文章编号: 1001-5868(1999)05-0341-04

SnO₂/PS/Si吸附气体前后的光伏谱变化

吴孙桃,谢廷贵,王延华,陈议明,沈^{靈华①} (厦门大学物理系,厦门 361005)

摘 要: 制备了二氧化锡/多孔硅/硅(SnO₂/PS/Si)异质结构样品,在不同温度下,分别测量 样品吸附氢气、液化石油气前后的光生电压谱。结合 X 光电子能谱 (XPS)测量结果,分析了光生电 压谱变化的机理。

关键词: 半导体材料; 双异质结; 多孔硅; 吸附气体; 光生电压谱; X 光电子能谱 中图分类号: TN304; O471.4 文献标识码: A

Variation of photovoltage spectra for SnO₂/PS/Si during prior—and post—adsorption

WU Sun-tao, XIE Tin-gui, WANG Yan-hua, CHEN Yi-ming, SHEN Qi-hua (Department of Physics, Xiamen University, Xiamen 361005, China)

Abstract: $SnO_2/PS/Si$ heterojunction structure samples are fabricated. The photovoltage spectra of the samples during prior—and post—adsorption of H₂ or liquified petroleum at different temperature are measured. In combination with the results of XPS measurement, analysis on the variation mechanism of the photovoltage spectra is made.

Keywords: semiconductor material; double heterojunctions; porous silicon; adsorption; photovoltage spectra; XPS

1 引言

多孔硅(PS)是近年来发展起来的一种新型半导体材料,它的光致发光、电致发光引起人们极大的研究兴趣^[1,2],它的气敏特性及与硅形成的异质结的光伏特性也颇受重视^[3~5]。SnO₂是最常用的气敏材料,它与PS/Si结合形成SnO₂/PS/Si双异质结结构材料,为光生电压测量提供方便^[5,6]。本文采用电化学腐蚀法和化学汽相淀积(CVD)法,先在Si片上腐蚀形成多孔硅层后淀积SnO₂薄膜,制备出SnO₂/PS/Si样品,然后分别测量样品在不同温度下

基金项目:福建省自然科学基金资助课题(A96007)

吸附氢气、液化石油气前后的光生电压谱变化,结合 X 光电子能谱测量结果,分析光生电压谱变化的机 理。研究结果表明,利用气敏光伏效应,SnO₂/PS/ Si可以作为工作温度低的新型气敏器件材料。

2 光伏原理

多孔硅由柱形量子线阵组成,由于量子约束效应,禁带宽度展宽1.5~2.3 eV^[7.8]。在 PS/Si 的 PS 表面上,由 CVD 法淀积一层 SnO₂ 多晶薄膜。SnO₂ 的禁带宽度为 3.59 eV,是很好的窗口材料,由于存在化学计量失配和晶格缺陷,它是简并 n 型 半导体,有高的载流子浓度和低的电阻率。p 型 Si 在电化学腐蚀后形成的多孔硅,由于空穴耗尽,可视

①本刊通迅编委 China Academic Journal Electronic Publishing House. All rights reserved. http://www

收稿日期:1998-12-14

为极弱 p型或近本征半导体。SnO₂/PS/p-Si 的能 带简图如图 1 所示,图中 E_{g1} 、 E_{g2} 和 E_{g3} 分别为 SnO₂、PS 和 Si 的禁带宽度。

图 1 SnO₂/ PS/ p-Si 的能带简图 Fig. 1 Energy band schematic diagram of SnO₂/ PS/ p-Si

在500~1000 nm 波长范围的单色光(相应的 光子能量范围为2.48~1.24 eV)从 SnO₂ 表面垂直 照射时,由于SnO₂ 禁带宽度 E_{g1} 为3.59 eV,光透过 SnO₂ 层,当光子的能量 $h\nu$ 大于 E_{g2} 时,光生载流子 在PS 和Si中产生,主要在PS 中产生;随着光子能 量的降低,吸收长度随之增大,当 $E_{g2} > h\nu > E_{g3}$ 时, 光生载流子全部在Si中产生。在两个势垒区中产 生的光生载流子分别被势垒电场分离至势垒区两 边;当距势垒边界一个扩散长度范围内的光生少子 扩散至势垒边界时,被势垒电场扫向结的另一边,这 样,光生载流子在势垒区的两边积累,形成光生电压 V_1 和 V_2 ,如图 1 所示。 V_1 和 V_2 的极性相同,总 的光生电压为 $V = V_1 + V_2$ 。

