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Abstract We first give a definition of a maximal avalanche sequence for a configuration of the

Abelian sandpile model and characterize some avalanche properties. Applying these properties to

unicyclic graphs, we determine their number of topplings on each vertex in principal avalanches and

avalanche polynomials of the Abelian sandpile model, which generalizes R. Cori’s results on cycles.
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1 Introduction

The concept of self-organized criticality was introduced by Bak, Tang andWiesen-

feld in 1987[1]. The dynamics of self-organized critical systems which give rise to the

robust power law correlations seen in the non-equilibrium steady states in nature

must not involve any fine-tuning of parameters. The systems under their natural

evolution are driven to a critical state which shows long range spatio-temporal fluc-

tuations similar to those in equilibrium critical phenomena[2,3]. This mechanism

has been invoked to describe a large variety of physical systems such as forest-fires,

earthquakes, punctuated equilibrium in biology, stock-market fluctuations etc[2−4].
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Sandpile model (SM) is the paradigm of self-organized criticality in physics[1−4].

It is a discrete model defined on a lattice and possesses a cellular automaton type

of dynamics. A general analysis of the original sandpile model was undertaken by

Dhar[5]. He showed that the general sandpile model features an Abelian group (hence

refer to this model as the Abelian sandpile model) and characterized its critical state.

It had been considered by many combinatorialists as a game on a graph called the

chip firing game or the dollar game[6−11].

The Abelian sandpile model can be described informally as the dynamics on a

connected graph G with a special vertex q, called the sink. We assume that a pile

of particles is placed on each vertex different from the sink q in the graph G at the

beginning of the dynamics. The evolution rule in the dynamics consists of selecting

a vertex with at least as many particles as its degree and passing a particle from the

vertex to each neighboring vertex. We call this a vertex toppling. In the dynamics,

the sink does not topples. This model with the assignments of particles on G and

the evolution rule is written for ASM(G, q).

Before we continue, we need some definitions. Let G = (V,E) be a simple

connected graph with n+1 vertices:

V (G) = {q, v1, · · · , vn}.

The order of G is denoted by |G|. A configuration of the ASM(G, q) is a non-

negative integer vector

s = (s(v1), s(v2), · · · , s(vn)),

where the non-negative integer s(vi) is considered as the number of particles placed

on the vertex vi. In particular, ϵvi = (ϵvi(v1), ϵvi(v2), · · · , ϵvi(vn)) with

ϵvi(v) =

 1 if v = vi

0 if v ∈ V (G)/{vi, q}

is a configuration of the ASM(G, q). Note that the configurations of the ASM(G, q)

depend on the sink q. A vertex vi is stable in s if s(vi) < dG(vi) (the degree of vi in

G). A configuration s is said to be stable when all the vertices different from q are

stable. The Laplacian matrix L = (luw) of G is the (n+ 1)× (n+ 1) matrix whose

rows and columns are indexed by the vertices q, v1, · · · , vn, entries luu = dG(u), and
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−luw(u ̸= w) is the number of edges joining vertex u and vertex w. The n × n

matrix Q = (qij) obtained from the Laplacian matrix L by deleting its row q and

column q is called the toppling matrix. The time evolution of a configuration of the

ASM(G, q) is defined by the following rules:

1. taking a configuration

2. adding a particle on a randomly chosen vertex that different from q

3. performing topplings until a new stable configuration is obtained.

If there exists some unstable vertex vi, then it topples. The configuration is updated

according to the rule :

s(vj) → s(vj)− qij, j = 1, · · · , n.

If there remains or appears another unstable vertex vi, then it also topples. The

process stops when all vertices different from q are stable. The sequence of topplings

in the process is an avalanche, the size of an avalanche is the number of topplings

performed. Let S be a non-empty finite sequence of (not necessarily distinct) vertices

of G except for q. The sequence S is legal for a configuration s if and only if starting

with s, the vertices can topple in the order of S. Since the graph G is connected,

for any initial configuration s, after a finite sequence of topplings, we can obtain a

stable configuration t. This means that the sink collects all particles getting out of

the dynamics.

