANVGKEGDVALFFGLSGTGK
20.8	2964.5266	0.6186	LNLTAPVTPEQGKINYISIAMAGYSADK
18.6	2966.3273	-1.1821	LVEVMENYIASLDEEALAGMAGSSNNSH
17.3	2964.3900	0.7551	NEDFFLFNLIFFCKFVKMSDMQK
17.1	2964.4949	0.6502	SEHQMAMLDQYAGHLNLLKTHVSLTK
16.9	2964.6331	0.5121	IAIHHAEGMLQIGEIPVIITASSKHRK

Peptide View

MS/MS Fragmentation of VINLDKESEPDIFNAIK Found in gi[53715725, phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]


Match to Query 186: 1943.877448 from(972.946000,2+) intensity(3662039.0000) Title: Cmpd 62, +MSn(973.22), 7.7 min Data file D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 200 to 1800 Full range Da

Monoisotopic mass of neutral peptide Mr(calc): 1944.0204 Fixed modifications: Carboxymethyl (C) Ions Score: 53 Expect: 0.12 Matches (Bold Red): 26/184 fragment ions using 52 most intense peaks

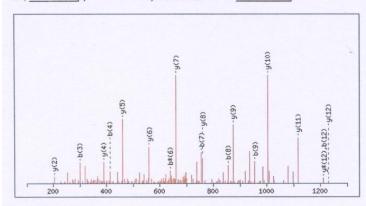
#	a	a ⁺⁺	a*	a* ⁺⁺	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y*++	#
1	72.0808	36.5440			100.0757	50.5415			V					17
2	185.1648	93.0861			213.1598	107.0835			I	1845.9593	923.4833	1828.9327	914.9700	16
3	299.2078	150.1075	282.1812	141.5942	327.2027	164.1050	310.1761	155.5917	N	1732.8752	866.9412	1715.8487	858.4280	15
4	412.2918	206.6496	395.2653	198.1363	440.2867	220.6470	423.2602	212.1337	L	1618.8323	809.9198	1601.8057	801.4065	14
5	527.3188	264.1630	510.2922	255.6498	555.3137	278.1605	538.2871	269.6472	D	1505.7482	753.3777	1488.7217	744.8645	13
6	655.4137	328.2105	638.3872	319.6972	683.4087	342.2080	666.3821	333.6947	K	1390.7213	695.8643	1373.6947	687.3510	12
7	784.4563	392.7318	767.4298	384.2185	812.4512	406.7293	795.4247	398.2160	E	1262.6263	631.8168	1245.5998	623.3035	11
8	871.4884	436.2478	854.4618	427.7345	899.4833	450.2453	882.4567	441.7320	S	1133.5837	567.2955	1116.5572	558.7822	10
9	1000.5309	500.7691	983.5044	492.2558	1028.5259	514.7666	1011.4993	506.2533	E	1046.5517	523.7795	1029.5251	515.2662	9
10	1097.5837	549.2955	1080.5572	540.7822	1125.5786	563.2930	1108.5521	554.7797	P	917.5091	459.2582	900.4825	450.7449	8
11			1195.5841						D	820.4563	410.7318	803.4298	402.2185	7
12			1308.6682						I	705.4294	353.2183	688.4028	344.7051	6
13			1455.7366							592.3453	296.6763	575.3188	288.1630	5
-	1586.8061				1614.8010				1000	445.2769	223.1421	428.2504	214.6288	4
15	1657.8432	829.4252	1640.8166		-		1668.8115		-	331.2340	166.1206	314.2074	157.6074	3
11111111	The state of the s	and the second second second	1753.9007	and the second sec		899.9647	1781.8956	891.4514	I	260.1969	130.6021	243.1703	122.0888	2
17	1								K	147.1128	74.0600	130.0863	65.5468	1

NCBI BLAST search of VINLDKESEPDIFNAIK

(Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST web gateways

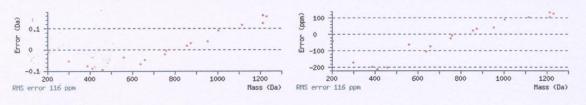
All matches to this query

Score	Mr(calc):	Delta	Sequence
52.5	1944.0204	-0.1429	VINLDKESEPDIFNAIK
26.7	1944.0204	-0.1429	VINLDKDSEPEIFNAIK
16.6	1944.0713	-0.1939	IRVADKETALEALQMLK
10.9	1942.9095	0.9680	FGGIDKEGIYIDENAMR
9.7	1945.0417	-1.1642	ILMSMPITPGPALLAFNK
9.7	1943.9839	-0.1065	KYAQAEEPEESPLAAALK
8.6	1943.8935	-0.0160	NATSPFEATGSLYPMAGSK
8.2	1943.9921	-0.1146	RQAAQVMESGVVAGGMIPK
7.9	1943.8275	0.0500	SDTVTMPTDEMREAMAK
7.8	1943.9921	-0.1146	KIPICGQDDVIIRNMR


(MATRIX) Mascot Search Results

Peptide View

MS/MS Fragmentation of DALLENVTVAADGK Found in gij53715725, phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]


Match to Query 120: 1414.619448 from(708.317000,2+) intensity(4539975.0000) Title: Cmpd 11, +MSn(708.71), 5.6 min Data file D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 100 Full range to 1300 Da

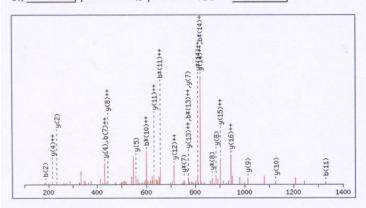
Monoisotopic mass of neutral peptide Mr(calc): 1414.7304 Fixed modifications: Carboxymethyl (C) Ions Score: 93 Expect: 1.2e-05 Matches (Bold Red): 18/136 fragment ions using 21 most intense peaks

#	a	a ⁺⁺	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y***	#
1	88.0393	44.5233			116.0342	58.5207			D					14
2	159.0764	80.0418			187.0713	94.0393			A	1300.7107	650.8590	1283.6842	642.3457	13
3	272.1605	136.5839			300.1554	150.5813			L	1229.6736	615.3404	1212.6470	606.8272	12
4	385.2445	193.1259			413.2395	207.1234			L	1116.5895	558.7984	1099.5630	550.2851	11
5	514.2871	257.6472			542.2821	271.6447			E	1003.5055	502.2564	986.4789	493.7431	10
6	628.3301	314.6687	611.3035	306.1554	656.3250	328.6661	639.2984	320.1529	N	874.4629	437.7351	857.4363	429.2218	9
7	727.3985	364.2029	710.3719	355.6896	755.3934	378.2003	738.3668	369.6871	V	760.4199	380.7136	743.3934	372.2003	8
8	828.4462	414.7267	811.4196	406.2134	856.4411	428.7242	839.4145	420.2109	Т	661.3515	331.1794	644.3250	322.6661	7
9	927.5146	464.2609	910.4880	455.7476	955.5095	478.2584	938.4829	469.7451	V	560.3039	280.6556	543.2773	272.1423	6
10	998.5517	499.7795	981.5251	491.2662	1026.5466	513.7769	1009.5201	505.2637	A	461.2354	231.1214	444.2089	222.6081	5
11	1069.5888	535.2980	1052.5623	526.7848	1097.5837	549.2955	1080.5572	540.7822	A	390.1983	195.6028	373.1718	187.0895	4
12	1184.6157	592.8115	1167.5892	584.2982	1212.6107	606.8090	1195.5841	598.2957	D	319.1612	160.0842	302.1347	151.5710	3
13	1241.6372	621.3222	1224.6107	612.8090	1269.6321	635.3197	1252.6056	626.8064	G	204.1343	102.5708	187.1077	94.0575	2
14									K	147.1128	74.0600	130.0863	65.5468	1

NCBI **BLAST** search of <u>DALLENVTVAADGK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST web gateways

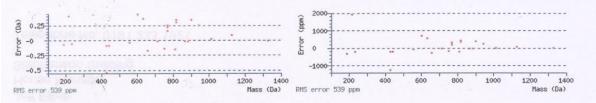
All matches to this query

Score	Mr(calc):	Delta	Sequence
93.1	1414.7304	-0.1109	DALLENVTVAADGK
72.4	1413.7463	0.8731	NALLENVTVAADGK
58.0	1413.7463	0.8731	NALLENVTVDAAGK
30.1	1414.7303	-0.1109	GIELENIDAADKK
25.9	1414.7164	-0.0970	GNQIEGRISEGQK
24.8	1414.7668	-0.1473	VTVIDGVASLAENK
24.0	1414.6875	-0.0680	DNGMGISVQELPR
22.0	1414.7667	-0.1473	EGLLVENLSVSQK
22.0	1414.6762	-0.0568	GELMQEAVPAGEGK
18.9	1414.8395	-0.2201	VSIIVGVSKDLTGK


(MATRIX) Mascot Search Results

Peptide View

MS/MS Fragmentation of VSYPIYHIENIVKPVSK Found in gi[53715725, phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]


Match to Query 196: 1984.976172 from(662.666000,3+) intensity(4638027.0000) Title: Cmpd 53, +MSn(663.74), 7.3 min Data file D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 100 to 1400 Da Full range

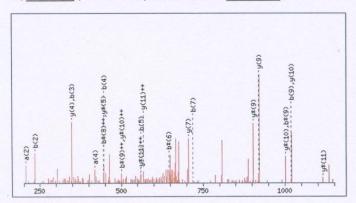
Monoisotopic mass of neutral peptide Mr(calc): 1985.0986 Fixed modifications: Carboxymethyl (C) Ions Score: 62 Expect: 0.013 Matches (Bold Red): 25/156 fragment ions using 35 most intense peaks

#	a	a++	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y***	#
1	72.0808	36.5440			100.0757	50.5415			V					17
2	159.1128	80.0600			187.1077	94.0575			S	1887.0375	944.0224	1870.0109	935.5091	16
3	322.1761	161.5917			350.1710	175.5892			Y	1800.0054	900.5064	1782.9789	891.9931	15
4	419.2289	210.1181			447.2238	224.1155		1.1	Р	1636.9421	818.9747	1619.9156	810.4614	14
5	532.3130	266.6601			560.3079	280.6576			Ι	1539.8893	770.4483	1522.8628	761.9350	13
6	695.3763	348.1918			723.3712	362.1892			Y	1426.8053	713.9063	1409.7787	705.3930	12
7	832.4352	416.7212			860.4301	430.7187			Н	1263.7419	632.3746	1246.7154	623.8613	11
8	945.5193	473.2633			973.5142	487.2607			I	1126.6830	563.8452	1109.6565	555.3319	10
9	1074.5619	537.7846			1102.5568	551.7820			E	1013.5990	507.3031	996.5724	498.7898	9
10	1188.6048	594.8060	1171.5782	586.2928	1216.5997	608.8035	1199.5732	600.2902	N	884.5564	442.7818	867,5298	434.2686	8
11	1301.6888	651.3481	1284.6623	642.8348	1329.6838	665.3455	1312.6572	656.8322	1	770.5135	385.7604	753.4869	377.2471	7
12	1400.7573	700.8823	1383.7307	692.3690	1428.7522	714.8797	1411.7256	706.3665	V	657.4294	329.2183	640.4028	320.7051	6
13	1528.8522	764.9298	1511.8257	756.4165	1556.8471	778.9272	1539.8206	770.4139	K	558.3610	279.6841	541.3344	271.1709	5
14	1625.9050	813.4561	1608.8784	804.9429	1653.8999	827.4536	1636.8734	818.9403	Р	430.2660	215.6366	413.2395	207.1234	4
15	1724.9734	862.9903	1707.9469	854.4771	1752.9683	876.9878	1735.9418	868.4745	V	333.2132	167.1103	316.1867	158.5970	3
16	1812.0054	906.5064	1794.9789	897.9931	1840.0003	920.5038	1822.9738	911.9905	S	234.1448	117.5761	217.1183	109.0628	2
17	1								K	147.1128	74.0600	130.0863	65.5468	1

NCBI **BLAST** search of <u>VSYPIYHIENIVKPVSK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST web gateways

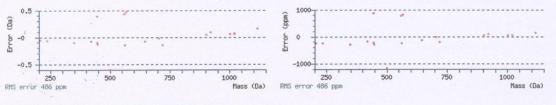
All matches to this query

Score	Mr(calc):	Delta	Sequence
62.3	1985.0986	-0.1224	VSYPIYHIENIVKPVSK
32.6	1985.0986	-0.1224	VSYPIYHIDNIVKPISK
24.3	1985.1018	-0.1256	VDQSRASRTGGTGLGLAIVK
24.1	1984.0993	0.8769	HDIPPLLADISAALKPKAD
22.8	1984.1146	0.8616	VSYPIYHIQNIVKPVSK
22.8	1984.0782	0.8980	VSYPIYHIQNIVQPVSK
22.6	1986.0157	-1.0395	VTLEDDNILINGEKVDSL
21.2	1986.0291	-1.0530	YIGNIPVSMHAVMGAVRR
20.7	1985.2481	-0.2720	WFIGVAIIILIIFIINK
20.1	1985.0080	-0.0319	SMNLGPLFEPFELHNLK


(SCIENCE) Mascot Search Results

Peptide View

MS/MS Fragmentation of AYLVNTGWNGSGK Found in gi[53715725, phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]


Match to Query 115: 1366.539448 from(684.277000,2+) intensity(1224761.0000) Title: Cmpd 4, +MSn(684.95), 5.3 min Data file D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 200 to 1150 Da Full range Or, Plot from 200

Monoisotopic mass of neutral peptide Mr(calc): 1365.6677 Fixed modifications: Carboxymethyl (C) Ions Score: 24 Expect: 74 Matches (Bold Red): 23/128 fragment ions using 42 most intense peaks

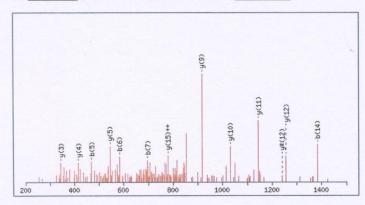
#	a	a ⁺⁺	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y***	#
1	44.0495	22.5284			72.0444	36.5258			Α					13
2	207.1128	104.0600			235.1077	118.0575			Y	1295.6379	648.3226	1278.6113	639.8093	12
3	320.1969	160.6021			348.1918	174.5995			L	1132.5745	566.7909	1115.5480	558.2776	11
4	419.2653	210.1363			447.2602	224.1337			V	1019.4905	510.2489	1002.4639	501.7356	10
5	533.3082	267.1577	516.2817	258.6445	561.3031	281.1552	544.2766	272.6419	N	920.4221	460.7147	903.3955	452.2014	9
6	634.3559	317.6816	617.3293	309.1683	662.3508	331.6790	645.3243	323.1658	Т	806.3791	403.6932	789.3526	395.1799	8
7	691.3774	346.1923	674.3508	337.6790	719.3723	360.1898	702.3457	351.6765	G	705.3315	353.1694	688.3049	344.6561	7
8	877.4567	439.2320	860.4301	430.7187	905.4516	453.2294	888.4250	444.7162	W	648.3100	324.6586	631.2835	316.1454	6
9	991.4996	496.2534	974.4730	487.7402	1019.4945	510.2509	1002.4680	501.7376	N	462.2307	231.6190	445.2041	223.1057	5
10	1048.5211	524.7642	1031.4945	516.2509	1076.5160	538.7616	1059.4894	530.2483	G	348.1878	174.5975	331.1612	166.0842	4
11	1135.5531	568.2802	1118.5265	559.7669	1163.5480	582.2776	1146.5215	573.7644	S	291.1663	146.0868	274.1397	137.5735	3
12	1192.5745	596.7909	1175.5480	588.2776	1220.5695	610.7884	1203.5429	602.2751	G	204.1343	102.5708	187.1077	94.0575	2
13									K	147.1128	74.0600	130.0863	65.5468	1

NCBI **BLAST** search of <u>AYLVNTGWNGSGK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST web gateways

All matches to this query

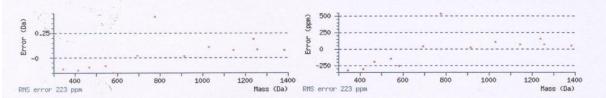
core	Mr(calc):	Delta	Sequence

25.7	1365.7140	0.8254	DFIDQSSKVVTK
25.3	1365.7504	0.7891	YVTVSSPSKALSK
24.4	1365.6677	0.8717	AYLVNTGWNGSGK
23.8	1365.6525	0.8870	FSIVDRGDENSK
19.5	1366.7391	-0.1996	MSIDSRRFVIK
18.9	1366.7642	-0.2248	YALLKLVTGSMR
18.9	1366.6299	-0.0905	FSPDSCDRVKR
18.7	1365.7405	0.7990	HFGKPGAEPLVSK
18.7	1366.7496	-0.2102	YALALFQIATEK
18.7	1366.7496	-0.2102	YALALFQLATEK


(MATRIX) Mascot Search Results

Peptide View

MS/MS Fragmentation of GIIDAILDGSIDKAPTK Found in gi[53715725, phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]


Match to Query 153: 1725.825448 from(863.920000,2+) intensity(2365091.0000) Title: Cmpd 72, +MSn(864.71), 8.1 min Data file D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 200 to 1500 Da Full range

Monoisotopic mass of neutral peptide Mr(calc): 1725.9512 Fixed modifications: Carboxymethyl (C) Ions Score: 60 Expect: 0.024 Matches (Bold Red): 13/144 fragment ions using 16 most intense peaks

#	a	a ⁺⁺	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y++	y*	y***	#
1	30.0338	15.5206			58.0287	29.5180			G					17
2	143.1179	72.0626			171.1128	86.0600			I	1669.9371	835.4722	1652.9105	826.9589	16
3	256.2020	128.6046			284.1969	142.6021			I	1556.8530	778.9301	1539.8265	770.4169	15
4	371.2289	186.1181			399.2238	200.1155			D	1443.7690	722.3881	1426.7424	713.8748	14
5	442.2660	221.6366			470.2609	235.6341			A	1328.7420	664.8746	1311.7155	656.3614	13
6	555.3501	278.1787			583.3450	292.1761			Ι	1257.7049	629.3561	1240.6783	620.8428	12
7	668.4341	334.7207			696.4291	348.7182			L	1144.6208	572.8141	1127.5943	564.3008	11
8	783.4611	392.2342			811.4560	406.2316			D	1031.5368	516.2720	1014.5102	507.7587	10
9	840.4825	420.7449			868.4775	434.7424			G	916.5098	458,7585	899.4833	450.2453	9
10	927.5146	464.2609			955.5095	478.2584			S	859.4884	430.2478	842.4618	421.7345	8
11	1040.5986	520.8030			1068.5936	534.8004			I	772.4563	386.7318	755.4298	378.2185	7
12	1155.6256	578.3164			1183.6205	592.3139			D	659.3723	330.1898	642.3457	321.6765	6
13	1283.7205	642.3639	1266.6940	633.8506	1311.7155	656.3614	1294.6889	647.8481	K	544.3453	272.6763	527.3188	264.1630	5
14	1354.7577	677.8825	1337.7311	669.3692	1382.7526	691.8799	1365.7260	683.3666	A	416.2504	208.6288	399.2238	200.1155	4
15	1451.8104	726.4088	1434.7839	717.8956	1479.8053	740.4063	1462.7788	731.8930	P	345.2132	173.1103	328.1867	164.5970	3
16	1552.8581	776.9327	1535.8316	768.4194	1580.8530	790.9301	1563.8265	782.4169	T	248.1605	124.5839	231.1339	116.0706	2
17	1								K	147.1128	74.0600	130.0863	65.5468	1

NCBI **BLAST** search of <u>GIIDAILDGSIDKAPTK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

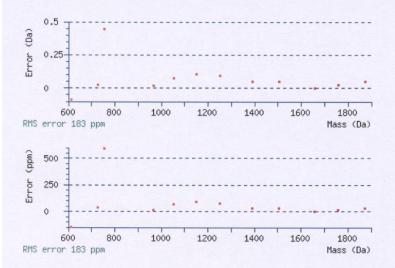
All matches to this query

Score	Mr(calc):	Delta	Sequence
59.6	1725.9512	-0.1258	GIIDAILDGSIDKAPTK
43.9	1725.9149	-0.0894	GIIDAILDGSINEAPTK
21.9	1726.8923	-1.0669	NNIEIIDATCPVVLR
21.8	1725.8291	-0.0036	DGPGAGKLMADLMTHGR
21.8	1726.9326	-1.1071	DLNQLLDAVSSRLQR
18.7	1726.7655	-0.9400	MSDPTVMIHDPEPAR
17.7	1725.9341	-0.1087	ILNEIYWVSTYVVK
17.7	1725.9824	-0.1570	MPIQLLRHAPGAPGLR
17.7	1725.9447	-0.1193	IVEGALLAAGKPMDVAR
17.2	1725.8645	-0.0391	AVDNSSDAIASILAHSR

(MATRIX) SCIENCE Mascot Search Results

Peptide View

MS/MS Fragmentation of **VIPFFDFVVPTELPGVDPK** Found in gi[53715725, phosphoenolpyruvate carboxykinase [Bacteroides fragilis YCH46]

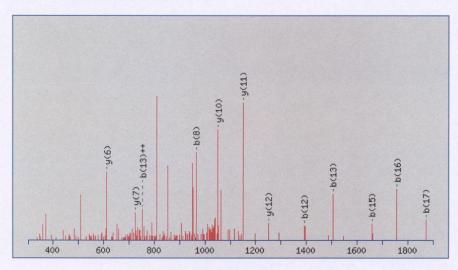

Match to Query 216: 2115.015448 from(1058.515000,2+) intensity(2057610.0000) Title: Cmpd 180, +MSn(1059.16), 11.6 min Data file D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (6901) 10_RH23_01_1294.d\SSP (6901) 10_RH23_01_1294.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 300 to 1900 Da Full range

Monoisotopic mass of neutral peptide Mr(calc): 2115.1293 Fixed modifications: Carboxymethyl (C) Ions Score: 41 Expect: 1.9 Matches (Bold Red): 12/144 fragment ions using 18 most intense peaks

#	a	a ⁺⁺	b	b ⁺⁺	Seq.	у	y ⁺⁺	y*	y*++	#
1	72.0808	36.5440	100.0757	50.5415	V					19
2	185.1648	93.0861	213.1598	107.0835	Ι	2017.0681	1009.0377	2000.0415	1000.5244	18
3	282.2176	141.6124	310.2125	155.6099	Р	1903.9840	952.4957	1886.9575	943.9824	17
4	429.2860	215.1466	457.2809	229.1441	F	1806.9313	903.9693	1789.9047	895.4560	16
5	576.3544	288.6809	604.3493	302.6783	F	1659.8629	830.4351	1642.8363	821.9218	15
6	691.3814	346.1943	719.3763	360.1918	D	1512.7944	756.9009	1495.7679	748.3876	14
7	838.4498	419.7285	866.4447	433.7260	F	1397.7675	699.3874	1380.7409	690.8741	13
8	937.5182	469.2627	965.5131	483.2602	V	1250.6991	625.8532	1233.6725	617.3399	12
9	1036.5866	518.7969	1064.5815	532.7944	V	1151.6307	576.3190	1134.6041	567.8057	11
10	1133.6394	567.3233	1161.6343	581.3208	Р	1052.5623	526.7848	1035.5357	518.2715	10
11	1234.6871	617.8472	1262.6820	631.8446	Т	955.5095	478.2584	938.4829	469.7451	9
12	1363.7297	682.3685	1391.7246	696.3659	E	854.4618	427.7345	837.4353	419.2213	8

13	1476.8137	738,9105	1504.8086	752,9080	L	725.4192	363 2132	708 3927	354 7000	7
_			1601.8614					595.3086		_
15	1630.8879	815.9476	1658.8829	829.9451	G	515.2824	258.1448	498.2558	249.6316	5
16	1729.9564	865.4818	1757.9513	879.4793	V	458.2609	229.6341	441.2344	221.1208	4
17	1844.9833	922.9953	1872.9782	936.9927	D	359.1925	180.0999	342.1660	171.5866	3
18	1942.0361	971.5217	1970.0310	985.5191	Р	244.1656	122.5864	227.1390	114.0731	2
19					K	147.1128	74.0600	130.0863	65.5468	1


NCBI **BLAST** search of <u>VIPFFDFVVPTELPGVDPK</u> (Parameters: blastp, nr protein database, expect=20000, no filter, PAM30) Other BLAST <u>web gateways</u>

All matches to this query

Score	Mr(calc):	Delta	Sequence
41.0	2115.1293	-0.1138	VIPFFDFVVPTELPGVDPK
18.9	2115.2013	-0.1859	IKEKMPDIPVIVISAFTSK
18.0	2115.2892	-0.2737	IPISAEVAAIVRQRGLVVPK
15.8	2114.9513	0.0641	DENGVPMRDHLQGPEYMK
15.4	2115.1940	-0.1785	ILDAAQIVDIVSDFVTLRK
15.4	2115.1940	-0.1785	ILDAAQIVEVVSDFVTLRK
15.0	2115.2489	-0.2335	LLPKMGTIPEVVILDPPRK
14.7	2115.1589	-0.1435	LVDVGKIPHPGRGANFVDPK
14.1	2114.9757	0.0398	VSGNETFDDVSLSVQFESR
13.9	2114.9903	0.0252	KDEGHDVVVTVSAMAGETDF

Bacteroides fragilis SSP 6901- Peptide sequences

VIPFFDFVVPTELPGVDPK- Ion score 41

(MATRIX) Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 7301
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (7301) 10 RJ12 01 1384.d\SSP (7301) 10 RJ12 01 1384.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 16:22:43 GMT
Protein hits	: g1 143945 Fe-superoxide dismutase [Bacteroides fragilis]
	gi 29346065 superoxide dismutase [Fe] [Bacteroides thetaiotaomicron VPI-5482]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

45 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -										
30 - 25 - 20 - 15 -										
10 - 5 - 0		_								
0		100 200		400 y Based Mowse S	500 core					
Peptide	e Sum	mary Repo	rt							
Forma	at As	Peptide Sum	mary	•						Help
		Significance	threshold p<	0.05	Max. nu	mber	of hits	AUTO		
				PIT scoring				ut-off 0		Show sub-sets 0
			ps @ Suppre:				and the second	reasing Sco	re	-
		ana a bab al	in output	se heb abs	Sort un	oo Bin				
Select	All	Select None	Sear	ch Selected	🗆 Erro	r tole	rant			
	gi 143	945 Mass	: 21736	Score: 466	Oueri	es ma	tched:	37 em	PAI:	.36
50) (P				cteroides fi	100000000000000000000000000000000000000	co mu	concur	5. C.		
	Check	to include	this hit in	n error tole	erant sea	rch				
c	Duery	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	Rank	Peptide
~	40	545.6590	1089.3034	1089.4767	-0.1733	0	35	6.8	1	R.DFGSFENFK.K
4	78	772.7580	1543.5014	1543.7922	-0.2908	0	(69)	0.0026	1	K.LWEIIDWDVVEK.R
~	79	515.5170	1543.5292	1543.7922	-0.2631	0	(35)	6.2	1	K.LWEIIDWDVVEK.R
2	80	772.7800	1543.5454	1543.7922	-0.2468	0	84	7.8e-05	1	K.LWEIIDWDVVEK.R
2	81	772.7810	1543.5474	1543.7922 1543.7922	-0.2448	0	(70)	0.0019	1	K.LWEIIDWDVVEK.R K.LWEIIDWDVVEK.R
2	82	772.7930	1543.5614	1543.7922	-0.2308	0	(62)	0.096	1	K.LWEIIDWDVVEK.R
1	84	772.8010	1543.5874	1543.7922	-0.2048	0	(66)	0.0057	1	K. LWEIIDWDVVEK.R
1	85	772.8190	1543.6234	1543.7922	-0.1688	0	(54)	0.1	1	K.LWEIIDWDVVEK.R
1	86	772.8390	1543.6634	1543.7922	-0.1288	0	(35)	8.3	1	K.LWEIIDWDVVEK.R
~	181	1120.9470	2239.8794	2240.0902	-0.2108	0	68	0.0027	1	K.EFNAASVGLFGSGWAWLSVDK.D
4	193	792.5530	2374.6372	2375.1757	-0.5385	0	(34)	5.9	1	K.HLQTYVNNLNSLVPGTEYEGK.T
~	<u>195</u>	792.5820	2374.7242	2375.1757	-0.4515	0	(40)	1.4	1	K.HLQTYVNNLNSLVPGTEYEGK.T
2	196	792.5970	2374.7692	2375.1757	-0.4065	0	(27)	29	1	K.HLQTYVNNLNSLVPGTEYEGK.T
17	197	792.6000	2374.7782	2375.1757	-0.3975	0	(37)	3.1	1	K.HLQTYVNNLNSLVPGTEYEGK.T
V	<u>198</u> 200	792.6190	2374.8352 2374.9792	2375.1757 2375.1757	-0.3405	0	50 (27)	0.17	1	K, HLQTYVNNLNSLVPGTEYEGK, T K, HLQTYVNNLNSLVPGTEYEGK, T
	212	847.6150	2539.8232	2540.2336	-0.4104	1	(48)	0.22	1	K. EFNAASVGLFGSGWAWLSVDKDGJ
2	213	847.6320	2539.8742	2540.2336	-0.3594	1	(37)	3.2	1	K.EFNAASVGLFGSGWAWLSVDKDG
2	214	847.6330	2539.8772	2540.2336	-0.3564	1	(49)	0.2	1	K.EFNAASVGLFGSGWAWLSVDKDG
	Ar 14 3	847.6490	2539.9252	2540.2336	-0.3084	1	(63)	0.0078	1	K. BFNAASVGLFGSGWAWLSVDKDG
ব	215	041.0430			0 2022	1	(53)	0.082	1	K.EFNAASVGLFGSGWAWLSVDKDG
ন ন ন ন ন	<u>215</u> 216	847.6530	2539.9372	2540.2336	-0.2964			0.0056	1	K. EFNAASVGLFGSGWAWLSVDKDG
ব ব ব ব ব ব	215 216 217	847.6530 847.7230	2540.1472	2540.2336	-0.0864	1	(66)			
ব ব ব ব ব ব ব	215 216 217 109	847.6530 847.7230 847.9690	2540.1472 2540.8852	2540.2336 2540.2336	-0.0864	1	83	0.00021	1	
ব ব ব ব ব ব ব ব	215 216 217 109 223	847.6530 847.7230 847.9690 878.6390	2540.1472 2540.8852 2632.8952	2540.2336 2540.2336 2633.3125	-0.0864 0.6516 -0.4174	1 0	83 (72)	0.00021	1	K. LPYANNALEPVISQQTIDYHYGK
दा दा दा दा दा दा दा	215 216 217 109 223 224	847.6530 847.7230 847.9690 878.6390 878.6430	2540.1472 2540.8852 2632.8952 2632.9072	2540.2336 2540.2336 2633.3125 2633.3125	-0.0864 0.6516 -0.4174 -0.4054	1 0 0	83 (72) 72	0.00021 0.00094 0.00092	1	K.LPYANNALEPVISQQTIDYHYGK K.LPYANNALEPVISQQTIDYHYGK
दा दा दा दा दा दा दा दा	215 216 217 109 223 224 225	847.6530 847.7230 847.9690 878.6390 878.6430 878.6580	2540.1472 2540.8852 2632.8952 2632.9072 2632.9522	2540.2336 2540.2336 2633.3125 2633.3125 2633.3125	-0.0864 0.6516 -0.4174 -0.4054 -0.3604	1 0 0	83 (72) 72 (54)	0.00021 0.00094 0.00092 0.064	1 1 1	K.LPYANNALEPVISQQTIDYHYGK K.LPYANNALEPVISQQTIDYHYGK K.LPYANNALEPVISQQTIDYHYGK
दा दा दा दा दा दा दा दा	215 216 217 109 223 224 225 226	847.6530 847.7230 847.9690 878.6390 878.6430 878.6580 878.6660	2540.1472 2540.8852 2632.8952 2632.9072 2632.9522 2632.9762	2540.2336 2540.2336 2633.3125 2633.3125 2633.3125 2633.3125	-0.0864 0.6516 -0.4174 -0.4054 -0.3604 -0.3364	1 0 0	83 (72) 72 (54) (61)	0.00021 0.00094 0.00092	1	K.LPYANNALEPVISQQTIDYHYGK K.LPYANNALEPVISQQTIDYHYGK K.LPYANNALEPVISQQTIDYHYGK K.LPYANNALEPVISQQTIDYHYGK
त दा दा दा दा दा दा दा दा	215 216 217 109 223 224 225	847.6530 847.7230 847.9690 878.6390 878.6430 878.6580	2540.1472 2540.8852 2632.8952 2632.9072 2632.9522	2540.2336 2540.2336 2633.3125 2633.3125 2633.3125	-0.0864 0.6516 -0.4174 -0.4054 -0.3604	1 0 0 0	83 (72) 72 (54)	0.00021 0.00094 0.00092 0.064 0.011	1 1 1	K.LPYANNALEPVISQQTIDYHYGK. K.LPYANNALEPVISQQTIDYHYGK. K.LPYANNALEPVISQQTIDYHYGK. K.LPYANNALEPVISQQTIDYHYGK.
रा दा दा दा दा दा दा दा दा दा	215 216 217 109 223 224 225 226 227	847.6530 847.7230 847.9690 878.6390 878.6430 878.6580 878.6660 878.6780	2540.1472 2540.8852 2632.8952 2632.9072 2632.9522 2632.9762 2633.0122	2540.2336 2540.2336 2633.3125 2633.3125 2633.3125 2633.3125 2633.3125	-0.0864 0.6516 -0.4174 -0.4054 -0.3604 -0.3364 -0.3004	1 0 0 0 0	83 (72) 72 (54) (61) (55)	0.00021 0.00094 0.00092 0.064 0.011 0.051	1 1 1 1	K.LPYANNALEPVISQQTIDYHYGK. K.LPYANNALEPVISQQTIDYHYGK. K.LPYANNALEPVISQQTIDYHYGK. K.LPYANNALEPVISQQTIDYHYGK. K.LPYANNALEPVISQQTIDYHYGK.
रा	215 216 217 109 223 224 225 226 227 228	847.6530 847.7230 847.9690 878.6390 878.6430 878.6580 878.6660 878.6780 878.9610	2540.1472 2540.8852 2632.8952 2632.9072 2632.9522 2632.9762 2633.0122 2633.8612	2540.2336 2540.2336 2633.3125 2633.3125 2633.3125 2633.3125 2633.3125 2633.3125	-0.0864 0.6516 -0.4174 -0.4054 -0.3604 -0.3364 -0.3004 0.5486	1 0 0 0 0 0	83 (72) 72 (54) (61) (55) (53)	0.00021 0.00094 0.00092 0.064 0.011 0.051 0.069	1 1 1 1 1	K. EFNAASVGLPGSGWAWLSVDKDGF K. LPYANNALEPVISQOTIDYHYGK. K. LPYANNALEPVISQOTIDYHYGK. K. LPYANNALEPVISQOTIDYHYGK. K. LPYANNALEPVISQOTIDYHYGK. K. LPYANNALEPVISQQTIDYHYGK. K. LPYANNALEPVISQQTIDYHYGK.

 ¥
 240
 923.3140
 2766.9202
 2767.3758
 -0.4556
 0
 (49)
 0.17
 1
 R.AGLKPLLGFDVWEHAYYLDYONR.R

 ¥
 241
 923.3210
 2766.9412
 2767.3758
 -0.4346
 0
 73
 0.00066
 1
 R.AGLKPLLGFDVWEHAYYLDYONR.R

 ¥
 242
 923.3360
 2766.9862
 2767.3758
 -0.3896
 0
 (30)
 13
 1
 R.AGLKPLLGFDVWEHAYYLDYONR.R

 ¥
 243
 923.3410
 2767.0012
 2767.3758
 -0.3746
 0
 (50)
 0.15
 1
 R.AGLKPLLGFDVWEHAYYLDYONR.R

 Proteins matching the same set of peptides: gi | 53713818 Mass: 23124 Score: 466 Queries matched: 37 superoxide dismutase [Bacteroides fragilis YCH46] gi 60682036 Mass: 21758 Score: 466 Queries matched: 37 superoxide dismutase [Fe] [Bacteroides fragilis NCTC 9343] gi 29346065 Mass: 21762 Score: 123 Queries matched: 8 emPAI: 0.33 superoxide dismutase [Fe] [Bacteroides thetaiotaomicron VPI-5482] ☐ Check to include this hit in error tolerant search Delta Miss Score Expect Rank Peptide Query Observed Mr(expt) Mr(calc) 545.6590 1089.3034 1089.4767 792.5530 2374.6372 2375.1757 -0.1733 0 35 -0.5385 0 (34) 6.8 1 5.9 1 R.DFGSFENFK.K K.HLOTYVNNLNSLVPGTEYEGK.T 193 792.5820 2374.7242 2375.1757 -0.4515 (40) 1.4 K HLOTYVNNLNSLVPGTEYEGK, T K.HLQTYVNNLNSLVPGTEYEGK.T 196 792,5970 2374.7692 2375.1757 -0.4065 0 29 3.1 K.HLQTYVNNLNSLVPGTEVEGK T 792.6000 2374.7782 2375.1757 197 198 792,6190 2374.8352 2375.1757 0 50 0.17 K.HLOTYVNNLNSLVPGTEYEGK.T 37 K.HLOTYVNNLNSLVPGTEYEGK.T 200 792,6670 2374,9792 2375,1757 (27) 2.2 245 928.6340 2782.8802 2783.3707 1 R.AGLKPLLGFDVWEHSYYLDYQNR.R -0.4906 38 Proteins matching the same set of peptides: gi | 153806587 Queries matched: 8 Mass: 23126 Score: 123 hypothetical protein BACCAC_00857 [Bacteroides caccae ATCC 43185] Queries matched: 8 Mass: 22532 Score: 123 qi|237719542 superoxide dismutase [Bacteroides sp. 2_2_4] Mass: 23094 Score: 123 Queries matched: 8 qi|253568517 conserved hypothetical protein [Bacteroides sp. 1_1_6] gi | 160884385 Mass: 23105 Score: 121 Queries matched: 8 hypothetical protein BACOVA_02363 [Bacteroides ovatus ATCC 8483] Mass: 23142 Score: 121 Queries matched: 8 gi 255692463 superoxide dismutase [Bacteroides finegoldii DSM 17565] gi 260174595 Mass: 23119 Score: 121 Queries matched: 8 superoxide dismutase (Fe) [Bacteroides sp. D2] Peptide matches not assigned to protein hits: (no details means no match) Delta Miss Score Expect Rank Peptide Observed Mr(expt) Mr (calc)
 Observed
 Mr (expt)
 Mr (calc)
 Delta Miss score
 Depeter Miss
 <thDepeter Miss</th>
 Depeter Miss
 Ouery 89 5 SMLPYDEIASDK + Oxidation (M) 693.0460 1384.0774 1383.6228 0.4547 1 61 32 12 1 31 15 0 28 24 0 28 LFTVLPELTPAQLSK 1 -0.3984 105 828,7830 1655,5514 1655,9498 1 IANEPPILQIISEVKAALR 1 GSNAPLLDFAIAVGAVAAMIVMGR + 2 Oxidation (M) 692.5960 2074.7662 2074.2150 . 0.5512 1 156 792.5760 2374.7062 2375.2341 -0.5279 1 194
 0
 28
 24
 1
 GENAPLLIPALAYGAVARIVENER + 2
 Oxidation (M)

 0
 28
 41
 1
 EMFGAIAMPK + 2
 Oxidation (M)

 1
 27
 39
 1
 wAVFGSGWGGAPGVEVARR

 1
 26
 35
 1
 VLINQVPGGMISNLANQLKEQGALDK + Oxidation (M)

 0
 26
 55
 1
 CEBTGIDYEIR

 1
 25
 48
 1
 IADDYMPRGQWSGSSSDNPK
 44 563.7460 1125.4774 1125.5198 -0.0424 1 1 <u>150</u> 1004.8860 2007.7574 2008.0068 -0.2493 2 922.6520 2764.9342 2765.4745 -0.5404 239 -0.5342 2 693.0310 1384.0474 1384.5816 60
 1
 25
 48

 1
 25
 79

 1
 25
 54

 2
 25
 51

 1
 25
 1e+02
 2 737.9140 2210.7202 2209.9698 0.7503 176
 79
 1
 YMIKADEK + Oxidation (M)

 54
 1
 LRLLAVSH

 51
 1
 MKVGIVGGGPAGLYSAILLKK + 0
 507.1970 1012.3794 1012.4899 -0.1105 1 37 907.8737 908.8810 907.5603 0.3134 1 22 696.8470 2087.5192 2087.2177 1 <u>MKVGIVGGGPAGLYSAILLKK</u> + Oxidation (M) 1 <u>MIEEGEAGFLRADSSR</u> 2 0.3015 165 V 119 884.2970 1766.5794 1766.8257 -0.2463 1 MDQTSSDVQKIDLMKYFDR + Oxidation (M) 17 779.7580 2336.2522 2335.0824 1.1697 1011.2920 3030.8542 3029.6814 1.1728 2 25 1.5e+02 87 1 YTEQFLTAAAGTSFAAPLLIHKAARLLR 17 153 1011.2920 3030.8542 3029.6814 24 1.1e+02 1 GYGPLLVFGDSDGDAWMLRDFADTAVGVIVNR 24 1.1e+02 V 187 1142.7100 3425.1082 3425.6715 -0.5633 1 1 KTFITGAIILMAAGLVTR + Oxidation (M) -0.4913 24 1.5e+02 V 52 631,2090 1890,6052 1891,0965 1
 24
 72

