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A CONTROL DESIGN
FOR LINEAR TIME-DELAY SYSTEMS

In this paper, we propose a control design for single-input linear systems with a known delay in
the state. A systematic construction of the controller gain is given such that the system is asymptoti-
cally stable in the sense of Krasovskii. An academic example is uscd to show the performance of the
controlicr via simulation.

1. INTRODUCTION

In this paper, we consider the problem of control design of single-input systems
with known delay in the state of the following form

x()=Ax(t—7)+Bu(@®), t=20 1))
where x € R, n € R and
(01 0 .. O (0)
00 1 .o 0
A= 0|. B=
0 0 .. 0 1 0
\q, a4 .. .. a, 1

The time delay 7is assumed to be known and the initial condition x(f) = g(1), —7< ¢
€0 where g(r) is a continuous function on the interval [-7, 0]. It should be first no-
liced that any single-input system described by
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— =

2(t) = Fz(t = 7) + Gu(t) (0)

where the pair (F, G) is controllable can be transformed into system (1) by a chang
of variables (see, e.g., [13]). Consequently, the control design for the class of systems
described by (1) is not too restrictive.

We are primarily concerned with the stabilisation of the state vector x(£) € Rt ¢,
the origin by using a control law of the form

u(x(t)) = Lx(t—1). 3)
Under such a control law, the closed-loop system is given by
x(t) = (A+BL) x(t — 7). @ |

The main difficulty in the controller design (3) lies in the choice of gain L such
that the system (4) is asymptotically stable in some sense.
By taking the Laplace transform of system (4), the characteristic equation is given by

p(s)=det[s/ —(A+ BL)e™"]. )

The characteristic polynomial (5) is said to be asymptotically stable if all of the zerog
of p(s) = 0 are situated in the left half of the complex plane. The presence of the expo-
nential term e~ " means that there are an infinite number of zeros, and therefore it is dif-
ficult to determine explicitly all the roots of the equation. In effect, in proper terms, the |
characteristic polynomial (5) is called a quasi-polynomial. It is because of the above
difficulty of roots location that many approaches to control design for time delay sys- |
tems have been adopted such as spectral decomposition theory, finite spectrum assign-
ment technique and delay independent approaches (see references herein). As a result, '
several less restrictive definitions of asymptotic stability have been derived in the lit- |
erature such as pstability (see, e.g., [9]) and asymptotic stability in the sense of Krasov- |
skii. For control and observer design purposes the asymptotic stability in the sense of
Krasovskii is most commonly used and is defined as follows (see [11}], [12]):

DEFINITION 1

The characteristic equation (5) is said to be asymptotically stable in the sense of
Krasovskii if all the solutions of p(s) = O are situated in the semi-plane {s: Re(s) £ -,
o> 0}.

The shaded region of Fig. 1 depicts the Krasovskii stability region. The constant
« is referred to as the stability margin of the characteristic equation. It is shown in
(see [11], [12]) that a sufficient condition for asymptotic stability of (4) is that it
associated characteristic equation is stable in the sense of Krasovskii. In a recent pa-
per [1], a new definition of asymptotic stability called the (&, r)-stability was intre-
duced and is defined as follows:
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—
DEFINITION 2

The characteristic equation (5) is said to be (& r)-stable if all the solutions of p(s)
_( are situated in the semi-plane {s: Re(s) <-a; >0} N {s:|s|>r>0).
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Fig. 1. Krasovskii stability region
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Fig. 2. (@, r)-stability region

The shaded region of Fig. 2 depicts the (¢, r)-stability region. We shall say that
ilinear system is (&, r)-stable if its corresponding characteristic equation is stable in
he sense of Definition 2. It can easily be seen that, in general, (&, r)-stability is
wronger than Krasovskii stability. More precisely, if a system is (&, r)-stable, then it
istable in the Krasovskii sense for similar values of «; since the (o, r)-stability re-
fion is included in the Krasovskii stability region.
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In this paper, we shall give a constructive and systematic design of a gain L for the
controller (3) such that the characteristic equation of its closed-loop dynamics s g
ymptotically stable in the sense of Definition 2. This will automatically guarantee that
the closed-loop is stable in the Krasovskii sense and which, in tum, will guarange,
that the system is asymptotically stable. An academic example is treated to show g,
procedure of the controller design. Some simulations are also carried out o show the
performance of the controller. Finally, some conclusions are drawn.

