
1

Verification of Web Content Integrity: A new approach to protecting servers
against tampering

Shadi Aljawarneh, Christopher Laing, and Paul Vickers
School of Computing, Engineering & Information Sciences

Northumbria University, Newcastle upon Tyne, Newcastle, UK
{shadi.aljawarneh, christopher.laing, paul.vickers}@unn.ac.uk

Abstract

The provision of web services is a real-time process,
conducted in ad-hoc, ‘off the cuff’ manner.
Consequently the verification of the data content and
the identification of any authorized data interference
or manipulation are not without problems. Some
progress has been made in addressing the verification
of server content integrity, but current solutions are
restricted by the limitations of the SSL protocol, the
statelessness of HTTP, and difficulties with automatic
code analysis. This paper reviews the problems
associated with unauthorized data manipulation of
static and dynamic web content, presents a web
security real-time framework that can be used to verify
the static and dynamic web content of a requested
page. It is suggested that such a framework will offer
an increased level of user confidence, since the
framework will provide a much greater protection
against web server subversion.

Keywords

Statelessness of HTTP, web security, Request-
Response model, web-based system, add-on security
mechanisms, e-Form, tampering, integrity of data

1. Introduction

Users need assurances that their private information
is kept confidential and is transferred properly over a
web-based system. Consequently, reputable
organizations must ensure that their private information
and transactions are conducted correctly without
compromise [1-4, 12]. According to the Computer
Emergency Response Team (CERT) [5] there has been
a sharp increase (5990 in 2005 to over 8000 in 2006) in

the number of security vulnerabilities1 which threaten
web content.

Static and dynamic web server content can be
tampered with by changing the (i) style classes, (ii)
referenced objects (images, audio, video, and other
objects), (iii) source code of the web page itself, (iv)
running listener software containing malicious code on
the server to intercept a requested page before the
client receives it [1-4, 7, 15, 17]. Consequently, the
integrity of web content can be violated on the server
even though the communication channel between the
server and client is secure.

Up till now, data integrity has received little
attention in information security research [2, 3].
Furthermore, there is little published research in
methods for testing web content integrity [6].

The Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) cryptographic security protocols
were developed to support the authenticity and integrity
of data transit [1-4, 7, 13, 18], and as such, they do not
provide an absolute solution. Furthermore, several
verification and protection tools which use
cryptography, and hashing2 to protect web content
against tampering, are not capable of verifying the
integrity of web content before a request or response
enters the secure communication channel [2, 3]. This
might be because these mechanisms are purely
technical solutions, and a technical mechanism alone
does not provide a standard policy [4].

This paper is structured as follows. Section 2
identifies the web security issues and describes the data
flow over HTTP Request-Response model. Section 3
gives an overview of the existing approaches and
schemes. Section 4 outlines a proposed integrity
verification system. Finally, section 5 draws
conclusions and discusses possible future work.

1
Weaknesses in a computing system that can result in harm to the

system or its operations [18].
2 Hashing is a technique that aims to ensure the integrity of data by
generating unique hash values analogous to fingerprint [8].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/4146246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

2. Web Security

Stein [18] outlines a number of definitions of web
security from the user’s perspective. For some, web
security is the ability to view Internet content in peace
and safety. For others, it is the ability to conduct safe
business and financial transactions. For web authors, it
is the confidence that individuals will not damage their
web sites.

Studies and surveys indicate that the objectives of
web security (integrity, availability, and confidentiality
of data) are being violated [1-4]. In an attempt to
remedy this, we focus on the integrity of data; we are
not concerned with the confidentiality and availability
of data. It should be noted that data integrity refers to
the trustworthiness of information resources, thereby
ensuring that only an authorized client can alter the
data - unauthorized tampering may result in incorrect
or malicious behaviour of the web application.

Because of the difficulty of code analysis and blind
add-on security mechanisms [12, 16, 17], Jacobs and
Malloy [12] suggest that software engineering
principles (such as analysis, design, implementation
and testing) should be integrated into web security. The
purpose is to identify what a user and an organization
need for every stage of the software engineering life
cycle. Therefore, this can detect the web security
vulnerabilities at each stage instead of processing the
security vulnerabilities at the implementation stage.
However, this integration may require the rebuilding of
existing web applications – some web applications
might consist of complex structures, consisting of
multi-programming languages and imported binary
components with little or no documentation.
Consequently, it may be difficult to define for legacy
web application at every stage of the software
engineering life cycle all web policies that maintain
security vulnerabilities.