 24
 59

 24
 58

 24
 89

 24
 65
 1 NYLCFSINGANRTMKNR + Oxidation (M) V 161 692,9330 2075,7772 2074,9676 0.8095 2 1 VGLAHGSVSGILQEGIDSSNPIAPTR 7 858.9390 2573.7952 2574.3402 -0.5450 219 1 VEVLRDGASTIYGSDAIAGVINFITK 7 903.6510 2707.9312 2708.4385 -0.5073 1 235 -0.2271 EGMTTGDISKALFLTR + Oxidation (M) 585.8940 1754.6602 1754.8873 1 116 MQIAAPADPMVNGAQSDSASVAATIR 0.6271 1 858.2970 2571.8692 2571.2421 1 218 23 1.3e+02 KELAPMFPENR + Oxidation (M) 2 673.7860 1345.5574 1346.6652 -1.1078 1 55 1.2e+02 1 NEPLKITTELPGR ~ 734.3110 1466.6074 1466.8093 -0,2018 23 70 1 MTDSTQTPDIPLLDAVQAR 0 23 2.1e+02 ~ 59 691.0200 2070.0382 2071.0256 -0.9874 780.7600 1559.5054 1558.8501 0.6554 23 97 LANRTLREMVLSE + Oxidation (M) 17 1 88 1 2 692.6780 2075.0122 2074.0405 0.9717 23 1.2e+02 IYPVSGMSKIGSGSYTLNGK + Oxidation (M) 159 1 2 692.6560 2074.9462 2074.0591 0.8871 2 23 1.2e+02 1 LLTIMDELRVGCPWDKK 158 1 MKKALAVVLAVV 1 ELQEQAASLLS 5 123 905.3180 2712.9322 2713.5420 -0.6099 2 23 1.6e+02 MKKALAVVLAVVQLAMCVVALSGVAR + Oxidation (M) 0 1 594,8990 1187,7834 1187,6033 0,1801 23 2.6e+02 47 VADLGKVVDTLADEKSR 1 605.9000 1814.6782 1814.9738 -0.2956 2 23 1e+02 1 126 MYKGVAAR + Oxidation (M) 7 910.9870 909.9797 910.4695 -0.4897 1 22 91 1 24 REILIALGKMAAVDYQNR + Oxidation (M)
 692.7580
 2075.2522
 2076.1149
 -0.8628
 2
 22
 1.2e+02

 800.5800
 2398.7182
 2398.3584
 0.3598
 0
 22
 2e+02
 2 160 1 1 AATAGAVAGGVSGGLAGGVVAVGILYIK V 96 22 1.8e+02 IT3 1083.2770 3246.8092 3246.4194 0.3898 1 GGSLFCASGDDQLQAGDSVYIVCARDNVDR

(MATRIX) SCIENCE/ Mascot Search Results

Protein View

Match to: gi 60682036 Score: 466 superoxide dismutase [Fe] [Bacteroides fragilis NCTC 9343] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP (7301) 10_RJ12_01_1384.d\SSP (7301) 10_RJ12_01_1384.mgf

Nominal mass (M_r) : **21758**; Calculated pI value: **6.07** NCBI BLAST search of <u>gi | 60682036</u> against nr Unformatted <u>sequence string</u> for pasting into other applications

Taxonomy: <u>Bacteroides fragilis NCTC 9343</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gi|25555769</u> from <u>Bacteroides sp. 3_2_5</u> <u>gi|255764163</u> from <u>Bacteroides fragilis</u> <u>gi|55977805</u> from <u>Bacteroides fragilis</u> <u>gi|261946068</u> from <u>Bacteroides fragilis</u> <u>gi|263256771</u> from <u>Bacteroides sp. 3_2_5</u> <u>gi|263256771</u> from <u>Bacteroides sp. 2_1_16</u>

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 58%

Matched peptides shown in Bold Red

1 MTYEMPKLPY ANNALEPVIS QQTIDYHYGK HLQTYVNNLN SLVPGTEYEG 51 KTVEAIVASA PDGAIFNNAG QVLNHTLYFL QFAFKPAKNE PAGKLGEAIK 101 RDFGSFENFK KEFNAASVGL FGSGWAWLSV DKDGKLHITK EPNGSNPVRA 151 GLKPLLGFDV WEHAYYLDYQ NRRADHVNKL WEIIDWDVVE KRL

Show predicted peptides also

8 - 30 878.630 2632.9972 2633.3125 -0.4054 0 K.LPYANNALEPVISQUTDYHYGK.H 10 8 - 30 878.6580 2632.9522 2633.3125 -0.3604 0 K.LPYANNALEPVISQUTDYHYGK.H 10 8 - 30 878.6760 2633.9122 2633.3125 -0.3364 0 K.LPYANNALEPVISQUTDYHYGK.H 10 8 - 30 878.6760 2633.8612 2633.3125 0.5486 0 K.LPYANNALEPVISQUTDYHYGK.H 10 8 - 30 878.9610 2633.8612 2633.3125 0.5486 0 K.LPYANNALEPVISQUTDYHYGK.H 10 8 - 30 878.9700 2633.902 2633.3125 0.5966 0 K.LPYANNALEPVISQUTDYHYGK.H 10 8 - 30 878.9500 2633.9632 2375.1757 -0.4515 0 K.HLQTYVNNALSLPVISQUTDYHYGK.H 10 91 - 51 792.6500 2374.7782 2375.1757 -0.4515 K.HLQTYVNNISLYPGTEYEGK.T 1008 31 - 51 792.6100 2374.7782 2375.1757 -0.3975 K.HLQTYVNNISLYPGTEYEGK.T 1008 <th>tart</th> <th>- End</th> <th>Observed</th> <th>Mr (expt)</th> <th>Mr(calc)</th> <th>Delta</th> <th></th> <th>Sequence</th>	tart	- End	Observed	Mr (expt)	Mr(calc)	Delta		Sequence
8 - 30 878.6580 263.9522 263.3125 -0.3644 0 K.LPYANNALEPVISQOTIDYHYGK.H 10 8 - 30 878.6680 2632.9762 263.3125 -0.3364 0 K.LPYANNALEPVISQOTIDYHYGK.H 10 8 - 30 878.6680 263.0122 263.3125 -0.3044 0 K.LPYANNALEPVISQOTIDYHYGK.H 10 8 - 30 878.9610 2633.8612 2633.3125 0.5486 0 K.LPYANNALEPVISQOTIDYHYGK.H 10 8 - 30 878.9950 2633.9022 2633.3125 0.5486 0 K.LPYANNALEPVISQOTIDYHYGK.H 10 8 - 30 878.9950 233.4637 -0.5385 0 K.LPYANNALEPVISQOTIDYHYGK.H 10 8 - 30 878.9950 2374.7242 2375.1757 -0.4515 0 K.HQTYVNINISUVPGTEYEGK.T 10ns 31 - 51 792.6170 2374.7722 2375.1757 -0.3405 0 K.HQTYVNINISUVPGTEYEGK.T 10ns 31 - 51 792.6170 2374.8352 2375.1757 -0.3405 0 K.HQTYVNINISUVPGTEYEGK.T 10ns 31 - 51 792.6170 2374.8352 2375.1757 -0.1733<	8	- 30	878.6390	2632.8952	and all states and an all shows and	-0.4174	0	K.LPYANNALEPVISQQTIDYHYGK.H (Ions score
B = 30 878.6580 203.9762 203.3125 -0.3364 0 R.LPYANNALEFVISQOTIDYHYGK.H 10 B = 30 878.6780 2633.0122 2633.3125 -0.3364 0 K.LPYANNALEFVISQOTIDYHYGK.H 10 B = 30 878.6780 2633.8612 2633.3125 0.5486 0 K.LPYANNALEFVISQOTIDYHYGK.H 10 B = 30 878.9710 2633.8612 2633.3125 0.5486 0 K.LPYANNALEFVISQOTIDYHYGK.H 10 B = 30 878.9770 2633.9622 2633.3125 0.5486 0 K.LPYANNALEFVISQOTIDYHYGK.H 10 B = 30 878.9770 2633.9125 0.6506 K.LPYANNALEFVISQOTIDYHYGK.H 10 B = 31 917.9550 2374.6792 2375.1757 -0.4055 K.HLQTYVNNINSLVPGTFYEGK.T 1018 31 = 51 792.6670 2374.7692 2375.1757 -0.3975 K.HLQTYVNNINSLVPGTFYEGK.T 1018 31 = 51 792.6670 2374.9792 2375.1757 -0.1733 R.PGFSFENFK.K (10n S 31 = 51 792.6670 2374.9792 2375.1757 -0.1955 K.HLQTYVNNINSLVPGTFYEGK.T (10n S <	8	- 30	878.6430	2632.9072	2633.3125	-0.4054		
B = 30 B78.6660 263.126 263.125 -0.304 0 R.L.PYANNALEPVISQOTIDWIYK.H 120 B = 30 B78.9610 2633.8612 2633.3125 0.5486 0 R.LPYANNALEPVISQOTIDWIYK.H 120 B = 30 B78.9610 2633.8612 2633.3125 0.5486 0 R.LPYANNALEPVISQOTIDWIYK.H 120 B = 30 B78.9510 233.9622 2633.3125 0.5966 0 K.LPYANNALEPVISQOTIDWIYK.H 120 B = 30 B78.9510 2374.7632 2375.1757 -0.5385 0 K.HLCTYVNNINSLVPGTEYEGK.T 101 31 = 51 792.5500 2374.7742 2375.1757 -0.4655 0 K.HLCTYVNNINSLVPGTEYEGK.T 1018 31 = 51 792.6100 2374.7742 2375.1757 -0.3405 0 K.HLCTYVNNINSLVPGTEYEGK.T 1018 31 = 51 792.6100 2374.782 2375.1757 -0.1405 0 K.HLCTYVNNINSLVPGTEYEGK.T 1018 31 = 51 792.6100 2374.782 2375.1757 -0.1405 0 K.HLCTYVNNINSLVPGTEYEGK.T 1018 31 = 51 792.6100 2374.7842 240.23	8	- 30	878.6580	2632.9522	2633.3125			
8 -30 878.6780 2633.3122 0.3034 0.4034 0.4044 0.4044 8 -30 678.9610 2633.8612 2633.3125 0.5486 0.4045 0.4044 0.4045 <	8	- 30	878.6660	2632.9762	2633.3125			
8 - 30 8/8.9610 2633.8612 2633.3125 0.5486 0 K.LPYANNALEPVISQQTIDYHYGK.H [10] 8 - 30 878.9770 2633.9092 2633.3125 0.5966 0 K.LPYANNALEPVISQQTIDYHYGK.H [10] 8 - 30 878.9770 2633.9092 2633.3125 0.5966 0 K.LPYANNALEPVISQQTIDYHYGK.H [10] 8 - 30 878.9770 2633.9092 2633.3125 0.5966 0 K.LPYANNALEPVISQQTIDYHYGK.H [10] 8 - 30 878.9700 2374.7242 2375.1757 -0.4515 0 K.HLQTYVNNLNSLVPGTEYEGK.T [10] 31 - 51 792.6100 2374.7782 2375.1757 -0.3405 0 K.HLQTYVNNLNSLVPGTEYEGK.T [10] 31 - 51 792.6100 2374.782 2375.1757 -0.1405 0 K.HLQTYVNNLNSLVPGTEYEGK.T [10] 12 - 110 545.6590 1089.3034 1089.4767 -0.1733 0 R.HLQTYVNNLNSLVPGTEYEGK.T [10] 112 - 135 847.6130 2539.8742 2540.2336 -0.3594 1 K.EPNAASVGLFGSGWAMLSVDKDK.L [1] 112 - 135 847.6300 2539.9372 </td <td>8</td> <td>- 30</td> <td>878.6780</td> <td>2633.0122</td> <td>2633.3125</td> <td>-0.3004</td> <td>0</td> <td></td>	8	- 30	878.6780	2633.0122	2633.3125	-0.3004	0	
8 -30 878.9510 2633.9612 2633.3125 0.5366 0 K.LPYANNALEPVISQCTIDYHYGK.H (10) 8 -30 878.9950 2633.9622 2633.3125 0.6506 0 K.LPYANNALEPVISQCTIDYHYGK.H (10) 31 -51 792.5520 2374.7622 2375.1757 -0.5385 0 K.HLQTYVNNINSLVPGTEYEGK.T (10) 31 -51 792.6670 2374.7622 2375.1757 -0.4405 0 K.HLQTYVNNINSLVPGTEYEGK.T (10) 31 -51 792.6000 2374.7622 2375.1757 -0.3405 0 K.HLQTYVNNINSLVPGTEYEGK.T (10) 31 -51 792.6670 2374.9792 2375.1757 -0.3405 0 K.HLQTYVNNINSLVPGTEYEGK.T (10) 31 -51 792.6670 2374.9792 2375.1757 -0.1965 0 K.HLQTYVNNINSLVPGTEYEGK.T (10) 312 132 1120.9470 2239.8794 2240.0902 -0.2108 0 K.EFNAASVGLFGSGWAMLSVDKDK.L (10) 312 135 847.6130 2539.8742 2540.2336 -0.3594 1 K.EFNAASVGL	8	- 30	878.9610	2633.8612	2633.3125	0.5486	0	
8 - 30 876.97/0 2533.9632 2633.3125 0.6506 0 K.LPYANNALEPVISQCTIDYHYGK.H (10) 31 - 51 792.5530 2374.6372 2375.1757 -0.5385 0 K.HLQTYVNNLNSLVPGTEYEGK.T (10ns) 31 - 51 792.5970 2374.7622 2375.1757 -0.46515 0 K.HLQTYVNNLNSLVPGTEYEGK.T (10ns) 31 - 51 792.6000 2374.7782 2375.1757 -0.3405 0 K.HLQTYVNNLNSLVPGTEYEGK.T (10ns) 31 - 51 792.6670 2374.8352 2375.1757 -0.3405 0 K.HLQTYVNNLNSLVPGTEYEGK.T (10ns) 31 - 51 792.6670 2374.9792 2375.1757 -0.1405 0 K.HLQTYVNNLNSLVPGTEYEGK.T (10ns) 31 - 51 792.6670 2374.9792 2375.1757 -0.1733 0 R.DFGSFENFK.K (10ns) Score 35) 112 - 135 847.6150 259.8322 2540.236 -0.4104 1 K.EFNAASVGLFGSGWAMLSVDKDGK.L (1 112 - 135 847.6330 253.9.8372 2540.236 -0.3064 1 K.EFNAASVGLFGSGWAMLSVDKDGK.L (1 112 - 135 847.630	8	- 30	878.9610	2633.8612	2633.3125	0.5486	0	
8 - 30 87.9.990 2633.9932 2375.1757 -0.5385 0 K.HLQTYVNNLNSLVFGTEYEGK.T (Ions 31 - 51 792.5820 2374.6372 2375.1757 -0.4515 0 K.HLQTYVNNLNSLVFGTEYEGK.T (Ions 31 - 51 792.5970 2374.7692 2375.1757 -0.4065 0 K.HLQTYVNNLNSLVFGTEYEGK.T (Ions 31 - 51 792.6100 2374.7692 2375.1757 -0.3975 0 K.HLQTYVNNLNSLVFGTEYEGK.T (Ions 31 - 51 792.6670 2374.9792 2375.1757 -0.1965 0 K.HLQTYVNNLNSLVFGTEYEGK.T (Ions 312 - 110 545.6590 1088.3034 1089.4767 -0.1733 0 R.DFGSFENFK.K (Ions score 35) 112 - 132 1120.9470 2239.8742 2540.2336 -0.3594 1 K.EFNAASVGLFGSGWAWLSVDKDK.L (I 112 - 135 847.6330 2539.8722 2540.2336 -0.3594 1 K.EFNAASVGLFGSGWAWLSVDKDK.L (I 112 - 135 847.6530 2539.9372 2540.2336 -0.2964 1	8	- 30	878.9770	2633.9092	2633.3125	0.5966	0	
31 - 51 792.530 2374.732 2375.1757 -0.4515 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 31 - 51 792.590 2374.722 2375.1757 -0.4065 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 31 - 51 792.6000 2374.7782 2375.1757 -0.3975 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 31 - 51 792.6100 2374.8352 2375.1757 -0.1965 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 31 - 51 792.6670 2374.9792 2375.1757 -0.1965 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 312 - 110 545.6590 1089.3034 1089.4767 -0.1733 0 R.DFGSFENFK.K [Ions score 35] 312 - 135 847.6150 2539.8232 2540.236 -0.4104 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L [I 312 - 135 847.6530 2539.972 2540.236 -0.3564 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L [I 312 - 135 847.6530 2539.972 2540.236 -0.2964 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L [I 312 - 135 847.6590 2540.42	8	- 30	878.9950	2633.9632	2633.3125	0.6506	0	
31 -51 792.5800 2374.7622 2375.1757 -0.4365 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 31 -51 792.6000 2374.7622 2375.1757 -0.3405 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 31 -51 792.6100 2374.8352 2375.1757 -0.3405 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 31 -51 792.6670 2374.9792 2375.1757 -0.1965 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 312 -132 1120.9470 2239.8794 240.0902 -0.2108 0 K.EFNAASVGLFGSGWAWLSVDKDGK.L [I 112 -135 847.6150 2539.822 2540.2336 -0.3594 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L [I 112 -135 847.630 2539.9372 2540.2336 -0.3084 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L [I 112 -135 847.720 2540.1472 2540.2336 -0.2964 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L [I 112 -135 847.720 2540.1472 2540.236 -0.3664 1 K.E	31	- 51	792.5530	2374.6372	2375.1757	-0.5385	0	
31 - 51 792.5970 2374.792 2375.1737 -0.403 5 R.HLQTYUNLINSLVEGTEYEGK.T [Ions 31 - 51 792.6190 2374.78352 2375.1757 -0.3405 0 K.HLQTYUNLINSLVEGTEYEGK.T [Ions 31 - 51 792.6670 2374.7972 2375.1757 -0.1965 0 K.HLQTYUNLINSLVEGTEYEGK.T [Ions 102 - 110 545.6590 1089.3034 1089.4767 -0.1733 0 R.DFGSFENFK.K [Ions score 35] 112 - 135 847.6150 2539.8742 2540.2336 -0.4104 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L [I 112 - 135 847.6330 2539.8772 2540.2336 -0.3594 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L [I 112 - 135 847.6530 2539.9772 2540.2336 -0.3084 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L [I 112 - 135 847.6530 2539.9772 2540.2336 -0.6664 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L [I 112 - 135 847.6590 2540.4236 -0.4556 0 R.AGLKPLLGFDWEHAYYLDYQNR.R [Io 112 - 135 847.6590 2540.4236	31	- 51	792.5820	2374.7242	2375.1757	-0.4515	0	
31 - 51 792.6000 2374.8352 2375.1737 -0.3405 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 31 - 51 792.6670 2374.8352 2375.1757 -0.1965 0 K.HLQTYVNNLNSLVPGTEYEGK.T [Ions 102 - 110 545.6590 1089.3034 1089.4767 -0.1733 0 R.DPGSPENFK.K [Ions score 35) 112 - 135 847.6150 2539.8232 2540.2336 -0.4104 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L [I 112 - 135 847.6320 2539.8742 2540.236 -0.3564 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L [I 112 - 135 847.6530 2539.972 2540.236 -0.3664 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L [I 112 - 135 847.6530 2539.972 2540.236 -0.2964 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L [I 112 - 135 847.6590 2540.472 2540.236 -0.6664 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L [I 112 - 135 847.6590 2540.8852 2540.236 0.6516 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L [I [I [I [I	31	- 51	792.5970	2374.7692	2375.1757	-0.4065	0	
31 - 51 792.6190 2374.8352 2375.1757 -0.3405 0 K.HLQTYVNNLNSLVPGTEYEGK.T (Ions 31 - 51 792.6670 2374.9792 2375.1757 -0.1965 0 K.HLQTYVNNLNSLVPGTEYEGK.T (Ions 102 - 110 545.6590 1089.3034 1089.4767 -0.1733 0 R.DFGSFENFK.K (Ions score 35) 112 - 135 847.6150 2539.8742 2540.2336 -0.4104 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L (I 112 - 135 847.6330 2539.8772 2540.2336 -0.3594 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L (I 112 - 135 847.6530 2539.9772 2540.2336 -0.3664 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L (I 112 - 135 847.6530 2539.9772 2540.2336 -0.3064 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L (I 112 - 135 847.6590 2540.1472 2540.2336 -0.6664 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L (I 112 - 135 847.6590 2540.1472 2767.3758 -0.4346 1 K.AEFNAASVGLFGSGWAWLSVDKDGK.L (I 112 - 135 947.9690	31	- 51	792,6000	2374.7782	2375.1757	-0.3975	0	
31 - 51 792.06/0 2374.9752 2374.137 -0.1333 0 R.DFGSFENFK.K (IONE SCORE 35) 112 - 110 545.6590 1089.3034 1089.4767 -0.2108 0 K.EFNAASVGLFGSGMAWLSVDK.D. (IONE 35) 112 - 135 847.6150 2539.8742 2240.0902 -0.2108 0 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 112 - 135 847.6300 2539.8742 2540.2336 -0.3594 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 112 - 135 847.6300 2539.8772 2540.2336 -0.3564 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 112 - 135 847.6500 2539.9372 2540.2336 -0.3084 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 112 - 135 847.6500 2540.1472 2540.2336 -0.0864 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 112 - 135 847.9690 2540.8852 2540.2336 -0.6664 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 150 - 172 923.3140 2766.9312 2767.3758 -0.4346 R.AGLKPLLGFDVWEHAYYLDYQNR.R (IONE 500) 105 150 - 172 923.3410 2767.012 2767.3758 -0.3146 R.AGLKPLLGFDVWEHAYYLDYQNR.R (IONE 5000)<	31	- 51	792,6190	2374.8352	2375.1757	-0.3405	0	
112 1120	31	- 51	792.6670	2374.9792	2375.1757	-0.1965	0	
112 112 112 112 123 112.0.9470 2239.8794 2240.0902 -0.2108 0 K.EFNAASVGLFGSGMAWLSVDK.DC (IONS 112 1135 847.6150 2539.8742 2540.2336 -0.4104 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 112 135 847.6330 2539.8772 2540.2336 -0.3594 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 112 135 847.6430 2539.972 2540.2336 -0.3664 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 112 135 847.6530 2539.9372 2540.2336 -0.2964 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 112 135 847.6690 2540.1472 2540.2336 -0.0864 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 112 135 847.9690 2540.8852 2540.2336 -0.6616 1 K.EFNAASVGLFGSGMAWLSVDKDGK.L (I 150 172 923.3100 2766.9412 2767.3758 -0.4556 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (IONS) 150 172 923.3410 2767.012 2767.3758 -0.3746 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (IONS) <tr< td=""><td>102</td><td>- 110</td><td>545,6590</td><td>1089.3034</td><td>1089.4767</td><td>-0.1733</td><td>0</td><td></td></tr<>	102	- 110	545,6590	1089.3034	1089.4767	-0.1733	0	
112 135 847.6150 2539.8232 2540.2336 -0.4104 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.6330 2539.8742 2540.2336 -0.3594 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.6490 2539.972 2540.2336 -0.3564 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.6490 2539.9372 2540.2336 -0.3084 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.6530 2539.9372 2540.2336 -0.0964 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.9690 2540.47236 0.0664 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 150 172 923.310 2766.9422 2767.3758 -0.4346 R.AGLKPLLGFDWWEHAYLDYQNR.R (Io) 150 172 923.3410 2766.9862 2767.3758 -0.3896 R.AGLKPLLGFDWWEHAYLDYQNR.R (Io) 160 191 772.7580 1543.7922 -0.2631 0 K.LWEILDFDWVWEK.R (Ion) 160 <td></td> <td></td> <td>1120.9470</td> <td>2239.8794</td> <td>2240.0902</td> <td>-0.2108</td> <td>0</td> <td></td>			1120.9470	2239.8794	2240.0902	-0.2108	0	
112 135 847.6320 2539.8742 2540.2336 -0.3594 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.6330 2539.8772 2540.2336 -0.3564 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.6530 2539.9322 2540.2336 -0.3084 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.6530 2539.9372 2540.2336 -0.2964 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.7230 2540.1472 2540.2336 -0.0864 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 150 172 923.3140 2766.9202 2767.3758 -0.4356 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io) 150 172 923.3410 2766.9412 2767.3758 -0.3746 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io) 160 191 772.7580 1543.5014 1543.7922 -0.2631 0 K.LWEILDWDVVEK.R (Ions score 59 180 191 772.7800 1543.5474 1543.7922 -0.2631 K.LWEILDW			847.6150	2539.8232	2540.2336	-0.4104	1	
112 135 847.6330 2539.8772 2540.2336 -0.3564 1 K.EFNAASVGLFGGGNAWLSVDKDGK.L (I) 112 135 847.6530 2539.9372 2540.2336 -0.3084 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.6530 2539.9372 2540.2336 -0.2964 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.7230 2540.1472 2540.2336 -0.0864 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 112 135 847.9690 2540.8852 2540.2336 -0.6864 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I) 150 172 923.3140 2766.9202 2767.3758 -0.4556 0 R.AGLKPLLGFDWWEHAYYLDYQNR.R (Io) 150 172 923.3410 2766.9862 2767.3758 -0.3966 0 R.AGLKPLLGFDWWEHAYYLDYQNR.R (Io) 160 191 772.7500 1543.5014 1543.7922 -0.2908 0 K.LWEILDWDVVEK.R (Ions score 35 180 191 772.7800 1543.5614 1543.7922 -0.24368 0			847,6320	2539.8742	2540.2336	-0.3594	1	
112 - 135 847.6490 2539.9252 2540.2336 -0.3084 1 K.EFNAASVGLFGGGWAWLSVDKDGK.L (I) 112 - 135 847.6530 2539.9372 2540.2336 -0.2964 1 K.EFNAASVGLFGGGWAWLSVDKDGK.L (I) 112 - 135 847.7230 2540.1472 2540.2336 -0.0864 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L (I) 112 - 135 847.9690 2540.8852 2540.2336 0.6516 1 K.EFNAASVGLFGSGWAWLSVDKDGK.L (I) 150 - 172 923.3100 2766.9202 2767.3758 -0.4346 R.AGLKPLLGFDWWEHAYLDYQNR.R (Io) 150 - 172 923.3410 2766.9862 2767.3758 -0.3896 0 R.AGLKPLLGFDWWEHAYLDYQNR.R (Io) 150 - 172 923.3410 2766.9862 2767.3758 -0.3896 0 R.AGLKPLLGFDWWEHAYLDYQNR.R (Io) 160 - 191 772.7580 1543.5022 1543.7922 -0.2631 0 K.LWEITDWDVVEK.R (Ions score 35 180 - 191 772.7800 1543.5454 1543.7922 -0.2468 0 K.LWEITDWDVVEK.R (Ions score 54 180 - 191 772.7800					2540.2336	-0.3564	1	
112 135 847.6530 2539.9372 2540.2336 -0.2964 1 K.EFNAASVGLFGGGNAWLSVDKDGK.L (I 112 -135 847.7230 2540.1472 2540.2336 -0.0864 1 K.EFNAASVGLFGGGNAWLSVDKDGK.L (I 112 -135 847.7230 2540.835 2540.2336 -0.0864 1 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I 112 -135 847.6590 2540.835 2540.2336 0.6516 K.EFNAASVGLFGSGNAWLSVDKDGK.L (I 150 -172 923.3140 2766.9412 2767.3758 -0.4346 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 -172 923.3410 2766.9862 2767.3758 -0.3746 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 -172 923.3410 2767.012 2767.3758 -0.3746 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 160 -191 772.7800 1543.5014 1543.7922 -0.2631 0 K.LWEITDWDVVEK.R (Ions score 62 180 -191 772.7800 1543.5474 1543.7922 -0.2448 0 K.LWEITDWDVV				2539.9252	2540.2336	-0.3084	1	
112 135 847.7230 2540.1472 2540.2336 -0.0864 1 K.EFNAASVGLFGGGMAMLSVDKDGK.L (I 112 135 847.9690 2540.8852 2540.2336 0.6516 1 K.EFNAASVGLFGGGMAMLSVDKDGK.L (I 150 172 923.3140 2766.9202 2767.3758 -0.4556 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 172 923.3210 2766.9862 2767.3758 -0.4346 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 172 923.3410 2767.0012 2767.3758 -0.3746 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 180 191 772.7580 1543.5014 1543.7922 -0.2908 0 K.LWEILDGPUVWEHAYYLDYQNR.R (Ions score 59 180 191 772.7800 1543.5454 1543.7922 -0.2468 0 K.LWEILDWDVVEK.R (Ions score 70 180 191 772.7800 1543.5614 1543.7922 -0.2468 0 K.LWEILDWDVVEK.R (Ions score 54 180 191 772.7800 1543.5714 1543.7922 -0.2208 K.LWEIL					2540.2336	-0.2964	1	
112 - 135 847.9690 2540.8852 2540.2336 0.6516 1 K.EFNAASVCLPGGGNAMLSVDKDGK.L (I 150 - 172 923.3140 2766.9202 2767.3758 -0.4556 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 - 172 923.3210 2766.9412 2767.3758 -0.4346 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 - 172 923.3410 2766.9862 2767.3758 -0.3896 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 - 172 923.3410 2767.0012 2767.3758 -0.3746 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 180 - 191 712.7580 1543.5021 1543.7922 -0.2631 0 K.LWEITDWDVVEK.R (Ions score 35 180 - 191 772.7800 1543.5454 1543.7922 -0.2468 0 K.LWEITDWDVVEK.R (Ions score 54 180 - 191 772.7800 1543.5714 1543.7922 -0.2208 0 K.LWEITDWDVVEK.R (Ions score 54 180 - 191 772.7800 1543.5714 1543.7922 -0.2208 0 K.LWEITDWDVVEK.R (Ions score 52 180 - 191 772.8101 <td></td> <td></td> <td></td> <td></td> <td>2540.2336</td> <td>-0.0864</td> <td>1</td> <td></td>					2540.2336	-0.0864	1	
150 - 172 923.3140 2766.9202 2767.3758 -0.4556 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 - 172 923.3210 2766.9412 2767.3758 -0.4346 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 - 172 923.3310 2766.9412 2767.3758 -0.3896 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 - 172 923.3410 2767.0012 2767.3758 -0.3746 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 160 - 191 772.7580 1543.5014 1543.7922 -0.2908 0 K.LWEIIDWDVVEK.R (Ions score 59 180 - 191 772.7800 1543.5454 1543.7922 -0.2631 0 K.LWEIIDWDVVEK.R (Ions score 84 180 - 191 772.7810 1543.5474 1543.7922 -0.2308 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.7810 1543.5714 1543.7922 -0.2208 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8101 1543.5743 1543.7922 -0.2208 0 K.LWEIIDWDVVEK.R (Ions score 62 180 - 191 772.8101 </td <td></td> <td></td> <td></td> <td>2540.8852</td> <td>2540,2336</td> <td>0.6516</td> <td>1</td> <td>K.EFNAASVGLFGSGWAWLSVDKDGK.L (Ions score</td>				2540.8852	2540,2336	0.6516	1	K.EFNAASVGLFGSGWAWLSVDKDGK.L (Ions score
150 - 172 923.3210 2766.9412 2767.3758 -0.4346 0 R.AGLKPLLGFDVWEHAYLDYONR.R (10) 150 - 172 923.3360 2766.9862 2767.3758 -0.3896 0 R.AGLKPLLGFDVWEHAYLDYONR.R (10) 150 - 172 923.3410 2767.012 2767.3758 -0.3746 0 R.AGLKPLLGFDVWEHAYLDYONR.R (10) 160 - 191 772.7580 1543.5014 1543.7922 -0.2908 0 K.LWEILDGDVVEK.R (Ions score 69) 180 - 191 515.5170 1543.5292 1543.7922 -0.2431 0 K.LWEILDWDVVEK.R (Ions score 35) 180 - 191 772.7800 1543.541 1543.7922 -0.2448 0 K.LWEILDWDVVEK.R (Ions score 70) 180 - 191 772.7800 1543.541 1543.7922 -0.2208 0 K.LWEILDWDVVEK.R (Ions score 54) 180 - 191 772.7801 1543.541 1543.7922 -0.2208 0 K.LWEILDWDVVEK.R (Ions score 54) 180 - 191 772.8010 1543.5714 1543.7922 -0.2048 K.LWEILDWDVVEK.R (Ions score 52) 180 - 191 772.8101 1					2767.3758	-0.4556	0	R.AGLKPLLGFDVWEHAYYLDYQNR.R (Ions score
150 - 172 923.3360 2766.9862 2767.3758 -0.3896 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 150 - 172 923.3410 2767.012 2767.3758 -0.3746 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (Io 180 - 191 772.7580 1543.5014 1543.7922 -0.2908 0 K.LWEILDWDVVEK.R (Ions score 35 180 - 191 772.7800 1543.5454 1543.7922 -0.2631 0 K.LWEILDWDVVEK.R (Ions score 35 180 - 191 772.7800 1543.5454 1543.7922 -0.2468 0 K.LWEILDWDVVEK.R (Ions score 54 180 - 191 772.7800 1543.5614 1543.7922 -0.2308 0 K.LWEILDWDVVEK.R (Ions score 54 180 - 191 772.7930 1543.5714 1543.7922 -0.2308 0 K.LWEILDWDVVEK.R (Ions score 52 180 - 191 772.8010 1543.5741 1543.7922 -0.2208 0 K.LWEILDWDVVEK.R (Ions score 62 180 - 191 772.8010 1543.5741 1543.7922 -0.2048 0 K.LWEILDWDVVEK.R (Ions score 54 180 - 191 772.8010 <td></td> <td></td> <td></td> <td></td> <td>2767.3758</td> <td>-0.4346</td> <td>0</td> <td></td>					2767.3758	-0.4346	0	
150 - 172 923.3410 2767.0012 2767.3758 -0.3746 0 R.AGLKPLLGFDVWEHAYYLDYQNR.R (100 180 - 191 772.7580 1543.5014 1543.7922 -0.2908 0 K.LWEIIDWDVVEK.R (10ns score 69 180 - 191 515.5170 1543.5292 1543.7922 -0.2631 0 K.LWEIIDWDVVEK.R (10ns score 55 180 - 191 772.7810 1543.5454 1543.7922 -0.2468 0 K.LWEIIDWDVVEK.R (10ns score 35 180 - 191 772.7800 1543.5614 1543.7922 -0.2468 0 K.LWEIIDWDVVEK.R (10ns score 36 180 - 191 772.7801 1543.5614 1543.7922 -0.2408 0 K.LWEIIDWDVVEK.R (10ns score 54 180 - 191 772.7930 1543.5614 1543.7922 -0.2048 0 K.LWEIIDWDVVEK.R (10ns score 54 180 - 191 772.8190 1543.6234 1543.7922 -0.2048 0 K.LWEIIDWDVVEK.R (10ns score 56 180 - 191 772.8390					2767.3758	-0.3896	0	R.AGLKPLLGFDVWEHAYYLDYQNR.R (Ions score
180 - 191 772.7580 1543.5014 1543.7922 -0.2908 0 K.LWEIIDWDVVEK.R (Ions score 69 180 - 191 515.5170 1543.5292 1543.7922 -0.2631 0 K.LWEIIDWDVVEK.R (Ions score 35 180 - 191 772.7800 1543.544 1543.7922 -0.2468 0 K.LWEIIDWDVVEK.R (Ions score 35 180 - 191 772.7800 1543.541 1543.7922 -0.2446 0 K.LWEIIDWDVVEK.R (Ions score 70 180 - 191 772.7800 1543.5614 1543.7922 -0.2248 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.7900 1543.5714 1543.7922 -0.2048 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8100 1543.5714 1543.7922 -0.2048 0 K.LWEIIDWDVVEK.R (Ions score 52 180 - 191 772.8190 1543.6234 1543.7922 -0.1208 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1208 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.3746</td> <td>0</td> <td>R.AGLKPLLGFDVWEHAYYLDYQNR.R (Ions score</td>						-0.3746	0	R.AGLKPLLGFDVWEHAYYLDYQNR.R (Ions score
180 - 191 515.5170 1543.5292 1543.7922 -0.2631 0 K.LWEIIDWDVVEK.R (Ions score 35 180 - 191 772.7800 1543.5454 1543.7922 -0.2468 0 K.LWEIIDWDVVEK.R (Ions score 35 180 - 191 772.7800 1543.5454 1543.7922 -0.2468 0 K.LWEIIDWDVVEK.R (Ions score 35 180 - 191 772.7800 1543.5614 1543.7922 -0.2308 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.7930 1543.5714 1543.7922 -0.2208 0 K.LWEIIDWDVVEK.R (Ions score 52 180 - 191 772.8010 1543.5874 1543.7922 -0.2048 0 K.LWEIDWDVVEK.R (Ions score 52 180 - 191 772.8101 1543.5874 1543.7922 -0.2048 0 K.LWEIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1688 0 K.LWEIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1688 0 K.LWEIDWDVVEK.R (Ions score 35 180 - 191 772.8390					1543.7922	-0.2908	0	K.LWEIIDWDVVEK.R (Ions score 69)
180 - 191 772.7800 1543.5454 1543.7922 -0.2468 0 K.LWEIIDWDVVEK.R (Ions score 84 180 - 191 772.7810 1543.5474 1543.7922 -0.2468 0 K.LWEIIDWDVVEK.R (Ions score 70 180 - 191 772.7880 1543.5614 1543.7922 -0.2468 0 K.LWEIIDWDVVEK.R (Ions score 70 180 - 191 772.7880 1543.5614 1543.7922 -0.2208 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8610 1543.5874 1543.7922 -0.2048 0 K.LWEIIDWDVVEK.R (Ions score 66 180 - 191 772.8190 1543.6234 1543.7922 -0.1688 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8190 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 35 180 - 191 772.8390 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.2631</td> <td>0</td> <td>K.LWEIIDWDVVEK.R (Ions score 35)</td>						-0.2631	0	K.LWEIIDWDVVEK.R (Ions score 35)
180 - 191 772.7810 1543.5474 1543.7922 -0.2448 0 K.LWEIIDWDVVEK.R (Ions score 70 180 - 191 772.7800 1543.5614 1543.7922 -0.2308 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.7930 1543.5714 1543.7922 -0.2048 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8010 1543.5874 1543.7922 -0.2048 0 K.LWEIIDWDVVEK.R (Ions score 66 180 - 191 772.8190 1543.6234 1543.7922 -0.1688 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 35						-0.2468	0	K.LWEIIDWDVVEK.R (Ions score 84)
180 - 191 772.7880 1543.5614 1543.7922 -0.2308 0 K.LWEIIDWDVEK.R (Ions score 54 180 - 191 772.7930 1543.5714 1543.7922 -0.2308 0 K.LWEIIDWDVEK.R (Ions score 62 180 - 191 772.8010 1543.5874 1543.7922 -0.2048 0 K.LWEIIDWDVEK.R (Ions score 62 180 - 191 772.8190 1543.6234 1543.7922 -0.1688 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 35						-0.2448	0	K.LWEIIDWDVVEK.R (Ions score 70)
180 - 191 772.7930 1543.5714 1543.7922 -0.2208 0 K.LWEIIDWDVVEK.R (Ions score 62 180 - 191 772.8010 1543.5874 1543.7922 -0.2048 0 K.LWEIIDWDVVEK.R (Ions score 66 180 - 191 772.8190 1543.6234 1543.7922 -0.1688 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 54 1 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 35							0	K.LWEIIDWDVVEK.R (Ions score 54)
180 - 191 772.8010 1543.5874 1543.7922 -0.2048 0 K.LWEIIDWDVVEK.R (Ions score 66 180 - 191 772.8190 1543.6234 1543.7922 -0.1688 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 54 100 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 35						-0.2208	0	K.LWEIIDWDVVEK.R (Ions score 62)
180 - 191 772.8190 1543.6234 1543.7922 -0.1688 0 K.LWEIIDWDVVEK.R (Ions score 54 180 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 35							0	K.LWEIIDWDVVEK.R (Ions score 66)
160 - 191 772.8390 1543.6634 1543.7922 -0.1288 0 K.LWEIIDWDVVEK.R (Ions score 35							0	K.LWEIIDWDVVEK.R (Ions score 54)
						-0.1288	0	K.LWEIIDWDVVEK.R (Ions score 35)
, , , , , , , , , , , , , , , , , , ,		- 191	772.8390	1543.0034		I ĝ	200 -	
-0.5						-	-200	·