A configuration is recurrent in the ASM(G, q) if it is a stable configuration which

is met infinitely often when performing the above operations 2 and 3. Note that not

all stable configurations are recurrent. Dhar[12] and Creutz[13] showed that the set

of recurrent configurations of ASM(G, q) has a group structure (the Abelian group)

with a natural addition. Let R be the set of all recurrent configurations of the

ASM(G, q) with V (G) = {q, v1, · · · , vn}. Suppose s ∈ R and an avalanche starts

with the configuration s + ϵvi created from s and ϵvi = (ϵvi(v1), ϵvi(v2), · · · , ϵvi(vn))
by the normal vector addition, then we call it a principal avalanche. The size of the

avalanche for configuration s + ϵvi is denoted by α(s, vi). Associate a polynomial

encoding the sizes of principal avalanches to the ASM(G, q) and call it an avalanche

polynomial which is given by

AG(x) =
n∑
i=1

∑
s∈R

xα(s,vi) =
∑

αkx
k,
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where αk is the number of principal avalanches of size k.

For the Abelian sandpile model, one of the main concerns of scientists is the

distribution of sizes of the principal avalanches. Experimental results show that, in

physics, the distributions seem to have a power law tail[2,3]. But for general graphs

the story seems different. To determine the exact size of an avalanche is difficult.

So up to now, along this line, the result is very little. In paper [14], Dhar and

Majumdar obtained the total number of topplings in an avalanche of the Abelian

sandpile model on the Bethe lattice (∞-dimensions Abelian sandpile model). A well

recognized fact about the Abelian sandpile model on the Bethe lattice is that its

vertices are very near to the sink. Thus they only considered the size of avalanches

caused by adding a particle at a vertex very far from the sink. For finite dimensional

Abelian sandpile model, Cori, Dartois and Rossin[15] considered the trees, the cycles,

the complete graphs and the lollypop graphs.

In this paper, we are interested in the distribution of sizes of the principal

avalanches of the finite dimensional Abelian sandpile model on some graphs. We

take a somewhat different perspective, viewing the Abelian sandpile model as some

kind of dynamic process. In this context, we first give a definition of a maximal

avalanche sequence for a configuration of the Abelian sandpile model and charac-

terize some avalanche properties. Applying those properties to the unicyclic graphs

with the sink being on the unique cycle, we also determine the number of topplings

on each vertex in the principal avalanches and the avalanche polynomials of the

Abelian sandpile model, which generalizes the results on cycles in [15].

2 Lemmas

Suppose S and S ′ are two non-empty finite vertex sequences of a graph G (the

vertices in the sequence are not necessarily distinct). Write S\S ′ for the sequence

obtained from S by deleting every vertex in S ′, also define the notation (S,S ′) as

the concatenation of the sequences.

Lemma 1[9] If S and S ′ are two legal sequences for a configuration t of the

ASM(G, q), then the sequence (S,S ′\S) is also a legal sequence for the configuration
t.

In order to look at the Abelian sandpile model as some kind of dynamic process,
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we define a special legal sequence. Let t be a starting unstable configuration of the

ASM(G, q). A maximal vertex sequence for the configuration t is a legal sequence

S = v1, · · · , vk such that every vertex in G appears at most once and the length k

of S is as large as possible.

Lemma 2 Let t be an unstable configuration of the ASM(G, q), S and S ′ be t-

wo maximal vertex sequences for the configuration t. Then a vertex in G does appear

in both S and S ′ or in neither S nor S ′, and S, S ′ lead to the same configuration.

Proof Since S and S ′ are two maximal vertex sequences for the configuration

t, they are legal sequences and the sequences (S,S ′\S), (S ′,S\S ′) are legal for the

configuration t by Lemma 1. If there is a vertex v in the sequence S and not in S ′,

then the sequence S\S ′ is a non-empty sequence. Thus the length of the sequence

(S ′,S\S ′) is larger than the length of the sequence S ′, which contradicts to the

maximality. Hence S and S ′ have the same vertices, and they lead to the same

configuration. The proof is completed.

The following property plays the principal role in the dynamics of the Abelian

sandpile model.

Lemma 3[5,6] The stable configuration after an avalanche depends only on the

starting configuration of the avalanche, and does not depend on the possible choice

of the order of topplings during the avalanche.