3 实验与结果

由电化学腐蚀方法制备出多孔硅样品,1[#]样品 为p-Si 〈111〉,电阻率为5~7Ω° cm,厚度(435±15)×10³ nm 的单晶片;2[#]样品为p-Si 〈100〉,电阻 率为6~9Ω° cm,厚度(490±15)×10³ nm 的单晶 片。腐蚀液为氢氟酸(40%)与乙醇按体积比3:7 配 比;腐蚀电流密度为45 mA/ cm²;腐蚀时间取20 min。PS 厚度经测量约为1.2×10⁴ nm。PS/Si 经 表面处理烘干后,用CVD 法淀积SnO₂薄膜,淀积 条件为:用SnCl4饱和溶液与去离子水的体积比为 3:2 的混合液作为源液,置于100℃沸水中加热,由 氮气通过源液,携带SnCl4蒸汽进入淀积炉,淀积炉 的炉温为350℃,淀积时间为30 min。

采用电容耦合方法,等光子数光强测量样品的 光生电压谱,测量框图如图 2 所示。光照波长范围 为.500~1009 mm。在 30 ℃.40 ℃和 50 ℃下,分别 测量样品在空气中和在含有与空气体积比为1%的 H2或1%的液化石油气的氛围中的光生电压谱,测 量结果由表1和表2给出,表中相对变化为吸附前 后光伏值之差与吸附前光伏值的百分比。

图 2 光生电压测量框图 Fig. 2 Block diagram for measuring photovoltage

1[#]样品的 XPS 测量结果如图 3 所示。XPS 测量是在 VGESCALABMK - II 电子能谱仪上进行的。从图中看出,刻蚀深度到 500 nm, Sn 的相对含量趋于零,表明 SnO₂ 的厚度不会超过 500 nm;从表面到 200 nm 处出现 Si,可能是由于 XPS 激发源光斑较大,而 SnO₂ 为多孔隙,引起 Si 峰出现; 200~500 nm 内可能出现 SnO₂ 淀积进 PS 表层,所以 Si、Sn 的相对含量迅速增减。

4 分析与讨论

由表1和表2可以看出,样品吸附1%的H2或 液化石油气前后,光生电压发生明显变化,相对变化 率最大的为25.2%,最小的也有5.8%,吸附后光生 电压下降。分析表明,当SnO₂/PS/Si样品在空气 中,SnO₂薄膜吸附不少的氧,氧是强氧化性的气体,

ing House. All rights reserved. http://www.cnki.net

从SnO2导带俘获电子,发生反应:

 $e^{-}+O_{2} \rightarrow O_{2}^{-}$, $e^{-}+O_{2}^{-} \rightarrow 20^{-}$ (1) 这样,导带中的电子减少,使之成为较弱 n 型。同样 的情况, PS 柱形表面吸附空气中的氧,氧从 PS 的导 带中浮获电子,使 PS 变为较强 p 型。根据 XPS 测 量, SnO₂ 的厚度不超过 500 nm,比 PS 的厚度(约 为 1.2×10⁴ nm)小得多。又因为 PS 由柱形量子线 阵组成,而 SnO₂ 由多晶粒组成,所以 PS 接触氧的 表面积比 SnO₂ 的大得多,导带中被氧俘获的电子 比 SnO₂ 的多得多, PS 由弱 p 型变为较强 p 型的程 度比 SnO₂ 变为较弱 n 型的程度更高,结果使 SnO₂/ PS 异质结势垒高度增高,光生电压增大。当空气中 含有还原性气体时, SnO₂ 和 PS 吸附还原性气体,还 原性气体与 O_2^- 、 O^- 发生反应:

$$2H_2 + O_2^- \rightarrow 2H_2O + e^-, H_2 + O^- \rightarrow H_2O + e^-,$$

$$CO + O^- \rightarrow CO_2 + e^- \qquad (2)$$

释放出的电子回到 SnO₂ 和 PS 的导带,使 SnO₂ 和 PS 的导带电子增加。由于 PS 表面积比 SnO₂ 的大 得多,吸附的还原性气体多,因此导带中增加的电子 比 SnO₂ 的多,使它由较强 p 型变为较弱 p 型的程度 比 SnO₂ 由较弱 n 型变为较强 n 型的程度更高,结果 使 SnO₂/PS 异质结势全高度下降,光生电压下降。

表 1 1[#]样品吸附 1% H_2 前后的光生电压及其相对变化率

Tab. 1 The photovoltage and relative variation of sample 1 $^{\#}$ during prior- and post- adsobing 1% H₂