<pre>DEFINITION superoxide dismutase [Fe] [Bacteroides fragilis NCTC 9343]. ACCESSION YP_212180.1 GI:60692036 VPERSION YP_212180.1 GI:60692036 DBLINK Project:46 DBLINK Project:46 DSOURCE REFSEQ: accession NC_003228.3 KEYWORDS . SOURCE Bacteroides fragilis NCTC 9343 ORGANISM Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroidets; Dateroidales; Bacteroidaceae; Bacteroidets. REFERENCE 1 (residues 1 to 193) AUTHORS Cerdeno-Tarraga,A.M., Patrick,S., Crossman,L.C., Blakely,G., Abrat,V., Lennard,N., Poxton,I., Duerden,B., Harris,B., Quail,M.A., Barron,A., Clark,L., Corton,C., Dogget,J., Holden,M.T., Larke,N., Line,A., Lord,A., Norbertczak,H., Ormond,D., Price,C., Rabbinowitsch,E., Woodward,J., Barrell,B. and Parkhill,J. TITLE Extensive DNA inversions in the B. fragilis genome control variable gene expression JOURNAL Science 307 (5714), 1463-1465 (2005) 15746427 REFERENCE 2 (residues 1 to 193) AUTHORS Cerdeno-Tarraga,A.M. TITLE Direct Submission JOURNAL Submitted (29-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom REFERENCE 3 (residues 1 to 193) CONSRTM NCBH Genome Project TITLB Direct Submission JOURNAL Submitted (08-APR-2002) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA COMMENT PROVISIONAL REFERSO: This record has not yet been subject to final NCBH review. The reference sequence was derived from <u>CAH08256</u>. Method: conceptual translation.</pre>	<pre>DEFINITION supervised dismutase [Fe] [Bactercides fragilis NCTC 3343]. ACCESSION Y_212180 1 01:66632036 YEARDAW Y_212180 Fragilis NCTC 3343 GRANIBS Bactercides Fragilis NCTC 343 GRANIBS Bactercides Fragilis NCTC 343 GRANIBS Bactercides Fragilis NCTC 343 ATTHOSE Conference Targes, AM, Partick S., Crossman, L.C., Blakely, G., Arratt, V., Lennard, K., Poxton I., Duerden, B., Harris, B., MILL, A., Timora, N., Cark, L., Ovit, M., C., Duerden, J., and Parkhill, J. TITLE Birtensive DAN Inversions in the B. fragilis genome control variable gene expression gene expression yourne 2 (residues 1 to 133) TITLE Direct Submission NUMBONS Conference Targes, AM, TITLE Conference and the Stragilis genome control variable gene expression working for the Stragilis MCT 0 S143 TITLE Direct Submission NUMBONS Conference Targes, Minotan Combined Bils, United Kingdow HETERENCE 1 (residues 1 to 133) COMMENT NCH Genome Project TITLE Direct Submission NUMBONS Conference sequence was derived from CAMBB254. MENTINES COMMENT NCH Genome Project TITLE Direct Submission NUMBONS Conference sequence was derived from CAMBB254. Mention conceptual translation. MANDIS review. The reference sequence was derived from CAMBB254. Mention conceptual translation. Monter theore and the respective dismutase [Po]* //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/angersession //dr.art=from/an</pre>	LOCUS	YP_212180 193 aa linear BCT 01-MAY-2009	
<pre>VERSION YF_212180.1 G1.40642036 DENIME F72012 accession NC_001228.1 Denomics Refront accession NC_001228.1 Denomics Refront accession NC_001228.1 Denomics Refront accession NC_001228.1 Denomics Refront accession Refront accession a</pre>	<pre>VERSION YF_212180.1 G1.40642036 DENIME F72012 accession NC_001228.1 Denomics Refront accession NC_001228.1 Denomics Refront accession NC_001228.1 Denomics Refront accession NC_001228.1 Denomics Refront accession Refront accession a</pre>	DEFINITION	superoxide dismutase [Fe] [Bacteroides fragilis NCTC 9343].	
<pre>BBLINK Project:46 BROOMER Project:46 BROOMER Fragils NCT 944 OKAMINE Bacteridae fragils NCT 944 OKAMINE Bacteridae fragils NCT 944 BROTERIA Bacteridaes, Bacteridae, BROTERIA Bacteridaes, Bacteridae, Broteridaes, Bacteridae, L. Orosaman, L. C., Blakely, G., ATTONS MACT, V., Lean, A., Proton, C., DoggetJ., Outlik, A., Barron, A., Clark, L., Corton, C., DoggetJ., United Bacterida, Bacteridae, B., Woodward, J., Barrell, B., and Parkhill, J. TTILE Bacteridae BAC, M., Lord, A., Northertcask, N., Comod, D., D'fies, C., Rabbinevitzeh, B., Woodward, J., Barrell, B., and Parkhill, J. TTILE Bacteridae BAC, M., Masol-1465 (2005) TTILE Bacteridae Bacteridaes I to 130) COMMAN Schemes J. (Schemes J., Masol-1465 (2005) THIMBO Lifedeo Tartes, A.M. JOHENNA Submitted (23-701-2004) Pathogen Sequencing Unit, Sanger Institute, Kingdom United (23-701-2004) Pathogen Sequencing Unit, Sanger Institute, Kingdom United Willowe Trust Genome Campus, Hinton, Cambridge CBLO 158, United Kingdom United Willowe Trust Genome Campus, Hinton, Cambridge CBLO 158, United Kingdom United Willowe Trust Genome Campus, Hinton, Cambridge CBLO 158, United Kingdom United Willower Trust Genome Campus, United Kingdom United Willower Trust Genome Campus, United Kingdom Lines, The proteorida has not yets been subject to final Missi review. The proteorida has not yets been subject to final Missi review. The proteoridae fragilis NCT 9343' //dt Artisticaes (2505) //dt Artisticaes (2505) //dt Artisticaes (2505) //dt Artisticaes (2505) //dt Artisticaes (2505) //dt Artisticaes (2505) //dt Artisticaes (2505) //de Artis</pre>	<pre>BBLINK Project:46 BROOMER Project:46 BROOMER Fragils NCT 944 OKAMINE Bacteridae fragils NCT 944 OKAMINE Bacteridae fragils NCT 944 BROTERIA Bacteridaes, Bacteridae, BROTERIA Bacteridaes, Bacteridae, Broteridaes, Bacteridae, L. Orosaman, L. C., Blakely, G., ATTONS MACT, V., Lean, A., Proton, C., DoggetJ., Outlik, A., Barron, A., Clark, L., Corton, C., DoggetJ., United Bacterida, Bacteridae, B., Woodward, J., Barrell, B., and Parkhill, J. TTILE Bacteridae BAC, M., Lord, A., Northertcask, N., Comod, D., D'fies, C., Rabbinevitzeh, B., Woodward, J., Barrell, B., and Parkhill, J. TTILE Bacteridae BAC, M., Masol-1465 (2005) TTILE Bacteridae Bacteridaes I to 130) COMMAN Schemes J. (Schemes J., Masol-1465 (2005) THIMBO Lifedeo Tartes, A.M. JOHENNA Submitted (23-701-2004) Pathogen Sequencing Unit, Sanger Institute, Kingdom United (23-701-2004) Pathogen Sequencing Unit, Sanger Institute, Kingdom United Willowe Trust Genome Campus, Hinton, Cambridge CBLO 158, United Kingdom United Willowe Trust Genome Campus, Hinton, Cambridge CBLO 158, United Kingdom United Willowe Trust Genome Campus, Hinton, Cambridge CBLO 158, United Kingdom United Willower Trust Genome Campus, United Kingdom United Willower Trust Genome Campus, United Kingdom Lines, The proteorida has not yets been subject to final Missi review. The proteorida has not yets been subject to final Missi review. The proteoridae fragilis NCT 9343' //dt Artisticaes (2505) //dt Artisticaes (2505) //dt Artisticaes (2505) //dt Artisticaes (2505) //dt Artisticaes (2505) //dt Artisticaes (2505) //dt Artisticaes (2505) //de Artis</pre>			
Decourse REPSEQ: accession NC_003222.1 SURCE Retworks Retworks (residues fragilis NCT 934) SURCE (residues fragilis NCT 934) MUTHOS Cerdenc-Tartaga.A.M., Patrick.S., Crossman,L.C., Blakely.G., ArTHOSS Cerdenc-Tartaga.A.M., Patrick.S., Crossman,L.C., Blakely.G., Derice, C., Rabinowitsch, H., Woodward.J., Berrell,B. and Parchill.J., TITLE Bittensive DNA inversions in the B. fragilis genome control variable gene expression Science 31 (5714), 1463-1465 (2005) MUTHOSS Cerdenc-Tartaga.A.M. TITLE Direct Submission JOURNAL Submitted (02-JUL-2004) Pathogen Sequencing Unit. Sanger Institute, Muthods Cordence Campus, Nintton. Cambridge CBU DIA. United MUTHOSS Cerdenc-Tartaga.A.M. TITLE Direct Submission JOURNAL Submitted (02-JUL-2004) Pathogen Sequence in Subject to final MUTHOSS Cerdence Tartaga.A.M. MUTHOSS	Decourse REPSEQ: accession NC_003222.1 SURCE Retworks Retworks (residues fragilis NCT 934) SURCE (residues fragilis NCT 934) MUTHOS Cerdenc-Tartaga.A.M., Patrick.S., Crossman,L.C., Blakely.G., ArTHOSS Cerdenc-Tartaga.A.M., Patrick.S., Crossman,L.C., Blakely.G., Derice, C., Rabinowitsch, H., Woodward.J., Berrell,B. and Parchill.J., TITLE Bittensive DNA inversions in the B. fragilis genome control variable gene expression Science 31 (5714), 1463-1465 (2005) MUTHOSS Cerdenc-Tartaga.A.M. TITLE Direct Submission JOURNAL Submitted (02-JUL-2004) Pathogen Sequencing Unit. Sanger Institute, Muthods Cordence Campus, Nintton. Cambridge CBU DIA. United MUTHOSS Cerdenc-Tartaga.A.M. TITLE Direct Submission JOURNAL Submitted (02-JUL-2004) Pathogen Sequence in Subject to final MUTHOSS Cerdence Tartaga.A.M. MUTHOSS			
<pre>HEYWORDS SOURCE Bacteroids fragilis NCTC 943 GORANTS Bacteroids fragilis NCTC 943 GORANTS Bacteroids fragilis NCTC 943 GORANTS Bacteroids fragilis NCTC 943 MITHORS Corden-Carrage, A.M., Fatrick,S., Crossman,L.C., Blakely,G., Aratt,V., Lennard,M., Poxton,I., Dureden,B., Harris,B., Goldan,M.T., Larke,M., Line,A., Locd,A., Norbertcak,H., Derkhill,J., Holdan,M.T., Larke,M., Batheda,M. D., Mathematicak, M., Holdan, Holdan,M., Batheda,M. No 2009, USS GORMAT PROVISIONAL HEFESQ: This record has not yet been subject to final K., Hordan, Harteron, 2002 Stational Center for Biotechnology Information, NIN, Betheda,M. No 2009, USS Mathed (09-AFR-2002) Mathomatica (Polt //combather-M., 16, 11, * //combather-M., 16, 11, 10, 11, 12, as* //ranal_tables //rana_synonyme-s</pre>	<pre>HEYWORDS SOURCE Bacteroids fragilis NCTC 943 GORANTS Bacteroids fragilis NCTC 943 GORANTS Bacteroids fragilis NCTC 943 GORANTS Bacteroids fragilis NCTC 943 MITHORS Corden-Carrage, A.M., Fatrick,S., Crossman,L.C., Blakely,G., Aratt,V., Lennard,M., Poxton,I., Dureden,B., Harris,B., Goldan,M.T., Larke,M., Line,A., Locd,A., Norbertcak,H., Derkhill,J., Holdan,M.T., Larke,M., Batheda,M. D., Mathematicak, M., Holdan, Holdan,M., Batheda,M. No 2009, USS GORMAT PROVISIONAL HEFESQ: This record has not yet been subject to final K., Hordan, Harteron, 2002 Stational Center for Biotechnology Information, NIN, Betheda,M. No 2009, USS Mathed (09-AFR-2002) Mathomatica (Polt //combather-M., 16, 11, * //combather-M., 16, 11, 10, 11, 12, as* //ranal_tables //rana_synonyme-s</pre>			
SOURCE Bacteroidse fragilis NTC 9343 ORAMISM Bacteroidse fragilis NTC 9343 Bacteroidse Stateroidses Bacteroids, Bacteroidsles; Bacteria, Bacteroidsets, Bacteroids, Bacteroidsles; Bacteria, Bacteroidset, Bacteroids, Bacteroidsles; Bacteroids, Bacteroidset, Bacteroids, Bacteroidsles; Bacteroids, Bacteroidset, Bacteroids, Bacteroidsles; Bacteroids, Bacteroids, Bacte	SOURCE Bacteroidse fragilis NTC 9343 ORAMISM Bacteroidse fragilis NTC 9343 Bacteroidse Stateroidses Bacteroids, Bacteroidsles; Bacteria, Bacteroidsets, Bacteroids, Bacteroidsles; Bacteria, Bacteroidset, Bacteroids, Bacteroidsles; Bacteroids, Bacteroidset, Bacteroids, Bacteroidsles; Bacteroids, Bacteroidset, Bacteroids, Bacteroidsles; Bacteroids, Bacteroids, Bacte		REFSEQ: ACCESSION NC_003228.3	
<pre>OREARISM Bacteroldes fragilis NCT 5343 Bacteroldacese, Bacteroldes, Bacteroldes, Bacteroldes, Bacteroldacese, Bacteroldes, Bacteroldes, Bacteroldes, Bacteroldes, Bacteroldacese, Bacteroldes, Ba</pre>	<pre>OREARISM Bacteroldes fragilis NCT 5343 Bacteroldacese, Bacteroldes, Bacteroldes, Bacteroldes, Bacteroldacese, Bacteroldes, Bacteroldes, Bacteroldes, Bacteroldes, Bacteroldacese, Bacteroldes, Ba</pre>		Bacteroides fragilis NCTC 9343	
<pre>macteroideces. Betrement i (residues to 133) AJTHOSE Cordeno-Tarraga,A.M., Patrick,S., Crossman,L.C., Hakely,G., Martinose Cordeno-Tarraga,A.M., Patrick,S., Crossman,L.C., Hakely,G., Martinose Cordeno-Tarraga,A.M., Line,A., Lord,A., Norbertozak,H., Ornond,D., Price,C., Rabinovitach, K., Woodward,J., Barreill, a and Parkhill,J. TILM gene expression JOURAM Science 307 (5714), 1463-1465 (2005) Tittae Direct Submission JOURAM Science 307 (5714), 1463-1465 (2005) Tittae Direct Submission JOURAM Science 307 (5714), 1463-1465 (2005) Tittae Direct Submission JOURAM Submitted (25-JUD-2004) Pathogen Sequencing Unit. Sanger Institute, Mindow F 10 130) ANTHOSE Cordeno-Tarraga,A.M. TITLe Direct Submission JOURAM Submitted (25-JUD-2004) Pathogen Sequencing Unit. Sanger Institute, Mindow F 10 130) TITLE United Submission JOURAM Submitted (05-RAPs.2002) National Center for Biotechnology Information, NIH, Betheada, ND 20094, USA COMMUNT PKOVIDIONAL ERPS.JOURING Of the Pathogen Sequence was derived from CAM0225. Method: Incerpict Title Direct Submission JOURAM Submitted (05-RAPs.2002) National Center for Biotechnology Information, NIH, Betheada, ND 20094, USA COMMUNT PKOVIDIONAL ERPS.JOURING AND SUBJECT to final NCEH review. The reference sequence was derived from CAM0225. Method: Incerpical translatio. Features I133 Arging Information, III Science Campair Information, Cambodian Method Incerpical Information. Features I133 Arging Information, III Science Informatic Information (Cambodian) Information. Features I133 Arging Information Code fragilis NCTC 9343" / dx.wetf-translation / dx.wetf-translation</pre>	<pre>macteroideces. Betrement i (residues to 133) AJTHOSE Cordeno-Tarraga,A.M., Patrick,S., Crossman,L.C., Hakely,G., Martinose Cordeno-Tarraga,A.M., Patrick,S., Crossman,L.C., Hakely,G., Martinose Cordeno-Tarraga,A.M., Line,A., Lord,A., Norbertozak,H., Ornond,D., Price,C., Rabinovitach, K., Woodward,J., Barreill, a and Parkhill,J. TILM gene expression JOURAM Science 307 (5714), 1463-1465 (2005) Tittae Direct Submission JOURAM Science 307 (5714), 1463-1465 (2005) Tittae Direct Submission JOURAM Science 307 (5714), 1463-1465 (2005) Tittae Direct Submission JOURAM Submitted (25-JUD-2004) Pathogen Sequencing Unit. Sanger Institute, Mindow F 10 130) ANTHOSE Cordeno-Tarraga,A.M. TITLe Direct Submission JOURAM Submitted (25-JUD-2004) Pathogen Sequencing Unit. Sanger Institute, Mindow F 10 130) TITLE United Submission JOURAM Submitted (05-RAPs.2002) National Center for Biotechnology Information, NIH, Betheada, ND 20094, USA COMMUNT PKOVIDIONAL ERPS.JOURING Of the Pathogen Sequence was derived from CAM0225. Method: Incerpict Title Direct Submission JOURAM Submitted (05-RAPs.2002) National Center for Biotechnology Information, NIH, Betheada, ND 20094, USA COMMUNT PKOVIDIONAL ERPS.JOURING AND SUBJECT to final NCEH review. The reference sequence was derived from CAM0225. Method: Incerpical translatio. Features I133 Arging Information, III Science Campair Information, Cambodian Method Incerpical Information. Features I133 Arging Information, III Science Informatic Information (Cambodian) Information. Features I133 Arging Information Code fragilis NCTC 9343" / dx.wetf-translation / dx.wetf-translation</pre>			
<pre>EFFERENCE 1 (residues 1 to 19) ANTHOES Cordeno-Tarraga, A.W., Patrick, S., Crossman, L.C., Blakely, G., Abratt, V., Lennard, N., Potto, J., Durden, B., Marris, B., Guail, M.A., Barron, A., Clark, J., Corton, C., Deggett, J., Bolden, M.T., Larke, M., Line, A., Lord, A., Norbertozak, H., Ormond, D., Bolden, M.T., Larke, M., Line, A., Lord, J., Norbertozak, H., Ormond, D., Brusser, S., Carlos, J., 1997. TILE Extensive DNA invessions in the B. fragilis genome control variable gene expression JOURNAL Science 307 (1914), 146-1465 (2005) PURME 15245427 EXTERENCE 2 (residues 1 to 193) AVTINOS Cordeno Tratsga, A.M. Wilcome Trust Genome Campus, Hinxton, Cambridge CB10 15A, United KIngdom KINGTON MARCH 10000 (Mational Center for Biotechnology JOURNAL Science 307 (NaM. Bethedge, MO 2054, TOA CONSENT NCH Genome Project TITLE Direct Submission JOURNAL SCIENCIA MARCH 10000 (Mational Center for Biotechnology JOURNAL SCIENCIA MARCH 1000000 (Mational Center for Biotechnology JOURNAL SCIENCIA MARCH 1000000 (Mational Center for Biotechnology JOURNAL SCIENCIA MARCH 1000000 (Mational Center for Biotechnology JOURNAL SCIENCIA MARCH 10000000 (Mational Center for Biotechnology JOURNAL SCIENCIA MARCH 10000000 (Mational Center for Biotechnology JOURNAL SCIENCIA MARCH 100000000 (Mational Center for Biotechnology JOU</pre>	<pre>EFFERENCE 1 (residues 1 to 19) ANTHOES Cordeno-Tarraga, A.W., Patrick, S., Crossman, L.C., Blakely, G., Abratt, V., Lennard, N., Potto, I., Durden, B., Marris, B., Guail, M.A., Barron, A., Clark, J., Corton, C., Doggett, J., Bolden, M.T., Larke, M., Line, A., Lord, A., Norbertczak, H., Ormond, D., Guail, M.A., Barron, A., Clark, J., Corton, C., Doggett, J., Bolden, M.T., Larke, M., Line, A., Lord, A., Norbertczak, H., Ormond, D., Guail, M.A., Barron, A., Clark, J., Corton, C., Doggett, J., Bolden, M.T., Larke, M., Line, A., Lord, J., Norbertczak, H., Ormond, D., Guene, S., Carlon, J., 146-1465 (2005) PURME 15245427 EFFERENCE 3 (residues 1 to 193) ANTHOES Cordeno Trast Genome Campus, Hinxton, Cambridge CB10 15A, United Kingdom K.R., Cordeno Trast Genome Campus, Hinxton, Cambridge CB10 15A, United K.R., Gonome Trust Genome Campus, Hinxton, Cambridge CB10 15A, United K.R., Cordeno Trust Genome Campus, Hinxton, Cambridge CB10 15A, United K.R., Cordeno Trust Genome Campus, Hinxton, Cambridge CB10 15A, United K.R., Cordeno Trust Genome Campus, Hinxton, Cambridge CB10 15A, United K.R., Cordeno Trust Genome Campus, Hinxton, Cambridge CB10 15A, United K.R., Cordeno Trust Genome Campus, Hinxton, Cambridge CB10 15A, United K.R., Cordeno Trust Genome Campus, Hinxton, Cambridge CB10 15A, United K.R., Cordeno Trust Genome Campus, Hinxton, Cambridge CB10 15A, United K.R., Conceptual translation. FRATURES FORMERY NEW Science Construction Cambridge CB10 256. Method: conceptual translation. FFATURES Fordein 1133 //rote=Turon/manganes equence was derived from CAM08256. Method: conceptual translation. Forder Turon/manganes maperoxide dismutase, alpha-hairpin dot, Karef-*CD0.110505* // Discref-*Turon/Manganes approxide dismutases, alpha-hairpin dot, Karef-*CD0.110505* // Tote=Turon/manganes maperoxide dismutases, C-terminal domain, pfam02777* // db xref-*CO0.111650* // Tote=Turon/manganes maperoxide dismutases, C-terminal domain, pfam02777* // db xref-*CO0.111650* // Tote=Turon/manganes maperoxide dismutases, C-terminal doma</pre>			
AJTHORS Cerdemo-Tarraga,A.M., Patrick,S., Crossman,L.C., Blakely,G., Marti,V., Lemard,N., Pott, A., Lord,N., Norbertczak,H., Ormond,D., Price,C., Nabhinewitech,E., Woodward,J., Barrell,B. and Parkhill,J. TTTLE gene expression issue in the B. reguling genome control variable press, Nabhinewitech,E., Woodward,J., Barrell,B. and Parkhill,J. TTTLE gene expression issue in the B. reguling genome control variable press, Nabhinewitech,E., Woodward,J., Barrell,B. and Parkhill,J. TTTLE gene expression issue in the B. reguling genome control variable press, Nathon and State (2005) 1000RAL Science 307 (5714), 1463-1465 (2005) 1000RAL Submitted (20-100-2004) Pathogen Sequencing Unit, Sanger Institute, Martiness (2004) Martiness (2004) Conserved and the second state (2004) Conserved issue (2004) Pathogen Sequencing Unit, Sanger Institute, Martiness (2004) Martiness (2004) CONSERV NCEI Genome Campus, Miniton, Cambridge Chio 18A, United Mingdom Information, NH, Betheada, MO 2084, USA CONSERV PROVISIONAL <u>BEFEND</u> : This record has not yet been subject to final Martiness (2004) Martinession JOURAL Submitted (08-APR-2002) National Center for Biotechnology Information, NH, Betheada, MO 2084, USA CONSERV PROVISIONAL <u>BEFEND</u> : This record has not yet been subject to final Martinession JOURAL Submitted (19-APR-2002) National Center for Biotechnology Information, NH, Betheada, MO 2084, USA CONSERV PROVISIONAL <u>BEFEND</u> : This record has not yet been subject to final Martinession JOURAL Submitted (19-APR-2002) National Center for Biotechnology Information, NH, Betheada, MO 2084, USA CONSERV PROVISIONAL <u>BEFEND</u> : This record has not yet been subject to final Martinession JOURAL Submitted (19-APR-2002) National Center for Biotechnology Information, NH, Betheada, MO 2084, USA CONSERV PROVISIONAL <u>BEFEND</u> : This record has not yet been subject to final Martinession Information, NH, Betheada, MO 2084, USA Provision Information, NH, Betheada, MO 2084, USA Provision Information, NH, Betheada, MO 2084, USA	AJTHORS Cordeno-Tarraga,A.M., Patrick,S., Crossman,L.C., Blakely,G., Marti,V., Lemard,N., Pott, A., Lord,N., Noretcroak,H., Ormond,D., Price,C., Nabhinowitsch,E., Woodward,J., Barrell,B. and Parkhill,J. TTTLE gree expression into the B. Trajili genome control variable press, Nabhinowitsch,E., Woodward,J., Barrell,B. and Parkhill,J. TTTLE gree expression into the B. Trajili genome control variable press, Nather Content, Nather Strain, St			
Abrat. V., Lemmard. N., Poxton. I., Duerden, B., Harris, B., Quali, M.A., Barron, A., Clark, J., Corton, C., Deggeti, J., Holden, M.T., Larke, N., Line, A., Lord, A., Norbertozak, H., Ormond, D., Heise, C., Rabinovitach, E., Noodward, J., Barrell, B. and Parkhill, J. TITLE Energeneite DNA (1997) PURME (1974), 1463-1465 (2005) PURME (1974), 1463, 1473, 1474, 14	Abrat. V., Lemmard. N., Poxton. I., Duerden, B., Harris, B., Quali, M.A., Barron, A., Clark, J., Corton, C., Deggeti, J., Holden, M.T., Larke, N., Line, A., Lord, A., Norbertozak, H., Ormond, D., Heise, C., Rabinowitsch, R., Nowokard, J., Barrell, B. and Parkhill, J. TITLE Breezewick (M. 1997) DURMAN, Science 307 (2014), 1463-1465 (2005) PURMED 152546127 PURMED 152546127 PURMED 152546127 TITLE Direct Submission JOURAN, Science 307 (2014), 1463-1465 (2005) PURMED 152546127 Cordeno-Tarraga, A.M. TITLE Direct Submission JOURAN, Science 307 (2014), 1463-1465 (2005) PURMED 152546127 MUTHOS Cordeno-Tarraga, A.M. TITLE Direct Submission JOURAN, Science 307 (2014), 1463-1465 (2005) PURMED 152546127 REFERENCE 3 (residues 1 to 193) CONSENT NCRI Genome Fragous, Minton, Cambridge CB10 15A, United KL, Maddom J., Mark, Bool, Mational Center for Biotechnology Information, NIH, Betheada, ND 20954, USA CONSENT NCRI Genome Frage Science was derived from CAM00256. Method: conceptual translation. FUTURES Location/Qualifiers Source 1133 //roganime="Bacteroided fragilis NCTC 9343" //dtrain="Ancc 25255; proc 29343" //dtrain="Ancc 252555" Protein 1133 //rote="Iron/Manganeses approxide dismutases, alpha-hairpin ddmin, premo0777" //dtrain="Bacteroides fragilis expresside dismutases, alpha-hairpin ddmin, premo1777" //dtrain="Bacteroides fragilis puporxide dismutases, for 1139 //dtrain="Bacteroides fragilis puporxide dismutases, for 1139 //dtrain="Bacteroides fragilis puporxide dismutases, for 1139 /			
<pre>Holden,W.T., Larke,W., Line,A., Lord,A., Norbertzzak,H., Ormond,D., TITLE Rice,C., Robinowitsch,E., Woddward,J., Barrell,B. and Parkhill,G. TITLE Rices,C. (Robinowitsch,E., Woddward,J., Barrell,B. and Parkhill,G. Steines 207 (5714), 1453-1465 (2005) Withows Gendeno-Tarrega,A.M. TITLE Direct Submitsed (37-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 ISA, United Kingdom JOURNA Submitted (37-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 ISA, United Kingdom JOURNA Submitted (38-JUL-2004) National Center for Biotechnology Information, NIE, Betheada, ND 20694, USA COMMENT PCVISTOAML REFERS: This record has not yet been subject to final NCEI review. The reference sequence was derived from CAM08255. Method: conceptual translation. FEATURES Location/Qualifiers Source 1133 forganism-Bactscostes Tragilis NCTC 9343" //b. xref="Touber-115.1.1" //D. wref="Touber-21255" Protein 1134 //region_anse="Socia" //b. xref="COD:30255" Region 1135 forganism=Socia" //b. xref="COD:30255" Region 1135 forgan:smas=socia" //b. xref="COD:30255" Region 50132 //region_anse="Socia" //b. xref="COD:30255" Region 50132 //region_anse="Socia" //b. xref="COD:30255" Region 50132 //region_anse="Socia" //oded_by="Neg_002228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.2982352" //db. xref="COD:301650" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.2982355" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823522982393" //oded_by="Neg_00228.j.29823552982393" //oded_by="Neg_00228</pre>	<pre>Holden,M.T., Larke,M., Line,A., Lord,A., Norbertzzak,H., Ormond,D., TITLE Bitensive DNA inversions in the B. fragilis genome control variable gene expression Journel Science JOY (5714), 1453-1465 (2005) File Control Variable (2007) MATHORS Cardeno-Tarrega,A.M. TITLE Direct Submitsed (37-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Hinxion, Cambridge CB10 ISA, United Kingdom JOURNAN Submitted (37-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Hinxion, Cambridge CB10 ISA, United Kingdom JOURNAN Submitted (38-JUL-2004) National Center for Biotechnology Information, NIR, Betheada, ND 20694, USA COMMENT PROVISIONAL REFERENCE IS LOCATION DEVISIONAL REFERENCE 1. Method: conceptual translation. FEATURES Location/Qualifiers Source 1133 Fortiens Location/Qualifiers Source 1133 //region_anse-Spod* //b_wref-*VCO-2025; //b_wref-*VCO-2025; //b_wref-*VCO-2025; //b_wref-*VCO-2025; //b_wref-*VCO-2025; //b_wref-*VCO-2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //b_wref-*COD:2025; //code dy=*WS_//forties_superoxide dismutases, alpha-hairpin domain, pfam2077; //b_wref-*COD:2015; //b_wref-*COD:2025; //code dy=*WS_00222; .2982352; .29</pre>			
<pre>Price.C. Kabbinovitsch.E., Woodward,J., Barrell.B. and Parkhill.J. TITLE Kitensive DNA inversions in the B. fragilis genome control variable gene expression JOURAL Science 307 (574), 1463-1465 (2005) PUBMED 15746427 KEFENERCE 3 (residues 1 to 133) OURAL Science Trust Genome Campus, Hinxton, Cambridge CB10 15A, United Kingdom KEFENERCE 3 (residues 1 to 133) OURAN KOI Genome Project TITLE Direct Submitsed (27-87-2005) National Center for Biotechnology Information, NIR, Betheada, ND 20034, USA OURANN, KOI Genome Project TITLE Direct Submitsed (27-87-2005) National Center for Biotechnology Information, NIR, Betheada, ND 20034, USA OURANN, MOVISIONAL EFERS: This record has not yet been subject to final Wethod, conceptual translation. Kethod, conceptual translation Method, conceptual translation</pre>	<pre>Price.C. Kabbinovitsch.E., Woodward.J., Barrell.B. and Parkhill.J. TITLE Kitensive DNA inversions in the B. fragilis genome control variable gene expression JOURAL Science 307 (374), 1463-1465 (2005) PUBMED 12746427 KERNENCE 2 (Treaddates 1 to 133) OUTAN. Guinett Content of the sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom KERTERECE 3 (Tresidues 1 to 133) OUTAN. KCH Genome Project TITLE Direct Submission JOURAN. GKH Genome Project TITLE Direct Submission OUTANITY (CH Genome Project) TITLE Direct Submission OUTANITY (CH Genome Campus, Minxton, Cambridge CB10 1SA, United Kethod, conceptual translation. For Contained Translation. For Contained Translation. For Contained Campus (CH CAMPAC) For Contained Translation. For Contained Campus (CH CAMPAC) For Contained</pre>			
<pre>TITLE Extensive DNA inversions in the B. fragilis genome control variable gene expression JOURAL Science 307 (5714), 1463-1465 (2005) PIENEME 125746427 REFERENCE 2 (residues 1 to 133) MITTER Condenotion and the sequencing Unit. Sanger Institute, Kingdom REFERENCE 3 (residues 1 to 133) CONSERT NCBI Genome Campus, Hinxton, Cambridge CB10 15A, United Kingdom REFERENCE 3 (residues 1 to 133) CONSERT NCBI Genome Project TITLE Direct Submitsed (09-AFR2003) National Center for Biotechnology JOURAL Submitted (09-AFR2003) National Center for Biotechnology OURAL Submitted (09-AFR2003) National Center for Biotechnology JOURAL Schweizer The reference sequence was derived from CAM08256. Method: conceptual translation. FEATURES Location/Qualifiers Source 1133 //region_name="Sodis" //region_mame="Sodis" //</pre>	<pre>TITLE Extensive DNA inversions in the B. fragilis genome control variable gene expression JOURAL Science 307 (5714), 1463-1465 (2005) PIENEME 125746427 REFERENCE 2 (residues 1 to 153) MITTER Condeno-Transpark.M. TITLE Condeno-Transpark.M. CONSERT NCBI Genome Project TITLE Direct SUBmission JOURAL Submitted (09-AFR.2003) National Center for Biotechnology JOURAL Submitted (09-AFR.2003) National Center for Submitted For CAND8255. Medid Conceptual translation. FEATURES Source 1133 //region_Inse-Submitted Kissutase [F0]* //coduct=superoxide dismutase [F0]* //coduct=superoxide dismutase [F0]* //coduct=superoxide dismutase [F0]* //coduct=superoxide dismutase [Inorganic ion transport and metholimin, COURG05* // for firstion_JISSIG* // for firstion_JISS</pre>			
<pre>gene expression JOURNAL Science 37 (714), 1463-1465 (2005) PURMED 15746427 EVERENCE 2 (residues 1 to 193) AUTHORS Cardeno-Tartaga,A.M. TITLE Direct Submission JOURNAL Science 2 A public denome Campus, Hinxton, Cambridge CB10 15A, United Ministed (23-UL-2004) Pathogen Sequencing Unit. Sanger Institute, Ministed Campus, Hinxton, Cambridge CB10 15A, United Ministed CB10, United Hinxton, Campus, Campus, Minxton, Cambridge CB10 15A, United Ministed CB10, United Hinxton, Campus, Campus,</pre>	<pre>gene expression JOURNAL Science 37 (714), 1463-1465 (2005) PURMED 15746427 EVERENCE 2 (residues 1 to 193) AUTHORS Cardeno-Tartaga,A.M. TITLE Direct Submission JOURNAL Science 2 A public denome Campus, Hinxton, Cambridge CB10 15A, United Ministed (23-UL-2004) Pathogen Sequencing Unit. Sanger Institute, Ministed Campus, Hinxton, Cambridge CB10 15A, United Ministed CB10, United Hinxton, Campus, Campus, Minxton, Cambridge CB10 15A, United Ministed CB10, United Hinxton, Campus, Campus,</pre>	mTmt p		
<pre>JOURNAL Science 307 (5714), 1463-1465 (2005) FURMED 15746427 REFERENCE 2 (residues 1 to 193) AUTHORS Cerdenc-Tarraga.A.M. TTLE Direct Submission JOURNAL Submitted (20-JUL-2004) Fathogen Sequencing Unit, Sanger Institute,</pre>	<pre>JOURNAL Science 307 (5714), 1463-1465 (2005) FURMED 15746427 REFERENCE 2 (residues 1 to 193) AUTHORS Cerdenc-Tarraga.A.M. TTLE Direct Submission JOURNAL Submitted (20-JUL-2004) Fathogen Sequencing Unit, Sanger Institute,</pre>			
<pre>PURMED 15746427 AVTHORS Gerdenc-Tarraga,A.M. TITLE Direct Submitted (29-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Wellcome Trute Genome Campus, Hinxton, Cambridge CB10 15A, United Kingdom BEPERENCE 3 (residues 1 to 193) CONSTM NUCL Genome Service The Mellcome Trute Genome Campus, Hinxton, Cambridge CB10 15A, United Kingdom CONSTM NUCL GENOME CAMP. 2002) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA CONSTM NUCL GENERAL CAMP. 2005 Method: conceptual translation. Method: conceptual translation (NCH review. The reference sequence was derived from CAM08255. Method: conceptual translation (NCH review. The reference sequence was derived from CAM08255. Method: conceptual translation (NCH review. The reference sequence was derived from CAM08255. Method: conceptual translation (NCH review. The reference sequence was derived from CAM08256. Method: conceptual translation (NCH reference) 2045 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*TOC:25285 //dx.wrcf=*Toc:25285 //dx.wrcf=*</pre>	<pre>PURMED 1574627 AVTHORS Gerdenc-Tarraga,A.M. TITLE Direct Submitted (29-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Wellcome Truto Genome Campus, Hinxton, Cambridge CB10 15A, United Kingdom BEFERENCE 3 (residues 1 to 193) CONSMA NCB1 Genome Servject Thormation, NIH, Bethesda, MD 20594, USA COMMENT FRYUES, The reference sequence was derived from CAM08255. Method; conceptual translation. Method; conceptual translation. FEATURES Location/Qualifiers Source 1193 /organism="Bacteroides fragilis NCTC 9343" //trans_TarlewTACC.25285; NCTC 9343" //trans_TarlewTACC.25285; NCTC 9343" //trans_TarlewTACC.25285; Frotein 1193 /region_name='Soda" //notect='superoxide dismutase [Pe]" //tc_nucle='superoxide dismutase [Inorganic ion transport and metabolism], C030605" //tc='superoxide dismutase [Inorganic ion transport and metabolism], C0306081* //note='Tron/manganese superoxide dismutases, alpha-hairpin domain, pfam00081* //db_xref='CDD.109149* Region 253 //see='superoxide dismutase [Acter Constants //note='Tron/manganese superoxide dismutases, c-terminal dow.in, pfam00081* //db_xref='CDD.111550* //db_xref='CDD.111550* //note='Stords' //note='Stords' Jos228.3.292235229223522922353* //note='Stallar to Bacteroides fragilis superoxide dismutase [Pe] Soda or 300 KAL:SODF_RCFK (SWALL:P5568) (193 aa) fasta accres: 8().1.2e-77, 59.48% di in 193 aa, and to Bacherichia coll, Bacherichia coll 65. Bacherichia coll 65. Bacherichia coli 0157:#7, and Shigella fixmeri superoxide dismutase [Fe] Soda or sists SWALL:SODF_BCOMI (SWALL:P05157) (122 aa) fasta scores: 8() 168-77, 59.48% di in 193 aa, and to Bacherichia coll 65. Bacherichia coll 65. Bacherichia coli 0157:#7, and Shigella fixmeri superoxide dismutase [Fe] Soda or 305.05 22670 or 22670 or 22670 or 22675 or 22675 or 22675 or 226</pre>			
AVTPROES Cerdenc-Tarraga,A.M. TITLE Direct Submitted (29-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 15A, United Kingdom REFERENCE 3 (residues 1 to 193) CONNERM NCBI Genome Project TITLE Direct Submitted (06 MAR. Sol) National Center for Biotechnology UNITAL Submitted (06 MAR. Sol) National Center for Biotechnology MULTINE Direct Submission OOUNAL Submitted (06 MAR. Sol) National Center for Biotechnology MULTINE Direct Submission NOBI review. The reference sequence was derived from CANDS255. Method: conceptual transmission /organism="Bacteroides fragilis NCTC 9343" /dt.wrcf-"taro:2255, NCT 9345" /dt.wrcf-"taro:2255, NCT 9455" /dt.wrcf-"taro:2255, NCT 94555" /dt.wrcf-"taro:2255, NCT 94555" /dt.wrcf-"taro:2255, NCT 94555, 94555 /dt.wrcf-"taro:2255, NCT 94555, 945555" /d	AVTPROES Cerdenc-Tarraga,A.M. TITLE Direct Submitted (29-JUL-2004) Pathogen Sequencing Unit, Sanger Institute, Welcome Trust Genome Campus, Hinton, Cambridge CB10 15A, United Kingdom ERFERENCE 3 (residues 1 to 193) CONNERM NCBI Genome Project TITLE Direct Submitted (06 APR. Solhesta, ND 2054, USA CONNERM NCBI Genome Scolect TITLE Direct Submitsion JOURNAL Submitted (06 APR. Solhesta, ND 2054, USA NCBI review. The reference sequence was derived from CAMDEZ55. Method: conceptual transmission JOURNAL Submitted (05 APR. Solhesta, ND 2054, USA NCBI review. The reference sequence was derived from CAMDEZ55. Method: conceptual transmission JOURNAL Submitted (05 APR. Solhesta, ND 2054, USA NCBI review. The reference sequence was derived from CAMDEZ55. Method: conceptual transmission /organism="Bacteroides fragilis NCTC 9343" /dt.xrcf="tame"Z2555, NCT 9343" /dt.xrcf="tame"Z255, NCT 9343, ALL,NCT 944, ALL,NCT 944, ALL,NCT 94,			
<pre>TTILE Direct Submission JOURNAL Submitted (29-JUL-2004) Fathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Minxton, Cambridge CB10 15A, United Kingdom REFERENCE 3 (residues 1 to 193) CONSERT NCBI Genome Project TTILE Direct Submission JOURNAL RUESE (Content of the Subject to final MCBI genome Project TTILE Direct Submission Direct Submitted (08-APR-2002) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA COMMENT PROVISIONAL REFERS: This record has not yet been subject to final MCBI review. The reference sequence was derived from CAH08255. Method: conceptual translation. FEATURES Location/Qualifiers Information State to 1930 More 1.1013 More failed for 25265; //db xref=*IntCo:25265; //db xref=*IntCo:25265; //db xref=*IntCo:25265; //db xref=*IntCo:25265; //db xref=*IntCo:25265; //db xref=*IntSi.li //region_name=*SodA* //note=*Superoxide dismutase [Pe]* //calculated_mol_wt=21640 More=*Superoxide dismutase [Inorganic ion transport and metabolism], CO00605* //Dote=*Inon/manganese superoxide dismutases, alpha-hairpin domain, pfam00061* //note=*Inon/manganese superoxide dismutases, c-terminal domain, pfam00061* //ob_xref=*COD:111650* 1.033 //gene=*BodB = SodA PE_0* //note=*IFION/MINGANE* //states [Fe] SodB or SodSWALL:SODP_RAFTER (SMALLPS3638) (133 aa) fasta scores; E(1: 1.2e-77, 99.48% id in 193 aa, and to Sacherichia coli, Sacherichia coli 0157:H7, and Shigella flaxmeri superoxide dismutase [Fe] SodB or SodO or Z2578 or CES2356 or SF1684 or S1845 SWALL:SODP ZECON or Z2578 or CES2356 or SF1684 or S1845 SWALL:SODP CECON (SWALL:SODF CES2456 or SF1684 or S1845 SWALL:SODF CES2450 or Z2578 or CES2356 or SF1684 or S1845 SWALL:SODF Z267245*</pre>	<pre>TTILE Direct Submission JOURNAL Submitted (29-JUL-2004) Fathogen Sequencing Unit, Sanger Institute, Wellcome Trust Genome Campus, Minxton, Cambridge CB10 1SA, United Kingdom REFERENCE 3 (residues 1 to 193) CONSERT NOEB denome Project TTILE Direct Submission JOURNAL Submitted (08-APR-2002) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA COMMENT FAVUNSIONAL REFERS: This record has not yet been subject to final NEEF review. The reference sequence was derived from CAM05255. Method: conceptual translation. FEATURES Location/Qualifiers Location/Qualifiers Jource 1.136 //strain="statecroides fragilis NCTC 9343" //b xref="ATCC'25265" //db xref='taxon:22255" //db xref='taxon:22255" //db xref='taxon:22255" //db xref='taxon:22255" //db xref='taxon:22255" //db xref='taxon:22255" //ob xref='taxon:22255" //ob xref='toxon:2016 dismutase [Pe]" //cclculated_mol_wt=21640 //stef='toxon:30550" //ote='Ticn/manganese superoxide dismutases, alpha-hairpin domain, pfam00081' //ote='Ticn/manganese superoxide dismutases, alpha-hairpin domain, pfam00081' //ote='Ticn/manganese superoxide dismutases, c-terminal domain, pfam00081' //ote='Ticn/manganese superoxide dismutases, C-terminal domain, pfam02777 //db xref='CDD:111650" 1193 //gene="sodd# //ote='Firston/manganese superoxide dismutases, C-terminal domain, pfam02777 //db xref='CDD:111650" 1.031 al fasta scores; E(): 1.2e-77, 99.484 id in 193 aa, and to Sacherichia coli, Rischerichia coli CS Exception Sacherichia coli 0157:H7, and Shigella flaxmeri superoxide dismutase [Fe] Soddb or Sdo So Z2250 re CE2350 re SF1684 or S1816 SWALL:SODP ZECENT (SWALL:P9367) f192 aa' fasta scines; Thi 1377, Si 208 id in 192 aa* //rtmin //db xref='GenenD::227745"</pre>			
JOURNAL Submitted (29-JUL-2004) Fathogen Sequencing Unit. Sanger Institute, Wellcome Trust Genome Campus, Minxton, Cambridge CB10 ISA, United Kingdom REFERENCE 3 (residues 1 to 133) CONSRYM NCBI Genome Project TITLE Direct Submission JOURNAL Submitted (08-AFR-2002) National Center for Biotechnology Information, NIR, Bethesda, MD 20894, USA COMMENT FROVISIONAL REFEGUE This record has not yet been subject to final MCBI review. The reference sequence was derived from CAM08255. Method: conceptual translation. FFAUTURES Location/Qualifiers Source 1133 //organism-*Bacteroides fragilis NCTC 9343" //db_wref=*Truit_2525" Protein 133 //produmte_morizfstation //produmte_station //produmte_morizfstation //produmte_station //produmte_morizfstation //produmte_station //orgion_name=*Sod.Pe_0** //note-*Truitfstation //note-*Trun/manganese superoxide dismutases, alpha-hairpin domain, pfam00081* //ok_wref=*CDD:10150* //osami, pfam00081* //ok_wref=*CDD:11155* //osami, pfam0277* //db_wref=*Trun/manganese superoxide dismutases, c-terminal domain, pfam0277* //db_wref=*B2555* //gene_monyme=*Sod_Fe_C* //note=*Trun/manganeses superoxide dismutases, c-terminal domain, pf	<pre>JOURNAL Submitted (29-JUL-2004) Pathogen Sequencing Unit. Sanger Institute, Wellcome Trust Genome Campus, Minxton, Cambridge CB10 ISA, United Kingdom SEFERENCE 3 (residues 1 to 153) CONSRYM NOEI Genome Project TITLE Direct Submission JOURNAL Submitted (08-AFR-2002) National Center for Biotechnology Information, NIR, Bethesda, MD 20894, USA COMMENT PROVISIONAL REFEG: This record has not yet been subject to final NOEI review. The reference sequence was derived from CAM08255. Method: conceptual translation. FEATURES Location/Qualifiers Source 1193 /organism-Bacteroides fragilis NCTC 9343" /db_artef=ATCC.25285" /db_artef=ataxon:22559" Protein 1103 /produmber="1.15.1.1" //clubittef_mod_wt=21640 /nota="Superoxide dismutase [Fe]" //fordumber="1.15.1.1" //aciulatef_mod_wt=21640 /metholism: Co00605" /db_artef=ataxon:22559" Protein 103 /produmber="1.15.1.1" //aciulatef_mod_wt=21640 /metholism: Co00605" /db_artef=CDD:10550" /db_artef=CDD:10550" /db_artef=CDD:10550" /db_artef=CDD:10550" /db_artef=CDD:10550" /db_artef=CDD:111550" /fod_artef=CDD:111550" /fod_artef=CDD:111550" /fod_artef=CDD:111550" /fod_artef=CDD:111550" /fod_artef=CDD:111550" /fod_artef=CDD:111550" /fod_artef=CDD:111550" /fod_artef=CDD:111550" /fod_artef=CDD:111550" /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002224.3:23923522982333" /note=%FBZ555 /fone_synonym=%sod /fod=by=NC_002</pre>			