Suppose that t0 is an unstable configuration of the ASM(G, q). We now de-

scribe a maximal avalanche sequence for the configuration t0. During an avalanche

starting with configuration t0, if the configuration ti (i ≥ 0) is defined, then the

configuration ti+1 is defined as the configuration obtained by toppling a maximal

vertex sequence from configuration ti (unless ti is stable) and ti+1 is determined

uniquely by Lemma 2. In view of Lemma 3, we may choose a possible order of

topplings during the avalanche. Thus suppose that Sj (j ≥ 1) is one maximal ver-

tex sequence for the configuration tj−1 and tk (k ≥ 1) is stable, then the toppling

sequence S1, · · · , Sk is called a maximal avalanche sequence for the configuration

t0. An example of one maximal avalanche sequence is shown in Figure 1. For the

configuration t0 = (5, 4, 3, 1) of the ASM(K5, q), there are four maximal vertex se-

quences v1v2v3v4, v1v3v2v4, v2v1v3v4 and v2v3v1v4. Each of them can be chosen as

S1 and leads to the same configuration t1 = (4, 3, 2, 0). S2 = v1v2v3 is the only max-
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imal vertex sequence for the configuration t1 and leads to the stable configuration

t2 = (2, 1, 0, 3). Therefore the maximal avalanche sequences for the configuration t0

are v1v2v3v4v1v2v3, v1v3v2v4v1v2v3, v2v1v3v4v1v2v3 and v2v3v1v4v1v2v3.
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Figure 1

Lemma 4[9] The number of recurrent configurations of the ASM(G, q) is equal

to the number of spanning trees of G.

Let T be a tree with the sink q. Then by Lemma 4, the ASM(T, q) has only one

recurrent configuration sT . It is pointed out in [15] that

sT (u) = dT (u)− 1, u ∈ V (T ) \ {q}. (1)

We consider the tree T in such a way that the sink q is the root of T . We write

Tu for the subtree rooted in u. For the recurrent configuration sT , if u is a son of

the root q of T , then adding a particle to vertex u gives a sequence of topplings of

all the vertices of Tu, and the principal avalanche ends there. If u is not a son of

q, suppose that v(̸= q) is the father of u. Then v gets one particle after this first

sequence of topplings of all the vertices of Tu and a new sequence of topplings can

be performed. Thus we have

α(sT , u) =

 |Tu| if the father of u is q;

α(sT , v) + |Tu| otherwise.
(2)

For the ASM(G, q), denote by NG(S) the neighborhood of S ⊂ V (G), that is,

if w ∈ NG(S), then w /∈ S and there is a vertex u ∈ S such that wu ∈ E(G).

If S ⊂ V (G), then G − S=G[V \ S] is the subgraph of G obtained by deleting

the vertices in S and all edges incident to them. Similarly, if E ′ ⊂ E(G), then G−
E ′=(V (G), E(G)\E ′). Suppose that G contains an induced subgraph T being a tree

not including the vertex q and there exist x, y ∈ V (G) such that {x, y}=NG(V (T )),

NG({x}) ∩ V (T ) = {u} and NG({y}) ∩ V (T ) = {v}. We write u = v1v2 · · · vl = v
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for the unique path from u to v in this tree T , T1 ∪ · · · ∪ Tl for the graph obtained

from this tree T by deleting each edge of the unique path, where Ti is a subtree of

T and V (Ti) ∩ V (T ) = {vi}, 1 ≤ i ≤ l (see Figure 2).

r r r r r r r rp p p p p p r
x u = v1

T1 T2

+1

v2 vi

Ti

vi+1

Ti+1

vl−1 vl = v y

Tl−1 Tl

Figure 2

Lemma 5 Suppose that G contains an induced subgraph T being a tree not

including the sink q, there exists x, y, u, v ∈ V (G) such that {x, y} = NG(V (T )),

|NG({x})| ≥ 2, |NG({y})| ≥ 2, NG({x}) ∩ V (T ) = {u}, NG({y}) ∩ V (T ) = {v}
and a unique (u, v)-path v1v2 . . . vl in T shown in Figure 2. If there is a stable

configuration t of the ASM(G, q) with t(v) = dG(v) − 1 for each vertex v ∈ V (T )

and t(v) ≤ dG(v)− 2 for v ∈ {x, y}\{q}, then
(i) for the configuration t+ ϵv∗ , if v

∗ ∈ V (Ti) (1 ≤ i ≤ l), then there is a maximal

vertex sequence S=T i,T i−1, . . . , T1,T i+1, . . . ,T l, where Tk consists of all the vertices
in V (Tk)(k = 1, 2, . . . l), which results in the configuration t′ with

t′(v)− ϵv∗(v) =


t(v) + 1 if v = x ̸= q, or v = y ̸= q,

t(v)− 1 if v = v1 or v = vl ,

t(v) otherwise.

