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Abstract

Medical radiography is a process by which the internal structures of the
human body are imaged using a source of x-rays. The images formed are
essentially shadowgrams whose size and intensity is dependent on the geom-
etry of the imaging system and the degree to which the structures attenuate
x-ray radiation. The images are blurred because the x-ray source has a finite
size, and noisy because the x-ray exposure must be kept as low as possible for
the safety of the patient but which also limits the number of photons avail-
able for image formation. In such noisy environments traditional methods of
Fourier deconvolution have limited appeal.

In this research we apply maximum entropy methods (MEM) to some
radiological images. We justify the choice of MEM over other deconvolution
schemes by processing a selection of artificial images in which the blur and
noise mimic the real situation but whose levels are known a priori. A hybrid
MEM scheme is developed to address the shortcomings of so-called historic
MEM in these situations.

We initially consider images from situations in which the model point-
spread function is assumed to be three-dimensionally spatially invariant, and
which approximates the real situation reasonably well. One technique lends
itself well to this investigation: magnification mammography. MEM is offered
as a way of breaking some of the conflicting performance requirements of this
technique and we explore several new system possibilities with a working
MEM system in place. A more complicated blurring function is encountered
in linear tomography, which uses opposing movements of the image receptor
and x-ray source to generate planar images through an object. Features
outside a particular focal plane are smeared to such an extent that detail
within the focal plane can be very difficult to detect. With appropriate
modification of our MEM technique, processed images show a significant
reduction to the blurring outside the focal plane.
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CHAPTER 1

Introduction and research intent

1.1 Research intent

Medical radiography is the process by which the internal structures of the
human body can be imaged using a source of x-ray radiation. Structures
within the body attenuate x-rays to varying degrees, and the image, recorded
using film or a digital receptor, essentially shows shadows whose size and
intensity are dependent on the composition of the structures within the body
and the characteristics of the imaging system.

Whilst radiography is not a tool used exclusively in a medical context,
the quality and properties of the images obtained are determined by both
technical considerations and patient-safety concerns which may not be issues
in other applications.

A potential remedy to the problems of geometrical blurring and image
noise, applicable to modern digital receptors, is digital image processing.
Provided the characteristics of the image blurring function are known, an
image can, in theory, be restored to that which would have been produced
by a perfect point focal spot. As will be seen the presence of image noise
complicates the restoration process. Radiological images have a relatively
poor signal-to-noise ratio, the reason for which is the requirement to operate
within the ALARP principle, so that patient radiation doses are ‘kept as low
as reasonably practicable consistent with the intended purpose’ (IRMER
2000). Radiological images are therefore expected to be inherently noisy,
with quantum noise being the dominant noise source.

In this research we apply an image deconvolution technique called max-
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imum entropy method (MEM) to some radiological images. We justify our
choice of MEM in Chapter 2, by comparing restorations with those obtained
with other deconvolution schemes using a selection of artificially degraded
images (where the blur and noise levels are known a priori). The theoretical
derivation and justification of so-called Historic MEM, from an information
theory standpoint, is given in Chapter 3.

In Chapter 4 we initially apply MEM to images obtained from situations
where the model PSF is assumed to be spatially invariant in three dimensions
and which approximates the real situation reasonably well. One technique
which lends itself well to this investigation is magnification mammography:
this is essentially projection radiography employing sufficient geometric mag-
nification to render fine detail visible on the image receptor. We experiment
with the premise of using MEM to break out of the conflicting performance
requirements of magnification mammography, and we explore several new
system possibilities with a working MEM system in place. With conventional
focal spot and magnification settings, we investigate the effect of MEM on im-
age quality at the standard dose and its effect on quality at reduced radiation
doses (when quantum noise would otherwise reduce feature visibility). Use
of the unconventional broad focal spot setting would allow reduced exposure
times if MEM could decrease the greater associated blurring. Similarly, we
use MEM to tackle the blurring created by higher geometric magnifications
and the loss of image quality associated with radiation dose reduction.

A more complicated blurring function is encountered in tomography. Lin-
ear tomography uses opposing movements of the image receptor and x-ray
source to generate planar images through an object. Features outside a par-
ticular focal plane are smeared out to such an extent that detail within the
focal plane can be very difficult to detect. The blurring function in this case
is depth dependent and in Chapter 5 we develop an model of the situation
and modify the MEM technique appropriately.

The effectiveness of MEM restorations are evaluated through the use of
clinical test objects and, in Chapter 6, image data from real radiological
applications.

In the rest of this chapter we present some basic principles of radiography
and radiological imaging, and focus on the two radiological applications to
be examined in detail later in this research: magnification mammography
and linear tomography.
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1.2 X-ray radiation

X-rays were discovered by Wilhelm Rontgen in 1895 during experiments in-
vestigating the effect of cathode rays* that were produced by electrical dis-
charge through gases at low pressure in highly evacuated glass tubes. He dis-
covered that these high energy cathode rays, on striking a material, produced
an invisible ‘x-ray’ which caused fluorescence in a barium platinocyanide
coated screen on the other side of the room. Réontgen found that x-rays
were electrically neutral and that the rays could penetrate several materials
to some extent. Rontgen also observed the fogging effect the rays had on
photographic film and saw the shadowed outline of the bones in his hand as
he held objects between the x-ray tube and screen. Rontgen published his
findings in 1896 and potential applications to medicine were seen immedi-
ately. However, problems arising from the dangerous ionizing properties of
x-ray radiation were not properly dealt with for some time. The beginnings
of x-ray diagnosis are reviewed by Mould (1995).

There are no well defined upper or lower limits in terms of energy or wave-
length between which the label ‘x-ray’ can be applied to a photon. Gamma
rays were discovered soon after x-rays. Gamma rays are electromagnetic
radiation emitted from the nuclei of some radioactive isotopes. Early experi-
ments showed gamma rays to have higher energies than x-rays. The definition
based on energy (and therefore wavelength or frequency) is now somewhat
blurred, with some x-ray applications involving higher energies than other
experiments using gamma ray radiation.

X-ray production and spectra

X-rays are produced when high energy electrons lose energy during their
interaction with atoms in an object. X-ray production occurs when the
interaction is one of the following processes.

Deceleration of a fast moving electron The incident electron passes close
to the atomic nucleus and the force of attraction causes a deceleration
of the electron. The loss of kinetic energy is manifested as an emitted x-
ray photon whose energy depends on the size of the deceleration and the
attractive force. X-rays produced this way are called Bremsstrahlung
(“Braking radiation”).

Ionization by removal of K-shell electron The incoming electron inter-
acts with an electron in the K-shell of the atom and transfers energy

*Cathode rays were electrons produced by the negative electrode - the cathode - in a
vacuum tube.
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to it. If the transferred energy is equal to or greater than the binding
energy for an electron in that shell then the electron is ejected and the
atom becomes ionised. An electron from an outer shell can fall into the
vacancy in the K-shell. The corresponding energy loss from the falling
electron is carried away from the atom as a x-ray photon.

Both of these processes take place in the target of an x-ray tube and
result in x-ray photons having a range of energies (described by an energy
spectrum). Electrons can also interact with atoms in such a way that heat
is produced rather that x-ray photons (see section 1.3.1).

X-ray spectra are a superposition of spectra from these two processes.
Bremsstrahlung gives rise to a continuous spectrum with photons able to take
on energy up to some maximum value which is dependent on the maximum
operating voltage of the x-ray tube. The ionization involving an electron
from the K-shell gives rise to a type of spectrum which is characteristic of
the binding energy within the element from which the target is made. The
characteristic spectrum appears as peaks superimposed on the continuous
spectrum.

X-ray intensity and quality

The intensity of the x-ray beam is a measure of the energy in x-ray photons
flowing through a unit area over unit time. The intensity of an x-ray beam
is no different from any other electromagnetic radiation in that it follows an
inverse-square law as the distance from the focal spot is increased. The beam
intensity is also affected by the operating voltage of the x-ray tube and the
tube current.

The quality of the beam determines how penetrating the beam is. Quality
is described by the spectrum of the beam, i.e. in terms of the relative inten-
sities present at each wavelength. Beam quality is affected by the operating
voltage. The beam quality can also be modified by filtration techniques. This
is usually accomplished by introducing metal foils into the path of the beam
(see pages 25 and 177)1.

1.3 Principles of radiography

In this section some of the basic principles, terminology and problems asso-
clated with medical radiography will be introduced. This is not a complete

{There is also a small but unavoidable amount of filtration when the x-rays lose energy
through interactions with the glass, cooling oil and housing of the x-ray tube.
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Focusing
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Figure 1.1: Simplified layout of part of an x-ray tube.

introduction to the subject and definitions and concepts discussed in this
section relate to the subsequent work. More complete descriptions of the
physics and technology of radiography and radiology exist elsewhere; see for
example Meredith and Massey (1977); Hay and Hughes (1978); Wilks (1987);
Webb (1988); Farr and Allisy-Roberts (1998). :

1.3.1 X-ray tube design

Medical x-rays are typically produced in x-ray tubes (see figure 1.1). The
tube consists of a filament (cathode), which is heated by an electric current
until electrons are released through a process called thermionic emission.
Tungsten is often used because it has considerable thermionic emission tem-
peratures well below its melting point. The electrons are accelerated to high
energies by the positive potential difference applied to the target (anode). A
focussing cup mounted near the filament protects parts of the tube wall from
damage by electron bombardment and also directs the electrons with more
accuracy towards a small area on the target. The electrons interact with the
target in a number of ways. It is from this area - referred to as the focal spot
- that the x-ray photons emerge. The tube is also a high vacuum to minimise
production of electrons by ionization of gas.
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Operating voltage

The potential difference between the anode and cathode is typically mea-
sured in kilovolts (1kV = 103V). The operating voltage may vary with the
frequency of the electrical supply so voltages are expressed in terms of the
peak voltage and kVp is used to denote this. The peak voltage determines
the maximum energy of the emitted x-ray photons. For example, a 50kVp
operating voltage can yield photons with energies up to a maximum of 50keV,
although the average photon energy is much less than this value. Some simu-
lated x-ray spectra using typical mammography settings can be seen on page
17.

The operating voltage determines the energy spectrum of the x-ray beam.
This in turn will affect the radiographic contrast of images obtained from an
x-ray unit. If the majority of photons have so little energy that they are
absorbed by the object then an image will not be formed. If the energy of
the x-ray beam is so high that the intervening material of the object has
minimal effect in terms of attenuating the beam then the contrast of the
resulting image will be very poor.

Tube current and exposure rate

The electric current passing through the tube is measured in units of mil-
liamperes (mA). For a machine operated at a fixed potential the radiation
output rate is proportional to the tube current. The total radiation output
per exposure period is measured in units of mAs (milliampere-seconds) and
is proportional to the radiation dose received by the object being imaged.
The unit quantifying the dose of radiation energy absorbed by an object is
the gray (Gy), where 1Gy = 1Jkg ™.

The radiation dose is determined by the number of photons and their
energy spectrum. A brief analysis of the relationship between dose and noise
is conducted in section 1.3.3.

Efficiency of the x-ray tube

Electrons can interact with matter in a number of ways. The two processes
which lead to x-ray production were described earlier (see page 3). Other
interactions between the incident electron and an atom in the target do not
lead to x-ray production. They are:

Excitation involving outer shell electrons The incident electron may
transfer a small amount of its energy to an electron in an outer shell
of the atom. This causes a temporary jump by the orbiting electron
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to a level further out from the nucleus. When the electron returns to
the lower shell the excess energy is emitted as a photon whose energy
is eventually converted to heat by absorption in the target.

Tonisation by outer shell electron removal The incident electron may
transfer a small but sufficient quantity of energy to an outer shell elec-
tron to ionise the atom. The displaced electron may further interact
with other atoms in the target. The small amount of energy lost by the
incident electron will eventually contribute heat energy to the system.

The energy carried by the electrons from the filament to the target is
converted into x-ray photons and heat. In the diagnostic energy range (~20
- 150 keV) the above processes account for most of the interactions between
the electrons and atoms in the target. The efficiency of an x-ray machine is
therefore rather poor, with approximately 99.5% of the total kinetic energy
of the electrons being converted to heat and only 0.5% of the energy ending
up as x-ray photons due to the processes discussed earlier (page 3).

1.3.2 Geometric magnification and image unsharpness

It is obvious from figure 1.2 that the size of the shadow depends on the
position of the object between the x-ray source (the focal spot) and image
receptor. Moving the object closer to the focal spot will result in a larger,
magnified shadow on the image receptor. In the case of the ideal focal spot
it can be shown (using similar triangles) that the magnification M is given
by:

M= oth (1.1)

Zo a

In contact radiography the object is close to the image receptor, so b = 0,
giving a 1:1 image*.

In radiography, much of the blurring occurs because the x-ray focal spot is
not a point source. The finite size of the focal spot gives features in the image
a penumbra. The blurring effects of an actual focal spot are compared to an
ideal focal spot in figure 1.2. The degree of blurring varies with the geometry
of the focal spot, object and image receptor. Such burring is referred to as
geometric unsharpness. For a focal spot of fixed size, the amount of blurring
is minimised by placing the object as close as possible to the image receptor
i.e. contact radiography.

In reality we will always observe M > 1 as b is never reduced to zero: even in contact
radiography an air gap (of a number of cms) or, more commonly, an anti-scatter grid is
placed between the patient and image receptor.
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Figure 1.2: Comparison of the effects of using ideal and actual focal spots in
radiography.

Other potential sources of image blurring are movement unsharpness and
receptor unsharpness. The former is due the movement of any of the com-
ponents in figure 1.2 during the exposure. Controlled movement of the focal
spot and image receptor is necessary for tomography to work. However,
movement unsharpness arising from involuntary movements of the patient
during the exposure are not desirable. Movement unsharpness may be min-
imised by reducing the x-ray exposure time and by taking steps to prevent
patient movement. Receptor unsharpness in Computed Radiography arises
because the image forming effects of individual x-ray photons are ‘amplified’
by the receptor to produce a better image. The causes of receptor unsharp-
ness in CR are described in section 1.3.6.

The focal spot

The design of x-ray tubes has evolved to cope with a number of conflicting
performance requirements. The focal spot size needs to be as small as possible
to reduce geometric unsharpness (see section 1.3.2). However, a small focal
spot means the large quantities of heat generated are poorly dissipated in the
tube. Low currents, which lead to long exposures, must be used. The most
common resulting design solution is a rotating target with an acute target
angle. Many x-ray units allow the size of the focal spot to be changed; fine
or broad focus may be selected. For example, in the analysis of magnified
mammography images in Chapter 4, a laboratory-based Siemens Mammormat
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(a) RMI phantom, standard dose (40mAs) (b) RMI phantom, low dose (SmAs)

Figure 1.3: A region of the RMI test object imaged using (a) the standard
radiation dose and (b) a low radiation dose.

3 mammography unit, with measured focal spot sizes of 0.7x0.3mm (broad
focus) and 0.2x0.2mm (fine focus) was used.

1.3.3 Sources of noise

The presence of noise in radiographic images, which manifests itself as graini-
ness or mottling, causes a loss of low contrast detectability. The chief sources
of noise in radiographic images are system noise and quantum noise. System
noise arises during transmission or digitisation of the image. Quantum noise,
also called Poisson noise, is a fine-scale graininess which reflects the fact that
we are registering individual x-ray photons in these low intensity beams. The
dominant noise source of a good radiological imaging system should be quan-
tum noise. The relationship between radiation dose and quantum noise is
explored further in section 1.4.1.

1.3.4 Absorption and scatter processes

When the x-ray beam interacts with atoms in the object being imaged, some
x-ray photons will be absorbed by the object’s atoms and others will be
scattered out of the beam in various directions.

Photoelectric absorption is responsible for most of the object contrast in
the resulting image. An x-ray photon is completely absorbed by an atom in
the object and an electron is ejected as a result. The energy of the ejected
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electron is equal to energy of the original x-ray photon minus the binding en-
ergy of the electron to the atom. The binding energy thus defines a threshold,
below which there is no photoelectric absorption. The probability of such ab-
sorption is greatest just above this threshold, and thereafter decreases with
increasing photon energy, and also with increasing atomic number of the
scattering atom.

Scattered radiation acts to degrade the image by reducing the contrast.
The processes which can scatter the incoming x-ray photons are:

Compton scattering An x-ray photon encountering an atom collides with
an electron in the outer shell. The electron bound only loosely to
the atom and almost all of the energy transferred to it goes into kinetic
energy and the electron is ejected from the atom. The transfer of energy
causes a change in energy and direction to the original x-ray photon,
both of which depend of the amount of energy transferred (Compton
1923). This is also called incoherent scattering.

Thomson scattering The x-ray photon is completely absorbed by the atom
and then re-emitted by the electrons of the atom. There is no net loss
of energy so the emitted x-ray photon has the same energy as the orig-
inal but the direction it follows is random (called elastic scattering).
The probability of coherent scattering increases as the incident photon
energy decreases and with increasing atomic number of the scattering
atom. This is also known as Rayleigh, or coherent scattering.

The relative contributions of each to the total scattered radiation depends
on the energy of the x-rays used for a particular application. In diagnostic
radiology, with x-ray energies of the order of 100 keV, Compton scattering
is predominant with coherent scattering events contributing only a small
fraction of the total.

Scatter reduction: grids and air-gaps

Anti-scatter grids are designed to reduce the effects of scattered radiation
on image quality. The simplest type of grid is the linear grid’, which is
placed between the object and the image receptor. A linear grid consists of
a plate with very thin, highly attenuating, parallel strips of material (usu-
ally lead). The space between the strips is filled with a low attenuating
material (usually carbon fibre in modern grids). The effectiveness of a grid
at removing scattered radiation is quantified by the grid ratio Rgiq where

$Referred to as Bucky grids (Gustave Bucky 1913).
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Rgria = (strip height)/(strip separation). The height of the strips is always
greater than the distance between them and so the grid ratio is always greater
than unity. The greater the grid ratio, the better the grid is at reducing scat-
tered radiation.

A variation on the linear grid is the crossed-grid which consists of two
linear grids placed perpendicular to one another. Grids containing parallel
strips are focussed at infinite distance from the focal spot, i.e. attenuation of
non-scattered radiation will occur in most practical situations that they are
used. Modern grids are focussed grids, meaning that the lead strips are angled
in such a way that they will not attenuate non-scattered radiation from the
focal spot. Consequently focussed grids can only be used at predetermined
distances from the focal spot.

Images obtained using grids can show the pattern of the grid within the
image. The use of moving gridsY, which shift in position during the ra-
diographic exposure will blur the grid pattern and remove it from visual
consideration in captured images.

Grids are used to reduce the effects of scatter in mammography. Despite
claims (Chakraborty 1999) that grid removal can improve visibility of small
and low contrast features under certain conditions, a more recent experi-
mental comparison of images of the TORMAM test object (see page 108)
obtained using a Computed Radiography system, both with and without a
grid in place, is described by Coleman et al. (2000). They found that grid-
removal had an adverse effect on feature visibility that the corresponding
decrease in quantum noise (due to increased dose to the image receptor) did
not compensate for.

The presence of an air gap of between 10cm - 20cm between the object
and the image receptor will reduce the effects of scattered radiation on image
quality. Scattered low energy x-ray photons are allowed to escape from the
vicinity of the image receptor without interaction. The increased object-
to-receptor distance causes magnification and geometric unsharpness in the
image. To compensate, the focal spot to image distance can also be increased.
The air-gap technique has been widely used for chest radiography. A model
describing the contribution of an air gap on scatter reduction and of the effect
of the air gap size is given by Krol et al. (1996).

1.3.5 Subject contrast

X-rays are attenuated by the objects they pass through. The physical processes
contributing to this attenuation such as absorption and scatter have been dis-

TReferred to as Hollis-Bucky grids (Hollis Potter 1920).
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cussed. Differences in the subject contrast across an object is due to one or
more of the following factors:

e Density differences

e Thickness differences

e Atomic number differences
e X-ray quality

Subject contrast, along with receptor contrast, combine to give radi-
ographic contrast. We will discuss contrast further in the following sections.

1.3.6 The image receptor

The first image receptors for use with medical x-rays were direct exposure
films. Photographic film offered the advantage of high resolution but re-
quired the patient to be subjected to high radiation exposures because the
film emulsion is not particularly sensitive to x-ray photons! (Barrett and
Swindell 1981). The modern alternatives to film are screen-film, computed
radiography and digital image receptors. We describe briefly each of these
systems.

Screen-film image receptors

Screen-film systems make use of an fluorescent phosphor intensifying screen
alongside the photographic film to produce images. The ‘heavy’ composition
of phosphor in the intensifying screen makes it a more efficient absorber of
x-ray photons. A single x-ray photon absorbed by the phosphor material can
radiate many photons of a lower energy*™ which may interact with a pho-
tographic film. Screen-film receptors are actually about 30-50 times more
sensitive than standalone photographic film, with immediate advantages be-
ing that the radiation dose to the patient can be substantially reduced in
order to produce a good quality image and image contrast can be improved
by using a lower operating voltage.

The compromise made by using a screen-film system is that an additional
source of blurring is introduced into the image. A single x-ray photon may
have interacted with a single grain on the film but the introduction of an
intensifying screen means that one x-ray photon can potentially affect lots

IA typical emulsion registers around 1% of incident photons at energies of 100keV
**Photographic film emulsion is more sensitive to these low energy photons.
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of neighbouring grains on the film through emitted photons from the screen.
Therefore the screen-film system has an associated point-spread function.
This is effect is called receptor unsharpness.

There are other disadvantages associated with film. Film is not linearly
sensitive to photon flux; there is a narrow range over which small differences
in contrast can be detected. Optimal imaging of tissues with varying densities
is difficult to achieve. Practical requirements related to processing time and
storage requirements are also issues with screen-film image receptors.

Computed Radiography

Computed radiography (CR) is a process for obtaining digital radiographic
images and has been in use since the 1980s. In CR a plate containing photo-
stimulable phosphor (storage phosphor plate) is used instead of film. Unlike
the intensifying screens used in the screen-film systems the storage phosphor
plate does not emit light when x-rays interact with it, but instead stores the
energy of the x-ray photons in a latent image of distributed electron charges.
A CR reader uses a laser to release the energy stored by the phosphor plate
to create a digital image. This process also introduces a form of blurring
into the digital image, due to scattering of the laser beam and the emitted
luminescence, which we refer to as receptor unsharpness.

Digitisation of images effectively divides the true distribution (taken to
be continuous) into ‘bins’ or pixels. Pixels are distributed uniformly over the
receptor. Using more pixels per unit area leads to a finer resolution and a
closer approximation to the continuous distribution of the real object. Each
pixel in the CR image has an associated luminance value which is representa-
tive of the x-ray intensity averaged over the area of the pixel. The luminance
is quantised over a finite number of levels. The level of quantization is usually
2" where n is the number of bits to which the image is digitised. Typically n
will take values of 10, 12 or 14 in medical imaging (with n = 10 being typical
for the image receptors in this work).

For CR to be effective the image receptor (the storage phosphor plate and
CR reader taken together) must have good enough spatial resolution for its
intended application. Features in the object whose size on the image receptor
is less than the receptor resolution will be lost. Similarly, contrast differences
in features which are smaller than the intensity quantization resolution will
also be lost in the digitisation process.

The pixel values of the image will usually not have a linear relationship
to the number of detected x-ray photons. For example, in the case of the
Philips ACR-3 CR which was used to obtain many of the images in this work,
the relationship is nonlinear and given by:
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fiog = (#) log I — log (58'6) +511 (1.2)
where I, are pixel intensity values of the image. Iy, are linear pixel values
(related linearly to the x-ray exposure) and s is a measure of the receptor
sensitivity. The quantity L is the exposure latitude: the range of film expo-
sure where an increase of log(exposure) will produce an approximately linear
increase in film density. The values of L and s are unique to a particular
image and are obtained by analysing the histogram of the storage phosphor
system. See Samei et al. (2001) for further discussion of these parameters
and of image receptor characteristic curves.

When the CR reader reads the plate it is erased and can immediately
be used for a capture a new image; there are obvious financial benefits to
reusable image receptors. Other advantages of CR arise because storage
phosphor plates react to wide range of x-ray energies. Under or over expo-
sures are less critical because the digital image can still be displayed correctly
- CR has a wider dynamic range than film. The disadvantages are primarily
to do with resolution of the final image, which is not considered good enough
for some radiological applications. Yaffe and Rowlands (1997) review the
technology and requirements of x-ray detectors. For a review of the physics
of CR see Rowlands (2002).

Several types of cassette were used to obtain images with CR in this work.
The physical sizes of the cassettes and dimensions of the matrix elements
comprising the imaging area of each receptor are listed below:

Type A Physical size: 35cmx35cm. Image dimensions (pixels): 1760x1760.
Receptor pixel size = 199um. This receptor was used in some of our ex-
periments with linear tomography in chapters 5 and 6. The resolution
is too low for use in our mammography experiments.

Type B Physical size: 24cmx30cm. Image dimensions (pixels): 1576x1976.
Receptor pixel size = 152um. This receptor was used in some of our
experiments involving radiographic imaging of simple test objects in
chapter 4 and the linear tomography images of a realistic test object
in chapter 6.

Type C Physical size: 18cmx24cm. Image dimensions (pixels): 1770x2370.
Receptor pixel size = 101um. This receptor was used in our mammo-
graphic imaging of a clinical test object in chapter 4.

Type D Physical size: 18cmx24cm. Image dimensions (pixels): 3540x4740.
Receptor pixel size = 50um. This receptor was used to obtain the mam-
mograms presented in chapter 6.
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Digital receptors

Digital image receptors are used to capture and digitise an image directly
during the radiographic exposure. Considerable research has taken place in
recent years to the development of technology capable of replacing conven-
tional screen-film systems. We will discuss briefly indirect and direct digital
receptors.

Indirect detectors use a two stage process to obtain an image. An amor-
phous silicon plate is overlaid with an array of photodiodes, which is itself
covered with a layer of CsI(T1) phosphor. In the first stage the acquisition of
x-ray photons will stimulate the emission of light from the phosphor, which
is converted to a charge stored in the photodiode. The plate is processed by
a reader with each photodiode providing the information for a single pixel
in the final image. Direct detectors utilise an amorphous Selenium-coated
TFT (thin-film transistor) array to acquire x-ray photons directly and con-
vert them to electric charges. The charges are collected by capacitors linked
to each array element and are readout with specialised electronics within the
array.

The advantages of digital image receptors are numerous and obvious:
images can be captured and displayed very quickly. Radiographic factors
such as exposure are less crucial because digital manipulation can compensate
for under/over exposure. Problems associated with long term storage of film
(physical storage, deterioration of image quality, etc) are also avoided.

1.4 Imaging with CR

1.4.1 Inherent loss of image quality in CR

Several sources of degradation have been considered so far. Most are inher-
" ent sources that the radiographer can try to minimise but will be unable
to remove completely: geometric unsharpness, motion unsharpness, image
receptor blur and x-ray scatter all act to reduce image quality.

Mathematically, noise is defined as a random error of a variable around
some mean value. In the context of CR imaging, noise is an unwelcome
effect which acts to degrade the image quality. Noise is introduced at every
step of the acquisition process and a good CR system should be designed to
minimise the effects of noise at each stage.
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Quantum noise and Signal-to-noise ratio

The properties of quantum noise, which arise from the random fluctuation of
photons counted across the image receptor, is described using Poisson statis-
tics. The standard deviation (o) from the mean can be used as a measure of
the noise. In such a situation the standard deviation from the mean number
of photons counted N is given by:

o=+vN (1.3)

So the quantum noise will increase as the square-root of the number of pho-
tons increases. The signal, considered to be the difference in detected photons
between two regions with a contrast difference, increases as the number of
photons increases:

Signal x N (1.4)

Combining equations (1.3) and (1.4) it can be seen that the signal-to-noise
ratio (SNR) varies as:

N N
SNR = oc\/Nocx/Jv (1.5)

To reduce the effects of quantum noise it is necessary to increase the
number of photons from the x-ray source. By equation (1.5), increasing
the radiation exposure by a factor of four will double the SNR. Conversely,
lowering the radiation exposure by a factor of four will reduce the SNR by a
half.

The effect of quantum noise on image quality is seen in figure 1.3, which
shows part of the RMI test object imaged using a standard dose and a very
low dose. Both images show the inherent graininess associated with Poisson
noise but the quality of the image obtained with the low dose is much worse
than with the standard dose.

Gaussian approximation

A Poisson distribution describes the statistical properties of quantum noise.
If the numbers of photons impinging the image receptor are sufficiently large
then we can approximate with a Gaussian distribution. The energy spec-
trum of a mammography unit operating at 28kVp with a Mo-Mo tube was
generated using spectrum processing software provided with IPEM Report
78 (Cranley et al. 1997).

Figure 1.4 shows a plot of photon numbers per 0.5keV bin recorded at
the image receptor (per mm?) against photon energy for two exposures. In
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Figure 1.4: X-ray spectra for a mammography unit operating at 28kVp with
a Mo-Mo tube. The photon counts derive from bins of 0.5keV. (a) the spec-
trum produced with no intervening object between the focal spot and image
receptor. (b) the spectra obtained with an intervening 4.5cm stack of perspex
(equivalent to a standard dosimetry phantom).
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the first exposure (figure 1.4a) we have no intervening object between the
focal spot and image receptor. The total number of photons in this case is
N,ot =~ 620,000 per mm? per bin. In the second exposure (figure 1.4b) the
photon counts are those which would be observed if a stack of perspex 4.5cm
thick - equivalent to a standard dosimetry phantom - was positioned between
the focal spot and image receptor. The total number of photons recorded
in this case is Ny =~ 10,500 per mm? per bin. The corresponding numbers
of photons per image pixel (for 100um receptors) are approximately 6,200
and 105 respectively. These can both be considered ‘large’ in the context of
discussing if Gaussian approximation to a Poisson distribution is appropriate.
The latter figure gives a Poisson variation of +20% (95% confidence), which
accounts for the observed granularity in radiological images.

1.4.2 Measures of image quality

There are several ways to quantify image quality; we discuss some these
measures below.

MTF and spatial resolution

The modulation transfer function (MTF) is the traditional measure of as-
sessing the spatial resolution of the imaging system. The MTF is defined as
the magnitude of the Fourier transform of the point-spread function (PSF)'.
The MTF describes the ability of an imaging system to reproduce the spatial
resolution of the object being imaged. Ideally, the MTF would be constant
over all frequencies but in reality it is observed that the magnitude falls off
rapidly towards the highest frequencies (see figure 1.5). This behaviour corre-
sponds to a loss of spatial resolution at the finest scales. Factors affecting the
MTF and various methods of measuring the MTF are described in Report
41 of the ICRU (1986).

Signal-to-noise ratio

The relationship between SNR and radiation dose was described in section
1.4.1. In practice it is usually difficult to quantify the SNR. The problem
is identifying regions of an image containing only signal or noise in order to
evaluate the SNR. A compromise is usually to seek a region of the image with
constant luminance (signal) and measure the standard deviation (o) of pixel

t*The PSF is the imaging system’s response to an impulse. The PSF and Fourier
transform are discussed in more detail in chapter 2



CHAPTER 1. INTRODUCTION AND RESEARCH INTENT 19

(a) PSF (Fine FS)

3 10 15

{c) MTF (Fine F5)

100

150

200

250
50 100 150 200 250

(b) PSF (Broad F5)

3 10 15

(d) MTF (Broad FS)

100

150

200

250
a0 100 150 200 250

(&) MTF profiles

1' T R | T

06

0.4+

MTF magnitude

0.2

Fina FS I.
| —— Broad FS 1

|:| I ¥
0 20 40 60

— 1 1
a0 100 120

Frequency

Figure 1.5: Images of fine and broad focal spots are shown in (a) and (b).
The MTFs are shown below in (¢) and (d) respectively. Profiles through
each MTF are compared in (e). For increasing frequency (which is inversely
proportional to spatial resolution) the MTF of a system with a broad focal
spot is worse at retaining image power than a fine focal spot system.
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values within that region. As the signal is approximately constant within the
region any variations in pixel values is due to the noise.

Contrast resolution and windowing in CR

The idea of radiographic contrast was discussed earlier (see page 6 and sec-
tion 1.3.1). Contrast resolution is the ability of a CR image receptor to
discern contrast differences. The number of bits per pixel required for accu-
rate representation of a monochrome image is often quoted as being between
6 and 7-bits (Castleman 1979; Pratt 1991; Gonzalez and Woods 1992). There
is even some research (Cowlinshaw 1985) suggesting that as little as 4-bits
(16 gray levels) per pixel is enough for most monochrome images on modern
computer CRT screens. The luminance sensitivity of CR image receptors,
which have a contrast resolution of 10, 12 or 14-bits (corresponding to 1024,
4096 or 16384 distinct shades of gray) far outstrips the performance of the
human observer. Some manipulation of the acquired image is necessary in
order to view the complete dynamic range of the image and this is usually
achieved through windowing and/or contrast-stretching.

The very wide dynamic range of CR means that very low and very high
signal strengths can be recorded in the same image. The CR system used to
obtain many of the images in this work acquires images with 10-bit (1024)
shades of grey. Modern computer displays are capable of showing 8-bit (256)
shades of gray at a time. Therefore, some manipulation of the image is
usually necessary to exploit the full benefit of the wide dynamic on an 8-bit
display. We illustrate this with an example.

(a) Window width = 1024 (b) Window width = 128 (c) Window width = 25

Window range: [0 1024] Window range: [400 628] Window range: [500 525]

Figure 1.6: Demonstration of windowing to improve displayed contrast. The
square feature has 5% more contrast than the background in terms of the
original pixel values. Windowing can improve the visibility of this feature.
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Figure 1.6 shows an image with potentially 1024 shades of gray. It depicts
a square with pixel intensities of 525 against a uniform background with pixel
intensities of 500. Contrast is defined in terms of intensity difference between
the object and background: the contrast C' between two regions with signal
intensities I4 and Ip is given by:

C = |I4 — Ig| (1.6)

In our example, the measured contrast difference between the object and
background is 25; the object signal 5% higher than the background signal.
Suppose we look at the image through ‘windows’ of varying widths. With a
window width of 1024 the window width is equal to the potential dynamic
range of the image. The 1024 gray levels are (linearly) mapped into 256 gray
levels, shown in figure 1.6a. The object is difficult to distinguish from the
background. If we decrease the window width to 128 gray levels we are free
to position the window somewhere within the full 1024 grayscale range of the
original image. Figure 1.6(b) shows the effect of positioning this window to
view pixel values between 400 and 628 in the original image. Pixel values of
400 or less are shown as black, while pixel values of 628 or more are white.
Values between 400 and 628 are mapped into the 8-bit range of the monitor
display. Using a smaller window greatly improves the visibility of the square
against the background, effectively increasing the displayed contrast. Figure
1.6(c) shows the effect of using a window width of 25 and positioning it so
that the background is displayed at the bottom of the window, i.e. pixel
values less equal to or less than the background are shown as black and the
pixels values greater than or equal to the square are shown as white. The
displayed image of the square has a greatly increased contrast.