<pre>Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 15A, United Kingdom REFERENCE 3 (residues 1 to 193) CONSETW NCB1 Genome Project TITLE Direct Submission JUDENAL Submitted (06-AFR-2002) National Center for Biotechnology Information, NIE, Bethesda, MD 20834, USA COMMENT FROVISIONAL REFERC: This record has not yet been subject to final NCB1 review. The reference sequence was derived from CAM08256. Method: conceptual translation. FEATURES Location/Qualifiers Source 1193 /organism-"Bacteroides fragilis NCTC 9343" /strain-"ATCC 52265, NCTC 9343" /db_xref='taxon: 272555" Frotein 1193 /product="superoxide dismutase [Pe]" /fc_number="1.15.1.1" /Galculated_mol_wt=21640 Region 1193 /region_name="SodA" /note-"Superoxide dismutase [Inorganic ion transport and metabolism; Co00605" /db_xref="CDD:30550" Region 283 - /region_name="Sod_Fe_N" /note="Tron/manganees superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:10155" // db_xref="CDD:10155" // db_xref="CDD:10155" // db_xref="CDD:111550" // db_xref="CDD:11155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1227245" // db_xref="CDD:1227245" // db_xref="CDD</pre>	<pre>Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 15A, United Kingdom REFERENCE 3 (residues 1 to 193) CONSETW NCB1 Genome Project TITLE Direct Submission JUDENAL Submitted (06-AFR-2002) National Center for Biotechnology Information, NIE, Bethesda, MD 20834, USA COMMENT FROVISIONAL REFERC: This record has not yet been subject to final NCB1 review. The reference sequence was derived from CAM08256. Method: conceptual translation. FEATURES Location/Qualifiers Source 1193 /organism-"Bacteroides fragilis NCTC 9343" /strain-"ATCC 52265, NCTC 9343" /db_xref='taxon: 272555" Frotein 1193 /product="superoxide dismutase [Pe]" /fc_number="1.15.1.1" /Galculated_mol_wt=21640 Region 1193 /region_name="SodA" /note-"Superoxide dismutase [Inorganic ion transport and metabolism; Co00605" /db_xref="CDD:30550" Region 283 - /region_name="Sod_Fe_N" /note="Tron/manganees superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:10155" // db_xref="CDD:10155" // db_xref="CDD:10155" // db_xref="CDD:111550" // db_xref="CDD:11155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1155" // db_xref="CDD:1227245" // db_xref="CDD:1227245" // db_xref="CDD</pre>			
<pre>Kingdom Si Tresidues 1 to 193) CONSRYM NCBI Genome Project TITLE Direct SUBmission JOURNAL Submitted (08-ARP.2002) National Center for Biotechnology Information, NIR, Bethesda, ND 20894, USA COMMENT PROVISIONAL REFSG: This record has not yet been subject to final NCBI review. The reference sequence was derived from CAM09256. Method: conceptual translation. FPATURES Location/Qualifiers source 1.133 /organism="Bacteroides fragils NCTC 9343" /db_xref=*RTCC:25285" /db_xref=*RTCC:25285" /db_xref=*RTCC:25285" /fcluinter="115.1.1" /fcluinter="115.1.1" /fcluinter="115.1.1" /fcluinter="115.1.1" /fcluinter="50d#" /note="Superoxide dismutase [Fe]" /fcluinter="50d#" /note="Superoxide dismutase [Inorganic ion transport and metabolism]: CO00605" /db_xref=*CDD:102500" Region 2.83 /region_name="Sod_Fe_3" /note=*Tron/manganese superoxide dismutases, alpha-hairpin domain, pfam00081" /db_xref=*CDD:102142" Region 30152 /region_name="Sod_Fe_C" /note=*Tron/manganese superoxide dismutases, C-terminal domain, pfam002777 /db_xref=*CDD:111550" //db_xref=*CDD:1</pre>	<pre>Kingdom Si Tresidues 1 to 193) CONSRYM NCBI Genome Project TITLE Direct SUBmission JOURNAL Submitted (08-ARP.2002) National Center for Biotechnology Information, NIR, Betheada, MD 20894, USA COMMENT PROVISIONAL REFSU: This record has not yet been subject to final NCBI review. The reference sequence was derived from CAM08256. Method: conceptual translation. FPATURES Location/Qualifiers source 1193 /organism="Bacteroides fragilis NCTC 9343" /db_xref=*NCC.25285; Protein 1193 /products=rule:115.1.1" /fcloulter="title:115" /fcloulter="title:115" /fcloulter="title:115" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fcloulter="title:15" /fclour</pre>			
<pre>CONSRIM NCBI Genome Project TITLE Direct Submitted (08-APR-2002) National Center for Biotechnology Information, NIH, Betheada, MD 20894, USA COMMENT PROVISIONAL REFERC: This record has not yet been subject to final NCBI review. The reference sequence was derived from CAH08255. Method: conceptual translation. FEATURES Location/Qualifiers source 1193 //dtrain="MacCe 25285; NCTC 9343" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="transon:272559" /calculated_mol_wt-21640 /note="Superxide dismutase [Pe]" /db.xref="transon:20050" /db.xref="transon:20</pre>	<pre>CONSRIM NCBI Genome Project TITLE Direct Submitted (08-APR-2002) National Center for Biotechnology Information, NIH, Betheada, MD 20894, USA COMMENT PROVISIONAL REFERC: This record has not yet been subject to final NCBI review. The reference sequence was derived from CAH08255. Method: conceptual translation. FEATURES Location/Qualifiers source 1193 //dtrain="MacCe 25285; NCTC 9343" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="traxon:272559" /db.xref="transon:272559" /calculated_mol_wt-21640 /note="Superxide dismutase [Pe]" /db.xref="transon:20050" /db.xref="transon:20</pre>			
<pre>TITLE Direct Submitseion JOURNAL Submitted (06-APR-2002) National Center for Biotechnology Information, NIH, Betheada, MD 20894, USA COMMENT PROVISIONAL REFEG: This record has not yet been subject to final NCBI review. The reference sequence was derived from CAH08255. Method: conceptual translation. FEATURES Location/Qualifiers source 1193 /organism="Bacteroides fragilis NCTC 9343" /dtrain="ATCC:25285."NCC 9343" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /calculated_mol_wt-21640 Region 1193 /region_name="Sod#" /dt.xrsf="cD:030605" /dt.xrsf="cD:03050" Region 283 /region_name="Sod#e N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /dt.xrsf="cD:101195" /dt.xrsf="cD:101195" /fd.xrsf="cD:101195" /fd.xrsf="cD:101195" /fd.xrsf="cD:101155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /dt.xrsf="cD:11155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /dt.xrsf="cD:11155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /dt.xrsf="cD:11155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /dt.xrsf="cD:11155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /dt.xrsf="CD:101165" /focus=Iron/manganese superoxide dismutases, C-terminal domain; fram02777" /dt.xrsf="CD:101511155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; fram02777" /dt.xrsf="CD:10157" /focus=Iron/manganese superoxide dismutase /focus=Iron/manganese superoxide dismutase /focus=Iron/manganese superoxide dismutase /focus=Iron/manganese superoxide dismutase /focus=Iron/manganese superoxide dismutase /fel Sodb or Sod SWALL:SODF_BACPK (SWALL:SDSE30) (193 a) fast as cores: F(): 1.2e-77, 59.481 di 193 aa, and to Becherichia coli, Sscherichia coli 06, Sscherichia corisite SWALL:SODF_SCHORIST) (192 aa) fa</pre>	<pre>TITLE Direct Submitseion JOURNAL Submitted (06-APR-2002) National Center for Biotechnology Information, NIH, Betheada, MD 20894, USA COMMENT PROVISIONAL REFEG: This record has not yet been subject to final NCBI review. The reference sequence was derived from CAH08255. Method: conceptual translation. FEATURES Location/Qualifiers source 1193 /organism="Bacteroides fragilis NCTC 9343" /dtrain="ATCC:25285."NCC 9343" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /dt.xrsf="taxon:272593" /calculated_mol_wt-21640 Region 1193 /region_name="Sod#" /dt.xrsf="cD:030605" /dt.xrsf="cD:03050" Region 283 /region_name="Sod#e N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /dt.xrsf="cD:101195" /dt.xrsf="cD:101195" /fd.xrsf="cD:101195" /fd.xrsf="cD:101195" /fd.xrsf="cD:101155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /dt.xrsf="cD:11155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /dt.xrsf="cD:11155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /dt.xrsf="cD:11155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /dt.xrsf="cD:11155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /dt.xrsf="CD:101165" /focus=Iron/manganese superoxide dismutases, C-terminal domain; fram02777" /dt.xrsf="CD:101511155" /focus=Iron/manganese superoxide dismutases, C-terminal domain; fram02777" /dt.xrsf="CD:10157" /focus=Iron/manganese superoxide dismutase /focus=Iron/manganese superoxide dismutase /focus=Iron/manganese superoxide dismutase /focus=Iron/manganese superoxide dismutase /focus=Iron/manganese superoxide dismutase /fel Sodb or Sod SWALL:SODF_BACPK (SWALL:SDSE30) (193 a) fast as cores: F(): 1.2e-77, 59.481 di 193 aa, and to Becherichia coli, Sscherichia coli 06, Sscherichia corisite SWALL:SODF_SCHORIST) (192 aa) fa</pre>			
JJOURNAL Submitted (08-APR-2002) National Center for Biotechnology Information, NHH, Betheeda, MD 20894, USA COMMENT PROVISIONAL REFERC: This record has not yet been subject to final NCCH review. The reference sequence was derived from CAH08255. Method: conceptual translation. FRATURES source 1193 //dt.xref="translation. FRATURES source 1193 //dt.xref="transon:272559" //dt.xref="traxon:272559" //dt.xref="traxon:272559" //dt.xref="traxon:272559" //dt.xref="traxon:272559" //dt.xref="traxon:272559" //dt.xref="traxon:272559" //calculated_mol_wt-21640 Region 1193 //region_name="SodA" //note="Superoxide dismutase [Pe]" //dt.xref="translate" //dt.xref="	JJOURNAL Submitted (08-APR-2002) National Center for Biotechnology Information, NHH, Betheeda, MD 20894, USA COMMENT PROVISIONAL REFERC: This record has not yet been subject to final NCCH review. The reference sequence was derived from CAH08255. Method: conceptual translation. FRATURES source 1193 //dt.xref="translation. FRATURES source 1193 //dt.xref="transon:272559" //dt.xref="traxon:272559" //dt.xref="traxon:272559" //dt.xref="traxon:272559" //dt.xref="traxon:272559" //dt.xref="traxon:272559" //dt.xref="traxon:272559" //calculated_mol_wt-21640 Region 1193 //region_name="SodA" //note="Superoxide dismutase [Pe]" //dt.xref="translate" //dt.xref="			
Information, NIR, Bethesda, MD 20894, USA COMMENT PROVISIONAL REFEGS: This record has not yeb been subject to final NCBI review. The reference sequence was derived from CAH09256. Method: conceptual translation. FEATURES Location/Qualifiers source 1193 /organisms-Wascteroides fragilis NCTC 9343" /db.xref=*ATCC:25285; /db.xref=*taxon:272559" Protein 1193 /product=*uperoxide dismutase [Pe]" /EC number=* <u>1.15.1.1</u> " /celculated_mol_wt=21640 Region 1193 /region_name=*SodA* /note=*Teroxide dismutase [Inorganic ion transport and metabolism]; CO00605" /db.xref=*COD:10050" /region_name=*Sod_Pe_N" /note=*Tron/manganese superoxide dismutases, alpha-hairpin domain; pfam0081" /db.xref=*COD:10950" Region 90192 Region 1193 /region_name=*Sod_Pe_C" /note=*Tron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db.xref=*COD:111560" /region_name=*Sod_Pe_C" /note=*Tron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db.xref=*COD:111550" CDS 1133 /gene=*sodB* /locus_tag=*BF2556* /gene_synomy=sod /coded_by=*WC_003228.3:2982352.2982333" /note=*Tron/manganese S(): 1.2e-7.7, 99.484 id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:17, and Shiglal flexarei superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ES2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:SODF_BACKFR (SWALL:PS0380) (193 aa) fasta scores: E(): 1.6e-77, 59.444 id in 192 aa* /transl_table=11 /db_xref=*GeneID:3287245*	Information, NIR, Bethesda, MD 20894, USA COMMENT PROVISIONAL REFEGS: This record has not yeb been subject to final NCBI review. The reference sequence was derived from CAH09256. Method: conceptual translation. FEATURES Location/Qualifiers source 1193 /organisms-Wascteroides fragilis NCTC 9343" /db.xref=*ATCC:25285; /db.xref=*taxon:272559" Protein 1193 /product=*uperoxide dismutase [Pe]" /EC number=* <u>1.15.1.1</u> " /celculated_mol_wt=21640 Region 1193 /region_name=*SodA* /note=*Teroxide dismutase [Inorganic ion transport and metabolism]; CO00605" /db.xref=*COD:10050" /region_name=*Sod_Pe_N" /note=*Tron/manganese superoxide dismutases, alpha-hairpin domain; pfam0081" /db.xref=*COD:10950" Region 90192 Region 1193 /region_name=*Sod_Pe_C" /note=*Tron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db.xref=*COD:111560" /region_name=*Sod_Pe_C" /note=*Tron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db.xref=*COD:111550" CDS 1133 /gene=*sodB* /locus_tag=*BF2556* /gene_synomy=sod /coded_by=*WC_003228.3:2982352.2982333" /note=*Tron/manganese S(): 1.2e-7.7, 99.484 id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:17, and Shiglal flexarei superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ES2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:SODF_BACKFR (SWALL:PS0380) (193 aa) fasta scores: E(): 1.6e-77, 59.444 id in 192 aa* /transl_table=11 /db_xref=*GeneID:3287245*			
<pre>COMMENT PROVISIONAL REPSRO: This record has not yet been subject to final NCBI review. The reference sequence was derived from CAM08256. Method: conceptual translation. FEATURES source 1.133 / organism="Bacteroides fragilis NCTC 9343" / db_xref="ATCC 25285; NCTC 9343" / dc_alculated mol_wt-21640 Region 1133 / region_name="SodA" / note="Superoxide dismutase [Pe]" / db_xref="CDD:10950" Region 283 / region_name="SodA" / note="TcON_manganese superoxide dismutases, alpha-hairpin domain; pfam00081" / db_xref="CDD:109149" Region 90132 / gene_srodD: / note="Tron/manganese superoxide dismutases, C-terminal domain; pfam02707" / db_xref="CDD:109149" / db_xref="CDD:109149" / gene_srodD: / gene_srodD: / locus_tag="BF2556" / gene_srodD: / locus_tag="BF2556" / gene_srodD: / locus_tag="BF2556" / gene_srodD: / locus_tag="BF2556" / locus_tag="Bf2556" /</pre>	<pre>COMMENT PROVISIONAL REPSRO: This record has not yet been subject to final NCBI review. The reference sequence was derived from CAM08256. Method: conceptual translation. FEATURES source 1.133 / organism="Bacteroides fragilis NCTC 9343" / db_xref="ATCC 25285; NCTC 9343" / dc_alculated mol_wt-21640 Region 1133 / region_name="SodA" / note="Superoxide dismutase [Pe]" / db_xref="CDD:10950" Region 283 / region_name="SodA" / note="TcON_manganese superoxide dismutases, alpha-hairpin domain; pfam00081" / db_xref="CDD:109149" Region 90132 / gene_srodD: / note="Tron/manganese superoxide dismutases, C-terminal domain; pfam02707" / db_xref="CDD:109149" / db_xref="CDD:109149" / gene_srodD: / gene_srodD: / locus_tag="BF2556" / gene_srodD: / locus_tag="BF2556" / gene_srodD: / locus_tag="BF2556" / gene_srodD: / locus_tag="BF2556" / locus_tag="Bf2556" /</pre>	OUGKINAL		
<pre>NCBI review. The reference sequence was derived from CAH09255. Method: conceptual translation. FENTURES Location/Qualifiers source 1193 /organisms-Wacteroides fragilis NCTC 9343" /strain="MrCC 25285; NCTC 9343" /db_xref="taxon:272359" /db_xref="taxon:272359" /db_xref="taxon:272359" /Cc_number="ils1.11" /Calculated_mol_wt-21640 Region 1193 /region_name="SodA" /note="Superoxide dismutase [Fe]" /db_xref="CoD:10950" Region 263 /region_name="SodA" /note="Tron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="COD:10950" Region 90192 /region_name="Sod_Fe_0" /note="Tron/manganese superoxide dismutases, c-terminal domain; pfam00081" /db_xref="COD:10169" /note="Tron/manganese superoxide dismutases, C-terminal domain; pfam0081" /code_jby="NC0002277" /db_xref="COD:11550" /code_jby="NC000228.3:29823522982933" /note="sindB" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SyALi.SOP_BACRY (SWALLPS3638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 0.6; Escherichia coli 0157; n.ad Shigella flexeneri superoxide ismutase [Fe] SodB or Bi656 or C2050 or Z2578 or E052365 or SF1684 or S1816 SWALLSOP_EOCT (SWALLPS367) /tase_scole: E(): 1.6e-37, 51.04% id in 192 aa" /tase_scole: E(): 1.6e-37, 51.04% id in 19</pre>	<pre>NCBI review. The reference sequence was derived from CAH09255. Method: conceptual translation. FENTURES Location/Qualifiers source 1193 /organisms-Wacteroides fragilis NCTC 9343" /strain="MrCC 25285; NCTC 9343" /db_xref="taxon:272359" /db_xref="taxon:272359" /db_xref="taxon:272359" /Cc_number="ils1.11" /Calculated_mol_wt-21640 Region 1193 /region_name="SodA" /note="Superoxide dismutase [Fe]" /db_xref="CoD:10950" Region 263 /region_name="SodA" /note="Tron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="COD:10950" Region 90192 /region_name="Sod_Fe_0" /note="Tron/manganese superoxide dismutases, c-terminal domain; pfam00081" /db_xref="COD:10169" /note="Tron/manganese superoxide dismutases, C-terminal domain; pfam0081" /code_jby="NC0002277" /db_xref="COD:11550" /code_jby="NC000228.3:29823522982933" /note="sindB" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SyALi.SOP_BACRY (SWALLPS3638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 0.6; Escherichia coli 0157; n.ad Shigella flexeneri superoxide ismutase [Fe] SodB or Bi656 or C2050 or Z2578 or E052365 or SF1684 or S1816 SWALLSOP_EOCT (SWALLPS367) /tase_scole: E(): 1.6e-37, 51.04% id in 192 aa" /tase_scole: E(): 1.6e-37, 51.04% id in 19</pre>	COMMENT		
<pre>FEATURES Location/Qualifiers source 1193 /organism="macteroides fragilis NCTC 9343" /dt.xref="TATCC 25285" /db.xref="taxon:272559" /db.xref="taxon:272559" /db.xref="taxon:272559" /collated_mol_wt=21640 Region 1193 /region_name="sod#" /note="superoxide dismutase [Fe]" /db.xref="CDD:30950" Region 283 /region_name="sod#" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain, pfam00081" /db.xref="CDD:10950" /region_name="sod Fe_N" /note="Iron/manganese superoxide dismutases, c-terminal domain, pfam00081" /db.xref="CDD:109149" /db.xref="SodB" /locus_tag=BF2555" /gene_Synonym="sod" /code dy="SodS"ALL:SODF_BACKP(SMALL:SD5638) (193 aa) fasta scores: E(): 1.2e-77, 99.46% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:77, and Shigella flexteri superoxide dismutase /rel SodB or B1656 or C2050 or Z2678 or ECS2355 or SF1684 or S1816 SWALL:SODF_BACKP(SMALL:SODF_BACKP(SMALL:SD5648) or S1816 SWALL:SODF_BACKP(SMALL:SD5640 or S1816 SWALL:SODF_CACKP(SMALL:SD5640 or S1816 SWALL:SODF_BACKP(SMALL:SD</pre>	<pre>FEATURES Location/Qualifiers source 1193 /organism="macteroides fragilis NCTC 9343" /dt.xref="TATCC 25285" /db.xref="taxon:272559" /db.xref="taxon:272559" /db.xref="taxon:272559" /collated_mol_wt=21640 Region 1193 /region_name="sod#" /note="superoxide dismutase [Fe]" /db.xref="CDD:30950" Region 283 /region_name="sod#" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain, pfam00081" /db.xref="CDD:10950" /region_name="sod Fe_N" /note="Iron/manganese superoxide dismutases, c-terminal domain, pfam00081" /db.xref="CDD:109149" /db.xref="SodB" /locus_tag=BF2555" /gene_Synonym="sod" /code dy="SodS"ALL:SODF_BACKP(SMALL:SD5638) (193 aa) fasta scores: E(): 1.2e-77, 99.46% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:77, and Shigella flexteri superoxide dismutase /rel SodB or B1656 or C2050 or Z2678 or ECS2355 or SF1684 or S1816 SWALL:SODF_BACKP(SMALL:SODF_BACKP(SMALL:SD5648) or S1816 SWALL:SODF_BACKP(SMALL:SD5640 or S1816 SWALL:SODF_CACKP(SMALL:SD5640 or S1816 SWALL:SODF_BACKP(SMALL:SD</pre>		NCBI review. The reference sequence was derived from CAH08256.	
<pre>source 1133 /rdranism="macteroides fragilis NCTC 9343" /dt xraf="ATCC 25285; NCTC 9343" /db xref="ATCC 25285; /db xref="taxon:272559" /db xref="taxon:272559" /rotein 1133 /product="superoxide dismutase [Fe]" /KC_number="1.15.1.1" /Calculated_mol_wt=21640 Region 1133 /region_name="SodA" /note="Superoxide dismutase [Inorganic ion transport and metabolism], COG0605" /db xref="CDD:30950" Region 283 * /region_name="Sod Fe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain, pfam00881" /db xref="CDD:109142" Pegion 30192 /region_name="Sod Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain, pfam0277" /db xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SOF_BACR(SWALL:F55638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli 6, Escherichia coli 0157:H7, and Shigella flexmeri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2805 SF1684 or S1816 SWALL:SODP_BCCI (SWALL:F09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /trans1_table=11 /db_xref="GeneID:3287245"</pre>	<pre>source 1133 /rdranism="macteroides fragilis NCTC 9343" /dt xraf="ATCC 25285; NCTC 9343" /db xref="ATCC 25285; /db xref="taxon:272559" /db xref="taxon:272559" /rotein 1133 /product="superoxide dismutase [Fe]" /KC_number="1.15.1.1" /Calculated_mol_wt=21640 Region 1133 /region_name="SodA" /note="Superoxide dismutase [Inorganic ion transport and metabolism], COG0605" /db xref="CDD:30950" Region 283 * /region_name="Sod Fe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain, pfam00881" /db xref="CDD:109142" Pegion 30192 /region_name="Sod Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain, pfam0277" /db xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SOF_BACR(SWALL:F55638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli 6, Escherichia coli 0157:H7, and Shigella flexmeri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2805 SF1684 or S1816 SWALL:SODP_BCCI (SWALL:F09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /trans1_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>/organism="Bacteroides fragilis NCTC 9343" /db_xref="ATCC 25285" /db_xref="ATCC 25285" /db_xref="taxon:272559" Protein 1193 /product="superoxide dismutase [Fe]" /EC_number="l.15.1.1" /calculated_mol_wt=21640 l193 /region_name="SodA" /note="Superoxide dismutase [Inorganic ion transport and metabolism]; COG0605" /db_xref="CDD:30550" /db_xref="CDD:30550" /db_xref="CDD:30550" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:11650" /locus_tag="BF2555" /jene_stock" /db_xref="CDD:11650" l193 /gene="sodB" /locus_tag="BF2555" /locus_tag="BF25555" /locus_tag="BF25555" /locus_tag="BF25555" /locus</pre>	<pre>/organism="Bacteroides fragilis NCTC 9343" /db_xref="ATCC 25285" /db_xref="ATCC 25285" /db_xref="taxon:272559" Protein 1193 /product="superoxide dismutase [Fe]" /EC_number="l.15.1.1" /calculated_mol_wt=21640 l193 /region_name="SodA" /note="Superoxide dismutase [Inorganic ion transport and metabolism]; COG0605" /db_xref="CDD:30550" /db_xref="CDD:30550" /db_xref="CDD:30550" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:109149" /db_xref="CDD:11650" /locus_tag="BF2555" /jene_stock" /db_xref="CDD:11650" l193 /gene="sodB" /locus_tag="BF2555" /locus_tag="BF25555" /locus_tag="BF25555" /locus_tag="BF25555" /locus</pre>			
<pre>/strain="ATCC 25285, NCTC 3343" /db_xref="ATCC:25285" /db_xref="ATCC:25285" /db_xref="ATCC:25285" /db_xref="ATCC:25285" /db_xref="ATCC:25285" /db_xref="ATCC:25285" /fc_number="1.151.1." /fc_num</pre>	<pre>/strain="ATCC 32285; NCTC 3343" /db_xref="ATCC:32285" /db_xref="ATCC:32285" /db_xref="ATCC:32285" /db_xref="ATCC:32285" /db_xref="ATCC:32285" /db_xref="ATCC:32285" /db_xref="ATCC:32285" /fc_number="1.151.1." /fc_number="1.151.1." /fc_number="1.151.1." /fc_number="1.151.1." /fc_number="1.151.1." /db_xref="CDD:3050" /db_xref="CDD:3050" /fegion_name="Sod_Fe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain; pfam0081" /db_xref="CDD:109143" /db_xref="CDD:109143" /fot="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777 /db_xref="CDD:11650" /note="Firon/manganese superoxide dismutases, C-terminal domain; pfam02777 /db_xref="CDD:11650" /note="SodB" /locus_tag="SP2556" /gene_synonym="sod" /coded_by="Nc_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACRF (SWALL:595638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% idi 193 aa, and to Escherichia coil. Bacherichia coil 0.6, Secherichia coil 0157:H7, and Shigella flexmeri superoxide dismutase [Fe] SodB or B1656 or C2269 or Z2678 or EC52365 or SP1684 or S1816 SWALL:SODF_BCOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6=77, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	source		
<pre>/db_xref="taxon:272552" Protein 1133 /product="superoxide dismutase [Fe]" /Calculated_mol_wt=21640 Region 1193 /prote="Superoxide dismutase [Inorganic ion transport and metabolism]; COG0605" /db_xref="CDD:3050" Region 283 /note="Superoxide dismutase [Inorganic ion transport and metabolism]; COG0605" /db_xref="CDD:3050" Region 283 /region_name="Sod_Fe_N" /note="Inon/manganese superoxide dismutases, alpha-hairpin domain, pfam00081" /db_xref="CDD:109149" Region 90192 /region_name="Sod_Fe_C" /note="Inon/manganese superoxide dismutases, C-terminal domain, pfam02077" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="%C_003228.3:29823522982933" /dotaetsimilar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACPR (SWALL:P5668) (193 aa) fasta scores: E(): 1.2e-77, 99.48% (di n 193 aa, and to Escherichia coli, Escherichia coli 0.6, Escherichia coli 0157:H7, and Shigella flexneri superoxide fre] SodB or B1655 or 22676 or 22676 or EC52365 or SF1684 or S1816 SWALL:SODF_ECCLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6=37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245" </pre>	<pre>/db_xref="taxon:272552" Protein 1133 /product="superoxide dismutase [Fe]" /Calculated_mol_wt=21640 Region 1193 /prote="Superoxide dismutase [Inorganic ion transport and metabolism]; COG0605" /db_xref="CDD:3050" Region 283 /note="Superoxide dismutase [Inorganic ion transport and metabolism]; COG0605" /db_xref="CDD:3050" Region 283 /region_name="Sod_Fe_N" /note="Inon/manganese superoxide dismutases, alpha-hairpin domain, pfam00081" /db_xref="CDD:109149" Region 90192 /region_name="Sod_Fe_C" /note="Inon/manganese superoxide dismutases, C-terminal domain, pfam02077" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="%C_003228.3:29823522982933" /dotaetsimilar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACPR (SWALL:P5668) (193 aa) fasta scores: E(): 1.2e-77, 99.48% (di n 193 aa, and to Escherichia coli, Escherichia coli 0.6, Escherichia coli 0157:H7, and Shigella flexneri superoxide fre] SodB or B1655 or 22676 or 22676 or EC52365 or SF1684 or S1816 SWALL:SODF_ECCLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6=37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245" </pre>			
<pre>Protein 1193</pre>	<pre>Protein 1193</pre>		/db_xref="ATCC: <u>25285</u> "	
<pre>/product="superoxide dismutase [Pe]" /EC_number="1.15.1.1" /calculated_mol_wt=21640 n.1.133 region name="SodA" /note="Superoxide dismutase [Inorganic ion transport and metabolism]; CG0605" /db_xref="CDD:30950" region 283 /region 283 /region anme="Sod_Fe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain, pfam00081" /db_xref="CDD:109149" region 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain, pfam02081" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="SP2556" /gene_synonym="sod" /coded_by="%C_03228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACRE (SWALL:F55638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 0.6, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B165 or C2050 or Z2678 or ES23356 or SF1684 or S1816 SWALL:SODF_ECCLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.2e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>/product="superoxide dismutase [Pe]" /EC_number="1.15.1.1" /calculated_mol_wt=21640 n.1.133 region name="SodA" /note="Superoxide dismutase [Inorganic ion transport and metabolism]; CG0605" /db_xref="CDD:30950" region 283 /region 283 /region anme="Sod_Fe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain, pfam00081" /db_xref="CDD:109149" region 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain, pfam02081" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="SP2556" /gene_synonym="sod" /coded_by="%C_03228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACRE (SWALL:F55638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 0.6, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B165 or C2050 or Z2678 or ES23356 or SF1684 or S1816 SWALL:SODF_ECCLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.2e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	Description		
<pre>/Ec number="lift" /calculated_mol_wt=21640 1133 /region_name="SodA" /note="Superoxide dismutase [Inorganic ion transport and metabolism]; COG0605" /db_xref="CDD:30950" 283 /region_name="Sod_re_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:109149" 90192 /region_name="Sod_re_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SOF_BACRY (SWALL:55638) (193 aa) fasta scores: B(): 1.2e-77, 99.48% id 193 aa, and to Escherichia coli, Escherichia coli 06; Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SOF_ECCLI (SWALL:P09157) (192 aa) fasta scores: B(): 1.0e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>/Ec number="lift" /calculated_mol_wt=21640 1133 /region_name="SodA" /note="Superoxide dismutase [Inorganic ion transport and metabolism]; COG0605" /db_xref="CDD:30950" 283 /region_name="Sod_re_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:109149" 90192 /region_name="Sod_re_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SOF_BACRY (SWALL:55638) (193 aa) fasta scores: B(): 1.2e-77, 99.48% id 193 aa, and to Escherichia coli, Escherichia coli 06; Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SOF_ECCLI (SWALL:P09157) (192 aa) fasta scores: B(): 1.0e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	Protein		
<pre>/calculated_mol_wt=21640 1193 /region_name="SodA" /note="Superoxide dismutase [Inorganic ion transport and metabolism]; CO0605" /db_xref="CDD:30950" 283 /region_name="Sod_Fe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:109149" Region 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam002777" /db_xref="CDD:11550" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by=NVC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Pe] SodB or Sod SWALL:SODF_BACFR (SWALL:F53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexmeri superoxide dismutase [Pe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SP1684 or S1816 SWALL:SODF_ECOLI (SWALL:P03157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>/calculated_mol_wt=21640 1193 /region_name="SodA" /note="Superoxide dismutase [Inorganic ion transport and metabolism]; CO0605" /db_xref="CDD:30950" 283 /region_name="Sod_Fe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:109149" Region 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam002777" /db_xref="CDD:11550" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by=NVC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Pe] SodB or Sod SWALL:SODF_BACFR (SWALL:F53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexmeri superoxide dismutase [Pe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SP1684 or S1816 SWALL:SODF_ECOLI (SWALL:P03157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>Region 1133 /region_name="SodA" /region_name="SodA" /region_name="SodA" /region_name="SodForm" /db_xref="CDD:30950" 283 * /region_name="SodFe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain, pfam0081" /db_xref="CDD:109149" 90192 /region_name="SodFe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain, pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /code_dby="NC_03228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFM (SWALL:FS3638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexmeri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ES2365 or SF164 or S1816 SWALL:SODF_ECOLI (SWALL:P0157) (192 aa) fasta scores: E(): 1.0e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>Region 1133 /region_name="SodA" /region_name="SodA" /region_name="SodA" /region_name="SodForm" /db_xref="CDD:30950" 283 * /region_name="SodFe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain, pfam0081" /db_xref="CDD:109149" 90192 /region_name="SodFe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain, pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /code_dby="NC_03228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFM (SWALL:FS3638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexmeri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ES2365 or SF164 or S1816 SWALL:SODF_ECOLI (SWALL:P0157) (192 aa) fasta scores: E(): 1.0e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>/note="Superoxide dismutase [Inorganic ion transport and metabolism]; COG0605" /db_xref="CDD:30550" 283</pre>	<pre>/note="Superoxide dismutase [Inorganic ion transport and metabolism]; COG0605" /db_xref="CDD:30550" 283</pre>	Region	1193	
<pre>metabolism); COG0605" /db_xref="CDD:30950" 263 /region_name="Sod_Fe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:109149" Pegion_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene="sodB" /locus_tag="BF2556" /gene="sodB" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:F53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli of, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>metabolism); COG0605" /db_xref="CDD:30950" 263 /region_name="Sod_Fe_N" /note="Iron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:109149" Pegion_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene="sodB" /locus_tag="BF2556" /gene="sodB" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:F53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli of, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>/db_xref="CDD:<u>30950</u>" 283 /region_name="Sod_Fe_N" /note="Tron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:<u>109149</u>" 90192 /region_name="Sod_Fe_C" /note="Tron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:<u>111550</u>" CDS 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:F53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli 0.6, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or SiB16 SWALL:SODF_EOLI (SWALL:P03157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:<u>3287245</u>"</pre>	<pre>/db_xref="CDD:<u>30950</u>" 283 /region_name="Sod_Fe_N" /note="Tron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:<u>109149</u>" 90192 /region_name="Sod_Fe_C" /note="Tron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:<u>111550</u>" CDS 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:F53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli 0.6, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or SiB16 SWALL:SODF_EOLI (SWALL:P03157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:<u>3287245</u>"</pre>			
<pre>Region 263</pre>	<pre>Region 263</pre>			
<pre>/note="Tron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:109149" 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SOF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SOPF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>/note="Tron/manganese superoxide dismutases, alpha-hairpin domain; pfam00081" /db_xref="CDD:109149" 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SOF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SOF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	Region	283 *	
<pre>domain; pfam00081" /db_xref="CDD:109149" Region 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam002777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /code_dby="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or EC52365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>domain; pfam00081" /db_xref="CDD:109149" Region 90.192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam002777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /code_dby="NC_003228.3:29823522982933" /locus_tag="BF256" /gene_synonym="sod" /code_dby="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or EC52365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>/db_xref="CDD:109149" Region 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_BCCLI (SWALL:P0157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>/db_xref="CDD:109149" Region 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_000328.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_BCCLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>Region 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene="sodB" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or EC32365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P0157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>Region 90192 /region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene="sodB" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SOF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or EC32365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>/region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /code_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or SE72856 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>/region_name="Sod_Fe_C" /note="Iron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /code_by="NC_003228.3:29823522982933" /note="similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 9.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z26365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	Region		
<pre>/note="Tron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>/note="Tron/manganese superoxide dismutases, C-terminal domain; pfam02777" /db_xref="CD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>/db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or EC52365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>/db_xref="CDD:111650" 1193 /gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or 2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>		/note="Iron/manganese superoxide dismutases, C-terminal	
CDS 1193 //gene="sodB" //ocus_tag="BF2556" /gene_synonym="sod" //coded_by="NC_00328.3:29823522982933" //ote="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli. Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" //transl_table=11 /db_xref="GeneID:3287245"	CDS 1193 //gene="sodB" //ocus_tag="BF2556" /gene_synonym="sod" //coded_by="NC_00328.3:29823522982933" //ote="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli. Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" //transl_table=11 /db_xref="GeneID:3287245"			
<pre>/gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or EC52365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P0157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>/gene="sodB" /locus_tag="BF2556" /gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or EC52365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=<u>11</u> /db_xref="GeneID:<u>3287245</u>"</pre>	CDC		
<pre>/locus_tag="BF2556" /gene_synonym="sod" /coded by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=<u>11</u> /db_xref="GeneID:<u>3287245</u>"</pre>	<pre>/locus_tag="BF2556" //gene_synonym="sod" //coded_by="NC_003228.3:29823522982933" //note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or EC32365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	000		
<pre>/gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli (). Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>/gene_synonym="sod" /coded_by="NC_003228.3:29823522982933" /note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli (). Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>/note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SOF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SOF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=<u>11</u> /db_xref="GeneID:<u>3287245</u>"</pre>	<pre>/note="Similar to Bacteroides fragilis superoxide dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or EC32365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=<u>11</u> /db_xref="GeneID:<u>3287245</u>"</pre>		/gene_synonym="sod"	
<pre>dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 9.48% id in 193 aa, and to Escherichia coli (). Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" //ransl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>dismutase [Fe] SodB or Sod SWALL:SODF_BACFR (SWALL:P53638) (193 aa) fasta scores: E(): 1.2e-77, 9.48% id in 193 aa, and to Escherichia coli (). Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" //ransl_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>(193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=<u>11</u> /db_xref="GeneID:<u>3287245</u>"</pre>	<pre>(193 aa) fasta scores: E(): 1.2e-77, 99.48% id in 193 aa, and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=<u>11</u> /db_xref="GeneID:<u>3287245</u>"</pre>			
<pre>and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=<u>11</u> /db_xref="GeneID:<u>3287245</u>"</pre>	<pre>and to Escherichia coli, Escherichia coli 06, Escherichia coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=<u>11</u> /db_xref="GeneID:<u>3287245</u>"</pre>			
<pre>coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>coli 0157:H7, and Shigella flexneri superoxide dismutase [Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>			
<pre>[Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>	<pre>[Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684 or S1816 SWALL:SODF_ECOLI (SWALL:P09157) (192 aa) fasta scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table=11 /db_xref="GeneID:3287245"</pre>			
scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table= <u>11</u> /db_xref="GeneID: <u>3287245</u> "	scores: E(): 1.6e-37, 51.04% id in 192 aa" /transl_table= <u>11</u> /db_xref="GeneID: <u>3287245</u> "		[Fe] SodB or B1656 or C2050 or Z2678 or ECS2365 or SF1684	
/transl_table= <u>11</u> /db_xref="GeneID: <u>3287245</u> "	/transl_table= <u>11</u> /db_xref="GeneID: <u>3287245</u> "			
/db_xref="GeneID: <u>3287245</u> "	/db_xref="GeneID: <u>3287245</u> "			
r	r			
Mascot: http://www.matrixscience.com/	Mascot: http://www.matrixscience.com/			
Mascot: http://www.matrixscience.com/	Mascot: http://www.matrixscience.com/			
			Mascot: http://www.matrixscience.com/	