Especially, S is also a maximal avalanche sequence if v∗ = v1 or v∗ = vl.

(ii) for the configuration t+ϵvi (1 ≤ i ≤ l), there is a maximal avalanche sequence

S1, S2, · · · , Sk (k = min{i, l − i + 1}) such that Sj+1 is a subsequence of Sj and
|Sj|, the length of sequence Sj, is equal to |Sj+1|+ |Tj|+ |Tl−j+1| (1 ≤ j ≤ k − 1);

(iii) α(t, v) = α(sTi , v) +
∑l

j=1 aj|Tj| for v ∈ V (Ti) (1 ≤ i ≤ l), where sTi is the

recurrent configuration of ASM(Ti, vi) and aj = min{i, j, l − i+ 1, l − j + 1}.
Proof (i) Since G is connected and t(v) = dG(v) − 1 for v ∈ V (T ). For v∗ in

V (Ti) and the configuration t+ ϵv∗ , there is a legal sequence Ti which consists of all

the vertices in Ti. After the legal sequence Ti, each neighbor of vi in V (G) \ V (Ti)

gets a particle. If they are different from x and y, then vi−1 and vi+1 get a particle
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respectively and Ti−1 and Ti+1 can topple. From this argument and Lemma 3, we can

obtain a legal sequence Ti, Ti−1, · · · , T1, Ti+1, · · · , Tl for configuration t+ϵv∗ , where Ti
consists of all the vertices in V (Ti)(i = 1, 2, . . . l). This results in a new configuration

t′ with t′(x) = t(x) + 1 if x ̸= q, t′(y) = t(y) + 1 if y ̸= q, t′(v1) = t(v1)− 1, t′(vl) =

t(vl)− 1, t′(vj) = t(vj) + 1 and t′(z) = t(z) for z ∈ V (G) \ ({x, y, v1, vl, vj, } ∪ {q}).
The legal sequence is also a maximal vertex sequence for configuration t+ ϵv∗ since

each vertex in V (G)\V (T ) can not topple for the configuration t′. If v∗ = v1 or

v∗ = vl, then the configuration t′ is stable and the sequence S is also a maximal

avalanche sequence.

(ii) By Lemma 5(i), for the configuration t + ϵvi , i ∈ {1, 2, . . . , l}, there is a

maximal vertex sequence S1=T iT i−1, . . . , T1T i+1, . . . ,T l, which results in the con-

figuration t′1 with

t′1(v)− ϵvi(v) =


t(v) + 1 if v = x and x ̸= q, or v = y and y ̸= q,

t(v)− 1 if v = v1 or v = vl,

t(v) otherwise,

where Tj consists of all the vertices in V (Tj)(j = 1, 2, . . . l). If k = min{i, l −
i + 1} = 1, that is i = 1 or i = l, then the configuration t′1 is stable and the

sequence S1 =T 1T 2, . . . , Tl or T lT l−1, . . . ,T 1 is also a maximal avalanche sequence.

If k > 1, then set t1 = t′1 − ϵvi and t1 is a stable configuration with t1(v1) =

t(v1)− 1 = dG(v1)− 2, t1(vl) = t(vl)− 1 = dG(vl)− 2, t1(v) = t(v) = dG(v)− 1 for

v ∈ V (T2)∪V (T3)∪· · ·∪V (Tl−1). Note that T
′ = T −(T1∪Tl∪{v1v2, vl−1vl}) is also

a tree of G and N(V (T ′)) ∩ V (G) = {v1, vl}. By application of Lemma 5(i) again,

we can obtain the maximal vertex sequence S2=T iT i−1, . . . , T2T i+1T i+2, . . . ,T l−1

for the configuration t′1 = t1 + ϵvi (i ∈ {2, 3, . . . , l − 1}) and reach the configuration

t′2. Clearly, |S1| = |S2| + |T1| + |Tl|. If k = 2, that is i = 2 or i = l − 1, then

t′2 is stable and S1S2 is a maximal avalanche sequence for t + ϵvi . If k > 2, then

i ̸= 2, l − 1. Repeating the above process until k = min{i, l − i + 1}, the assertion

holds.