Contrast, signal’and noise

Contrast, as defined in equation (1.6), is a difficult property to quantify in
a noisy image because it is not always clear where the contrast originates; it
could be due to real differences in the attenuating properties of the tissue,
or it could be due fluctuations in the noise. A human observer’s ability to
discern objects is proportional to contrast and inversely proportional to noise.

The contrast to noise ratio (CNR) is therefore an appropriate measure
of the visibility of an image region. Substitution of equation 1.6 into the
definition of CNR leads to:

_ Contrast  C  |I4—1Ipg|
ONRap = g == =42 — |SNR4 — SNRg|  (L.7)
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Increasing contrast

Increasing noise

Figure 1.7: Demonstration of the effect of noise and contrast on feature
visibility. The contrast of a digital image can be manipulated to aid detection
of particular features (top row). However, this cannot overcome increasing
levels of noise (bottom two rows).

The CNR between two regions is defined as the difference between the re-
spective SNR of those regions.

Detective Quantum Efficiency

The ability of an image receptor to detect the radiation impinging on it is
quantified by the Quantum Detection Efficiency (QDE). For example, the
storage phosphor plates used in CR will not detect all the x-rays falling on
it - some photons will be lost in transmission.

The ability of an image receptor to transform the detected photons into an
image without introducing further noise is quantified by the Detective Quan-
tum Efficiency (DQE). DQE therefore describes how much noise is added by
the imaging system to the inherent quantum noise of the image. A perfect
system would have a DQE of 100% of the QDE (no additional noise added to
the quantum noise of the image) but in reality it may be much less than this.
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Direct measurement of the DQE is not a straightforward task as it varies
with the x-ray spectrum.

1.5 Some radiological applications

In previous sections it has been shown that the quality of medical images is
susceptible to different forms of degradation such as geometric unsharpness
and quantum noise. We now introduce two radiological applications to which
image processing techniques might be applied in order to improve image
quality.

1.5.1 Magnification mammography

X-ray mammography is a radiographic technique to examine the tissues of the
breast. Mammography is a very technically demanding area of radiological
imaging. The small differences in attenuation between breast tissues make
adequate subject contrast difficult to obtain. The physical properties (atomic
number, tissue density) of normal and malignant tissue are very similar. Low
x-ray energies are employed to exploit these differences. However, these low
energy x-rays are particularly susceptible to being absorbed by the breast and
contributing nothing to the image. Mammographic imaging requires good
spatial resolution to detect microcalcifications (discussed further below).

Mammography has been in widespread use since Egan adapted high-
resolution industrial film to enable the production of mammograms with
improved image detail in the 1960s. Direct exposure film was used to obtain
those early mammograms and a high radiation dose to the breast tissues
was necessary to obtain good quality images. Screen-film mammography
was introduced in the 1970s and the improved technology allowed reduced
radiation doses and higher contrast images to be produced. The evolution of
modern mammography and related technology can be traced in the work of
Jones (1982), Sébel and Aichinger (1996) and Bushberg et al. (2002).

Conventional screen-film contact mammography, in which the breast is
placed close to the image receptor, is hampered by a low spatial resolution.
An improvement to this technique is that of magnification mammography
where the breast is positioned closer to the focal spot in order to geometrically
magnify size on the image receptor. Funke et al. (1998) suggest that magni-
fication mammography with CR may be superior to conventional screen-film
mammography in microcalcification detection. An example of a mammogram
is shown in figure 1.8.
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Figure 1.8: CR image of a breast obtained with contact mammography.

Breast cancer is the most common cancer in England with a rate of
7.3 cases per 1000 women in 2002/3 (Government Statistical Service 2004).
The introduction of a national breast screening program in 1988 has meant
that earlier detection has been possible in more cases and, combined with
improved treatments, survival rates have risen. X-ray mammography has
proved to an effective way of reducing breast cancer mortality rates in a
number of other screening programs (Zhou and Gordon 1989; Hurley and
Kaldor 1992). However, breast cancer remains the most common cause of
cancer death in women.

Microcalcifications

Microcalcifications are small deposits formed by biological processes such as
cell secretion or from necrotic cellular debris. The presence of microcalcifi-
cations in the breast can be an indicator of malignant processes at work in
the breast some time before a carcinoma is seen (Hermann et al. 1988). '

The sizes of microcalcifications typically fall into the range 0.lmm to
lmm. The composition of microcalcifications was investigated by Fandos-
Morea et al. (1988) by analyzing the crystallographic patterns of microcal-
cifications. They found microcalcifications varied in composition between
calcium carbonate, calcium oxalate and apatite (which is a phosphate min-
eral containing fluoride and phosphate anions).

The distribution of microcalcifications can give an indication of whether
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a malignancy could form. Clusters of microcalcifications are more likely to
arouse suspicion than scattered microcalcifications. The shapes of individual
microcalcifications can also be an indicator; smooth, rounded microcalcifica-
tions are typically associated with benign processes whereas small, irregular
shaped microcalcifications can be a sign of malignancy.

Mammographic imaging requirements

Obtaining good quality mammograms is a very technically demanding prob-
lem and specialised mammography units are used for the task. Some specific
differences in mammographic imaging to the general principles of radiogra-
phy already described are discussed below.

Low energy x-ray beam Radiography of the skull, chest or pelvis requires
operating voltages of 60-110kVp. Mammography units are operated
at lower voltages (25-35kVp) with 28kVp being usual. A low energy
beam allows the production of an x-ray spectrum capable of generating
images with good radiographic contrast.

Mo/Mo tube The most common tube design uses a molybdenum anode
and filter, although rhodium filters are used in some circumstances.
The lower energy x-ray photons used to acquire images with good radi-
ographic contrast in mammography can be obtained using a molybde-
num anode (rather than tungsten). Operating at a voltage of 24-30kV,
a molybdenum filter strongly suppresses photons with energies in ex-
cess of 20keV which would otherwise reduce image contrast. The filter
also absorbs low energy photons (<17.4keV#) which would otherwise
be absorbed by the skin and breast tissues and contribute nothing to
the resulting image (Jones 1982).

Compression device Mammography units have devices to compress the
breast during the exposure. Compression minimises the effects of scat-
tered radiation (and thereby improving image contrast) by reducing the
path length of the beam. Reduced scatter allows lower radiation doses.
Compression also serves to reduce geometric and motion unsharpness.
A balance must be found between enough compression and the comfort
of the patient.

Automatic exposure control A sensor is placed behind the image recep-
tor to trigger a shutdown of the x-ray source when the appropriate dose
for the image has been reached.

HThis is K, radiation energy of Molybdenum.
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Geometric configuration In normal radiography the object is close to the
image receptor, producing a 1:1 image. In mammography some degree
of magnification may be required to aid detection of microcalcification
clusters. In the conventional mammography set-up the distance be-
tween the focal spot and image receptor is usually approximately 60cm.
Significantly shorter distances may result in a high dose of radiation
to the skin. Magnification is achieved by placing the object approxi-
mately midway between the focal spot and receptor; this is illustrated
in figure 1.2. A magnification of about 1.8 is used in practice.

Focal spot size In order for magnification to be useful the focal spot needs
to be very small to minimise the blurring resulting from use of a finite
sized focal spot.

Mammograms are generally obtained using screen-film image receptors
rather than with CR or DR. However Cowen et al. (1997) show that the
limiting resolution of CR does not tramnslate into a dramatic difference in
perception of microcalcifications at the limit of detectability. A recent ac-
count of CR in mammography is given by Seibert et al. (2004).

System optimisation of magnification mammography

The use of fine focal spots produces the clearest, sharpest images because
geometric unsharpness caused by penumbral shadows is minimised. However,
longer radiographic exposures are necessary for this method to be feasible due
to the lower tube current limitations of the fine focal spot. Investigations
into mammographic system optimization in terms of focal spot size, tube
current, absorption efficiency and detector resolution have been carried out
by Muntz et al. (1985). Conventional mammography configurations require
focal spot sizes of less than ~ 0.5mm while magnification mammography,
which introduces greater geometric unsharpness, requires focal spots of less
than = 0.15mm (Medical Devices Agency 2001).

In this work we will explore an alternative approach which could prove
useful in re-evaluating the system optimizations mentioned above. In the con-
text of magnification mammography we will investigate the following ideas.
It would be better to use a broad focal spot that allowed shorter exposures
to x-ray radiation and less motion unsharpness caused by patient movement.
As a consequence overheating the target of the x-ray machine would be also
be less likely. However, the apparent advantages of a broad focal spot are
more than offset by the loss of image quality caused by geometric unsharp-
ness that would make magnification mammography self-defeating. There is
a limit on how much magnification can be useful - even with a fine focal spot.
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Figure 1.9: Simplified layout of a linear tomography unit.

Geometric magnifications higher than ~ 2.0 produce unacceptable levels of
blurring. The conventional set-up for magnification mammography is a fine
focal spot with a geometric magnification around 1.8.

Image processing techniques would seem to offer some scope for improving
images obtained using the conventional system set-up. In this research we
will describe and test both conventional and unconventional set-ups. The
aims of these tests are described below.

Conventional set-up To improve existing image quality or maintain image
quality with reduced x-ray doses.

Unconventional set-ups To permit the use of higher magnifications and/or
broad focal spots through reduction of the associated geometric un-
sharpness by image processing techniques. The possibility of dose re-
duction (increased quantum noise levels) will also be examined.

1.5.2 Linear tomography

Analogue tomography is a branch of radiography, originating in the 1930s,
that uses motion of the x-ray focal spot and image receptor to elicit depth
information from an object, which pre-dates modern digital tomography.
In linear tomography, depth information is obtained by the opposing linear
movements of the focal spot and image receptor (figure 1.9). In theory only a
single plane within the object should remain in sharp focus while planes above
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and below are blurred and, to some extent, removed from visual consideration
by the human observer’s eye-brain system.

Limited angle tomography and tomosynthesis

In limited angle tomography, rather than a obtain a single exposure while
the focal spot and image receptor move in opposing directions, the x-ray
tube is ‘pulsed’ to obtain a sequence of projection radiographs (rather than
a single exposure as happens with conventional linear tomography). This
process is called tomosynthesis. Any arbitrary plane in the object to be
reconstructed retrospectively by ‘shifting and adding’ the individual radi-
ographs. Tomosynthesis has advantages over conventional analogue tomog-
raphy, where the focal plane is determined prior to the imaging process by
the ‘fulcrum’ of the tomography machine.

Although the tomosynthesis image formation model is different from con-
ventional tomography the problems of reduced visibility due to blurring from
features outside the focal plane remain the same. The blurring can be im-
proved mechanically by using motion more complicated than linear move-
ment, such as circular or hypocycloidal. Image restoration methods have
also been developed and applied to tomosynthesised images and we examine
some of these approaches next. For a complete review of the development of
digital tomosynthesis see Dobbins and Godfrey (2003).

Limitations of a linear tomography system

The images obtained with linear tomography correspond to ‘slices’ through
the object and are not particularly thin. The thickness of a tomographic slice
is inversely proportional to the tube swing angle and to some extent, the lin-
ear attenuation coeflicient of the object (Hua et al. 1986). Linear tomography
has largely been superseded by more complicated types of motion which pro-
duce less blurring and thinner ‘slices’. Circular, figure-8 and hypocycloidal
motion in particular may be better suited to a particular medical situation.
However, there are still some situations in which the use of linear tomogra-
phy is useful or essential. Examples include the evaluation of patients with
nephrolithiasis (Goldwasser et al. 1989) and confirming diagnosis of allergic
bronchopulmonary aspergillosis (Fisher et al. 1985).

The main limitation of linear tomography is that blurred features outside
the focal plane may mask low contrast features within the focal plane of
the object. Also, if a linear structure exists in the object and it is aligned
with the linear motion, then it will not become blurred (except for a slight
blurring at the ends) regardless of its depth in the object. The blurring
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associated with linear tomography is complicated and involves distortions
caused by differential magnification as well as motion blurring of those layers
outside the focal plane. The shortcomings of linear tomography have meant
applications in areas such as dentistry have moved towards tomography using,
for example, spiral motion to reduce blurring. As an example we cite the work
of Butterfield et al. (1997) which discusses the limitations of the clinical role
of linear tomography in preoperative dental implant site assessment.

Nevertheless it is possible to model a linear tomography system and to
seek ‘de-blurred’ solutions which approximate true 3-D data sets. This re-
search will look at ways of removing the blurred features lying above and be-
low the focal plane whilst retaining those features that are in focus and close
to the focal plane. Presently this is something which can only be achieved
at high cost using full scale CT-scanners.



CHAPTER 2

Image processing techniques

In this chapter a selection of popular image processing strategies will be
examined and tested to determine the most robust method for dealing with
images generated using the radiological applications described in Chapter
1. There are numerous methods which aim to improve the quality of image
information content. It is possible to distinguish two different approaches to
the problem; enhancement and restoration. It is also worth noting that the
distinction between the two is somewhat blurred.

2.1 Enhancement vs Restoration

Image enhancement techniques are perhaps the most straightforward to im-
plement. Enhancement techniques typically do not require a lengthy inves-
tigation into the causes of image degradation. The downside is that there is
a considerable amount of subjective opinion as to when an image has been
improved. Image enhancement does not retrieve any new information from
an image but makes detail already in an image easier to see. This may be
achieved in a number of ways, and involve manipulation of the image pix-
els or modifying a transformed version of the image (possibly in Fourier or
wavelet space).

Image restoration techniques are generally more sophisticated than meth-
ods of image enhancement. They derive from an image formation model and
seek to address and ‘undo’ the effects of image degradation directly. Degra-
dation may take the form of missing data, blurring, noise or combinations of
those effects.

30
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In medical imaging there is scope to use image enhancement, image
restoration or combinations of both.

2.2 Image enhancement methods

The appearance of some radiological images can be improved by the applica-
tion of a suitable enhancement technique. The simplest methods of enhance-
ment are functions which map pixel values in the input image to a new range
in the output image. The purpose of this is to provide a better ‘window’
through which to view the image or a region of interest, or to increase the
contrast between pixels; an example of this type of enhancement was seen in
figure 1.6. Most commercially available software will provide these functions
and are routinely used to view and manipulate digital radiographic images
on-screen.

Another level of enhancement, beyond simple windowing of the image,
is to manipulate the image information to extract or suppress particular
properties of the image. Some useful (in a very general sense) enhancement
techniques are:

Frequency filtering Filtering in the frequency domain to pass or suppress
particular frequencies associated with features in the image.

High frequency emphasis filtering Modification of the frequency con-
tent of an image to increase the contribution of edges and fine structure.

Wavelet analysis Modification of the wavelet transform of an image to
reduce noise at fine scales.

Each of these has corresponding disadvantages; methods which reduce
noise also risk the loss of the fine structure which might be important for the
radiologist to see. Conversely, increasing the contribution to the final image
of fine structure or edges runs the risk of increasing the image noise and
swamping the very features which the enhancement is trying to bring out.
In recent years multiscale analysis (wavelets, ridgelets, beamlets, etc) has
attempted to address these shortcomings by looking at the image components
at different scales.

2.2.1 Frequency filtering

The Discrete Fourier Transform (DFT) is used to analyze or change the
frequency content of an image (see Appendix A). An efficient implementation
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of the DFT, called the Fast Fourier Transform (Cooley and Tukey 1965)
is usually used in place of the DFT in image processing applications. All
subsequent references to Fourier transforms in this work imply that the Fast
Fourier Transform (FFT) was used for implementing the DFT.

The magnitude of frequency components* in a Fourier transformed image
tends to decrease with increasing frequency; see figure 2.1(b) on page 34.
Broad features and gradual intensity changes are characterised by the low
frequencies of the Fourier transform and constitute most of the total power
of the transform. Edges and sharp intensity transitions provide the strongest
contributions to the high frequencies of the transform but the overall high
frequency content of the transformed image is low. Uncorrelated noise is
generally broadband and occurs at all frequencies but it tends to dominate
the higher frequencies more easily.

Frequency filters modify the Fourier transform of an image. This is
achieved by constructing a filter and multiplying it element-by-element with
the Fourier transform of the input image. The filtered image is obtained by
taking the inverse Fourier transform of the result. The simplest frequency
filters block all low frequency content (high-pass filtering) or suppress the
higher frequencies (low-pass filtering). More sophisticated filters aim to block
or pass a narrow range of frequencies (band-pass or band-reject filters).

Ideal filters specify a cut-off frequency beyond which frequencies are either
kept or suppressed. The sharp discontinuities introduced by ideal filters tend
to contribute ‘ringing’ effects to the filtered image. This problem is overcome
by constructing filters which have a smooth transition between the suppressed
and passed frequencies. Gaussian and Butterworth filters do not have such
discontinuities and are usually more effective than the ideal frequency filter.
Examples of these filters are given in Gonzalez and Woods (2001).

A Matlab code to implement the frequency filtering discussed in this
section is given in Appendix D.1.

Low-pass filtering

The application of a low-pass frequency filter to an image will remove the
highest frequencies. Typically this will remove those frequencies dominated
by noise and also those containing significant contributions from sharp inten-
sity transitions (such as edges). Images which have been low-pass filtered are
smoother, with the degree of smoothing depending on the cut-off frequency
of the filter. The graininess associated with noise can often be removed but
S0 too are other features with contributions from the cut-off frequency. Low-

*Sometimes referred to as power or equivalently as the MTF
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pass filtering can be a useful first step for other applications such as line or
edge detection but its appeal is somewhat limited in a radiological context,
where reduction in noise is desirable but loss of image resolution is clearly
not acceptable. The use of a low pass filter as a pre-processing step to image
restoration is demonstrated in Chapter 3 (see figure 4.6 on page 97).

High-pass filtering

The high pass filter is especially useful in situations where the low frequency
content is of little value. In linear tomography there is considerable blurring
from features outside of the focal plane. This is manifested in the image as
a substantial reduction in the high frequency content, in a direction corre-
sponding to the direction of motion of the x-ray source and image receptor.
A tomogram obtained from a linear tomography machine is shown in figure
2.1a. Below the tomogram is the corresponding Fourier transform, shown
log-scaled in figure 2.1b. The blurring in the original tomogram is in a ver-
tical direction and the effect is to remove fine structure and details in the
vertical direction. In the Fourier transform of the image this is seen as a loss
of power at high frequencies in the vertical direction. Image detail in the
horizontal directions remain largely unaffected by vertical motion blur and
so a greater range of frequencies is still to be seen across the width of the
transform.

Filtering those frequencies whose contributions have been increased by
the blurring - but only in the direction of the blurring - might be a useful
way forward. Further investigation of high-pass filtering applied to linear
tomography images are examined in Chapter 5.

2.2.2 Wavelets applied to radiological images

Wavelets are small waves of limited duration which satisfy certain mathe-
matical conditions. In recent years wavelet analysis has been widely used
in many areas of signal and image processing as an alternative to Fourier
analysis.

Images can be decomposed into two or more scales using a wavelet trans-
form. These scales contain information about the approximate image content
(large features) and details (small features). An example of a wavelet decom-
position for a noisy x-ray image is shown below.

In the following sections two applications of wavelets to radiological im-
ages will be described. The basic approach of both applications is the same
and involves modification of the wavelet transform of the image in question:

1. Obtain the 2D wavelet transform of the image.
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(a) Original tomogram
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Figure 2.1: (a) is a tomogram through a plane in a skull phantom. The
direction of motion in the image - and therefore blurring - was vertical. (b)
shows the Fourier transform of (a). The blurring reduces the power of those
frequencies corresponding to the vertical detail in the image; this is evident
in the vertical direction of the transform.



CHAPTER 2. IMAGE PROCESSING TECHNIQUES 35

2. Modify the transform.

3. Reconstruct the image from the inverse of the modified transform.

Denoising, enhancement and feature detection

The principal research into suppression of additive noise came from Donoho
and Johnstone (Donoho 1992; Donoho and Johnstone 1992). Noise reduction
is possible because the noise is typically seen as fine structure in the image
and the wavelet transform allows decomposition of the image at different
scales. Noise information is carried by wavelet coeflicients at finer scales and
by discarding them, a noise filtered image can be obtained by reconstructing
from the modified transform. However, edge information is also represented
by the fine scale wavelet coefficients so a threshold must be chosen in order to
avoid disrupting desirable images features such as edges. Ideally, the thresh-
old would separate noise related coefficients from edge related coeflicients,
allowing the latter to kept and the former to be discarded.

The type of thresholding procedure can be hard or soft. Hard thresholding
is simplest and involves setting a value to which coefficients will be compared
to and either kept or discarded depending on which side of it they fall. Hard
thresholding can result in distortions within the reconstructed image because
discontinuities are introduced in the wavelet transform. The alternative is
soft thresholding, in which some of the coefficients above the threshold are
scaled down towards zero. The distortions introduced by hard thresholding
are thus avoided.

The reduction of noise in medical images can be problematical. The
thresholding procedure described above is optimal under rather specific con-
ditions. If applied without regard to the image formation process it may also
remove ‘noise’ deemed to carry useful information in certain applications,
such as speckle noise in an ultrasound images (Wagner et al. 1983). There
are examples of denoising techniques applied to some medical images to be
found in recent literature (Jansen and Bultheel 1997; Jansen et al. 1999;
Pizurica et al. 2003; De Stefano et al. 2004; Ferrari and Winsor 2005).

We present our own examples of wavelet denoising in figure 2.2. The
original image is from a phantom containing fragments of bone imaged under
low dose (2mAs), high noise conditions. In the first example, the image
was decomposed with a Haar wavelet into two levels and soft thresholding
was applied to the detail coefficients. The modified wavelet transform was
reconstructed with the inverse wavelet transform to give the denoised image.

tThis object, and further experiments using these images, will be described in Chap-
ter 4.
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(a) Original nolsy image

(&) Residuals from (d)

Figure 2.2: (a) is the original image of bone fragments imaged under low dose
(high noise) conditions. Wavelet decompositions took place on 2 levels. (b) is
a reconstruction denoised using a simple Haar wavelet. (d) is a reconstruction
denoised using a 4th order Symlet wavelet. (c) and (e) show the information
removed from the original in each case.
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In the second example the same procedure was followed but using a 4th order
Symlet wavelet. All processing was carried out using the Wavelet Toolbox
in Matlab.

The residual images (c) and (e) show the information removed by the
denoising process. Much of the information shown in (c) is noise although
it is obvious that the edges of some real features were also removed. Almost
all of the information in (e) is noise.

The use of wavelets to enhance the appearance of microcalcifications in
mammograms has been discussed by Strickland (1996). The typical approach
is to decompose the image using a wavelet transform and give more weight to
the coefficients in the finer scales; in this respect the method is similar to the
Fourier based high-frequency emphasis approach (see page 133). Performing
an inverse wavelet transform results in an image where the microcalcifications
have more contrast than in the original image.

Wavelet based detection of microcalcifications is described by Wang and
Karayiannis (1998). The image is reconstructed from a wavelet transform
which has had the lowest frequency subband completely suppressed. With an
appropriate choice of wavelet and when used in conjunction with a non-linear
thresholding method, enhanced detection of groups of microcalcifications was
possible in a mammogram.

More recently Sakellaropoulos et al. (2003) described a wavelet-based
method of minimizing image noise while optimizing image contrast. This was
achieved by modifying the multiscale gradient magnitude values obtained
via the dyadic wavelet transform. Noise reduction was implemented with
a spatially varying denoising technique similar to the method of Donoho
discussed earlier. Contrast enhancement was attained by applying a local
linear mapping operator on the denoised wavelet magnitude values.

2.3 Image restoration methods

Restoration methods are derived from an the image formation model of an
imaging system. For a system where the degradation is completely charac-
terised by the system’s response to an impulse, i.e. the point-spread function
h(i,a, j,3), the relationship between the input image z(c, ) and output
image d(3, j):

d(i, j) = /_ ” /_ " #(c, B)RG, o, j, B) dadB (2.1)

Equation 2.1 is an example of a Fredholm integral equation of the first
kind. This equation is at the heart of all subsequent image restoration meth-
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ods. and further investigation of the properties of this integral equation will
be discussed in chapter 3. This equation is at the heart of all subsequent
image restoration methods. For the medical imaging problems considered in
this work we will assume a linear, spatially invariant degradation function,
i.e. h(i,a,j,B) = h(i—a,j— B). In this case the above equation reduces to:

i3 = [ N / " 2(a, B)h(i — a,j — B) dadp (2.2)

In the presence of random system noise which is not dependent on position
in the image we can add a noise term to get:

d(i, j) = [ ” [ " 2(c, B)hi— 0, — ) dodB +n,g)  (2.3)

This image formation model assumes that a ‘true image’ has been blurred by
a point-spread function (PSF) and then further degraded by additive noise.
This is a simplification of the processes which lead to the production of radi-
ographic images. For example, it is implied in equation 2.3 that the PSF is
spatially invariant and that the noise is independent of the image. In reality,
neither assumption is entirely satisfactory. However, the formulation of many
restoration methods is simplified by this approach and the computational ex-
pense is greatly reduced because the resulting matrix-vector equations can
be solved through the use of fast Fourier transforms.

The images have thus far been treated as continuous functions but in
reality we are dealing with digital images with discrete pixels. The discrete
form of equation (2.3) is:

dij = Z Ivagh.,;_a’j_ﬁ +n;; =x* hij + 1y (24)
a,f

where ‘¥’ denotes the mathematical operation of convolution; the first term
on the right hand side is called the forward map. In medical radiography,
we are given the output image data d;;, some knowledge of the noise and
information describing the degradation (point-spread) function h. We would
like to obtain an image ;;, which is an approximation to the ‘true’ image,
%;j, to within the limits set by the noise and data. A diagram of this model
for a radiological imaging system is shown in figure 2.3.

Image restoration techniques can be less subjective than enhancement
techniques as the images produced will satisfy some a priori definition of
restoration. In the sections that follow, a selection of deconvolution tech-
niques will tested to examine their effectiveness.

1. Algebraic deconvolution
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Figure 2.3: Image formation model.

2. Inverse and pseudoinverse filtering
3. Wiener filtering
4. Regularised deconvolution

5. Other methods

This is not a comprehensive list of all available deconvolution methods;
the purpose is examine the shortcomings of methods which have previously
been applied to problems of deblurring medical images. The types of images
obtained in medical radiography are large, typically with dimensions of sev-
eral millions of pixels. Medical images are noisy (for the reasons described
in Chapter 1). The examinations of algebraic deconvolution (1) provides
clues to whether or not it is possible to extract solutions to these imaging
problems, and whether the solution obtained is unique or from a space of
many, or infinitely many possible solutions. Restoration techniques are most
efficiently implemented using Fourier transforms; (2) and (3) are techniques
which implement these restorations quickly. (4) attempts to select a solu-
tion from the myriad of possible solutions by minimising some criterion of
smoothness with the constraint that the solution is consistent with the ob-
served image. There are many possible criteria for image smoothness and it
is the aim of this chapter to show that one property in particular - the en-
tropy - is the best choice for deconvolution of medical images. Finally, in (5)
we mention some notable absences; methods of deconvolution used in other
image deblurring problems and why their use was not considered appropriate
for the problems discussed in this work.

2.3.1 Algebraic deconvolution

Algebraic deconvolution is the analysis and solution of the image restoration
problem with systems of equations represented by matrices and vectors. The
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image formation model (equation 2.4) can be represented algebraically by:

d=Ax+n (2.5)

where A is a matrix representation of the point-spread function h;; from
equation 2.4. The vectors x, d and n are formed by stacking columns of the
corresponding images z;;, di; and n;;. The goal of restoration is to find a
solution X such that:

Ak =d (2.6)

Assuming for the moment that A is square and nonsingular, by substituting
equation (2.6) into equation (2.5) and applying the inverse of A to both sides
we obtain:

AXx = Ax+n
ATA% = A '4Ax+ A 'n
X = x+A'n 2.7

So the restoration % can be considered as being the sum of two compo-
nents. The first term is the true image distribution and the second is a noise
amplification term. The magnitude of the noise amplification term would
seem to depend on the properties of the matrix A. The inverse of the matrix
is given by:

L _ adi(4)
det(A)

where ‘adj’ and ‘det’ are the adjoint and determinant of the matrix A re-
spectively. If the matrix A is ill conditioned then det(A) will be very small
and the inverse A~! will have some very large values. In these situations the
noise amplification term will dominate equation (2.7). If A is singular the
situation is worse; the determinant is equal to zero and A~! does not exist
at all. In this case equation 2.6 has many solutions (if d is in the column
space of A) or no solutions (if d is not). We will show in chapter 3 that
the solutions to image restoration problems are at best ill-conditioned and
at worst, they are singular.

(2.8)

Matrix representation of the PSF

Algebraically, the convolution of the true image and PSF (h;; * z;;) can be
implemented as an equivalent matrix-vector multiplication (Ax), where A is
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Figure 2.4: The sparsity and structure of the matrix representation of a 5 x 5
averaging PSF, applicable to an image with dimensions of 100 x 100. (a)
shows the complete matrix. (b) shows the banding structure towards the
upper-left. (c) Shows the structure of the uppermost band in (b). In all
three cases non-zero matrix elements are denoted by a blue dot.

a matrix representation of h;;. The procedure for constructing A from h;;
is described in detail by Gonzalez and Woods (1992). We assumed in our
earlier analysis that the matrix A was square and non-singular. In prac-
tice A is a non-square Block-Circulant matrix whose construction procedure
incorporates image padding, i.e. references to pixels beyond the image bor-
der. Figure 2.4 shows a plot of two convolution matrices showing the sparse
structure of these objects. Matrix elements which are non-zero are shown
with a blue dot - everywhere else is zero. In our example, of the 108 million
elements in A only 250,000 (0.0023% of the total) are non-zero.

Non-square matrices correspond to over-determined or under-determined
linear systems. In these cases the matrix A does not have conventional
inverse. Approximate solutions to equation 2.5 may be sought through other
methods, such as the singular value decomposition and generalised inverse.

Singular value decomposition

The singular value decomposition (SVD) of a general m X n matrix A is:

A=VvzU* (2.9)

where the matrix V is m xm, X is m xn and U is n X n. This decomposition
is obtained by calculating the eigenvalues );, and the associated eigenvectors
u;, of AT A. This matrix is square and symmetric, so that its eigenvalues are
real. It can also be shown that they are also non-negative, i.e. A;... A, > 0;
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k of these will be strictly positive, and can be ordered so that A\; > A2 >
..M > 0, where k¥ < n. The first k columns of the matrix V are the
corresponding m-dimensional vectors v; defined by

V; = i1411;; (210)
g;
where 0; = v/Ai, i = 1...k. The remaining columns of V are any viy1... Vg
such that the full set vy ...v,, is orthonormal. The columns of U are the
(normalised) eigenvectors u;. Also, UT and V are orthogonal matrices.
The matrix X has the special form

2:(10) 8) (2.11)

where:

o1
D= (2.12)
g;

The numbers o4, . ..,0; are all real, positive and greater than zero. Collec-
tively these are referred to as singular values of the matrix A. Also, the sin-
gular values form a numerically decreasing sequence o1 > g3 > ... > 0; > 0.

The condition number of a matrix A can be specified in terms of the
maximum and minimum singular values:

cond(A) = Jmas (2.13)
Omin
The matrix A is said to be well-conditioned if the condition number is small
(close to 1) and ill-conditioned if it is very large.

Generalised inverse

By SVD we can write A = VEUT for any m x n matrix. If the matrix is
square (n x n) and ¥ is invertible (i.e. all of the diagonal elements - the
singular values - are non-zero) then the inverse is simply

At = (VU =Uus VT (2.14)

since U and V are orthogonal. When A is not square then X is also not
invertible and A~! does not exist. In this situation the best that can be done
is to construct a generalised inverse
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AT =UztVT (2.15)

where X1 is the n X m matrix

ot = ( Do_l g ) (2.16)

Equation 2.15 is called the Moore-Penrose inverset (Moore 1920; Penrose
1955) and is the most commonly used of several generalised inverses. It is
this matrix inverse to which we refer in subsequent discussions. The Moore-
Penrose inverse is a unique matrix inverse which satisfies certain mathemat-
ical conditions: for example, see Hill (1996).

The solution % which approximates the true image distribution x in equa-
tion (2.6) is obtained from:

%= A*d (2.17)

It is that solution which simultaneously minimizes the error ||A%X—d|| and the
norm ||X||. In an underdetermined system the minimum error will be zero.
We shall illustrate the SVD and generalised inverse with a simple example.
Consider the 2 x 3 matrix
111
A= ( 111 )

giving

which is obviously singular. The eigenvalues and corresponding normalised
eigenvectors are

giving

$The Moore-Penrose inverse is sometimes referred to as the pseudoinverse. However, to
avoid confusion with a Fourier based restoration technique introduced later in this chapter,
we will refrain from associating this term with the Moore-Penrose inverse.
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i 2 0
V3 Ve
U= I S .
v w4
Vi VB V2
Thus k = 1, giving
1
Vo \/i -1

as the only orthonormal choice; thus

=a(h)

Thus
=00
= V6
% ( 0 0 0)
L0
V6
¥t o= 0 0
0 0
The generalised inverse is therefore
At = pUxtvT
1 2
= = 0 L 9
V3 V6 V6 4L
15 ) ()2 R
A% v/ N0 0/ A

T S

[
SN—

The system

is underdetermined, as the vector b is in the column space of A; according
to equation 2.17 the required solution is
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z 11 2/3

y | = % 11 (g) = 2/3

z 11 2/3
2 2

which is exact. It is obvious that (%, %,3) is the point in the plane z+y+z =
2 which is closest to the origin. If we choose b = (1,0)7 the system is
overdetermined, and the required solution is

z AR . 1/6
z 11 1/6

which is not exact. The point (3, %, 1) is the point in the plane z+y+2z = }
closest to the origin.

Use of the Moore-Penrose inverse is not restricted to problems in which A
is singular. Ill-conditioned problems (when the condition number of A is very
large) can be stabilised by truncating the matrix D (equation 2.12) at row k
beyond which the singular values (041 ...) on the diagonal are significantly
smaller than o;.

Practical issues with algebraic deconvolution methods

It is worth noting that if the original image d has k? pixels then algebraic
deconvolution requires the manipulation of a PSF matrix A of dimensions
k% x k%. For images containing more than a few thousand pixels the com-
putational effort involved in calculating the SVD, say, of the PSF matrix is
enormous. Although processing power has improved greatly in recent years,
algebraic deconvolution methods are still computationally very expensive.
Algebraic deconvolution methods dealing with large images try to exploit
the sparsity and structure of A. In some practical applications A is never
formed or stored in its entirety, but rather approximated by a Kronecker
product of two smaller matrices. For a more detailed description of these
methods see Nagy (1996) and Kamm and Nagy (1998, 2001). A general re-
view of these and other algebraic deconvolution techniques is described by
Hansen (2002).