(MATRIX) SCIENCE/ Mascot Search Results

User	: Lakshmy Manickan
Email	: lakshmy.manickan@unn.ac.uk
Search title	: SSP 7401
MS data file	: D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP 7401 (10) RN15 01 1596.d\SSP 7401 (10) RN15 01 1596.mgf
Database	: NCBInr 20100102 (10272453 sequences; 3505279183 residues)
Taxonomy	: Bacteria (Eubacteria) (5690016 sequences)
Timestamp	: 6 Jan 2010 at 16:24:05 GMT
Protein hits	: gi 53711978 ribosome recycling factor [Bacteroides fragilis YCH46]
	g1 29347659 ribosome recycling factor [Bacteroides thetaiotaomicron VPI-5482]

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 57 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

45-										
40 35 30 25 20 15 10 5 0		100	Probabilit	200 y Based Mowse S	core					
eptio	de Sun	nmary Repo	ort							
For	mat As	Peptide Sum	nmary	*						Help
		Significance	threshold p<	0.05	Max. nu	imber	of hits	AUTO		
		Standard sco	oring @ Mud	PIT scoring (-	Show sub-sets 0
							and the second	reasing Sc	0.50	
		Show pop-u	ps Suppres	ss pop-ups	Sort una	assign	ed [Deci	easing 50	ore	✓ Require bold red □
Seler	ct All	Select None	e Sear	ch Selected		or tole	rant			
•			ass: 20809 ng factor [H	Score: 23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		matche	d: 5	emPAI	: 0.82
-			this hit in				6]			
1	CHECK	co merude	chi 5 hit ii	r error core	Tanc Sea	1.011				
	Query	Observed	Mr (expt)	Mr (calc)		Miss		Expect		Peptide
V		542.2400	1623.6982	1623.8443.		1	37	4.9		R.SITIKPWDKSMFR.V + Oxidation (M)
< <		695.9640 1043.9710	2084.8702	2085.0412 2085.0412	-0.1710	0	(44)	0.82	1	K.AIIDSDLGIMPENNGEIIR.I + Oxidation (M)
17		1042.3110	2003.32/4					6 3- 05	· · · · · · · · ·	W ATTRONTOTIONNONTED T . Ouldebler (W)
V	241	1133 4620	2264 9094				86	6.3e-05		K.AIIDSDLGIMPENNGEIIR.I + Oxidation (M)
ন ন	250 Prote		2264.9094 2932.1812 g the same s	2265.0947 2932.4964	-0.1853 -0.3153	0	75 37	0.00051 3	. 1	K.AIIDSDLGIMPENNGEIIR.I + Oxidation (M) R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M)
प	Prote gi 15 hypot gi 26 ribos gi 29 ribos	978.4010 ins matching 3008675 I hetical provi- 5765322 I ome recyclin 347659 MA ome recyclin to include Observed 542.2400 1133.4620	2932.1812	2265.0947 2932.4964 set of pept: score: 2 02974 [Bact score: 1] Bacteroides h error tole Mr (calc) 1623.8443 2265.0947	-0.1853 -0.3153 des: dis: dis: dis: dis: dis: dis: dis: di	0 1 eries cacca eries 16] ries aomic rch Miss 1 0	75 37 # match # match matche pron VP	0.00051 3 eed: 5 : 43185] eed: 5 d: 3	emPAI:	R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16
م	F 250 Prote gi 15 hypot ribos Gi 29 ribos Check Query 148 241	978.4010 ins matching 3008675 I hetical provi- 5765322 I ome recyclin 347659 MA ome recyclin to include Observed 542.2400 1133.4620	2932.1812 g the same a Mass: 20841 tein BACCAC Mass: 20827 ng factor [I this hit ir Mr (expt) 1623.6982 2264.9094	2265.0947 2932.4964 set of pept: score: 2 02974 [Bact score: 1] Bacteroides h error tole Mr (calc) 1623.8443 2265.0947	-0.1853 -0.3153 des: dis: dis: dis: dis: dis: dis: dis: di	0 1 eries cacca eries 16] ries aomic rch Miss 1 0	75 37 a match a match eron VP Score 37 53	0.00051 3 eed: 5 43185] eed: 5 d: 3 4 1-5482] Expect 4.9 0.082	emPAI:	R.VDSYGSMVPISNVAAVTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIKPHDRSMFR.A + Oxidation (M) R.VDSYGSMVPISNVAALSTPDAR.S + Oxidation (M)
ч	F 250 Prote gi 15 hypot gi 26 ribos Check Query 148 241 250	978.4010 ins matching <u>3808675</u> I hetical provide <u>5765322</u> I <u>347659</u> MA ome recyclin to include Observed <u>542.2400</u> 1133.4620 978.4010	2932.1812 g the same a Mass: 20841 tein BACCAC Mass: 20827 ng factor [I this hit ir Mr (expt) 1623.6982 2264.9094	2265.0947 2932.4964 set of pepti Score: 2 02974 [Bact Score: 1] Bacteroides h error told Mr (calc) 1623.8443 2265.0947 2932.4964	-0.1853 -0.3153 .des: .35 Qu .eroides .35 Qu .7 Que thetaiot rrant sea Delta -0.1461 -0.1853 -0.3152	0 1 eries cacca eries aomic rch Miss 1 0 1	75 37 match match eron VP Score 37 53 26	0.00051 3 ed: 5 43185] ed: 5 d: 3 u-5482] Expect 4.9 0.082 32	emPAI:	R.VDSYGSMVPISNVAAVTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIKPHDRSMFR.A + Oxidation (M) R.VDSYGSMVPISNVAALSTPDAR.S + Oxidation (M)
بم	Prote gil15 hypot gil20 ribos Check Query 148 241 250 de mato Query	978.4010 ins matching <u>3808675</u> I hetical proi <u>5765322</u> I ome recyclin <u>347659</u> M. ome recyclin to include Observed <u>542.2400</u> 1133.4620 978.4010 ches not asse Observed	2932.1812 g the same a Mass: 20841 tein BACCAC Mass: 20827 mg factor [I this hit ir Mr (expt) 1523.6982 2264.9094 2932.1812 tigned to pr Mr (expt)	2265.0947 2932.4964 set of pepti Score: 2 02974 [Bact Score: 1] Sacteroides a error tole Mr (calc) 1623.8443 2265.0947 2932.4964 otein hits: Mr (calc)	-0.1853 -0.3153 .des: .35 Queroides sp. 2_1_ .7 Que thetaiot thetaiot erant sea Delta -0.1461 -0.1853 -0.3152 (no detai	0 1 series cacca eries 16] ries aomic rch Miss 1 0 1 1	75 37 a match e ATCC a match matche pron VP Score 37 53 26 means 1 s Score	0.00051 3 eed: 5 43185] eed: 5 d: 3 d: 3 4.9 0.082 32 no match a Expect	. 1 . 1 . 1 	R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIRPHDRSMFR.A + Oxidation (M) R.VDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M)
با T T T	Prote gil15 hypot gil26 ribos check Query 148 241 250 de mato Query 206	978.4010 ins matching 3008675 I hetical provi- 5765322 I 00me recyclin to include 0bserved 542.2400 1133.4620 978.4010 ches not ass 0bserved 672.1310	2932.1812 g the same a Mass: 20841 tein BACCAC Mass: 20827 ng factor [F this hit ir Mr (expt) 1623.6982 2264.9094 2932.1812 digned to pr Mr (expt) 2013.3712	2265.0947 2932.4964 set of pept: Score: 2 02974 [Bact Score: 1: Bacteroides h error tole Mr (calc) 1623.8443 2265.0947 2932.4964 otein hits: Mr (calc) 2013.1016	-0.1853 -0.3153 -0.3153 -0.3153 -0.3153 -0.3153 -0.1461 -0.1863 -0.3152 (no deta 0.2696	0 1 series cacca (16) ries aomic rrch Miss 1 0 1 1 ails	75 37 a match matche cron VP Score 37 53 26 means 1 a Score 35	0.00051 3 ed: 5 43185] ed: 5 d: 3 d: 3 4.9 0.082 32 0.082 32 acomatch s Expect 5.4	. 1 1 memPAI; 2 3 1) t Rank 6 1	R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIKPMDKSMFR.A + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M)
प	Prote gil15 hypot gil26 ribos Check Query 148 241 250 de mato Query 206 5 150	978.4010 ins matching 3008675 1 hetical provi- 5765322 1 00me recyclin 347659 Ma come recyclin to include 0bserved 542.2400 1133.4620 978.4010 ches not ass 0bserved 672.1310 547.6960	2932.1812 g the same a Mass: 20841 tein BACCAC Mass: 20827 ng factor [F this hit ir Mr (expt) 1623.6982 2264.9094 2932.1812 tigned to pr Mr (expt) 2013.3712 1640.0662	2265.0947 2932.4964 set of pept: Score: 2 02974 [Bact Score: 1 3acteroides score: 11 3acteroides h error tole Mr (calc) 1623.8443 2265.0947 2932.4964 otein hits: Mr (calc) 2013.1016 1639.9257	-0.1853 -0.3153 des: 35 Qu eroides 35 Qu sp. 2_1_ .7 Que thetaiot trant sea -0.1461 -0.1863 -0.3152 (no det: Delta 0.2696 0.1405	0 1 series cacca eries l6] rries a aomic crch Miss 1 0 1 1 ails 1 i 1	75 37 37 matche e ATCC matche erron VP Score 37 53 26 38 score 35 30	0.00051 3 eed: 5 : 43185] eed: 5 d: 3 4.9 0.082 32 no match Expect 5.1 2: 2: 4.9	. 1 1 1 2 3 1) 1) t Rank 6 1 2 1	R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIKPWDKSMFR.A + Oxidation (M) R.UDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M)
모 · · · · · · · · · · · · · · · · · · ·	250 Prote gi 15 hypot ribos gi 29 ribos Check Query 148 250 de matc Query 200 150 138	978.4010 ins matching 3808675 1 hetical prot 5765322 1 iome recyclin to include Observed 542.2400 1133.4620 978.4010 Ches not ass Observed 672.1310 547.6960 771.4460	2932.1812 g the same a Mass: 20841 tein BACCAC Mass: 20823 ng factor [F this hit ir Mr(expt) 1623.6982 2264.9094 2932.1812 Higned to pr Mr(expt) 1640.6662 2311.3162	2265.0947 2932.4964 Sect of pepti Score: 2 02974 [Bact Score: 1 3acteroides Score: 13 3acteroides h error tole Mr (calc) 1623.8443 2265.0947 2932.4964 otein hits: Mr (calc) 1633.9257 2311.2172	-0.1853 -0.3153 -0.3153 -0.3153 -0.3153 -0.3153 -0.21_ -7.7 Que thetaiot trant sea -0.1461 -0.1853 -0.3152 (no deta 0.2696 0.1405 0.0989	0 1 erries aomic rrch Miss 1 0 1 Miss 1 1 1 1 1 1 1 1 1 1 1 1 1	75 37 match the ATCCC match erron VP Score 37 53 26 score 37 53 26 score 37 53 26 score 37 53 26 score 30 score 32 score 33 score 32 score 32 score 32 score 33 score 32 score 33 score 32 score 33 s 33 s 33 s score 33 s 33 s 33 score 33 score 33 score 33 score 33 score 33 score 33 score 33 score 33 score 33 score 33 score 33 score 3 scor 33 score 3 score 3 score 3 score 3 score 3 s 33 s 3 s 3 s 3 s 3 s 3 s 3	0.00051 3 4ed: 5 43185] ed: 5 41 - 5482] Expect 4.9 0.082 32 32 no match e Expec: 5.1 22 65	. 1 1 1 2 3 ()) t Rank 6 1 2 1 5 1	R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIKPWDKSMFR.A + Oxidation (M) R.VDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M)
되 bitge 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모	250 Prote gi 15 hypot gi 29 ribos check Query 148 241 250 de mato Query 206 138 115	978.4010 ins matching <u>3808675</u> hetical prov <u>376532</u> iome recyclin to include Observed <u>542.2400</u> 1133.4620 978.4010 Observed <u>672.1310</u> <u>547.6960</u> 971.4460 <u>657.2930</u>	2932.1812 g the same a Mass: 20841 cein BACCAC_ Mass: 20823 ng factor [f this hit ir Mr (expt) 1623.6982 2264.9094 2932.1812 digned to pr Mr (expt) 2013.3712 1640.0662 2311.3162 1312.5714	2265.0947 2932.4964 set of pept/ Score: 2 02974 [Bact Score: 1] Bacteroides n error tole Mr(calc) 1623.8443 2265.0947 2932.4964 otein hits: Mr(calc) 2013.1016 1639.9257 2311.2172 1311.6567	-0.1853 -0.3153 -0.3153 -0.3153 -0.3153 -0.3153 -0.3152 -0.1461 -0.1853 -0.3152 (no det: Delta 0.2696 0.4989 0.9148	0 1 series cacca eries aomic rrch Miss 1 0 1 1 sils 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75 37 match matche e ATCCC match matche 37 53 26 37 53 26 30 30 29 28	0.00051 3 443185] eed: 5 43185] eed: 5 41-5482] Expect 4.9 0.082 32 0.082 32 0.082 32 5.1 22 61 44	. 1 1 1 2 3 3 1) 1 t Rank 1 2 3 3	R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIKPWDKSMFR.A + Oxidation (M) R.VDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) TVLTGDTLRALPDLR REGEVVTGTEAATPPETVPVVR LELGLTMGGFMK + Oxidation (M)
모 · · · · · · · · · · · · · · · · · · ·	250 Prote gi 15 hypot gi 29 ribos Check Query 148 250 de matc Query 206 158 115 246	978.4010 ins matching 3808675 1 hetical prot 5765322 1 come recyclin to include 0bserved 542.2400 1133.4620 978.4010 ches not ass 0bserved 672.1310 547.6960 771.4460	2932.1812 g the same a Mass: 20841 tein BACCAC Mass: 20827 mg factor [I this hit ir Mr (expt) 1623.6982 2264.9094 2932.1812 digned to pr Mr (expt) 2013.3712 1640.0662 2311.3162 1312.5714 2647.9852	2265.0947 2932.4964 Score: 2 02974 [Bact Score: 2 Bacteroides Score: 11 Bacteroides a error tole Mr (calc) 1623.8443 2265.0947 2932.4964 Otein hits: Mr (calc) 2013.1016 1639.9257 2311.2172 1311.6567 2647.0551	-0.1853 -0.3153 -0.3153 -0.3153 -0.3153 -0.3153 -0.21_ -7.7 Que thetaiot trant sea -0.1461 -0.1853 -0.3152 (no deta 0.2696 0.1405 0.0989	0 1 eries cacca eries aomic rch Miss 1 0 1 1 ails 1 1 1 0 0 1 0 0 0 0	75 37 match the ATCCC match erron VP Score 37 53 26 score 37 53 26 score 37 53 26 score 37 53 26 score 30 score 32 score 33 score 32 score 32 score 32 score 33 score 32 score 33 score 32 score 33 s 33 s 33 s score 33 s 33 s 33 score 33 score 33 score 33 score 33 score 33 score 33 score 33 score 33 score 33 score 3 scor 33 score 3 score 3 score 3 s 33 s 3 s 33 s 3 s 3 s 3 s 3 s 3 s 3 s 3 s 3 s 3 s 3 s 3 s 3 s 3 s 3 s 3 s 3 3 s 3 s 3 3	0.00051 3 4ed: 5 43185] ed: 5 41 - 5482] Expect 4.9 0.082 32 32 no match e Expec: 5.1 22 65	. 1 1 1 2 3 1)) t Rank 6 1 2 1 6 1 2 1 4 1 4 1 8 1	R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIKPHDRSMFR.A + Oxidation (M) R.VDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) RESEVITOREAATPPETVPVVR LELGLINGGFMK + Oxidation (M) NHDGGADVDELGYSCHPSAEDVMR + Oxidation (M)
되 bitge 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모	250 Prote gi 15 hypot gi 29 ribos gi 29 ribos Check Query 148 250 de mato Query 206 150 115 246 113	978.4010 ins matching <u>3808675</u> I hetical proj <u>5765322</u> J ome recyclin <u>347659</u> M.A ome recyclin to include Observed <u>542.2400</u> 1133.4620 978.4010 Observed <u>672.1310</u> <u>547.6960</u> 771.4460 <u>547.6960</u> 883.6690	2932.1812 g the same a Mass: 20841 tein BACCAC Mass: 20827 ng factor [E this hit ir Mr (expt) 1623.6982 2264.9094 2932.1812 igned to pr Mr (expt) 2013.3712 1640.0662 2311.3162 2322.5714 2647.9852 2226.6692	2265.0947 2932.4964 set of pept: Score: 2 02974 [Bact Score: 1: Sacteroides n error tole Mr (calc) 1623.8443 2265.0947 2932.4964 otein hits: Mr (calc) 2013.1016 1639.9257 2311.2172 1311.6567 2647.0551 2227.9435	-0.1853 -0.3153 .des: .35 Queroides sp. 2_1_ .7 Que thetaiot erant sea -0.1461 -0.1853 -0.3152 (no det: Delta 0.2696 0.1405 0.9888 0.9301	0 1 eries cacca eries aomic rch Miss 1 0 1 ails 1 1 1 1 0 0 0 0 0 0 0	75 37 matche e ATCCC match matche erron VP Score 37 53 26 37 53 26 30 29 28 28 22 28 22	0.00051 3 eed: 5 43185] eed: 5 d: 3 (d: 3 (d) 1-5482] Expect 4.9 0.082 32 no match 5.1 22 69 44 21	. 1 1 1 2 3 () 1 2 1 2 3 () 1 1 2 1 1 2 1 1 2 3 () 1 1 1 2 3 () 1 1 2 3 () 1 1 1 2 3 () 1 1 1 2 3 () 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIKPWDKSMFR.A + Oxidation (M) R.VDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) TVUTGDTLRALPDLR REGEVVTGTEAATPPETVPVVR LELGLTMGGFMK + Oxidation (M)
의 eptic 모모모 모모모 모모모 모모 모 모 모 모 모 모 모 모 모 모 모	Prote gil15 hypot gil26 ribos Check Query 148 241 250 de matc Query 206 150 138 115 246 133 193	978.4010 ins matching 3008675 I hetical provi- 5765322 J 00me recyclin 347659 M. 00me recyclin to include 0bserved 542.2400 1133.4620 978.4010 2548.600 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6960 771.4460 547.6920 547.6920 547.6920 547.6920 547.6920 547.6920 547.6920 547.6920 547.6920 751.2920 547.6920 751.2920	2932.1812 g the same a Mass: 20841 tein BACCAC Mass: 20827 ng factor [F this hit ir Mr (expt) 1623.6982 2264.9094 2932.1812 digned to pr Mr (expt) 2013.3712 1640.0662 2311.3162 1312.5714 2647.9852 2226.6892 1972.1332	2265.0947 2932.4964 Score: 2 02974 [Bact Score: 2 Bacteroides h error tole Mr (calc) 1623.9443 2265.0947 2932.4964 otein hits: Mr (calc) 1639.9257 2311.2172 1311.6567 247.0551 2227.9435 1972.0047	-0.1853 -0.3153 -0.3153 -0.3153 Queroides -0.3153 -0.1461 -0.1461 -0.1853 -0.3152 -0.3152 (no det: Delta 0.2696 0.1405 0.989 0.9148 0.9301 -1.0744	0 1 1 1 1 1 1 1 1 1 1 1 1 1	75 37 37 matche matche ron VP Score 37 53 26 37 53 26 39 8 8 8 9 8 9 8 9 9 28 29 28 27 27	0.00051 3 ed: 5 43185] ed: 5 d: 3 4.9 0.082 32 no match Expect 5.4 4.9 0.082 32 68 4.9 0.082 32 9 5.4 5.4 68 68 68 68 68 68 68 68 68 68	. 1 1 1 2 3 ()) t Rank k Rank 6 1 2 2 1 5 1 4 1 3 1 7 1	R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIKPHDRSMFR.A + Oxidation (M) R.VDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) TVLIGDTLRALPDLR REGFVNTGTEAATPPETVPVVR LELGLTMGFMK + Oxidation (M) NHDGGAVVDELGYSCHPSAEDVMK + Oxidation (M) QTDPVAAEAVVAECCNMAFK + Oxidation (M)
ר Peptid יייייייייייייייייייייייייייייייייייי	Prote gil15 hypot gil29 ribos Check Query 148 241 250 Check Query 148 241 250 Check 250 Check 241 250 Check Check 241 250 Check 241 250 Check 241 250 Check 241 250 Check 241 Ch	978.4010 ins matching 3008675 I hetical provi- 5765322 J ins matching 347659 Ma come recyclin 347659 Ma come recyclin 542.2400 1133.4620 978.4010 542.2400 1133.4620 978.4010 Ches not ass Ches not ass Ches not ass 0582746 672.1310 547.6960 771.4460 657.2930 883.6690 743.2970 658.3850	2932.1812 g the same a Mass: 20841 tein BACCAC Mass: 20827 ng factor [F this hit ir Mr (expt) 1623.6982 2264.9094 2932.1812 digned to pr Mr (expt) 2013.3712 1640.0662 2311.3162 1312.5714 2647.9852 2226.6892 1972.1332	2265.0947 2932.4964 Score: 2 02974 [Bact Score: 2 Bacteroides Score: 11 Bacteroides h error tole Mr (calc) 1623.8443 2265.0947 2932.4964 otein hits: Mr (calc) 1623.8443 2265.0947 2932.4964 otein hits: Mr (calc) 2013.1016 1639.9257 2311.2172 1311.6567 2647.0551 2227.9435 1972.0047	-0.1853 -0.3153 -0.3153 -0.3153 -0.3153 -0.3153 -0.2 -0.1461 -0.1461 -0.1853 -0.3152 (no det: Delta 0.2696 0.1405 0.9989 0.9148 0.9301 -1.0744 0.1284	0 1 eries cacca eries aomico rch Miss 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	75 37 37 matche matche rron VP Score 37 53 26 38 30 29 28 30 29 28 32 27 27 26	0.00051 3 ed: 5 43185] ed: 5 d: 3 4.9 0.082 32 no match Expect 5 2: 6i 4.9 0.082 32 5 5 5 5 5 5 6. 6. 6. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	. 1 i 1 emPAI: Rank 1 2 3 i) t Ran! 6 1 2 3 i) t Ran! 6 1 2 3 i 1 2 3 i 1 2 3 i 1 2 3 i 1 1 2 3 i 1 2 3 i 1 2 3 i 1 2 3 i 1 1 2 3 i 1 1 2 3 i 1 1 1 1 1 1 1 1 1 1 1 1 1	R.VDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAAVTTPDAR.S + Oxidation (M) : 0.16 Peptide R.SITIKPMDKSMFR.A + Oxidation (M) R.VDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) R.LLDGIRVDSYGSMVPISNVAALSTPDAR.S + Oxidation (M) MPISGAPTRLPMRPIFR + 2 Oxidation (M) TVLTGDTLRALPDLR REGRVVTGTEALFPLR REGRVVTGTEALFPLR REGRVVTGTEALFPLR REGRVVTGTEALFPLR REGRVVTGTEALFPLR LELGLTMGGFMK + Oxidation (M) NNDGGADVDELGYSCHPSAEDVMR + Oxidation (M) GTDPVAAEAVVAECONMAFK + Oxidation (M) LDEINLAMDRLADGSAIR

(MATRIX) Mascot Search Results

Protein View

Match to: gi|53711978 Score: 235 ribosome recycling factor [Bacteroides fragilis YCH46] Found in search of D:\Data\Lakshmy\PROTEOMICS 3- 151208\SSP 7401 (10)_RN15_01_1596.d\SSP 7401 (10)_RN15_01_1596.mgf

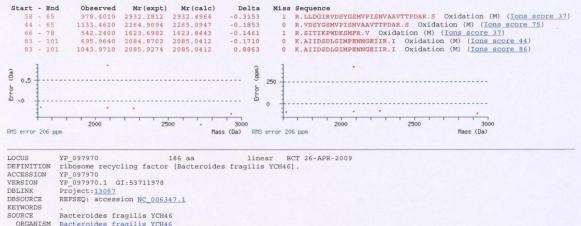
Nominal mass $(M_{\rm r}):~20809;$ Calculated pI value: 5.86 NCBI BLAST search of gi[53711978 against nr Unformatted sequence string for pasting into other applications

Taxonomy: <u>Bacteroides fragilis YCH46</u> Links to retrieve other entries containing this sequence from NCBI Entrez: <u>gi[26050182</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi[25363986</u> from <u>Bacteroides fragilis 3 1_12</u> <u>gi[60390242</u> from <u>Bacteroides fragilis 3 1_12</u> <u>gi[81316748</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi[5214843</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi[251947762</u> from <u>Bacteroides fragilis NCTC 9343</u> <u>gi[251947762</u> from <u>Bacteroides sp. 3 2 5</u>

Fixed modifications: Carboxymethyl (C) Variable modifications: Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: 32%

Matched peptides shown in Bold Red

1 MVDVKTIIEE SQEKMDMAVM YLEEALAHIR AGKASTRLLD GIRVDSYGSM 51 VPISNVAAVT TPDARSTTIK PMDKSMFRVI EKAILDSDLG IMPENNGBII 101 RIGIPPLTEE RRKQLAKQCK AEGETAKVSI RNARRDGIDA LKKAVKDGLA 151 EDEGRNARAK LQKVHDKYIA KIEEMLARKD KEIMTV


Show predicted peptides also

Sort Peptides By

Residue Number

C Increasing Mass

Decreasing Mass

SOURCE	bacterordes rragiris ichao
ORGANISM	Bacteroides fragilis YCH46
	Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
	Bacteroidaceae; Bacteroides.
REFERENCE	1 (residues 1 to 186)
AUTHORS	Kuwahara, T., Yamashita, A., Hirakawa, H., Nakayama, H., Toh, H.,
	Okada, N., Kuhara, S., Hattori, M., Hayashi, T. and Ohnishi, Y.
TITLE	Genomic analysis of Bacteroides fragilis reveals extensive DNA
	inversions regulating cell surface adaptation
JOURNAL	Proc. Natl. Acad. Sci. U.S.A. 101 (41), 14919-14924 (2004)
PUBMED	15466707
REFERENCE	2 (residues 1 to 186)
CONSRTM	NCBI Genome Project
TITLE	Direct Submission
JOURNAL	Submitted (01-OCT-2004) National Center for Biotechnology
	Information, NIH, Bethesda, MD 20894, USA
REFERENCE	3 (residues 1 to 186)
AUTHORS	Hattori, M., Yamashita, A., Toh, H., Oshima, K. and Shiba, T.
TITLE	Direct Submission
JOURNAL	Submitted (20-APR-2004) Kitasato Institute for Life Sciences,
	1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
COMMENT	REVIEWED REFSEQ: This record has been curated by NCBI staff. The
	reference sequence was derived from <u>BAD47436</u> .
	Method: conceptual translation.
FEATURES	Location/Qualifiers
source	
	/organism="Bacteroides fragilis YCH46"
	/strain="YCH46"
	/db_xref="taxon: <u>295405</u> "
Protei	
	/product="ribosome recycling factor"
	/calculated_mol_wt=20633
Region	7184

	/region_name="RRF" /note="Ribosome recycling factor (RRF). Ribosome recycling factor dissociates the posttermination complex, composed of the ribosome, deacylated tRNA, and mRNA, after	
	of the floosome, dealylated texa, and maka, after termination of translation. Thus ribosomes are 'recycled' and ready for another round of; cd00520" /db xref="CDD:29621"	
Site	<pre>order(3134,104107) /site_type="other" /note="hinge region" /db xref="CDD:29621"</pre>	
<u>CDS</u>	<pre>1186 /gene="fr" /locus_tag="BF0689" /coded_by="complement(NC_006347.1:814916815476)" /note="Rf; Frr, ribosome-recycling factor; release factor 4, RF4; recycles ribosomes upon translation termination along with release factor RF-3 and elongation factor EF-G; A GTPase-dependent process results in release of 50S from 70S; inhibited by release factor RF-1; essential for viability; structurally similar to tRNAs" /transl_table=11 /db xref="GeneDb;382176"</pre>	

G4 Blast analysis results for hypothetical proteins BF2494, BF1203 and BF0301 in *B. fragilis*

NCBI Blast:gi|60491326|emb|CAH06074.1| putative transmembrane...

Page 1 of 39

BLAST

Basic Local Alignment Search Tool

.

Edit and Resubmit Save Search Strategies Formatting options Download

gi|60491326|emb|CAH06074.1| putative transmembrane...

Results for: [Icl64607 gil60491326]emb]CAH06074.1] putative transmembrane protein [Bacteroides fragilis NCTC 9343](406aa) Vour BLAST job specified more than one input sequence. This box lets you choose which input sequence to show BLAST results for

Query ID Icl|64607 Icl|64607

ICI64607 Description gi[60491326]emb[CAH06074.1] putative transmembrane protein [Bacteroides fragilis NCTC 9343] Molecule type amino acid Query Length 406

Database Name

Description All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS projects Program BLASTP 2.2.22+ Citation

Reference Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402. Reference - compositional score matrix adjustment

and PS-BLAS1: a new generation of protein database search programs, Nucleic Acids Res. 20.3065-0402. Reference - compositional score matrix adjustment Stephen F. Attschul, John C. Wootton, E. Michael Gertz, Richa Agarwala, Aleksandr Morgulis, Alejandro A. Schäffer, and Yi-Kuo Yu (2005) "Protein database searches using compositionally adjusted substitution matrices", FEBS J. 272:5101-5109. Other reports: Search Summary (Taxonomy reports) [Distance tree of results] [Multiple alignment] Search Parameters

Search parameter name Search parameter value

Program	biastp	
Word size	3	
Expect value	10	
Hitlist size	100	
Gapcosts	11,1	
Matrix	BLOSUM62	
Filter string	F	
Genetic Code	1	
Window Size	40	
Threshold	11	
Composition-based stats	2	
	Database	

Posted dat	te		Jan 20, 2010 4:14 PM		
Number of	letters		3,542,056,219		
Number of	sequences		10,381,779		
Entrez que	ery		none		
,	Karlin-Altschul sl	atistics			
Param	s Ungappe	d Gappe			
Lambda	0.332433	0.267			
К	0.144686	0.041			
н	0.465429	0.14			
			Results Statistics		
			Results Statistics		
Result	s Statistic	s paramet	Results Statistics er name Results Statistics parameter value		
		s paramet			
Length ad		s paramet	er name Results Statistics parameter value		
Length ad Effective le	justment -		er name Results Statistics parameter value		
Length ad Effective le	justment ength of query		er name Results Statistics parameter value		
Length ad Effective li Effective li Effective s	justment ength of query ength of databas	e	er name Results Statistics parameter value		
Length ad Effective le Effective s Effective s	justment - ength of query ength of databas earch space earch space us	e	ar name Results Statistics parameter value 139 267 2098988938 560430046446		
Length ad Effective le Effective s Effective s Effective s	justment ength of query ength of databas earch space search space us Summary	e	ar name Results Statistics parameter value 139 267 2098988938 560430046446		
Length ad Effective le Effective s Effective s Graphic S Show Co	justment - ength of query ength of databas earch space search space us Summary nserved Doma	ed ins	ar name Results Statistics parameter value 139 267 2098988938 560430046446 560430046446		
Length ad Effective le Effective s Effective s Graphic S Show Co	justment - ength of query ength of databas earch space search space us Summary nserved Doma	ed ins	ar name Results Statistics parameter value 139 267 2098988938 560430046446		375
Length ad Effective le Effective le Effective s Effective s Graphic S Show Co Putative of	ustment - ength of query ength of databas earch space search space use Summary nserved Doma conserved dom	ed ins	ar name Results Statistics parameter value 139 267 2098988938 560430046446 560430046446	310	375
Length ad, Effective le Effective s Effective s Effective s Graphic S Show Co Putative s Query s	ustment - ength of query ength of databas earch space search space us <u>Summary</u> <u>nserved Doma</u> conserved dom eq.	ed ins nains have be	Image: second	, ^{3]6} , ,	375
Length ad Effective le Effective le Effective s Effective s Graphic S Show Co Putative of	ustment - ength of query ength of database exerch space exerch space us: Summary nserved Doma conserved Doma eq. nilies	ed ins nains have be	ar name Results Statistics parameter value 139 267 2098988938 560430046446 560430046446	316	375

http://blast.ncbi.nlm.nih.gov/Blast.cgi

NCBI Blast:gi|60491326|emb|CAH06074.1| putative transmembrane...

Descriptions

	ducing significant alignments: s to sort columns)					
rp_210036.1	putative transmembrane protein [Bacteroides fragilis NCTC 9343] >emb[CRH06074.1] putative transmembrane protein [Bacteroides fragilis NCTC 9343]	824	824	100%	0.0	G
ZP_04841755.1	<pre>conserved hypothetical protein [Bacteroides sp. 3 2_5] >ref[ZP_06093303.1] conserved hypothetical protein [Bacteroides sp. 2_1.6] >gb EES88336.1] conserved hypothetical protein [Bacteroides sp. 3_2.5] >gb EEZ25846.1] conserved hypothetical protein [Bacteroides sp. 2_1.16]</pre>	822	822	100%	0.0	
rP_097636.1	putative transport protein [Bacteroides fragilis YCH46] $>dbj[BAD47102.1]$ putative transport protein [Bacteroides fragilis YCH46]	822	822	100%	0.0	G
rP_001818702.1	hypothetical protein Oter 1818 [Opitutus terrae PB90-1] >gb ACB75102.1 protein of unknown function DUF418 [Opitutus terrae PB90-1]	261	261	97%	1e-67	G
ZP_05414587.1	putative membrane-associated protein [Bacteroides finegoldii DSM 17565] >gblEEX46425.1 putative membrane-associated protein [Bacteroides finegoldii DSM 17565]	241	241	95%	8e-62	
NP_813370.1	putative transport protein [Bacteroides thetaiotaomicron VPI-5482] >ref12P_04847173.11 conserved hypothetical protein [Bacteroides sp. 1] $[6] > dplAA079564.11$ conserved hypothetical protein, putative transport protein [Bacteroides thetaiotaomicron VPI-5482] >gb[EES68227.1] conserved hypothetical protein [Bacteroides sp. 1] $[-6]$	239	239	95%	4e-61	G
P_05757845.1	putative transport protein [Bacteroides sp. D2]	239	239	95%	5e-61	
ZP_02068252.1	hypothetical protein BACOVA_05266 [Bacteroides ovatus ATCC 8483] >gb EDO09405.1 hypothetical protein BACOVA_05266 [Bacteroides ovatus ATCC 8483]	238	238	95%	1e-60	
ZP_04552009.1	conserved hypothetical protein [Bacteroides sp. $2,2,4]$ >gb EE055115.1] conserved hypothetical protein [Bacteroides sp. $2,2,4]$	235	235	95%	7e-60	
ZP_05545092.1	<pre>conserved hypothetical protein [Parabacteroides sp. D13] >gb EEU51030.1 conserved hypothetical protein [Parabacteroides sp. D13]</pre>	233	233	95%	3e-59	
YP_001302036.1	putative membrane-associated protein [Parabacteroides distasonis ATCC 8503] >gb ABR42414.1] putative membrane-associated protein [Parabacteroides distasonis ATCC 8503]	233	233	95%	5e-59	G
ZP_05286207.1	putative membrane-associated protein [Bacteroides sp. 2_1_7]	231	231	95%	1e-58	111
ZP_04846930.1	conserved hypothetical protein [Bacteroides sp. 1_6] >gb[EES69620.1] conserved hypothetical protein [Bacteroides sp. 1_6]	230	230	97%	2e-58	
ZP_06075273.1	conserved hypothetical protein [Bacteroides sp. 2_1_33B] >gb[EEY85242.1] conserved hypothetical protein [Bacteroides sp. 2_1_33B]	230	230	95%	2e-58	
NP_811692.1	putative membrane-associated protein [Bacteroides thetaiotaomicron VPI-5482] >gb[AA077886.1] conserved hypothetical protein, putative membrane-associated protein [Bacteroides thetaiotaomicron VPI-5482] >482]	228	228	97%	1e-57	G
ZP_04842518.1	<pre>conserved hypothetical protein [Bacteroides sp. 3_2_5] >ref[ZP_06094020.1] conserved hypothetical protein [Bacteroides sp. 2_1_6] >gb[EES66904.1] conserved hypothetical protein [Bacteroides sp. 3_2_5] >gb]EEZ25112.1] conserved hypothetical protein [Bacteroides sp. 2_1_6]</pre>	227	227	96%	2e-57	
rP_100550.1	putative membrane-associated protein [Bacteroides fragilis YCH46] $^{\rm >dbj}[BAD50016.1]$ putative membrane-associated protein [Bacteroides fragilis YCH46]	226	226	968	4e-57	G
rP_212723.1	hypothetical protein BF3110 [Bacteroides fragilis NCTC 9343] >emb[CAR10805.1] conserved hypothetical membrane protein [Bacteroides fragilis NCTC 9343]	226	226	96%	5e-57	G
ZP_03014090.1	hypothetical protein BACINT_01653 [Bacteroides intestinalis DSM 17393] >gb/EDV06564.1 hypothetical protein BACINT_01653 [Bacteroides intestinalis DSM 17393]	224	224	96%	1e-56	
ZP_03678199.1	hypothetical protein BACCELL_02542 [Bacteroides cellulosilyticus DSM 14838] >gb EEF89824.1 hypothetical protein BACCELL_02542 [Bacteroides cellulosilyticus DSM 14338]	223	223	96%	3e-56	
ZP_05282878.1	hypothetical protein Bfra3_16553 [Bacteroides fragilis 3_1_12]	223	223	96%	4e-56	
ZP_03643854.1	hypothetical protein BACCOPRO_02228 [Bacteroides coprophilus DSM 18228] >gb[EEF76722.1] hypothetical protein BACCOPRO_02228 [Bacteroides coprophilus DSM 18228]	218	218	95%	1e-54	
rP_001299550.1	hypothetical protein BVU_2269 [Bacteroides vulgatus ATCC 8482] >gb ABR39928.1 conserved hypothetical membrane protein [Bacteroides vulgatus ATCC 8482]	218	218	96%	1e-54	G
ZP_05255382.1	<pre>conserved hypothetical protein [Bacteroides sp. 4_3 47FAA] >gb[EET15774.1] conserved hypothetical protein [Bacteroides sp. 4_3_47FAA]</pre>	217	217	96%	3e-54	
ZP_04558306.1	<pre>conserved hypothetical protein [Bacteroides sp. D4] >ref[ZP_06087176.1] conserved hypothetical protein [Bacteroides sp. 3_1_33FAA] >gb EE044758.1] conserved hypothetical protein [Bacteroides sp. D4] >qb EE223459.1] conserved hypothetical protein [Bacteroides sp. 3_1_33FAA]</pre>	216	216	96%	5e-54	
ZP_04540787.1	conserved hypothetical protein [Bacteroides sp. $9_1.42FAA]$ >gb[EE061489.1] conserved hypothetical protein [Bacteroides sp. $9_1.42FAA]$	215	215	96%	1e-53	
ZP_03302157.1	hypothetical protein BACDOR_03555 [Bacteroides dorei DSM 17855] >gblEEB24135.1 hypothetical protein BACDOR_03555 [Bacteroides dorei DSM 17855]	213	213	96%	2e-53	

http://blast.ncbi.nlm.nih.gov/Blast.cgi

Alignments Select All Get selected sequences Distance tree of results Multiple alignment

>ref|YP_210036.1| putative transmembrane protein [Bacteroides fragilis NCTC 9343]
emb[CAB06074.1] putative transmembrane protein [Bacteroides fragilis NCTC 9343]
Length=406

GENE ID: 3285991 BF0301 | putative transmembrane protein [Bacteroides fragilis NCTC 9343] (10 or fewer PubMed links)

		24 bits (2129), Expect = 0.0, Method: Compositional matrix ad = 406/406 (100%), Positives = 406/406 (100%), Gaps = 0/406 (0	
Query	1	MTHTQTITPKKRINSIDALRGFALIGIMLLHCMERFDLTLAPVVESPFWQAIDTAVYDSL MTHTOTITPKKRINSIDALRGFALIGIMLLHCMERFDLTLAPVVESPFWOAIDTAVYDSL	60
Sbjct	1	MTHTQTITPKKRINSIDALRGFALIGIMLLHCMERFDLTLAPVVESPFWQAIDTAVYDSL	60
Query	61	YFLFSGKSYAMFSLLFGLSFFMQMESQAAKGVDFRGRFLWRLALLFLFGYINGLVYMGEF YFLFSGKSYAMFSLLFGLSFFMOMESOAAKGVDFRGRFLWRLALLFLFGYINGLVYMGEF	120
Sbjct	61	YFLFSGKSYAMFSLLFGLSFFMQMESQAAKGVDFRGRFLWRLALLFLFGYINGLVYMGEF	120
Query	121	FMVYAVLGVFLIPLYKVPTRWLLVLCVLLFLQIPAVISFVSLLSDNVANEPTAAAAYMDR FMVYAVLGVFLIPLYKVPTRWLLVLCVLLFLQIPAVISFVSLLSDNVANEPTAAAAYMDR	180
Sbjct	121	FMVIAVLGVELIPLIKVFIKWLLVLCVLLFLQIPAVISFVSLLSDNVANEPIAAAAIMDR	180
Query	181	LFERAADVFINGSLMDVLSFNTFDGQSAKCLWVFNNFRYLQLLGLFIAGMLIGRQGIHKS LFERAADVFINGSLMDVLSFNTFDGQSAKCLWVFNNFRYLOLLGLFIAGMLIGROGIHKS	240
Sbjct	181	LFERADVFINGSLEDVLSFNTFDGQSAKCLWVFNNFRILQLLGLFIAGMLIGRQGIHKS	240
Query	241	EEKMVKYSRLFLPYCLAFWAVFYAVAFLLPVWGVDGFALRVGQTLFKTYGNLGQMMVYFC EEKMVKYSRLFLPYCLAFWAVFYAVAFLLPVWGVDGFALRVGOTLFKTYGNLGOMMVYFC	300
Sbjct	241	EEKMVKYSRLFLPYCLAFWAVFIAVAFLLPVWGVDGFALRVGQ1LFKTIGNLGQMMVYFC	300
Query	301	GFTLLYYRYKGOKVLDRIAPVGRMSVTNYMAQSIVGVSLFYGFGGNFAVEFNYLOSFLLG	360
Sbjct	301	GFTLLYYRYKGQKVLDRIAPVGRMSVTNYMAQSIVGVSLFYGFGGNFAVEFNYLQSFLLG GFTLLYYRYKGQKVLDRIAPVGRMSVTNYMAQSIVGVSLFYGFGGNFAVEFNYLQSFLLG	360
Query	361	AAFCVIQIAYSNWWIKRFYYGPMEWLWRSLTWFQVVPLSRRKASLG 406 AAFCVIOIAYSNWWIKRFYYGPMEWLWRSLTWFOVVPLSRRKASLG	
Sbjct	361	AAFCVIQIAISNWWIKRFIIGPHEWLWKSLIWFQVVPLSKKASLG AAFCVIQIAYSNWWIKRFYYGPMEWLWRSLIWFQVVPLSKKASLG 406	

