On Blow-up Rate of Solution of Semilinear Parabolic Equations System

Zhang Kenong

(Dept. of Maths. Xiamen Vniversity)

Abstract In this paper we carry on the literature [5], to study the Blow-up rete of solution for some semilinear parabolic equation in the cases of the single point Blow-up near the Blow-up point.

Key Words Blow-up time, Blow-up rate, Compact subset

Introduction

In [5] We had discussed Blow-up phenomenon of solution for some semilinear parabolic equations system. Now we shall study the Blow-up rate of solution in the cases of the single point Blow-up $t \rightarrow T$ where T Blow-up time.

We Consider the following problem

$$\begin{cases} u_{t} - \Delta u = uf_{1}(v) \\ v_{t} - \Delta v = vf_{2}(u) \\ u(x,t) = 0, v(x,t) = 0 \\ u(x,o) = \varphi(x), v(x,t) = \psi(x) \end{cases} (x,t) \in \Omega \times (o,T) \equiv Q_{T}$$

$$(1)$$

$$(2)$$

$$(3)$$

Where Ω is a bounded domain Rⁿ with appropriate Smooth boundary $\partial\Omega$.

And $f1,f2,\varphi,\psi$ satisfies that

$$\varphi(x) \geqslant 0, \ \psi(x) \geqslant 0, \varphi \in c^1 \quad \psi \in c^1. \ in\Omega$$

$$f_i(s) \geqslant 0, \ f'_i(s) > 0, \ f_i(s) > 0, \ for \ s > 0, \ i = 1, 2$$

$$(4)$$

In order to discuss the Blow-up rate of soluution of eguation system, We give the definition of Blow-up point and Blow-up time as follows.

Definition If a unique solution $\{u,v\}$ of (1)-(3) exists on $\Omega \times [0,\sigma]$, Set $T = \sup\{\sigma | (u,v) \in \mathbb{R}$ in $[0,\sigma)\}$. And either

$$\lim_{t \to T} \max v(x,t) = \infty \text{ or } \lim_{t \to T} v(x,t) = \infty$$
(5)

or Both of (5) holds. Then we call the Blow-up to the solution and time T is called Blow-up time of the solution.

Lemma O In problem (1) \sim (3), set $\Omega = B_R = \{X \mid X \in R^*, |X| \leq R\}$ r = |X|, if (4) holds and $\varphi_r < 0, \psi_r < 0$. And assume that There exist two positive functions F_1 , F_2 such that

$$\begin{cases} f'_{1}(v) - 2\varepsilon F'_{1}(v) \geqslant 0, & f_{1}(v) - 2\varepsilon F_{1}(v) \geqslant 0 \\ v[f'_{1}(v)F_{2}(u) - F'_{1}(v)f_{2}(u)] - 2\varepsilon [F'_{1}(v) + F'_{1}(v)F_{2}(u)] \geqslant 0 \\ f'_{2}(u) - 2\varepsilon F'_{2}(u) \geqslant 0, & f_{2}(u) - 2\varepsilon F_{2}(u) \geqslant 0 \\ u[f'_{2}(u)F_{1}(v) - F'_{2}(u)f_{1}(v)] - 2\varepsilon [F'_{2}(u) + F'_{2}(u)F_{1}(v)] \geqslant 0 \end{cases}$$

$$(6)$$

hold, then the point r=0 is the only Blow-up point By the theorem 2.5 of [5], We can obtain that proof of lemma.

The estimate of Blow-up rate

As above, We assume that $\Omega = B_R$ and the point r = 0 is unique Blow-up point for the solution of the problem (1)~(3) then $\{u,v\}$ take positive maximum is r = 0, thus we get $\Delta u(0,t) \leq 0$, when t < T. Set

$$U(t) = \max_{\bar{a}} u(x,t) = u(0,t) \qquad V(t) = \max_{\bar{a}} v(x,t) = v(0,t)$$

then we have

$$\begin{cases}
\frac{dU(t)}{dt} \leqslant Uf_1(v) \\
\frac{dV(t)}{dt} \leqslant Vf_2(U) \\
U(0) = \psi(0), V(0) = \varphi(0)
\end{cases}$$
(7)