Matrix-vector multiplications in which the matrix is Block-Circulant are
more quickly implemented in the frequency domain using the Discrete Fourier
Transform; an explanation is given in Gonzalez and Woods (1992). Fourier
based methods form the basis of the restoration techniques discussed in the
remainder of this chapter.
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The practical difficulties associated with algebraic deconvolution give
these methods limited appeal to large-scale computational problems. How-
ever, a literature search shows interesting applications to medical deconvo-
lution: Yuasa et al. (1997) describe an attenuation correction method for
detection of small amounts of nonradioactive contrast material used in fluo-
rescent x-ray CT, and Koh et al. (2004) used SVD in the assessment of tissue
perfusion by dynamic contrast-enhanced imaging.

2.3.2 Test image: simulated blur and noise

In the analysis which follows an clinical test object (a ‘phantom’) was used
to evaluate the performance of restoration methods. The CDMAM phantom
consists of an aluminium base with gold disks of different sizes and thicknesses
attached to a plexi-glass cover. The image in figure 2.5 was obtained with
the magnification 1.8 fine focus geometric set-up and high dose (low noise)
conditions. For the purposes of testing the methods that follow, figure 2.5a
is considered to be the ‘true image’. The true image in this case is a region
with dimensions (in pixels) of 497 x 484 which was cropped from a much
larger full-size image with dimensions of 2370 x 1770. The ‘true image’ also
contains a few artefacts® in the form of bright pixels.

The image under study in these tests is a 10-bit DICOM compatible
image: each image potentially contains 1024 shades of grey. Image processing
was carried out with Matlab, which treats the images as matrices. Prior
to processing the image matrices were converted from integers to double
precision numbers in the range [0 1] by dividing through each element by
1024.

Blurring and noise were subsequently added using Matlab’s Image Process-
ing Toolbox. The type of blurring associated with mammography is simu-
lated in figure 2.5b. The scaled PSF of a real focal spot was used to generate
the blurred image. This image was then further degraded by medium and
high levels of noise in figures 2.5¢ and 2.5d respectively.

2.3.3 Inverse and pseudoinverse filtering

In the frequency domain, for an imaging system free from noise the observed
image data is related to the true image by the equation:

Doy = XooHoo (2.18)

§Described in more detail in Chapter 4, page 98
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(a) True image (b) Gaussian blurred image

3
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(c) Blur + noise (o® = 0.0005) (d) Blur + noise (6 = 0.005)
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Figure 2.5: A section of the CDMAM phantom. (a) is considered to be
the ‘true image’ in subsequent analysis, (b) results when the true image is
blurred with a Gaussian PSF 9 pixels wide. If we add some Gaussian noise
we obtain (¢) and (d) with medium and high levels respectively.
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(a) Blurred image (b) DFT of the PSF (c) Inverse filtered

0 1

Figure 2.6: The inverse filter fails because there are many small and zero
values (seen criss-crossing the image) in Fourier transform of the PSF. The
Fourier transform shown in (b) has been log-scaled for greater clarity.

where the capitalised quantities here are obtained by Fourier transforming
the lowercase quantities from equation 2.4. The equivalence of equations 2.4
and 2.18 form the convolution theorem. To obtain an approximation of the
transform of the ‘true’ image we might simply rearrange this equation to get:

'DH v
H‘H v

Application of the inverse Fourier Transform should give us the ‘true’ image
in the spatial domain. This approach is known as inverse filtering. In the
absence of noise then any zeros in H,, should coincide with zeros in D,
according to equation 2.18. The ratio 0/0 is of course undefined mathemat-
ically. It is obvious from equation (2.19) that the inverse of any near-zero
values of H,, will tend to become very large indeed. Even when the PSF is
well behaved this may still be the case.

The results of inverse filtering are shown in figure 2.6 and it is seen that
the inverse filter completely fails to recover the image. The presence of very
small and/or zero values in the frequency domain of the PSF is to blame
for the failure of the method. This computational difficulty is overcome by
thresholding and redefining the inverse of H,,, (Jain 1988):

1 _ [ 7= Ha#0
Ho 0 Hu=0

Xow = (2.19)

= (2.20)
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(a) Blurred image (b) Pseudoinverse: e=0.01

(d) Pseudoinverse: e=0.5

Figure 2.7: Pseudoinverse filtering can perform well but exhibits ringing
effects as the restorations become sharper. If £ is increased too much then
blurring begins to take over once more as the image is oversmoothed.
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In practice HL, is set to zero whenever |H. | is less than a suitably chosen
positive quantity €.

I _
Huv-

1
! —{ A [l > € (2.21)

_H—.,; - 0 |Huv| <e

As ¢ —> 0 so equation (2.21) approximates more closely the true inverse
filter of equation (2.20). This thresholding version of the inverse filter is also
known a pseudoinverse? filter. The true image figure 2.5a was blurred with
a PSF with a Gaussian shape and a width 9 pixels. The results of inverse
and pseudoinverse filtering are shown in figure 2.7. The Matlab code to
implement these filters is given in Appendix D.3. The pseudoinverse filter
produces acceptable restorations in these images although ringing artefacts
begin to dominate as the restoration produces sharper images. If £ is too
large the restored image begins to become blurred once more (as in figure
2.7d).

The image considered in this section contained no noise component and
further tests showed that the pseudoinverse filter is not very robust when
applied to images containing even small amounts of noise.

2.3.4 Wiener filtering

The degradation model for a blurred, noisy image has the following form in
the frequency domain.

Dyy = XuwHuyy + Nuw (2.22)

Substituting this expression into equation (2.19) yields an approximation to
the true image:

N N, :
KXoy = Xuw — == 2.
H. (2.23)

It is obvious that any zero or near-zero values of H,, will greatly amplify
contribution from the noise term N,,. The problem is that the noise spec-
trum N, is not usually known with sufficient accuracy to enable X, to be
recovered, often compounded by the fact that H,, has zero or very small
values, at which points the ratio %“uf can easily dominate equation (2.23).
This is related to the fact that the forward map true image — degraded
image is often singular or almost singular (many to one).

YAgain, we point out that this is unrelated to the Moore-Penrose matrix inverse dis-
cussed earlier, which is sometimes called a pseudoinverse.
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In practical situations a restoration method that can deal with the prob-
lem of noise is required. The Wiener filter (Wiener 1949; Helstrom 1967) at-
tempts to address some of the failings of direct Fourier inversion techniques
when applied to noisy images. The Wiener filter is based on a statistical
criterion which minimises the mean square error between the true image
distribution z and the estimate of it z, i.e.

e? = E{(z — %)?} (2.24)

The Wiener filter is also called the least square error filter and as such is
optimal in an average sense. The Wiener filter approach gives an estimate

A

X, of the true image:

R 2
Xuv = ! |Huvl
Hu'u |Huv|2 + Kuv

where K, the inverse of the signal-to-noise ratio (SNR), often approximated
by a constant. It can be thought of as an adjustable parameter chosen by
the user to balance sharpness against noise in the restored image. This is
a fairly subjective choice but it can work well in images where the SNR is
not too low. The Wiener filter tries to remove those frequencies which would
otherwise be dominated by noise in the Fourier transform of an image. To
operate effectively the Wiener filter requires the PSF of the forward map to
be known. Several assumptions about the image, noise and forward map are
also made:

} Dy (2.25)

e The forward map is linear. In other words the pixel intensities in the
observed image are linearly related to those in the ‘true’ image.

e The blurring is spatially invariant. This ensures that the PSF matrix
(on which the underlying theory is built) remains block-Toeplitz in
form. There is a small PSF variation across our radiographic images as
the focal spot is ‘viewed’ from different perspectives, which we ignore.

e The image is uncorrelated. That is to say, pixel correlations are neg-
ligible beyond a certain small distance and that the image itself can
be modeled as a wide-sense stationary stochastic process (i.e. one in
which the underlying autocorrelation functions are spatially invariant).

e The noise is signal independent with zero mean. Again, this ensures
that the assumptions about the autocorrelation matrices, from which
the Wiener filter is derived, remain valid.
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The Wiener filter derives from a linear model: application to a non-linear

image formation process would be inappropriate. These assumptions lead to
autocorrelation matrix approximations in Toeplitz and Block Toeplitz form.
Such matrices are readily approximated by Block Circulant matrices and
multiplications are more efficiently implemented using the Discrete Fourier
Transform.
A Matlab code to implement the Wiener filter is listed in Appendix D.4.
With reference to figure 2.8, the images on the left hand side are blurred
and with increasing levels of Gaussian noise added. The results of Wiener
filtering each image are shown on the right-hand side.

The Wiener filter performs reasonably well in images where the signal-
to-noise ratio is high (i.e. the very low levels of noise). The restored image
is very sharp but ringing artefacts remain throughout the image. As the
levels of noise increase, the effectiveness of the Wiener filter decreases. Sup-
pressing the noise by choosing larger values of K reduces the effectiveness of
deblurring.

Wiener filtering and radiological images

The Wiener filter has been tested on simulated radiological images (Mad-
sen 1990) and to ‘real’ radiological images (Dougherty and Kawaf 2001).
In the latter case, the authors examined the restorative effectiveness of a
commercially available implementation of the Wiener filter. The geometric
set-up in their experiment was such that a magnification of 4.0 was obtained
with a broad focal spot (0.6mm in this case). The image receptor was film
(with the intensifying screen absent to reduce the associated blurring). The
Wiener filtered result showed improved spatial resolution over the original
image with some evidence of noise-smoothing. However, the restored images
also exhibited ‘ringing’ artefacts close to high luminance edges.

SPECT! is a tomographic technique using gamma ray emitting radio-
pharmaceuticals. Wiener filtering of 3D SPECT images to reduce collimator
blur was described by Hawkins and Leichner (1994). The filter was applied
between the pre-multiply and backprojection phases of reconstruction. The
Wiener filter was therefore an integral part of the process rather than a
pre or post-processing technique. The technique outperformed both post-
processing with a Wiener filter and the quantitative CHT SPECT protocol
(which utilises a 2D Wiener pre-filtering approach) in terms of noise ampli-
fication.

Our experiences with the artificially degraded images seen in this chapter,

ISPECT: Single Photon Emission Computed Tomography
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(a) Gaussian blur, no noise (b) Wiener filter: K=0.005

(c) Gaussian blur, a?=0.0005 (d) Wiener fitter: K=0.01

{e) Gaussian blur, o°=0.005 (f) Wiener filter; K=0.1

Figure 2.8: Deconvolution of the Gaussian blurred image with increasing
noise levels using Wiener filtering.
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and the more realistic images presented in subsequent chapters suggest that
the de-blurring effectiveness of the Wiener filter becomes more limited as
the SNR gets worse. The lack of literature (beyond that of a few specialised
imaging applications) serves to emphasise that the general usefulness of this
technique in improving noisy radiological images is regarded as somewhat
limited.

2.3.5 Regularised deconvolution

It was shown in section 2.3.1 that the ill-posed nature of the restoration
problem means that there may be many (or infinitely many) solutions X that
are consistent with the data d. Some scheme of selecting the appropriate
solution from the ensemble of possible solutions needs to be employed. This
is usually achieved by defining a priori what the ‘best’ solution should look
like. One such definition is that optimality of the restored image be based
on a measure of smoothness (for example, the Laplacian of the image). It
is also sensible to introduce constraints on the possible solutions; these may
take the form of ensuring positivity is enforced in the solution (as negative
pixel values are nonsensical in the image formation model), or that the total
flux of the restored image is the same as the degraded image.

Let F be a function of the image pixels and C; be constraints on the solu-
tion. The deconvolution strategy here is to optimise the function F subject
to the constraints being met. This achieved by forming an objective function
Q@ from these using some as yet undetermined Lagrange multipliers a:

Q =F+ OliCi (226)

The numerical procedure is then find a solution X which optimises this ob-
jective function. This process is called regularised deconvolution. The reg-
ularising function, F, prevents the solution fitting the data (and the noise)
too closely. The magnitude of o, which gives more or less weight to the con-
straints C;, is adjusted to allow some definition of ‘restoration’ to be satisfied.
There are many regularised deconvolution methods available and we discuss
some of the most widely used next.

Coasfrained least-squares

A least-squares restoration is one in which the mean squared error between
mock-data (based on an estimate of the solution) and the observed data is
minimised, i.e.

le]* = [ld — Ax]|* (2:27)
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Least-squared restorations of noisy images tend to converge to restorations
which fit the data too strongly: noise in the original data is strongly evi-
dent, usually as a graininess, in the restored image. An alternative is to use
constrained least-squares restoration. The smoothness of the restored image
can be quantified by its Laplacian (a gradient function: a measure of how
quickly the pixel luminance within the image is changing with position). A
restoration process which minimises the Laplacian of the estimate, subject
to the constraint of equation 2.27 does rather better and will impose a de-
gree of smoothness on the solution. Constrained least-squares techniques can
be implemented in both the spatial and frequency domains. The frequency
version of the filter is:

5 1 | Hyo|? ]
X v = Dm, 2.28

o= | T o (2.28)
where equation 2.28 is derived by Gonzalez and Woods (1992). An iterative
procedure to determine the appropriate value of a based on an estimate of the
noise variance is also detailed. P,, is the Fourier transform of the Laplacian,
which in the spatial domain is simply the convolution function:

0 -1 0O
0 -1 0O

Constrained least-squares has been applied to deconvolution of scinti-
grams (Boardman 1979)** when Wiener filtering of such images was unsat-
isfactory. Sutton and Kempi (1992) applied the method to deconvolve data
obtained from renal scans and noted the superiority of the constrained least-
squares over conventional Fourier inversion techniques.

Maximum Entropy deconvolution

The regularising function used to impose smoothness on the solution is the
image entropy. The entropy of an image is a measure of structure in the
information content. The entropy of the restored image is a suitable regular-
ising function for some image formation models; an image solution is sought
which has the least uncertain structure of all the solutions that are consistent
with the measured data. This is equivalent to choosing the solution which
has largest global entropy measure, i.e. the image having maximum entropy.
RRegularised deconvolution using the entropy function requires optimization
of an objective function of the form:

**See also page 82
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Q=8+ayx (2.30)

where S is entropy in the reconstructed image and x? is a statistical measure
of the misfit between the observed image and data based on the estimate of
the ‘true’ image. The role of a proper definition of x? will be given in chapter
3. Some of the commonly used forms of S are listed below (Cornwell 1982):

S —'Zil'i 111(11},,) (231&)
S —Zifﬂi [ln(:l:,/b,)] (231b)
S —%; In(z;) (2.31c)

S = —2,;Vhl($i) (231d)

The values x; represent pixel intensities in the restored image. The values b;
in equation (2.31b) represent default model values - pixel values the restored
image should take in the absence of data. A more complete discussion of
these default image model values is postponed until Chapter 3.

The choice of regularising function will depend on the situation, with
some leading to better restorations than others. There might also be good
theoretical or pragmatic reasons for choosing one function over another: see,
for example, Wu (1997) and our arguments in Chapter 3. It has also been
argued (Titterington 1985) that entropy should be regarded as a pragmatic
regularising function with sensible smoothing properties independent of any
theoretical justification for its use. However, in the following chapter we
argue that a scheme of regularised deconvolution using the entropy function
is appropriate for the medical imaging problems discussed in chapter 1.

2.3.6 Related deconvolution methods

Although we have restricted our attention to just a few methods in this
chapter it is worth mentioning some notable absences with explanations of
why they were not considered as suitable techniques for radiological image
processing.

Basic iterative deconvolution

Iterative techniques, operating in either the spatial or frequency domains,
can be quick and effective tools when applied to some image data. Consider
the simple technique known as basic iterative deconvolution applied in the
spatial domain to an observed image d;;. The method begins by forming
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an estimate £© of the ‘true’ object distribution. This estimate is blurred
with the known system PSF, denoted by h;;, to form a ‘trial image’. If the
trial image is equal to, or very close to the observed image then the method
terminated because we have found a solution. If there is a difference between
the two, a small fraction of the residuals are added to the initial guess to
obtain #(). The method continues iteratively:
30 = 0 + alhy * 55 — diy) (2.32)
Basic iterative deconvolution derives from the method of Van Cittert
(Van Cittert 1931; Jansson 1970; Thomas 1981) which was originally used
to resolve spectral lines. Despite the advantages in terms of speed and ease
of implementation these methods are not particularly robust when applied
to noisy images. In such cases the parameter @ must be made so small as to
reduce progress to a crawl. Convergence is rarely guaranteed in practice with
most implementations controlling the algorithm according to the number of
iterations.

CLEAN deconvolution

CLEAN deconvolution was developed by astronomers from a need to process
aperture synthesis data from radio interferometers (Hogbom 1974; Schwarz
1978; Clark 1980). CLEAN is a form of subtractive deconvolution (Bates
and McDonnell 1989). The CLEAN algorithm iteratively builds a CLEANed
image by adding scaled components to an initially empty image and results in
a radio map devoid of unwanted sidelobes. The original method was modified
by Keel (1991) to handle optical images and is known as o-CLEAN.

CLEAN and variants of it are based on the assumption that the true im-
age is well represented by point sources in an otherwise empty image. While
this assumption can be valid for astronomical objects such as star clusters, or
distant galaxies and quasars it is generally not the case for radiological im-
ages, which can contain detail and structure on many scales. Our experience
of applying CLEAN to test images in this work shows that any extended
structures are reconstructed with a rather grid-like appearance. CLEAN
tends to give a varying spatial resolution in the reconstructed image because
areas with a high signal-to-noise ratio are preferentially restored. The re-
stored image can have regions where little or no reconstruction has taken
place.
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Richardson-Lucy deconvolution

The method due to Richardson (1972) and Lucy (1974) is to be found in
widespread use in the astronomical community. Richardson-Lucy (RL) de-
convolution was used on optical images from the Hubble Space Telescope be-
fore corrective optics were installed. RL deconvolution can be implemented
in the spatial domain using convolutions or in the frequency domain using
Fourier transformed variables (as is the case in equation 2.33). The procedure
is iterative and the next iterate is calculated from:

Xot = Xt [HW D"J’(n)] (2.33)
uy<+uv

Solutions found by RL deconvolution are positive and the total flux of the
original image is also conserved. RL deconvolution converges to the maxi-
mum likelihood solution for Poisson statistics in the data (Shepp and Vardi
1982). Noise amplification is a problem with this method and the prag-
matic approach usually adopted is to stop the iterations before the restored
image becomes dominated by noise. In other words, although RL decon-
volution converges to the mathematically correct solution, a better quality
restoration is usually arrived at before the method converges (Bi and Boerner
1994). RL deconvolution has a tendency to overfit the restored image to the
data (and therefore, the noise). A more sophisticated version called Damped
Richardson-Lucy (White 1994) was devised to address the noise amplification
problems of the conventional method.

In most practical implementations of RL deconvolution the termination
criterion of the method is defined on the number of iterations. As with the
Wiener filter, the ideal stopping point is usually obtained by trial and er-
ror. RL deconvolution represents a compromise between the quicker (but
sometimes unsatisfactory) method of Wiener filtering and the more com-
putationally expensive (but usually superior) regularised methods such as
Maximum Entropy deconvolution.

2.3.7 Comparison of restoration methods

Some of the restoration methods discussed in this chapter were tested on
blurred and noisy images. Test images were generated by blurring (with a
known PSF) and adding noise (of a known standard deviation) to an image
considered to be the ‘true image’.
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Method Blur only Blur Blur Blur Average
02=10"%| 02 =10"3 | 02 =10"2 | time (s)
Inverse filter — — — — —
Pseudoinverse filter 19.5 31 0.9 0.8 1.4
Wiener filter 19.8 17.6 2.1 1.9 2.1
Basic iterative deconvolution 19.5 12.8 1.5 0.9 24.01
Constrained least-squares 17.6 11.5 2.0 14 20.1
Richardson-Lucy 21.1 18.8 3.5 2.5 27.3%
Maximum Entropy 224 19.0 4.7 3.2 43.5

Table 2.1: SNR improvements obtained after applying restoration methods
to a blurred, increasingly noisy test image. The last column shows the time
(averaged over the 4 trials) to arrive at a solution (} terminated after 10
iterations). All methods were implemented with Matlab.

Quantifying success of restoration tests

When an image is processed with a restoration procedure it is sometimes
obvious to the eye that an improvement in ‘image quality’ has taken place.
However, it is necessary to define a way of quantifying the amount of im-
provement. Several measures exist and were discussed in Chapter 1. For this
experiment a suitable measure of the restored image quality is the improve-
ment to the SNR between the original (SNRo) and restored image (SNRg).
We define this as a ratio:

SNRR _ SR/O'R . SRO'O
SNR.O a So/O'O - SoO‘R
The quantities Sp and Sg represent signal strengths (in terms of pixel lu-
minance values). The numbers 0o and og are measures of the standard
deviation of the noise. Signal content can be estimated from features in the
image and noise levels can be estimated from regions containing zero (or
constant) signal.

Our true image is of a region of the CDMAM phantom (see section 2.3.2).
Examples of restorations have already been used to illustrate some the meth-
ods but we show the results of more rigorous and complete restoration ex-
periments here. The SNR improvements over the original images for each
method are given in Table 2.1.

SNR improvement =

(2.34)

Results

Table 2.1 shows the SNR improvement ratios for images processed with the
restoration techniques listed in the first column. Scores with a ratio greater
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than unity show that the SNR of the restored image was greater than that of
the original. Conversely, two of the scores are less than unity - the restoration
process made the image worse!

As was already seen in section 2.3.3, the inverse filter completely fails to
recover the image, even when no further noise has been added to the image.
The pseudoinverse filter does reasonably well in the no-noise case when an
appropriate value of ¢ is found but is far less successful at restoring in the
presence of medium and high noise levels. The Wiener filter fares rather bet-
ter than the pseudoinverse and some improvement in image quality is seen
in all the restorations. The time taken to search for optimal parameters for
these methods is not reflected in the above table. Van-Cittert deconvolution
reconstructs the image well in the absence of noise but the restorations be-
come very poor as the noise levels increase. Constrained least-squares does
even better. The final two methods - Richardson-Lucy and Maximum En-
tropy are the most successful and seem (according the figures in the table)
to have just a marginal difference between them in restored image quality.

The SNR table does not tell the full story. Close inspection of the results
obtained with constrained least-squares restoration, Richardson-Lucy decon-
volution and maximum entropy are presented in figure 2.9. Table 2.1 suggests
the restoration quality of Richardson-Lucy is comparable with Maximum En-
tropy, with the computational expense of the latter making it a barely worth-
while endeavour. However, the images themselves show the de-blurring effect
of Maximum Entropy to be superior to that of Richardson-Lucy.

2.4 Discussion

With the obvious failure of direct Fourier inversion techniques and the lim-
itations of Wiener filtering it seems to be accepted among radiologists that
image de-blurring is of little value. This opinion is supported by a lack of
substantial literature and the absence of commercial use of such techniques.

However, there exist methods of regularised deconvolution which are more
robust when dealing with noisy, blurred images. In particular maximum en-
tropy deconvolution would seem to be a potentially fruitful but largely un-
explored technique in mammographic and tomographic imaging. The com-
plexity of the numerical procedure needed to obtain a solution and the sig-
nificantly slower processing time is countered by the superior restorations it
produces. In 1978 it was noted by Gull and Daniell that the time to process
a 128 x 128 image on an IBM 370/170 machine with maximum entropy was
3 minutes. A quick experiment using a same-sized image on a modern In-
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(a) Original image (b) Constrained least-squares (o=0.01)

--q-...-hf-:'-'l.'r P —_ '1

(c) RL deconvolution (10 iterations)

Figure 2.9: Comparison of restoration techniques. (a) is a section of the
CDMAM phantom, artificially blurred and noise degraded. (b) Constrained
least-squares deblurs the image at the expense of introducing a mottled back-
ground. (c) Richardson-Lucy restorations suffer the same problem. (d) Max-
imum entropy handles the noisy background in a much more satisfactory way
and de-blurs features deemed to be ‘real’
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tel Xeon 3.2GHz machine arrives at a solution in less than 35 seconds.!f
Processing times have shortened not only with the availability of more com-
puter processing power, but also with advances in how the maximum entropy
algorithm is implemented. It is the opinion of the author that using maxi-
mum entropy to process images with several million pixels in a reasonable
period of time on desktop PCs would not have been feasible until perhaps
the mid-1990s.

Image processing methods in this chapter were presented as a choice be-
tween enhancement and restoration. In practice it may be useful or indeed
necessary bring both methodologies to bear on a particular imaging problem.

ttMatlab implementation. The commercial MEMSYS version does rather better and
converged to a solution in just 18 seconds.



CHAPTER 3

Bayesian image restoration

In Chapter 2 it was stated that image restoration required the inversion
of a matrix that was ill-conditioned or possibly singular. In this chapter
we justify that statement and its consequences. A deconvolution strategy
called Maximum Entropy Method (MEM), derived from Bayesian statistical
inference, is offered as an appropriate way of estimating the ‘true’ image
distribution from the noisy observed data. We introduce a Hybrid MEM
scheme to handle noisy radiological images in a more satisfactory way by
modifying the so-called ‘Historic’ method to introduce pixel correlations into
the restoration.

3.1 Ill-posed inverse problems

In section 2.3 a simple model for a radiological imaging system was intro-
duced. The equation for a linear image receptor with no system noise was
introduced as:

i) = [ B / " h(i, @, 4, B)ali, ) dedB (3.1)

This is a Fredholm integral equation of the first kind and describes the for-
ward map from hidden space to data space. We can simplify the notation of
this mapping transformation to:

d = F{z} (3.2)

63



CHAPTER 3. BAYESIAN IMAGE RESTORATION 64

Where:

Flz} = /_ ” /_ " hi, 0 j, )3, §) dodB (3.3)

Obtaining the solution z to the image restoration problem is an inverse prob-
lem which requires the determination of the transformation F~! such that:

FYd} =z (3.4)

Hadamard (1902) proposed that a problem is ill-posed if, under appro-
priate conditions, the solution fails to satisfy one or more of the following
statements:

1. The solution exists
2. The solution is unique

3. The solution is stable

If the inverse mapping F~! does not exist the problem is said to be
singular and a solution will also not exist. In this case the recovery of the true
image distribution is not possible (although an approximate solution may be
sought). Conditions leading to a singular problem are given in Appendix B.1.
If the inverse mapping exists but is not unique then the solution will depend
on which F! is chosen. Finally, if the inverse mapping exists and is unique
it may not be stable. Instability in this case is described mathematically as:

FYd+e}=z+6 (3.5)

where 6 > €. In words: a small change to the observed data, perhaps caused
by inherent measurement errors, is amplified by the inverse mapping to a
large change in true image distribution. It is shown in Appendix B.2 using
the Riemann-Lebesgue lemma, that the image restoration techniques based on
" equation (3.1) are ill-conditioned and unstable. If we also take into account
the presence of noise (e.g. random sensor noise) in the imaging system the
we rewrite equation 3.1 as:

d(i,j) = /_ ” /_ ~ h(i, o, 3, B)z (i, §) dadB + n(i, j) (3.6)

In the idealised case of a linear relationship between the true object and
recorded image where n(%,j) = 0 then a 1:1 unique mapping can exist be-
tween d and z (if no singularity exists). However, the presence of noise
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means that a unique relationship between the two distributions can not exist
(Andrews and Hunt 1977, page 116).

Therefore image restoration is an ill-posed problem because one or more
of Hadamard’s statements are not satisfied. Ill-posed problems are solved
by introducing some degree of ‘well-posedness’ into the formulation. For
example, if no solution exists (1) then we redefine the problem, perhaps by
relaxing some constraints on allowable solutions. Such action may result in
many or infinitely many solutions being consistent with the measured data,
which is a violation of (2). Some scheme for selecting one solution from
all feasible solutions must then be followed. Issues of stability (3) can be
investigated once the appropriate solution has been determined.

In this chapter we shall justify our choice of appropriate solution as being
the one with the maximum entropy.

3.2 Bayesian methods of image processing

There is a large body of literature describing methods which aim to im-
prove the quality of image information content through restoration tech-
niques. Medical images are usually measurements of photon flux, and the
data is usually noisy and often incomplete; statistical methods have yielded
some robust methods of estimating the ‘true’ image distribution in these cir-
cumstances. Snyder et al. (1992) describe a method which maximises the
mean value of the log-likelihood for quantum noise limited data. It has been
shown that this is equivalent to minimizing Csiszar’s I-divergence (Csiszar
1991), a quantity equal to the negative of the entropy expression, —S, given
in equation (3.32). The usefulness of Bayesian restoration stems from the
fact that it allows the incorporation of sophisticated a priori knowledge into
the formulation of the restoration method, while quite naturally enforcing
desirable properties such as positivity in the restoration. It has been argued
by Skilling (1989) that in the absence of further prior information entropy
is the only consistent prior for positive, additive images. O’Sullivan et al.
(1998) give a summary of these methods in terms of information theoretic
image formation models.
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3.3 Principles of Maximum Entropy

3.3.1 Definition of entropy

The concept of entropy was introduced into thermodynamics in the middle
of the 19th century by Clausius and the entropy expression for statistical
mechanics was derived by Boltzmann. The statistical mechanics definition
of entropy is a measure of the disorder within a thermodynamical system.
The entropy of an image is a property which comes from information theory,
established by Shannon (1948). Shannon showed that the uncertainty of a
random variable taking a discrete and finite number of values z; ...z, could
be quantified in terms of its probability distribution:

H=-) php (3.7)

where p; is the probability associated with each z;. Shannon’s entropy (H)
is sometimes called information theoretic entropy to distinguish it from the
form used in thermodynamical situations. In the remainder of this work
it is to be understood that references to ‘entropy’ refer to the information
theoretic form.

3.3.2 Historic MEM

The links between statistical mechanics and information theory were estab-
lished by Jaynes (1957a,b, 1968). Image restoration using MEM was first
described in a landmark paper by Frieden (1972). The driving force behind
practical implementations of the method came from radio astronomy and the
need to improve radio maps of the sky (Gull and Daniell 1978; Shore and
Johnson 1980). Those implementations of MEM evolved as an alternative
to CLEAN for working with the large images obtained from radio telescope
interferometers. For images with more than about 1 million pixels MEM
proved to be a more efficient deconvolution method. For a more detailed
review of how MEM was initially developed for use in image restoration
problems and a justification of why such restorations should be treated with
confidence (beyond the arguments given below) the reader is directed to see
Jaynes (1982).

MEM is a deconvolution technique derived from the forward map (3.8) for
the imaging system, which relates postulated hidden data z;; to the observed
data dij-
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dij = Ti5 x h + ny; (3.8)

Equation (3.8) is the forward map for the imaging system and is the same
one that was discussed in section 2.3. The hidden image x is mapped to the
observed data d through a convolution with a point-spread function h, which
characterises the geometric blurring of the imaging system. The image is
then further corrupted by additive noise n to produce the observed image d.

The goal of image restoration is to obtain a solution & , which approx-
imates to the hidden image z, as closely as the data and noise allow. We
outline briefly the Historic MEM approach to the problem here, but for a
more complete review see Skilling and Gull (1985). A trial restoration &
is obtained and used as an initial guess for the hidden image z. The trial

restoration is blurred, using the PSF of the forward map, to generate mock
data d:

The notation in the following analysis has been simplified in relation to
equation (3.8), in that the data etc. are represented as vectors rather than
2D arrays; equation 3.9 becomes

lii = Z h‘j—'i Z; (310)
J

The x? goodness of fit statistic is used to measure the degree of misfit between
the observed data and mock data:

7.\2
X = —————Ei(d;z %) (3.11)
where o2 is the variance in the noise, here taken to be constant across the
image. This approach is a simplification which we acknowledge in Appendix
C.1. For some images, such as the skulls in chapter 6, the variation in noise
levels is incorporated via equation C.1.
It might be thought that a good approach would be to minimise the
degree of misfit x? by choosing a suitable %, but this process is equivalent to
the straightforward matrix inversion:

£=A"d (3.12)

where A is the matrix representation of the linear forward map (Equation
3.8). Proof of this is given in Appendix C.1. As we have already seen, the
matrix A is ill-conditioned, i.e. almost singular, so for a given d there are
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many vectors £ which almost satisfy equation (3.12), not necessarily close
together. Thus if d contains even a small amount of noise, the resulting
can be far from the true image z; in other words the reconstruction is then
dominated by noise rather than data, often referred to as over-restoration.
In the presence of noise we would not in any case expect x? to be minimised,
but rather to be reduced to the appropriate value x> = N, where N is the
number of pixels in the image. Even when A is not ill-conditioned there are
many & which satisfy this criterion. The problem is now the appropriate
choice of Z.

Images as probability distribution functions

An image x; is a sequence of positive numbers, which represent the number
of photons detected by the image receptor. Firstly we can write:

M=) g (3.13)

where M is the total luminance in the image. The image data can be nor-
malised and represented by a sequence of proportions:

pi=xi/M=Y p=1 (3.14)

Light intensities, represented as discrete luminance values are positive and
additive between pixels in the image. Therefore:

Pivju. = Pi+pit+... 1FIF ... (3.15)
pi > 0 (3.16)

Equations (3.14), (3.15) and (3.16) satisfy the Kolmogorov axioms of prob-
ability theory. Thus, an image can be thought of as being a probability
distribution function (PDF) and can be analyzed with the rules of probabil-
ity calculus and Bayesian inference. Our image is now represented as:

(xl Ty ... a:N) (3.17)

Pr P2 --- PN

where p; is the prior probability that the random variable X assumes the
value z;.
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The entropic prior

Historic MEM treats the restoration process as a statistical inference problem
based on Bayes’ theorem and the aim is to obtain the most probable image
Z given the data:

P(2 | d) x P(d] £) x P(2) (3.18)

where P(-) represents the conditional probability. This equation is worth
stating in words:

Posterior o Likelihood x Prior (3.19)

The likelihood P(d | £) is determined from our knowledge of the forward
map (equation 3.8); the image noise is assumed to be mainly quantum (pho-
ton) noise, which is modeled as a Gaussian process*. The likelihood term is
quantified by the x? distribution:

P(d | &) o< exp(—x*/2) (3.20)

The choice of prior probability is a controversial aspect of MEM. We present
the ‘monkey’ argument of Jaynes (1986) in support of our choice.

Consider an experiment in which each of the luminance quanta, of which
there are M, are scattered randomly’ over an initially blank image which is
divided into N pixels. Each luminance quantum has an a priori chance of
being in any pixel. At the end of the experiment we observe that z; quanta
have arrived in pixel i. The number of ways of arriving at a configuration
Z1T3...Tx is simply the combinatorial expression

M!