2. MAIN RESULT

Consider the control law given by equation (3) and define L as follows:

L6, ay=-L,-L,(8,2)

where
Ly=[a, a, .. a,]; ©)

-

L8, a)=[8"e""CI ... %% C} 6 C!],

1
with 6, > 0and C} =—" _ Note that Ly is the last row of A.

pl(n-p)!
More specifically, consider the control law

u(x(t))=—Lyx(t—-7)—- L, (0, ) x(t - 7). )
We can now state the following:
THEOREM |

Let ry > 0 be an arbitrary positive constant. Then, for all 8 € [0, ro] the origin of
the closed-loop systemn

x(t) = Ax(t — 7) + Bu(x(1)) (03]

where u(x) is described by (7), is (& rp)-stable.
Proof: First notice that the matrix A can be decomposed as A = Ag + BLy where

01 0 .. 0
00 I
Ay = 0
0 0 1
00 0
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- gystem
t x(t)= Ax(t —1)—BLyx(t —7) - BL x(t —7).
z since A = Ag + BLo, we have
e x()=Apx(t—1)+BL\(t—7)— BLyx(t - 7)— BL\x(t —7) = (A, — BL))x(t 7). (9)
By taking the Laplace transform of (9) (with zero initial conditions), we obtain the
following characteristic equation
p(s)=det(s] — (A, — BL))e™ ™) =det M (s)
where
M(s)=sl—-(A,—BL)e™™.
Now, define the diagonal matrix A, as
v e 0 w0
A = 0 " b . :
. 0
0 0 e”
Then,
N AM(s)AT = A [sI —(Ay— BL) e ] A7
=sAJAT = A (A, —BL)) e A
=5l —(A,AgA; —A,BL A ) e ™.
lican be checked that
8) AAA'=e A, and A,B=Be"

w0 that
' A M(S)A =sl—(A,—BLAY).
On the other hand,
p(s) =det M ()
=del(A,)det M (s)det(A7")
=det(A M (s)A]")
=det[s] — (A, - BL,A")].

By applying the control law (7) to system (1), we obtain the following closed-loop
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Now, due to the special structure of the matrix Ag — BL, A", it can be verified that

p(s) — S" + C’:sn-l[ee—(na)r]+C3sn—2[028-2(s+a)r]+ +[9n e-n(s+a)r]

- (S+ee-(:+a)r)n ) (10)
Hence, the solutions of the equation
p(s)z(s+ge‘(:+a)r)n =0 (“)
satisfy the following equality
s= —08-(!+a)r = —He—me_‘" (12) 1
or equivalently
se'T =-0e7. 13

Note that s = 0 is not a solution of (12) or (13) since 8> 0.
Now, consider a solution sy of (11) with a magnitude r > 0; i.e., p(so) = 0. In other
words, let

Se= M+ jo  with |sy|=yut+&* =r>0. (14)
Then, replacing (14) in (13), we get
se’T = e# Y (y + jw)
=" (u+ jw)
=e"" (1 cos wr — wsin wr) + je!' (wcos wr + ysin wr)
=-f0e™™ .
This implies that
" (ucos wr - wsinwr)=—-60e™ ™ (15)
and
e’ (wcos wr + usinwr)=0. (16)
From equation (16), we see that
wcos T + sin T = 4 + 0 sin(wr + P)
=| s, | sin(wr + @)
=rsin(wr+¢)=0
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where @ = tan"(%} =arg(sp)-

Hence, the solution so = ¢ + jwof (11) has real and imaginary parts such that

a)‘r+tan"(£]:k7r a7
U

where k is an integer.
On the other hand,

UCOSWT ~Wsin T =\ 4* + & cos(wr + ) .
Now, from (17), we can see that cos(wr + @) = (—lk); that is
e* (ucoswr —wsin wr) = e r(-1%).
Consequently, from (15), we have
e r(-1")=-0".

