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ABSTRACT
Direct Torque Control (DTC) has been extensively re-
searched and applied during the last two decades. How-
ever, it has only first been applied to the Brushless Doubly-
Fed Reluctance Machine (BDFRM) a few years ago in its
basic form inheriting its intrinsic flux estimation problems
that propagate throughout the algorithm and hence com-
promise the DTC performance. In this paper, we propose
the use of Kalman Filter (KF) as an alternative to improve
the estimation and consequently the control performance
of the DTC. The KF is designed around a nominal model,
but is shown to be reliable over the whole operating range
of the BDFRM. Moreover, we use a modified robust exact
differentiator based on Sliding Mode (SM) techniques to
calculate the angular velocity from an angular position en-
coder. Computer simulations are meticulously designed to
take into account real-world physical constraints and thus
show illustrative supporting results as expected from an ex-
perimental setup.

KEYWORDS
Direct Torque Control, Kalman Filter, Robust Exact
Differentiator, Brushless Doubly-Fed Reluctance Ma-
chine.

NOMENCLATURE

vpd, vpq primary direct and quadrature voltage components [V];

vsd, vsq secondary direct and quadrature voltage components
[V];

ipd, ipq primary direct and quadrature current components [A];

isd, isq secondary direct and quadrature voltage components [A];

λpd, λpq primary direct and quadrature flux components [Wb];

λsd, λsq secondary direct and quadrature flux components [Wb];

ω angular velocity of reference frame [rad/sec];

ωrm mechanical angular velocity of the shaft [rad/sec];

ωr electrical angular velocity of the rotor [rad/sec];

ωp,s primary and secondary winding frequencies [rad/sec];

Pr number of rotor poles (or the sum of the windings pole pairs);

Lp, Ls, Lm primary, secondary and mutual inductances of the
windings [H];

Rp, Rs primary and secondary windings resistances [Ω];

Te, Tl electromagnetic and load torque [Nm].

1 Introduction

The BDFRM has been the subject of extensive research
during the last decade [1–6]. The motivation behind these
generous efforts is largely explained by the tremendous po-
tential for this machine in both motoring and generating
modes. The BDFRM offers competitive performance to
slip energy recovery induction machine drives while having
a brushless and salient rotor. For a typical speed range of
2:1, the converter real power rating can be limited to about
25% of the machine rating [1–3]. Another interesting fea-
ture of the BDFRM is that it can function as a conventional
induction machine, a synchronous machine, and a doubly
excited induction machine [1]. For the same inverter rat-
ings and assuming the same copper losses and active cop-
per material, the BDFRM is able to produce approximately
twice the output power of the Synchronous Reluctance Ma-
chine (SyncRel), using the maximum torque per inverter
Ampere (MTPIA) control requirement. The absence of
rotor windings also makes it more efficient and consider-
ably easier to manufacture, model and control as compared
to the Brushless Doubly-Fed Induction Machine (BDFIM)
which has an additional winding on the rotor [3]. A fur-
ther merit is the possibility of power-factor control, which
is particularly useful when turbines are connected to weak
grid systems.

The DTC algorithm has been developed more than
two decades ago [7,8] as an alternative to the conventional
space vector or field oriented control for high-performance
induction motor drives. The author of [7] replaced the com-
plex control structure inherent with the latter by merely two
hysteresis comparators and an optimum switching look-
up table. Since then DTC gained a lot of interest among
the research communities either in academia or industry
alike due to its simplicity and high efficiency. For instance,
ABB R© adopted this approach and offers a range of DTC
based products for variable speed applications. Further-
more, the literature is rich with DTC applications to single-
excited AC machines. However, it reveals very little about
applications to doubly-fed machines especially brushless.

DTC was first applied to the BDFRM in [9] and sub-
sequently modified to a sensorless scheme in [5,10]. It has
been shown that DTC offers a good transient and steady
state performance. Nonetheless, DTC has also disadvan-
tages some of which are general to AC machines while oth-
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ers are peculiar to the BDFRM. Voltage integration prob-
lems and associated flux estimation inaccuracies,as it hap-
pens with induction machines at low speeds, lie within the
first category of DTC limitations. [5] overcomes this prob-
lem by using a different analytical expression that avoids
secondary voltage integration but requires knowledge of
the winding self inductancesLp,s at the expense. A specific
problem when applying DTC to the BDFRM of [5] is that
the primary resistanceRp is large and hence the voltage
drop across it cannot be neglected. Besides, for the MTPIA
objective and in particular when the secondary currentis is
almost zero, even minor inaccuracies in the primary flux
λpestimates can cause large inacceptable estimation errors
in the secondary fluxλs.