Hf; ;!
where (Q is the number of permutations of all the luminance quanta, divided
by the number of equivalent reorderings. The number 2 is referred to as
the degeneracy of the scene. Taking logs of both sides of equation (3.21) we
obtain:

Q= (3.21)

InQ=InM! - In(z!) (3.22)

*We are approximating the Poisson distribution with a Gaussian distribution; this
follows from the large numbers of photons involved in the image formation process (see
page 16).

By the traditional team of monkeys!
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Since both M and z; are large we can make use of Stirling’s approximation
for factorialst with appropriate use of equation (3.13):

nQ =~ MlnM——M—(inlnxi-—Zx,;)
~ MlnM——M—Zixilnx,;+Mi
~ MlnM—Zx,l;x,
nQ = —inlni; (3.23)

If we scale the luminance quanta in accordance with equation (3.14) we can
treat it as a PDF. Substituting z; = Mp; into equation (3.23) gives:

Mp;
M

nQ ~ - Z(Mpz) In

7
~ —MY pilnp
%

MH (3.24)

Q

where H is Shannon’s information theoretic entropy seen earlier, in equation
(3.7). We arrived at equation 3.23 by assuming that each luminance quanta
had the same a priori chance of being in a particular pixel. If instead there
we have some more a priori knowledge (embodied as a probability associated
with each pixel) then the same reasoning leads to a modified expression of
entropy given by:

MS = ——Za:iln

%

= -y zn (}%) (3.25)

%

Mp;

where S is a modification of the Shannon entropy of equation (3.7). The
m; = Mp; would be observed as mean values of z;. The entropic prior P(%)
is therefore:

InFl~FlnF-F
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P(Z) x exp(MS) (3.26)

where S is the entropy defined in equation (3.25). With this equation and
equation (3.20) we can now specify the posterior probability given in equation
(3.18)

P(Z|d) o exp(—x/2)exp(MS)
x exp(MS —x%/2) (3.27)

Values of x; which maximise this probability must be sought. Degenerate
inversions are likely to be able to achieve unrealistically small values of x?2.
An adjustable parameter, denoted by «, to bring x? into its expected narrow
statistical range is required. It does not matter to which term we attach o
and for consistency with the Hybrid method discussed later, we absorb the
factor M into it and attach it to the entropy term. Therefore a pragmatic
modification of equation 3.27 is given by:

P(3 | d) o exp(aS — x?) (3.28)

Maximization of equation (3.25) subject to the constraint that ¥;z; = M is
a constant is equivalent to the unconstrained maximization of the entropy
function:

S= —gxi [111 (;—) - 1] (3.29) |

In the absence of data constraints the entropy is maximised when g—fi = 0.
Differentiating equation (3.25) gives the gradient of the entropy:

oS
oz i

If we set this to zero we see that z; = m; at the stationary point. Dif-
ferentiating equation (3.30) gives 825/dz;z; = —6;;/z; confirming that this
is indeed a maximum; S is maximised when £; = m, giving a flat featureless
reconstruction. The numbers m,; are therefore default values to which the
restored image pixels z; will be set unless the data demands otherwise. The
m; represent a default model which can encode any a prior:i beliefs about
how the restored image should look. We discuss further the choice of default
model in section 3.4.4. We note for now that S is maximised when #; = m;.

=Ilnm; —Inz; (3.30)
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Y d
= L a o
Hidden Space (ICF) Visible Space (PSF) % yy DataSpace
(Noise)

Figure 3.1: The image formation model for MEM. The hidden data is mapped
to the visible space by the ICF, which in turn is blurred with the imaging
system PSF and further degraded with additive noise, n, to produce the
observed image data d.

3.4 Hybrid MEM

Images restored by Historic MEM tend to be grainy in appearance at the very
finest scales: there can often be very little correlation between neighbouring
pixels within the image. One of the axioms of MEM is that pixel correlations
should not be introduced into the restored image, that is to say, restoration in
one part of an image should not affect restoration in another part (Skilling
1988). However, such pixel correlations more often than not exist in the
real world and usually between neighbouring pixels. We introduce a ‘hybrid’
formulation of Historic MEM which allows pixel correlations in the restored
image. The image formation model is slightly different from the Historic
MEM approach and is shown in figure 3.4. The corresponding forward map
for the imaging system is:

dij = Tij x cx h + ny; = vy * h+ny; (3.31)

The Intrinsic Correlation Function (ICF), denoted by ¢, maps the hidden
image x to the visible image v and is a way of encoding any expectations
about pixel correlations into the forward map (see section 3.4.1). The visible
image v is mapped to the observed data d through a convolution with a
point-spread function h, which characterises the geometric blurring of the
imaging system. The image is then further corrupted by additive noise n to
produce the observed image d.

The restoration process is again treated as a statistical inference problem
based on Bayes’ theorem and the aim is to obtain the most probable image
% given the data. The analysis proceeds exactly as for Historic MEM, the
only difference being the form of the entropic prior:
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S(@) = [£: — mi — & In(d:/ms)] (3.32)
This form is suitable for positive additive distributions which do not sum to
unity and its derivation is discussed by Skilling (1988). Comparison with our
previous definition of entropy (equation 3.29) shows that there is an addi-
tional term m; present. There is no difference to the maximization process:
it still corresponds to z; = m; in the absence of constraints. However, the
value of S at the maximum is different. Under Historic MEM the entropy
had a value of S = X;m; - a quantity which varied with the default image
model being used. Skilling’s entropy (equation 3.32) is also maximised at
z; = m; but the maximum value of the entropy is absolute, with § = 0
whatever default image model is used.
The rest of the formulation follows in much the same way as Historic
MEM. A numerical scheme is required to find the maximum of the objective
function:

Q=aS—-x’ (3.33)

The forward map now demands the mock data to be generated with d =
Z * ¢ * h. The goodness-of-fit with the observed data is quantified by the
x? statistic given in equation (3.11). The maximisation of equation (3.33)
assigns values to the hidden distribution Z. The final step is to convolve the
solution with the ICF to obtain the restored ‘visible’ image.

3.4.1 Imtrinsic Correlation Function

As has already been stated the ICF is a way of encoding a priori expectations
on pixel correlations into the formulation of MEM. All the expectation of
correlations are assigned to ¢ so that x itself is a priori uncorrelated. This
is achieved by defining the restored ‘visible’ image as a blurred version of an
underlying hidden distribution:

Vij = &y5 % C (334)

In this way we can legitimately assign the entropic prior to x and the
corresponding analysis and justification for MEM remains valid. The intro-
duction of the ICF allows quite sophisticated incorporation of prior knowl-
edge into the restoration. For example, ¢ and z can be digitised at different
resolutions.
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For the image restorations in this work we use a fairly conservative scheme
for enforcing correlations between neighbouring pixels: The ICF was modeled
as a 3 x 3 Gaussian function relating a pixel only to its immediate neighbours:

0.0751 0.1238 0.0751
c={ 0.1238 0.2042 0.1238 (3.35)
0.0751 0.1238 0.0751

In our tests of Hybrid MEM a larger ICF resulted in stronger correlations
between more distant pixels; restored images looked very smooth with a poor
spatial resolution. With the ICF given in equation 3.35, improvements in
spatial resolution are not lost by our Hybrid MEM’s enforcement of pixel
correlations in the restored image. Figure 3.2 shows a comparison between
Historic MEM and our Hybrid MEM in the restoration of a blurred and noisy
image. The effect of applying an unsuitably large ICF (i.e. over enforcing
pixel correlations) is also shown.

3.4.2 Implementation of MEM

Numerical methods

MEM can be thought of as a type of regularised deconvolution. It relies on a
scheme of iterated forward maps rather than attempting to find a direct so-
lution of the inverse problem. We describe briefly some numerical procedures
to obtain the maximum entropy solution.

Gull and Daniell (1978) obtained the Historic MEM image using the
integral equation approach of maximising the objective function for a fixed o

Qnist = Shist — X’ (3.36)

where Shiss was defined in equation 3.29. This leads to iterative solutions
obtained with:

(n+1)

p;" " =m;exp [—a (3.37)

op"”
where n denotes the nth iterate. The data and reconstructions are scaled to
sum to unity - we are dealing with PDFs and the arguments for obtaining
maximum entropy are valid (see page 68). This simple scheme is attractive
because the exponential function ensures successive iterates are positive and
it allows large values of p; to develop quickly. In medical imaging applications
(and in its original astronomical context) this is important because images

(™) ]
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(a) Original image (b) Historic MEM (no ICF)

3

(c) Hybrid MEM (3x3 Gaussian ICF) (d) Hybrid MEM (9x9 Gaussian ICF)

< Q

N

Figure 3.2: The effect of changing the size of the ICF on the restored image.
(a) is an blurred, noisy image of part of the CDMAM phantom. (b) shows
the Historic MEM reconstruction, which does not use an ICF. The recon-
structed image is very grainy because the entropy function does not impose
correlations. (¢) is our Hybrid MEM using a conservative 3 x 3 ICF. (d)
shows a reconstruction using a larger ICF - spatial resolution is lost as the
image is oversmoothed. A flat default model (m = 0.001) was used in each
case.
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can potentially have a huge dynamic range. However, equation 3.37 is very
unstable and successive iterates had to be smoothed with:

(™)
op™

where the parameter 8 determines the degree of smoothing. At large values
of o the value of 3 often needs to be reduced so much that the method
effectively slows to a stop in search of the solution.

Other optimisation techniques have been applied to finding the maximum
entropy solution. For example, finding the maximum of the objective func-
tion Qpss: through the method steepest ascents leads to the following iterative
procedure:

o™ = (1- AP + Bmi exp [~a (3.38)

. 0™
Y =p™ 4y ?9,(,(10)

for an appropriate value of y. The method fails because for whenever v is
sufficiently large for high values of p; to develop there are also pixels with
negative values of Q/0p; at which values of p; become negative. The entropy
function is only defined for p; > 0 so these values must be ‘clipped’ after each
iteration and set to some small positive value. This instability can result in
painfully slow progress towards the maximum.

The steepest ascent algorithm is improved by using the conjugate gradient
technique (Fletcher and Reeves 1964) or variants of it: for examples see
Gill et al. (1981). Our preliminary investigations of maximum entropy used
conjugate gradient methods and were implemented using Matlab.

(3.39)

Hybrid MEM: numerical solution with Matlab

The solution to our Hybrid MEM technique is obtained by maximising the
objective function:

Q=0aS - (3.40)

In practice we use numerical techniques to minimise Q = —( which is an
equivalent problem. Initial feasibility tests were undertaken using the Matlab
Optimization Toolbox (The Mathworks Ltd, Cambridge, UK), particularly
the constrained nonlinear minimization function fmincon in its LargeScale
configuration, with a positivity constraint on each &;. This function employs
a preconditioned conjugate gradient (PCG) method (Coleman and Li 1994,
1996). PCG methods for nonlinear functions require information about the
first and second derivatives of the objective function Q where:
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Q=—aS+x? (3.41)

where S is the entropy defined in equation (3.29) and x? is the degree of
misfit between mock data and observed data given in equation (3.11). The
gradient of equation (3.41) is:

0Q .98 ox?
orr Bxk t oz Oz (3.42)
= —a(lnm; — Inx;) = ZA (d; — d (3.43)

where A denotes the combined action of the ICF and PSF, related by A =
¢ * h. The Hessian matrix is obtained by differentiating equation 3.42 with
respect to x;

8%Q 828 %x?
- _ 44
8z, 62 55 0z5 | Og O (344)
S 2
= a—{;— + ;5 Ei Aj—iAk—i (345)

A derivation of the first and second derivatives of the entropy and x? terms is
given in Appendix C.2. If the image has N? pixels then the Hessian matrix
will have N* elements. Realistic medical images may have N? ~ 2 x 10°
pixels, requiring construction of a Hessian with =~ 1.6 x 10'3 elements. The
second derivative of the entropy term contributes only to the main diagonal
of the Hessian with the remaining off-diagonal contributions coming from
the second derivative of x2, which is much less sparse. The computational
expense of constructing the full Hessian is therefore enormous even when
exploiting its sparse nature. Early tests of our Matlab implementation proved
to be incredibly slow and this approach is infeasible for all but the smallest
of images.

The non-diagonal components, due to the second derivative of x2, can be
neglected in situations where the PSF is well defined (Cornwell and Evans
1985). The second derivative of x? is instead approximated with a scaled
identity matrix:

5Q Ok

Oz ;0zy, z;

—2¢I
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Cornwell and Evans argue that in most cases this is tantamount to ignor-
ing any sidelobes of the MTF. The value of q is relatively unimportant, but
should represent the power in the main lobe of the MTF. Experiments with
different values had very little detrimental effect on convergence unless q was
much less or much greater than unity. For the experiments in this work we
simply used ¢ = 1.

Numerical procedure

The procedure to obtain the maximum entropy solution from our Hybrid
MEM technique is shown in figure 3.3. The Matlab code for implementing our
Hybrid MEM is listed in Appendix D.5. Our procedure has two loops. The
inner one, in which « is fixed, iterates towards the minimum value of Q for
that o, and generates a corresponding value x?(a). The second loop iterates
over a to minimise x?(a) — N, and is terminated when x?(a) falls within the
narrow statistical range N £ (2N)'/2 (Jackson and Ward 1981). Typically
each loop requires 20 to 30 iterations, and the final value of « is of order
20. After our successful initial implementation commercially available C++
software was purchased (MEMSYS5, Maximum Entropy Data Consultants,
Bury St Edmunds, UK). This employs essentially the same scheme, but uses
highly optimised choices for search directions, as described in Skilling and
Bryan (1984) and Gull and Skilling (1999). The MEMSYS5 software can
handle larger images than our initial implementation, with much shorter
processing times.

Noise estimation

MEM requires an estimation of noise levels within the image. In the test
images of section 2.3.2 the noise variance was set at a pre-determined level
before the restoration. In most practical situations it must be estimated from
the observed data. Several test objects (including the Leeds TORMAM
phantom) are used in Chapter 4. For those experiments the variance is
calculated by finding a section of the image where the signal is assumed
constant and then assuming that variations across a small region are caused
by noise. '

In real radiological images, such as those encountered in Chapter 6, there
may not be any regions from which a useful ‘flat’ area can be chosen; an
alternative procedure to estimate noise levels would be required. Analysis of
methods to estimate the noise component of anatomical images using ideas
from information theory have been carried out by Tapiovaara and Wagner
(1993) and Bochud et al. (1999). A method of extracting estimates of noise
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Figure 3.3: Flowchart showing the procedure for obtaining the hybrid maxi-
mum entropy reconstruction.
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variance in MR images, which is also applicable to radiological images, is
discussed by Sijbers et al. (1998). Another approach is to apply a wavelet
transform to the image and estimate the noise using coefficients in the first
scale. This method, using the non-subsampled biorthogonal discrete wavelet
transform, was demonstrated by Costaridou et al. (2001) in a mammography
setting. The estimation of noise variance within images obtained from var-
ious imaging systems was recently tackled using a statistical autoregressive
method (Kamel and Sim 2004).

A fairly good estimate of the noise is important to the restoration process.
If we underestimate the noise then calculated values of x? will be too large
and the algorithm will look for a solution too far from the maximum entropy
solution, i.e. one that fits the data and noise too closely. Conversely if we
overestimate the noise then x? will be too small and the algorithm will find
a solution too close to the default image model m, i.e. one that gives too
much weight to the entropy and looks oversmoothed.

3.4.3 The effect of o on the restoration

To demonstrate the effect of a on the restored images some values of a were
chosen manually. Restorations of the blurred, noisy images of the CDMAM
phantom are shown in figure 3.4.

Inspection of equation (2.30) shows that a large value of o will bias pixel
values of the reconstructed image towards values in default image model.
Unconstrained maximisation of equation (3.32) gives a reconstruction equal
to the default image model (z; = m;). Successively smaller values of & move
the restored image away from the default image and more in line with the
observed data. If « is made too small then the smoothing properties of the
method are lost and the data (and noise) begin to dominate the reconstructed
image. Setting o = 0 results in restoration which has no regard to the entropy
at all. In this case the MEM has been reduced to a least-squares minimisation
procedure.

In the example presented in figure 3.4, the multiplier , which determines
the balance between over-restoration (more weight to the data and noise) and
under-restoration (more entropy weighting), was chosen manually to give the
best result.

3.4.4 The default model

The Historic and Hybrid MEM algorithms considered earlier initially use
the default image model as an estimate of the restored image (:cgo) = m;).
Successive estimates of the true image distribution are gradually moved away
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{(a) Original image (b) MEM: under-restored: « = 50

Figure 3.4: (a) is the original noisy, blurred image of the COMAM phantom.
A flat default model (m = 0.001) was used in each of the MEM restorations.
(b) used a large value of e, giving too much weight to the entropy and
resulting in an under restored image which has not strayed far from the
default image model. (c) used a value of a chosen manually to balance
smoothness against sharpness. (d) used a value of a which gave too little
weight to the entropy term and which led to an over-restoration dominated
by noise.
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from the default model using numerical procedure of section 3.4.2. The
eventual solution is as consistent with the default model image as the data
and noise allow.

The default image models considered so far have been flat with low pixel
values (m; = 0.001 for ¢ = 1...N); this is an appropriate choice if we have
only minimal preconceptions. In the context of medical imaging this choice
of m corresponds to claiming no prior knowledge of the image beyond that of
low pixel luminance values in the absence of data (or put another way, very
high photon counts if there is not sufficient evidence of absorption by bone
or tissues).

If it is known that the solution has a ‘preferred’ form then the default
levels m; for pixel 7 can be chosen accordingly. A non-flat default level would
be appropriate for example when the x-ray illumination is not uniform or
when other knowledge of the restoration is known a priori.

3.5 MEM applications in medical imaging

Maximum entropy deconvolution has been applied to planar scintigrams by
Simpson et al. (1995). Scintigrams are 2-D representations of a 3-D object
through the use of radioisotopes. Scintigraphy differs from projection radi-
ography in that blurring is caused primarily by Compton scatter (page 10)
of emitted photons by patient tissues. Degradations caused by the finite
resolution of the camera and image receptor are also present. An additional
distortion associated with this technique is that structures nearer the radi-
ation source are rendered more clearly than those further away. Their im-
plementation was the Historic MEM described earlier, and using a smoothed
version of the data as the default image model m. The authors tested the
method on planar scintigrams of a Williams test object to evaluate image
quality and demonstrated improvement on ay image of bone. They argued
that MEM could be used to reduce patient, dose without sacrificing image
quality in scintigraphy. -

Historic MEM processing in Magnetic Resonance Imaging (MRI) was dis-
cussed by Moran (1991). The treatment of lumbar spine scans were presented
as a demonstration of the usefulness of MEM.

3.6 Discussion

Image restoration of medical images based on the forward map described in
this chapter is at best, an ill-posed problem and at worst a potentially singu-
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lar problem with exact recovery of the true object distribution not possible.
Relaxing constraints on allowable solutions requires some method for choos-
ing a solution which is consistent with the measured data; we choose the
one with maximum entropy. Historic maximum entropy has been applied to
many imaging situations but solutions obtained from it can be very unsatis-
factory, showing a graininess which is caused by the method’s disregard for
pre-existing correlations in the image model formulation. Our Hybrid version
of the method, introduced and implemented in this chapter, overcomes some
of the shortcomings of Historic MEM by introducing an Intrinsic Correlation
Function to encode prior expectations of pixel correlations. Resulting images
are smoother without sacrificing improvements to resolution.

Comparison with SVD

The MEM method has much in common with the SVD solution given by
equation 2.17, but has different error and objective functions. The SVD
method involves only elementary matrix manipulations, rather than an it-
erative technique, and in principle should be faster and easier to implement
than MEM. In practice this is not the case as indicated on page 45. Practi-
cal implementation of SVD would probably be best achieved using a similar
iterative approach.



CHAPTER 4

MEM and magnification
mammography

Through a series of experiments using both specially constructed and clin-
ically recognised test objects, the effectiveness of MEM applied to magni-
fication mammography will be explored. The specific objectives of these
experiments are as follows:

Conventional set-up to obtain images at conventional magnifications with
a fine focal spot and use MEM to improve image quality.

Broad focal spot set-up where images are obtained at a conventional mag-
nification and using a broad focal spot. These images will be unaccept-
ably blurred and so this is not done in practice. MEM might be used
to de-blur such images whilst maintaining or improving the SNR. Can
we make these images as good as those taken under the conventional
set-up?

Higher magnification The blurring associated with magnifications higher
than 2.0 is so great that, even with a fine focal spot, they would not be
used in practice. However, higher magnifications coupled with image
de-blurring would be useful for clarifying the shapes of microcalcifi-
cations - a necessary step for better diagnosis of malignant or benign
processes in the breast.

Dose reduction Reduction of the radiation dose to see how MEM copes
with images which are much noisier than those obtained with typical

84



CHAPTER 4. MEM AND MAGNIFICATION MAMMOGRAPHY 85

Figure 4.1: Photograph of part of the eggshell phantom. The eggshell phan-
tom was designed to simulate microcalcifications in terms of their size and
composition.

radiographic settings. Can MEM maintain image quality when noise
levels are higher?

Initial experiments were carried out using the Matlab implementation of
historic MEM (as outlined in Chapter 3) on small regions of simple test ob-
jects. Although software exists to implement MEM, it was desirable to judge
the effectiveness of the method before purchasing the optimised commercial
code. After successful early trials the later experiments used more realistic
test objects and large images were processed with MEMSYS5, a commercially
available implementation of MEM.

4.1 Initial experiments with MEM

Several test objects were constructed to evaluate the performance of MEM
in reconstructing images with a simple structure. These test objects were
made using sheets of perspex with approximate dimensions of 15cmx2lem
and a thickness of roughly 0.5¢cm. Descriptions of these ‘phantoms’ and the
structures they contained are given below:

Metal phantom Highly x-ray absorbing objects such as pins, a needle,
washers and steel wool.
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Bone phantom Small fragments and shavings of bone*. The composition
of bone is primarily calcium phosphate (in the chemical arrangement
termed calcium hydroxyapatite). Also present is the protein collagen.

Eggshell phantom Crushed eggshell fragments. The composition of eggshell
is approximately 95% calcium carbonate with the remaining material
containing magnesium, phosphorus and protein. Some microcalcifi-
cations are also composed of calcium carbonate (Fandos-Morea et al.
1988) so the properties of eggshell are very similar. The fragments
ranged in size from 2mm to perhaps to ~ 0.lmm. Part of this eggshell
phantom is shown in figure 4.1.

A piece of brass foil with tiny ‘pin pricked’ pinholes was attached to
each phantom so that a PSF could be obtained directly from the image of
the particular phantom. Inclusion of the pinholes circumvented the need to
obtain and rescale the PSF image in a separate step.

Notes on the measured PSF

The placement of a pinhole within the same field as the object also has the
advantage of being a complete measure of the unsharpness present in the
imaging system. The measured PSF from the pinhole in these situations is
a combination of several sources of blurring:

1. Geometric unsharpness (caused by the finite size of the focal spot).
2. Blurring caused by the finite dimensions of the pinhole.

3. Receptor unsharpness is introduced when the latent image in the stor-
age phosphor plate is read by the laser of the CR reader. The effect of
the scattering and resultant spreading of the incident laser beam and
the emitted luminescence is a source of blurring (0.1-0.2mm) in the
image (Fujita et al. 1989).

The observed pinhole PSF is a convolution of the individual blurring func-
tions (Barrett and Swindell 1981):
PSFmeasured = PSFfocal spot ¥ PSFpinhole * PSFreceptor (41)

The presence of PSFpinnoe indicates that the pinhole itself is a source of
blurring in the measured image; we should deconvolve the measured PSF to

*Shavings of bone filed from a lamb roast!
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remove its effect. For a pinhole in a clinical test object, whose dimensions
are known exactly, it is possible to include the PSF deconvolution as a pre-
processing step by modelling the pinhole as a radially symmetric function
of constant height and diameter. Provided the size of the pinhole is much
smaller than the focal spot! then we can reasonably ignore the contribution
of pinhole unsharpness.

In the experiments discussed in this chapter the relative contributions
vary according to focal spot size and magnification. However, geometric
unsharpness is usually the dominant factor, except at low magnification/fine
focal spot. Some simple calculations show how the contributions of focal spot
and geometric unsharpness contribute to the overall blurring, but for a more
thorough treatment the reader should refer to Dance (1988). The magnified
focal spot has dimensions M —1 as great at the receptor. In the 1.9BF setting
the focal spot has dimensions 0.7 X 0.3mm which become 0.63 x 0.27mm at
the receptor so the focal spot PSF is dominant here. In the 1.9FF setting,
with the focal spot dimensions being 0.2 x 0.2mm the PSF at the receptor is
0.18 x 0.18mm which is nearer to the size of the contribution of the receptor
unsharpness described above. In both the 3.0BF and 3.0FF configurations
geometric unsharpness is dominant.

Of course in practice we do not need to know the relative contributions;
it is the final composite PSF which generates the observed blurring, and it
is this PSF which is measured using the pinhole.

An implicit assumption of the experiments in this chapter are that our
test objects are of negligible thickness and that the PSF does not vary across
the thickness of the object (i.e. vertically). To minimise this approximation
PSFs were obtained (wherever possible) from the centre of the test object
thickness.

A note about printed image display

In the following sections we shall make numerous comparisons between im-
ages and for display purposes we shall window the images appropriately.
Many of the images considered have a uniform background. It is the nature
of MEM to drag this background down to very low pixel values. For those
MEM images we will window the display of the restored image to an ap-
pearance similar to that of the original image. Experience has shown that
the visibility of particular features in printed form is better this way. Images
which were formally scored by observers (section 4.2.1) were not windowed

fThe pinhole cannot be so small that x-ray transmission would require the use of a
high mAs setting.
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in this manner prior to scoring: an appropriate window was chosen for each
image by the experienced observers assigning scores.

4.1.1 De-blurring edges and simple objects

The metal phantom was imaged in various configurations on a laboratory-
based Siemens Mammomat 3 mammography unit:

1.9BF (Magnification 1.9, broad focus) The plane of the phantom was
33.4cm from the tube focus and 30.6cm from the plane of the recep-
tor. The image would be expected to be unacceptably degraded by
geometric blurring.

1.9FF (Magnification 1.9, fine focus) The phantom was in the same po-
sition as above, but imaged using the fine focal spot. This is the con-
ventional magnification view provided on this mammography unit and
used clinically. '

3.2BF (Magnification 3.2, broad focus) The plane of the phantom was
19.8cm from tube focus and 44.2cm from the plane of the receptor.
This high magnification factor and focal spot setting is not supported
on standard mammography units because the image would be unac-
ceptably blurred.

3.2FF (Magnification 3.2, fine focus) The phantom was in the same po-
sition as above, but imaged using the fine focal spot. Again, this high
magnification factor is not supported on standard mammography units
because the image would be unacceptably blurred.

The radiographic factors used were 50kVp and 40mAs. The image receptor
was a Philips ACR-3 computed radiography system with a cassette having
dimensions 24cmx30cm. and a pixel size of 152um (Type B on page 14).

Image Processing

The images obtained from the CR reader were 10-bit SPI format. This
obsolete file format is almost the same as the DICOM? standard widely used
in medical imaging. Matlab was used to read and process these files directly.
Prior to maximum entropy processing the image data, which was in integer
format, was scaled by a factor of 2!° so that all values lay in the interval [0
1]. For this experiment only small regions, of the image containing objects

DICOM: Digital Imaging and Communication in Medicine
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of interest, were cropped and processed with MEM (Matlab code for this
procedure is listed in Appendix D.5). PSFs for the image were obtained
from brass pinholes included the plane of each phantom.

The images contained artefacts originating from sources such as dust and
dirt on the image receptor to spurious bright pixels at various locations in
the images. We will discuss these in more detail in the next section. A non-
uniform x-ray illumination also gave the full-size images an obvious varying
background brightness. Since we were dealing only with small, cropped re-
gions, we are able to treat the background as approximately constant across
each image and make no provision for its effect on the restoration. Again,
this will be handled differently when we discuss the processing of full-sized
images in later experiments.

Results

Initial maximum entropy deconvolution experiments involved the so-called
metal phantom, which was imaged at 1.9BF, 1.9FF, 3.2BF and 3.2FF. The
first experiments involved de-blurring of simple edges and small, highly at-
tenuating objects. We will summarise the most important findings of our
deconvolution experiments using this phantom.

1. Simple edges at conventional magnification

Figure 4.2 shows part of a section of brass foil imaged in the 1.9BF con-
figuration. The geometric blurring causes a gentle fall-off of pixel inten-
sities between the highly attenuating foil and the empty background.
Processing with maximum entropy causes an obvious sharpening of the
edge. Intensity profiles across the middle row of each displayed image
are shown beneath the images to support the conclusion that processing
with MEM has reduced blurring across the edge.®

The blurring of the same edge when imaged in the 1.9FF configuration
is shown in figure 4.3. The blurring caused by a fine focal spot is
obviously less severe, but again, deconvolution can reverse the some of
the degradation created by geometric unsharpness across the edge.

2. Simple objects at conventional magnification

Figure 4.4 a highly attenuating metal washer from the metal phantom
imaged under 1.9BF and 1.9FF respectively. The MEM reconstruc-
tions are shown alongside the original objects. The reconstructed im-
ages show ‘ringing’ artefacts near sharp intensity transitions (circular

§Tt is tempting to think that ‘true’ edge of the brass foil should resemble a an ideal
‘step-function’ but this is probably not the case in reality.
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(a) 1.9BF Foil edge

{b) 1.9BF Foil edge: MEM

{c) 1.9BF Pixel intensity profile
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Figure 4.2: Metal phantom: Brass foil edge at 1.9BF. The blurred edge
resulting from geometric unsharpness is evident in the original image (a).
Processing with maximum entropy, shown in (b), improves the definition of
the edge. The pixel intensities across the middle row of each image is shown

in (e).
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{a) 1.9FF Foil edge

{b) 1.9FF Foil edge: MEM

(c) 1.9FF Pixel intensity profile
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Figure 4.3: Metal phantom: Brass foil edge at 1.9BF. The unsharpness of

the edge is evident in the original image (a). Processing with maximum
entropy, shown in (b), visibly sharpens the edge. The pixel intensities across

the middle row of each image is shown in (c).
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(a) 1.9BF metal washer (b) 1.9FF metal washer

{c) 1.9BF metal washer: MEM (d) 1.9FF metal washer: MEM

(e) 1.9BF Pixel intensity profiles

(f) 1.9FF Pixel intensity profiles
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Figure 4.4: A highly attenuating washer shown at 1.9BF and 1.9FF. The
focussing effect of deconvolution is present again but the introduction of
‘ringing’ artefacts near steep intensity transitions are also evident.
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patterns on the washer). These artefacts are often seen in regularised
deconvolution schemes. The cause of the ringing artefacts is the (usu-
ally) poor assumption that the true image distribution is stationary.
In a stationary image the statistical content does not vary across the
image; comparing the histograms of pixel intensities in different regions
will not reveal dramatic differences. In reality most images are non-
stationary as some regions will contain edges, and some regions will be
light or dark. Lagendijk et al. (1988) address the problem of ringing
artefacts in regularised deconvolution schemes and we discuss some of
their results, in the context of Historic MEM, here.

The theoretical total error between the true image and the restored
image in regularised schemes which assume a stationary image model
given by:

Ere(a) = Ei(a) + Ex(a) (4.2)

where a is the regularising parameter introduced in section 2.3.5. E;(c)
is a noise magnification error and is a monotonically increasing function
of a. E3(a) is the regularising error and is a monotonically decreasing
function of a. The optimal value of a which minimises equation 4.2
leads us to our maximum entropy restoration. The noise magnification
error E;(c) is dependent on global levels of image noise: it acts to
globally degrade the restored image. However, the regularising error
E»() is a function of the image estimate and is strongly dependent on
local structure within the image. Ringing artefacts are associated with
this error and should therefore be considered a regularising error.

Ringing can therefore be reduced in a number of ways. In the paper
just discussed Lagendijk et al. propose the incorporation of prior knowl-
edge, such as positivity, into the restoration. This can be sufficient in
simple astronomical images, for example, where ringing results from the
introduction of negative pixel values in the otherwise black background
of the restored image. In more complex images, such as those consid-
ered in this work, alternative approaches are required as the ringing
artefacts are not necessarily caused by negative pixels. Restoration by
projection onto convex sets (Youla and Webb 1982; Sezan and Stark
1982) is an alternative approach to deconvolving image data which re-
sults in fewer ringing artefacts. A method to reduce ringing artefacts
which is applicable to Bayesian methods was discussed by Lantéri et al.
(2002).
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There is no need to abandon MEM at this stage. While Historic MEM
restored images can contain ringing artefacts, the introduction of an
ICF into the image model (leading to our Hybrid MEM) can sufficiently
reduce these regularising errors.

3. Simple objects at high magnification

The deconvolution of a section containing steel wool imaged under
3.2BF and 3.2FF is shown in figure 4.5. The blurring introduced by the
3.2BF set-up is considerable and although some de-blurring is evident,
the restored image cannot satisfactorily recover the resolution lost by
geometric unsharpness. Ringing artefacts dominate the restored image.
Trial and error experiments showed that stopping the MEM process be-
fore the appropriate x? was reached reduced the ringing at the expense
of reduced de-blurring.

Discussion

Our original hopes for these early experiments were to test our implementa-
tion of maximum entropy and gauge how effectively MEM could reconstruct
images of simple objects where the primary cause of image degradation was
geometric unsharpness caused by use of a broad or fine focal spot. The re-
sults of these initial experiments suggest that MEM can improve the SNR
and resolution in most of the situations we investigated.

However, the image blurring associated with higher than standard mag-
nifications, combined with a broad focal spot produced a loss of resolution
that could not be recovered using our simplified implementation of MEM.
The restored images in the 3.0BF configuration were dominated by restora-
tion artefacts. At this point we ruled out further investigation a broad focus,
high magnification imaging set-up.

Although our version of MEM performed very well on the images con-
sidered thus far, it was not without problems. Restorations of the brass foil
edges showed considerable structure on the surface of the foil (see the pixel
profiles in figures 4.2c and 4.3c). The ‘jaggedness’ of these plots could in-
dicate resolution of the of foil’s surface crystal structure. However, it could
also be due to an inadequacy of the Historic MEM technique. The use of
entropy as a smoothing function does not take into account pixel correla-
tions. Neighbouring pixels can have very different values without affecting
the global, maximum entropy of the image. The incorporation of the in-
trinsic correlation function into MEM is the traditional way to improve this
situation (see section 3.4.1).