Theorem 1, For the problem (1) \sim (3), Suppose that (4) holds, Assume that $\varphi_r < 0, \psi_r$ <0. $f_1(s) = s^{1+\alpha}, f_2(s) = s^{1-\beta}$ and the Blow-up of solutions of the problem (1) \sim (3)occurs in T1, then we have

$$U(t) \leqslant c_1 (T_1 - t)^{\frac{1}{1-\beta}}$$

$$V(t) \leqslant c_2 (T_1 - t)^{\frac{1}{1-\delta}}$$
(9)

where $\alpha > 0$, $\beta > 0$

Proof. Consider that the following equations system

$$\begin{cases} \frac{d\overline{U}}{dt} = (\overline{U} + u)(\overline{V} + \lambda)^{1+\alpha} \\ \frac{d\overline{V}}{dt} = (\overline{V} + \lambda)(\overline{U} + \mu)^{1+\beta} \\ \overline{U}(0) = \varphi(0) - \mu, \quad \overline{V}(0) = \psi(0) - \lambda \end{cases}$$
(10)

by $(10)\sim(11)$, we can get

$$(\overline{V} + \lambda)^* d\overline{V} = (\overline{U} + \mu)^{\beta} d\overline{U}$$
(12)

Integrating (12) with respest to t from 0 to t, we get

$$\frac{(\overline{V} + \lambda)^{1+\alpha}}{1 + \alpha} |_{0}^{t} = \frac{(\overline{U} + \mu)^{1+\beta}}{1 + \beta} |_{0}^{t}$$

namely

$$\frac{\left[\overline{V}(t) + \lambda\right]^{1-\alpha} - \left[\phi(0)\right]^{1+\alpha}}{1+\alpha} = \frac{\left[\widetilde{U}(t) + \mu\right]^{1+\beta} - \left[\phi(0)\right]^{1+\beta}}{1+\beta}$$
(13)

Ιf

$$\frac{\left[\psi(0)\right]^{1+\alpha}}{1+\alpha} \leqslant \frac{\left[\varphi(0)\right]^{1+\beta}}{1+\beta} \tag{14}$$

then

$$[\overline{V}(t) + \lambda]^{1+\epsilon} \leqslant \frac{1+\alpha}{1+\beta} [\overline{U}(t) + \mu]^{1+\beta}$$
(15)

By the first equuation of (10), we get

$$\frac{\mathrm{d}\bar{U}}{\mathrm{d}t} \leqslant \frac{1+\alpha}{1+\beta}(\bar{U}+\mu)^{2+\beta} \tag{16}$$

integrsting (16) With respect to t from o to t, we have

$$\frac{1}{[\overline{U}(t) + \mu]^{1+\beta}} \geqslant \frac{1}{[\psi(0)]^{1+\beta}} - (1+\alpha)t$$

$$= (1+\alpha) \left[\frac{1}{(1+\alpha)[\varphi(0)]^{(1+\beta)}} - t \right]$$

$$\triangleq (1+\alpha)[T_1 - t]$$
(17)

It follows that

$$\overline{U}(t) + \mu \leqslant c_1(T_1 - t)^{\frac{1}{1+\beta}}, \quad c_1 = (1+\alpha)^{\frac{1}{1+\beta}}$$
 (18)

By the second equation of (10) and (18) we obtain that

$$\frac{\mathrm{d}\overline{V}}{\mathrm{d}t} \leqslant (\overline{V} + \lambda) \, \frac{1}{(1+\alpha)(T_1 - t)} \tag{19}$$

Integrating (19) with respect to from 0 to 1, we get

$$(\overline{V}+\lambda)^{1+\epsilon} \leqslant \frac{\epsilon}{T_1-t}, \qquad c=T_1[\phi(0)]^{1+\epsilon}$$

thus we conclude that

$$\overline{V} + \lambda \leqslant c_2(T_1 - t)^{\frac{1}{1+\epsilon}}, \qquad c_2 = T_1^{1+\epsilon} [\psi(0)]$$
 (20)

We Compare the Soluution $\{U(t),V(t)\}$ of the problem (7)~(8) with the solution $\{\overline{U}(t),\overline{V}(t)\}$ of the problem (10)~(11), easily prove that.

$$U(t) \leqslant \overline{U}(t), \qquad V(t) \leqslant \overline{V}(t)$$

thus we hhave

$$U(t) \leqslant c_1(T_1 - t)^{\frac{1}{1+\beta}}, \quad V(t) \leqslant c_2(T_1 - t)^{\frac{1}{1+\alpha}}$$
 (21)

The following. We wish to obtain an estimates of the solution $\{u,v\}$ near r=0 for the non-symmetric domain.