This paper is organized as follows; in section two we
review the BDFRM model. In section three we develop
a state observer to reconstruct the primary and secondary
fluxes using Kalman Filter. Section four shows how the
DTC is enhanced thanks to the new estimation algorithm.
Section five illustrates the effectiveness of the proposed ap-
proach by simulations accounting for practical constraints.
Finally in section six, we draw a conclusion about this work
and mention some closing remarks.

2 Dynamic Model

In an arbitrary rotating reference frame, and using standard
notation, the BDFRMdq-model is expressed as [4]:





vpd = Rpipd + λ̇pd − ωλpq

vpq = Rpipq + λ̇pq + ωλpd

vsd = Rsisd + λ̇sd − (ωr − ω)λsq

vsq = Rsisq + λ̇sq + (ωr − ω)λsd

(1)





λpd = Lpipd + Lmisd

λpq = Lpipq − Lmisq

λsd = Lsisd + Lmipd

λsq = Lsisq − Lmipq

(2)

Among many torque expressions for the machine, we
chose the following due to control implications:

Te =
3PrLm

2Lp
(λpdisq + λpqisd) (3)

The torque is expressed as a function of the primary flux
which is mainly constant (because the primary winding is
fed with constant grid voltage and frequency) and the sec-
ondary currents which can be controlled by an inverter.

To complete the BDFRM model, we use a conven-
tional mechanical equation for a single lumped inertia load
neglecting friction components:

dωrm

dt
=

1
J

(Te − Tl) (4)

ωrm =
wp + ws

Pr
(5)

pω

pω

sω

AC/DC/AC
converter

primary
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reluctance rotor
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nested cage rotor
p + q nests

Figure 1. Structural diagram of BDFM drive with reluc-
tance (BDFRM) and cage (BDFIM) rotors
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Figure 2. Starting transients for rotor speed (ωrm) and
torque (Te)

Figure 1 depicts a schematic representation of the
BDFRM setup as considered in this work. Figure 2
shows the rotor angular velocity, given by (5), and BD-
FRM torque during start-up to the synchronous speed of
ωsync = 750rpm corresponding to (5) forωs = 0 (when
the secondary is DC fed). In the next figures we shall not
show the starting performance again in order to focus on
the doubly-fed operating mode.

3 Flux Estimation using Kalman Filter

First by manipulating (1) and (2) to eliminate the current
variables and referring the model to the stationary frame
(i.e. ω = 0) we obtain:







λ̇pd = vpd − µRp(Lmλsd − Lsλpd)
λ̇pq = vpq + µRp(Lsλpq + Lmλsq)

λ̇sd = vsd + ωrλsq − µRs(Lmλpd − Lpλsd)
λ̇sq = vsq − ωrλsd + µRs(Lmλpq + Lpλsq)

(6)

where:µ = (L2
m − LpLs)−1.

It is clear that the set of equations (6) represents a bi-
linear system. However, a physical constraint is imposed
on the BDFRM due to the fact that it offers numerous
virtues only if operated in a relatively narrow speed range
around the synchronous speed i.e.ωrm = ωsync ±∆ωrm,
where;∆ωrm

ωsync
= 33.33%.

As suggested previously, typical ratio for limited
speed range applications is:ωrm Max = 2ωrm Min equiva-
lent toωs = ωp

3 ≈ 17Hz for ωp = 50Hz, which means that
ωrm = ωsync ± 250rpm. In this range, the power electron-
ics required is only20% the rating of the BDFRM [3]. This
operational constraint can be exploited to simplify estima-
tion and/or control schemes. In fact sinceωr = Prωrm,
thenωr exhibits the same uncertainty asωrm. For develop-
ing the Kalman Filter system model we assume a constant
nominal electrical velocityωr = ωn which results in a lin-
ear model of the standard form:

Ẋ = AX + BU (7)

where:X =
[
λpd λpq λsd λsq

]T
, B = I4×4, U =[

vpd vpq vsd vsq

]T
, and

A=




µRpLs 0 −µRpLm 0
0 µRpLs 0 µRpLm

−µRsLm 0 µRsLp ωn

0 µRsLm −ωn µRsLp


 .