CHAPTER 4. MEM AND MAGNIFICATION MAMMOGRAPHY 95

(a) 3.2FF: Steel wool (b) 3.2FF: Steel wool (MEM)

(c) 3.2BF Steel wool (d) 3.2BF: Steel wool (MEM)

Figure 4.5: Shavings of steel wool imaged at high magnification (3.2x) at fine
focus (a) and broad focus (¢). The MEM restorations are shown alongside
each.
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The implementation in Matlab was very intensive in terms of memory
requirements and arithmetical operations. For example, the 3.2BF image of
steel wool had dimensions of 470 x 325 pixels, or about 3.6% of the total
image area from which it was cropped. Despite the relatively small size of
this sub-image our Matlab implementation typically required 24 minutes to
produce a solution¥. Tests on larger images ran correspondingly slower until a
point was reached, with images of about 1 million pixels, where the memory
requirements were so great that Matlab could not completely process the
image.

In order to process larger, or full-sized medical images a better system
would be required. The choices we faced were of (a) continuing with our
MEM implementation but dividing large images into smaller sub-images for
processing, (b) purchasing commercial software and code for use with our im-
ages. The problem with (a) was that although we could probably manage to
process large images, the quality would probably suffer because discontinu-
ities would be introduced into the image. Also, the time required to process
full-sized images was likely to measured in hours rather than minutes. The
decision was made at this point to switch to using MEMSYS, a commercial
implementation of maximum entropy.

4.1.2 Pre-MEM image processing

The next logical step was to apply maximum entropy deconvolution to test
objects which more closely approximated the properties and features of the
structures encountered in mammographic imaging. However, some of the
early tests with MEM highlighted some potential problems with deconvolving
CR images which needed to be addressed before dealing with more realistic
images. Before proceeding with descriptions of the next set of experiments,
we will discuss some of these problems and the pre-MEM processing stages
that enabled better restorations to be obtained. The pre-MEM processing
steps were carried out with Matlab.

1. Removal of a variable background

Figure 4.6a shows an image of the bone-fragment phantom obtained
under 1.8FF. Images obtained from the MAMMOMAT 3 machine have
a background whose brightness varies across the image. The cause
of this is the varying intensity of the beam across the film cassette.
The variation in beam intensity is a deliberate design consideration

YThis involved around 4 minutes to reach a solution for a particular value of o and six
iterations to find the appropriate value of a. See figure 3.3
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{a) Partial field of the bone phantom

(c) Background subtracted

100
200F
300F

400F

400 600 800 1000 1200 1400 1600
(d) Pixel luminance profiles horizontally through (a) and (c)

Pixel luminance value

Distance along phantom

Figure 4.6: (a) part the bone fragment phantom imaged at 1.8FF. The back-
ground brightness decreases across the field from left to right. (b) is the low
pass background map. (c) is the background corrected image and (d) shows
the pixel profiles along the paths indicated in the original (blue) and the
background corrected (red).
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(a) Image artefacts: exposure A ) Image artefacts: exposure B

Figure 4.7: Examples of artefacts within images obtained with CR. Both
images show the same region of the TORMAM test object. The geometric
configuration and exposure settings were the same for each image but a dif-
ferent plate was used to capture the images. The particle groups towards the
upper-left and lower-right are real. Deviations from the uniform background
elsewhere are artefacts of the CR process.

to compensate for the varying thickness across a real breast tissue.
Most of the test objects discussed in this chapter have approximately
uniform attenuating properties (on large scales) and so images show a
varying brightness in the background. It was desirable for the images
to have a uniform background prior to MEM processing (Narayan and
Nityananda 1986; Donoho et al. 1992) so a simple scheme to remove
the brightness variation (‘flat-fielding’) is now described.

A Gaussian lowpass filter was constructed and applied to the original
images in the Fourier domain to obtain a background map. This map,
shown in figure 4.6(b) was subtracted from the original leaving the
flattened image of figure 4.6(c), which retained the phantom’s high
frequency features. The Matlab code given in Appendix D.1 was used
for this purpose. We will examine the effect of this procedure on the
nonlinear relationship between pixel values and radiation exposurel in
section 3.

2. Removal of spurious pizels
Many of the images obtained by the imaging process show artefacts

ISee page 14
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which have no relation to the objects being imaged: they are a by
product of the image acquisition process. In some circumstances the
presence of image artefacts in CR can lead to confusion with features
such as microcalcifications. A pictorial guide to CR artefacts and their
causes was presented by Cesar et al. (2001). In figure 4.7 we show
some of these artefacts found in our CR images. The same region of
a test object was imaged under the same geometric configuration and
exposure settings. The CR plate was different. In image 4.7a there
are a number of spurious ‘bright’ pixels whose values are far above the
background. At the same position in image 4.7b there are no such
features. A more subtle example of an artefact are the vertical streaks
down the centre of image 4.7b. Again, these do not correspond to real
features and are absent from image 4.7a.

Artefacts are typically caused by the presence of dust or dirt in the
image receptor. Inspection of many artefacts show that there is no
characteristic blurring associated them - they have not been degraded
by the system PSF.

Removal of CR artefacts can be addressed by incorporating their pres-
ence into the model formulation (Highnam et al. 1999). In this work
we will not attempt to remove all the artefacts within each CR im-
age. However, the most straightforward of the artefacts to remove are
those spurious pixels seen in figure 4.7b. Attempting to deconvolve
an image containing isolated bright pixels results in a restoration with
strong ringing around sites of the original artefacts. Simple enhance-
ment techniques such as median filtering would remove a lot of these
spurious pixels but at the cost of reduced resolution and possible loss
of important detail at the smallest scales of the image. To avoid com-
plication of the forward map we simply try to remove such artefacts
manually, through a scheme of identifying obvious outliers in the his-
togram of the region of interest and then resetting the offending pixel
intensities to a mean background level. It is also worth pointing out
that the plates used to obtain many of the images in this chapter are
old and well-used and would no longer be suitable for clinical use. The
number of artefacts is rather higher than might be expected.

3. Linearisation of the data

The images obtained from the CR reader were in Siemens SPI file
format: 12-bit grayscale images holding 10-bits (1024 gray levels) of
image data. As has been noted this format resembles closely a standard
image format called DICOM and Matlab was able to read the image
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data directly. The images were linearly mapped into the range [0 1]
prior to further processing.

It was stated in section 1.3.6 the pixel values in the image are related
non-linearly to the number of x-ray photons:

1024
fiog = ( i >log Iin — log (200) + 511 (4.3)

One of the assumptions which underpin the validity of our maximum
entropy arguments of Chapter 3 is that the pixel values are linearly
representative of photon counts E impinging the detector at the posi-
tion of the image pixel. Images obtained from the CR reader should
therefore be linearised prior to further processing. We use the following
equation to do this:

Iin ox 1070sl/1024 (4.4)

The images obtained in our mammography work typically have L ~ 1.6.

Many of the images under consideration in the following experiments
are simple, being comprised of the object signals embedded in a rel-
atively high ‘background’ signal, whose mean level is not much lower
than the signal. With a slight change of notation we attach superscripts
to the exposure I;;; and define relationships between pixels contain-
ing object signal and background signal. As we wish to discriminate
between the contributions of the object and the background we let

bj
If:::age IPak 4 22 and write:

image 1024 image 8
[imee = (T)l og I _ log (200) +511
_ 1024 back ob_]

The pixel values of the background signal are similarly given by:

1024
Ik = ( T ) log I** — log ( 200) + 511 (4.6)

Our pre-processing procedure was used to construct a background map
and subtract it from the original image. We will investigate the effect
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of this on the validity of our MEM solutions. Background subtraction
yields:

[a—

image ac) 02 I obi
Ilog - lt:)gk = (T) Llog(IEEanck + Ili:]) — log Illi)rli‘:k]
| 0

_(lo2a [ (I + )
=\ S\ 7 I
024 [ e
= (T) log (1 + Illl)?l;>:| (47)

Now the ratio of object signal to background signal is of the order of 0.1-
0.2 in many cases (see figure 4.17, for example). In these circumstances
we will argue that the data can be effectively linearised by the simple
background subtraction process seen earlier. We know for small z that
In(1 + ) &~ z. Similarly, through a change of logarithmic base we see
that log(1+z) = In(1+z) loge. So for small z we have the relationship
log(14x) ~ x. We invoke this approximation in equation 4.7 to obtain:

=

H
o~

[ua—y
NG

I

image back lin
Log —diog ~ Thack (4.8)
lin

Therefore, under certain circumstances the background removal effec-
tively linearizes the relationship between image pixel values and the
numbers of x-ray photons striking the image receptor. The maximum
entropy analysis of chapter 3 requires the data to be linearly related to
the photon counts for the forward map to be valid.

4.1.3 Tests with Bone and Eggshell phantoms

The next series of experiments involved the use of test objects whose physical
properties were closer to those of the biological features in a real breast. For
this, we constructed the Bone Phantom and the Eggshell phantom, described
at the start of section 4.1. With these phantoms we obtained images using
radiographic settings (operating voltage, tube current) approaching those
used in real mammographic imaging.
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Experimental method

The Bone and Eggshell phantoms were imaged in various configurations on
a laboratory-based Siemens Mammomat 3 mammography unit. The focal
spot to image receptor distance was measured as 64cm.

2.0BF (Magnification 2.0, broad focus) The plane of the phantom was
32cm from the tube focus and 32em from the plane of the receptor. The
image would be expected to be unacceptably degraded by geometric
blurring.

2.0FF (Magnification 2.0, fine focus) The phantom was in the same po-
sition as above, but imaged using the fine focal spot. This is the almost
the conventional magnification view used clinically.

4.0FF (Magnification 4.0, fine focus) The plane of the phantom was
16cm from tube focus and 48cm from the plane of the receptor. This
high magnification factor and focal spot setting is not supported on
standard mammography units because the image would be unaccept-
ably blurred.

The radiographic factors used to obtain the images were 28kVp, 16mAs. The
image receptor was a Philips ACR-3 computed radiography system utilising
an image cassette with dimensions 18cmx24cm with a pixel size of 101um
(Type C on page 14).

(&) 2.0BF PSF (b) 2.0FF PSF (c) 4.0FF PSF

5 10 15 5 10 15 5 10 15

Figure 4.8: Pinhole images of the PSF obtained in the three imaging con-
figurations. (a) is a broad focal spot obtained at magnification 2.0. It is
noticeably larger than the fine focal spot shown in (b). Although the focal
spot shown in (c) is also fine focus, it has been geometrically magnified and
is greater in extent than even the broad focal spot PSF in (a).
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In order to provide a sample of the point spread function (PSF) in the
plane of the phantom, a brass foil with a pinhole was included in the test
images. Including the PSF with the image was convenient in this demon-
stration as the scaling and interpolation step was avoided. Examples of raw
PSF images are shown in figure 4.8.

Image processing procedure

Pre-MEM processing was carried out in Matlab. The non-uniform back-
ground was subtracted from the original image and spurious bright pixels
were also removed. Images were saved as 16-bit TIFF to prevent loss of infor-
mation and to ensure compatibility with MEMSYS. The images were treated
with the Hybrid MEM scheme described in section 3.4. This was achieved in
MEMSYS by using the Historic Maximum Entropy switch and defining an
appropriate Intrinsic Correlation Function. The default image model used
for these experiments was a uniform image with low values (m; = 0.001
everywhere); this was to encode our belief that, in the absence of data, the
assumption is that no x-ray absorption has taken place. The restored images
generated by MEMSYS were formatted as 8-bit PNG.

Results

Figures 4.9 and 4.10 show the same region of the bone phantom (measuring
about 8.8mmx8.8mm). These displayed images were cropped from the much
larger processed images; we show just this small section so that the geometric
blurring around the numerous bone fragments is visible. To demonstrate
some of the effects of applying MEM we also present some pixel intensity
profiles through some of the bone and eggshell fragments in the original
and restored images. The original images are have a grainy appearance due
to random fluctuations in noise. It is seen that the restored images are
much smoother in appearance and is well shown in the pixel profiles. The
strength of the peaks has been increased by MEM processing whereas the
background (and noise) has been moved towards the default image model
(uniform, low values). The intensity profile in these examples are taken along
a row passing through one or more fragments. Estimates of the SNR were
obtained from a bone fragment in each image. For the 2.0BF configuration
we found SNReig = 5.1 and SNRygym = 35.7. For the same fragment in the
2.0FF configuration we found SNReyz = 6.3 and SNRmem = 41.3

Figures 4.11 and 4.12 show the same region of the eggshell phantom
(measuring 8.8mmx8.8mm). The displayed images were cropped from the
much larger processed images; we show just this small section so that the
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(a) 2.0BF: Bone phantom

() Pixel intensity profiles
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Figure 4.9: 2.0BF: Comparison of (a) the original and (b) MEM processed
images of a section of the Bone phantom (c) Pixel intensity profile through
several of the fragments.
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(a) 2.0FF: Bone phantom
{b) 2.0FF: Bone phantom (MEM)
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Figure 4.10: 2.0FF: Comparison of (a) the original and (b) MEM processed
images of a section of the Bone phantom (c) Pixel intensity profile through

several of the fragments.
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(a) 2.0BF: Eggshell phantom

(c) Pixel intensity profiles

500+ A
400 - 4
=
00 - 1
2
&
2800 -
100 /\/,.-. -
e m,‘,/ L /‘\,rﬂ- / I'k
b e i, e /\"J\\x.__ﬂ_
0 Pl 1 | S - |
180 200 220 240 260 280 300 320 340

Distance acoss phantom (pixels)

Figure 4.11: 2.0BF: Comparison of (a) the original and (b) MEM processed
images of a section of the Eggshell phantom.
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(a) 2.0FF: Eggshell phantom
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Figure 4.12: 2.0FF: Comparison of (a) the original and (b) MEM processed
images of a section of the Eggshell phantom.
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geometric blurring is visible. As with the bone phantom images, also included
in each figure is a profile of the pixel intensity along a row passing through
one or more eggshell fragments. Estimates of the SNR were obtained from
the same fragment in each image. For the 2.0BF configuration we found
SNRrig = 8.5 and SNRyem = 55.9. For the same fragment in the 2.0FF
configuration we found SNRy;; = 9.3 and SNRumem = 56.0

We proceed now to images obtained with the 4.0FF configuration. Figure
4.13 shows a small region (4.0mmx3.7mm) of the bone phantom and figure
4.14 shows a small section (7.8mmx6.0mm) of the eggshell phantom. The
higher magnification offers a much greater spatial resolution of the object

Discussion

Images obtained in this experiment showed an obvious reduction in geometric
blurring. The overall appearance of the restored images is that they have
. been focussed; edges appear sharper and the signal content of the images is
boosted ‘higher’ above the background and noise. Examination of various
pixel profiles through features in the images show this to be the case.

The images obtained with 2.0BF and 4.0FF show the most dramatic
change in terms of blur reduction. This is to be expected as the PSF size for
these set-ups is significantly larger than for the 2.0FF configuration. Some
improvement in the sharpness of features is evident in the 2.0FF images but
most of the improvement is due to MEM dragging the background towards
the default model and smoothing the noise across the image.

The estimates of SNR taken alongside the observed quality of the MEM
restorations point to another advantage of applying MEM deconvolution to
this imaging situation. The 2.0BF images rivalled or surpassed the quality
of the unprocessed 2.0FF. The relative merits of a broad focal spot over a
fine focal spot were discussed in the introductory chapter (see page 26).

In this experiment the PSF was obtained from a brass foil pinhole in
the same plane as the object, i.e. a pinhole projection of the focal spot.
In any practical application of this technique, the PSF information would
be obtained from calibration images appropriately scaled for the position
of the object. Including the PSF with the object was convenient in this
demonstration as the scaling and interpolation step was avoided.

4.2 TORMAM phantom experiments

The Bone and Eggshell phantom experiments showed that MEM could reduce
blurring of images of objects whose size and composition were approaching
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(a) 4.0FF: Eggshell phantom

{b) 4.0FF: Eggshell phantom (MEM)

(c) Pixel intensity profiles
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Figure 4.14: 4.0FF: Comparison of (a) the original and (b) MEM processed
images of a section of the Eggshell phantom.
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Figure 4.15: Layout of the quantitative side of the Leeds TORMAM test
object

the properties of breast tissue and associated structures. The next stage in
the process was to use a clinically recognised test object to gauge, in a more
quantitative way, how effectively MEM was improving the images.

Image quality comparisons were carried out using the Leeds TORMAM
test object (figure 4.15) at various settings of geometric magnification. This
phantom contains three groups of test features; fibres, simulated microcal-
cification clusters and low contrast plastic disks, plus an area designed to
give an anthropomorphic impression of a breast parenchymal pattern with
overlying microcalcification clusters (Cowen et al. 1992). This latter area of
the phantom was not used in these experiments.

The TORMAM phantom is 1.1cm thick and normally placed on top of a
stack of D-shaped Perspex plates 3.5cm thick. When imaged at 28kVp this
test object, with a total thickness of 4.6cm is approximately equivalent to
breast of thickness 5.3cm with a glandularity of 29% (Dance et al. 2000a).
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4.2.1 Reduction of blurring experiments**

Experimental method

The Leeds TORMAM phantom was imaged in various configurations on a
laboratory-based Siemens Mammomat 3 mammography unit, with measured
focal spot sizes of 0.7x0.3mm broad focus and 0.2x0.2mm fine focus. In all
cases the phantom was imaged on top of a stack of Perspex to provide realistic
_scatter and attenuation as recommended in the instructions for the phantom.
The radiographic factors used were 28kVp, 40mAs. These factors were chosen
to be representative of the values used in routine mammographic quality
assurance tests. The level of quantum noise in the test images was therefore
realistic. The image receptor was a Philips ACR-3 computed radiography
system with a cassette having dimensions 18cmx24cm and a pixel size of
101pm (Type C on page 14).
Three imaging geometries were used to illustrate varying degrees of focal
spot geometrical blurring:

1.8BF (Magnification 1.8, broad focus) The plane of the phantom was
33.5cm from the tube focus and 27cm from the plane of the recep-
tor. The image would be expected to be unacceptably degraded by
geometric blurring.

1.8FF (Magnification 1.8, fine focus) The phantom was in the same po-
sition as above, but imaged using the fine focal spot. This is the con-
ventional magnification view provided on this mammography unit and
used clinically.

3.0FF (Magnification 3.0, fine focus) The plane of the phantom was
20.5cm from tube focus and 40cm from the plane of the receptor. This
high magnification factor is not supported on standard mammography
units because the image would be unacceptably blurred.

A piece of brass with a small pinhole was positioned alongside the TOR-
MAM phantom and was used to obtain an image of the focal spot (see page
108). The raw PSFs obtained with each configuration are shown in figure
4.16. In the above list only the 1.8FF set-up is used in practice; the amount
of geometric blurring introduced in an image is too great with the other con-
figurations. The intention in this section is to explore the possibility of also
using the unconventional set-ups 1.8BF and 3.0FF in conjunction with MEM
to reduce the associated blurring.

** A summary of this work has been published (Jannetta et al. 2004)
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{a) 1.8BF PSF (b) 1.8FF PSF (c) 3.0FF PSF
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Figure 4.16: Pinhole images of the PSF obtained in the three imaging con-
figurations. 1.8BF PSF (a) is noticeably broader than the 1.8FF PSF (b).
Although the 3.0FF PSF is also fine focus it has been geometrically magnified
and is comparable in size to (a).

The original and processed sets of images were viewed and scored by
two independent observers both experienced in the use of mammographic
image quality test phantoms. The test images were graded using the 3, 2,
1, 0 scoring system recommended in the TORMAM phantom instructions
and adopted in surveys of mammographic image quality in the UK Breast
Screening Programme (Young and Ramsdale 2003).

Image processing procedure

The images obtained from the CR reader were in Siemens SPI file format
which were 12-bit grayscale images holding 10-bit image data. Matlab R12
was used to read these images and perform some preprocessing so that the
subsequent MEM processing could be applied. These steps were the same as
in the previous experiment (see page 96)

e Subtraction of a background map to flat-field the image.
e Removal of spurious, bright pixels.

e Cleaning the PSF images; in this case the noisy background of the PSF
was filtered out (typically by discarding those pixels with less than 10%
of the PSF peak value). This had the effect of slightly narrowing each
PSF - thus leading to a conservative under-restoration.

MEMSYS5 was used to treat the images following the Matlab preprocess-
ing. The interface to the MEMSYS5 kernel accepts image and PSF-image
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files as inputs (Matlab image format was convenient) and allows the setting
of certain parameters related to the theory described in Chapter 3. The de-
fault image model m was defined to be a flat image with low pixel luminance
values (m; = 0.001 for all 7). This codifies our belief that, in the absence
of data, very high photon counts were recorded (i.e. no absorption due to
intervening material). The program’s Historic MEM switch and setting an
ICF (of width 1) was done to implement the Hybrid MEM scheme of section
34.

The processed images contained between 2.2 million and 3.9 million pixels.
MEMSYS5 typically converged to a solution within 15 a-iterations with a
processing time of four to eight minutes, for an image of the full test object
shown in figure 4.15. The smaller images to be presented in figures 4.18 to
4.23 were cropped from such an image after processing, rather than processed
individually. The processed output files from MEMSYS5 were 8-bit PNG
files. All image processing was carried out on a Pentium 4 2.4GHz machine
with 512MB of RAM.

Results

Before proceeding to a systematic comparison of the original and MEM
processed images and related scores, we will say a few words about our initial
aspirations for this technique. As mentioned at the beginning of this chapter
(see page 84) these were to show improved spatial resolution without re-
duction in signal-to-noise ratio, particularly a level of performance in which
MEM processed 1.8BF images are at least as good as unprocessed 1.8FF
ones. Our belief is that such a performance would be of clinical interest.
Figures 4.18 and 4.19 compare appropriate images of crow’s feet and
simulated microcalcifications. These figures show that MEM reconstruction
can give improvements in both resolution and perceived signal-to-noise ra-
tio, and that the MEM processed 1.8BF images are marginally better in this
instance than the 1.8FF unprocessed ones in both respects. This promise
encouraged us to undertake a systematic evaluation, and to consider magni-
fications greater than those normally used in clinical practice. Three particle
groups (B,D and E) were chosen for this evaluation. The nominal particle
size ranges for these groups are 180-283 pm, 106-177 pym and 90-141 pm re-
spectively (Cowen et al. 1992). In addition to the scoring system mentioned
earlier we also calculate some signal to noise ratios (SNR) for these particular
features.
Figure 4.20 shows images of the three particle groups, cropped from the
images taken under 1.8BF conditions. The selected particle group is clearly
“visible in figures 4.20a and 4.20d, discernible in figure 4.20e, just discernible
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Figure 4.17: 1.8BF. Pixel intensity profiles through particles in group A. The
preprocessing step reduces and flattens the varying background of the image
but leaves the structure and noise intact. MEM processing smoothes the
noise and increases the signal-to-noise ratio of features deemed statistically
to be caused by real objects.
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{a) 1.8FF filament group C: Original (b} 1.8BF filament groups C: MEM

Figure 4.18: Comparison of the filament group C imaged under 1.8FF with
the same feature imaged under 1.8BF and processed with MEM.

in figure 4.20b and not seen in figures 4.20c and 4.20f; however, we show the
latter images to preserve the two by three format, which eases comparison
with later improvements. As expected, unprocessed images obtained in this
configuration are too blurred to be clinically useful. However, the MEM
processed images show significant improvements in resolution and signal-
to-noise ratio, particularly regarding the high frequency noise, which were
quantified using pixel profiles similar to that shown in figure 4.17; the quoted
SNR is the difference between the largest signal and the mean background
within each group, divided by the standard deviation of the signal in a region
close to the group. Figures for Group B are SNRyig = 9.0 and SNRyem =
50.3. Group D: SNRgriz = 5.9 and SNRyem = 13.7. Particle group E is not
detected at this setting.

Figure 4.21 shows cropped images of the same three particle groups, ob-
tained with the conventional 1.8FF configuration. Remarks regarding group
visibility are as for figure 4.20. The pinhole PSF imaged under these con-
ditions is small and approximately Gaussian in shape, comprising just a
few pixels. As expected, images obtained in this configuration are sharper
than in the 1.8BF case; nevertheless MEM restoration still shows signifi-
cant improvements. SNR measurements for group B are SNRgi; = 9.0 and
SNRmem = 49.8. Group D: SNRg; = 5.4 and SNRyem = 18.5. Particle
group E is not detected at this setting.
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(a) 1.8FF particle group B: Original {b) 1.8BF particie group B: MEM

Figure 4.19: Comparison of particle group B imaged under 1.8FF with the
same feature imaged under 1.8BF and processed with MEM.

Figure 4.22 shows cropped images of the same three particle groups, ob-
tained with an unconventional 3.0FF configuration. In this case all three
groups are detectable in the original image of the phantom, but the MEM
processed images show clear improvements in resolution, enabling fine details
of individual microcalcifications to be discerned in image 4.22d. SNR mea-
surements for group B are SNRyu, = 8.8 and SNRyem = 49.8. Group
D: SNRyig = 5.8 and SNRygq = 22.4. Group E: SNReysg = 5.2 and
SNRyem = 10.4.

To effect the same comparison as that illustrated in figure 4.19, between
unprocessed 1.8FF images and MEM processed 1.8BF ones, the bottom row
in figure 4.20 should be compared with the top row in figure 4.21.

Figure 4.23 shows images of filament groups B, D and F taken with the
1.8FF configuration. These respectively have diameters 0.35, 0.25 and 0.20
mm, length 10 mm. All three groups are detectable in the original and MEM
processed images, but again the latter show improvements in resolution and
visibility. To avoid information overload we do not show the 1.8BF and
3.00FF cases here, but experience with these matches that with the particle
groups, and is quantified in the table of scores discussed below.

The results obtained from scoring the original and MEM processed images
under each of the three imaging geometries are shown in Table 4.1. The
processed images show an improved score in each case. This implies that the
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{c) 1.8BF particle group E: Original
(f) 1.8BF particle group E: MEM

(b) 1.8BF particle group D: Original
{e) 1.8BF particle group D: MEM

(d) 1.BBF particle group B: MEM

(a) 1.8BF particle group B: Original

Figure 4.20: 1.8BF. Close-ups of particle groups B, D and E are shown in
(a), (b) and (c) respectively. MEM restorations are shown beneath in (d),
(e) and (f); improvements in visibility and resolution are apparent with the
first two groups. Group E is not detectable in either the original or MEM
processed images.
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(f) 1.8FF particle group E: MEM

{c) 1.8FF particle group E: Original

{b) 1.8FF particle group D: Original
AR B 3 .-._1 i v
{e) 1.8FF particle group D: MEM

(a) 1.8FF particle group B: Original
{d) 1.8FF particle group B: MEM

Figure 4.21: 1.8FF. Close-ups of particle groups B, D and E are shown in
(a), (b) and (c) respectively. MEM restorations are shown beneath in (d),
(e) and (f); improvements in visibility and resolution are apparent with the
first two groups. Group E is not detectable in either the original or MEM
processed images.
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(d) 3.0FF particle Group B: MEM

{a) 3.0FF particle Group B: Original

Figure 4.22: 3.0FF. Close-ups of particle groups B, D and E are shown in
(a), (b) and (c) respectively. MEM restorations are shown beneath in (d), (e)
and (f); improvements in visibility and resolution are apparent in all three
cases, with fine details of individual microcalcifications being discernable
after MEM restoration (d).
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(f) 1.8FF filament group F: MEM

{c) 1.8FF filament group F: Original

(&) 1.8FF filament group D: MEM

{b) 1.8FF filament group D: Original

(a) 1.8FF filament group B: Original
{d) 1.B8FF filament group B: MEM

Figure 4.23: 1.8FF. Close-ups of filament groups B, D and F are shown in
(a), (b) and (c) respectively. MEM restorations are shown beneath in (d), (e)
and (f); improvements in visibility and resolution are apparent in all three
cases.



CHAPTER 4. MEM AND MAGNIFICATION MAMMOGRAPHY 122

signal-to-noise ratio perceived by the observers for the various test features,
including low contrast objects, was increased by the application of the MEM
processing.

Mag. Image. TORMAM scores
Filaments Particles Disks Total
1.8BF Original 20.5 6 245 51
MEM 38.5 8.5 30 7
1.8FF Original 27 6 215 545
MEM 41 10.5 295 81
3.0FF Original 42 95 275 79
MEM 57.5 11 355 104

Table 4.1: Image scores of the original and MEM processed images, obtained
by averaging the individual scores of the two independent observers. It should
be noted that the individual scores of the two observers (not shown) were
also in good agreement for the scored features.

Discussion

The aim of the work was to demonstrate an improvement in spatial reso-
lution for realistic radiological images from MEM de-blurring, with no as-
sociated penalty in terms of reduction in the signal-to-noise ratio perceived
by the observer. The expected resolution improvements are shown in fig-
ures 4.20-4.23. Somewhat unexpected, however, were the improvements in
image score shown in Table 4.1, as most of the features in the TORMAM
phantom, i.e. the fibre groups and disks, are essentially low-contrast features
whose detection would be expected to be limited by the relative noise level in
the image. The improvement in scores therefore implies an improvement in
signal-to-noise ratio for this phantom. For the filaments and particles, which
are comparable to the PSF in extent, improvements in visibility are effected
by enhanced intensity and sharpness due to focussing, and by noise reduc-
tion. For the disks, which are significantly larger than the PSF, sharpness
(resulting in easier edge detection) and noise reduction are the important
factors.

It may be that the improvements in features imaged against a uniform
background, as in these demonstrations, are better than those which might
be achieved when imaging diagnostic features against an anatomical back-
ground. A suitable experiment to examine this will be described in section
6.2.
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4.2.2 Mammographic dose reduction

The reconstructions of TORMAM images in section 4.2 were obtained using
typical radiographic settings and therefore contained realistic noise levels. In
this section, the quality of MEM restorations are presented from an exper-
iment in which the conventional radiation dose is successively lowered and
with corresponding detriment to the SNR in the original image (for the rea-
sons given in section 1.3.3). The purpose of the experiment is to explore
the usefulness of MEM in a noisy radiological environment and to show that
image deconvolution can maintain an acceptable image quality when the ra-
diation dose is decreased.

Experimental method

The Leeds TORMAM phantom't was imaged on a hospital-based Siemens
Nova 3000 mammography unit. For this experiment the images were obtained
under the conventional set-up (1.8x magnification using a fine focal spot).
The measured fine focal spot size of this mammography unit is 0.2x0.2mm.
In all cases the phantom was imaged on top of a thick stack of Perspex to pro-
vide realistic scatter and attenuation as recommended in the instructions for
the phantom. The radiographic factors used were 28kVp, with successively
lowering doses of 50mAs, 40mAs, 32mAs, 20mAs and 10mAs. These factors
were chosen to cover values which decreased image quality compared to those
used in routine mammographic quality assurance tests. The upper limit of
50mAs was determined by the Automatic Exposure Control (see page 25)
for this unit. The level of quantum noise in the test images therefore ranged
from realistic to very noisy. The image receptor was a Philips ACR-3 com-
puted radiography system with a cassette having dimensions 18cmx24cm
and a pixel size of 101um (Type C on page 14).

The original and processed sets of images were viewed and scored by
two independent observers both experienced in the use of mammographic
image quality test phantoms. The test images were graded using the 3, 2,
1, 0 scoring system recommended in the TORMAM phantom instructions
and adopted in surveys of mammographic image quality in the UK Breast
Screening Programme (Young and Ramsdale 2003).

The PSF for this experiment was obtained by placing a mammography
multiple pinhole test tool* in the same plane as the TORMAM test object

HThis was a different object to the one used in the previous experiment (as is evidenced
by the different layout of the particles in the groups shown in later figures.)

#Model M300 with 50um pinhole size. Standard Imaging Inc., Medical College of
Wisconsin, USA.
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5 10 15 20 5

Figure 4.24: Raw image of the focal spot of the Siemens Nova 3000 mam-
mography unit obtained at 1.8FF using a pinhole camera setup.

(unlike previous experiments, the pinhole was imaged separately from the
object). The raw PSF obtained with this configuration is shown in figure
4.24.

Image processing procedure

The images obtained from the CR reader were in Siemens SPI file format
which were 12-bit grayscale images holding 10-bit image data. Matlab R12
was used to read these images and perform some preprocessing so that the
subsequent MEM processing could be applied. These steps were essentially
the same as in the previous experiment (see page 113 for details).

MEMSYS5 was used to treat the images following the Matlab preprocess-
ing. The default image model m was defined to be a flat image with low pixel
luminance values (m; = 0.001 for all i). This codifies our belief that, in the
absence of data, very high photon counts were recorded (i.e. no absorption
due to intervening material). Use of the program’s Historic MEM switch and
setting an ICF (of width 1) was done to implement the Hybrid MEM scheme
of section 3.4.

The processed images contained about 3.5 million pixels. MEMSYS5
typically converged to a solution within 20 o-iterations with a processing
time of 89 minutes, for an image of the full TORMAM test object. The
smaller images presented in figures 4.25 to 4.27 were cropped from such an
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Dose Image TORMAM scores
Filaments Particles Disks Total
50mAs Original 29 8 275 645
MEM 46.5 10.5 33 90
40mAs Original 26 7 21 54
MEM 45.5 11 31 875
32mAs Original 29 7 205 56.5
MEM 43 10 305 83.5
20mAs Original 16.5 75 195 435
MEM 31.5 9.5 28 69
10mAs Original 12.5 4.5 17 34
MEM 13 6 18 375

Table 4.2: Image scores of the original and MEM processed images, obtained
by averaging the individual scores of the two independent observers.

image after processing, rather than processed individually. The processed
output files from MEMSYS5 were 8-bit PNG files. All image processing was
carried out on a Pentium 4 2.4GHz machine with 512MB of RAM.

Results

Before proceeding to a systematic comparison of the original and MEM
processed images and related scores, we will say a few words about our as-
pirations for this experiment: these were to show that the improvements
to image quality could compensate (to some extent) the noise degradation
introduced by using a lower x-ray dose.

The results of scoring the original and MEM processed images is shown
in Table 4.2. Processing with MEM led to an improved score for all particle,
filament and contrast groups at each dose setting over the original image.
The degree of improvement is marginal for the images obtained at 10mAs.