Lemma 2 For the problem (1) \sim (3), We suppose that the condition (4) hold, and $\Delta \varphi + \varphi f_1(\psi) \geqslant 0$, $\Delta \psi + \psi f_2(\varphi) \geqslant 0$, But non-identidy with zero. then the solution of the problem satisfy

$$u_t > 0, \quad v_t > 0, \quad (x,t) \in Q_T \tag{22}$$

proof. differenting the equation(1) with respect to t, we get

$$\begin{cases} u_{u} - \Delta u_{i} = u_{i} f_{1}(v) + u f'_{1}(v) v_{i} \\ V_{u} - \Delta v_{i} = v_{i} f_{2}(u) + v f'_{2}(u) u_{i} \\ u_{i}(x,0) = \Delta \varphi + \varphi f_{1}(\psi) \geqslant 0 \\ v_{i}(x,0) = \Delta \psi + \psi f_{2}(\varphi) \geqslant 0 \end{cases}$$

$$(23)$$

$$\begin{cases} v_{i}(x,0) = \Delta \psi + \psi f_{2}(\varphi) \geqslant 0 \\ v_{i}(x,0) = 0, \quad v_{i}(x,t) = 0 \end{cases}$$

because the right side of equation (23) and initial boundary condition are non-negative. Hence by the lemma 1.1 of [5] we have

$$u_t(x,t) \geqslant 0, \quad v_t(x,t) \geqslant 0.$$

Further from $\Delta \varphi + \varphi f_1(\psi) \not\equiv 0$, and $\Delta \psi + \psi f_2(\varphi) \not\equiv 0$, it follows that

$$u_i(x,t) > 0$$
 and $v_i(x,t) > 0$

this completes proof.

Lemma 3 For the problem (1) \sim (3), Suppose that (4) holds, and the Blow-up point set S is a compact subset of Ω , and $\Delta \varphi + \varphi f_1(\psi) > 0$, $\psi + \psi f_2(\varphi) > 0$. and there exist positive functions F_1 , F_2 such that (6) (7) hold. Then there exist $\delta > 0$ such that

$$u_t \geqslant \delta u F_1(v), vt \geqslant \delta v F_2(u), (x,t) \in \Omega^{\eta} \times (\eta, T)$$
 (25)

proof. We introduce fuunction

$$J_1 = u_t - \delta u F_1(v)$$

$$J_2 = v_t - \delta v F_2(u)$$

Passing to the compunction we get

$$J_{1t} - J_{1rr} - \frac{(n-1)}{r} J_{1r} = (u_t - u_{rr} - \frac{(n-1)}{r} u_r)_t - \delta u_1 F'_{1}(v) (v_t - v_{rr} - \frac{(n-1)}{r} v_r)$$

$$- \delta F_{1}(v) (u_t - u_{rr} - \frac{(n-1)}{r} u_r) + 2\delta F_{1}(v) u_r v_r + \delta u F_{1}^{*}(v) v_r^{*}$$

$$= f_{1}(v) J_{1} + u f'_{1}(v) J_{2} + \delta u v [f'_{1}(v) F_{2}(u) - F'_{1}(v) f_{2}(u)]$$

$$+ 2\delta F_{1}(v) u_r v_r + \delta u F_{1}^{*}(v) v_r^{*}.$$

By (6) we can get

$$J_{1i} - J_{1rr} - \frac{(n-1)}{r} J_{1r} - f_1(v) J_1 \geqslant u f'_1(v) J_2$$

Similarly we get that

$$J_{2u} - J_{2rr} - \frac{(n-1)}{r} J_{2r} - f_{2}(u) J_{2} \geqslant v f'_{2}(u) J_{1}$$

Since Blow-up point set is a compact sudset of Ω , thus when η is small enough, $uF_1(v)$ and $vF_2(u)$ are bounded. and by $\Delta \varphi + \varphi f_1(\psi) > 0$ and $\Delta \psi + \psi f_2(\varphi) > 0$ and

$$u_i > 0, v_i > 0$$
 in Q_T

Then we have

$$u_t \ge c > 0, v_t \ge c > 0$$
 on parobolic boundary of $\Omega^{\eta} \times (\eta, T)$

thus when δ small enough, we have J1>0, J2>0 on the parabolic boundary of $\Omega^{\eta}\times(\eta,T)$. from the [5] lemma 1.1 again. it follows that

$$J_1 \geqslant 0$$
, $J_2 \geqslant 0$ in $\Omega^{\eta} \times (\eta, T)$

namely

$$u_i \geqslant \delta u F_1(v), v_i \geqslant \delta v F_2(u)$$
 in $\Omega^r \times (\eta, T)$

The proof is complete.