(iii) Let sTi be the configuration of t restricted in Ti−{vi}, 1 ≤ i ≤ l. Then sTi

with sTi(v) = dG(v)− 1 for v ∈ V (Ti) \ {vi} is the unique recurrent configuration of

ASM(Ti, vi) by equation (1). By Lemma 3, an avalanche for a configuration does
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not depend on the possible choice of the order of topplings. For the configuration

t′ = t + ϵv obtained from t by adding a particle on v ∈ V (Ti), we first topple the

vertices in Ti−{vi} until they are stable. Hence, after toppling α(sTi , v) vertices for

the configuration t′ by equation (2), the configuration t+ ϵvi is reached. Especially,

for v = vi, α(sTi , vi) = 0. Therefore,

α(t, v) = α(sTi , v) + α(t, vi).

By Lemma 5(ii), α(t, vi) = |S1|+ |S2|+· · ·+|Sk|, k = min{i, l − i + 1} and |Sj| =
|Sj+1|+|Tj|+|Tl−j+1| (1 ≤ j ≤ k−1). Noting that |S1| = |T | = |T1|+|T2|+· · ·+|Tl|,
we have α(t, vi) =

∑l
j=1 aj|Tj|, where aj = min{i, j, l − i+ 1, l − j + 1}. The proof

is completed.

Note that if x = y in Lemma 5 and the other conditions are satisfied, then the

results hold.

3 Avalanche Polynomials for Unicyclic Graphs

Whether a configuration is recurrent can be tested by the well-known burning

algorithm as follows.

Lemma 6[5] Let φ(v) be the number of edges from v to the sink in G. The

configuration s is recurrent if and only if it is stable and adding φ(v) particles at

each vertex causes every vertex to topple exactly once. Moreover, at the end of the

topplings we arrive at the initial configuration s.

Let Cl+1 = qv1v2 · · · vlq be a cycle of length l + 1 and G be any unicyclic graph

created from Cl+1 by attaching l+1 trees Tq, T1, · · · , Tl to q, v1, · · · , vl, respectively.
For the unicyclic graph G, if |Tq| ≥ 2, then we can consider the construction of the

unicyclic graph in such a way that it consists of merging the sinks of two graphs, say

a tree and a unicyclic graph with |Tq| = 1. Thus the avalanche polynomial of the

unicyclic graph is translated into the avalanche polynomial of the unicyclic graph

with |Tq| = 1 plus l times the avalanche polynomial of the tree. So we just consider

the case of |Tq| = 1 in G.

Theorem 1 Suppose G is a unicyclic graph created from Cl+1 = qv1v2 · · · vlq
by attaching l trees T1, · · · , Tl to v1, · · · , vl, respectively. Then the set of recurrent

configurations on the ASM(G, q) is R = {s0, s1, · · · , sl}, where
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s0(v) = dG(v)− 1 for v ∈ V (G)/{q},

si(v) =

 dG(vi)− 2 if v = vi

dG(v)− 1 if v ∈ V (G)/{vi, q}
, i = 1, 2 . . . , l.

Proof It is easy to obtain that si (0 ≤ i ≤ l) is stable. Moreover, the number

of spanning trees of G is l + 1 = |R| which is equal to the number of recurrent

configurations on the ASM(G, q) by Lemma 4. Therefore by Lemma 6, it is sufficient

to prove that each vertex topples only once, that is, we can go from the configuration

si + ϵv1 + ϵvl (0 ≤ i ≤ l) on G to the stable configuration si. Let us apply Lemma

5(i) with x = y = q and t = s0. Then s0+ ϵv1 reaches the stable configuration sl and

s0 + ϵvl reaches the stable configuration s1. It is clear that s1 + ϵv1 = sl + ϵvl = s0.

