Lower and Upper Orientable Strong Radius and Diameter of Cartesian Product of Paths＊

HUANG Yi ${ }^{1}$ ，CHEN Mei－run ${ }^{2}$
（1．Department of Basic Sciences，Xinjiang Petroleum Institute，Urumqi，Xinjiang 830000，China；
2．School of Mathematical Sciences，Xiamen University，Xiamen，Fujian 361005，China）

Abstract

For two vertices u and v in a strong digraph D ，the strong distance $s d(u, v)$ between u and v is the minimum size（the number of arcs）of a strong sub－digraph of D containing u and v ．For a vertex v of D ， the strong eccentricity $s e(v)$ is the strong distance between v and a vertex farthest from v ．The strong radius $\operatorname{srad}(D)($ resp．strong diameter $\operatorname{sdiam}(D)$ ）is the minimum（resp．maximum）strong eccentricity among the vertices of D ．The lower（resp．upper）orientable strong radius $\operatorname{srad}(G)$（resp．$S R A D(G)$ ）of a graph G is the minimum（resp．maximum）strong radius over all strong orientations of G ．The lower（resp．upper） orientable strong diameter $\operatorname{sdiam}(G)$（resp．$S D I A M(G)$ ）of a graph G is the minimum（resp．maximum） strong diameter over all strong orientations of G ．In this paper，we determine the lower orientable strong radius and strong diameter of Cartesian product of paths，and give bounds on the upper orientable strong radius and a conjecture of the upper orientable strong diameter of Cartesian product of paths．

Key words ：Strong distance；Lower orientable strong radius and strong diameter；upper orientable strong radius and strong diameter

CLC number ：O157．5 Document Code ：A Article ID ：1000－2839（2009）01－0033－05

路和路的笛卡尔积的最小和最大定向强半径和强直径

黄 怡 ${ }^{1}$ ，陈美润 ${ }^{2}$
（1．新疆石油学院，新疆 乌鲁木齐 $830000 ; 2$ ．厦门大学 数学科学学院，福建 厦门 361005）

Abstract

摘 要：强有向图 D 中任意两个点 u, v 的强距离 $s d(u, v)$ 定义为 D 中包含 u 和 v 的最小有向强子图 $D_{u v}$ 的大小（弧的数目）．D 中一点 u 的强离心率 $s e(u)$ 定义为 u 到其他顶点的强距离的最大值．强有向图 D 的强半径 $\operatorname{srad}(D)$（相应的强直径 $\operatorname{sdiam}(D)$ ）定义为 D 中所有顶点强离心率的最小值（相应的最大值）。无向图 G 的最小定向强半径 $\operatorname{srad}(G)$（相应的最大定向强半径 $S R A D(G)$ ）定义为 D 中所有强定向的强半径的最小值（相应的最大值）．无向图 G 的最小定向强直径 $\operatorname{sdiam}(G)$（相应的最大定向强直径SDIAM (G) ）定义为 D 中所有强定向的强直径的最小值 （相应的最大值）．本文确定了路和路的笛卡尔积的最小定向强半径 $\operatorname{srad}\left(P_{m} \times P_{n}\right)$ 和强直径的值 $s \operatorname{diam}\left(P_{m} \times P_{n}\right)$ ，给出了最大定向强半径 $S R A D\left(P_{m} \times P_{n}\right)$ 的界并提出关于最大定向强直径 $S D I A M\left(P_{m} \times P_{n}\right)$ 的一个猜想．

关键词：强距离；最小定向强半径和强直径；最大定向强半径和强直径

1 Introduction

In［2］，Chartrand et al．defined the strong distance $s d(u, v)$ between two vertices u and v in a strong digraph D as the minimum size（the number of arcs）of a strong sub－digraph of D containing u and v ．A (u, v)－geodesic is a strong sub－digraph of D of $\operatorname{size} \operatorname{sd}(u, v)$ containing u and v ．Here we consider only strong oriented graphs of simple graphs．Clearly，if $u \neq v$ then $s d(u, v) \geq 3$ ．And $\operatorname{sd}(u, v)=3$ if and only if u and

[^0]v belong to a directed 3－cycle in D ．Fig． 1 shows a strong digraph with $\operatorname{sd}(w, v)=3, \operatorname{sd}(u, w)=5$ and $s d(u, x)=6$ ．

The strong eccentricity $\operatorname{se}(v)$ of a vertex v in a strong digraph D is

$$
s e(v)=\max \{s d(v, x) \mid x \in V(D)\}
$$

The strong radius $\operatorname{srad}(D)$ of D is

$$
\operatorname{srad}(D)=\min \{\operatorname{se}(v) \mid v \in V(D)\}
$$

while the strong diameter $\operatorname{sdiam}(D)$ of D is

$$
\operatorname{sdiam}(D)=\max \{\operatorname{se}(v) \mid v \in V(D)\} .
$$

The strong radius and strong diameter of a strong digraph satisfy the following inequality．