>ref[ZP 04841755.1] conserved hypothetical protein [Bacteroides sp. 3_2_5] ref[ZP 0609330.1] conserved hypothetical protein [Bacteroides sp. 2_1_16] gb[EE285366.1] conserved hypothetical protein [Bacteroides sp. 3_2_5] length=412

Score = 822 bits (2123), Expect = 0.0, Method: Compositional matrix adjust. Identities = 404/406 (99%), Positives = 405/406 (99%), Gaps = 0/406 (0%)

Query	1	MTHTQTITPKKRINSIDALRGFALIGIMLLHCMERFDLTLAPVVESPFWQAIDTAVYDSL	60
Sbjct	7	MTHTQTITPKKRINSIDALRGFALIGIMLLHCMERFDLTLAPVVESPFWQAIDTAVYDSL MTHTQTITPKKRINSIDALRGFALIGIMLLHCMERFDLTLAPVVESPFWQAIDTAVYDSL	66
Query	61	YFLFSGKSYAMFSLLFGLSFFMQMESQAAKGVDFRGRFLWRLALLFLFGYINGLVYMGEF	120
Sbjct	67	YFLFSGKSYAMFSLLFGLSFFMQMESQAAKGVDFRGRFLWRLALLFLFGYINGLVYMGEF YFLFSGKSYAMFSLLFGLSFFMQMESQAAKGVDFRGRFLWRLALLFLFGYINGLVYMGEF	126
Query	121	FMVYAVLGVFLIPLYKVPTRWLLVLCVLLFLQIPAVISFVSLLSDNVANEPTAAAAYMDR	180
Sbjct	127	FMVYAVLGVFLIPLYKV TRWLLVLC+LLFLQIPAVISFVSLLSDNVANEPTAAAAYMDR FMVYAVLGVFLIPLYKVSTRWLLVLCILLFLQIPAVISFVSLLSDNVANEPTAAAAYMDR	186
Query	181	LFERAADVFINGSLMDVLSFNTFDGQSAKCLWVFNNFRYLQLLGLFIAGMLIGRQGIHKS	240
Sbjct	187	LFERAADVFINGSLMDVLSFNTFDGQSAKCLWVFNNFRYLQLLGLFIAGMLIGRQGIHKS LFERAADVFINGSLMDVLSFNTFDGQSAKCLWVFNNFRYLQLLGLFIAGMLIGRQGIHKS	246
Query	241	EEKMVKYSRLFLPYCLAFWAVFYAVAFLLPVWGVDGFALRVGQTLFKTYGNLGQMMVYFC	300
Sbjct	247	EEKMVKYSRLFLPYCLAFWAVFYAVAFLLPVWGVDGFALRVGQTLFKTYGNLGQMMVYFC EEKMVKYSRLFLPYCLAFWAVFYAVAFLLPVWGVDGFALRVGQTLFKTYGNLGQMMVYFC	306
Query	301	GFTLLYYRYKGQKVLDRIAPVGRMSVTNYMAQSIVGVSLFYGFGGNFAVEFNYLQSFLLG	360
Sbjct	307	GFTLLYYRYKGQKVLDRIAPVGRMSVTNYMAQSIVGVSLFYGFGGNFAVEFNYLQSFLLG GFTLLYYRYKGQKVLDRIAPVGRMSVTNYMAQSIVGVSLFYGFGGNFAVEFNYLQSFLLG	366
Query	361	AAFCVIQIAYSNWWIKRFYYGPMEWLWRSLTWFQVVPLSRRKASLG 406	
Sbict	367	AAFCVIQIAYSNWWIKRFYYGPMEWLWRSLTWFQVVPLSRRKASLG AAFCVIOIAYSNWWIKRFYYGPMEWLWRSLTWFOVVPLSRRKASLG 412	

>ref|YP_097636.1| putative transport protein [Bacteroides fragilis YCH46]
dbj|BAA47102.1| putative transport protein [Bacteroides fragilis YCH46]
Length=406

GENE ID: 3081573 BF0353 | putative transport protein [Bacteroides fragilis YCH46] (10 or fewer PubMed links)

Score Ident	= 8 ities	22 bits (2123), Expect = 0.0, Method: Compositional matrix ad = 405/406 (99%), Positives = 405/406 (99%), Gaps = 0/406 (0%)	just.	
Query	1	MTHTQTITPKKRINSIDALRGFALIGIMLLHCMERFDLTLAPVVESPFWQAIDTAVYDSL MTHTOTITPKKRINSIDALRGFALIGIMLHCMERFDLTLAPVVESPFWOAIDTAVYDSL	60	
Sbjct	1	MTHIQIIIPKKKINSIDALKGFALIGIMLLHCMERFDLTLAPVVESPFWQAIDIAVIDSL MTHIQIIIPKKRINSIDALKGFALIGIMLLHCMERFDLTLAPVVESPFWQAIDIAVIDSL	60	
Query	61	YFLFSGKSYAMFSLLFGLSFFMQMESQAAKGVDFRGRFLWRLALLFLFGYINGLVYMGEF YFLFSGKSYAMFSLLFGLSFFMOMESOAAKGVDFRGRFLWRLALLFLFGYINGLVYMGEF	120	
Sbjct	61	YFLFSGKSYAMFSLLFGLSFFMQMESQAAKGVDFRGRFLWRLALLFLFGYINGLVYMGEF	120	
Query	121	FMVYAVLGVFLIPLYKVPTRWLLVLCVLLFLQIPAVISFVSLLSDNVANEPTAAAAYMDR FMVYAVLGVFLIPLYKV TRWLLVLCVLLFLOIPAVISFVSLLSDNVANEPTAAAAYMDR	180	
Sbjct	121	FMVIAVLGVELIPLIKV IKWLLVLCVLLFLQIPAVISFVSLLSDNVANEPIAAAAIMDR FMVYAVLGVELIPLYKVSTRWLLVLCVLLFLQIPAVISFVSLLSDNVANEPIAAAAYMDR	180	

Query	181	LFERAADVFINGSLMDVLSFNTFDGQSAKCLWVFNNFRYLQLLGLFIAGMLIGRQGIHKS LFERAADVFINGSLMDVLSFNTFDGQSAKCLWVFNNFRYLOLLGLFIAGMLIGROGIHKS	240
Sbjct	181	LFERAADVFINGSLEDVLSFNIFDGQSAKCLWVFNNFRYLQLLGLFIAGMLIGRQGIHKS	240
Query	241	EEKMVKYSRLFLPYCLAFWAVFYAVAFLLPVWGVDGFALRVGQTLFKTYGNLGQMMVYFC	300
Sbjct	241	EEKMVKYSRLFLPYCLAFWAVFYAVAFLLPVWGVDGFALRVGQTLFKTYGNLGQMMVYFC EEKMVKYSRLFLPYCLAFWAVFYAVAFLLPVWGVDGFALRVGQTLFKTYGNLGQMMVYFC	300
Query	301	GFTLLYYRYKGQKVLDRIAPVGRMSVTNYMAQSIVGVSLFYGFGGNFAVEFNYLQSFLLG GFTLLYYRYKGQKVLDRIAPVGRMSVTNYMAQSIVGVSLFYGFGGNFAVEFNYLQSFLLG	360

http://blast.ncbi.nlm.nih.gov/Blast.cgi

NCBI Blast:gi|60492160|emb|CAH06923.1| putative anti-sigma...

Page 1 of 32

BLAST

Basic Local Alignment Search Tool

.

Edit and Resubmit Save Search Strategies Formatting options Download

gi|60492160|emb|CAH06923.1| putative anti-sigma...

Results for. Icl|86207 gi|60492160|emb|CAH06923.1| putative anti-sigma factor [Bacteroides fragilis NCTC 9343](309aa)
Vour BLAST job specified more than one input sequence. This box lets you choose which input sequence to show BLAST results for.

Query ID

Icl 86207

Icij65207 Description gil60492160[emb]CAH06923.1| putative anti-sigma factor [Bacteroides fragilis NCTC 9343] Molecule type amino acid Query Length 309

Database Name

Description

All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS projects Program BLASTP 2.2.22+ Citation

Reference Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

Reference - compositional score matrix adjustment Stephen F. Altschul, John C. Wootton, E. Michael Gertz, Richa Agarwala, Aleksandr Morgulis, Alejandro A. Schäffer, and Yi-Kuo Yu (2005) "Protein database searches using compositionally adjusted substitution matrices", FEBS J. 272:5101-5109. Other reports: Search Summary [Taxonomy reports] [Distance tree of results] [Multiple alignment] Search Parameters

Search parameter name Search parameter value

Program	blastp	
Word size	3	
Expect value	10	
Hitlist size	100	
Gapcosts	11,1	
Matrix	BLOSUM62	
Filter string	F	
Genetic Code	1	
Window Size	40	
Threshold	11	
Composition-based stats	2	
	Database	

Database parameter name Database parameter value

Posted date	Jan 20, 2010 4:14 PM	
Number of letters	3,542,056,219	
Number of sequences	10,381,779	
Entrez query	none	
Karlin Altechul etatietic	ne l	

Params Ungapped Gapped

Lambda	0.319277	0.267	
к	0.135008	0.041	
н	0.381721	0.14	

Results Statistics

Results Statistics parameter name Results Statistics parameter value

Multi-domains	X		and the second		FecR	Constant.	State Party	No.			
Superfamilies			FecR	superfami	ly)					
Query seq.	50	100		150	-	200	-	250	and and	-	309
Graphic Summary Show Conserved Domains Putative conserved domains h	ave been detected	and the second se	ige below	for detailed res	sults.						
Effective search space used		368513229575									
Effective search space		368513229575									
Effective length of database		2130134275									
Effective length of query		173									
Length adjustment		136									

http://blast.ncbi.nlm.nih.gov/Blast.cgi

Alignments Select All Get selected sequences Distance tree of results Multiple alignment

>ref[YP_098536.1] G putative anti-sigma factor [Bacteroides fragilis YCH46] ref[ZP_06091266.1] conserved hypothetical protein [Bacteroides sp. 2_1_16] dbj[BAD48002.1] G putative anti-sigma factor [Bacteroides fragilis YCH46] gb]EZ22652.1] conserved hypothetical protein [Bacteroides sp. 2_1_16] Length=321

GENE ID: 3082788 BF1252 | putative anti-sigma factor [Bacteroides fragilis YCH46] (10 or fewer PubMed links)

Score = 635 bits (1638), Expect = 2e-180, Method: Compositional matrix adjust. Identities = 309/309 (100%), Positives = 309/309 (100%), Gaps = 0/309 (0%)

Query	1	MTCEEKKDLFDRIESDEALKKEFLRMQNVVALTQILSRQDDSETSRKGKQHFMQLLFRKR MTCEEKKDLFDRIESDEALKKEFLRMONVVALTOILSRODDSETSRKGKOHFMOLLFRKR	60	
Sbjct	13	MTCEEKKDLFDRIESDEALKKEFLRMQNVVALTQILSRQDDSEISRKGKQHFMQLLFRKR	72	
Query	61	LKRAITVSLKYAAVFAVLVVGTFYTAKLYLSEEFGKSYTIVTAPKGORVKIELPDGTIAW	120	
Sbjct	73	LKRAITVSLKYAAVFAVLVVGTFYTAKLYLSEEFGKSYTIVTAPKGQRVKIELPDGTIAW LKRAITVSLKYAAVFAVLVVGTFYTAKLYLSEEFGKSYTIVTAPKGQRVKIELPDGTIAW	132	
Query	121	LSPCSRLRFAASFNETDRKIELDGATYFDVAKNPEKPFVVSAKGYRIRVLGTKFNISAYK	180	
Sbjct	133	LSPCSRLRFAASFNETDRKIELDGATYFDVAKNPEKPFVVSAKGYRIRVLGTKFNISAYK LSPCSRLRFAASFNETDRKIELDGATYFDVAKNPEKPFVVSAKGYRIRVLGTKFNISAYK	192	
Query	181	NSKEFETDLVEGCVHIYDPADIRNEVFLQPKEKAVLWGDRLMKRESDFDNEEYLKNGVVS	240	
Sbjct	193	NSKEFETDLVEGCVHIYDPADIRNEVFLQPKEKAVLWGDRLMKRESDFDNEEYLKNGVVS NSKEFETDLVEGCVHIYDPADIRNEVFLQPKEKAVLWGDRLMKRESDFDNEEYLKNGVVS	252	
Query	241	FLSEPFGRVLNSVALWNDVNIKIERSVNATORISGKFROSDSLESILKALQGAMPFKYKI	300	
Sbjct	253	FLSEPFGRVLNSVALWNDVNIKIERSVNATQRISGKFRQSDSLESILKALQGAMPFKYKI FLSEPFGRVLNSVALWNDVNIKIERSVNATQRISGKFRQSDSLESILKALQGAMPFKYKI	312	
Query	301	VSEEEIIIY 309		

Sbjct 313 VSEEEIIIY 321

>ref[YP_210870.1] putative anti-sigma factor [Bacteroides fragilis NCTC 9343]
emb[CAB06923.1] putative anti-sigma factor [Bacteroides fragilis NCTC 9343]
Length=309

GENE ID: 3288859 BF1203 | putative anti-sigma factor [Bacteroides fragilis NCTC 9343] (10 or fewer PubMed links)

Score = 635 bits (1637), Expect = 3e-180, Method: Compositional matrix adjust. Identities = 309/309 (100%), Positives = 309/309 (100%), Gaps = 0/309 (0%)

Query	1	MTCEEKKDLFDRIESDEALKKEFLRMQNVVALTQILSRQDDSETSRKGKQHFMQLLFRKR MTCEEKKDLFDRIESDEALKKEFLRMONVVALTOILSRODDSETSRKGKOHFMOLLFRKR	60	
Sbjct	1	MTCEEKKDLFDRIESDEALKKEFLRMQNVVALIGIISRQDDSEISRKGKQHFMQLLFRKR	60	
Query	61	LKRAITVSLKYAAVFAVLVVGTFYTAKLYLSEEFGKSYTIVTAPKGORVKIELPDGTIAW	120	
Sbjct	61	LKRAITVSLKYAAVFAVLVVGTFYTAKLYLSEEFGKSYTIVTAPKGQRVKIELPDGTIAW LKRAITVSLKYAAVFAVLVVGTFYTAKLYLSEEFGKSYTIVTAPKGQRVKIELPDGTIAW	120	
Query	121	LSPCSRLRFAASFNETDRKIELDGATYFDVAKNPEKPFVVSAKGYRIRVLGTKFNISAYK	180	
Sbjct	121	LSPCSRLRFAASFNETDRKIELDGATYFDVAKNPEKPFVVSAKGYRIRVLGTKFNISAYK LSPCSRLRFAASFNETDRKIELDGATYFDVAKNPEKPFVVSAKGYRIRVLGTKFNISAYK	180	
Query	181	NSKEFETDLVEGCVHIYDPADIRNEVFLQPKEKAVLWGDRLMKRESDFDNEEYLKNGVVS NSKEFETDLVEGCVHIYDPADIRNEVFLOPKEKAVLWGDRLMKRESDFDNEEYLKNGVVS	240	
Sbjct	181	NSKEFEIDLVEGCVHIIDPADIRNEVFLQPKEKAVLWGDRLMKRESDFDNEEILRNGVS NSKEFETDLVEGCVHIYDPADIRNEVFLQPKEKAVLWGDRLMKRESDFDNEEYLKNGVVS	240	
Query	241	FLSEPFGRVLNSVALWNDVNIKIERSVNATORISGKFROSDSLESILKALQGAMPFKYKI	300	
Sbjct	241	FLSEPFGRVLNSVALWNDVNIKIERSVNATORISGKFROSDSLESILKALOGAMPFKYKI FLSEPFGRVLNSVALWNDVNIKIERSVNATORISGKFROSDSLESILKALOGAMPFKYKI	300	
Query	301	VSEEEIIIY 309		
Sbjct	301	VSEEEIIIY VSEEEIIIY 309		

>ref[ZP 04840883.1| conserved hypothetical protein [Bacteroides sp. 3 2 5]
gblEs897484.1| conserved hypothetical protein [Bacteroides sp. 3 2_5]
Length=321

Score = 631 bits (1627), Expect = 3e-179, Method: Compositional matrix adjust. Identities = 308/309 (99%), Positives = 308/309 (99%), Gaps = 0/309 (0%)

Query	1	MTCEEKKDLFDRIESDEALKKEFLRMQNVVALTQILSRQDDSETSRKGKQHFMQLLFRKR MTCEEKKDLFDRIESDEALKKEFLRMONVVALTOILS ODDSETSRKGKOHFMOLLFRKR	60
Sbjct	13	MTCEEKKDLFDRIESDEALKKEFLRMQNVVALTQILS QDDSEISKGKQHFMQLLFRKR	72
Query	61	LKRAITVSLKYAAVFAVLVVGTFYTAKLYLSEEFGKSYTIVTAPKGQRVKIELPDGTIAW	120
Sbjct	73	LKRAITVSLKYAAVFAVLVVGTFYTAKLYLSEEFGKSYTIVTAPKGQRVKIELPDGTIAW LKRAITVSLKYAAVFAVLVVGTFYTAKLYLSEEFGKSYTIVTAPKGQRVKIELPDGTIAW	132
Query	121	LSPCSRLRFAASFNETDRKIELDGATYFDVAKNPEKPFVVSAKGYRIRVLGTKFNISAYK	180
Sbjct	133	LSPCSRLRFAASFNETDRKIELDGATYFDVAKNPEKPFVVSAKGYRIRVLGTKFNISAYK LSPCSRLRFAASFNETDRKIELDGATYFDVAKNPEKPFVVSAKGYRIRVLGTKFNISAYK	192
Query	181	NSKEFETDLVEGCVHIYDPADIRNEVFLQPKEKAVLWGDRLMKRESDFDNEEYLKNGVVS	240
Sbjct	193	NSKEFETDLVEGCVHIYDPADIRNEVFLQPKEKAVLWGDRLMKRESDFDNEEYLKNGVVS NSKEFETDLVEGCVHIYDPADIRNEVFLQPKEKAVLWGDRLMKRESDFDNEEYLKNGVVS	252
Query	241	FLSEPFGRVLNSVALWNDVNIKIERSVNATQRISGKFRQSDSLESILKALQGAMPFKYKI	300
Sbjct	253	FLSEPFGRVLNSVALWNDVNIKIERSVNATQRISGKFRQSDSLESILKALQGAMPFKYKI FLSEPFGRVLNSVALWNDVNIKIERSVNATQRISGKFRQSDSLESILKALQGAMPFKYKI	312
Query	301	VSEEEIIIY 309	
Sbjct	313	VSEEEIIIY VSEEEIIIY 321	

>ref[ZP 05280128.1| putative anti-sigma factor [Bacteroides fragilis 3_1_12] Length=321

Score = 586 bits (1511), Expect = 1e-165, Method: Compositional matrix adjust. Identities = 279/309 (90%), Positives = 293/309 (94%), Gaps = 0/309 (0%)

http://blast.ncbi.nlm.nih.gov/Blast.cgi

NCBI Blast:gi|60492160|emb|CAH06923.1| putative anti-sigma...

Page 3 of 32

Descriptions Legend for links to other resources: U UniGene E GEO G Gene S Structure M Map Viewer es producing significant alignments: Sequences producing significant alignments: (Click headers to sort columns) YP_098536.1 putative anti-sigma factor [Bacteroides fragilis YCH46] >ref[ZP_06091266.1] conserved hypothetical protein [Bacteroides sp. 2_1_16] >dbj|BDA08002.1] putative anti-sigma factor [Bacteroides fragilis YCH46] >gb|EE226652.1] conserved hypothetical protein [Bacteroides sp. 2_1_16] 635 100% 2e-180 G 635 putative anti-sigma factor [Bacteroides fragilis NCTC 9343] >emb[CAH06923.1] putative anti-sigma factor [Bacteroides fragilis NCTC 9343] YP 210870.1 635 100% 3e-180 G conserved hypothetical protein [Bacteroides sp. 3 2 5] >qblEES87484.1| conserved hypothetical protein [Bacteroides sp. 3 2 5] ZP 04840883.1 631 100% 3e-179 ZP 05280128.1 putative anti-sigma factor [Bacteroides fragilis 3_1_12] 586 586 100% 1e-165 ZP_05283939.1 hypothetical protein Bfra3_21925 [Bacteroides fragilis 3_1_12] 252 252 100% 3e-65 nypochetical protein Bfra3_21925 [Bacteroides fragilis 3_1_12] putative anti-sigma factor [Bacteroides fragilis YCH46] >ref[YP_21335.1| hypothetical protein B73745 [Bacteroides fragilis NCTC 9343] >ref[ZP 04844595.1] conserved hypothetical protein [Bacteroides sp. 3_2_5] >dbj|BAD50712.1] putative anti-sigma factor [Bacteroides fragilis YCH46] >emb[CAH09426.1] putative membrane protein [Bacteroides fragilis NCTC 9343] >dbjEES84495.1| conserved hypothetical protein [Bacteroides sp. 3_2_5] 1e-64 G YP 101246.1 250 100% conserved hypothetical protein [Bacteroides sp. 2_1_16] >qb1EEZ23941.1| conserved hypothetical protein [Bacteroides sp. 2_1_16] ZP_06095273.1 250 100% 1e-64 putative anti-sigma factor [Bacteroides thetaiotaomicron VPI-5482] 230 >gblAA077304.11 putative anti-sigma factor [Bacteroides thetaiotaomicron VPI-5482] NP_811110.1 230 998 2e-58 G hypothetical protein PRABACTJOHN_01664 [Parabacteroides johnsonii DSM 18315] >gb[EEC96931.1| hypothetical protein PRABACTJOHN_01664 [Parabacteroides johnsonii DSM 18315] ZP_03476000.1 2e-43 hypothetical protein BACCELL_02300 [Bacteroides cellulosilyticus DSM 14838] >gb[EEF90053.1] hypothetical protein BACCELL_02300 [Bacteroides cellulosilyticus DSM 14838] 4e-42 ZP_03677961.1 96% hypothetical protein PARMER_04138 [Parabacteroides merda 33184] >gb|EDN84686.1| hypothetical protein PARMER_04138 [Parabacteroides merdae ATCC 43184] ZP_02034096.1 ae ATCC 168 168 8e-40 putative anti-sigma factor [Bacteroides finegoldii DSM 17565] >gb|EEX46802.1| putative anti-sigma factor [Bacteroides finegoldii ZP_05414155.1 161 161 998 7e-38 >gb|EEX468 DSM 17565] conserved hypothetical protein [Bacteroides sp. Dl] >ref[2P_06084784.1] conserved hypothetical protein [Bacteroides sp. 2_1_22] >gb[EE051361.1] conserved hypothetical protein [Bacteroides sp. Dl] >gb[EE020828.1] conserved hypothetical protein [Bacteroides sp. 2_1_22] ZP 04544887.1 161 161 999 80-38 putative anti-sigma factor [Bacteroides sp. D2] ZP 05758326.1 159 999 36-37 hypothetical protein BACCELL_02215 [Bacteroides cellulosilyticus DSM 14838] >gb|EEF90135.1| hypothetical protein BACCELL_02215 [Bacteroides cellulosilytious DSM 14838] ZP 03677876.1 hypothetical protein BACCELL 02574 [Bacteroides cellulosilyticus DBM 14838] >gblEEF89900.11 hypothetical protein BACCELL 02574 [Bacteroides cellulosilyticus DSM 14838] hypothetical protein BACSTE 02087 [Bacteroides stercoris ATCC 43183] >gblEDS14404.11 hypothetical protein BACSTE 02087 [Bacteroides stercoris ATCC 43183] hypothetical protein BACSTE 02087 [Pacteroides stercoris ATCC ZP 03678231.1 154 998 2e-35 ZP 02435836.1 999 2e-35 hypothetical protein BACUNI_00286 [Bacteroides uniformis ATCC 8492] >gltDo56000.1] hypothetical protein BACUNI_00286 [Bacteroides uniformis ATCC 8492] ZP 02068886.1 998 3e-35 hypothetical protein BACINT_01666 [Bacteroides intestinalis DSM 17393] >gb|EDV06597.1| hypothetical protein BACINT_01686 [Bacteroides intestinalis DSM 17393] ZP 03014123.1 99% 3e-35 [Bacteroides intestinalis DSM 17393] hypothetical protein BACDOR_01271 [Bacteroides dorei DSM 17855] >ref[2P_04554581.1] conserved hypothetical protein [Bacteroides sp. D4] >gblEED26249.1] hypothetical protein BACDOR_01271 [Bacteroides dorei DSM 17855] >gblEE047637.1] conserved hypothetical protein [Bacteroides sp. D4] hypothetical protein PRABACTJOHN 03305 [Parabacteroides johnsonii DSM 18315] >gblEE05310.1] hypothetical protein PRABACTJOHN_03305 [Parabacteroides johnsonii DSM 18315] ZP 03299904.1 878 5e-35 152 968 5e-35 ZP 03477618.1 putative anti-sigma factor [Parabacteroides distasonis ATCC 8503] 152 >gblARR45043.11 putative anti-sigma factor [Parabacteroides distasonis ATCC 8503] 152 95% YP 001304665.1 5e-35 G putative anti-sigma factor [Bacteroides vulgatus ATCC 8482] >gb[ABR38211.1] putative anti-sigma factor [Bacteroides vulgatus ATCC 8482] 152 6e-35 G YP 001297833.1 87% conserved hypothetical protein [Bacteroides sp. 4_3_47FAA] >gb[EET15470.1] conserved hypothetical protein [Bacteroides sp. 4_3_47FAA] 878 ZP 05255078.1 8e-35 4.3.47EAA) putative anti-sigma factor [Bacteroides fragilis YCH46] >ref(YP_213696.1] putative anti-sigma factor [Bacteroides fragilis NCTC 9343] >ref(ZP_04844033.1] conserved hypothetical protein [Bacteroides sp. 3.2_5] >ref(ZP_06055115.1] conserved hypothetical protein [Bacteroides fragilis NCTC 9343] >dplESB527.1] conserved hypothetical protein [Bacteroides fragilis NCTC 9343] >dplESB527.1] conserved hypothetical protein [Bacteroides protein] 3.2_5] >gblEEB524266.1] conserved hypothetical protein [Bacteroides 150 81% YP 101600.1 150 1e-34 G http://blast.ncbi.nlm.nih.gov/Blast.cgi 21/01/2010

637

NCBI Blast:gi|60681974|ref|YP_212118.1| hypothetical...

Page 1 of 35

BLAST

.

Basic Local Alignment Search Tool

Edit and Resubmit Save Search Strategies Formatting options Download

gi|60681974|ref|YP_212118.1| hypothetical...

Results for: IcI[73919 gi]60681974[ref]YP_212118.1] hypothetical protein BF2494 [Bacteroides fragilis NCTC 9343](396aa) Your BLAST job specified more than one input sequence. This box lets you choose which input sequence to show BLAST results for.

Query ID Icl 73919

Ici[/3919 Description gi[60681974|ref]YP_212118.1| hypothetical protein BF2494 [Bacteroides fragilis NCTC 9343] Molecule type amino acid Query Length 396

Database Name

Description All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS projects Program BLASTP 2.2.22+ Citation

Reference Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

Reference - compositional score matrix adjustment Stephen F. Altschul, John C. Wootton, E. Michael Gertz, Richa Agarwala, Aleksandr Morgulis, Alejandro A. Schäffer, and Yi-Kuo Yu (2005) "Protein database searches using compositionally adjusted substitution matrices", FEBS J. 272:5101-5109. Other reports: Search Summary [Taxonomy reports] [Distance tree of results] [Related Structures] [Multiple alignment] Search Parameters

Search parameter name Search parameter value

Program	blastp	
Word size	3	
Expect value	10	
Hitlist size	100	
Gapcosts	11,1	
Matrix	BLOSUM62	
Filter string	F	
Genetic Code	1	
Window Size	40	
Threshold	11	
Composition-based stats	2	
	Database	

Database parameter name Database parameter value

Posted date	Jan 20, 2010 4:14 PM
Number of letters	3,542,056,219
Number of sequences	10,381,779
Entrez query	none

Karlin-Altschul statistics

Params Ungapped Gapped

Lambda	0.314287	0.267	
К	0.13096	0.041	
н	0.371554	0.14	

Results Statistics

Results Statistics parameter name Results Statistics parameter value

Length adjustment	
Effective length of query	
Effective length of database	
Effective search space	
Effective search space used	

139
257
2098988938
539440157066
539440157066

Graphic Summary Show Conserved Domains

Putative conserved domains have been detected, click on the image below for detailed results.

http://blast.ncbi.nlm.nih.gov/Blast.cgi

NCBI Blast:gi|60681974|ref|YP_212118.1| hypothetical... Page 2 of 35 100 250 Query seq. 17 A AAA A AAA AAA binding su Specific hits TPR TPR superfamily Superfamilies Multi-domains PEP_TPR_lipo Distribution of 140 Blast Hits on the Query Sequence [?] An overview of the database sequences aligned to the query sequence is shown. The score of each alignment is indicated by one of five different colors, which divides the range of scores into five groups. Multiple alignments on the same database sequence are connected by a striped line. Mousing over a hit sequence causes the definition and score to be shown in the window at the top, clicking on a hit sequence takes the user to the associated alignments. New: This graphic is an overview of database sequences aligned to the query sequence. Alignments are color-coded by score, within one of five score ranges. Multiple alignments on the same database sequence aligneents. Mousing over an alignment shows the alignment definition and score in the box at the top. Clicking an alignment displays the alignment detail. Color key for alignment scores <40 40-50 50-80 80-20 Query 70 210 1280 140 350 0

http://blast.ncbi.nlm.nih.gov/Blast.cgi

NCBI Blast:gi|60681974|ref|YP_212118.1| hypothetical...

Descriptions

Sequences producing sig	mificant alignments:	Score (Bits)	E Value	
	repeat-containing protein [Bacteroides f	795	0.0	G
ref YP_212118.1 hypot ref ZP_05281526.1 TPR	chetical protein BF2494 [Bacteroides fra	795	0.0	9
	R repeat-containing protein [Bacteroides ratricopeptide repeat family protein [B	624	0.0 9e-177	
	othetical protein BACCAC_00554 [Bactero	621	5e-176	
ref ZP_05756644.1 TPR	R repeat-containing protein [Bacteroides	620	1e-175	
	oothetical protein BACOVA_00723 [Bactero	620	1e-175	
	R repeat-containing protein [Bacteroides	617	9e-175	
the second s	repeat-containing protein [Bacteroides	598	3e-169	
ref NP_809813.1 TPR r	repeat-containing protein [Bacteroides t pothetical protein BACEGG_02718 [Bactero	598 596	3e-169	
ref ZP_03459917.1 hyp ref ZP_02435236.1 hyp	othetical protein BACSTE 01478 [Bactero	592	2e-168 2e-167	
	served hypothetical protein [Bacteroide	586	1e-165	
ref[ZP_02070574.1] hyp	oothetical protein BACUNI_01995 [Bactero	586	2e-165	
ref ZP_03680531.1 hyp	oothetical protein BACCELL_04904 [Bacter	585	4e-165	
ref ZP 03014415.1 hyp	pothetical protein BACINT_01988 [Bactero pothetical protein BACCOP_02007 [Bactero	567	9e-160	
	pothetical protein BACCOP_02007 [Bactero pothetical protein BACCOPRO 02619 [Bacte	256	3e-66 2e-63	
	-			G
	PR repeat-containing protein [Bacteroide pothetical protein BACDOR_02699 [Bactero	247 246	2e-63 2e-63	-
	domain-containing protein [Bacteroides	246	5e-63	
	domain-containing protein [Bacteroides	240	2e-61	
	PR domain-containing protein [Parabacter	238	7e-61	G
	domain-containing protein [Parabacter	238	7e-61	_
	othetical protein BACPLE_00760 [Bactero	238	1e-60	
ref ZP_06253438.1 put	ative TPR domain protein [Prevotella co	230	2e-58	
	served hypothetical protein [Prevotella	_211	2e-52	
	ative TPR domain protein [Prevotella or	206	5e-51 9e-51	
	ative TPR domain protein [Prevotella me served hypothetical protein [Prevotella	205	9e-51 7e-49	
	ative TPR domain protein [Prevotella ve	198	2e-48	
	domain protein [Porphyromonas uenonis	195	7e-48	
	othetical protein PARMER_01764 [Parabac	190	2e-46	-
ef YP_001928992.1 TP	PR domain protein [Porphyromonas gingiva	186	5e-45	G
cef NP_905547.1 TPR d	domain-containing protein [Porphyromonas	184	2e-44	G
	served hypothetical protein [Prevotella	182	7e-44	
cef[ZP_06269395.1] con	served hypothetical protein [Prevotella	181	2e-43	
ef[ZP_03475728.1] hyp	pothetical protein PRABACTJOHN_01391 [Pa	171	2e-40	
	served hypothetical protein [Prevotella	168	8e-40	
	R domain protein [Propionibacterium sp R domain protein [Porphyromonas endodont	_147	2e-33 2e-33	
	ative tetratricopeptide repeat-containi	147	3e-30	
	ative TPR domain protein [Prevotella or	132	8e-29	
	ratricopeptide repeat protein [Prevotel	122	9e-26	
	served hypothetical protein [Prevotella	114	2e-23	
	ative TPR domain protein [Prevotella ta		8e-22	
	ative TPR domain protein [Prevotella ve cratricopeptide repeat protein [Prevotel	108	9e-22 4e-21	
	ative TPR domain protein [Prevotella me	100	2e-20	
	ratricopeptide repeat protein [Prevotel	100	2e-19	
	othetical protein HMPREF0971_01238 [Pre	100	4e-19	
ef[YP_100914.1] hypot	hetical protein BF3637 [Bacteroides fra	95.5	9e-18	G
cef[2P_04843481.1] con	served hypothetical protein [Bacteroide	95.5	1e-17	
ef[ZP_03676726.1] hyp	othetical protein BACCELL_01053 [Bacter	94.0	2e-17	
	pothetical protein Bfra3_18177 [Bacteroi	92.4	8e-17	
	served hypothetical protein [Prevotella pothetical protein BACPLE_03064 [Bactero	89.7	5e-16 7e-16	
	domain protein [Prevotella melaninogen	87.4	3e-15	
	ative TPR domain protein [Prevotella co	84.7	2e-14	
ef ZP_05857834.1 TPR	domain protein [Prevotella veroralis F	83.6	4e-14	
	othetical protein ALPR1_12965 [Algoriph	67.0	4e-09	
	oothetical protein ALIPUT_00273 [Alistip	63.2	6e-08	
	ratricopeptide repeat protein [Prevotel	62.8	6e-08	17
	stratricopeptide TPR_2 repeat protein [R	62.4	1e-07	G
	epeat-containing protein [Gramella fors	59.7	6e-07	G
	pothetical protein HG1285_15791 [Hydroge	59.3	8e-07	0
		58.2	2e-06	S
	ssign Of Stable Alpha-Helical Arrays Fro			
	pothetical protein TPASS_0067 [Treponem	57.8	2e-06	G
ef[YP_001933073.1] hy ef[NP_218507.1] hypot	pothetical protein TPASS_0067 [Treponem chetical protein TP0067 [Treponema palli	57.8 57.8	2e-06	G
ef[YP_001933073.1] hy ef[NP_218507.1] hypot	pothetical protein TPASS_0067 [Treponem	57.8		G
ef YP_001933073.1 hy ef NP_218507.1 hypot ef ZP_05623358.1 TPR	pothetical protein TPASS_0067 [Treponem chetical protein TP0067 [Treponema palli	57.8 57.8	2e-06	G
ref[YP_001933073.1] hypot ref[NP_218507.1] hypot ref[ZP_05623358.1] TPR ref[NP_972674.1] TPR d	<pre>rpothetical protein TPASS_0067 [Treponem thetical protein TP0067 [Treponema palli domain protein [Treponema vincentii AT domain-containing protein [Treponema den</pre>	57.8 57.8 56.2	2e-06 6e-06	G
ref YP 001933073.1 hy ref NP 218507.1 hypot ref ZP 05623358.1 TPR ref NP 972674.1 TPR d ref YP 003125075.1 hy	<pre>rpothetical protein TPASS_0067 [Treponem hetical protein TP0067 [Treponema palli domain protein [Treponema vincentii AT domain-containing protein [Treponema den rpothetical protein Cpin_5445 [Chitinoph</pre>	57.8 57.8 56.2 55.8 55.8	2e-06 6e-06 9e-06 9e-06	G
ref YP_001933073.1 hy ref NP_218507.1 hypot ref ZP_05623358.1 TPR ref YP_072674.1 TPR d ref YP_003125075.1 hy ref YP_001156602.1 TP	<pre>rpothetical protein TPASS_0067 [Treponem thetical protein TP0067 [Treponema palli t domain protein [Treponema vincentii AT Somain-containing protein [Treponema den rpothetical protein Cpin_5445 [Chilinoph R repeat-containing protein [Polynucleo</pre>	57.8 57.8 56.2 55.8 55.8 55.1	2e-06 6e-06 9e-06 9e-06 1e-05	6666
ref YP_001933073.1 hy ref NP_218507.1 hypot ref ZP_05623356.1 TPR ref NP_972674.1 TPR d ref YP_003125075.1 hyp ref YP_001156602.1 TP ref YP_001552243.1 Te	<pre>rpothetical protein TPASS_0067 [Treponem thetical protein TP0067 [Treponema palli t domain protein [Treponema vincentii AT komain-containing protein [Treponema den rpothetical protein Cpin_5445 [Chitinoph R repeat-containing protein [Polynucleo stratricopeptide TPR_2 repeat protein [G</pre>	57.8 57.8 56.2 55.8 55.8 55.1 54.7	2e-06 6e-06 9e-06 9e-05 2e-05	G
ref YP_001933073.1 hy ref NP_218507.1 hypot ref ZP_0523359.1] TPR ref NP_972674.1 TPR ref YP_0011565075.1 hy ref YP_001156502.1 TP ref YP_00156502.1 TP ref YP_0015603.1 Te ref YP_00156304.1 Te	<pre>rpothetical protein TPASS_0067 [Treponem hetical protein TP0067 [Treponema palli domain protein [Treponema vincentii AT lomain-containing protein [Treponema den rpothetical protein Cpin_5445 [Chitinoph R repeat-containing protein [Polynucleo tratricopeptide TPR 2 repeat protein [G renturous gliding protein T [Stigmatella</pre>	57.8 57.8 56.2 55.8 55.8 55.1 54.7 54.7	2e-06 6e-06 9e-06 1e-05 2e-05 2e-05	0000
ref YP_001933073.1 hy ref NP_218507.1 hypot ref XP_05623358.1 TPR ref XP_05623358.1 TPR ref YP_001325075.1 hy ref YP_00135602.1 TP ref YP_001352243.1 TP ref YP_001352243.1 adv ref XP_01463944.1 adv	<pre>rpothetical protein TPASS_0067 [Treponem hetical protein TP0067 [Treponema palli domain protein [Treponema vincentii AT iomain-containing protein [Treponema den rpothetical protein Cpin_5445 [Chitinoph R repeat-containing protein [Polynucleo stratricopeptide TPR_2 repeat protein [G renturous gliding protein [Tsigmatella repeat-containing protein [Trichodesmium</pre>	57.8 57.8 56.2 55.8 55.8 55.1 55.1 54.7 54.7 54.7	2e-06 6e-06 9e-06 9e-06 1e-05 2e-05 2e-05 2e-05	000000
ref YP_001933073.1 hy ref NP_218507.1 hypot ref ZP_05623358.1 TPR ref YP_003125075.1 hy ref YP_001156602.1 TP ref YP_001562243.1 TP ref YP_001562243.1 adv ref YP_720410.1 adv ref YP_720410.1 TPR r rdb]ZP07 A Chain A, Cr	<pre>rpothetical protein TPASS_0067 [Treponem hetical protein TP0067 [Treponema palli domain protein [Treponema vincentii AT lomain-containing protein [Treponema den rpothetical protein Cpin_5445 [Chitinoph R repeat-containing protein [Polynucleo stratricopeptide TPR_2 repeat protein [G renturous gliding protein T [Stigmatella repeat-containing protein [Trichodesmium systal Structure Of An 8 Repeat Consensu</pre>	57.8 57.8 56.2 55.8 55.8 55.1 54.7 54.7 54.7 54.7	2e-06 6e-06 9e-06 1e-05 2e-05 2e-05 2e-05 2e-05	66666
ref YP_001933073.1 hy ref IP_218507.1 hypot ref[ZP_05623358.1] TPR ref[ZP_05623358.1] TPR ref[YP_00125075.1] hy ref[YP_00125075.1] hy ref[YP_00156602.1] TP ref[ZP_01463944.1] adv ref[ZP_01463944.1] adv ref[YP_70410.1] TPR r red[ZP_01A Chain A, Cr ref[YP_002493579.1] TP	<pre>rpothetical protein TPASS_0067 [Treponem thetical protein TP0067 [Treponema palli t domain protein [Treponema vincentii AT homain-containing protein [Treponema den prothetical protein Cpin_5445 [Chitinoph repeat-containing protein [Polynucleo tratricopeptide TPR_2 repeat protein [G renturous gliding protein T [Stigmatella repeat-containing protein [Trichodesmium rystal Structure Of An 8 Repeat Consensu repeat-containing protein [Anaeromyxo</pre>	57.8 57.8 56.2 55.8 55.8 55.1 55.1 54.7 54.7 54.7	2e-06 6e-06 9e-06 1e-05 2e-05 2e-05 2e-05 2e-05 2e-05	000000000
ref YP_001933073.1 hy ref YP_018507.1 hypot ref ZP_05623358.1 TPR ref YP_01325075.1 hypot ref YP_00125075.1 hy ref YP_00156602.1 TP ref YP_01952243.1 TP ref ZP_01463944.1 adv ref YP_720410.1 TPR r cdbl2P071A Chain A, Cr ref YP_002493579.1 TP	<pre>rpothetical protein TPASS_0067 [Treponem hetical protein TP0067 [Treponema palli domain protein [Treponema vincentii AT lomain-containing protein [Treponema den rpothetical protein Cpin_5445 [Chitinoph R repeat-containing protein [Polynucleo stratricopeptide TPR_2 repeat protein [G renturous gliding protein T [Stigmatella repeat-containing protein [Trichodesmium systal Structure Of An 8 Repeat Consensu</pre>	57.8 57.8 56.2 55.8 55.8 55.1 54.7 54.7 54.7 54.7	2e-06 6e-06 9e-06 1e-05 2e-05 2e-05 2e-05 2e-05	0000000000
ref YP_001933073.1 hy ref YP_018507.1 hypot ref ZP_05623358.1 TPR cef YP_003125075.1 hy ref YP_001156602.1 TP ref YP_001952243.1 TP ref YP_001952243.1 TP ref YP_720410.1 TPR r ref YP_720410.1 TPR r ref YP_002493579.1 TP ref YP_002493579.1 TP	<pre>rpothetical protein TPASS_0067 [Treponem thetical protein TP0067 [Treponema palli t domain protein [Treponema vincentii AT homain-containing protein [Treponema den prothetical protein Cpin_5445 [Chitinoph repeat-containing protein [Polynucleo tratricopeptide TPR_2 repeat protein [G renturous gliding protein T [Stigmatella repeat-containing protein [Trichodesmium rystal Structure Of An 8 Repeat Consensu repeat-containing protein [Anaeromyxo</pre>	57.8 57.8 55.8 55.8 55.1 54.7 54.7 54.7 54.7 54.7 54.3	2e-06 6e-06 9e-06 1e-05 2e-05 2e-05 2e-05 2e-05 2e-05	000000000
ref YP_001933073.1 hy ref NP_218507.1 hypot ref[ZP_05623358.1 TPR ref[YP_003125075.1 hypot ref YP_001156602.1 TP ref YP_00152243.1 Te ref[ZP_01463944.1 adv ref[YP_720410.1 TPR r ref[YP_002493579.1] TP ref[YP_00126739.1] TP ref[YP_00126739.1] TP ref[YP_466187.1] TPR r	<pre>rpothetical protein TPASS_0067 [Treponem hetical protein TP0067 [Treponema palli domain protein [Treponema vincentii AT bomain-containing protein [Treponema den prothetical protein Cpin_5445 [Chitinoph PR repeat-containing protein [Polynucleo stratricopeptide TPR_2 repeat protein [G renturous gliding protein T [Stigmatella repeat-containing protein [Trichodesmium rystal Structure Of An 8 Repeat Consensu PR repeat-containing protein [Anaeromyxo PR nomain containing protein [Tetrahymen</pre>	57.8 56.2 55.8 55.8 55.1 54.7 54.7 54.7 54.7 54.7 54.3 53.9	2e-06 6e-06 9e-06 1e-05 2e-05 2e-05 2e-05 2e-05 2e-05 3e-05	0000000000

http://blast.ncbi.nlm.nih.gov/Blast.cgi

NCBI Blast:gi|60681974|ref|YP_212118.1| hypothetical ...