The primary and secondary currents are measured
quantities, therefore we rewrite (2) to get the output equa-
tion in the formY = CX:




ipd

ipq

isd

isq


 = µ




−Ls 0 Lm 0
0 −Ls 0 −Lm

Lm 0 −Lp 0
0 −Lm 0 −Lp







λpd

λpq

λsd

λsq




(8)
To derive the discrete model we simply apply Euler’s

method with a sampling timeh, which gives:
{

Xk+1 = AkXk + hBUk + ξ
Yk = CXk + η

(9)

where:Ak =




a1 0 a3 0
0 a1 0 −a3

a4 0 a2 ωnh
0 −a4 −ωnh a2


 ,

a1 = 1 + µRpLsh, a2 = 1 + µRsLph, a3 =
−µRpLmh, a4 = −µRsLmh. ξ andη are introduced to
account for the process and measurement noises. They are
assumed identically independent zero mean white noises
with respective first momentsQ andR.

The KF equations are defined as follows [11]:





X̂k = AdX̂k + BhUk

Pk = AdPkAT
d + Qk

Kk = PkCT (CPkCT + R)−1

X̂k+1 = X̂k + Kk(Yk − CX̂k)
Pk+1 = (I −KkC)Pk(I −KkC)T + KkRKT

k
(10)

where:K is the Kalman correction gain andP is the state
prediction covariance.

Remark 1 The last recursive equation in (10) may be sim-
plified to Pk+1 = (I − KkC)Pk as found in many texts.
However, this would be at the cost of numeric stability and
accuracy of the original expression.

4 Improved Direct Torque Control

4.1 DTC strategy

For a Y-connected machine with an isolated neutral point
(so thatic = −ia − ib) and the “abc” phase sequence of
the windings, we recall the expressions used in [5] for flux
estimation given in complex form:

λs = λse
jθs = Lsis +

λp − Lpip
i∗s

i∗p (11)

λp = λpe
jθp =

∫ (
vp −Rpip

)
dt (12)

x = xa + j
xa + 2xb√

3
, wherex = ip, is, vp (13)

This approach allows to avoid the well known voltage
integration problems while estimatingλs and θs = dωs

dt
(for sector identification). However, it is clear that (11)
for estimating the secondary flux is not reliable whenis is
close to zero (which is the case for example when the ma-
chine is unloaded or during a transient response). Besides
(12) and consequently (11) suffer high sensitivity to para-
meter inaccuracies in addition to the numerical stability is-
sue. This has prevented the MTPIA control objective to be
attained experimentally [5]. Therefore, using (11) is not
recommended for real implementation, and a more robust
estimation technique, like the one described in the previous
section, is required. The same MTPIA secondary flux ref-
erence expression and inverter switching logic as in [5] can
be applied.

4.2 Modified Robust Exact Differentiator

The classical way of making derivative of a physical mea-
sured quantity is to use a combination of an ideal differ-
entiator and a low-pass filter. Such a linear differentiator
inherently carries a time-delay proportional to its complex-
ity. The author of [12] introduced a new method for Robust
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Figure 3. Speed differentiation errors

Exact Differentiation (RED) based on Sliding Mode (SM)
techniques that we summarize here.

For a practical first-order robust exact differentiator,
let the input signalf(t) be a measurable locally bounded
function that consist of a base signal having a derivative
with Lipschitz’s constantC > 0 and a noise. Consider
the auxiliary equatioṅx = u and apply a second order SM
algorithm to steerx to f(t). This results in the control law
defined by (14):

{
u = u1 − λ

√
|x− f(t)|sign(x− f(t))

u1 = −αsign(x− f(t))
(14)

whereα > 0, λ > 0 andu(t) is the output of the differen-
tiator.

In order to reduce the chattering phenomenon
we propose to use the approximationtansig function
(tansig(x) = 2/(1 + exp(−βx))− 1) instead of the sharp
signum function. By this slight modification the perfor-
mance of the RED is considerably improved in steady state
in particular.

Now let’s assess the performance of the RED against
a linear one described by the transfer functions/( s

100π +
1)2. Figure 3 shows a comparison of the differentiation
errors obtained in a closed loop DTC scheme using a lin-
ear differentiator, the original RED and the modified RED
with α = 10C, λ = 3

√
C, C = 2500. The spikes appear

at time instants where there is a reference change in the an-
gular velocity or a change in the load torque. The modified
SM based RED is more accurate and has in the worst situa-
tion error spikes with twice less amplitude than the original
RED. The advantage of using the new SM differentiator is
clearly demonstrated.

5 Simulation results

The key point in preparing for the experimental work is to
make realistic simulations. In order to achieve this, we take

the following measures:

1. We use the power electronic models readily available
in Simulink/SimPowerSystemsR© library to reproduce
the non-linear dynamics of the 3-phase diode rectifier,
the braking chopper, the IGBT inverter bridge and the
3-phase voltage source.