As shown in Figure 1, the integrity of web content
relies on the integrity of the HTTP Request-Response
model. Therefore, if this model fails, the data integrity
might be violated [1, 7]. The model can fail because
web servers and web browsers do not properly manage
the statelessness of HTTP, in which, each client request
results in a new connection between a web browser and
a web server. The Common Gateway Interface (CGI)
supports maintaining state through the use of hidden
variables or cookies that keep the track of current
information for each request. However, it is possible to
save the HTML form to a disk, modify the hidden
values of form fields, and then reload this altered form
into a web browser for rendering [10, 18]. Zhou [9] has
identified some problems in web server models, these

include: web server models cannot ensure the security
of continuity of HTTP conversations on a server – they
are more concerned with the implementation of the
cryptographic rules rather than implementation of a
security analysis of system functions.

Figure 1. HTTP Request-Response Architecture

3. Integrity Verification Approaches

Below we survey a number of approaches and
schemes to give a more detailed overview of integrity
verification. There are three established techniques in
common usage for ensuring the integrity of web
content: SSL to secure the communication channel,
form-field validation to protect against harmful data at
the client and server-sides, and firewalls to protect
against malicious code and other attack strategies.

3.1 Form Field Validation Scheme

A form field validation scheme is the first defence
against tampering at the application level. Developers
have adopted a number of validation approaches to
prevent loss of web content integrity: server-side
validation, client-side validation, double-checking
validation, and digital signature and data validation on
the client and/or server-sides. The double-checking
approach adopts an alternative validation scheme at the
server–side, even though the validation scheme is
bypassed at the client-side [1-4, 7].

A validation scheme is necessary and required for
both client and server-sides, but is not sufficient to
protect web content integrity against tampering,
because fundamentally it is designed to verifying basic
properties of the input data: length, range, format,
default value, and type. Therefore, a validation scheme
is useless if any malicious script or listener is already
installed on the server [10, 17].

As a result of the transparency of code at the web
browser level, the following approaches can cause loss
of content integrity at the HTML form level:
 Hidden fields manipulation: an individual saves

the HTML form to a disk, modifies a hidden field
value (such as the price of a product), and then
reloads this tampered form into a web browser for
rendering [10].

Client Server
Request

Response

Network

SSSSLL
Web

Browser
Web

Server
DB



3

 Script manipulation: an individual removes the
client validation modules on a web browser to
submit illegal data to a web server. A web server
accepts the tampered form and then the data is
saved in backend database. Many web application
security vulnerabilities come from input validation
problems including Cross-Site Scripting (XSS) and
SQL injection [2, 3, 11, 17]. This approach is
possible through removing all script modules
between the <script> and </script> tags, removing
the event-handler that invokes the validation
modules, or turning off script and Java applet
options via web browser settings.

 Another approach is to analyze a validation
module to submit illegal information – an
individual could apply reverse engineering
techniques on validation modules [2, 11, 17].

However, HTTP provides the REFERER header to
help detecting a tampered form. A REFERER contains
the URL of an original form. But this header is not
sufficient to alert a web server and web browser
because it is possible to tamper with the URL
information of the header [2].

3.2 Network and Application Firewalls

Network firewalls provide protection at the host and
network level [4, 10, 18]. These security defences
cannot be used to detect tampering problems for
following reasons [4]:
 They cannot stop malicious attacks that ask to

perform illegal transactions. Firewalls are designed
to prevent vulnerabilities of signatures and specific
ports.

 They cannot manipulate the form operations such
as asking the user to submit some information, or
validate the false data. Therefore, the firewalls
cannot distinguish between the original request and
response conversation, and the tampered
conversation.

 They do not track a conversation and do not secure
the session information. For example, they cannot
track when session information in cookies is
exchanged over HTTP Request-Response model.

Given the above, some security problems still
remain. We now discuss three recent approaches that
attempt to address one or more of these problems.