Fig 1．Strong distance in a strong digraph

Theorem $\mathbf{1}^{[2]}$ For every strong digraph D ，

$$
\operatorname{srad}(D) \leq \operatorname{sdiam}(D) \leq 2 \operatorname{srad}(D)
$$

In［2］，Chartrand et al．showed that，for any integers r, d with $3 \leq r \leq d \leq 2 r$ ，there existed a strong oriented graph D such that $\operatorname{srad}(D)=r$ and $\operatorname{sdiam}(D)=d$ ；and gave an upper bound on strong diameter of a strong oriented graph D ．

Theorem $\mathbf{2}^{[2]}$ If D is a strong oriented graph of order $n \geq 3$ ，then

$$
\operatorname{sdiam}(D) \leq\left\lfloor\frac{5(n-1)}{3}\right\rfloor
$$

In［5］，Dankelmann et al．observed the structure of a (u, v)－geodesic for any $u, v \in V(D)$ ，where D is a strong digraph，and established the following result．

Theorem $3^{[5]}$ Let D be a strong digraph．For $u, v \in V(D)$ ，let $D_{u v}$ be a (u, v)－geodesic．Then $D_{u v}=P \cup Q$ ，where P and Q are a directed (u, v)－path and a directed (v, u)－path，respectively，in $D_{u v}$ ．There exist directed cycles $C_{1}, C_{2}, \ldots, C_{k} \subset D_{u v}$ such that
（i）$u \in V\left(C_{1}\right), v \in V\left(C_{k}\right)$ ；
（ii）$\bigcup_{i=1}^{k} C_{i}=D_{u v}$ ；
（iii）each C_{i} contains at least one arc that is in P but not in Q ，and at least one arc that is in Q but not in P ；
（iv）$C_{i} \cap C_{i+1}$ is a directed path for $i=1,2, \ldots, k-1$ ；
（v）$V\left(C_{i}\right) \cap V\left(C_{j}\right)=\emptyset$ for $1 \leq i<j-1 \leq k-1$ ．
In［5］，Dankelmann et al．presented the upper bounds on strong diameter of D in terms of order n ， directed girth $g \geq 2$ ，and strong connectivity κ as $\operatorname{sdiam}(D) \leq\left\lfloor\frac{(n-1)(g+2)}{g}\right\rfloor$ and $\operatorname{sdiam}(D) \leq \frac{5}{3}\left(1+\frac{n-2}{\kappa}\right)$ ．They also gave an upper bound on the strong radius of a strong oriented graph D ．

Theorem $4^{[5]}$ For any strong oriented graph D of order $n, \operatorname{srad}(D) \leq n$, and this bound is sharp. In [7], for a connected graph G, Lai et al. defined the lower orientable strong radius $\operatorname{srad}(G)$ of G as

$$
\operatorname{srad}(G)=\min \{\operatorname{srad}(D) \mid D \text { is a strong orientation of } G\}
$$

while the upper orientable strong radius $S R A D(G)$ of G is

$$
S R A D(G)=\max \{\operatorname{srad}(D) \mid D \text { is a strong orientation of } G\}
$$

they also defined the lower orientable strong diameter $\operatorname{sdiam}(G)$ of G as

$$
\operatorname{sdiam}(G)=\min \{\operatorname{sdiam}(D) \mid D \text { is a strong orientation of } G\}
$$

while the upper orientable strong diameter $\operatorname{SDIAM}(G)$ of G is

$$
S D I A M(G)=\max \{\operatorname{sdiam}(D) \mid D \text { is a strong orientation of } G\}
$$

Some known results of strong distance, strong radius and strong diameter of graphs are due to [3-5, 8-9].
In this paper, we investigate strong orientations of Cartesian product $P_{m} \times P_{n}$ of two paths P_{m} and $P_{n} . P_{m} \times P_{n}$ might denote a map of streets in a city. A strong orientation of $P_{m} \times P_{n}$ with lower strong diameter could be used to improve traffic jam of a city. We determine the lower orientable strong radius and strong diameter of Cartesian product of paths, and give bounds on the upper orientable strong radius, and a conjecture of the upper orientable strong diameter of Cartesian product of paths.

2 The lower orientable strong radius and diameter of Cartesian product of paths

In this section, we consider the lower orientable strong radius and diameter of Cartesian product of paths.

The Cartesian product $G=G_{1} \times G_{2}$ of two vertex-disjiont graphs G_{1} and G_{2} has vertex set $V(G)=$ $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ of G are adjacent if and only if either $u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$.