Figure 4.25 shows particle group B imaged at (a) 40mAs, (c¢) 32mAs
and (e) 20mAs. The maximum entropy reconstructions are shown alongside
each image. Using pixel intensity profiles through the particles, as we did in
the previous experiment (see page 116), we have calculated SNR values for
each particle group image. The quoted SNR is the difference between the
largest signal and the mean background within each group, divided by the
standard deviation of the signal in a region close to the group. For the images
shown in the figure we list SNR values for each dose. 40mAs: SNR;z =
9.2, SNRMEM = 45.8. 32mAs: SNROrig = 8.6, SNRMEM = 37.0. ' 20mAs:
SNRerg = 6.4, SNRmem = 17.5. In addition to the images shown in this
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(a) Particle Group B: 40mAs {b) Group B: 40mAs (MEM)

(c) Particle Group B: 32maAs (d) Group B: 32mAs (MEM)

(&) Particle Group B: 20mAs (R Group B: 20mAs (MEM)

Figure 4.25: TORMAM phantom: Comparison of particle group B imaged
at 40mAs, 32mAs and 20mAs with MEM restorations shown alongside each

image.
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{a) Filament Group C: 40mAs {b) Group C: 40mAs (MEM)
.
{c) Filament Group C: 32mAs {d) Group C: 32mAs (MEM)

(e) Filament Group C: 20mAs (fy Group C: 20mAs (MEM)

Figure 4.26: TORMAM phantom: Comparison of filament group C imaged
at 40mAs, 32mAs and 20mAs with MEM restorations shown alongside each

image.
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(a) Disk Group B: 40mAs (b) Group B: 40mAs (MEM)

{c) Disk Group B: 32mAs {d) Group B: 32mAs (MEM)
(&) Disk Group B: 20mAs {f) Group B: 20mAs (MEM)

Figure 4.27: TORMAM phantom: Comparison of disk group B imaged at
40mAs, 32mAs and 20mAs with MEM restorations shown alongside each

image.
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figure, we also have for the lowest 10mAs dose: SNRorg = 4.1, SNRMEM =
5.7.

Figure 4.26 shows filament group C with the layout of original and re-
stored images the same as in the previous figure. The visibility of the fila-
ments remains good until noise levels prevent adequate reconstruction in the
lowest dose images.

Figure 4.27 shows low contrast disk group B in the same layout as the
previous figure. The visibility of these features was improved significantly in
the images obtained between 32mAs to 50mAs. There is slight improvement
in overall perception at 20mAs and perhaps also at 10mAs.

Discussion

The aim of this experiment was to investigate the effect of MEM on spa-
tial resolution, feature visibility and image quality as the x-ray dose was
decreased to levels much lower than those used in practice. The results indi-
cate that a significant reduction in radiation dose is possible: the restoration
process can compensate for the loss of image quality caused by increased
noise levels. Inspection of Table 4.2 shows that the scores of the unprocessed
50mAs image (the dose selected by the AEC) are comparable to the scores of
the 20mAs MEM image. The scores of the MEM processed 32mAs image are
significantly higher. We suggest that a dose reduction from 50mAs to 40mAs
or 32mAs, followed MEM processing results in better visibility of features in
the TORMAM object than would be obtained from just using the higher
dose setting.

Our belief is that such a performance would be of clinical interest for
two reasons. Firstly, it would be beneficial if the standard x-ray dose used
in mammography could be lowered provided that image processing could be
shown to have no detrimental effect on image quality. Secondly, maintain-
ing image quality at reduced doses would give a radiographer more options
from which to choose radiographic settings. Examples include higher than
standard magnifications (>1.8) or larger focal spots used in conjunction with
shorter exposures at conventional magnification. A more thorough discussion
of the ramifications of dose reduction (and the other ideas from this chapter)
on system optimisation will be presented in chapter 7.



CHAPTER 5

MEM applied to linear tomography

The process of eliciting depth information using linear tomography was in-
troduced in chapter 1. The combined movements of the focal spot and image
receptor (see figure 1.9 on page 27) allow a thin ‘slice’ of a 3-D object to be
imaged.

Images obtained from linear tomography can be thought of as having
two components; the first is the focal plane, which has sharp details and
the features of interest in that plane. The second component is blurring
caused by the apparent motion on the image receptor of features above and
below the focal plane. The second component of these images reduces the
contrast of the features in the focal plane. Mechanical methods to reduce
the out-of-plane blurring were discussed in section 1.5.2.

In this chapter we will summarise related research and other methods of
blur-reduction in tomography images. A simple, simulated linear tomography
meodel will be explored and a modification of MEM suitable for the problem
will be presented. Finally, the adapted method will be applied to images of
test objects and a clinical anthropomorphic skull phantom.

5.1 Related methods and research

Image subtraction

The first attempts to tackle the problem of blurring in linear tomography
images were variations on the theme of image differences. Edholm and Quid-
ing (1969; 1970} described photographic methods, where the original film

130
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(a) Original image (b) Blurred difference method () Shifted difference mathod

Figure 5.1: Examples of the image subtraction techniques proposed by Ed-
holm and Quiding and Chakraborty et al. (a) is the original image of a skull
phantom. (b) is the difference image formed by blurring a negative of (a) in
the same direction as the linear movement by a distance of 25 pixels. (c) is
the difference image formed by displacing an identical copy of (a) by 5 pixels
in the direction of the linear movement,

image is superposed on a blurred negative copy. The authors also described
a system with a video camera, intensifier screen and television display to per-
form variations of image subtraction electronically and almost in real-time.
These photographic and electronic techniques are essentially a form of man-
ual high-pass filtering. An equivalent process applied to digital images was
described by Chakraborty et al. (1984) and applied to digitised tomosyn-
thesis images. Examples of these image subtraction methods applied to a
tomographic image of a skull phantom are shown in figure 5.1.

A disadvantage of image subtraction methods is that they reduce or re-
move useful low frequency information lying within the plane of interest.
Direct high pass frequency filtering will be examined more closely in sec-
tion 5.1 with particular emphasis given to consideration of the direction and
effects of linear blurring.

Restoration of tomosythesised images

Tomosynthesis is a technique for obtaining tomographic information through
an arbitrary cross-section of an object (see page 28). Tomosythesised images
suffer the same out-of-plane blurring as conventional tomographic images and



CHAPTER 5. MEM APPLIED TO LINEAR TOMOGRAPHY 132

related research to reduce this blurring is now described.

A method to reduce tomosynthesis blur was developed by Ruttimann
et al. (1984) and applied to images obtained with circular motion of the
focal spot and image receptor. The authors of that paper used a model
which approximated the 3-D object as a series of n discrete planes which
are represented by the tomosythesised images. The blurring in a particular
image is assumed to be due to contributions from structures within the other
n — 1 planes. This formulation leads to a system of coupled linear equations.
Weighted estimates of the ‘true’ planes were obtained and convolved with
blurring functions derived from a consideration of the geometry of the imag-
ing system. The in-plane blurring was calculated iteratively and subtracted
from the original images to increase the visibility of features in each focal
plane.

Using a similar image model Ghosh Roy et al. (1985) attempted to remove
blur, due to circular motion, from a particular tomosynthesised plane. The
blur was modeled as being caused by contributions from several adjacent
planes in the object. Solutions to the resulting system of linear equations were
sought to obtain reconstructed planes without the blur. Matrix inversion
tomosynthesis (MITS) was an extension of this work, developed by Dobbins
et al. (1987). MITS is a technique which attempts to exactly solve the
coupled system of linear equations by direct inversion of a matrix of blurring
functions. Although MITS is computationally fast and fairly successful and
removing blur the method is susceptible to noise at low frequencies.

Wavelet based approaches to restoration

Wavelet based removal of blur and/or noise from digital tomography (and
tomosynthesis) images is described by several investigators. The approach of
Badea et al. (1998) exploits a specific noise pattern within tomosynthesised
images and uses the spatial locality of the wavelet transform to discriminate
between features inside and outside the fulcrum plane.

Wavelet analysis has also been applied to denoising images obtained with
limited angle tomography (Sahiner and Yagle 1993) and fan-beam tomogra-
phy (Bonnet et al. 2002). Wavelet-based Bayesian estimators for removal of
Poisson noise from emission and transmission tomography images is discussed
by Huang et al. (2003).

Improved frequency filtering

The partial success of the image subtraction approaches of section 5.1 can be
attributed to its equivalency to high-pass frequency filtering. It is possible
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(a) Original tomogram (b) 1=D high pass {c) High frequency emphasis

Figure 5.2: (a) Tomogram of a skull phantom. (b) Application of a 1D high-
pass filter. (c) Result of applying a high frequency emphasis filter to the
original image (parameters used: a=0.5, b=2.0)

to design frequency filters specifically for the case of images blurred by linear
motion. Since the blurring occurs in only one direction, a 1-dimensional high-
pass filter can be constructed to suppress those frequencies associated with
directional blurring. A tomogram of a skull phantom with the associated
Fourier transform was shown in figure 2.1 (on page 34). It was seen that the
low frequency content was greatly increased in the direction associated with
the linear blur.

Figure 5.2b shows the result of applying a 1-D filter which aims to ensure
that frequencies associated with real features and low frequency content in a
direction perpendicular to the linear blurring are retained.

High frequency emphasis filtering

The fine structure and details of an image d are located at high frequencies
in the Fourier transform of the image D. A useful method of enhancing
radiographic images is the high-frequency emphasis (HFE) filter (Gonzalez
and Woods 2001).

The first step is to construct a high pass filter H,,. A cut-off frequency
is chosen and the high pass filter is formed by retaining only those Fourier
components higher than the cut-off frequency and setting those below it to
zero. The HFE filter H,, is created by modifying the high pass filter:
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Hyy = a +bH,, (5.1)
where a, b are constants and a > 0 and b > a. The filtered image is formed
by multiplying the Fourier transform of the HFE filter (equation 5.1) with
the Fourier transform of the original image:

f)u'u = f{uvDuv (52)

This method can be better than a straightforward high pass filter because
lower frequencies (larger structures) are also retained. HFE filtering can be
used to bring out the edges and sharp transitions which typify features close
to the focal plane in tomographic images. The Matlab code for our HFE
filter is listed in Appendix D.2.

The clear disadvantage of this method is that it does not distinguish
between noise and signal; both will be enhanced. The method is more suited
to emphasising edges than the detection of small microcalcifications. Also
any large scale, low frequency features in the focal plane of the tomogram
will reduced in contrast.

Expectation Maximization methods

The Expectation Maximization (EM) algorithm (Dempster et al. 1977) is a
method used to approximate a PDF. Since an image can be thought of as a
PDF (see page 68) the EM algorithm can be applied to some image restora-
tion problems. EM is typically used in situations where we have incomplete
sampling of the true object distribution: this is the case in tomography. EM
is used to compute maximum likelihood estimates of the missing samples.
In the astronomical community EM is essentially the same technique as the
method known as Richardson-Lucy deconvolution (see section 2.3.6).

EM has been widely applied to finding solutions which maximise a like-
lihood function for quantum noise limited tomographic data. One of the
first applications was to emission tomography by Shepp and Vardi (1982).
Following that work a number of researchers applied the method to medical
imaging problems. However, widespread acceptance of EM suffered until im-
age processing times, which were at first too great to be of clinical use, and
the problematic presence of noise artefacts in restored images were addressed
(Miller and Roysam 1991). Development and application of EM methods is
an area of ongoing research. For examples of notable applications in other ar-
eas of tomographic imaging see Hudson and Larkin (1994), De Pierro (1995)
and Kinahan et al. (1997).
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Figure 5.3: Layout of a linear tomography imaging system showing the dis-
tances necessary to calculate blurring on the image receptor.

5.2 Modeling the linear tomography system

5.2.1 Calculation of tomographic blurring

Figure 5.3 shows the geometry of a linear tomography system. The x-ray
tube moves from position 77 through a distance dr to position 75. The
movement of the tube would cause the projected shadows of points X, O
and Y in the object to become smeared on the image receptor by different
degrees (dx, do and dy respectively) if the receptor was fixed. However,
the image receptor is designed moved in an opposing direction to the tube
in order to keep projected points in same plane as O (the focal plane) from
becoming blurred on the receptor. Therefore, if the image receptor is moved
through a distance do then the shadow of point O will not become blurred.
The distance that the image receptor needs to move to achieve this is given
by:
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Suppose the point X lies some distance Ay above O. The corresponding
projected shadow traverses a distance on a stationary image receptor given
by:

b+ Ay

ddeTxa—Ay

(5-4)

Now consider the situation in which the image receptor is moved to make
the plane containing O the focal plane. The movement of X’s shadow relative
to the image receptor will describe the amount of tomographic blur Bx for
the plane containing X. This is given by:

By = dx—do (5.5)
— 4 b——}:Ay _ g
- 4 E;(b +A§€;) )Z(a)— Ay)]
a(a — Ay
Bx = dTaAy (a“fAby) (5.6)

For our experiments in this work it is desirable to express the out-of-focal
plane blur in terms of the tomographic swing angle 6 rather the distance dr.
It is simple to show that dr = 2atan(8/2), so we can rewrite equation 5.6

as:
0 a+b
BX = 2Aytan (-2‘> (a — Ay) (57)

5.2.2 Adapting MEM to linear tomography

Simulated linear tomography images

To illustrate the problem and to formulate a solution I have simulated a
simple test object comprising the numbers ‘3’, ‘6’ and ‘9’ situated at different
increasing depths. Commercial graphics editing software* was used to create
an 8-bit grayscale basis image, and to ‘motion blur’ some of the components
by appropriate amounts in a horizontal direction. Blurring functions of 15
and 30 pixels in length were used. These images were further degraded
with a small amount of noise using Matlab: Gaussian noise with zero mean

*Paint Shop Pro 8: Jasc Software
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(a) Plane 1 (b) Plane 2 {c) Plane 3

3

-

Figure 5.4: Images from a simulated linear tomography system. Three ob-
jects are imaged three times, with the focal plane passing through a different
object each time. The planes outside the focal plane are blurred by either 15
or 30 pixels, depending on their supposed distance from the focal plane

and variance ¢ = 0.0001 was added to each. The three simulated linear
tomography images shown in figure 5.4.

We denote the corresponding true images by x;, r2 and x5 respectively.
The images d,, d; and d3 recorded by a linear tomography machine are
combinations of true images degraded by PSFs, dependent on the geometry of
the machine and distances between the object, focal spot and image receptor.
Figure 5.4 represents three scans of a test object. In the first row the focal
plane is close to '3’, '6’ in the second and 9’ in the third. In the first case
the recorded image is:

{il = Ali *I + ."1]2 * T -+ A[;-; * Iy {:JS)

where Ay;, A2 and A3 are linear point-spread functions corresponding to
the respective depths. Similarly we have scans 2 and 3 with respectively
deeper focal planes and different point-spread functions, and equation (5.8)
generalises to:

3
di=Y Aj*z; i=1t03 (5.9)
j=1
which is the forward map in this case. Note that the sum here is over different
images, not elements of one image. The three recorded images are shown in
figure 5.4 with a pictorial representation of equation (4.10) in each case.
We use the Hybrid MEM scheme (section 3.4) as the basis for our tomo-
graphic restoration algorithm. The entropy of the true image x, is:

51 = Z[.T1 — my — oy In(xy/my)] (5.10)
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(a) Plana 1: Restored {b) Plane 2. Restored (c) Plane 3. Restored

3

Figure 5.5: Restoration of the simulated linear tomography images shown in
figure 5.4. The blurred images caused by objects outside the focal plane have
almost been eliminated.

The entropy of the three images together is:

§=)"8; (5.11)

The problem is to reconstruct the true images x, o2 and x3 from the
recorded images. We assumed that the true images are confined to the chosen
focal planes. The ¥* statistic describing the goodness-of-fit between the
degraded images and the postulated true images is given by:

) Z:r'i_l (di i Ej—-l Ayj * xj)2

X = (5.12)

e
where o? is the noise contained in each pixel, in this case assumed to be
constant across the three images. Having defined the entropy and the y*
statistic for this situation, the procedure is as outlined in section 4.1: the
problem to maximise the entropy with respect to the elements of the three

vectors u; subject to ¥* = N as a constraint, where N is now the total
number of pixels in the recorded images.

Results of the simulated tomogram restoration

Figure 5.5 shows the results of applying the modified MEM algorithm to
the simulated tomograms. The out-of-focal plane blurring has been greatly
suppressed in each case.

The purpose of this simple exercise was to develop and test the modified
MEM algorithm under ideal circumstances; pre-determined blurring func-
tions, little or no noise and no background or bad pixels.
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(&) Configuration 1 {b) Configuration 2
—_— —_—

Figure 5.6: Illustration of the two configurations for imaging the lead number
test object. In (a) the lead numbers are adjacent on separate planes whereas
in (b) they are directly above one another giving rise to overlapping blur on
the image receptor

5.3 Experiments with a 3-plane test object

A simple test object comprising three sheets of perspex was constructed. Be-
tween each layer of perspex was placed an object: a lead number of negligible
thickness.

5.3.1 Method

The test object was placed on top of a table and imaged by Philips Bucky
Diagnost system with linear tomography option. The focal spot to image
receptor distance was 100cm and the table-top was 6.5cm above the image
receptor. Cut heights through the object (measured from the table-top) of
4.2cm, 8.4cm and 12.7cm were obtained. The radiographic factors used were
70kVp, 32mA with an exposure time of 1.2s. These factors were chosen to
give realistic levels of quantum noise in the resulting images. The image
receptor was a Philips ACR-3 computed radiography system. The two types
of film cassettes used in these experiments have resolutions of R = 50.3
pixels/cm and R = 65.7 pixels/cm respectively.

The test object was imaged with the lead numbers in two configurations,
These configurations are shown in figure 5.6. In the first configuration the
numbers were adjacent each other so that no overlap would occur on the
image receptor. The receptor resolution in this configuration was R = 50.3
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pixels/cm. The resulting tomographic images from this set-up are shown
in figure 5.8. In the second configuration, all three objects were above one
another, but separated by layers of perspex. The receptor resolution in this
configuration was R = 65.7 pixels/cm. This set-up leads to overlapping
blurring in the captured image, as can be seen in figure 5.10.

5.3.2 Calculation of blurring functions

The implicit assumption of these calculations is that geometric unsharpness
caused by the focal spot size is negligible. The quantity given by equation
5.7 is a distance on the image receptor. On a digital image receptor (or after
the image has been digitised by a CR reader) the length of the blurring,
measured in pixels, depends on the resolution R of the image receptor.

0 a+b
Bpixe]s = 2Ay tan (5) (a — Ay) X R (513)

As an example we calculate the length of one blurring function. Consider
the tomograms through Plane 1, shown in figures 5.8a and 5.10a. What is
the length (in pixels) of the blurring function which has smeared out the lead
number from Plane 27

Using the notation of section 5.2.1 we have:

6.5+ 4.2 = 10.7cm
100 — 10.7 = 89.3cm
Ay = 84—-42=42cm
40°

R = 50.3pixels/cm

S
I

>
fi

Substituting these values into equation 5.13 gives:

89.3 + 10.7 .
Banes = . ° —_— .
plane2 2x 4.2 x tan 20 X(89.3——4.2)X503

Boanez = 180.7106

As we are dealing with discrete pixels the length must be an integer value,
we round the answer obtained above to get:

Bojane2 = 181pixels (5.14)
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The PSF which describes this blurring function is therefore a vector! with
181 elements whose values are of the form:

1 =
FSFplanﬂ e E[l. B 5 ].] EDI5]|

(a) Plane 1: image of lead number in Plane 2

(b} MEM reconstruction

Figure 5.7: (a) shows a region of the image focussing on Plane 1 with only the
image of the object in Plane 2 visible. The blurring function for this object is
calculated as an example in the text. (b) shows the result of straightforward
deconvolution with MEM using this blurring function. The object in Plane
2 has been recovered.

We can verify that this is correct by deconvolving just the image of the
lead number in Plane 2 with the calculated PSF. The result of this test
example is shown in figure 5.7. The relative lengths of the PSFs for each
plane are given in Table 5.1. The actual lengths on the receptor, measured
in pixels, is obviously dependent on the resolution of a particular receptor;
they are calculated by multiplying the relative values by the R and rounding
the result. The object in the focal plane is unblurred - this is represented as
a convolution with a unit impulse (a PSF of unit length) and is independent
of resolution.

5.3.3 Image processing procedure

The test-object images were pre-processed using Matlab. The image data
were ‘cleaned’ to remove any spurious bright pixels (see page 98) and lin-

'The images considered in this chapter were subject to blurring in a vertical or hor-
izontal direction (depending on the orientation of the image receptor) and so blurring
functions are either column vectors or row vectors
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Plane 1 | Plane 2 | Plane 3
Plane 1 1 3.6R 7.7R
Plane 2| 3.4R 1 3.8R
Plane 3| 6.9R 3.7R 1

Table 5.1: The relative lengths of the blurring functions present in each plane
of the lead-number test object. R is receptor resolution.

earised via equation (4.4) as required by our MEM algorithm. It is worth
noting another convention in dealing with this particular restoration problem.
In forming ‘trial’ restorations the estimates of the true object distribution are
convolved with various PSFs. In this experiment the convolution operation
requires significant padding of the image. Fictitious pixel values beyond the
image border were taken to be equal to pixel values along the image border.
The Matlab code for this 3-plane reconstruction is given in Appendix D.6.
The final reconstructions were ‘nonlinearised’ to match the form in which the
original images were displayed.

5.3.4 Discussion of results

The three reconstructed planes of configuration 1 (the adjacent lead numbers)
is shown in figure 5.9. Results obtained from Configuration 2 (overlapping
lead numbers) are shown in figure 5.11.

The restoration of the lead numbers in a non-overlapping configuration
produces the best results. This is to be expected but is not the most realistic
situation. The restoration of lead numbers whose images overlap on the image
receptor also does reasonably well but artefacts caused by ‘lost’ information
are obvious.

The experiments conducted using this phantom were useful for testing
and optimizing the modified MEM code in Matlab. However, the object
is not particularly realistic: the human body obviously is not comprised of
discrete slices. In chapter 6 we describe an experiment using tomographic
images of a more realistic 3-D object.
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(a) Plane 1

(b} Plane 2

{c) Plane 3

Figure 5.8: Original tomograms of the lead number test object using config-
uration 1. (a) Cut height 4.2cm (b) Cut height 8. 4cm (c) Cut height 12.7cm
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(a) Plane 1: MEM

(b) Plane 2: MEM

(c) Plane 3. MEM

9

Figure 5.9: MEM reconstructions of the lead numbers arranged in configu-
ration 1. (a) Cut height 4.2cm (b) Cut height 8.4cm (c) Cut height 12.7cm
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(a) Plane 1

3

(b) Plane 2

(c) Plane 3

Figure 5.10: Original tomograms of the lead number test object using config-
uration 2. (a) Cut height 4.2cm (b) Cut height 8.4cm (¢) Cut height 12.7cm
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(a) Plane 1: MEM

S

(b) Plane 2: MEM

{c) Plane 3. MEM

Figure 5.11: MEM reconstructions of the lead numbers arranged in configu-
ration 2. (a) Cut height 4.2cm (b) Cut height 8.4cm (¢) Cut height 12.7em



CHAPTER 6

Application to realistic images

The experiments of the previous chapters were carried on a selection of phan-
toms designed to evaluate and in some cases, to quantify the success of maxi-
mum entropy deconvolution. The phantoms were unrealistic in other respects
because the internal structures of the body are much more complicated. For
example features of interest to a radiologist may be embedded in compli-
cated backgrounds or hidden by other structures. In this chapter we apply
our deconvolution strategies to more realistic objects and clinical data.

6.1 Magnified bone image

The images and other data used in this experiment were generously provided
by Prof. Geoff Dougherty from research into the effectiveness of a commercial
Wiener filter applied to radiological images (Dougherty and Kawaf 2001).

Experimental method

A section of vertebral bone was imaged using a GE Advantx RFX with a
nominal focal spot size of 0.6mm, no intensifying screen and a film image
receptor. The focal spot to film distance for this experiment was 200cm.

The bone slice was positioned 50cm from the focal spot, so as to give a
geometric magnification of 4x on the film. The radiographic settings used
were 50kVp and 800mAs and were chosen to give film densities lying on the
linear portion of the film characteristic curve. The film was digitised at 150
dots-per-inch and 8-bits per pixel to give the final image.

147
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Figure 6.1: Magnified pinhole image of the focal spot showing the bimodal
intensity distribution caused by the helical nature of the cathode.

The PSF was obtained by pinhole projection. The pinhole was carefully
aligned with the centre of the x-ray beam and 7em from the focal spot. This
configuration gave a geometric magnification of the focal spot of 29x on
the film. The magnified pinhole image of the focal spot is shown in figure
6.1. The radiographic settings used to image the focal spot were 50kVp and
1250mAs. The film was digitised at 300 dots-per-inch and 8-bits per pixel.
The final dimensions of the bone and PSF images each measured 1024 x 1024
pixels.

Image processing

The PSF appropriate to the bone image is obtained by rescaling the pinhole
image of the focal spot. The rescaling takes into account the difference in the
digitisation resolution, the geometric magnification at which the focal spot
was imaged and the magnification of the of the focal spot in the plane of the
bone slice.

Myeae = (Digitisation) x (Focal Spot,,,,) < (Bone Planey,,)

150
= 2x20= (5_{])

= 19.333... (6.1)
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The PSF appropriate for the bone image is obtained by reducing the magni-
fied focal spot dimensions by a factor of 19. MEM requires an value for the
noise variance in the bone image. This was estimated by analysing the sta-
tistics of pixels within small region assumed to have constant signal content.

MEMSYS5 was used to implement a Hybrid maximum entropy decon-
volution using the rescaled PSF and noise variance value. The program’s
Historic MEM switch and setting an ICF (of width 1) was done to imple-
ment the Hybrid MEM scheme of section 3.4. The default model was a flat
image with low pixel intensities (m; = 0.005).

Results

In figure 6.2 we show the original image and the MEM restoration. The MEM
image is smoother in appearance that the original image. To demonstrate the
improvement in resolution and visibility of structure in the restored image
more effectively we also overlaid some skeletons on each image using Matlab.
The skeletons were constructed by determining the mean gray level in each
image and then thresholding so that values equal to and above were set to
1, while those below were set to 0. The result is a binary image. The mor-
phological operation of erosion (based on 8-connectedness) was repeatedly
applied to this image until a skeleton one pixel wide remained. ‘Skeletonisa-
tion’ removes pixels on the boundaries of objects without allowing objects to
break apart. The resulting skeleton is related to the structure of features in
the original image. For further discussion of this process see Gonzalez and
Woods (2001).

Comparison of the skeletons in figures 6.2b and 6.2d show an obvious dif-
ference. The structure in the original image is poorly defined and leads to a
skeleton riddled with artefacts and spurious features. In the restored image
the skeleton outlines a more regular distribution of the expected intertra-
becular spaces which is much more evident than in the original image. The
MEM restored image therefore shows more structure and superior detail.

Conclusions

We applied maximum entropy to an image of a vertebral bone slice degraded
by substantial geometric blur and demonstrated an improvement in feature
visibility and spatial resolution.
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(a) Original image (b) Original image with skeleton

(c) MEM (d) MEM with skeleton

Figure 6.2: (a) is the original image of the magnified bone. (b) is the orig-
inal image with superimposed skeleton (c) is the result of processing with
MEMSYS. (d) is the MEMSYS processed image with a skeleton overlaid on
it.
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6.2 Mammographic images with simulated mi-
crocalcifications

The analysis of MEM in Chapter 4 was applied the TORMAM test object,
which contains tiny features and low contrast details against a uniform back-
ground. In this section we apply MEM to a selection of digital mammography
images with simulated microcalcifications. The mammography images and
other data were generously provided by Prof. Dr. ir. H. Bosmans and Dr A -
K. Carton from work on image quality assessment and detector performance
in digital mammography (Carton 2004).

Experimental method

The images under consideration in this experiment are a composite of real
mammograms with images of simulated microcalcifications whose positions
and properties are known with some accuracy. Before proceeding with the
application of MEM and subsequent analysis, we describe briefly the methods
used to obtain the composite images.

Biopsy specimens of real, malignant microcalcifications were placed on a
4crn PMMA* plate and imaged with an Agfa CR system; the radiographic
settings were 27kVp with a Mo/Mo anode-filter combination and geometric
magnification 2.0 with the fine focus setting. A high dose (averaging 200u:Gy)
was employed to increase the SNR. of the resulting images. Scatter was min-
imised through use of an air gap rather than a grid. Templates Torigina
containing simulated microcalcifications were constructed using properties
such as size, shape and x-ray transmission coefficients of the biopsy speci-
men images. The microcalcifications in these images suffer from a degree of
geometric unsharpness. Idealised templates Tigeq;, Which would be obtained
from an ideally sharp image receptor, were calculated by considering the
MTF of the Agfa system' and then applying image segmentation routines
to isolate the simulated microcalcifications from the background. The Tjgeqn
formed the basis from which templates for general use with any other imaging
systems (with known MTFs), can be constructed.

The simulated microcalcifications were shown by Carton to be indistin-
guishable from real microcalcifications. Software phantoms were constructed
which consisted of 2cm by 2cm frames, with one or more templates randomly
distributed within it. An example image of such a frame is shown in figure
6.4a.

*PMMA: PolyMethyl MetAcrylate
1The actual procedure is similar to the pseudoinverse filter discussed on page 48
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Frequency [cycles/mm]
Figure 6.3: The MTF of the Fuji FCR 5000 MA system was measured under
conditions as close as possible to those used in clinical practice for the ac-

quisition of a standard breast (Carton 2004). Horizontal and vertical profiles
are shown.

The data set for our experiment were mammograms obtained from pa-
tients without known pathology. The mammograms were acquired with a
Siemens Mammomat 3000 unit under routine clinical conditions: breast com-
pression was used and the exposure was determined by the AEC. The geo-
metric magnification is approximately 1; this was contact not magnification
mammography (see page 7.1.2). The image receptor was a Fuji HR-BD CR
plate, which was readout with a Fuji FCR 5000 MA CR reader. The dimen-
sions of the plate were 18 x24cm, giving an image size of 3540x4740 pixels
(a pixel size of 50um).

The software phantoms, based on modifications to Tj4.,;, Were rescaled
to match the resolution of the mammographic data set and blurred with the
MTF for the Fuji FCR 5000 MA system (shown in figure 6.3). The final
composite images, which are the basis of our experiment, were obtained by
multiplying (element by element) the software phantom image with the raw
mammographic images. Each frame measured 200 x 200 pixels in the final
image.

The purpose of our experiment is to investigate the effect of maximum
entropy deconvolution on the visibility of microcalcifications embedded in
a real mammogram. The template type was not varied within a particular
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(a) Microcalcification frame

(b) Position 1

(d) Position 3 {e) Positicn 4

Figure 6.4: An example of mammographic data containing simulated micro-
calcifications. (a) is an image of the original frame showing the locations of
the microcalcifications. The frame was embedded at four locations in the

same breast: (b), (c), (d) and (e).
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mammogram; so the pattern of microcalcifications was repeated at different
locations. Three mammograms were used in the experiment, allowing the
placement of the templates against different background types.

1. Almost homogenous fatty tissue.
2. A mixture of dense and fatty tissue without scattered structures.

3. A mixture of dense and fatty tissue with scattered fibroglandular den-
sities.

Image processing procedure

The composite images of mammograms with microcalcifications were in RAW
file format; the images were 14-bit grayscale images. The images were con-
verted to DICOM using the Osiris image viewer to make the images com-
patible with Matlab and MEMSYS5. The approximately linear nature of
the image data in previous TORMAM experiments is not applicable in this
case as the dynamic range of pixels in these images is much greater. Conse-
quently, the composite images had to be linearised prior to processing with
MEM. The conversion to linear pixel values was achieved with:

Ly = 10(iog—8191+2852 5)-555) (6.2)
) s
with s = 4—log (Z) (6.3)

where L is the latitude and s is the sensitivity of the output data (refer to
page 14). Typical values for these images were L = 2.0 and s; = 0.8.

A system PSF was constructed directly from figure 6.3; a direct mea-
surement of the focal spot or system PSF was not available to us. This was
achieved by measuring points on each curve in figure 6.3 and fitting a poly-
nomial (in a least-squares sense) to these data points. Values between the
vertical and horizontal directions were obtained by interpolation. We were
able to reconstruct the approximate MTF of the Fuji FCR 5000 MA sys-
tem. The PSF required by our maximum entropy deconvolution scheme was
obtained by taking the inverse Fourier transform of the MTF using Matlab.

For the MEMSYS5 processing we chose a flat default image model (with
m = 0.001). We used a noise estimate of 62 = 0.0001 obtained by averaging
noise estimates within the regions of interest containing the microcalcification
templates; the experiment was arranged so that the templates were placed
in tissue regions where the system noise would be approximately constant.
The full-field images were processed with MEMSYS5 on an Intel Xeon 3.2
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Figure 6.5: Pixel intensity profile through a simulated microcalcification be-
fore and after MEM processing.

GHz with 1024MB of RAM. MEMSYS5 converged to the appropriate value
of ¥* in around 9 minutes.

Results

The full-field images were processed but we will show only the cropped regions
of interest here.

Figure 6.6 shows regions within Breast A containing microcalcification
frames, and the MEM restorations of those regions. Also shown is the orig-
inal frame without the tissue background. The frame used in conjunction
with this mammogram contained 6 microcalcifications; the largest measures
636um and the smallest is 366um. The frame was located at two positions in
the original mammogram. In the first region (6.6b) we have mainly homoge-
nous fatty tissue. In the second region (6.6d) we have a mixture of fatty and
dense tissues.

Figure 6.7 shows regions within Breast B containing microcalcification
frames, and the MEM restorations of those regions. Also shown is the orig-
inal frame without the tissue background. The frame used in conjunction
with this mammogram contained 10 microcalcifications; the largest measures
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(a) Microcalcification frame

{b) Breast A: Position 1 {c) MEM of (b)

Figure 6.6: Simulated microcalcifications in Breast A. The original frame
(a) contains 6 microcalcifications. In (b) and (d) we see the frame embed-
ded at different locations and background tissues. The corresponding MEM
restorations are displayed in (c) and (e)
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(a) Micracalcification frame

(b} Breast B: Position 1 (c) MEM of (b)

(&) MEM of (d)

Figure 6.7: Simulated microcalcifications in Breast B. The original frame
(a) contains 10 microcalcifications. In (b) and (d) we see the frame embed-
ded at different locations and background tissues. The corresponding MEM
restorations are displayed in (c) and (e)
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(a) Microcalcification frame

(b} Breast C: Position 1 (c) MEM of (b)

o= A

Figure 6.8: Simulated microcalcifications in Breast C. The original frame
(a) contains 10 microcalcifications. In (b) and (d) we see the frame embed-
ded at different locations and background tissues. The corresponding MEM
restorations are displayed in (¢) and (e)
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727pum and the smallest is 314pum. The frame was located at four positions
in the original mammogram and we show two of them in the figure. In the
first region (6.7b) we have mainly fatty tissue with some scattered structures.
In the second region (6.6d) we have a mixture of dense and fatty tissue with
scattered fibroglandular densities.