3.3 Client-side Encryption Approach

Hassinen and Mussalo [1] propose a client-side
encryption system to protect confidentiality, data
integrity and user trust. They encrypt the data inputs

using a client encryption key before submitting the
content of HTML Form. The key is either located on a
client smart card connected to the client machine or it
is read over an HTTP or HTTPS connection. A
downloaded web page includes a signed applet which
handles the encryption and decryption values. This
applet also reads the encryption key from a local file.
In addition, a downloaded web page includes
JavaScript methods that invoke the applet methods for
encryption and decryption. The approach uses a one-
way hash function. It computes the hash value which is
inserted into the main data input before encryption.
After a new request, the JavaScript function invokes
the applet decryption method to decrypt the parameter
value and places the returned value in the
corresponding input field. The message validation
includes finding a new hash value from the decrypted
message and comparing it to the hash value which is
received with the message. If they are the same, the
data is accepted, otherwise, the data is deemed to have
been illegally altered and the validation will fail. This
system has two main requirements [1]: (i) it must be
able to run on any major web browser, and (ii) without
the need to install additional hardware or software on
the client.

However, the following weakness will arise if this
approach is adopted:
 Java applets can access the client’s local file

system. If the applet is signed the user will be
asked whether he wants to trust the applet code.
Thus, an individual can replace the original signed
applet with a faked applet to access the client’s
web content.

 Another potential weakness is the loss of the client
smart card with its Personal Identification Number
(PIN). As the smart card includes the encryption
key, if it is lost, the whole web-based system can
be compromised.

 This approach fails to address requirement (ii). if a
Java applet is installed on the smart card to protect
the Java applet against tampering. This is because
the client machine needs a card reader and
necessary drivers.

 Transparency of code is a significant weakness of
this approach, as encryption and decryption applet
methods and JavaScript methods can be removed
or cancelled. If this happens, the encryption will
not take place and the submitted values will be in
plain text.

In addition to the above weaknesses, the client-side
smart card approach has the following limitations:
 It requires new web applications and fails to

address existing web applications. This is because



4

it requires a client smart card and encryption and
decryption methods.

 It does not verify the server’s web content because
it assumes that the risk is coming only from the
external clients at the HTML form level.

 It does not possess a risk analyzer to protect user
information on the web server if the web server has
been tampered with. Furthermore, it does not
provide alerts to clients if the system has been
tampered with.

3.4 Dynamic Security Surveillance Agent
(DSSA) Approach

Sedaghat, Pieprzyk, and Vossough [2, 3] propose a
DSSA tool on the server-side that automatically
intercepts an HTTP request to verify the integrity of the
requested page before the web server responds to the
client. This tool is positioned between the web server
and client machines. DSSA uses a timestamp signature
and hash function to verify the integrity of requested
web pages and all their referenced objects. If the hash
value of the requested web page and its referenced
objects equals the hash value which is registered in a
secure database, the web server accepts the HTTP
request and then it responds to the client.

However, the following weakness will arise if this
approach has been adopted:
 Tampering is still a potential problem. This is

because DSSA does not verify dynamic web
content, which is generated on the fly and on
demand. Therefore, some referenced objects can
be tampered with and DSSA cannot alert the web
administrator or clients. Consequently, data
integrity can be violated.

In addition, DSSA approach has the following
limitations:
 It does not verify dynamic server content.

Therefore, dynamic web pages are still a
significant challenge – there are difficulties in
analyzing dynamic web pages.

 It assumes that every web page is independent
from every other web page even though some
referenced objects are shared by more than one
web page.

 It only supports client-side code and scripting.

3.5 Adaptive Intrusion-Tolerant Server
Approach

This approach [14] offers a general architecture for
intrusion-tolerant enterprise systems. This consists of
redundant servers running on diverse operating

systems, intrusion-tolerance proxies that are positioned
between web servers and client machines to verify the
behaviour of servers, and their monitoring and alerts
components.

When a client request arrives a proxy “leader”
intercepts the request, checks it, analyzes it, and filters
out incorrect requests. The leader also forwards a
request to a number of application servers, depending
on the current enforced policy. Furthermore, a leader
intercepts the responses. Finally a leader finds a hash
value for all responses. If they match, the leader sends
a response to the user, otherwise, a report is sent to a
monitoring component to take the correct actions and
alerts.

However, the following weakness will arise if this
approach has been adopted:
 This approach does not verify the integrity of

referenced objects that are generated dynamically
on the fly.

 The performance is too slow if the number of
application servers is greater than three to check
the integrity of server web content.

4. Web Content Verification (WCV)
System

Although verification and protection mechanisms
have been adopted to protect web content over the
HTTP Request-Response model, a number of the web
security issues are still unresolved – the integrity of
web content can be compromised on the client and
server sides, and important web security policies have
yet to be answered in a systematic way. We are
developing a server web content verification (WCV)
system to identify the tampering problems. The WCV
system comprises of a number of security components,
and a web security framework that enforces collection
of web policies.