Where
$$\Omega^{\eta} = \{x \mid x \in \Omega, dist(x, \partial\Omega) > \eta\}$$

For the F1, F2 in lemma 3, we introduce the function

$$G(u,v) = \frac{1}{(v+\lambda)} \int_{u}^{\infty} \frac{\mathrm{d}s}{F_{2}(s)} + \frac{1}{(u+\mu)} \int_{u}^{\infty} \frac{\mathrm{d}s}{F_{1}(s)} \qquad \lambda, \mu > 0$$

where

$$\int_{u}^{\infty} \frac{ds}{F_{2}(s)} < \infty, \qquad \int_{u}^{\infty} \frac{ds}{F_{1}(s)} < \infty$$

thus we have

$$-\left[G(u,v)\right]_{l} = \frac{u_{l}}{(v+\lambda)F_{2}(u)} + \frac{v_{l}}{(u+\mu)F_{1}(v)} \geqslant 2\delta$$

so that, by integration with respect to t from t to T. we get

$$G(u(x,t),v(x,t)) - G(u(x,T),v(x,T)) \geqslant 2\delta(T-t)$$

thus have

$$G(u(x,t),v(x,t)) \geqslant 2\delta(T-t)$$

we choose that

$$F_1(v) = (v + \mu)^{1+s}, F_2(u) = (u + \mu)^{1+\beta}, 1 > \alpha, \beta > 0$$

thus we have

$$\frac{1}{(v+\lambda)(u+\mu)^{\beta}} + \frac{1}{(u+\mu)(v+\lambda)^{\alpha}} \geqslant 2\delta(T-t)$$

In view of estimate when $t \rightarrow T$, we can assume that u, v > 1. thus we have

$$\frac{1}{v+\lambda} + \frac{1}{(v+\lambda)^{\bullet}} \ge 2\delta(T-t)$$

$$\frac{2}{(v+\lambda m)^{\bullet}} \ge 2\delta(T-t)$$

$$v \le \delta^{\frac{1}{\bullet}} (T-t)^{\frac{1}{\bullet}}$$

It is similar to that above mentioned, we can obtain

$$u \leqslant \delta^{\frac{1}{p}} (T-t)^{\frac{1}{p}}$$

Using above lemma, we further follow that the estimate of the Blow-up rate.

We consider following the initial value Problem of equations system

$$\begin{cases} \frac{dU_1}{dt} = \delta(u_1 + \mu)F_1(v_1 + \lambda) \\ \frac{dv_1}{dt} = \delta(v_1 + \lambda)F_2(U_1 + \mu) & 0 < t < T \\ U_1(0) = \psi(0) - \mu \\ V_1(0) = \psi(0) - \lambda \end{cases}$$
(27)

assume the solution of (27) $\{U_1V_1\}$, we again compare the solution $\{U_1,V_1\}$ with the solution $\{u,v\}$ of the problem

$$\begin{cases} u_{t} \geqslant \delta u F_{1}(v) \\ v_{t} \geqslant \delta v F_{2}(u) \\ u(0) = \varphi(0) \\ v(0) = \psi(0) \end{cases}$$
(28)

We easily follow that

$$U(x,t) \geqslant U_1 + \mu, \quad v(x,t) \geqslant V_1 + \lambda$$

Now we consider $f_1(s) = s^{1+\alpha}$, $f_2(s) = S^{1+\beta}$, $F_1(s) = s^{1+\alpha_1}$, $F_2(s) = s^{1+\beta_1}$ and α_1 , $<\alpha,\beta_1<\beta$. In view of (27). We get

$$(U_1 + \mu)^{\beta_1} \frac{\mathrm{d}u_1}{\mathrm{d}t} = (v_1 + \lambda)^{a_1} \frac{\mathrm{d}v_1}{\mathrm{d}t}$$

by integration from o to t, we get

$$\frac{1}{\beta_1 + 1} (U_1 + \mu)^{1+\beta_1} - \frac{1}{1+\beta_1} [\varphi(0) + \mu]^{1+\beta_1} = \frac{1}{1+\alpha_1} (V_1 + \lambda)^{1+\alpha_1} - \frac{1}{1+\alpha_1} [\psi(0) + \lambda]^{1+\alpha_1}$$
(1)if

$$\frac{1}{1+\beta_1} [\varphi(0) + \mu]^{1+\beta_1} \geqslant \frac{1}{1+\alpha_1} [\psi(0) + \lambda]^{1+\alpha_1}$$

then

$$(V_1 + \lambda)^{1+\epsilon_1} \leqslant \frac{1+\alpha_1}{1+\beta_1}(U_1 + \mu)^{1+\beta_1}$$

thus

$$\frac{dU_1}{dt} \leqslant \delta(\frac{1+\alpha_1}{1+\beta_1})(U_1+\mu)^{2+\beta_1}$$

by integration form t to T, we have

$$U_1 + \mu \geqslant \left[\frac{1}{\delta(1+a_1)}\right]^{\frac{1}{1+\beta_1}} (T-t)^{\frac{-1}{1+\beta_1}} \triangleq C_1(T-t)^{\frac{-1}{1+\beta_1}}$$
 (29)