泸长	光生电压/ mV									
W K	在 30 ℃测量			在 40 ℃测量			在 50 ℃测量			
λ/nm	吸附前	吸附后 材	泪对变化/(%)	吸附前	吸附后	相对变化/(%)	吸附前	吸附后术	相对变化/(%)	
500	368.8	320.5	13.1	263.0	222.2	15.5	144.1	123. 3	14.4	
520	374.5	325.1	13.2	274.3	229.3	16.4	157.3	135.0	14.2	
540	394.2	348.1	11.7	283.4	233.0	17.8	170.4	146.7	13.9	
560	389.7	334.0	14.3	284.1	237.5	16.4	166.7	140.7	15.6	
580	412.7	350.0	15.2	300.3	243.8	18.8	178.4	149.1	16.4	
600	423.2	355.1	16.1	313.4	251.3	19.8	180. 0	149.0	17.2	
620	441.7	366.6	17.0	326.0	266.7	18.2	190. 9	159.2	16.6	
640	434.7	356.9	17.9	316.3	250.2	20.9	192.2	158.4	17.6	
660	463.0	375.5	18.9	343.1	277.6	19.1	212.1	171.0	19.4	
680	478.2	394. 5	17.5	341.0	273.1	19.9	219.6	175.9	19.9	
700	486.7	378.2	22.3	343.0	243.9	19.9	222.2	182.6	17.8	
720	497.0	380.2	23. 5	343.0	281.9	17.8	223.4	174.9	21.7	
740	508.0	395.2	22.2	383.5	308.7	19.5	239.1	188.2	21.3	
760	502.0	408.1	18.7	382.6	286.2	25.2	241.4	181.3	24.9	
780	514.0	420.5	18.2	411.3	320.4	22.1	255.2	195.0	23.6	
800	507.0	414.2	18.3	384.2	311.6	18.9	239.2	188.7	21.1	
820	499.0	407.7	18.3	372.6	307.0	17.6	236.0	187.4	20.6	
840	477.5	393.9	17.5	353.7	290.4	17.9	227.2	182.2	19.8	
860	458.0	388.4	15.2	320.7	268.4	16.3	218.0	184.6	15.3	
880	424.0	368.5	13.1	301.5	248.1	17.7	193.5	164.7	14.9	
900	391.5	351.6	10.2	279.8	240.1	14.2	182.7	158.6	13.2	
920	357.0	317.4	11.1	262.2	232.8	11.2	165.7	144. 3	12.9	
940	308.7	277.5	10.1	223.9	197.5	11.8	144.2	124.7	13.5	
960	265.7	235.4	11.4	194.5	174.3	10.4	124.0	109.1	12.0	
980	231.7	205.7	11.2	175.2	158.2	9.7	110.6	99.3	10.2	
1 000	194. 5	175.1	10.0	143.4	130.2	9.2	95.6	87.0	9.0	

表 2 1 #样品吸附 1%液化石油气前后的光生电压及其相对变化率

Tab. 2 The photovoltage and relative variation of samp	e 1 [#] during prior—and post	$^-$ adsorbing 1% liquified petroleum gas
--	--	--

油长	光生电压/ mV									
λ/nm	在 30 ℃测量				在 40 ℃测量			在 50 ℃测量		
	吸附前	吸附后木	目对变化/ (%)	吸附前	吸附后	相对变化/(%)	吸附前	吸附后木	相对变化/(%)	
500	368.8	322.7	12.5	263.0	228.0	13.3	144.1	130. 7	12.6	
520	374.5	327.7	12.5	274.3	237.0	13.6	157.3	137.5	14.8	
540	394.2	344. 5	12.6	283.4	248.0	12.5	170.4	145.2	13.6	
560	389.7	339.8	12.8	284.1	244.0	14.1	166.7	144. 0	13.7	
580	412.7	359.0	13.0	300.3	259.2	13.7	178.4	154.0	12.8	
600	423.2	361.4	14.6	313.4	264.2	15.7	180. 0	157.0	14.0	
620	441.7	362.2	18.0	326.0	274.5	15.8	190. 9	164.2	15.7	

