1999 年2 月

RESEARCH & PROGRESS OF SSE

Feb., 1999

硫化锌薄膜的微结构剖析

柳兆洪 陈谋智 孙书农 刘瑞堂 林爱清 邓彩玲 肖细凤 (厦门大学物理系, 361005) 19971006 收稿, 19980220 收改稿

提要 用X射线衍射和X射线光电子能谱技术,对分舟热蒸发法研制的掺铒(Er)硫化锌直流 电致发光薄膜及硫化锌粉料进行剖析,获得薄膜表面及粉料的构态信息,讨论了影响微晶薄膜质 量的主要因素。

关键词:硫化锌 直流电致发光 微晶薄膜 稀土掺杂 中图分类号: TN304.055

Microstructural Dissection of Zinc Sulfide Thin Films

Liu Zhaohong Chen Mouzhi Sun Shunong Liu Ruitang Lin Aiqing Deng Cailing Xiao Xifeng (Dept. of Phys., Xiamen Univ., 361005, CHN)

Abstract: The zinc sulfide DCEL thin films doped with erbium, prepared by thermal evaporation with two boats, are analysed with XRD and XPS technologies. The structure state information of ZnS powder and thin film surface is obtained. The factors influencing on the quality of microcrystalline thin films are discussed as well.

Key Words: Zinc Sulfide(ZnS) Direct Current Electroluminescence(DCEL) Microcrystalline Thin Film Rare Earth Element Doped EEACC: 0520

1 引 言

化合物半导体材料硫化锌薄膜的电致发光器件具有高亮度、低能耗的特性,因而受到重视。硫化锌薄膜的微结构在很大程度上影响发光器件的特性,所制器件不良的结晶度会引起发光亮度低、启动电压高、稳定性差的结果,研究结晶度和微结构对光致发光(PL)亮度的影响已有一些报道^{1~3}。对所制掺铒硫化锌薄膜,利用 X 射线衍射(XRD)、X 射线光电子能谱

^{*} 获福建省自然科学基金资助 ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.

(XPS)技术,研究ZnS:Er³⁺薄膜微结构对电致发光的影响,探讨影响微晶薄膜和微结构的主要 因素,为开发高效新型电致发光器件提供依据。

实 验 2

用ZnS Cu 粉末, 掺入适量的铒作源材料, 用 分舟热蒸发法可制得厚度 3.0~3.7 µm 的 ZnS: Er^{3+} 薄膜^[4]。制备器件时的陪片,在日本理学 D/ max-C型X射线衍射仪作衍射谱图,深度剖析是 在VG, FSCA, LAB, MK-II型X射线光电子能谱仪 上进行的。

结果与讨论 3

对硫化锌未灼烧的原粉、灼烧两次的粉料及 薄膜表层进行 XRD 测量,作谱图 1。图中曲线 Fig. 1 XRD spectra of ZnS powder and thin films: (a)、(b)、(c)分别是未灼烧的硫化锌原粉、灼烧两 次的硫化锌粉料及薄膜表层的 X 射线衍射谱图. 其衍射谱参数如表1所示。

- 硫化锌原粉、粉料、薄膜的 XRD 谱: 图 1 (a) 未灼烧的原粉;(b) 灼烧两次的粉料; (c) 薄膜表层
 - (a) Unheated powder; (b) Heated twice powder:
 - (c) Thin film surface

表 1 硫化锌未灼烧的原粉、灼烧两次的粉料、薄膜表层的衍射谱参数/mm

The XRD parameters of different ZnS powder and thin film/ nm Tab. 1

	Unheated(a)		Thin film (c)		β-ZnS			Heated twice(b)		α−ZnS	
hkl	$d_{ m exp}$	$I_{\rm exp}/I_0$	$d_{ m exp}$	$I_{\rm exp}/I_0$	$d_{ m cal}$	$I_{\rm cal}$ / I_0	hkl	$d_{ m exp}$	$I_{\rm exp}/I_0$	$d_{ m cal}$	$I_{\rm cal}/I_0$
							(100)	0. 330 2	92	0.3310	100
(111)	0.311 7	100	0.3114	100	0.3123	100	(002)	0. 311 7	100	0.3129	84
(220)	0. 191 0	52	0.1914	15	0.1912	51	(101)	0. 292 1	46	0.292 0	87
(311)	0.163 0	32	0.1639	13	0.1633	30	(102)	0. 227 2	14	0. 227 34	28
							(110)	0. 190 9	53	0. 101 03	81
							(103)	0. 176 3	45	0. 176 42	54
							(112)	0. 163 0	60	0. 163 03	47

由谱图参数可见,未灼烧的硫化锌原粉(a)具有闪锌矿型结构,灼烧两次的硫化锌粉料(b) 具有纤锌矿型结构,所研制的薄膜器件(c)属于 β-ZnS 的晶型,薄膜多晶的沉积有择优取向的 趋势, 晶粒大小由 Schemer 公式^[3] $L = k\lambda/\beta \cos \theta$ 确定。当 β 取值为衍射谱峰的积分宽度时, k =1。用硅粉标样扣除了仪器宽化。硫化锌未灼烧的原粉、灼烧两次的粉料、薄膜表层这三种 材料的主要衍射峰的晶粒尺寸如表 2。

对硫化锌未灼烧的原粉、灼烧两次粉料、薄膜表层及表层下进行 XPS 测量, 各层实测的 **O**_{1s}光电子发射谱如图 **2**。用分峰技术,对C_{1s}、**O**_{1s}进行拟合,经荷电校正后,计算未灼烧原粉、灼?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http:// 表 2 硫化锌的未灼烧原粉、两次灼烧的粉料及薄膜表层的晶粒尺寸/nm