4.1 Work assumptions

In reference to the literature review, we adopt two
main assumptions. First, SSL only secures the data in
transit [1-4, 7, 13, 18]. As was mentioned in the
previous sections, SSL provides digital certificates to
encrypt the data in transit against hacking listeners and
eavesdropping attacks. A third party or a certificate
authority controls these digital certificates.

Second, the data resulting from user interaction via
an e-Form component on the client is untrustworthy.
User input may contain malicious code that harms a
web server or a backend database [10]. Furthermore,
the client validation scheme can be violated. As result,



5

all user data that is sent as an HTTP request to a server
is untrustworthy. Therefore, we also assume a
validation scheme operates on both sides (client and
server) to check the integrity of a request before it is
processed on a web server. This means if the client
validation scheme is subverted, there is still another
validation scheme running on the server before
processing a request.

A significant challenge to identify tampering
problems is the difficulty of analyzing dynamic web
pages which can be generated or modified through
server and client scripts embedded in the web page [10,
15, 16]. We classify the web content into four classes:
identical interaction elements, almost identical
interaction elements, less identical interaction elements,
and non-identical interaction elements. This
classification relies on modelling interaction elements
and modelling elements of a web site through
improving the relationship of input unit of Bypass Test
Strategy3 [17]. The aim of this classification is to
understand how to dynamically produce units of web
content. Moreover, another important aim is to simplify
a method of automatic and even manual analysis of a
web site that contains a large number of elements and
each web page can include a large number of
interaction elements (i.e. forms, frames, links, and non-
HTML objects).

The WCV system will interact with every element in
a web site. For example, it is possible to represent the
logo image of a university in one or more web pages of
the university web site, so we do not need to compute
the hash value for this logo object for every time it is
used.

4.2 Architecture of Web security Framework

The proposed WCV system will include a web
security framework. As shown in Figure 2, this
framework consists of a number of web-based
components: web register, response hashing calculator,
integrity verifier, and recovery. The web register
component has two stages: monitoring and registration.
The integrity verifier (manager) component that
mediates between the web server and client’s machines
manages the HTTP requests and responses through
executing a state protocol that enforces a number of
web policies to elements of a web-based system. The

3A strategy is to create tests on the client for web applications that
intentionally violate explicit and implicit checks on user inputs. It
includes three levels of testing: value level, parameter level, and
control flow level. Further details are described in [17].

web policy will outline how each component will be
instituted, when it will be enforced, and who will be
allowed to use and response. The response hashing
calculator component calculates the hash value of each
HTTP response on the web server before sending the
response to the integrity verifier for further processing.
Finally, the recovery component recovers the marked
data, which is stored if the action of enforced web
policy from integrity verifier is invalid. In addition,
Figure 2 illustrates how the proposed framework is
separate from the web server. Note that the components
of framework do not need to run on a dedicated
machine, they can be run as separate processes on the
server-side.

Figure 2. Schematic view of the web security
framework architecture

Our proposed system offers integrity of data, and
higher level of trustworthiness to organization and user.
We believe that the proposed framework will be
capable to verify web pages and referenced objects on
the designated directories of web server, and web
content on the fly against tampering. To ensure the
survivability4 of web services, we are enabling WCV
system to detect and protect web content against
tampering and recover the original copy of the
compromised object. We are exploring risk analyzer
techniques to protect user information on the web
server if the web server has been tampered with.
Furthermore, at the monitoring stage, if the system has
been tampered with, it provides alerts to the web
administrator.

The WCV system possesses a number of properties:
it does not require modifications to existing web
application architectures, it does not require any
additional changes on the client-side and adopts
minimal changes on a server-side, and it can be run on
all major web browsers. Our method is targeted at
sensitive web sites and web applications that provide

4
Providing continued reliable and correcting service to clients and

organizations.

Integrity Verifier
(Manager)

Response
Hashing

Calculator

Web
Register

Recovery
Component

Firewall

Web Server

Client



6

sensitive transactions between organizations and users.
For example, e-Banking, e-Finance, and e-Ticket
reservations – services that support sensitive
transactions between clients and organizations.