Hence the configurations s0 + ϵv1 + ϵvl , s1 + ϵv1 + ϵvl and sl + ϵv1 + ϵvl arrive at the

configurations s0, s1 and sl, respectively. Similarly, let us apply Lemma 5(i) with

{q, vi} = {x, y} and t = si. Then the configuration si + ϵv1 (1 < i < l) on G leads

to the configuration si−1, and the configuration si + ϵvl (1 ≤ i < l) on G reaches

the configuration si+1. Thus the configuration si + ϵv1 + ϵvl (1 < i < l) reaches the

configuration si. Therefore R = {s0, s1, · · · , sl} is the set of recurrent configurations

on the ASM(G, q).

Suppose that s is a recurrent configuration of the ASM(G, q) with V (G) =

{q, v1, · · · , v|G|−1}. The principal avalanche matrix for the recurrent configuration s

is a matrix A|G|−1(s) in which its rows and columns are indexed by the vertices of

V (G)\{q} such that the vivj−entry of A|G|−1(s) is equal to the number of topplings

performed on vj when adding a particle at vi for the recurrent configuration s on

the ASM(G, q) and reaching a stable configuration.

By Theorem 1, all recurrent configurations on the ASM(Cn+1, q) are s0 =

(1, · · · , 1) ∈ Zn and sk = (1, · · · , 1, 0, 1, · · · , 1) ∈ Zn, where 0 is in position k,

1 ≤ k ≤ n. Denote the matrix An(si) = Ain, i = 0, 1, · · · , n. By Lemma 5(ii), if

let x = y = q, t = s0 on G and set |Ti| = 1(i = 1, 2, . . . , n), then for configuration

s0 + ϵvi (1 ≤ i ≤ n), there is a maximal avalanche sequence S1, · · · , Sk with

S1 = vi, vi−1, · · · , v1, vi+1, vi+2, · · · , vn,

S2 = vi, vi−1, · · · , v2, vi+1, vi+2, · · · , vn−1,
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...

Sk = vi, vi−1, · · · , vk, vi+1, vi+2, · · · , vn−k+1,

k = min{i, l−i+1}, |Sj|=|Sj+1|+2 (1 ≤ j ≤ k−1). Thus it is not difficult to obtain

that the principal avalanche matrix for s0 on the ASM(Cn+1, q) is A0
n = (b0ij)n×n,

where b0ij = min{i, j, n− i+ 1, n− j + 1}; that is,

A0
n = (b0ij)n×n =



1 1 1 . . . 1 1 1

1 2 2 . . . 2 2 1

1 2 3 . . . 3 2 1
...

...
...

. . .
...

...
...

1 2 3 . . . 3 2 1

1 2 2 . . . 2 2 1

1 1 1 . . . 1 1 1


.

For the recurrent configuration sk = (1, · · · , 1, 0, 1, · · · , 1) ∈ Zn, where 0 is in

position k(1 ≤ k ≤ n), we have sk(vk) = dCn+1(vk) − 2 and sk(vj) = dCn+1(vj) − 1

for j ̸= k. By Lemma 5(ii), let paths v1v2 . . . vk−1 and vk+1vk+2 . . . vn in Cn+1instead

of the tree T in G respectively. We can obtain the principal avalanche matrix

Akn = (bkij)n×n =


A0
k−1 O(k−1)1 Ok(n−k)

O1(k−1) 0 O1(n−k)

O(n−k)k O(n−k)1 A0
n−k

 ,

where Olh is the l × h matrix each entry of which is zero, 1 ≤ l, h ≤ n− 1.

Theorem 2 Suppose G is a unicyclic graph created from Cl+1 = qv1v2 · · · vlq
by attaching l trees T1, · · · , Tl to v1, · · · , vl respectively and R = {s0, s1, · · · , sl} is

the set of recurrent configurations on the ASM(G, q) as in Theorem 1. Then

AG(x) =
∑

v∈V (G)/{q}

∑
0≤i≤l

xα(si,v),

where

α(si, v) =
l∑

r=1

bijr|Tr|+ α(sTj , v), v ∈ V (Tj), 1 ≤ j ≤ l,
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bijr is the (j, r) entry of Ail, 0 ≤ i ≤ l, and sTj is the unique recurrent configuration

of the ASM(Tj, vj).