Tab. 2 The size of crystalline grain in different ZnS powder and thin film/nm

	20 ≈28 . 120		$2\theta \approx 2$	47.50	20 ≈56.500		
Samples	hkl	Sizes	hkl	Sizes	hkl	Sizes	
Thin film surface	(111)	54.6	(220)	10.57	(311)	6.43	
Heated twice powder	(002)	167.59	(110)	206.31	(112)	227.85	
Unheated powder	(111)	16.3	(220)	17.55	(311)	18.32	

烧两次粉料、薄膜表层及表层下 15 nm 处碳(C_{1s})、氧(O_{1s})的相对百分数含量如表 3。薄膜表层 各元素的光电子发射峰分别是 $C_{1s}(a)$ (284. 50 eV), $C_{1s}(b)$ (285. 64 eV), $C_{1s}(c)$ (286. 83 eV), $O_{1s}(c)$ (a) (530. 39 eV), $O_{1s}(b)$ (531. 37 eV), $O_{1s}(c)$ (532. 38 eV)。分析认为,它们对应的物质形态是: $C_{1s}(a)$ 对应于碳的吸附, $C_{1s}(b)$ 对应于活性碳的水吸附(MeCH₂OH), $C_{1s}(c)$ 对应 CS; $O_{1s}(a)$ 对应 于 Zn²⁺ 的氧吸附, $O_{1s}(b)$ 对应于金属氧化物 Er2O₃ 或 Cu2O₃ 状态, $O_{1s}(c)$ 对应于金属氧化物吸 附水的状态^[6]; 未灼烧的 ZnS 原粉即有 $C_{1s}(a)$, $C_{1s}(b)$, $O_{1s}(a)$, $O_{1s}(c)$ 的光电子发射峰; 灼烧两 次的 ZnS 粉料即有 $C_{1s}(a)$ (284. 50 eV), $C_{1s}(b)$ (285. 64 eV), $C_{1s}(c)$ (286. 83 eV), $O_{1s}(a)$ (530. 39 eV), $C_{1s}(c)$ (532. 38 eV)的光电子发射峰; 表层下 15 nm 处即有 $O_{1s}(a)$ (2.84, 50 eV), $O_{1s}(a)$ (530. 39 eV), $O_{1s}(c)$ (532. 38 eV)的光电子发射峰;

表3 不同的硫化锌中碳(C_{1s})、氧(O_{1s})的相对浓度/%

Tab. 3 Relative densities of C_{1s} , O_{1s} in different ZnS/ $\frac{1}{2}$

7.6		$C_{1s}\!\!/\ eV$		O_{ls}/eV		
ZnS	(a)	(b)	(c)	(a)	(b)	(c)
Unheated powder	5.59	3.54		3. 08	3.70	
Heated twice powder	10.60	1.75	0.86	2.06	1.34	
Thin film surface	14.18	6.57	1.81	1. 62	19.73	2.85
15 nm from film surface	7.57			0. 92	0.18	

综上,硫化锌灼烧前后的粉料与薄膜比较,晶体结构有明显不同,未灼烧的硫化锌原粉具有闪 锌矿型结构,灼烧两次的硫化锌粉料具有纤锌矿 型结构,所制薄膜属于闪锌矿型结构,薄膜多晶的 沉积有择优取向的趋势;比较灼烧前后硫化锌粉 料的碳、氧含量,发现灼烧前的掺杂、研磨等工艺 有污染;所制薄膜表面与表层下 15 mm 处的碳、氧 524 含量比较,发现碳、氧吸附主要集中在薄膜表层, 源于表面吸附与沾污;表层的氧、碳吸附将形成各 种杂质中心,破坏表层晶格的周期性,影响器件质 量;薄膜的电致发光,受晶向的影响十分敏感^[3], 在某些晶向,稀土离子似乎较容易进入晶格置换 Zn²⁺,形成铒发光中心;粉料与薄膜的晶粒大小有 差异,薄膜中某些晶向的晶粒大小与发光关系密 切。这些表明,微晶薄膜的电致发光,受晶向、晶

图 2 硫化锌 O_{1s}的 XPS 谱图: (a) 硫化锌原粉; (b) 灼烧两次粉料; (c) 薄膜表层; (d) 表层下 15 nm Fig. 2 XPS spectra of O_{1s} in ZrS:

(c) Thin film surface; (d) 15 nm from film surface

参考文献

- Kobayashi H, Tanaka S, Shanker V, *et al. J Crystal Growth*, 1985; **72**(2): 559~562
- 2 Tanaka K, Mikami A, Ogura T, et al. Appl Phys, 1986; 48(25): 1 730~1 732
- 3 Onisawa K, Fuyama M, Taguchi K, et al. J Electrochem Soc, Solid State Sci Technol, 1988; 135(10): 2 631~2 633
- 4 柳兆洪,刘瑞堂,孙书农等.固体电子学研究与进展,1997;17(4):347~350
- 5 Chen M Z, Liu Z H, Wang Y J, et al. Semiconductor Photonics and Technology, 1997; 3(3): 169~173
- 6 Wagner C D, Riggs W M, Davis L E, et al.

Handbook of X-ray Photoelectron Spectroscopy (A Reference Book of Standard Data), 1978; 38: 141-82

- 7 陈谋智,柳兆洪,王余姜等.厦门大学学报(自然 科学版),1997;36(4):545~547
- 8 Liu Z H, Wang Y J, Chen M Z, et al. Acta Physica Sinica (Overseas Edition), 1998; 7(3):

柳兆洪(Liu Zhaohong) 副教授, 1941年生,1966年厦门大学物理系 半导体专业毕业,1980年开始II-IV族半导体薄膜电致发光的研究 等工作。

100