Now since &, r > 0, the integer & must be odd (to match the signs) for the previous
equality to be satisfied.
Therefore, the real part 1 of sq satisfies

e’ r=0e"".

In other words,

T r

()
p=—0+—In| —|.

From this we see that the real part of s, depends on the choice of 8. Now, let ro be
an arbitrary positive number and consider all solutions s = 4 + jo of (11) with

amagnitude r 2 rp > 0.
y=—a+lln(g]s—a+iln{£}
T \r T

Then,
6

If we choose @< ry, then In{—} <0 and
4

,us—a+lln{£]$—af.
T

To



12 D. TINGEY et al.

—

This means that if 0 < 8< r, then all complex numbers s such that [s| = r > ry which
satisfy the equation se'"= —8e " are given by s = 1+ jow where

T r

MU= —a+lln[gj <-a
and

arr+tan_l[2]=kﬂ, where ke Z is odd.
Y7

As a result, the system (9) is (&, ro)-stable. Consequently, the controlled system is alsg
Krasovskii stable with stability margin ¢; hence asymptotically stable.
This completes the proof of Theorem 1.
2.1. REMARK

1. Note that in the non-delayed case (z= 0) all the poles of the closed-loop system
(8) will be located at —@in the left-half complex plane when controller (7) is applied
with 7=0.

2. The above control design technique can be extended to the following class of
systems

M) =Ax(t—1)+ Ax(1) + Bv(t); 120 (18)

where x € R", v e Rand A is of the special form A = BK for some vector K € R'.
Indeed, if we apply the preliminary control

v(t) =—Kx()+u(t) (19)
to system (18), we obtain
x(t)=Ax(t—7)+ Bu(t); t=0

which is of the form described by system (1). Hence, the complete stabilising feed-
back for system (18) is given by

v(x(2)) =—Kx(t) + u(x(t))
where u(x()) is given by (7).

3. EXAMPLE

In this section, we shall illustrate the previous design methodology through an
academic example. Consider the following 2nd-order single-input system.
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x(1) = Ax(t —0.2) + Bu(t) (20)

x (1) 0 1 0
xm=[ } A{ ] and B=H.
X, (1) 1 2 l

The above system is of the form (1) with a time lay 7 = 0.2 s. Consequently, by
applying the previous design methodology, the control law that will stabilise the sys-

where

lem at the origin is given by

u(x(1))=—Lox(1—7)-L,(8, &, 7) x(t —T)

where

Ly=[1 2]

and

L6, a,7)=[07e" 20" )=[6%""*" 26¢7°*)
with @, 8> 0. Hence,
u(x(1)) =—(1+ 6% )x, (1 - 0.2) - 2(1+ 8e™***)x, (1 - 0.2).
The closed-loop system is given by

x()=Ax(t—0.2)

— 0 1
where A = _92 0 _npgoa |

Simulation

Several sets of simulations were carried out to show the behaviour of the closed-
loop system. Here we have chosen = 0.1 and ry = 4 so that 0 < < 4. Figures 3 and
4 show the profile of x; and x, respectively, when 8= 1. It can be seen that the state
variables converge to the origin as expected. Figures 5 and 6 show the same profile
when 8= 3. Here it can be seen that the convergence is much quicker.

In general, the higher the value of @(which implies larger values of ro) the quicker
the convergence. This is because the poles are pushed further to the left in the left-half
complex plane. However, as one would expect in such a case a larger control effort is
needed to achieve this. This is confirmed in Fig. 7.
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Fig. 5. Profile of x; when =3

1 .

(V3

0 I > 3 4
Time (s)
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Fig. 7. The control u(x) when #=1and 0=3

In addition, large values of fyield large transient peaks. Therefore there is a trade
off between the desired magnitude of ry and the amplitude of acceptable transient
peaks and control effort.

4. CONCLUSIONS

In this paper, we have proposed a control design for a class of single-input
linear systems with known state delay. The design is based on the specific choice
of controller gain such that the closed-loop system is asymptotically stable in the
sense of (&, r)-stability. A simulation example has demonstrated the good con-
vergence performance of the controller when the controller gain is chosen appro-
priately.
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