Figure 6.8 shows regions within Breast C containing microcalcification
frames, and the MEM restorations of those regions. Also shown is the orig-
inal frame without the tissue background. The frame used in conjunction
with this mammogram contained 10 microcalcifications; the largest measures
790pm and the smallest is 357um. The frame was located at five positions
in the original mammogram and we show two of them in the figure. Both
regions contain mostly dense tissue with scattered fibroglandular densities.

Conclusions

We applied maximum entropy deconvolution to a range of mammographic
data to examine the performance of restoration of images with more realistic
properties. Although there is much less blurring in these contact mammogra-
phy images than those obtained in previous experiments with magnification
mammography, we can address image receptor blur and noise reduction us-
ing MEM. The improvement in microcalcification signal over the surrounding
tissue background is significant (for example, see figure 6.5).

MEM does best on those images where the contrast between microcalcifi-
cations and tissue background is already fairly good, i.e. in regions containing
mostly homogenous fatty tissues. Improvements in visibility are evident with
more complicated backgrounds: where there is a mixture of fatty and dense
tissues around the microcalcifications. In regions dominated by extremely
dense tissues, MEM restorations do not perform as well as with the other
backgrounds.

Some of the restored images of the breast tissues show a somewhat mot-
tled appearance. This is a consequence of deconvolution of structures imaged
at the resolution of the image receptor.
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6.3 Removal of tomographic blur from a skull
phantom

Experimental method

An anthropomorphic skull phantom was placed on top of a table and imaged
using a Philips Bucky Diagnost system with linear tomography option. The
focal spot to image receptor distance was 100cm and the table-top was 6.5cm
above the image receptor. Cut heights through the skull (measured from the
table-top) of 2cm, 5cm, 8cm, 1lcm, 14cm, 17cm and 20cm were obtained
(i.e. 3cm between each plane). The radiographic factors used were 70kVp,
40mAs. These factors were chosen to give realistic levels of quantum noise
in the resulting images. The image receptor was a Philips ACR-3 computed
radiography system utilising a cassette with dimensions 24cmx30cm and a
resolution R = 65.7 pixels/cm. The images of the seven planes through these
cut heights are shown in figure 6.9.

Blurring functions

The blurring functions are calculated for each of the seven planes using equa-
tion 5.7 on page 136. The results are shown in Table 6.1.

Plane 1 | Plane 2 | Plane 3 | Plane 4 | Plane 5 | Plane 6 | Plane 7

Plane 1 1 163 337 523 723 939 1172
Plane 2 262 1 169 349 542 751 977
Plane 3 419 163 1 175 362 564 782
Plane 4 576 325 169 1 181 376 587
Plane 5 733 487 337 175 1 189 391
Plane 6 890 649 504 349 181 1 196
Plane 7| 1046 812 672 523 362 189 1

Table 6.1: The lengths of the blurring functions, measured in pixels, in each
plane of the skull phantom. The object in the focal plane is unblurred. This
is represented as a convolution with a unit impulse.

Image processing procedure

The skull images were pre-processed using Matlab. The image data were
‘cleaned’ to remove spurious bright pixels (see page 98) and linearised via
equation 4.4 as required by our MEM algorithm.
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(a) Plane 1: Cut height 2cm (b) Plane 2: Cut height Scm (c) Plane 3: Cut height 8cm
{d) Plane 4: Cut height 11cm (&) Plane 5: Cut height 14cm () Plane 6: Cut height 17em

efe

(g) Plane 7: Cut height 20cm

[

Figure 6.9: The complete set of tomograms obtained for 7 cut-heights
through the skull phantom.
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MEM requires an estimate of the noise variance which was assumed con-
stant across the mammographic images of chapter 4. This was a reasonable
assumption in those situations because the regions classed as ‘signal’ were not
markedly different from regions recognised as being background, in terms of

" observed pixel luminence values. The situation is different with regard to the
skull images considered in this chapter. Regions outside the skull correspond
to areas in which the x-ray beam is largely unattenuated (large numbers of
detected photons). The estimate of the noise variance, which varies with
the mean number of photons, will be somewhat higher in these areas than
attenuated within the skull. If we estimate the noise variance based on small
regions outside the skull then the effect on the restoration process is rather
conservative; more weight is given to the entropy term which ensures that
evidence for real structure must be stronger than if the variance estimate was
taken from within the skull. While this simple approach is attractive in it’s
pragmatism - selecting an area of constant signal among the structure of the
skull is problematic - it is possible to modify the MEM technique to handle
noise levels which vary across the image. A modification of equation 3.11 for
this situation is:

X = Z (—af—) (6.4)
After linearising the image, pixel values are linearly related to the number
of photons (N) detected at the corresponding position on the receptor. The
noise varignce is proportional to VN (page 16) and so we can estimate ex-
pected noise levels for regions within the skull based on their pixel values. A
directly measured estimate from a uniform region outside the skull is used
ta gomvert the relationship between the relative noise differences to absolute
pixel values. Noise variances for the normalised images typically fell in the
range 0.0001 to 0.0005. The default image model used was that of m; = 0.001
for all 7 (a low valued, flat image).

Maximum entropy deconvolution provides a way of removing the out-of-
plane blurring from a set of tomographic images. We introduced the HFE
filter in chapter 2 and demonstrated an application to tomography on page
133. In this experiment we will compare the performance of HFE filtering
with MEM restoration and also assess the usefulness of HFE as a post-MEM
processing step. In applying the high-frequency emphasis filter we chose the
parameters a = 0.5 and b = 2.0 (a subjective choice - as is often the case
with the enhancement techniques of chapter 2). A second order Butterworth
highpass filter (with radius 5% of the image width) was used to construct the
HFE filter. A Butterworth filter allows more control over the final HFE filter
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Figure 6.10: Pixel intensity profile through the original and the processed
(MEM and HFE) images from plane 5.

‘shape’ and prevents the introduction of undesirable ringing artefacts. The
relative merits of Butterworth, ideal and Gaussian filters in this context is
discussed in considerable detail by Gonzalez and Woods (2001). The Matlab
code for this 7-plane reconstruction is given in Appendix D.7.

Results

In figures 6.11 to 6.17 we compare the original image, a HFE filtered image
of the original, a MEM reconstruction and a post-MEM processed image.
The HFE filtered images allow easier inspection of high frequency features in
the original image. The MEM images show a substantial reduction in out-of-
plane blurring and increased visibility of other features in the skull phantom.
The HFE post-processing of the MEM image emphasises the detail high
frequency content restored by the MEM restoration.
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Examination of pixel profiles across the image in figure 6.10 verify that
structures deemed by the algorithm to be outside the focal plane have been
reduced in intensity whereas other structures have an increased signal. The
overall effect is of increased contrast between out-of-plane blurring and struc-
ture in the focal plane. We briefly discuss some of these results in more detail.

With reference to figures 6.11 and 6.12 (Planes 1 and 2). These tomo-
grams show planes 2cm and 5cm above the table respectively, and cut through
the back of the skull and top of the spinal column. The original images (a)
and (c) can be manipulated? in order to better ‘window’ the contrast. Even
so, details are very difficult to pick out of the overall blurring. The restored
images (b) and (d) show spinal vertebrae fairly clearly - this was not easily
seen in the original images. Also clearly visible (especially in Plane 2) is the
circular outline of the occipital and parietal bones at the back of the skull.

With reference to figures 6.13 and 6.14 (Planes 3 and 4). These tomo-
grams show planes 8cm and 1lcm above the table respectively. The neck
vertebrae are visible in the original image (a) from Plane 3 but are much
more clearly defined in the MEM restoration (b). The nasal bone and cavity
is beginning to emerge from the background blur in Plane 4. The sphenoid
bone, which contributes to each orbit is clearly seen in (d).

With reference to figures 6.15 and 6.16 (Planes 5 and 6). These to-
mograms show planes 14cm and 17cm above the table respectively. The
mandible becomes more prominent as we move upwards through the skull
towards the face-side. Removal of blur allows a better view of the nasal cav-
ity (showing two prominent holes) and some of the teeth. The bones which
contribute to the circular orbits are visible in the original plane 6 tomogram
but they become much clearer after processing.

With reference to figure 6.17 (Plane 7). The final image shows a plane
20cm above the table. This plane cuts through the skull just below the face.
The nasal cavity is again prominent but the orbits, which are mostly below
the cut, are not. The reduction in out-of-plane blurring enables the teeth to
be more clearly visible.

Discussion

We approximated the true 3-D object distribution of a skull phantom with
seven equally spaced 2-D planes 3cm apart. Despite the crudeness of this
approximation our deconvolution technique improves the contrast of features
within each focal plane while suppressing blur outside it (see the pixel profiles
given in figure 6.14c for evidence of this). We compared coronal MRI scans’

¥The Osiris image viewer was used for this purpose.
§ Available online from University of Kansas Medical Centre: http://www.kumc.edu/
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(a) Plane 1: cut-height 2cm (b) Plane 1: HFE

(c) Plane 1: MEM {d) Plane 1: MEM+HFE

Figure 6.11: The original tomogram of the skull phantom is shown in (a). The
result of HFE filtering the original image is shown in (b). The application of
our MEM scheme to the original image resulted in the image (¢). The image
resulting from post-processing the MEM image with HFE is shown in (d).
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(a) Plane 2: cut-height S5cm (b} Plane 2: HFE

(c) Plane 2: MEM (d) Plane 2: MEM+HFE

Figure 6.12: The original tomogram of the skull phantom is shown in (a). The
result of HFE filtering the original image is shown in (b). The application of
our MEM scheme to the original image resulted in the image (c¢). The image
resulting from post-processing the MEM image with HFE is shown in (d).
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(a) Plane 3: cut-height 8cm (b) Plane 3: HFE

{c) Plane 3: MEM (d) Plane 3: MEM+HFE

Figure 6.13: The original tomogram of the skull phantom is shown in (a). The
result of HFE filtering the original image is shown in (b). The application of
our MEM scheme to the original image resulted in the image (¢). The image
resulting from post-processing the MEM image with HFE is shown in (d).



CHAPTER 6. APPLICATION TO REALISTIC IMAGES 168

(a) Plane 4; cut-height 11cm (b) Plane 4: HFE

(c) Plane 4: MEM (d) Plane 4: MEM+HFE

Figure 6.14: The original tomogram of the skull phantom is shown in (a). The
result of HFE filtering the original image is shown in (b). The application of
our MEM scheme to the original image resulted in the image (¢). The image
resulting from post-processing the MEM image with HFE is shown in (d).
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(a) Plane 5: cut-height 14cm (b} Plane 5: HFE

{c) Plane 5: MEM {d) Plane 5: MEM+HFE

Figure 6.15: The original tomogram of the skull phantom is shown in (a). The
result of HFE filtering the original image is shown in (b). The application of
our MEM scheme to the original image resulted in the image (¢). The image
resulting from post-processing the MEM image with HFE is shown in (d).
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(a) Plane 6: cut-height 17cm (b} Plane &: HFE

(c) Plane 6: MEM (d) Plane 6: MEM+HFE

Figure 6.16: The original tomogram of the skull phantom is shown in (a). The
result of HFE filtering the original image is shown in (b). The application of
our MEM scheme to the original image resulted in the image (¢). The image
resulting from post-processing the MEM image with HFE is shown in (d).
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(a) Plane 7: cut-height 20cm {b) Plane 7: HFE

(c) Plane 7: MEM (d) Plane 7: MEM+HFE

Figure 6.17: The original tomogram of the skull phantom is shown in (a). The
result of HFE filtering the original image is shown in (b). The application of
our MEM scheme to the original image resulted in the image (¢). The image
resulting from post-processing the MEM image with HFE is shown in (d).
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of a patient’s head with our tomographic images to assess the visibility of
features in the focal plane. This is admittedly an unsophisticated comparison
as the skull phantom does not contain a brain. Nevertheless, it gives a good
indication of which bones lie within the focal plane. Despite the advantages of
MEM processing some weaknesses of the linear tomographic method remain
an issue. For example, the presence of striping artefacts associated with
linear motion are largely unaffected by the restoration process.

Our noise model in these experiments, which takes into account the vary-
ing noise levels within the image, differs from the one used in chapter 4.
However, in comparing the results shown in figures 6.11 to 6.17 with test
reconstructions based on a forward map assuming a constant noise variance
we can see no discernible differences in the restorations.



CHAPTER 7

Discussion and Conclusions

In this work we have processed images, of both artificial and clinical origin,
from medical imaging techniques in which maximum entropy deconvolution
(and our Hybrid MEM scheme in particular) would be of immediate benefit.
In this final chapter we summarise our findings and discuss possibilities for
further research in these and related areas.

7.1 Magnification mammography

7.1.1 System optimisation options

The basic dilemma in magnification mammography is the trade-off between
exposure time and focal spot size. The long exposure times associated with
small focal spots can be self-defeating, in that patient movement can then
become more problematic than geometric blurring. The magnification mam-
mography technique has therefore become restricted because of constraints
on the radiographic settings (focal spot size, magnification and exposure).
A working MEM deconvolution scheme allows new possibilities for optimis-
ing the radiographic settings. In our experiments we investigated how MEM
processing might be used to offset any detrimental effects to the resulting
image when one or more of the standard radiographic settings were changed.
We summarise these findings below.
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Focal spot size

Our MEM based approach has been applied to the problem of removing
the geometric blurring associated with the finite size of the focal spot in
magnification mammography. The TORMAM results of section 4.2.1 show
an improvement in image spatial resolution and an improvement in terms of
the image signal-to-noise ratio perceived by the observer, as evaluated using
a standard phantom and at a realistic quantum noise level. Measurements
of the improvements support our claim that images obtained at conventional
1.8 magnification, but using a broad focal spot, can be processed to be as
good as images that would be obtained with a fine focal spot.

This successful demonstration of image de-blurring in noisy radiological
images offers the possibility of weakening the link between focal spot size
and geometric blurring in radiology, and thus opening up new approaches to
system optimisation.

Dose reduction

We applied maximum entropy deconvolution to a series of images obtained
with successively reduced x-ray doses (and increasing noise levels). Our re-
sults showed that MEM could compensate for the reduced image quality: we
quantified this improvement by scoring the visibility of fine details and low
contrast features of the TORMAM phantom. The improvements in scores
arose because the SNR of features in the TORMAM phantom had been im-
proved over the original images. In our experiments we found that the reduc-
tion in image quality caused by lowering the dose from 50mAs to 20mAs could
be offset by MEM processing. A reduction in dose from 50mAs to 32mAs
resulted in higher scores being assigned to features in the MEM processed
image. The lowest dose image (10mAs) did not display any improvement
through processing.

Increased magnifications

There are obvious consequences for dose reduction in radiography. Obviously,
a lower dose of radiation would be beneficial to the health of a patient.
Of particular relevance to the magnification mammography work is that a
reduced dose - leading to a skin dose reduction - would be necessary for the
higher geometric magnifications considered in chapter 4 to become useful in
a clinical setting.
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Conventional mammography set-up

In the magnification mammography experiment described in section 4.2,
MEM processing of TORMAM phantom images obtained at the conventional
dose, 1.8 magnification and with a fine focal spot showed an improvement
in feature visibility compared to the original image. The improvement was
quantified using a clinical test object.

The digital mammograms with simulated microcalcifications (Carton 2004)
which were obtained without magnification (in section 7.1.2 also showed an
improvement in the visibility of those microcalcifications after MEM decon-
volution. We point out that variation of PSF with depth is probably more
critical in these images and that future experiments with contact mammo-
grams should take account of that variation.

7.1.2 Further research and refinements

There are several ways to refine the experiments in deconvolution of mag-
nification mammography images described in this work. We briefly outline
some possibilities here.

System optimisation options Further exploration of the relationship be-
tween focal spot size, dose and magnification in combination with de-
convolution. The comparison of broad and fine focal spots seen in
Chapter 4 employed the same dose. The consequences of using a broad
focal spot with a short exposure and investigating the effectiveness of
deconvolution could be a useful experiment.

Implementing high magnification safely At high magnification the in-
tensity of the skin dose would be relatively high. A reduction of x-ray
dose might allow use of higher magnifications with the resulting loss of
image quality compensated for by MEM image restoration.

Better focal spot definition The PSFs used to deconvolve the images
shown in Chapter 4 were obtained by placing a pinhole in the plane
of the object (either separately or at the same time). Ideally, the PSF
should be obtained by using a magnified pinhole projection method and
then rescaling the image according to the geometric set-up. A PSF ob-
tained this way would be less susceptible to degradations from noise
and would provide a better measurement of the focal spot contribution
to the blurring.

3D varying PSF One of the assumptions we made in discussing restoration
methods in Chapters 2 and 4 was of the invariance of the PSF across the



CHAPTER 7. DISCUSSION AND CONCLUSIONS 176

image. However, images obtained with a multi-pinhole setup showed
that the PSF did vary somewhat in shape and intensity across the im-
age. A future refinement to this work would take that variation into
consideration. The depth-varying nature of the PSF is another factor
which might be accounted for as part of some future research. When
the breast is compressed in mammography there will be a variation in
the amount of blur in the resulting mammogram because some features
in the breast were actually closer to the focal spot than others. The
rate at which the PSF size varies with depth is negligible in the magni-
fication mammography setup. However, in contact mammography this
variation is considerably greater and some allowance should be made
in the forward map for the image formation process. For the deconvo-
lution of mammograms in section 6.2 we assumed the dominant source
of blur was image receptor blur. Focal spot* blurring would also have
been present to some extent and the method might have yielded better
images if some account of PSF and the variation of it across the breast
thickness had been observed.

Additional processing There are a number of image processing techniques
that could be used alongside MEM to enhance the performance of
the processing described in this work. High frequency emphasis fil-
ters might be used as a post-MEM processing step to enhance the
appearance of microcalcifications. Wavelet analysis also allows for the
extraction of small-scale features after MEM has been applied. The use
of wavelets to denoise an image prior to MEM processing might also be
a fruitful approach (see the examples in section 2.2.2). Alternatively,
wavelet-based maximum entropy deconvolution (Starck and Murtagh
1994; Starck and Pantin 1996) techniques exist. Applications to other
imaging problems have included improvement of maps of the Cosmic
Microwave Background (Vielva et al. 2001).

7.2 Linear tomography

We described a technique for modeling the linear tomography imaging system
and modified our Hybrid MEM algorithm to be consistent with this model.
Tomograms processed with our technique showed a substantial reduction in
the blurring associated with structures outside of the focal plane. A further
improvement in the visibility of features was seen after post-processing with
a high frequency emphasis filter.

*Focal spot measurements, in this case, were not available to us.
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7.2.1 Further research

There are several further ideas which could potentially benefit the tomogra-
phy processing techniques discussed in this work:

Reduced swing angle Experiments to gauge the usefulness of our tech-
nique using smaller tomographic swing angles (perhaps 10° — 30°).
Smaller swing angles result in thicker tomographic ‘slices’

Focal spot blurring In our model formulation it was assumed that geomet-
ric unsharpness was negligible. However, the magnifications encoun-
tered in the 7 planes of the skull phantom ranged from 1.1x (nearest
the image receptor) to 1.4x in the plane closest to the focal spot. A
further refinement to the technique would be to incorporate geometric
blurring deconvolution into the formulation (possibly as a post-MEM
processing stage).

Other post-processing methods MEM reduces a substantial amount of
out-of-plane blurring and we used simple Fourier techniques to enhance
the restored images. Post-processing using other techniques (wavelet
transforms, for example) might also have been used.

More complex motion Appropriate modification of the forward map would
make the technique amenable to more complex types of focal spot/image
receptor motion.

It would be interesting to see if the acquisition of fewer planes, which
would allow for a reduced dose to the patient, could reconstruct more planes
than we have tomographic data for. For example, how well could we recon-
struct 7 planes from 3 tomograms? Tomosynthesis techniques (page 131)
which allow the generation of any plane retrospectively is a better alterna-
tive if available. However, we will discuss potential applications to a similar
blurring problem in dental radiography on page 179.

7.3 Deconvolution: further applications

Heavier beam filtration

Although there has been recent research into the production and use of mono-
chromatic x-rays in digital mammography (Lawaczeck et al. 2005) it is usually
the case that ordinary x-ray tubes produce a broad energy spectrum (similar
to those seen in section 1.2). Filters modify the x-ray spectrum by reducing
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the non-image contributing low energy photons (which would be absorbed
by the breast) and suppressing the contrast-reducing high energy photons.
The normal method of modifying the spectrum is to introduce metallic foils
of high atomic number into the beam path. There has been considerable re-
search into the potential savings in patient dose by optimisation of the energy
spectrum to suit the particular imaging application (Shrimpton et al. 1988;
Sandborg et al. 1989; Hansson et al. 1997). In mammographic imaging the
target/filter combination is usually molybdenum or rhodium. Monte Carlo
techniques to evaluate the effects of target/filter combinations on factors in-
cluding average glandular dose were carried out by Dance et al. (2000b).
Analysis of mammographic image data to gauge the effect of different target
and filter combinations on patient dose were published by Chevalier et al.
(2004). The dose reducing effects and improvement to image contrast of
aluminium, copper, titanium and gold filters in abdominal and dental radi-
ography was discussed by Sandborg et al. (1994). In other dose reduction
investigations in dental radiography, filtering by niobium (Calicchia et al.
1996) and the rare-earth metal erbium (Horner et al. 1988) have proved to
be useful.

There is attenuation of energy across the whole spectrum when filtration
is used. The total output power, which is crucial to the image formation
process, is reduced by filtration. The power can increased to compensate for
this, but the resulting heat load on the target can cause problems; there are
practical limits to how heavily the beam can be filtered. The use of a broad
focal spot would go some way to prevent the possibility of tube burn-out, but
as we have seen already, this introduces greater penumbral blurring into the
final image. However, the blurring introduced by a broad focal spot can be
compensated for without loss of image quality in a mammographic setting
by post processing with MEM (Jannetta et al. 2004). The application of
maximum entropy deconvolution, in conjunction with the use of broad focal
spots, may open up new optimisation research into filter choices allowing
heavier filtration of the x-ray beam.

Scatter deconvolution

The causes and effects of radiation scatter were introduced in Chapter 1
(page 9). In the mammography and tomography experiments considered in
this work, image degradation due to scatter was not specifically addressed
in either of the image formation models for those problems; instead it was
treated as an inseparable component of the overall noise which also comprised
quantum noise and image receptor noise.

Scatter can be treated as another source of blurring and this approach



CHAPTER 7. DISCUSSION AND CONCLUSIONS 179

has been used to apply deconvolution to images degraded by scatter. A
technique similar in approach to the inverse frequency filters discussed in
Chapter 2 has previously been applied to images of suitable test objects
(Seibert and Boone 1988). The scatter PSF was modeled as a modified
Gaussian distribution whose ‘shape’ was fitted to measurements taken from
images of the test object. Seibert’s results showed a reduction of scatter and
an improvement in radiographic contrast. An improved method using an
edge-spread technique to measure the ratio of scattered radiation to primary
radiation is discussed by Cooper et al. (2000).

Tomosynthesis and 3D breast imaging

Our linear tomography scheme for reducing the out-of-plane blur could be
adapted to treat images obtained with tomosynthesis (described on page
131). There is a degree of overlap with our mammography work as there is a
large amount of recent research in applying 3D techniques to breast imaging.
In conventional mammography, the overlapping structures within the breast
can potentially hide microcalcifications or produce shadows in the resulting
images which may mimic a lesion. Tomosynthesis provides a method of over-
coming these problems. A description of digital tomosynthesis techniques
applied to breast imaging is given by Niklason et al. (1997). See also Simon-
etti et al. (1998); Chen and Ning (2003); Gong et al. (2004). Removal of
tomographic blur from mammograms with our modified MEM scheme could
potentially increase feature visibility while at the same time increasing SNR
of microcalcifications in the focal plane.

Dental panoramic tomography

Dental panoramic tomography (DPT), also called orthopantomography, is a
technique which is widely used to obtain radiographs of the teeth and jaw.
We describe the technique briefly here, but more detailed introductions and
reviews of DPT can be found elsewhere: for example, refer to Murray and
Whyte (2001) and Moore (2002). DPT has traditionally used film-screen im-
age receptors but the merits of digital receptors are currently being explored
(Carmichael et al. 2000; Ekestubbe et al. 2003) with some studies concluding
that digital systems are as accurate as film systems (Wenzel 2000; Molan-
der et al. 2004; Luangjamekorn et al. 2005). Advances in the methods and
technology of digital DPT have been described in recent literature: see Mol
(2004) and Hatcher and Aboudara (2004).

The implementation of DPT is similar to the tomography techniques de-
scribed in Chapter 1. The DPT machine itself is constructed in such a way
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that the movement of focal spot and image receptor follows the profile of
the mandible. DPT systems map the ‘curved’ shape of the jaw to a long,
‘straight’ projection on the receptor. All the teeth, both upper and lower,
are effectively in the same image layer and in sharp focus. Features out-
side the focal layer are blurred and distorted to varying degrees; the effect
of out-of-layer blur is to reduce the visibility of the sharp, in-focus features.
The blurring associated with DPT is only slightly more complicated than the
linear tomography situation seen in Chapter 5. Most of the blurring is obvi-
ously due to the bulk of attenuating bone and tissue being ‘behind’ the teeth.
The application of MEM in our work used several image planes to iteratively
restore the postulated ‘true’ slices. The method would not require much
modification if additional image layers were available in a DPT situation.
This would obviously result in a higher patient dose so is not a particularly
feasible approach. In the usual case where a single image is obtained then the
situation is very ill-posed. However, the ability to incorporate prior knowl-
edge into the formulation gives MEM an advantage over other deconvolution
techniques; perhaps a crude estimate of the attenuating properties of those
layers beyond the focal-layer would allow a modified MEM scheme to con-
verge to solutions consistent with the observed image. Some of the image
enhancement methods discussed in Chapters 2 and 5, such as the wavelet
based removal of blur (page 132) or the high frequency emphasis filter (page
133) might also prove to be useful, either alone or as post-processing steps
to MEM.

Digital angiography

Angiography is a technique to image the blood vessels of the body by injecting
a contrast medium/dye thus rendering them highly attenuating relative to
surrounding tissue and bone. In the original technique, now referred to as
digital subtraction angiography, a mask image is subtracted from an image
of the same region in which the attenuating dye is flowing moments later.
In the resulting image the blood vessels are the most prominent feature.
There are several variants of this technique including the use of, for example,
MRI technology rather than an x-ray source and now also without image
subtraction.

There is a potential application of MEM deconvolution to 3D rotational
angiography (Cornelis et al. 1972; Kumazaki 1989, 1991). In this mode of
imaging multiple views are obtained following a single injection of the con-
trast medium. However, an increased radiation dose and prolonged injection
of the dye are necessary for useful images to be obtained. Attempts to
reduce the inherent problems of noise and artefacts using simple filtering
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techniques have been described in recent literature (Meijering et al. 2002;
Wong and Chung 2004). The future application of MEM deconvolution to
3D rotational angiography may have similar benefits for system optimisation
to those already discussed for magnification mammography.

7.4 Conclusions

In this work we have investigated several medical imaging problems, with
particular emphasis on magnification mammography and linear tomography
with CR. We have shown that a modified ‘hybrid’ version of the historic
maximum entropy method can provide a radiographer with more flexibility
in choosing radiographic settings in magnification mammography. With ap-
propriate modification of the Hybrid method in relation to linear tomography
image formation process, a substantial reduction in out-of-plane blurring is
possible.

More generally, the demonstration of applicability of MEM in noisy ra-
diographic images suggests that this technique could be a useful tool in the
optimisation of digital radiology.
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The Fourier Transform

The Fourier transform F(u,v) of a two variable, continuous function f(z,y)
is defined as:

1 [® [® .
F(u,v) = 5 f / flz,y)e 2wty drdy (A.1)

where i = {/—1. Conversely, f(z,y) can be recovered from a given F(u,v)
by application of the inverse transform:

flz,y) = / / F(u,v)e?™ @40 dydy (A.2)

Equations (A.1) and (A.2) are together called the Fourier transform pair®.
These equations can be discretised to represent images, which are themselves
digitised representations of continuous objects. The discrete Fourier trans-
form of an image (with dimensions M x N) is given by:

M-1N-1
1 —i2mr(ux v
F(u,v) = _]\I—N Z Z f(xay)e 2r(ua/M-+oy/N) (A3)

z=0 y=0
Similarly, the inverse discrete Fourier transform is given by:

M-1N-1

f(iI?, y) — Z Z F(u, ,U)ei21r(uz/M+vy/N) (A4)

z=0 y=0

*The factor 1/27 in equation A.1 can alternatively placed on the RHS of equation A.2.
Another equivalent representation is to include the factor 1/+/27 in both equations.

I
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Equations (A.3) and (A.4) comprise the 2-D discrete Fourier transform (DFT)
pair’ . In all of the above equations u, v represent the frequency domain vari-
ables and z, y are the spatial domain variables. Samples in the frequency and
spatial domains are related by the following:

1
Au = s (A.5)
and
Av=— (A.6)

fCorresponding arguments to those given for factor 1/27 in the continuous DFT apply
to the location of the factor 1/M N in equations A.3) and (A.4
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Il1l-posed inverse problems

B.1 Conditions leading to a singular problem

It was stated in section 3.1 that image restoration problems can be singular,

i.e., exact recovery of the true image distribution from the observed image is

not possible. We examine conditions leading to a singular problem here.
We note that two functions are orthogonal over the interval [a, b] if

b b
/ / h(e, B)o(a, B) dadB = 0 (B.1)

If the function h has parameters 4, j then h(a, 8,1, ) and z(c, §) are orthog-
onal over the interval [a, b] if:

/ b / * hes i, j)(o, B dadB = 0 Vi, j (B.2)

The function h is termed singular with respect to z in this case and restora-
tion is not possible. If the true image distribution comprises of a function
which is orthogonal to h and a function Z which is not, then: ’

b b b b
/ _/ h(a, B, 5)[o(a, B) + E(a, )] dodf = / / h(a, B, §)(a, ) dadp

(B.3)
The existence of the orthogonal component cannot be inferred from the ob-
served image. Image restoration problems can often be singular.

1
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B.2 Demonstration that image restoration is
ill-conditioned

It was asserted in section 3.1 that the problem of image restoration was an
ill-posed problem. The ill-conditioned behaviour of the restoration process
was demonstrated by Phillips (1962) through use of the Riemann-Lebesgue
lemma:

b b
lim Jim / / h(o, B) sin(8a) sin(¢8) dadg = 0 (BA)

where h(6, ¢) is an integrable function. If we have a function h with para-
meters ¢, j then equation (B.4) can be written:

b b
lim lim / / h(e, B,1, j) sin(6a) sin(¢fB) dadf = 0 (B.5)

¢$—o00 8—00

For a linear image receptor with no inherent system noise we have:

i) = [ N i " h(e By, 5)(i, §) dadp (B6)

Consider equation (B.5). We can add a sinusoid of infinite frequency to
the true image distribution and investigate the effect on the observed image
data:

dGi, j) = /_ ” /_ " ho, Bi, 1)z, §) + sin(0a) sin(¢8)] dadB  (B.7)

Multiplying out we obtain:

i) = [ [ 0,0, 3)0.) + b(a B3, ) sin(Ba) sin(9)] dads

(B.8)
But by the Riemann-Lebesgue lemma given in equation (B.5) the second
term on the RHS is zero and the equation reduces to:

di,i) = [ N / " h(aB,i,)ati, j) dodf = d(5,7) (B9

So adding an infinite frequency sinusoid to the true image distribution has
no effect on the observed image.
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Maximum Entropy

C.1 Minimization of x?

The degree of misfit between observed data d and mock data d is quantified
by the x? statistic:

732
=Y (d—dy) 2d‘) (C.1)
i i

where o2 is the noise variance (assumed to be Gaussian) associated with each
pixel in the image. The noise (all the values of 2) will vary across the image
and is not known exactly in practice. It is also a combination of sources
such as quantum noise and receptor noise. A noise map could perhaps be
estimated based on knowledge of the radiation dose, attenuation properties
of the object. A more pragmatic approach might be to take as an average
value for the whole image, a measurement from within some suitable sub-
region of the image. If the noise is taken to be constant across the image
then the above equation simplifies to:

(d: — d.)?
- Dld—dy 2
The simplifying assumption of constant noise was employed for many of the
MEM reconstructions in this work where such an approximation is arguably
valid. The mock data is generated fromd; = ) p A;j zj. Let C be the function

we wish to minimise:
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>oi(di — ZZ;j Ay z5)? (C3)

To find the minimum, the strategy is therefore to differentiate equation (C.3)
and set the derivative to zero. Differentiating, we obtain:

oC
Oz, = (2/0® Zd—ZA%JxJ)( U(%:)
= (2/02)2 (di — ZAij ;) (—AijOix)
= (—2/02)Z(d¢—ZA,~j ;) Ak (C.4)

C:Xzz

So for a minimum we require:

ocC

5. =0 (C.5)

Therefore

("“2/0'2) Z(di - ZAij CCj)Aik = (
Z(di - ZAij x;)Aix = 0 (C.6)

The term d; — Ej A;j z; is simply a vector v; and so we have:

Z'Uz'Aik =0 (C7)

The matrix A is non-trivial so we have:

J

Minimising x? is therefore equivalent to solving equation (C.8). In matrix
notation this is:

|
o
a

AAx =
r = A'd (C.9)
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C.2 Deriving the gradient and Hessian of ()

C.2.1 Derivatives of the entropy S
The entropy associated with the reconstructed image Z is given by:
The gradient is obtained by differentiating this expression with respect to
T
oS
0z;
The second derivative is obtained by differentiating again, with respect to
Zj:

=lnm; —Inz; (C.11)

028 5;
Ty (C.12)

C.2.2 Derivatives of x?

Let d; denote the observed data and Z; the estimate of the true (hidden)
image distribution. In this analysis we combine the spatially invariant ICF
and PSF into a single blurring function A = ¢*h. Mock data d; is generated
by:

(L‘ = ZAj—-ii.j (013)
J

The degree of misfit between the mock data and observed data is quantified
by the x? statistic:

1 ~
2 _ 2
X'=— Z(di — d;) (C.14)
where 02 is the noise variance, taken to be constant across the image. To

obtain the gradient of this expression we will need some other partial deriv-
atives. Differentiating equation C.14 with respect to dj gives:
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8)(2 1 o 6(2,
—_— = == 2(d; — di =
ddy, o® Z (@ )8dk
1
= - > 2(d; — di)di
2 A
= —=3 ) _(d—d) (C.15)

Differentiating equation C.13 with respect to Zj gives:

dd;
J
= Ak—'i (016)

We now have the information required to form the gradient of equation C.14:

¢ _ 500
afik B B(f, ai'k

%

2 -
= T2 (di — di)Ax—i
2 , A
= T E :A;Zr-k(di —di) (C.17)

The gradient of x? is therefore the convolution of AT with d — d. The second
derivative is obtained by differentiating equation C.17 with respect to Z;.