5. Conclusions and Future Work

Although several add-on security mechanisms have
been adopted to protect web content over the HTTP
Request-Response model, a number of security issues
are still unresolved. This paper has reviewed existing
approaches, considered their strengths, their weakness,
and their limitations. In conducting this review, we
have focused on one issue, namely the integrity of web
content. It has been shown that given the limitations of
SSL, a loss of web content integrity is possible because
of the statelessness of HTTP.

In an attempt to overcome this problem, we have
formulated a systematic web security framework that
could provide continued reliable and correct services to
external users, even though a web data manipulation
problem may have occurred. In the next stage of this
research, we will develop a number of mathematical
models which will be used to analyze dynamic and
static web pages. The proposed framework will execute
a state protocol that will enforce web policies and alerts
– it is suggested that this system will be able verify the
static and dynamic web content of requested web
pages.

6. References

[1] Hassinen, M., Mussalo, P. Client controlled
security for web applications. In: Werner B, ed.
The IEEE Conference on Local Computer
Networks. 30th Anniversary, Sydney, Australia,
November 15-17, 2005, pp. 810-816. Los
Alamitos, California: IEEE Computer Society, 2005.

[2] Sedaghat, S. Web Authenticity, Master
Dissertation, UWS, Australia, 2002.

[3] Sedaghat, S., Pieprzyk, J., Vossough, E. On-the-fly
web content integrity checker boots user's
confidence. Communications of the ACM, pp. 33-
37, vol. 45(11), Nov 2002.

[4] Gehling, B., Stankard, D. eCommerce Security. In
Proceedings of Information Security Curriculum
Development (InfoSecCD) Conference ’05, pp. 32-
37, Kennesaw, GA, USA, Sept 23-24, 2005.

[5] CERT. CERT Statistics 1988-2006, Technical
Report, 2006, http://www.cert.org/stats, [30/1/2007].

[6] Probert, R.L., Stepien, B., Xiong, P., Formal
Testing of Web Content using TTCN-3 in TTCN-3
UserCom'05 Conference proceedings.

[7] Honkala, M., Vuorimaa, P. Secure Web Forms
with Client-Side Signatures. In proceeding of 5th

International Conference on Web Engineering, P.
340, Vol. 3579, Syd, Australia, Jul 27-29, 2005.

[8] Oppliger, R. Security Technologies for the World
Wide Web, 2nd Edition. Norwood MA, 2002.

[9] Zhou, B. An integrated Web security system. In
Proceedings of 14th International Workshop on
Database and Expert Systems Applications,
pp. 204 – 208, 1-5 Sept 2003.

[10] Scott, D., Sharp, R. Specifying and Enforcing
Application-Level Web Security Policies. IEEE.
Knowl. Data Eng., pp. 771-783, vol. 15(4), 2003.

[11] OWASP. The Ten Most Critical Web Application
Security Vulnerabilities. White Paper, v 1.0, 2003.

[12] Jacobs, D.P., Malloy, B.A. An Application-Centred
Course on Data-Driven Web Sites. In Proceedings
of Frontiers in Education 2001, Reno NV, pp.
F2D-10 to F2D-14, Oct 10-13, 2001.

[13] Oppliger, R., Gajek, S. Effective Protection Against
Phishing and Web Spoofing, In Proceedings of the
9th IFIP TC6 and TC11 Conference on
Communications and Multimedia Security (CMS
2005), Austria, Springer-Verlag, LNCS 3677, pp.
32 – 41, Sept 19 - 21, 2005.

[14] Valdes, A., Almgren, M., Cheung, S., Deswarte,
Y., Dutertre, B., Levery, J., Saidi, H., Stavridou,
V., Uribe, T.E. An Adaptive Intrusion-Tolerant
Server Architecture. System Design Laboratory,
SRI international Menlo Park, CA, Feb 2002.

[15] Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O.,
Esmair, S. BrowserShield: Vulnerability-Driven
Filtering of Dynamic HTML.2006.

[16] Ricca, F. Analysis, Testing and Re-Structuring of
Web Applications. In proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM'04), pp. 474-478, 2004.

[17] Offutt, J., Wu, Y., Du, X., Huang, H. Bypass
Testing of Web Applications. IEEE International
Symposium on Software Reliability Engineering.
pp 187-197, Bretagne France, Nov 2004.

[18] Stein, L. Web Security: A step-by-step reference
Guide, Wesley, 1998, ISBN: 0-201-63489-9.