Uusing (27)(29) We get

$$\frac{dv_1}{dt} \geqslant (v_1 + \lambda) \frac{1}{\delta(1+a_1)} (T-t)^{-1}$$

by again integration we have

$$(V_1 + \lambda)^{\delta(1+\epsilon_1)} \geqslant \frac{c}{T-t}$$

Let t=0 we have $c=T[\psi(0)]^{\delta(1+\alpha_1)}$, it follw that

$$V_1 + \lambda \geqslant c_2(T-t) \delta_{(1+\epsilon_1)}^{-1}, \qquad c_2 = \psi(0) T \delta_{(1+\epsilon_1)}^{-1}$$

thus we have

$$U(t) \geqslant u(x,t) \geqslant U_1 + \mu \geqslant c_1(T-t)^{\frac{1}{1+\beta_1}}, c_1 = \left[\frac{1}{\delta(1+\alpha_1)}\right]^{\frac{1}{1+\beta_1}}$$

$$V(t) \geqslant v(x,t) \geqslant V_1 + \lambda \geqslant c_2(T-t)^{\frac{1}{\delta(1+\alpha_1)}}, c_2 = \psi(0)T^{\frac{1}{\delta(1+\alpha_1)}}$$

$$(30)$$

(2) If

$$\frac{1}{1+\beta_1} [\varphi(0) + \mu]^{1+\beta_1} \leqslant \frac{1}{1+\alpha_1} {\{\psi(0) + \lambda\}}^{1+\alpha_1}$$

then

$$(U_1 + \mu)^{1+\beta_1} \leqslant \frac{1+\beta_1}{1+\alpha_1}(V_1 + \lambda)^{1+\alpha_1}$$

thus we have

$$\frac{\mathrm{d}v_1}{\mathrm{d}t} \leqslant \delta(\frac{1+\beta_1}{1+\alpha_1})(v_1+\lambda)^{2+\epsilon_1}$$

by integration from t to T, We get

$$V_1 + \lambda \geqslant \left[\frac{1}{\delta(1+\beta_1)}\right]^{\frac{1}{1+\epsilon_1}} (T-t)^{\frac{1}{1+\epsilon_1}} \stackrel{\triangle}{=} c_3 (T-t)^{\frac{1}{1+\epsilon_1}}$$

and from (27) we have that

$$U_1 + \mu \geqslant c_A (T-t)^{-\frac{1}{\delta(1+\beta_1)}}, c_A = \varphi(0) T^{\frac{1}{\delta(1+\beta_1)}}$$

thus we get

$$U(t) \geqslant u(x,t) \geqslant U_1 + \mu \geqslant c_4 (T-t)^{-\frac{1}{\delta(1+\beta_1)}}$$

$$V(t) \geqslant v(x,t) \geqslant V_1 + \lambda \geqslant c_3 (T-t)^{-\frac{1}{1+\alpha_1}}$$
(31)

where (30)(31) hold for 0 < t < T.

References

- 1 Protter M H and Weinberger H F. Maximum principles in Differetial Equations, Prenttice-Hall. 1967
- 2 Friedman A, Mcleod B. Bolw-up of positive Solutions of semilinear heat equations. Indiana Univ. Math, 1985,34(2):425~445
- 3 Caffarrelli L A and Friedman A. Blow-up of solutions of nonlinear heat equations. J. math. Appl. 1988, 129:409~419
- 4 Pao C V. On nonlinear reaction-diffusion sysrems J. math Anal. Appl. 1982,1987,(1):165~198
- 5 ZHang Kenong. Blow-up Phenomenon of Solution for Semilinear Parabolic Equation system. J. Math. Res Expo. 1994, (4)

关于半线性抛物型方程组解的短破率

张 克 农 (厦门大学数学系,厦门 361005)

摘 要 本文将对某一类半线性抛物型方程组在解的单点爆破情况下,估计当点邻近短爆点时,解的爆破率.

关键词 爆破时刻,爆破率,紧子集