Page 4 of 35

ref ZP 01253714.1] TPR repeat [Psychroflexus torquis ATCC 700	53.1	5e-05	
ref[YP 591514.1] TPR repeat-containing protein [Candidatus Ko	53.1	6e-05	G
ref XP 001011832.1 DNA polymerase family B containing protei	52.8	8e-05	G
ref YP_002730293.1] tetratricopeptide repeat domain protein [ref ZP_01118022.1] Tetratricopeptide repeat family protein [P	52.8 52.8	8e-05 8e-05	G
ref YP 002135421.1 Tetratricopeptide TPR_2 repeat protein [A	52.4	1e-04	G
ref YP 002729512.1] tetratricopeptide repeat domain protein [52.0	1e-04	G
ref[YP_003092431.1] TPR repeat-containing protein [Pedobacter ref[ZP_01251826.1] hypothetical protein P700755_18349 [Psychr	51.2 51.2	2e-04 2e-04	G
ref YP_844212.11 TPR repeat-containing protein [Syntrophobact ref ZP_01545479.11 TPR repeat [Stappia aggregata IAM 12614] >	50.8 50.8	3e-04 3e-04	G
ref [XP 001029949.2] SLEI family protein [Tetrahymena thermoph	50.8	3e-04	UG
ref[YP 002249256.1] TPR domain protein, putative [Thermodesul	50.4	3e-04	G
ref YP_002603662.11 TPR repeat protein [Desulfobacterium auto ref ZP_02736216.11 hypothetical protein GobsU_30680 [Gemmata	50.1 50.1	4e-04 4e-04	G
ref YP_306094.11 TPR repeat-containing protein [Methanosarcin ref ZP_04780592.1] tetratricopeptide repeat family protein [S	<u>49.7</u> <u>49.7</u>	5e-04 6e-04	G
ref[XP_314265.3] AGAP003363-PA [Anopheles gambiae str. PEST]	49.7	6e-04	UG

Alignments Select All Get selected sequences Distance tree of results Multiple alignment

>ref |YP 099695.1| G TPR repeat-containing protein [Bacteroides fragilis YCH46] ref |ZP 04843106.1| TPR repeat-containing protein [Bacteroides sp. 3 2 5] ref |ZP 06092595.1| TPR repeat-containing protein [Bacteroides sp. 2_1_16] dbj|BAD49161.1| G putative tetratricopeptide repeat family protein [Bacteroides fragilis YCH46] gb|EE286337.1| TPR repeat-containing protein [Bacteroides sp. 3 2 5] gb|EE27961.1| TPR repeat-containing protein [Bacteroides sp. 3 2 5] gb|EE27961.1| TPR repeat-containing protein [Bacteroides sp. 2_1_16] Length=403

GENE ID: 3083889 BF2412 | TPR repeat-containing protein [Bacteroides fragilis YCH46] (10 or fewer PubMed links)

Score = 795 bits (2054), Expect = 0.0, Method: Compositional matrix adjust. Identities = 396/396 (100%), Positives = 396/396 (100%), Gaps = 0/396 (0%)

Query	1	MVLLMAVSFAFAQEKNVKEAKSIAGEVKPDFAKAEQLINEALTNPETKDNAATWDVAGYI MVLLMAVSFAFAQEKNVKEAKSIAGEVKPDFAKAEQLINEALTNPETKDNAATWDVAGYI	60
Sbjct	8	MVLLMAVSFAFAQEKNVKEAKSIAGEVKPDFAKAEQLINEALTNPETKDNAATWDVAGYI	67
Query	61	QKRINEKEMENAYLRKPYDTLKVYNSVLNMYNYYVKCDELAQIPNEKGKIKNKYRSANSK QKRINEKEMENAYLRKPYDTLKVYNSVLNMYNYYVKCDELAQIPNEKGKIKNKYRSANSK	120
Sbjct	68	QKRINEKEMENAYLRKPYDTLKVYNSVLNMYNYYVKCDELAQIPNEKGKIKNKYRSANSK	127
Query	121	TILAERPNLINGGIQYFNLNKNEDALKYFAAYVDAATLPMMEKENLLEKDTILPQVAYYA	180
Sbjct	128	TILAERPNLINGGIQYFNLNKNEDALKYFAAYVDAATLPMMEKENLLEKDTILPQVAYYA TILAERPNLINGGIQYFNLNKNEDALKYFAAYVDAATLPMMEKENLLEKDTILPQVAYYA	187
Query	181	TLAADRVGDKDAVMKYAQYALKDKENGQFAMQLLTDAYKAKGDTAKWVEKLQEGIVKFPE	240
Sbjct	188	TLAADRVGDKDAVMKYAQYALKDKENGQFAMQLLTDAYKAKGDTAKWVEKLQEGIVKFPE TLAADRVGDKDAVMKYAQYALKDKENGQFAMQLLTDAYKAKGDTAKWVEKLQEGIVKFPE	247
Query	241	NQYFFANLVDYYSSSNQNDKAMQFADDMLAKDPNNKLYLYVKAYLYHNMKDYEKAIEFYK	300
Sbjct	248	NOYFFANLVDYYSSSNONDKAMOFADDMLAKDPNNKLYLYVKAYLYHNMKDYEKAIEFYK NOYFFANLVDYYSSSNONDKAMOFADDMLAKDPNNKLYLYVKAYLYHNMKDYEKAIEFYK	307
Ouery	301	KTLDI DPAYAEACSNLGLVYLLQAQEYADKAPADI NDPNYATAQAE I KKFYEAAKPYYEK	360
Sbjct	308	KTLDIDPAYAEACSNLGLVYLLQAQEYADKAPADINDPNYATAQAEIKKFYEAAKPYYEK KTLDIDPAYAEACSNLGLVYLLQAQEYADKAPADINDPNYATAQAEIKKFYEAAKPYYEK	367
Query	361	ARELKPDOKDLWLQGLYRVYYNLNMGPEFEEIEKMM 396	
Sbjct	368	ARELKPDQKDLWLQGLYRVYYNLNMGPEFEEIEKMM ARELKPDQKDLWLQGLYRVYYNLNMGPEFEEIEKMM 403	
2.27.0.0			

>ref[YP_212118.1] G hypothetical protein BF2494 [Bacteroides fragilis NCTC 9343]
emb[CAE08194.1] G conserved hypothetical protein [Bacteroides fragilis NCTC 9343]
Length=396

GENE ID: 3287481 BF2494 | hypothetical protein [Bacteroides fragilis NCTC 9343] (10 or fewer PubMed links)

Score = 795 bits (2054), Expect = 0.0, Method: Compositional matrix adjust. Identities = 396/396 (100%), Positives = 396/396 (100%), Gaps = 0/396 (0%)

Query	1	MVLLMAVSFAFAQEKNVKEAKSIAGEVKPDFAKAEQLINEALTNPETKDNAATWDVAGYI MVLLMAVSFAFAQEKNVKEAKSIAGEVKPDFAKAEQLINEALTNPETKDNAATWDVAGYI	60
Sbjct	1	MVLLMAVSFAFAQEKNVKEAKSIAGEVKPDFAKAEQLINEALTNPETKDNAATWDVAGYI	60
Query	61	QKRINEKEMENAYLRKPYDTLKVYNSVLNMYNYYVKCDELAQI PNEKGKIKNKYRSANSK OKRINEKEMENAYLRKPYDTLKVYNSVLNMYNYYVKCDELAQI PNEKGKIKNKYRSANSK	120
Sbjct	61	QKRINEKEMENAILEKPIDILEVINSVLNMYNYYVKCDELAQIPNEKGKIKNKYRSANSK	120
Query	121	TILAERPNLINGGIQYFNLNKNEDALKYFAAYVDAATLPMMEKENLLEKDTILPQVAYYA	180
Sbjct	121	TILAERPNLINGGIQYFNLNKNEDALKYFAAYVDAATLPMMEKENLLEKDTILPQVAYYA TILAERPNLINGGIQYFNLNKNEDALKYFAAYVDAATLPMMEKENLLEKDTILPQVAYYA	180
Query	181	TLAADRVGDKDAVMKYAQYALKDKENGQFAMQLLTDAYKAKGDTAKWVEKLQEGIVKFPE	240
Sbjct	181	TLAADRVGDKDAVMKYAQYALKDKENGQFAMQLLTDAYKAKGDTAKWVEKLQEGIVKFPE TLAADRVGDKDAVMKYAQYALKDKENGQFAMQLLTDAYKAKGDTAKWVEKLQEGIVKFPE	240
Query	241	NQYFFANLVDYYSSSNQNDKAMQFADDMLAKDPNNKLYLYVKAYLYHNMKDYEKAIEFYK	300
Sbjct	241	NÖYFFANLVDYYSSSNÖNDKAMÔFADDMLAKDPNNKLYLYVKAYLYHNMKDYEKAIEFYK NÖYFFANLVDYYSSSNÖNDKAMOFADDMLAKDPNNKLYLYVKAYLYHNMKDYEKAIEFYK	300
Query	301	KTLDIDPAYAEACSNLGLVYLLOAOEYADKAPADINDPNYATAQAEIKKFYEAAKPYYEK	360
Sbict	301	KTLDIDPAYAEACSNLGLVYLLÔAÔEYADKAPADINDPNYATAQAEIKKFYEAAKPYYEK KTLDIDPAYAEACSNLGLVYLLQAQEYADKAPADINDPNYATAQAEIKKFYEAAKPYYEK	360
Query	361	ARELKPDOKDLWLQGLYRVYYNLNMGPEFEEIEKMM 396	
Sbjct	361	ARELKPDØKDLWLØGLYRVYYNLNMGPEFEEIEKMM ARELKPDØKDLWLØGLYRVYYNLNMGPEFEEIEKMM 396	

http://blast.ncbi.nlm.nih.gov/Blast.cgi

H Crystal screen compositions

1	50% (w/v) PEG 400	0.2 M Lithium Sulphate	0.1 M Sodium acetate pH 5.1	
2	20% (w/v) PEG 3000	0.1 M Sodium citrate pH 5.5		
3	20% (w/v) PEG 3350	0.2 M Diammonium hydrogen citrate pH 5.0		
4	30% (v/v) MPD	0.08 M Calcium chloride	0.1 M Sodium acetate pH 4.6	
5	20% (w/v) PEG 3350	0.2 M Magnesium formate pH 5.9		
6	20% (w/v) PEG 1000	0.2 M lithium sulphate	0.25 M Sodiumcitrate pH 4.2	0.25 M sodium dihydrogen phosphate pH 5.2
7	20% (w/v) PEG 8000	0.1M CHES pH 9.5		
8	20% (w/v) PEG 3350	0.2 M Ammonium formate pH6.6		
9	20% (w/v) PEG 3350	0.2 M Ammonium chloride pH 6.3		
10	20% (w/v) PEG 3350	0.2 M Potassium formate pH 7.3		
11	50% (v/v) MPD	0.2 M Ammonium dihydrogen phosphate	0.1M Tris pH 8.5	
12	20% (w/v) PEG 3350	0.2 M Potassium nitrate pH 6.9		
13	0.8 M Ammonium sulphate	0.1M Citric acid pH 4.0		
14	20% (w/v) PEG 3350	0.2 M Sodium		

		thiocyanate pH 6.9		
15	20% (w/v) PEG 6000	0.1M Bicine pH 9.0		
16	10% (w/v) PEG 8000	8% (v/v) Ethylene glycol	0.1 M HEPES pH 7.5	
17	40% (v/v) MPD	5% (w/v) PEG 8000	0.1M Sodium cacodylate pH 7.0	
18	40% (v/v) Ethanol	5% (w/v) PEG 1000	0.25 M Sodium citrate pH 5.2	0.25 M Sodium dihydrogen phosphate pH 5.2
19	8% (w/v) PEG 4000	0.1M Sodium acetate pH 4.6		
20	10% (w/v) PEG 8000	0.2 M Magnesium chloride	0.1 M Tris pH 7.0	
21	20% (w/v) PEG 6000	0.1M Citric acid pH 5.0		
22	50% (w/v) PEG 200	0.2 M Magnesium chloride	0.1 M Sodium cacodylate pH 6.6	
23	1.6 M Sodium citrate pH 6.5			
24	20% (w/v) PEG 3350	0.2 M Potassium citrate pH 8.3		
25	30% (v/v) MPD	0.02 M Calcium chloride	0.1M Sodium acetate pH 4.6	
26	20% (w/v) PEG 8000	0.2 M Sodium chloride	0.25 M Sodium citrate pH 4.2	0.25 M Sodium dihydrogen phosphate pH 4.2
27	20% (w/v) PEG 6000	1.0 M Lithium chloride	0.1 M Citric acid pH 4.0	
28	20% (w/v) PEG 3350	0.2 M Ammonium nitrate pH 6.3		

29	10% (w/v) PEG 6000	0.1M HEPES pH 7.0		
30	0.8 M Ammonium dihydrogen phosphate	0.8 M Potassium dihydrogen phosphate	0.1M HEPES pH 7.5	
31	40% (w/v) PEG 300	0.25 M Sodium citrate pH 5.2	0.25 M Sodium dihydrogen phosphate pH 5.2	
32	10% (w/v) PEG 3000	0.2 M Zinc acetate	0.1 M Sodium acetate pH 4.5	
33	20% (v/v) Ethanol	0.1 M Tris pH 8.5		
34	25% (v/v)1-2- Propanediol	0.1M Sodium potassium phosphate pH 6.8	10% (v/v) glycerol	
35	10% (w/v) PEG 20000	2% (v/v) Dioxane	0.1M Bicine pH 9.0	
36	2.0 M Ammonium sulphate	0.1M Sodium acetate pH 4.6		
37	10% (w/v) PEG 1000	10% (w/v) PEG 8000		
38	24% (w/v) PEG 1000	20% (v/v) Glycerol		
39	30% (v/v) PEG 400	0.2 M Magnesium chloride	0.1M HEPES pH 7.5	
40	50% (w/v) PEG 200	0.2 M Sodium chloride	0.1 M Sodium potassium phosphate pH 7.2	
41	30% (w/v) PEG 8000	0.2 M Lithium sulphate	0.1M Sodium acetate pH 4.5	
42	70% (v/v) MPD	0.2 M Magnesium chloride	0.1 M HEPES pH 7.5	
43	20% (w/v) PEG 8000	0.1M Tris pH 8.5		

44	40% (v/v) PEG 400	0.2 M Lithium sulphate	0.1 M Tris pH 8.4	
45	40%(v/v) MPD	0.1M Tris pH 8.0		
46	25.5% (w/v) PEG 4000	0.17 M Ammonium sulphate	15% (v/v) Glycerol	
47	40% (w/v) PEG 300	0.2 M Calcium acetate	0.1M Sodium cacodylate pH 7.0	
48	14% (v/v) Isopropanol	0.14 M Calcium chloride	0.07M Sodium acetate pH 4.6	30% (v/v) glycerol
49	16% (w/v)PEG 8000	0.04 M Potassium dihydrogen phosphate	20% (v/v) Glycerol	
50	1.0 M Sodium citrate	0.1 M sodium cacodylate pH 6.5		
51	2.0 M Ammonium sulphate	0.2 M Sodium chloride	0.1 M Sodium cacodylate pH 6.5	
52	10% (v/v) Isopropanol	0.2 M Sodium chloride	0.1 M HEPES pH 7.5	
53	1.26 M Ammonium sulphate	0.2 M Lithium sulphate	0.1M Tris pH 8.5	
54	40% (v/v) MPD	0.1M CAPS pH 10.1		
55	20% (w/v)PEG 3000	0.2 M Zinc acetate	0.1M Imidazole pH 8.0	
56	10% (v/v) Isopropanol	0.2 M Zinc acetate	0.1M Sodium cacodylate pH 6.5	
57	1.0M Diammonium hydrogen phosphate	0.1 M Sodium acetate pH 4.5		
58	1.6 M Magnesium sulphate	0.1M MES pH 6.5		

59	10% (w/v)PEG 6000	0.1 M Bicine pH 9.0		
60	14.4% (w/v)PEG 8000	0.16 M Calcium acetate	0.08 M Sodium cacodylate pH 6.5	20% (v/v) glycerol
61	10% (w/v)PEG 8000	0.1 M Imidazol pH 8.0		
62	30% (v/v) Jeffamine	0.05 M Caesiumchloride	0.1 M MES pH 6.5	
63	3.2 M Ammonium sulphate	0.1 M Citric acid pH 5.0		
64	20% (v/v) MPD	0.1 M Tris pH 8.0		
65	20% (v/v) Jeffamine	0.1M HEPES pH 6.5		
66	50% (v/v) Ethylene glycol	0.2 M Magnesium chloride	0.1 M Tris pH 8.5	
67	10% (v/v) MPD	0.1 M Bicine pH 9.0		
68	0.2 M Ammonium sulphate	0.1 M Sodium acetate pH 4.6	30% (w/v) PEG MME 2000	
69	0.2 M Ammonium sulphate	0.1 M MES pH 6.5	30% (w/v) PEG MME 5000	
70	0.01 M Zinc sulphate	0.1 M MES pH 6.5	25% (w/v) PEG MME 550	
71	0.01 M Nickel chloride	0.1 M Tris pH 8.5	20% (w/v) PEG MME 2000	
72	0.1 M Sodium chloride	0.1 M Bicine pH 9.0	20% (w/v) PEG MME 550	
73	0.005 M Magnesium chloride	0.05 M HEPES pH 7.0	25% (w/v) PEG MME 550	

74	0.1 M Potassium chloride	0.015 M Magnesium chloride	0.05 M Tris pH 7.5	10% PEG MME 550
75	20% (v/v)1-4- Butandiol	0.1 M MES pH 6.0	0.2 M Lithium sulphate	
76	1 M Sodium potassium tartrate	0.1 M Imidazole pH 8.0	0.2 M Sodium chloride	
77	20% (v/v)1-4- Butandiol	0.1M Sodium acetate pH 4.5		
78	1M Sodium potassium tartrate	0.1 M CHES pH 9.5	0.2 M Lithium sulphate	
79	35% (v/v) Propanol	0.1 M Sodium cacodylate pH6.5		
80	35% (v/v) Propanol	0.1 M Tris pH 8.5		
81	3.5 M Sodium formate			
82	0.8M Succinic acid pH 7.0			
83	2.1 M Malic acid pH 7.0			
84	2.4 M Sodium malonate pH 7.0			
85	0.2 M Potassium chloride	0.05 M HEPES pH 7.5	35% (v/v) Pentaerythritol propoxylate	
86	0.005 M Ammonium sulphate	0.05 M Tris pH 6.5	30% (v/v) Pentaerythritol ethoxylate	
87	0.2 M Potassium	25% (w/v) PEG MME	0.1 M HEPES pH 7.5	

	bromide	2000		
88	0.2M Potassium bromide	8% (w/v)PEG 20000	8% (w/v) PEG MME 550	0.1 M Tris pH 8.5
89	1.0 M Potassium dihydrogen phosphate	0.1 M Sodium citrate pH 4.6		
90	0.5 M Potassium dihydrogen phosphate	0.1M HEPES pH 7.0		
91	20% (w/v)PEG 4000	0.005 M Cadmium chloride	0.1 M Tris pH 8.0	
92	20% (w/v)PEG 4000	0.005 M Nickel chloride	0.1 M MED pH 6.5	
93	0.8 M Sodium formate	10% (w/v) PEG 8000	10% PEG 1000	0.1 M imidazol pH 8.0
94	15% (w/v)PEG 4000	0.005 M Cadmium sulphate	0.1 M Sodium cacodylate pH 6.5	
95	20% (w/v) PEG 600	0.005 M Cobalt chloride	0.1 M HEPES pH 7.5	
96	2 M Ammonium sulphate	10% (v/v) Jeffamine	0.1 M Tris pH 8.0	

Newcastle Crystal screen formulation

PACT crystal screen formulations

PEG/Anion Screens

Well number	Salt	Buffer	PEG
1	0.2 M Sodium fluoride		20% (w/v) PEG 3350
2	0.2 M Sodium bromide		20% (w/v) PEG 3350
3	0.2 M Sodium iodide		20% (w/v) PEG 3350
4	0.2 M Potassium thiocyanate		20% (w/v) PEG 3350
5	0.2 M Sodium nitrate		20% (w/v) PEG 3350
6	0.2 M Sodium formate		20% (w/v) PEG 3350
7	0.2 M Sodium acetate		20% (w/v) PEG 3350
8	0.2 M Sodium sulphate		20% (w/v) PEG 3350
9	0.2 M Sodium potassium tartrate		20% (w/v) PEG 3350
10	0.2 M Sodium potassium phosphate		20% (w/v) PEG 3350
11	0.2 M Sodium citrate		20%(w/v) PEG 3350
12	0.2 M Sodium malonate		20% (w/v) PEG 3350
13	0.2 M Sodium fluoride	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
14	0.2 M Sodium bromide	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
15	0.2 M Sodium iodide	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
16	0.2 M Potassium thiocyanate	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
17	0.2 M Sodium nitrate	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
18	0.2 M Sodium formate	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
19	0.2 M Sodium acetate	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
20	0.2 M Sodium sulphate	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
21	0.2 M Sodium potassium tartrate	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
22	0.2 M Sodium potassium phosphate	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
23	0.2 M Sodium citrate	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
24	0.2 M Sodium malonate	0.1 M Bis-tris propane pH 6.5	20% (w/v) PEG 3350
25	0.2 M Sodium fluoride	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
26	0.2 M Sodium bromide	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
27	0.2 M Sodium iodide	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350

28	0.2 M Potassium thiocyanate	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
29	0.2 M Sodium nitrate	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
30	0.2 M Sodium formate	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
31	0.2 M Sodium acetate	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
32	0.2 M Sodium sulphate	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
33	0.2 M Sodium potassium tartrate	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
34	0.2 M Sodium potassium phosphate	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
35	0.2 M Sodium citrate	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
36	0.2 M Sodium malonate	0.1 M Bis-tris propane pH 7.5	20% (w/v) PEG 3350
37	0.2 M Sodium fluoride	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
38	0.2 M Sodium bromide	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
39	0.2 M Sodium iodide	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
40	0.2 M Potassium thiocyanate	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
41	0.2 M Sodium nitrate	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
42	0.2 M Sodium formate	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
43	0.2 M Sodium acetate	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
44	0.2 M Sodium sulphate	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
45	0.2 M Sodium potassium tartrate	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
46	0.2 M Sodium potassium phosphate	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
47	0.2 M Sodium citrate	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350
48	0.2 M Sodium malonate	0.1 M Bis-tris propane pH 8.5	20% (w/v) PEG 3350

PEG/Cation Screens

Well number		Buffer	PEG
1	0.2 M Sodium chloride	Acetate pH 5	20% (w/v) PEG 6000
2	0.2 M Ammonium chloride	Acetate pH 5	20% (w/v) PEG 6000
3	0.2 M Lithium chloride	Acetate pH 5	20% (w/v) PEG 6000
4	0.2 M Magnesium chloride	Acetate pH 5	20% (w/v) PEG 6000
5	0.2 M Calcium chloride	Acetate pH 5	20% (w/v) PEG 6000
6	0.01 M Zinc chloride	Acetate pH 5	20% (w/v) PEG 6000
7	0.2 M Sodium chloride	MES pH 6	20% (w/v) PEG 6000
8	0.2 M Ammonium chloride	MES pH 6	20% (w/v) PEG 6000
9	0.2 M Lithium chloride	MES pH 6	20% (w/v) PEG 6000
10	0.2 M Magnesium chloride	MES pH 6	20% (w/v) PEG 6000
11	0.2 M Calcium chloride	MES pH 6	20%(w/v) PEG 6000
12	0.01 M Zinc chloride	MES pH 6	20% (w/v) PEG 6000
13	0.2 M Sodium chloride	HEPES pH 7	20% (w/v) PEG 6000
14	0.2 M Ammonium chloride	HEPES pH 7	20% (w/v) PEG 6000
15	0.2 M Lithium chloride	HEPES pH 7	20% (w/v) PEG 6000
16	0.2 M Magnesium chloride	HEPES pH 7	20% (w/v) PEG 6000
17	0.2 M Calcium chloride	HEPES pH 7	20% (w/v) PEG 6000
18	0.01 M Zinc chloride	HEPES pH 7	20% (w/v) PEG 6000
19	0.2 M Sodium chloride	Tris pH 8	20% (w/v) PEG 6000
20	0.2 M Ammonium chloride	Tris pH 8	20% (w/v) PEG 6000
21	0.2 M Lithium chloride	Tris pH 8	20% (w/v) PEG 6000
22	0.2 M Magnesium chloride	Tris pH 8	20% (w/v) PEG 6000
23	0.2 M Calcium chloride	Tris pH 8	20% (w/v) PEG 6000
24	0.01 M Zinc chloride	Tris pH 8	20% (w/v) PEG 6000

Well number	Buffer system	pH of the buffer system	PEG
1	1 M Sodium malonate, 1 M imidazole, 1 M Boric acid	4	25% (w/v) PEG 1500
2	1 M Sodium malonate, 1 M imidazole, 1 M Boric acid	5	25% (w/v) PEG 1500
3	1 M Sodium malonate, 1 M imidazole, 1 M Boric acid	6	25% (w/v) PEG 1500
4	1 M Sodium malonate, 1 M imidazole, 1 M Boric acid	7	25% (w/v) PEG 1500
5	1 M Sodium malonate, 1 M imidazole, 1 M Boric acid	8	25% (w/v) PEG 1500
6	1 M Sodium malonate, 1 M imidazole, 1 M Boric acid	9	25% (w/v) PEG 1500
7	1 M Sodium propionate, 1 M Sodium cacodylate trihydrate, 1 M Bis tris propane	4	25% (w/v) PEG 1500
8	1 M Sodium propionate, 1 M Sodium cacodylate trihydrate, 1 M Bis tris propane	5	25% (w/v) PEG 1500
9	1 M Sodium propionate, 1 M Sodium cacodylate trihydrate, 1 M Bis tris propane	6	25% (w/v) PEG 1500
10	1 M Sodium propionate, 1 M Sodium cacodylate trihydrate, 1 M Bis tris propane	7	25% (w/v) PEG 1500
11	1 M Sodium propionate, 1 M Sodium cacodylate trihydrate, 1 M Bis tris propane	8	25% (w/v) PEG 1500
12	1 M Sodium propionate, 1 M Sodium cacodylate trihydrate, 1 M Bis tris propane	9	25% (w/v) PEG 1500
13	1 M DL-Malic acid, 1 M MES, 1 M Tris	4	25% (w/v) PEG 1500
14	1 M DL-Malic acid, 1 M MES, 1 M Tris	5	25% (w/v) PEG 1500
15	1 M DL-Malic acid, 1 M MES, 1 M Tris	6	25% (w/v) PEG 1500

16	1 M DL-Malic acid, 1 M MES, 1 M Tris	7	25% (w/v) PEG 1500
17	1 M DL-Malic acid, 1 M MES, 1 M Tris	8	25% (w/v) PEG 1500
18	1 M DL-Malic acid, 1 M MES, 1 M Tris	9	25% (w/v) PEG 1500

Clear Strategy Screen 1 Conditions (CSS 1)

		1			
1	2	3	4	5	6
0.3 M	0.2 M	0.2 M	0.2 M	0.2 M	0.8 M
Sodium acetate,	Lithium sulphate,	Magnesium chloride,	Potassium bromide,	Potassium thiocyanate,	Sodium formate,
25% (w/v) PEG	25%(w/v) PEG	25% (w/v) PEG	25% (w/v) PEG	25% (w/v) PEG	25% (w/v) PEG
2000 MME	2000 MME				
7	8	9	10	11	12
0.3 M	0.2 M	0.2 M	0.2 M	0.2 M	0.8 M
Sodium acetate,	Lithium sulphate,	Magnesium	Potassium	Potassium	Sodium formate,
15% (w/v)	15% (w/v)	chloride, 15% (w/v)	bromide, 15% (w/v)	thiocyanate, 15% (w/v)	15% (w/v)
PEG 4000	PEG 4000				
13	14	15	16	17	18
0.3 M	0.2 M	0.2 M	0.2 M	0.2 M	0.8 M
Sodium acetate,	Lithium sulphate,	Magnesium	Potassium	Potassium	Sodium formate,
10% (w/v) PEG	10% (w/v) PEG	chloride,	bromide,	thiocyanate,	10% (w/v) PEG
8000,	8000,	10% (w/v) PEG 8000,	10% (w/v) PEG 8000,	10% (w/v) PEG 8000,	8000,
10% (w/v) PEG 1000	10% (w/v) PEG 1000				
19	20	21	22	23	24
0.3 M	0.2 M	0.2 M	0.2 M	0.2 M	0.8 M
Sodium acetate	Lithium sulphate,	Magnesium chloride,	Potassium bromide,	Potassium thiocyanate,	Sodium formate,
8% (w/v) PEG 20000,	8% (w/v) PEG 20000,				
8% (w/v)	8% (w/v)				
PEG550 MME	PEG550 MME				
<u>r</u>	1	11	1	1	1

Clear Strategy Screen 2 conditions (MDCS2)

[A1] Tube : 1 1.5 M Ammonium sulphate	[A2] Tube : 2 0.8 M Lithium sulphate	[A3] Tube : 3 2 M Sodium formate	[A4] Tube : 4 0.5 M Potassium phosphate	[A5] Tube : 5 25% (w/v) PEG 2000 MME, 0.2 M Calcium acetate	[A6] Tube : 6 15% (w/v) PEG 4000, 0.2 M Calcium acetate
[B1] Tube : 7 2.7 M Ammonium sulphate	[B2] Tube : 8 1.8 M Lithium sulphate	[B3] Tube : 9 4 M Sodium formate	[B4] Tube : 10 1.0 M Potassium dihydrogen phosphate	[B5] Tube : 11 10% (w/v) PEG 8000, 10% (w/v) PEG 1000, 0.2 M Calcium acetate	[B6] Tube : 12 8% (w/v) PEG 20000, 8% (w/v) PEG 550 MME, 0.2 M Calcium acetate
[C1] Tube : 13 40%v/v Methanepentanediol	[C2] Tube : 14 40%v/v Butanediol	[C3] Tube : 15 20% (w/v) PEG 4000, 0.005 M Cadmium chloride	[C4] Tube : 16 20% (w/v) PEG 550 MME, 0.15 M Potassium thiocyanate	[C5] Tube : 17 20% (w/v) PEG 600, 0.15 M Potassium thiocyanate	[C6] Tube : 18 20% (w/v) PEG 15000, 0.15 M Potassium thiocyanate
[D1] Tube : 19 35%v/v Isopropanol	[D2] Tube : 20 30% (v/v) Jeffamine 600M	[D3] Tube : 21 20% (w/v) PEG 4000, 0.005 M Nickel chloride	[D4] Tube : 22 18% (w/v) PEG 3350, 0.15 M Potassium thiocyanate	[D5] Tube : 23 18% (w/v) PEG 5000 MME, 0.15 M Potassium thiocyanate	[D6] Tube : 24 15% (w/v) PEG 6000, 0.15 M Potassium thiocyanate

Hampton screen 1 formulations (HS 1)

Tube	SALT	BUFFER	Precipitant
1	0.02 M Calcium	0.1 M Sodium acetate pH / 6	30% (w/v) 2-methyl-2,4-pentanediol
	Chloride	0.1 W Souldin acetate pr 4.0	
	None	None	0.4 M Potassium sodium tartrate tetrahydrate
	None	None	0.4 M Ammonium dihydrogen phosphate
	None	0.1 M Tris-HCI pH 8.5	2.0 M Ammonium Sulphate
5	1	0.1 M sodium HEPES pH 7.5	30% (w/v) 2-methyl-2,4-pentanediol
6	0.2 M Magnesium chloride	0.1 M Tris-HCl pH 8.5	30% (w/v) PEG 4000
7	None	0.1 M sodium cacodylate pH 6.5	1.4 M Sodium acetate trihydrate
8	0.2 M tri-sodium citrate	0.1 M sodium cacodylate pH 6.5	30% (v/v) 2-propanol
9	0.2 M Ammonium acetate	0.1 M sodium citrate pH 5.6	30% (w/v) PEG 4000
10	0.2 M Ammonium acetate	· · ·	30% (w/v) PEG 4000
	None	0.1 M sodium citrate pH 5.6	1.0 M Ammonium dihydrogen phosphate
12	0.2 M Magnesium chloride	0.1 M sodium HEPES pH 7.5	30% (v/v) 2-propanol
13	0.2 M tri-sodium citrate	0.1 M Tris-HCl pH 8.5	30% (v/v) PEG 400
14	0.2 M Calcium Chloride	0.1 M sodium HEPES pH 7.5	28% (v/v) PEG 400
15	0.2 M Ammonium acetate	0.1 M sodium cacodylate pH 6.5	30% (w/v) PEG 8000
16	None	0.1 M sodium HEPES pH 7.5	1.5 M Lithium sulphate monohydrate
17	0.2 M Lithium sulphate	0.1 M Tris-HCI pH 8.5	30% (w/v) PEG 4000
18	0.2 M Magnesium acetate	0.1 M sodium cacodylate pH 6.5	20% (w/v) PEG 8000
19	0.2 M Ammonium acetate	0.1 M Tris-HCl pH 8.5	30% (v/v) 2-propanol
20	0.2 M Ammonium sulphate	0.1 M sodium acetate pH 4.6	25% (w/v) PEG 4000
21	0.2 M Magnesium acetate	0.1 M sodium cacodylate pH 6.5	30% (v/v) 2-methyl-2,4-pentanediol
22	0.2 M Sodium acetate	0.1 M Tris-HCI pH 8.5	30% (w/v) PEG 4000
23	0.2 M Magnesium chloride	0.1 M sodium HEPES pH 7.5	30% (v/v) PEG 400
24	0.2 M Calcium Chloride	0.1 M sodium acetate pH 4.6	20% (v/v) 2-propanol
25	None	0.1 M Imidazole pH 6.5	1.0 M Sodium acetate trihydrate
26	0.2 M Ammonium acetate	0.1 M sodium citrate pH 5.6	30% (v/v) 2-methyl-2,4-pentanediol
27	0.2 M tri-sodium citrate	0.1 M sodium HEPES pH 7.5	20% (v/v) 2-propanol
28	0.2 M Sodium acetate	0.1 M sodium Cacodylate pH 6.5	30% (w/v) PEG 8000
29	None	0.1 M sodium HEPES pH 7.5	0.8 M Potassium sodium tartrate
30	0.2 M Ammonium acetate	None	30% (w/v) PEG 8000
31	0.2 M Ammonium acetate	None	30% (w/v) PEG 4000
	None	None	2.0 M Ammonium Sulphate
	None	None	4.0 M Sodium formate
	None	0.1 M sodium Acetate pH 4.6	1

35	None	0.1 M sodium HEPES pH 7.5	1.6 M Potassium sodium tartrate
36	None	0.1 M Tris-HCl pH 8.5	8% (w/v) PEG 8000
37	None	0.1 M sodium acetate pH 4.6	8% (w/v) PEG 4000
38	None	0.1 M sodium HEPES pH 7.5	1.4 M Sodium citrate dihydrate
39	None	0.1 M sodium HEPES pH 7.5	2% (v/v) PEG 400 & 2.0 M Ammonium Sulphate
40	None	0.1 M sodium citrate pH 5.6	20% (v/v) 2-propanol & 20% (w/v) PEG 4000
41	None	0.1 M sodium HEPES pH 7.5	10% (v/v) 2-propanol & 20% (w/v) PEG 4000
42	0.05 M potassium phosphate monobasic	None	20% (w/v) PEG 8000
43	None	None	30% (w/v) PEG 1500
44	None	None	0.2 M Magnesium formate
45	0.2 M Zinc acetate	0.1 M sodium cacodylate pH 6.5	18% (w/v) PEG 8000
46	0.2 M Calcium acetate	0.1 M sodium cacodylate pH 6.5	18% (w/v) PEG 8000
47	None	0.1 M sodium acetate pH 4.6	2.0 M Ammonium Sulphate
48	None	0.1 M Tris-HCl pH 8.5	2.0 M Ammonium dihydrogen phosphate

Hampton Crystal Screen II formulations (HCS2)