Proof By Lemma 5(ii), let x = y = q and t = s0. Then for configuration

s0 + ϵvi (1 ≤ i ≤ l) on the ASM(G, q), there is a maximal avalanche sequence S1,

· · · , Sk with

S1 = Ti, Ti−1, · · · , T1, Ti+1, Ti+2, · · · , Tl,

S2 = Ti, Ti−1, · · · , T2, Ti+1, Ti+2, · · · , Tl−1,

...

Sk = Ti, Ti−1, · · · , Tk, Ti+1, Ti+2, · · · , Tl−k+1,

k = min{i, l−i+1}, |Sj|=|Sj+1|+|Tj|+|Tl−j+1| (1 ≤ j ≤ k−1), where Tj consists of
all the vertices in V (Tj) (j = 1, 2, . . . l). Furthermore, by Lemma 5(iii), for v ∈ V (Tj)

(1 ≤ j ≤ l), α(s0, v) =
∑l

r=1 b
0
jr|Tr|+α(sTj , v), where b0jr = min{j, r, l−j+1, l−r+1}

which is the entry (j, r) of A0
l and sTj is the unique recurrent configuration of the

ASM(Tj, vj). For the recurrent configuration si, i ∈ {1, 2, . . . , l}, by Theorem 1,

si(v) =

 dG(vi)− 2 if v = vi ,

dG(v)− 1 if v ∈ V (G)/{vi, q},

we consider the sizes of principal avalanches on vertices v ∈ V (Tj), 1 ≤ j ≤ l.

Since si(vi) = dG(vi) − 2, by Lemma 5(iii), set x = q and y = vi. Then for

v ∈ V (Tj), 1 ≤ j ≤ i − 1, the vertices in V (Tj) (i ≤ j ≤ l) in G do not topple,

and we have α(si, v) =
∑i−1

r=1 b
0
jr|Tr|+ α(sTj , v), where b

0
jr is the (j, r) entry of A0

i−1

and sTj is the unique recurrent configuration of the ASM(Tj, vj). Similarly, for

i+1 ≤ j ≤ l, we also have α(si, v) =
∑l−i

r=1 b
0
(j−i)r|Tr|+α(sTj , v), where b

0
(j−i)r is the

((j − i), r) entry of A0
l−i. For j = i, α(si, v) = α(sTi , v) since si(vi) = dG(vi) − 2,

especially, for v = vi, α(sTi , vi) = 0. Hence

α(si, v) =
l∑

r=1

bijr|Tr|+ α(sTj , v), v ∈ V (Tj),

bijr is the (j, r) entry of Ail, 0 ≤ i ≤ l, and sTj is the unique recurrent configuration

of the ASM(Tj, vj). Therefore the avalanche polynomial of the ASM(G, q) on the
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unicyclic graph G is

AG(x) =
∑

v∈V (G)/{q}

∑
s∈R

xα(s,v) =
∑

v∈V (G)/{q}

∑
0≤i≤l

xα(si,v),

where

α(si, v) =
l∑

r=1

bijr|Tr|+ α(sTj , v), v ∈ V (Tj), 1 ≤ j ≤ l,

bijr is the (j, r) entry of Ail, 0 ≤ i ≤ l, and sTj is the unique recurrent configuration

of the ASM(Tj, vj).

In fact, if G in Theorem 2 is a cycle, then we have an immediate consequence

due to R. Cori in [15].
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单单单圈圈圈图图图上上上Abelian沙沙沙堆堆堆模模模型型型的的的雪雪雪崩崩崩大大大小小小

吴晓霞1 张莲珠2 覃城阜3 董哈微4

(1. 闽南师范大学数学与统计学院, 福建 漳州 363000; 2. 厦门大学数学学院, 福建 厦门 361005;

3. 广西师范学院数学系, 广西 南宁 530001; 4. 闽江学院数学系, 福建 福州 350108)

摘摘摘 要要要 研究图上Abelian沙堆模型问题. 首先给出关于沙堆模型常返构型的极大雪崩序

列, 然后刻画了一些雪崩性质. 基于这些性质, 我们确定了单圈图的基本雪崩中每个顶点

的topplings数及它的雪崩多项式, 推广了R. Cori的结果.

关关关键键键词词词 沙堆模型; 常返构型; 雪崩大小