2. To account for the current/voltage transducers effect,
we inject high frequency measurement uncorrelated
white noises to the ideal signals. Moreover, we cor-
rupt the signals by unknown slowly varying DC off-
sets.

3. We assume that the only information available is the
angular position provided by an incremental encoder.
Some authors use linear observers in order to obtain
the angular velocity. These kinds of observers are
subject to criticism from many aspects, for instance
the requirement of a torque transducer (or estimator)
and unavoidable time delay. We adopt a real-time SM
based RED instead, as explained earlier.

4. The computational expense has not been neglected.
KF has been implemented using Embedded Matlab
function to automatically generate efficient embed-
ded C code and run simulations at compiled C speed.
Besides we optimized the code by avoiding unnec-
essary matrix multiplications, minimizing the use of
trigonometric functions and handlingsingle preci-
sion variables.

The sampling frequency of the inner DTC loop in-
cluding the power electronics has been set to 10 kHz,
whereas the outer PI speed loop is updated at 1 kHz. The
desired reference angular speed signal is set to cover all
the operating range of the BDFRM. At the same time, we
apply bounded unknown load torque step changes to chal-
lenge the improved control scheme. The experiment is set
around a 2.5A, 415V, 50Hz BDFRM with the parameters
found in [5].

5.1 KF vs conventional estimation

In order to reinforce the choice for KF as a state observer in
contrast with the estimation method used in [5], we set up
a simulation that implements the DTC using both estima-
tion techniques. KF initial estimates are set to zero, and the
covariance matrices toP = 10× I, Q = 0.001× I, R =
0.1 × I. The comparison is made under ideal conditions,
and the estimation errors of the secondary flux components
are depicted in Figures 4 and 5. Employing KF is well
justified given the crude estimation used in previous works
and we now understand why MTPIA control objective was
not achievable experimentally as mentioned earlier. In par-
ticular the conventional estimation method fails in regions
where the machine is not loaded (secondary currents at
zero) and where transients with low secondary currents oc-
cur. On the other hand, KF provides accurate estimates
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Figure 4. Secondary flux estimation error using conven-
tional method
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Figure 5. Secondary flux estimation error using KF

despite the changing set point and load with minimum ac-
curacy of2%. Similar observations can be made for the
primary flux estimation but respective waveforms are not
shown for space reasons.

5.2 Testing the KF based DTC

Again for the sake of emulating a real-time situation, the
BDFRM model is made uncertain by using immeasurable
random disturbance inputs, introducing a random compo-
nent into the state trajectory. The KF has no information
about the disturbance input hence only a proper choice of Q
matrix helps KF to converge to the real state trajectory. The
larger the process noise covariance, the more KF makes use
of the current measurements. However, the currents also
are corrupted with noise and DC offset. We can accom-
modate the former by properly tuning R, whereas for the
later, which has made the major obstacle for practical im-
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Figure 6. Speed tracking at different loads
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Figure 7. Applied load torque profile

plementation in previous works, we do not even have to
care about designing linear high-pass pre-filters; in fact KF
estimates are virtually unaffected by the measurements DC
offset. Figure 6 shows the tracking performance of the im-
proved DTC under different loading conditions (Figure 7).
The transient response is fast with respect to both speed and
load torque changes. The steady state behavior is also very
good.

Figure 8 shows the corresponding electromagnetic
torque that compensates adequately for the changing load
and desired speed. Yet, although the excellent tracking
performance of the KF based DTC, the BDFRM torque
is subject to high jitter exceeding the specified hysteresis
band. This phenomenon is currently being investigated and
is largely due to the consideration of practical effects such
as the control sampling frequency limit imposed by com-
putational requirements. Finally, Figure 9 outlines the d-q
secondary currents with the q-axis current having a similar
waveform to torque (Figure 8).
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Figure 8. Electromagnetic torque (Te)
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Figure 9. Secondary d-q currents inωs frame

6 Conclusion

In this paper we have reviewed the DTC proposed for the
BDFRM addressing the weak points of the dedicated flux
estimation method under the MTPIA conditions. In order
to allow the MTPIA control strategy to be applied experi-
mentally, we have suggested the use of Kalman Filter and
showed its suitability for this task. Furthermore, we have
used a modified RED based on SM techniques to calcu-
late the angular velocity and demonstrated its superiority
to conventional linear filters and the original RED. Real-
istic simulations accounting for practical constraints have
been made to support the approach. The Matlab/Simulink
results are more than promising and represent the necessary
preliminary step for real-time implementation.
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