[A1] Tube : 1 2.0 M sodium chloride, 10% PEG 6000	[A2] Tube : 2 0.5 M sodium chloride, 0.01 M hexadecyltrimethylamm bromide, 0.01 M magnesium chlor hexahydrate		[A4] Tube : 4 35% (v/v) dioxane	[A5] Tube : 5 2.0 M ammonium sulphate, 5% (v/v) iso- propanol
[B1] Tube : 7 10% (w/v) PEG 1000, 10% (w/v) PEG 8000	[B2] Tube : 8 1.5 M sodium chloride, 10% (v/v) ethanol	[B3] Tube : 9 0.1 M sodium acetate trihydrate pH 4.6, 2 M sodium chloride	[B4] Tube : 10 0.2 M sodium chloride, 0.1 M sodium acetate trihydrate pH 4.6, 30% (v/v) MPD	[B5] Tube : 11 0.01 M cobalt chloride hexahydrate, 0.1 M sodium acetate trihydrate pH 4.6, 1 M 1,6 hexanediol
[C1] Tube : 13 0.2 M ammonium sulphate, 0.1 M sodium acetate trihydrate pH 4.6, 30% (w/v) PEG monomethyl ether 2000	[C2] Tube : 14 0.2 M potassium sodium tetrahydrate, 0.1 M tri-sodium citrate d pH 5.6, 2 M ammonium sulfate	sulphate,	[C4] Tube : 16 0.5 M sodium chloride, 0.1 M tri-sodium citrate dihydrate pH 5.6, 2% (v/v) ethylene imine polymer	[C5] Tube : 17 0.1 M tri-sodium citrate dihydrate pH 5.6, 35% (v/v) tert- butanol
[D1] Tube : 19 0.1 M tri-sodium citrate dehydrate, pH 5.6 2.5 M 1,6 hexanediol	[D2] Tube : 20 0.1 M MES pH 6.5, 1.6 M magnesium sulfate heptahydrate	[D3] Tube : 21 0.1 M sodium dihydrogen phosphate, a 0.1 M MES pH 6.5, 2 M sodium chloride, 0.1 M potassium dihydrogen phosphate	[D4] Tube : 22 0.1 M MES pH 6.5, 12% (w/v) PEG 20,000	[D5] Tube : 23 1.6 M ammonium sulphate, 0.1 M MES pH 6.5 10% (v/v) dioxane
[E1] Tube : 25 0.01 M cobaltous chloride hexahydrate, 0.1 M MES pH 6.5, 1.8 M ammonium sulfate	[E2] Tube : 26 0.2 M ammonium sulpha 0.1 M MES pH 6.5, 30% (w/v) PEG monome 5000	heptahydrate,	[E4] Tube : 28 pH 6.5 1.6 M tri-sodium citrate dihydrate	[E5] Tube : 29 0.5 M ammonium sulphate, 0.1 M HEPES pH 7.5, 30% (v/v) MPD
[F1] Tube : 31 0.1 M HEPES pH 7.5, 20% (v/v) jeffamine M- 600	[F2] Tube : 32 0.1 M sodium chloride, 0.1 M HEPES pH 7.5, 1.6 M ammonium sulfate	[F3] Tube : 33 0.1 M HEPES pH 7.5, 2 M ammonium formate	[F4] Tube : 34 0.05 M cadmium sulfate hydrate, 0.1 M HEPES	[F5] Tube : 35 0.1 M HEPES pH 7.5, 70% (v/v) MPD

			pH 7.5, 1 M sodium acetate trihydrate	
[G1] Tube : 37 0.1 M HEPES pH 7.5, 10% (w/v) PEG 8000	[G2] Tube : 38 0.1 M HEPES pH 7.5, 20% (w/v) PEG 10000, 8% (v/v) ethylene glycol	[G3] Tube : 39 0.2 M magnesium chloride hexahydrate, 0.1 M tris pH 8.5, 3.4 M 1,6 hexanediol	[G4] Tube : 40 0.1 M tris pH 8.5, 25% (v/v) tert- butanol	[G5] Tube : 41 0.01 M nickel (II) chloride hexahydrate, 0.1 M tris pH 8.5, 1 M lithium sulfate monohydrate
[H1] Tube : 43 0.2 M ammonium dihydrogen phosphate, 0.1 M tris pH 8.5, 50% (v/v) MPD	[H2] Tube : 44 0.1 M tris pH 8.5, 20% (v/v) ethanol	[H3] Tube : 45 0.01 M nickel (II) chloride hexahydrate, 0.1 M tris pH 8.5, 20% (w/v) PEG monomethyl ether 2000	[H4] Tube : 46 0.1 M sodium chloride, 0.1 M bicine pH 9.0, 20% (v/v) PEG monomethyl ether 550	[H5] Tube : 47 0.1 M bicine, pH 9.0, 2 M magnesium chloride hexahydrate

Recipe courtesy of Hampton Research

Reference website

http://xray.bmc.uu.se/markh/php/xtalscreens.php?func=lookup&screen_name=Expa nd+List PEG/Ion Screen"

HR2-126 Reagent Formulation

_								w	
	Tube	Salt	Tube #	Polymer	Tube #	pH∘			
	1.	0.2 M Sodium fluoride	1.	20% w/v Polyethylene glycol 3,350	Ĩ.	7.3	F-	CI-	1-
	2.	0.2 M Potassium fluoride	2.	20% w/v Polyethylene glycol 3,350	2.	7.3	Thursday 6		-
	3.	0.2 M Ammonium fluoride	3.	20% w/v Polyethylene glycol 3,350	3.	6.2	Fluoride C	Chloride	lodide
	4.	0.2 M Lithium chloride	4.	20% w/v Polyethylene glycol 3,350	4.	6.8	0		
	5.	0.2 M Magnesium chloride hexahydrate	5.	20% w/v Polyethylene glycol 3,350	5.	5.9			
	6.	0.2 M Sodium chloride	6.	20% w/v Polyethylene glycol 3,350	6.	6.9			
	7.	0.2 M Calcium chloride dihydrate	7.	20% w/v Polyethylene glycol 3,350	7.	5.1	N	0-	Nitrate
	8.	0.2 M Potassium chloride	8.	20% w/v Polyethylene glycol 3,350	8.	7.0			
	9.	0.2 M Ammonium chloride	9.	20% w/v Polyethylene glycol 3,350	9.	6.3			
	10.	0.2 M Sodium iodide	10.	20% w/v Polyethylene glycol 3,350	10.	7.0	0		
	11.		11.		11.	7.0		-	
	12.		12.	20% w/v Polyethylene glycol 3,350	12.	6.2	-s —	-c=	EN .
	13.	0.2 M Sodium thiocyanate	13.	20% w/v Polyethylene glycol 3,350	13.	6.9	Thio	cyanate	
	14.	0.2 M Potassium thiocyanate	14.	20% w/v Polyethylene glycol 3,350	14.	7.0			
	15.	0.2 M Lithium nitrate	15.	20% w/v Polyethylene glycol 3,350	15.	7.1	0		0
	16.	0.2 M Magnesium nitrate hexahydrate	16.	20% w/v Polyethylene glycol 3,350	16.	5.9	ĭ		Ĭ
	17.		17.	20% w/v Polyethylene glycol 3,350	17.	6.8	L'		č
	18.		18. 19.	20% w/v Polyethylene glycol 3,350	18.	6.8	~		<u>~</u>
	19.		20.	20% w/v Polyethylene glycol 3,350	19.	6.2	-O CH	l₃ -0'	Ήa
	20. 21.	0.2 M Magnesium formate dihydrate		20% w/v Polyethylene glycol 3,350	20. 21.	7.0 7.2	Acetate	- I	Formate
	21.		22	and the state of t	21.	7.3			
	Barline a	0.2 M Potassium formate 0.2 M Ammonium formate	23.	20% w/v Polyethylene glycol 3,350 20% w/v Polyethylene glycol 3,350	22.	6.6	0		0
			24.		23.	7.9	ĭ		ĭ
		0.2 M Lithium acetate dihydrate 0.2 M Magnesium acetate tetrahydrate	24.	20% w/v Polyethylene glycol 3,350 20% w/v Polyethylene glycol 3,350	24.	7.9	-00	0	
		0.2 M Zinc acetate dihydrate	26.	20% w/v Polyethylene glycol 3,350	26.	6.4	-0-P-0	0-	- <u>s</u> -o-
		0.2 M Sodium acetate trihydrate			26.	8.0			
	28.		28.	20% w/v Polyethylene glycol 3,350	28	7.5	<u>0</u> -		0-
	20.		29.	20% w/v Polyethylene glycol 3,350	20.	8.1	Phosphate		Sulfate
		0.2 M Ammonium acetate	30.	20% w/v Polyethylene glycol 3,350	30.	7.1			
		0.2 M Lithium sulfate monohydrate		20% w/v Polyethylene glycol 3,350	31.	60	~ 0		
	32.		32.	20% w/v Polyethylene glycol 3,350	32	60	O, Y	۳	_O-
	33.	0.2 M Sodium sulfate decahydrate	33.	20% w/v Polyethylene glycol 3,350	33.	6.7		_	<u></u>
	34	-	34.	20% w/v Polyethylene glycol 3,350	34	68	<u> </u>		- <u> </u>
	35.	0.2 M Ammonium sulfate	35.	20% w/v Polyethylene glycol 3,350	35.	6.0	-0' !		ò
	36	0.2 M Sodium tartrate dibasic dihydrate	36.	20% w/v Polyethylene glycol 3,350	36.	7.3	н	OH	-
		0.2 M Potassium sodium tartrate tetrahydrate	37.	20% w/v Polyethylene glycol 3,350	37.	7.4	Та	rtrate	
	38.	0.2 M Ammonium tartrate dibasic	38.	20% w/v Polyethylene glycol 3,350	38.	6.6			
	39.	0.2 M Sodium phosphate monobasic monohydrate	39.	20% w/v Polyethylene glycol 3,350	39.	4.7		0	
	40.	0.2 M Sodium phosphate dibasic dihydrate	40.	20% w/v Polyethylene glycol 3,350	40.	9.1	U,		
	41.	0.2 M Potassium phosphate monobasic	41.	20% w/v Polyethylene glycol 3,350	41.	4.8	0 H	C L	
	42.		42.	20% w/v Polyethylene glycol 3,350	42.	9.2	V 7	1 7	. 0-
	43.	0.2 M Ammonium phosphate monobasic		20% w/v Polyethylene glycol 3,350	43.	4.6	<u>`c</u> _c_	- <u>c</u> _ c	C
		0.2 M Ammonium phosphate dibasic	44.	20% w/v Polyethylene glycol 3,350	44.	8.0	_~~ ĭ	ĭΪ	11
		0.2 M Lithium citrate tribasic tetrahydrate	45.		45.	8.4	-0 H	ÓH H	i `O
		0.2 M Sodium citrate tribasic dihydrate	46.	20% w/v Polyethylene glycol 3,350	46.	8.3		0111	
		0.2 M Potassium citrate tribasic monohydrate	47.	20% w/v Polyethylene glycol 3,350	47.	8.3	C	itrate	
	48.	0.2 M Ammonium citrate dibasic	48.	20% w/v Polyethylene glycol 3,350	48.	5.1			

Ø Measured pH at 25 ° C

PEG / Ion Screen contains forty-eight unique reagents. To determine the formulation of each reagent, simply read across the page.

34 Journey Allee Viele, CA 92626-3317 U.S.A. Thé (949) 425-1521 • Face (949) 425-1611 B-mail: tech@emeil.eem Websites www.inspiencewenk.com HAMPTON RESEARCH

C 2000-0000 Hangara, Eastenab Corp. all Aglest materies Policies in the Dalmal States of Assessing. This getters parts these former and the requestance is may loss without the restores possible of the policies.

SaltRx HT

Reagent Formulation

Tube Number Saft	Tube Number Buffer t
A1. 1.8 M Sodium Acetate pH 7.0	A1. 0.1 M Bis-This Propane pH 7.0
A2. 2.8 M Sodium Acetate pH 7.0	A2. 0.1 M Bis-Tris Propane pH 7.0
A3. 1.5 M Ammonium Chloride	A3. 0.1 M Sodium Acetate pH 4.6
A4. 1.5 M Ammonium Chloride	A4. 0.1 M Bis-Tris Propane pH 7.0
A5. 1.5 M Ammonium Chloride	A5. 0.1 M This pH 8.5
A6. 3.5 M Ammonium Chloride	A6. 0.1 M Sodium Acetate pH 4.6
A7. 3.5 M Ammonium Chloride	A7. 0.1 M Bis-Tris Propane pH 7.0
A8. 3.5 M Ammonium Chloride	A8. 0.1 M This pH 8.5
A9. 2.2 M Sodium Chloride	A9. 0.1 M Sodium Acetate pH 4.6
A10. 2.2 M Sodium Chioride	A10. 0.1 M Bis-Tris Propane pH 7.0
A11. 2.2 M Sodium Chioride	A11. 0.1 M Tris pH 8.5
A12. 3.2 M Sodium Chloride	A12. 0.1 M Sodium Acetate pH 4.6
B1. 3.2 M Sodium Chloride	B1. 0.1 M Bis-Tris Propane pH 7.0
B2. 3.2 M Sodium Chloride	B2. 0.1 M Tris pH 8.5
B3. 1.0 M di-Ammonium hydrogen Citrate	B3. 0.1 M Sodium Acetate pH 4.6
 B4. 1.8 M di-Ammonium hydrogen Citrate 	B4. 0.1 M Sodium Acetate pH 4.6
B5. 1.0 M tri-Ammonium Citrate pH 7.0	B5. 0.1 M Bis-Tris Propane pH 7.0
B6. 2.0 M tri-Ammonium Citrate pH 7.0	B6. 0.1 M Bis-Tris Propane pH 7.0
 B7. 0.7 M tri-Sodium Citrate dihydrate 	B7. 0.1 M Bis-Tris Propane pH 7.0
 0.7 M tri-Sodium Citrate dihydrate 	B8. 0.1 M This pH 8.5
89. 1.2 M tri-Sodium Citrate dihydrate	B9. 0.1 M Bis-Tris Propane pH 7.0
B10. 1.2 M tri-Sodium Citrate dihydrate	B10. 0.1 M This pH 8.5
B11. 0.4 M Magnesium Formate	B11. 0.1 M Sodium Acetale pH 4.6
B12. 0.4 M Magnesium Formate	B12. 0.1 M Bis-Tris Propane pH 7.0
C1. D.4 M Magnesium Formate	C1. 0.1 M Tris pH 8.5
C2. D.7 M Magnesium Formate	C2. 0.1 M Bis-Tris Propane pH 7.0
C3. 2.0 M Sodium Formate	C3. 0.1 M Sodium Acetate pH 4.6
C4. 2.0 M Sodium Formate	C4. 0.1 M Bis-Tris Propane pH 7.0
C5. 2.0 M Sodium Formate	C5. 0.1 M Tris pH 8.5
C6. 3.5 M Sodium Formate	C5. 0.1 M Sodium Acetate pH 4.6
C7. 3.5 M Sodium Formate C8. 3.5 M Sodium Formate	C7. 0.1 M Bis-Tris Propane pH 7.0 C8. 0.1 M Tris pH 8.5
C9. 1.2 M DL-Malic Add pH 7.0	C9. 0.1 M Bis-Tris Propane pH 7.0
C10. 2.2 M DL-Malic Add pH 7.0	C10. 0.1 M Bis-This Propane pH 7.0
C10. 22 M DE-Mail: Add pri 7.0 C11. 1.4 M Sodium Maionate pH 7.0	C10. 0.1 M Bis-Tris Propane pH 7.0
C12. 2.4 M Sodium Malonate pH 7.0	C12. 0.1 M Bis-Tris Propane pH 7.0
D1. 2.5 M Ammonium Nitrate	D1. 0.1 M Sodium Acetate pH 4.6
D2. 2.5 M Ammonium Nitrate	D2. 0.1 M Bis-Tris Propane pH 7.0
D3. 2.5 M Ammonium Nitrate	D3. 0.1 M Tris pH 8.5
D4. 6.0 M Ammonium Nitrate	D4. 0.1 M Sodium Acetate pH 4.6
D5. 6.0 M Ammonium Nitrate	D5. 0.1 M Bis-Tris Propane pH 7.0
D6. 6.0 M Ammonium Nitrate	D6. 0.1 M Tris pH 8.5
D7. 1.5 M Sodium Nitrate	D7. 0.1 M Sodium Acetate pH 4.6
D8. 1.5 M Sodium Nitrate	D8. 0.1 M Bis-Tris Propane pH 7.0
D9. 1.5 M Sodium Nitrate	D9. 0.1 M Tris pH 8.5
D10. 4.0 M Sodium Nitrate	D10. 0.1 M Sodium Acetate pH 4.6
D11. 4.0 M Sodium Nitrate	D11. 0.1 M Bis-Tris Propane pH 7.0
D12. 4.0 M Sodium Nitrate	D12. 0.1 M This pH 8.5

[†] Suffer pH is that of a 1.0 M stock prior to dilution with other respect components, pH with HCI or NeOH.

SaltRx HT contains ninety-six unique reagents. To determine the formulation of each reagent, simply read across the page.

Solutions for Crystal Growth

© 2000-2002 Hampton Research Cosp. all rights senerved Printed in the United States of America. This guide to parts thereof may not be reproduced in any form without the written permission of the publishers.

27632 El Lazo Road, Suite 100 Laguna Niguel, CA 92677-3913 U.S.A. Tel: (949) 425-1321 • Fax: (949) 425-1611 e-mail: tech@hrmail.com Internet: www.hamptonresearch.com I Bioinformatics analysis of GH95 and GH97 proteins, gel filtration graphs for CAH06598 and CAH09443 and PCR amplification conditions used in the cloning of BF3763 and BF0855 genes.

	Sy Home page		Search ExPAS		us Proteomics tools
	Se	earch Swiss-Prot	/TrEMBL for		Go Clear
ProtP	aram	CAH0659	8		
User-pr	ovided se	equence:			
1		<u>0</u> 3 <u>(</u>	2 40	2 50	0 60
MKIKLLLL	CGLWSSCNS	Y DYCPVTPSES	DLVFTGLARS	WDEAMPLGNA	<u>0</u> 6 <u>0</u> A TVGALVWQRD
SILKLSLDR	DLWDLRPVD	S LSGDNFRFSW	VKEHIRQKNY	LPVOKKLDWF	YDMNPAPSKI
190	QIGIPIQVR	L YLNNALCEAD	WADGTQMQTF	VHATEPIGWF	VFRNLKTPIE
250	260	V SGQDLHRLGY 2 27 <u>0</u>	QQGKVVREGN	QITYHQKGYG	DFSYDVTVCW
QEGETLYGT	WSVTSSLSG	Z QASEKAEAAL	OPCI KUDYON	29 <u>0</u>	30 <u>0</u>
QKQYQNEMY	KFGSTTREHS	YPISLQAVWT	ADNGKI.PPWK	35 <u>0</u>	36 <u>0</u>
LTEGMGYLN	TLWNQRDAYK	RYTRRYFGTE	GMNIPGVCTI.	TGEPMCCWIO	42 <u>0</u>
AQHFYLQWK	YSADRTFLKE	RAYPFIKDVA	IYLEOISEVT	PEGVRKLEFS	48 <u>0</u>
AWFSDMTNY	DLAMMHFLFK	ATSELAHELN	LADEAGHWAS	LEAQLPDYDI	DEEGCLITFAK
FILESHRH	FSHAMAIHPL	GLIDWSDGEK	SQHIIRATLK	RLDKVGPDYW	TGYSYSWLAN
670	680	CFCLKNTFHA	NGDQTQSGKS	RFTYRPFTLE	GNFAFAAGIQ
730	740	WKDVSFENLR 750	AMGAFLVSAR	MEGGEINRVR	IYSEKGGMLK
	KNYTLSGTDI	LNIDTQAGEW	TETND		
eferences and	d documentatio	on are available.	TETUL		
Please not	e the modified	algorithm for ex	tinction coeffici	ent.	
mber of an	nino acids:	755			
lecular we	ight: 8610	2.1			
eoretical	pI: 5.81				
no acid c	omposition				
a (A) 56					
g (R) 32	4.2%				
ı (N) 30	4.0%				
) (D) 43	5.7%				

Asp	(D)	43	5.7%
Cys	(C)	10	1.3%
Gln	(Q)	37	4.9%
Glu	(E)	45	6.0%
Gly	(G)	55	7.3%
His	(H)	21	2.8%
Ile	(I)	32	4.2%
Leu	(L)	72	9.5%
Lys	(K)	41	5.4%
Met	(M)	19	2.5%
Phe	(F)	31	4.1%

Pro	(P)	37	4.9%
Ser	(S)	52	6.9%
Thr	(T)	48	6.4%
Trp	(W)	26	3.4%
Tyr	(Y)	39	5.2%
Val	(V)	29	3.8%
Pyl	(0)	0	0.0%
Sec	(U)	0	0.0%
(B)	0		0.0%
(Z)	0		0.0%
(X)	0		0.0%

Total number of negatively charged residues (Asp + Glu): 88 Total number of positively charged residues (Arg + Lys): 73

Atomic composition:

Carbon	С	3887
Hydrogen	H	5847
Nitrogen	N	1027
Oxygen	0	1138
Sulfur	S	29

Formula: C₃₈₈₇H₅₈₄₇N₁₀₂₇O₁₁₃₈S₂₉ Total number of atoms: 11928

Extinction coefficients:

Extinction coefficients are in units of $M^{-1} \text{ cm}^{-1}$, at 280 nm measured in water.

Ext. coefficient 201735 Abs 0.1% (=1 g/l) 2.343, assuming ALL Cys residues appear as half cystines

Ext. coefficient 201110 Abs 0.1% (=1 g/l) 2.336, assuming NO Cys residues appear as half cystines

Estimated half-life:

The N-terminal of the sequence considered is M (Met).

The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). >20 hours (yeast, in vivo). >10 hours (Escherichia coli, in vivo).

Instability index:

The instability index (II) is computed to be 34.84 This classifies the protein as stable.

Aliphatic index: 72.28

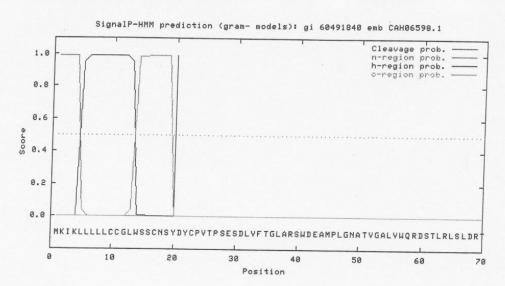
Grand average of hydropathicity (GRAVY): -0.472

SignalP 3.0 Server - prediction results

Technical University of Denmark

Using neural networks (NN) and hidden Markov models (HMM) trained on Gram-negative bacteria

>gi_60491840_emb_CAH06598.1_ conserved hypothetical protein _Bacteroides fragilis NCTC 9343_


SignalP-NN result:

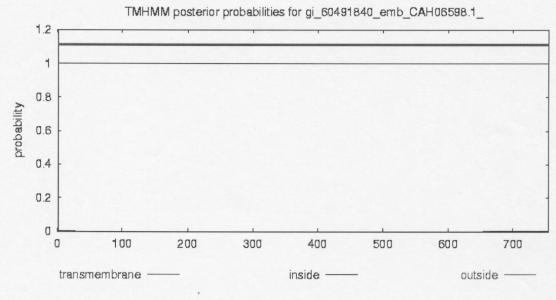
data

>	gi_60	4918	40_emb_CAH	0 leng	th = 70					
#	Meas	ure	Position	Value	Cutoff	signal	pept	ide?		
	max.	C	20	0.227	0.52	NO				
	max.	Y	20	0.386	0.33	YES				
	max.	S	2	0.982	0.92	YES				
	mean	S	1-19	0.751	0.49	YES				
		D	1-19	0.568	0.44	YES				
#	Most	lik	ely cleava	ge site	between	pos. 1	9 and	20:	CNS-YD	

SignalP-HMM result:

data

>gi_60491840_emb_CAH06598.1_ Prediction: Signal peptide Signal peptide probability: 0.991 Max cleavage site probability: 0.988 between pos. 19 and 20


gnuplot script
for making the plot(s)

Explain the output. Go back.

TMHMM result

HELP with output formats

```
# gi_60491840_emb_CAH06598.1_ Length: 755
# gi_60491840_emb_CAH06598.1_ Number of predicted TMHs: 0
# gi_60491840_emb_CAH06598.1_ Exp number of AAs in TMHs: 0.0179
# gi_60491840_emb_CAH06598.1_ Exp number, first 60 AAs: 0.01192
# gi_60491840_emb_CAH06598.1_ Total prob of N-in: 0.00063
gi_60491840_emb_CAH06598.1_ TMHMM2.0 outside 1 755
```


plot in postscript, script for making the plot in gnuplot, data for plot

ExPASy Home page Site Map Search ExPASy Contact us Proteomics tools Search Swiss-Prot/TrEMBL for Go Clear

Swiss-Prot

ProtParam CAH09443

User-provided sequence:

1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	40	50	60					
MKRKMMSLLL	ALAVISGSSV	YAKVIDVMSP	NGAIKVSVDI	KDRIYYSVSY	DNDQLLKDCY					
7 <u>0</u>		9 <u>0</u>		110						
LNLQLQNETL	GTNPHLRSTK	RGTIDESVKR	EIPFKNAIVR	NHCNTLRMNF	SGNYAVEFRV					
13 <u>0</u>		15 <u>0</u>			180					
FDNGIAYRFV	TDKKGDNIVM	GEDFAINFPT	NYKAHLSQPD	GFKTSYECPY	THVDTEKYAA					
19 <u>0</u>	20 <u>0</u>	21 <u>0</u>	220	230	240					
TDRMSYLPVL	IETDKAYKIL	ISEADLSDYP	CMFLKSTGKN	GMQSIFPKAP	LAFGEDGDRS					
25 <u>0</u>	26 <u>0</u>	27 <u>0</u>			300					
LKITEEADYI	AKTDGKRSFP	WRMMVISKED	KELIENEMVY	NLSAPCVLED	YSWIKPGQVS					
31 <u>0</u>	32 <u>0</u>	33 <u>0</u>	340	35 <u>0</u>	36 <u>0</u>					
WEWWHDARLY	GVDFRSGFNM	DSYKYYIDFA	SKFGIPYIIM	DEGWAKNTRD	PFTPNPTINL					
37 <u>0</u>	38 <u>0</u>	39 <u>0</u>	40 <u>0</u>	41 <u>0</u>	42 <u>0</u>					
TELIKYGKDR	NVKIVLWLPW	LTVENHFDLF	KTFADWGIAG	VKIDFMDRSD	QWMVNYYERV					
43 <u>0</u>	44 <u>0</u>	45 <u>0</u>	46 <u>0</u>	47 <u>0</u>	48 <u>0</u>					
AKEAAKHKLF	VDFHGAFKPA	GLERKYPNVL	SYEGVLGMEQ	GGNCKPENSI	YLPFMRNAVG					
49 <u>0</u>	,50 <u>0</u>	51 <u>0</u>	52 <u>0</u>	53 <u>0</u>	54 <u>0</u>					
PMDFTPGSMI	SAQPEDNRST	RANAMGSGTR	AFQMALFIIF	ESGLQMLADN	PVYYYRELPC					
55 <u>0</u>	56 <u>0</u>	57 <u>0</u>	58 <u>0</u>	59 <u>0</u>	60 <u>0</u>					
TEFITSVPVT	WDETKVLYAK	VGEAVVVAKR	KGEQWFIGGI	TGNQPQNIEI	DLGFIPAGQS					
61 <u>0</u>	62 <u>0</u>	63 <u>0</u>	64 <u>0</u>							
	NADRQAMDYK			GWAGTIKMK						
References an	References and documentation are available.									

new Please note the modified algorithm for extinction coefficient.

Number of amino acids: 649

Molecular weight: 74054.6

Theoretical pI: 6.33

```
Amino acid composition:
```


 Amino
 acid
 compositie

 Ala
 (A)
 42
 6.5%

 Arg
 (R)
 29
 4.5%

 Asn
 (N)
 37
 5.7%

 Asp
 (D)
 44
 6.8%

 Cys
 (C)
 7
 1.1%

 Gln
 (Q)
 17
 2.6%

 Glu
 (E)
 37
 5.7%

 Gly
 (G)
 44
 6.8%

 His
 (H)
 8
 1.2%

 Ile
 (I)
 41
 6.3%

 Leu
 (L)
 43
 6.6%

 Lys
 (K)
 49
 7.6%

 Met
 (M)
 27
 4.2%

 Phe
 (F)
 34
 5.2%

 Pro
 (P)
 30
 4.6%

 Ser
 (S)
 39
 6.0%

 Thr
 (T)
 35
 5.4%
 Thr (T) 35 5.4% Trp (W) 13 2.0%

Tyr	(Y)	33	5.1%
Val	(V)	40	6.2%
Pyl	(0)	0	0.0%
Sec	(U)	0	0.0%
(B)	0		0.0%
(Z)	0		0.0%
(X)	0		0.0%

Total number of negatively charged residues (Asp + Glu): 81 Total number of positively charged residues (Arg + Lys): 78

Atomic composition:

Carbon	C	3337
Hydrogen	H	5118
Nitrogen	N	868
Oxygen	0	973
Sulfur	S	34

Formula: $C_{3337}H_{5118}N_{868}O_{973}S_{34}$ Total number of atoms: 10330

Extinction coefficients:

Extinction coefficients are in units of M^{-1} cm⁻¹, at 280 nm measured in water.

Ext. coefficient 121045 Abs 0.1% (=1 g/l) 1.635, assuming ALL Cys residues appear as half cystines

Ext. coefficient 120670 Abs 0.1% (=1 g/l) 1.629, assuming NO Cys residues appear as half cystines

Estimated half-life:

The N-terminal of the sequence considered is M (Met).

The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). >20 hours (yeast, in vivo). >10 hours (Escherichia coli, in vivo).

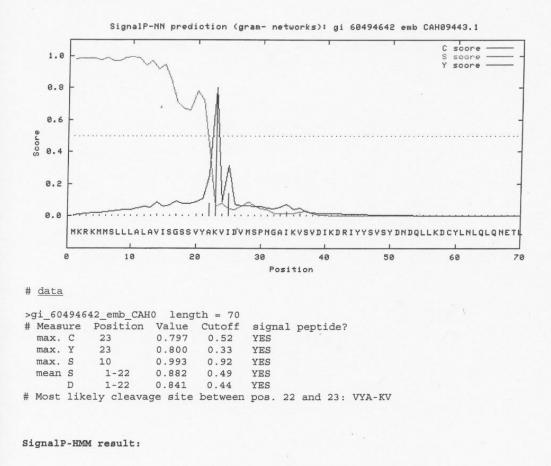
Instability index:

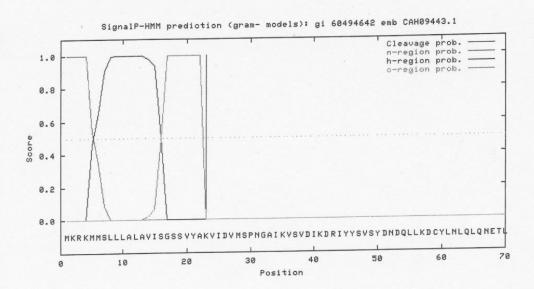
The instability index (II) is computed to be 32.76 This classifies the protein as stable.

Aliphatic index: 74.82

Grand average of hydropathicity (GRAVY): -0.370

📥 ExPASy Home page	Site Map	Search ExPASy	Contact us	Proteomics tools	Swiss-Prot
Searc	ch Swiss-Pro	t/TrEMBL 💌 for		Go Clear	


SignalP 3.0 Server - prediction results


Technical University of Denmark

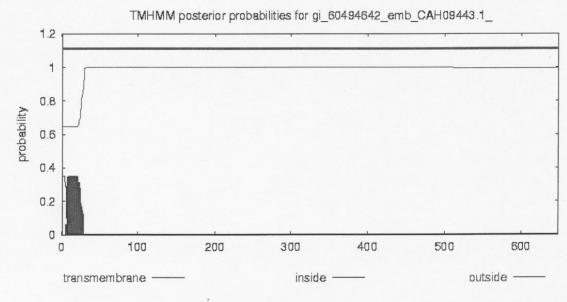
Using neural networks (NN) and hidden Markov models (HMM) trained on Gram-negative bacteria

>gi_60494642_emb_CAH09443.1_ putative exported protein _Bacteroides fragilis NCTC 9343_

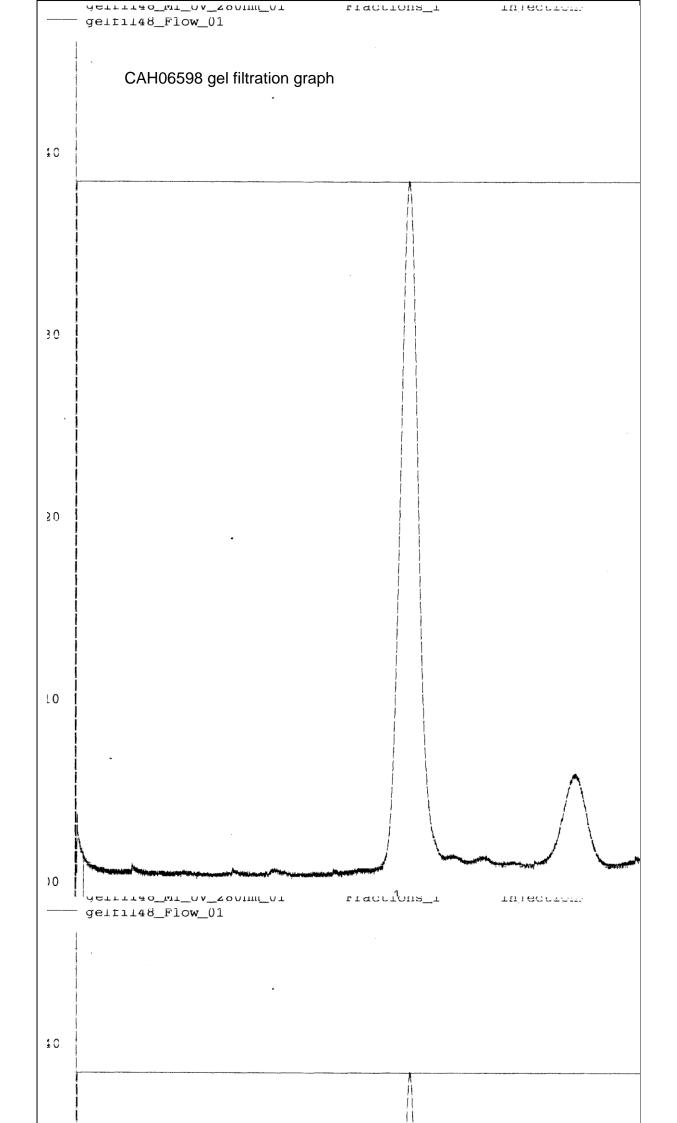
SignalP-NN result:

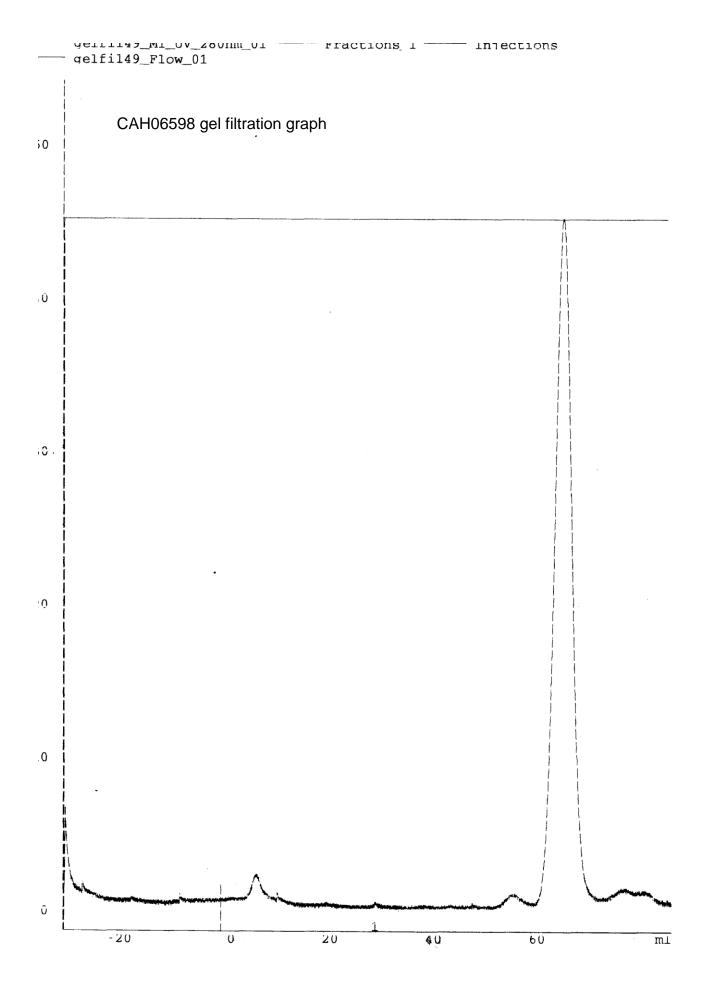
data

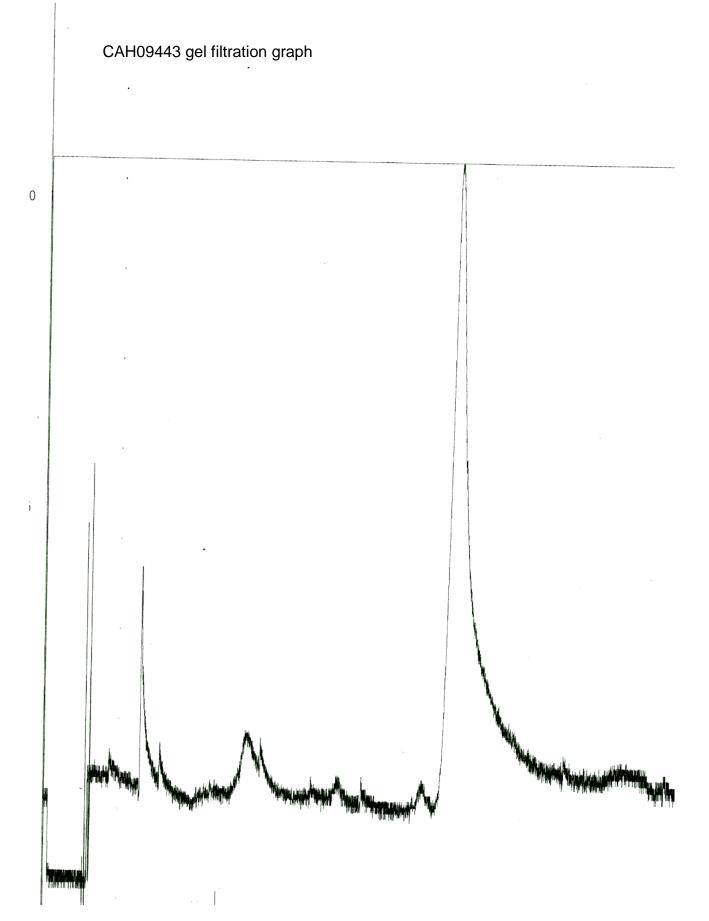
>gi_60494642_emb_CAH09443.1_ Prediction: Signal peptide Signal peptide probability: 1.000 Max cleavage site probability: 0.999 between pos. 22 and 23

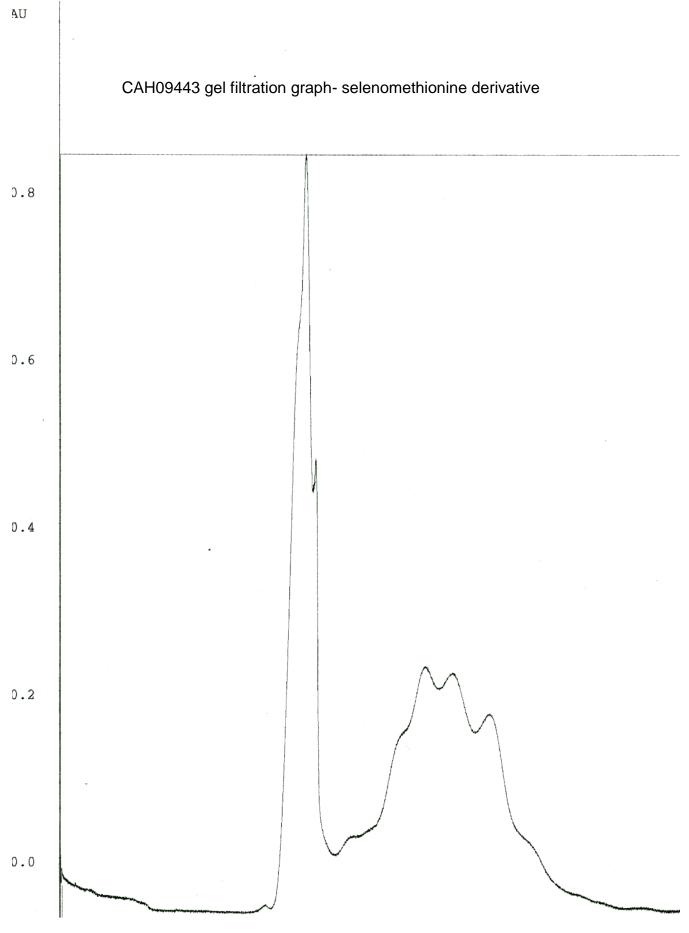

gnuplot script
for making the plot(s)

Explain the output. Go back.


671


TMHMM result


HELP with output formats



plot in postscript, script for making the plot in gnuplot, data for plot

Step	Temperature	Time		
Denature	94°C	2 min		
Denature	94°C	15 s		
Annealing	60.27°C	30 s		
Extension	68°C	2 min 39 s		
Repeated 4 more times				
Denature	94°C	15 s		
Annealing	70.03°C	30 s		
Extension	68°C	2 min 39 s		
Repeated 24 more times				
Extension	68°C	10 min		
Hold at 10°C				

PCR conditions for the amplification of the BF3763 gene from B. fragilis

Step	Temperature	Time
Denature	94°C	2 min
Denature	94°C	15 s
Annealing	60.27°C	30 s
Extension	68°C	2 min 39 s
Denature	94°C	15 s
Annealing	70.03°C	30 s
Extension	68°C	2 min 39 s
Extension	68°C	10 min
Hold at 10°C		

KOD polymerase based PCR amplification of BF3763 gene in *B. fragilis*

Step	Temperature	Time
Denature	94°C	2 min
Denature	94°C	15 s
	61 °C	30 s
Extension	72°C	1 min 53 s
	94°C	15 s
	80°C	30 s
Annealing	72°C	1 min 53 s
Denature	94°C	15 s
Annealing	73°C	30 s
Extension	72°C	1 min 53 s
Extension	72°C	10 min
Hold at 10°C		I

PCR conditions for the amplification of the BF0855 gene from *B. fragilis*

Step	Temperature	Time
Denature	94°C	2 min
Denature	94°C	15 s
Annealing	61 °C	30 s
Extension	72°C	1 min 53 s
Denature	94°C	15 s
	80°C	30 s
Annealing	72°C	1 min 53 s
Denature	94°C	15 s
Annealing	73°C	30 s
Extension	72°C	1 min 53 s
Extension	72°C	10 min
Hold at 10°C		

Amplification of the BF3763 gene from transformed *E. coli* to screen for colonies

containing successful inserts

Appendix J

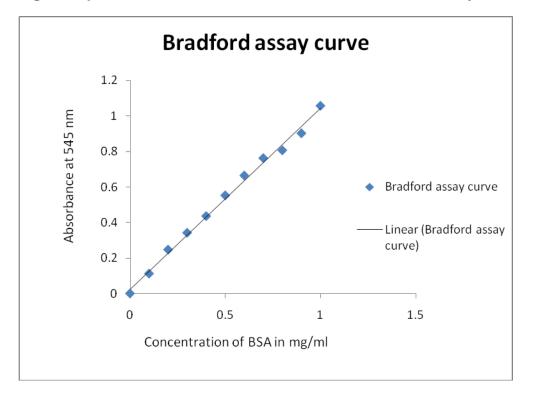


Figure represents the standard curve for the Bradford assay