Px? 2
8,08, o YZ;AJ"*'A’H (C.18)
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Matlab codes

D.1 High pass and lowpass filters

function [f,G,H]=imhlpass(I,DO,HORL,filtertype,varargin)

%
%

[£,G,H]=imhlpass(I,DO0, ’HP or LP’,’filtertype’,bn)

Highpass and lowpass frequency filtering.
The three types of filter are:
(1) Ideal

(2) Butterworth
(3) Gaussian

The input arguments depend on the type of filter being employed. There are a few parameters

common to all filters:

DO is the cutoff frequency

’LP’ and ’HP’ represents lowpass and highpass respectively

The output arguments are the same for each filter.

f is the filtered image

G is the transfer function of the filtered image

H is the transfer function of the filter
Ideal filter
[f,G,Hl=imhlpass(I,D0, ’LP’, ideal’)
[f,G,H]=imhlpass(I,D0, ’HP’, ’ideal’)

Butterworth filter

[£,G,H]=imhlpass(I,DO, ’LP’, buttervorth’,bn)
[£,G,H]=imhlpass(I,D0, ’HP’, ’butterworth’,bn)

bn represents the order of the filter.

IX

Ideal lowpass
Ideal highpass

Butterworth lowpass
Butterworth highpass
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% Gaussian filter

% [£,G,H]=imhlpass(I,D0,’LP’, gaussian’) Gaussian lowpass
% [£,G,H]=imhlpass(I,DO, ’HP’, ’gaussian’) Gaussian highpass
%

% The input image can be of type UINT8, UINT16 or DOUBLE. The output image has the same class
% as the input image.

%

% These are implementations of the filters in “"Digital image processing (2nd Ed)"

% by Gonzalez and Wintz.

% Check the number of arguments
error(nargchk(4,5,nargin))

% Image dimensions
[m,n]=size(I);

% DFT of the image
F=£f£t2(I);

% Form a mesh for the transfer function
[v,u]l=meshgrid(1i:n,1:m);

if nargin==5
% Butterworth filter
bn=varargin{i};
switch HORL
case {’LP’}

D=sqrt((u-m/2)."2+(v-n/2)."2);
H=1./(1+(D./D0) .~ (2%bn));

case {’HP’}
F=£££2(1);

% Design the filter
[v,ul=meshgrid(i:n,1:m);

D=sqrt((u-m/2)."2+(v-n/2)."2);
H=1./(1+(D0./D) .~ (2%bn));
end

else

switch filtertype
case {’ideal’}
switch HORL
case {’LP’}
D=sqrt ((u-m/2).“2+(v-n/2)."2);
H=ones(m,n);
HI=find(D<DQ); HO=find(D>DO);
H(HI)=1;
H(HO)=0;
case {’HP’}
D=sqrt ((u-m/2)."2+(v-n/2)."2);
H=ones(m,n);
HI=£find(D<DQ); HO=find(D>DO);
H(HI)=0;
H(HO)=1;
end

case {’gaussian’}
switch HORL
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case {’LP’}
D=gqrt((u-m/2) .~2+(v-n/2)."2);
H=exp((D."2)./(~2%(D0"2)));

case {’HP’}
D=sqrt((u-m/2) .~ 2+(v-n/2)."2);
H=1-exp((D."2)./(-2%(D0"2)));

end

end

end

% Shift the transform and multiply with original image transform
H=fftshift (H);
G=F .*H;

% Convert filtered image to spatial domain and output
f=real (ifft2(G));

% Make output type same as input type

% 8-bit

if isa(I,’uint8’)==1
f=uint8(round (£f-1));

end

% 16-bit

if isa(I,’uintl6’)==1
f=uint16 (round (f-1));

end

% % double

% if isa(I,’double’)==1

% f=im2double(f);

% end

XI
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D.2 High frequency emphasis filter

function [g,H]=imhfe(f,a,b,D0,filtertype,varargin)
% [g,H]=imhfe(f,a,b,D0,’filtertype’,bn)

% will form a high frequency emphasis (HFE) filter transfer function
% and apply it to an image. The HFE filter modifies the transfer functiom
% of a highpass filter. The three types of filter are:

% (1) Ideal
% (2) Butterworth (must supply additional argument bn (1,2,3,...etc)
% (3) Gaussian

% £ is the input image (type UINTS8)
% HP is the tranafer function of the highpass filter
% a,b are the parameters which define the HFE function according to:

% H(u,v) = a + beHP(u,v)

% where a>=0 (typically, 0.25 < a < 0.5)
% and b>a (typically, 1.5 < b < 2.0)

% g is the output image (type UINT8)

% H is the transfer function of the HFE

%

% Use IMADJUST or HISTEQ to adjust the histogram of the output image if necessary

% Form the specified high pass filter HP
if nargin==6
bn=varargin{i};
[hp,G,HPass]l=imhlpass(f,DO0, ’HP’ ,filtertype,bn);
else
[hp,G,HPass]=imhlpass(f,DO, HP’ ,filtertype);
end

% Form the high frequency emphasis filter
H=atb*HPass;

F=fft2(f);
Gout=H.*F;

% Convert filtered image to spatial domain and output
g=real (ifft2(Gout));

% Make output type same as input type

% 8-bit

if isa(f,’uint8’)==1
g=uint8(round(g-1));

end

% 16-bit

if isa(f,’uinti6’)==1
g=uint16 (round(g-1));

end
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D.3 Inverse and pseudoinverse filters

function [f,H]=impinverse(I,PSF,lambda)
% [£,Hl=impinverse(I,PSF,lambda)

% This function will restore an image using an inverse filter.

% I is the degraded input image (type UINT8).
% h is the PSF matrix.
% lambda is the threshold value, chosen to avoid inverting zeros in the frequency domain.

% £ is the restored image (type UINTS8)
% H is the transfer function of the inverse filter

% Note: With lambda = O, the filter is a straightforward inverse filter
% With lambda > 0, the filter becomes a pseudéinverse filter

%

% Choose lambda > 0 for noisy images.

L/

%

% See also IMWIENER

[m,n]=size(1); % Image dimensions
[mm,nn}=size(PSF); Y% PSF dimensions

po=m+mm; pn=n+mn; % Calculate padsize

% Calculate the FFT of the padded image and padded PSF
H=psf2otf (PSF, [pm pnl);
G=f£t2(I,pm,pn);

% Replace values in 1/H which are < lambda in abs(H)
Hlambda=find (abe (H) <lambda) ;

HI=1./H;

HI (Hlambda)=1lambda;

% Calculate the transform F of the inverse filtered image
F=HI.*G;

% Convert back to spatial domain
=ifft2(F,pm,pn);
f=real(f); f=uint8(round(f-1));

% Crop the output image to the same dimensions as the input image
window=[{0 O n m};
f=imcrap(f,window);
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D.4 Wiener filter

function [f,HW]=imwiener(g,h,K)

% [f,HW]=imwiener(g,h,K)

9

% This function will restore an image using a Wiener filter. The input can be
% a grayscale or RGB colour image.

"

%

% g is the degraded input image (type DOUBLE)

% b is the PSF matrix

% X is the constant term - an approximation to 1/signal-to-noise ratio
%4

% f is the restored image

% HW is the Wiener filter transfer function

%

% Setting K=0 reduces this to an inverse filter.

% Blur the image edges to reduce ringing effects

g=edgetaper(g,h);

% Store the image type of the degraded image
gtemp=g(1);

[m,n,chl=size(g); % Image dimensions

[mm,nn]=size(h); % PSF dimensions
pm=m+mm; pn=n+nn; % Calculate padsize
g=im2double(g);

% Is this a colour image (3 channels)?
flageiargh(g);

% Calculate the FFT padded PSF
H=psf2otf(h, [pm pnl);

% Calculate the transform F of the Wiemer filtered image
HSTAR=conj (H); HP=HSTAR.*H;
Hw=(HSTAR. / (HP+K)) ;

for its=1:ch ¥ Calculate the FFT of each channel of the padded image
G(:,:,its)=fft2(g(:,:,its) ,pm,pn);

F(:,:,its)=HW.*G(:,:,its);

end

% Convert back to spatial domain
f=ifft2(F); f=real(f);

% Convert restored image to same type as original (d)
if isa(gtemp,’uint8’)==1
f=im2uint8(£);
end
if isa(gtemp,’uinti16’)==1
f=im2uint16(£);
end
if isa(gtemp,’double’)==1
f=im2double(£f);
end

% Crop the output image to the same dimensions as the input image
window=[0 0 n m]; f=imcrop(f,window);
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D.5 Maximum entropy

function [v,x,CR,alpha,F,res]=immem(d,A,sigsq,b,ICFW)
% IMMEM.m will restore an image using Maximum Entropy Method.

% [v,x,CR,alpha,F,res]=IMMEM(d,A,sigsq,b,ICFW);

% d === Data/degraded image (type UINT8 or UINT16)

% A === Normalised PSF

% sigsq === noise variance (sigma~2)

% b === the default (flat) image value

% ICFW === Width of the intrinsic correlation function (Use ICFW=1 for no pixel correlations).

% v === the visible (maxent) image (same type as d)

% x === the estimate of the hidden image (same type as d)

% CR === ratio of Chi_Restored to Chi_Expected

% alpha === final value of the parameter giving weight to the entropy
% F === Movie frames for intermediate stages of the restoration

e KRR R AL RAB BRI RRARRAIRRLRIATRIARABRAAR IR L AR R SRR hhhhhhlhhhhhhhbhhhbhibhhbhhhhh
tic; % Start timer
dtemp=d(1); % Store the image type of the degraded image

[m,n]=size(d); dim=size(d); ¥ Image dimensions (m,n). Stored in dim.
[mm,nn]l=gize(A); N=prod(dim); NN=mm#nn; % PSF dimensions

TolChi=0.1; % Termination criteriom for CR
ICF=fspecial (’gaussian’,ICFW,1); % Gaussian ICF (user-specified size)
PSF2=conv2(A,ICF, *full’);

% Blur the image edges to reduce edge ringing effects in the restored image
d=edgetapar(d,A);

% Convert images to DOUBLE and scale to range [0 1] and convert to vectors
d=im2double(d) ;
d=d(:);

% Optimisation parameters

1lb=(1/1024)*ones(N,1); ub=ones(N,1); % Upper and Lower bounds on the solution
alpha=1e+3; % Initial value of alpha

x0=b*ones(N,1); % Initial guess at a solution

options=optimset(’MaxPCGIter’,5,’MaxFunEvals’,50,’Grad0bj’.’on’,’Hessian’,’on’,’Display’,’final’);
disp(’ *);

81 = sprintf(’ its alpha Chi~2/N’);

disp(s1)

CR=inf; its=1;

while abs(CR-1)>TolChi

% Optimisation (x is the vector of restored image data)
x=fmincon(@entropy_fun,x0,[1,[1,[1,{1,1b, 1, [],options,A,PSF2,d,b,n,n,N,sigsq,alpha,dim);
x0=x;

% Calculate Chi-squared Statistic
y=mockdata(z,PSF2,dim) ;
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CR=chi2(d,y,sigsq); CR=CR/N; % Chi"2 relative to expected value of N

% Increase or decrease alpha for next round of iterations

oldalpha=alpha;
if CR>1
dalpha=-alpha*((CR-1)/CR);
else
dalpha=alpha*(1-CR);
end
if abs(CR-1)<2.5

XVI

options=optimset (’MaxFunEvals’, 50, ’Grad0Obj’,’on’,’Hessian’,’on’, ’Display’, *final’);

end
alpha=alphatdalpha; % New value of alpha

% Generate movie frames and store in F
xi=reshape(x,dim) ;

figure,imshow(x1, 'notruesize’)
F(its)=getframe;

close

its=its+1;
pack;

82 = sprintf(°\t %d \t %0.5g \t %0.56g’,its-1,0ldalpha,CR);

disp(s2)
end

x=reshape(x,dim);
v=conv2(x,ICF, 'same’);

% Final movie frame with restored image
figure,imshow(v, *notruesize’)
F(its)=getframe;

close

% Residuals
res=imabsdiff (reshape(d,dim),v);

time_elapsed=toc
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function [Q,dQ,d2Q]=entropy. fun(x,A,PSF2,d,b,m,n,N,sigeq,alpha,dim)

% Entropy (Skilling 1988) and derivatives
S = gum(z - b - (z.*(log(x/b))));

DS=1 - log(x/b);
D2S=gpdiags((1./(1./x)),0,N,N);

% Trial restoration
y=mockdata(x,PSF2,dim);

% Chi~2 and derivatives

C=chi2(d,y,sigsq);

DTC=reshape (d-y,dim); DTC2=conv2(DTC,A’,’same’);
DC=(-2/sigaq)*DTC2(:);

% Objective function, gradient and approximate Heesian

Q = —alpha*S+C;
d = -alpha*DS+DC;
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d2Q = -alpha*D2S;
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function y=mockdata(x,PSF2,dim)

% Trial restoration. Generation of mock data from an estimate of the hidden image.

% x === estimate of the true image data (matrix)

% PSF2 === PSF convolved with ICF

% y === mock data (matrix)
% dim === dimensions of the image

x=reshape (x,dim) ;
y=imfilter(x,PSF2, 'conv’, ’same’, 'replicate’);
y=y(:);
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function C=chi2(obs,tr,s2)

% Calculate the Chi-Squared statistic for observed and trial data
%

% obs === the observed image data (vector)

% tr === the trial/mock data (vector)

% 82 === the noise variance (sigma~2)

C=sum({obs-tr). 2)/s2;
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D.6 Maximum entropy: 3-plane tomographic
reconstruction

function [x1,x2,x3,CR,alpha]=me_tomo3(d1,d2,d3,sigsq)

% [vi,v2,v3,x1,x2,x3,CR,alphal=me_tomo3(d1,d2,d3,A1,42,A3,8igsq)

.

%

% me_tomo3.m will recomstruct 3 planes using MEM.

%

% di is the degraded image

% Ai is the normalised PSF

% sigsq is the noise variance (sigma~2)

% b is the default image (same type as d)

%

% vi is the estimate of the visible (maxent) image (same type as d)
% xi is the estimate of the hidden image (same type as d)

% CR is the ratio of Chi_Restored to Chi_Expected

% alpha is the final value of the parameter giving weight to the entropy
%

% The entropy is maximised by using fmincon to minimise the function:
% alpha*S + C where

.

A

% C = (1/sigsq)*sum({d-A*x)."2) and S = sum(x.*(log(x./b)-1))

% Start timer
tic;

global A1l A2 A3 Bi B2 B3 C1 C2 C3

% Al=1; A2=ones(1,91)/91; A3=ones(1,193)/193;
% Bi=ones(1,173)/173; B2=1; B3=ones(1,98)/98;
% Ci=ones(1,261)/261; C2=ones(1,93)/93; C3=1;

% Sim stacks

Al=1; A2=ones(1,10)/10; A3=ones(1,20)/20;
Bi=ones(1,10)/10; B2=1i; B3=ones(1,10)/10;
Ci=ones(1,20)/20; C2=ones(1,10)/10; C3=1;

% Store the image type of the degraded image
dtemp=di(1);

[m,n]l=size(dl); % Image dimensions
dim=size(dl);
N=m+n ;

% Default image: Uniform, low intemnsity background
b=0.005;

TolChi=0.25;
di=d1(:); d2=d2(:); d3=d3(:);

% Optimisation parameters

options=optimset(’TolX’,0.005, ’MaxFunEvals’,30,’Grad0bj’,’on’, ’Hessian’,’on’, 'Display’,’iter’);
disp(’ ’);

sl = sprintf(® its alpha Chi~2/N’);

disp(s1)

1b=zeros(3*N,1); ub=ones(3*N,1); % Upper and Lower bounds on the solution
alpha=250; % Initial value of alpha
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x0=b*ones(3+N,1); % Initial guess at a solution

its=0;
CR=inf;

while its<b
%while abs(CR-1)>TolChi

% Optimisation (x is the vector of restored image data)
=fmincon (@mem_tomo3_fun,x0,[1,[1,[1,[1,1b,ub,[],0ptions,d1,d2,d3,n,n,N,sigsq,alpha,b,dim);
x0=x;

x1=x([1:N]); xi=reshape(x1i,m,n);
x2=x ([N+1:2+#N]); x2=reshape(x2,m,n);
x3=x([2*N+1:3%N]); x3=reshape(x3,m,n);

% Calculate global Chi~2 statistic
yl=tomo_trialres(x,Al1,A2,A3,dim,N);
[CR1,Cltemp]l=tomo3_chi2(dl,yl,sigsq);

y2=tomo_trialres(x,B1,B2,B3,dim,N);
[CR2,C2temp] =tomo3_chi2(d2,y2,sigsq) ;

y3=tomo_trialres(x,C1,C2,C3,dim,N);
[CR3,C3temp]l =tomo3_chi2(d3,y3,8igsq);

Ctemp=[Citemp;C2temp;C3temp] ;
C=(1/8igsq) *sum(Ctemp. " 2);

CR=C/N;

% Increase or decrease alpha for next round of iterations
oldalpha=alpha;
if CR>1
dalpha=-1*(alpha*(CR-1)/CR);
else
dalpha=alpha*(1-CR) ;
end
if abs(CR-1)<2.5
options=optimset(’TolX’,0.001,’MaxFunEvals’,30,’Grad0bj’,’on’,’Hessian’,’on’,’Display’,’iter’);
end
alpha=alphat+dalpha;

its=its+1;
pack;
82 = sprintf(°\t %d \t %0.5g \t %0.5g’,its,oldalpha,CR);
disp(s2)
end
x1=reshape(x1,dim); x2=reshape(x2,dim); x3=reshape(x3,dim);
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function [f,g,h]=mem_tomo3_fun(x,d1,d2,d3,m,n,N,sigsq,alpha,b,dim)
global A1 A2 A3 B1 B2 B3 C1 C2 C3
% % Entropy, gradient and Hessian
S = sum(x - b - (x.*(log(x./b))));

DS=1 - log(x./b);
D2S=spdiags((1./(1./%)),0,3+N,3%N);
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% Trial restoration

yl=tomo_trialres(x,Al,A2,A3,dim,N);
y2=tomo_trialres(x,B1,B2,B3,dim,N);
y3=tomo_trialres(x,C1,C2,C3,dim,N);

% Chi-square, gradient and Hessian
Cltemp=di-y1;
C2temp=d2-y2;
C3temp=d3-y3;

Ctemp=[Citemp;C2temp;C3temp] ;
C=(1/sigsq)*sum(Ctemp."~2);

DCl=reshape(Clitemp,m,n);
DC2=reshape(C2temp,m,n);
DC3=reshape(C3temp,m,n);
DC=(-2/8igsq)*[DC1(:); DC2(:); DC3(:)]1;

% Final functions, gradient and hessian approximations

f=-alpha*3+C;
g=-alpha*DS+DC;

h=-alpha*D2S;
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function y=tomo_trialres(x,A1,A2,A3,dim,N)

% Trial restoration. Generation of mock data from an estimate of the hidden image.

% xi === estimates of the true image data (matrix)

% Ai === PSFs
% y === mock data
% dim === dimensions of the image

xi=reshape(x([1:N]),dim); x2=reshape(x([N+1:2*N]),dim); x3=reshape(x([2%N+1:3%N]),dim);

yi=imfilter(x1i,A1,’conv’,’same’,’replicate’);
y2=imfilter(x2,A2, ’conv’, 'same’, ’replicate’);
y3=imfilter(x3,A3, ’conv’,’same’, ’replicate’);

y=yl+y2+y3;
y=y(:);
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function [C,Ctemp]l=tomo3_chi2(d,tr,s2)

% Calculate the Chi-Squared statistic for observed and trial data for 3 tomo images

% d === the observed image data (vector)
% tr === the trial/mock data (vector)
% 82 === the noise variance (sigma~2)

Ctemp=d-tr;
C=sum(Ctemp."2)/82;
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D.7 Maximum entropy: 7-plane tomographic
reconstruction

function [x1,x%2,x3,%4,x5,x6,x7,CR,alphal=me_tomo7(d1,d2,d3,d4,d5,d6,d7,psfdims)
% [x1,x2,x3,x4,x5,x6,x7,CR,alphal =me_tomo7(di,d2,d3,d4,d5,d6,d7,psfdims)
.

h

% me_tomo7.m will reconstruct 7 planes using MEM.

L/

%

% di is the degraded image

% Ai is the normalised PSF

% sigsq is the noise variance (sigma~2)

% b is the default image (same type as d)

%4

% vi is the estimate of the visible (maxent) image (same type as d)

% xi is the estimate of the hidden image (same type as d)

% CR is the ratio of Chi_Restored to Chi_Expected

% alpha is the final value of the parameter giving weight to the entropy

% The entropy is maximised by using fmincon to minimise the function:
% alpha*S + C where

% C = (1/sigsq)*sum((d-A*x)."2) and 8 = sum(x.*(log(x./b)-1))

% Start timer
tic;

global Al A2 A3 A4 A5 A6 A7
global Bi B2 B3 B4 B5 B6 B7
global C1 C2 C3 C4 C5 C6 C7
global D1 D2 D3 D4 D5 D6 D7
global E1 E2 E3 E4 Eb E6 E7
global F1 F2 F3 F4 F§ F6 F7
global G1 G2 G3 G4 G5 G6 G7
di=(double(d1)+1)./1024;
d2=(double(d2)+1)./1024;
d3=(double(d3)+1)./1024;
d4=(double(d4)+1)./1024;
d5=(double(db)+1)./1024;
d6=(double(d6)+1) ./1024;
d7=(double(d7)+1)./1024;

Al=psfdims(1,1); B2=psfdims(2,2); C3=psfdims(3,3); D4=psfdims(4,4);
ES=psfdims(5,5); F6=psfdims(6,6); G7=psfdims(7,7);

A2=ones (psfdims(1,2),1)/psfdims(1,2); A3=ones(psfdims(1,3),1)/psfdims(1,3);
Ad=ones(psfdims(1,4),1)/psfdims(1,4);
A5=ones (psfdims(1,5),1)/psfdims(1,5); A6=ones(psfdims(1,6),1)/psfdims(1,6);
AT7=ones(psfdims(1,7),1)/psfdims(1,7);

Bi=ones(psfdims(2,1),1)/psfdims(2,1); B3=ones(psfdims(2,3),1)/psfdins(2,3);
B4=ones(psfdims(2,4),1)/psfdims(2,4);
B5=ones (psfdims(2,5),1)/psfdins(2,5); B6é=ones(psfdims(2,6),1)/psfdims(2,6);
B7=ones(psfdims(2,7),1)/psfdins(2,7);

Ci=ones(psfdims(3,1),1)/psfdims(3,1); C2=ones(psfdims(3,2),1)/pafdims(3,2);
C4=ones(psfdime(3,4),1) /psfdims(3,4);
C5=ones(psfdims(3,5),1)/psfdims(3,5); Cé=ones(psfdims(3,6),1)/pstdims(3,6);
C7=ones(psfdims(3,7),1)/psfdims(3,7);
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Di=ones(psfdims(4,1),1)/psfdims(4,1); D2=ones(psfdims(4,2),1)/psfdims(4,2);
D3=ones(psfdims(4,3),1)/psfdims(4,3);
D5=ones (psfdims(4,5),1)/psfdims(4,5); Dé=ones(psfdims(4,6),1)/pstdims(4,6);
D7=ones (psfdims(4,7),1)/pstdins(4,7);

El=ones(psfdims(5,1),1)/psfdims(5,1); E2=ones(psfdims(5,2),1)/psfdims(5,2);
E3=ones (psfdims(5,3),1) /psfdims(5,3);
Ed=ones (psfdims(5,4),1)/psfdims(5,4); E6=ones(psfdims(5,6),1)/pstdims(5,6);
ET=ones (psfdins(5,7),1)/psfdims(5,7);

Fl=ones(psfdims(6,1),1)/psfdims(6,1); F2=ones(psfdims(6,2),1)/psfdims(6,2);
F3=ones(psfdims(6,3),1) /psfdims(6,3);
F4=ones(psfdims(6,4),1)/psfdims(6,4); F5=ones(psfdims(6,5),1)/psfdims(6,5);
F7=ones(psfdims(6,7),1)/psfdims(6,7);

Gl=ones(psfdims(7,1),1)/psfdims(7,1); G2=ones(psfdims(7,2),1)/psfdims(7,2);
G3=ones (psfdims(7,3),1) /psfdims(7,3);
G4=ones(psfdims(7,4),1)/psfdins(7,4); G5=ones(psfdims(7,5),1)/psfdims(7,5);
G6=ones (psfdims(7,6),1) /psfdims(7,6);

[m,nJ=size(dl); Y/ Image dimensions
dim=size(d1);
N=m*n;

% Default image: Uniform, low intemsity background.
b=(1/2000); TolChi=0.5;

di=mat2gray(10.~(d1.*1.6)); di=d1(:); s1=0.00i*sqrt(1-d1)+0.0001;
d2=mat2gray(10.7(d2.#1.6)); d2=d2(:); s2=0.001%sqrt(1-d2)+0.0001;
d3=mat2gray(10.~(d3.#1.6)); d3=d3(:); 53=0.001+sqrt{1-d3)+0.0001;
d4=mat2gray(10.~(d4.*1.6)); d4=d4(:); s84=0.001*sqrt(1-d4)+0.0001;
d5=mat2gray(10.~(d5.%1.6)); d5=d5(:); s5=0.001*sqrt(1~-d5)+0.0001;
d6=mat2gray(10."(d6.%1.6)); d6=d6(:); 86=0.001%sqrt(1-d6)+0.0001;
d7=mat2gray(10.~(d7.%1.6)); d7=d7(:); s7=0.001*sqrt(1-d7)+0.0001;

% Noise maps
sigsq=[s1 s2 83 s4 85 86 87];

% Optimisation parameters
options=optimset(’TolFun’,le-4,’MaxFunEvals’,35, ’Grad0bj’, ’on’, *Hessian’,’on’, *Display’,’iter’);
disp(’ ’);

t1 = sprintf(’ its alpha Chi~2/N’);

disp(t1)

1b=0.001*ones(7*N,1); ub=ones(7*N,1); % Upper and Lower bounds on the solution
alpha=0.001; % Initial value of alpha
x0=b*ones (7*N,1); % Initial guess at a solution

its=1;

CR=inf;

while its<2

% while abs(CR-1)>TolChi

% Optimisation (x is the vector of restored image data)
x=fmincon (®mem_tomo_fun7,x0,[1,[], ], [1,1b,ub, [1,0options,d1,d2,d3,d4,d5,d6,d7,mn,n,N,sigsq,alpha,b,dim);
x1=x{[1:N]); xl=reshape(xi,m,n);
x2=x([N+1:24N]); x2=reshape(x2,m,n);
x3=x([2#N+1:3#N]); x3=reshape(x3,m,n);
x4=x([3+%N+1:4*N]); x4=reshape(x4,m,n);
xb=x([4*N+1:5%N]); xb=reshape(x5,m,n);
x6=x([5%N+1:6*N]) ; x6=reshape(x6,m,n);
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x7=x([6%N+1:7*N]); x7=reshape(x7,m,n);

% Calculate global Chi“2 statistic
yl=tomo_trialres7(x,Al1,A2,A3,A4,A5,A6,A7,dim,N,m,n);
[CR1,Cltemp]=tomo7_chi2(dl,yl,s1);

y2=tomo_trialres7(x,B1,B2,B3,B4,B5,86,B7,dim,N,m,n);
[CR2,C2temp]}=tomo7_chi2(d2,y2,s2);

y3=tomo_trialres7(x,C1,C2,C3,C4,C5,C6,C7,dim,N,m,n);
[CR3,C3temp]l =tomo7_chi2(d3,y3,s3);

y4=tomo_trialres7(x,D1,D2,D3,D4,D5,D6,D7,dim,N,m,n);
[CR4,C4temp]l =tomo7_chi2(d4,y4,84);

y5=tomo_trialres7(x,Et1,E2,E3,E4,E5,E6,E7,dim,N,m,n);
[CR5,Cbtemp] =tomo7 _chi2(d5,y5,85);

y6=tomo_trialres?(x,F1,F2,F3,F4,F5,F6,F7,din,N,m,n);
[CR6,C6temp] =tomo7_chi2(d6,y6,86);

y7=tomo_trialres7(x,G1,G2,63,64,G5,66,G7,dim,N,m,n);
[CR7,C7templ=tomo7_chi2(d7,y7,s7);

C=CR1+CR2+CR3+CR4+CR5+CR6+CR7;

CR=C/ (7*N);

% Increase or decrease alpha for next round of iterations
P

oldalpha=alpha;
if CR>1

dalpha=-1*(alpha*(CR~1)/CR) ;

else

dalpha=alpha*(1-CR);

end

if abs(CR-1)<2.5
options=optimset (’MaxFunEvals’,35, 'GradObj’,’on’, *Hessian’, on’, ’Display’, *iter’);

end

alpha=alpha+dalpha;

its=its+1;

pack;
t2 =

sprintf(°’\t %d \t %0.5g \t %0.5g’,its,oldalpha,CR);

disp(t2)

end

x1=reshape(x1,dim); x2=reshape(x2,dim); x3=reshape(x3,dim);
x4=reshape(x4,dim); x5=reshape(x5,dim); x6=reshape(x6,dim); x7=reshape(x7,dim);

toc

RIRIIARIARII BN RIDRRIARIARIA DRI LRI ABIARDBI DA NI URARIAA DDA IDARIDBDRDIRAT A DT

function [f,g,hl=mem_tomo_fun7(x,d1,d2,43,44,d5,d6,d7,m,n,N,sigsq,alpha,b,dim)

global A1l
global Bl
global Ci
global Di
global E1
global F1
global G1i

A2 A3 A4 A5 A6 A7
B2 B3 B4 B5 B6 B7
C2 C3 C4 C5 C6 C7
D2 D3 D4 D5 D6 D7
E2 E3 E4 E5 E6 E7
F2 F3 F4 F5 F6 F7
G2 G3 G4 G5 G6 G7

XXIII
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% Entropy, gradient and Hessian

S = sum(x - b - (x.*(log(x./b))));
DS=1 - log(x./b);
D2S=spdiags((1./(1./x)),0,7*N,7*N);

% Trial restoration

yl=tomo_trialresT(x,A1,A2,A3,A4,A5,A6,A7,dim,N,m,n);
y2=tomo_tria1res7(x,31,32,83,B4,BS,BG,B7,dim,N,m,n);
y3=tomo_trialres7(x,C1,C2,C3,C4,C5,C6,C7,din,N,m,n);
y4=tomo_trialres7(x,D1,D2,D3,D4, D5,D6,D7,dim,N,m,n);
yb=tomo_trialres7(x,E1,E2,E3,E4, E5,E6,E7,dim,N,m,n);
y6=tomo_trialres?(x,F1,F2,F3,F4,F5 ,F6,F7,dim,N,m,n);
y7=tomo_trialres7(x,G1,G2,63,G4,G5,66,G7,dim,N,m,n);

% Chi-square, gradient and Hessian

Cltemp=sum(((di-y1)."2)./sigsq(:,1));
C2tamp=sum({ (d2-y2)."2)./sigsq(:,2));
C3temp=sum(((d3-y3).~2)./sigsq(:,3));
C4temp=sum(((d4-y4)."2)./sigsq(:,4));
C5temp=sum(((d5-y5).~2)./sigsq(:,5));
Cétemp=sum(((d6-y6).~2)./sigsq(:,6));
C7temp=sun{ ((d7-y7)."2)./sigsq(:,7));

Ctemp=[Citemp;C2temp;C3temp;C4temp;C5temp;C6temp;C7temp] ;
C=sum(Ctemp) ;

DCi=reshape(di-y1l,m,n); DTCi=-2+imfilter(DC1,A1’,’conv’,’same’,0);
DC2=reshape(d2-y2,m,n); DTC2=-2+imfilter(DC2,B2’, ’conv’,’same’,0);
DC3=reshape(d3-y3,m,n); DTC3=-2*imfilter(DC3,C3’,’conv’,’same’,0);
DC4=reshape(d4-y4,m,n) ; DTC4=-2+imfilter(DC4,D4’, conv’, ' same’,0);
DC5=reshape (d5-y5,m,n) ; DTC5=-2*imfilter(DC5,E5’, ’conv’, same’,0);
DC6=reshape(d6-y6,m,n) ; DTC6=-2+imfilter(DC6,F6’, conv’,’same’,0);
DC7=reshape(d7-y7,m,n); DTC7=-2*imfilter(DC7,G7’, ’conv’, same’,0);
DC=[DTC1(:); DTC2(:); DTC3(:); DTCA(:); DTCS(:); DTC6(:); DTC7(:)];

% Final functions, gradient and hessian approximations

f=-alpha#*S+C;

g=-alpha*DS+DC;

h=-alpha*D25;

RUAI AT Ll AARIIIAIAAAI AR URIAI LA RAAARGRAIAARLATRRRADARAARRLDALARRDLDAAK,
function [C,Ctempl=tomo7_chi2(d,tr,sigma2)

% Calculate the Chi-Squared statistic for observed and trial data for 3 tomo images
%

% d === the observed image data (vector)

% tr === the trial/mock data (vector)

% s2 === the noise variance vector (sigma"2)

Ctemp=d-tr;
=gum( (Ctemp.~2)./sigma2);
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function y=tomo_trialres7(x,Al,A2,A3,A4,A5,A6,A7,din,N,m,n)



APPENDIX D. MATLAB CODES XXV

% Trial restoration. Generation of mock data from an estimate of the hidden image.

% xi === estimates of the true image data (matrix)
% Ai === PSFs

% y === mock data

% dim === dimensions of the image

x1=reshape(x([1:N]),m,n); x2=reshape(x([N+1:2*N]1),m,n);
x3=reshape (x{( [2*N+1:34#N]) ,m,n) ; x4=reshape(x([3+N+1:4+N]1),n,n);
x5=reshape (x ([4*N+1:5%N]) ,m,n); x6=reshape(x([5*N+1:6+N1),m,n);
x7=reshape (x ([6*N+1:7*N]) ,m,n);

x1=reshape(x1,dim); x2=reshape(x2,dim); x3=reshape(x3,dim);
x4=reshape(x4,dim); x5=reshape(x5,dim); x6=reshape(x6,dim);
x7=reshape(x7,dim) ;

yl=imfilter(x1,Al,’conv’,’same’,0); y2=imfilter(x2,A2,’conv’,’same’,0);
y3=imfilter(x3,A3,’conv’,’same’,0); y4=imfilter(x4,A4,’conv’,’same’,0);
y5=imfilter(x5,A5, ’conv’,’same’,0); yb6=imfilter(x6,A6,’conv’,’same’,0);
y7=imfilter(x7,A7,’conv’, ’same’,0);

F=yl+y2+y3+yd+yb+y6+y7;
y=y(:);
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