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

					续表					
油长					光生电压	€⁄ mV				
W K		在 30 ℃	测量		在 40 ℃测量			在 50 ℃测量		
λ/nm	吸附前	吸附后	相对变化/(%)	吸附前	吸附后	相对变化/(%)	吸附前	吸附后	相对变化/(%)	
640	434.7	356.9	17.9	316.3	269.2	14.9	192. 2	162.0	18.2	
660	463.0	373.6	19.3	343.1	287.5	16.2	212.1	173.5	18.5	
680	478.2	394.5	17.5	341.0	296.7	13.0	219.6	179.0	18.3	
700	486.7	387.9	20.3	343.0	301.5	12.1	222. 2	181.5	16.3	
720	497.0	380.7	23.4	343.0	307.7	10.3	223.4	187.0	19.5	
740	508.0	386.1	24.0	383.5	315.2	17.8	239.1	192.5	21.3	
760	502.0	415.7	17.2	382.6	308.0	19.5	241.4	190. 0	23.5	
780	514.0	427.1	16.9	411.3	314.2	23.6	255.2	195.2	19.3	
800	507.0	416.8	17.8	384.2	307.0	20.1	239.2	193.0	19.2	
820	499.0	407.7	18.3	372.6	302.2	18.9	236.0	190. 7	19.8	
840	477.5	399.7	16.3	353.7	287.2	18.8	227.2	182.2	18.7	
860	458.0	383.8	16.2	320.7	275.5	14.1	218.0	177.2	14.2	
880	424.0	363.8	14.2	301.5	264.7	12.2	193. 5	166.0	14.9	
900	391.5	339.8	13.2	279.8	248.7	11.1	182.7	155.5	13.1	
920	357.0	310.2	13.1	262.2	230.7	12.0	165.7	144.0	12.6	
940	308.7	277.5	10.1	223.9	202.0	9.8	144. 2	126.0	11.3	
960	265.7	228.5	14.0	194.5	176.2	9.4	124. 0	110.0	13.0	
980	231.7	203.7	12.1	175.2	154.2	12.0	110.6	96.2	14.2	
1 000	194. 5	172.9	11.1	143.4	131.2	8.5	95.6	82.0	11.0	

测试结果还表明,1[#]样品吸附1%液化石油气前后的光生电压变化率要比2[#]样品的大,这两种样品制造的条件相同,但是所用Si材料不同。用 $\langle 111\rangle_p$ —Si制备的1[#]样品,在720~780 nm的窄波段,出现相对变化率的最大值,吸附1%的H₂,在30 °C,最大值为23.5%,在40 °C为25.2%,在50 °C为24.9%;吸附1%的液化石油气,相对变化率最大值在30 °C为24.0%,在40 °C为23.6%,在50 °C为23.5%。用 $\langle 100\rangle_p$ —/Si制备的2[#]样品,吸附1%的液化石油气,在30 °C下,相对变化率随入射光波长增加而减少,在40 °C和50 °C下,在整个测量波长范围,相对变化率有起伏。

分析与讨论表明,利用气敏光伏效应,SnO₂/ PS/Si可以作为工作温度低的新型气敏器件材料。

参考文献:

- Chang W K, Gleason K K. Relationship of processing parameters to photoluminescence intensity and mechanical failure in thick porous silicon layers[J]. Journal of the Electrochemical Society, 1997, 144(4): 1 441 ~ 1 446.
- [2] Kuznetsov V A, Andrienko I, Haneman D. High efficiency blue — green electroluminescence and scanning tunneling microscopy studies of porous silicon[J]. Appl. Phys. Lett., 1998, 72(25): 3 323~3 325.
- [3] Taliercio T, Dilhan M, Massone E, et al. Realization of

porous silicon membranes for gas — sensor applications [J]. Thin Solid Films, 1995, 255: 310~312.

- [4] Taliercio T, Dilhan M, Massone E, et al. Porous silicon membranes for gas⁻⁻ sensor applications[J]. Sensors and Actuators A, 1995, 46~47; 43~46.
- [5] 阎 峰, 鲍希茂. 硅/多孔硅异质结光生电压谱研究
 [J]. 半导体学报, 1994, 15(7): 496~499.
- [6] 沈 频华, 张万中, 朱文章, 等. SnO₂/Si 的光伏特性[J]. 半导体光电, 1995, 16(2): 177~180.
- [7] Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Appl. Phys. Lett., 1990, 57(9~10): 1 046~1 048.
- [8] Nobuyoshi Koshida Hideki Koyama. Visible electroluminescence from porous silicon [J]. Appl. Phys. Lett., 1992, 60(3): 347 ~ 349.

作者简介:

吴孙桃(1947一),男,副教授。 1981年厦门大学物理系研究生 毕业,获硕士学位,1985年至 1986年在美国Case大学作访问 学者,从事半导体传感器研究。 长期从事半导体物理与器件物

理、半导体传感器的教学与科研工作,参加完成多项 国家和省自然科学基金资助研究课题。已在国内外 刊物和学术会议上发表论文 30 多篇。