For the Cartesian product $P_{m} \times P_{n}$ of paths P_{m} and P_{n}, with $m \geq 2$ and $n \geq 2$, let $V\left(P_{m} \times P_{n}\right)=$ $\{(i, j) \mid 1 \leq i \leq m, 1 \leq j \leq n\}$, for $m \geq 2$ and $n \geq 2$. Thus, two vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are adjacent in $P_{m} \times P_{n}$ if and only if $i=i^{\prime}$ and $\left|j-j^{\prime}\right|=1$ or $j=j^{\prime}$ and $\left|i-i^{\prime}\right|=1$.

Proposition 1 Let D be a strong orientation of a graph G. Then $s d_{D}(u, v) \geq 2 d_{G}(u, v)$ for any $u, v \in V(D)$, where $d_{G}(u, v)$ denotes the length of a shortest (u, v)-path in G.

Proof For any $u, v \in V(D)$, let $D_{u v}$ be a (u, v)-geodesic. By Theorem 3, there exist directed cycles $C_{1}, C_{2}, \ldots, C_{k} \subset D_{u v}$ such that $D_{u v}=\bigcup_{i=1}^{k} C_{i}$ satisfying (i)-(v) in Theorem 3. Furthermore, $D_{u v}=P \cup Q$, where P is a directed (u, v)-path and Q is a directed (v, u)-path. Let $P_{i}=C_{i} \cap C_{i+1}$ be the directed path for $1 \leq i \leq k-1, a_{i}$ and b_{i} be the first and last vertex of P_{i}, respectively. Let

$$
\widetilde{P}= \begin{cases}P\left(u, a_{1}\right) \cup Q\left(a_{1}, b_{2}\right) \cup P\left(b_{2}, a_{3}\right) \cup \cdots \cup Q\left(a_{k-1}, v\right), & \text { if } k \text { is even; } \\ P\left(u, a_{1}\right) \cup Q\left(a_{1}, b_{2}\right) \cup P\left(b_{2}, a_{3}\right) \cup \cdots \cup P\left(b_{k-1}, v\right), & \text { if } k \text { is odd }\end{cases}
$$

and

$$
\widetilde{Q}= \begin{cases}Q\left(u, b_{1}\right) \cup P\left(b_{1}, a_{2}\right) \cup Q\left(a_{2}, b_{3}\right) \cup \cdots \cup P\left(b_{k-1}, v\right), & \text { if } k \text { is even; } \\ Q\left(u, b_{1}\right) \cup P\left(b_{1}, a_{2}\right) \cup P\left(a_{2}, b_{3}\right) \cup \cdots \cup Q\left(a_{k-1}, v\right), & \text { if } k \text { is odd } .\end{cases}
$$

where $P(x, y)$ (resp. $Q(x, y))$ denotes the undirected sub-path of P (resp. Q) with end vertices x and y. Clearly, \widetilde{P} and \widetilde{Q} are two edge-disjoint undirected path connecting u and v. So $\operatorname{sd}_{D}(u, v)=\left|A\left(D_{u v}\right)\right| \geq$ $|E(\widetilde{P})|+|E(\widetilde{Q})| \geq 2 d_{G}(u, v)$.

Theorem 5 Let $2 \leq m \leq n$ ．Then $\operatorname{srad}\left(P_{m} \times P_{n}\right)=2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ．
Proof For any strong orientation D of $P_{m} \times P_{n}$ and $u \in V(D)$ ，let v be a vertex farthest from u ，then， $d(u, v) \geq\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor$ ，and $s d_{D}(u, v) \geq 2 d(u, v) \geq 2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ by Proposition 5．Hence，se $(u) \geq 2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ． Therefore， $\operatorname{srad}(D) \geq 2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ，which implies that $\operatorname{srad}\left(P_{m} \times P_{n}\right) \geq 2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ．

Now it is enough to give a strong orientation D of $P_{m} \times P_{n}$ such that $\operatorname{srad}(D)=2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ．
Let $u=\left(\left\lceil\frac{m}{2}\right\rceil,\left\lceil\frac{n}{2}\right\rceil\right) \in V\left(P_{m} \times P_{n}\right), D$ be a strong orientation of $P_{m} \times P_{n}$ such that $V(D)=V\left(P_{m} \times P_{n}\right)$ and arc set

$$
\begin{gathered}
A(D)=\left\{((i, j),(i, j+1)) \mid 1 \leq i \leq m \text { and } i \neq\left\lceil\frac{m}{2}\right\rceil, 1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil-1\right\} \\
\cup\left\{((i, j),(i, j-1)) \mid 1 \leq i \leq m \text { and } i \neq\left\lceil\frac{m}{2}\right\rceil,\left\lceil\frac{n}{2}\right\rceil+1 \leq j \leq n\right\} \\
\cup\left\{((i, j),(i-1, j)) \mid 1 \leq j \leq n \text { and } j \neq\left\lceil\frac{n}{2}\right\rceil, 2 \leq i \leq\left\lceil\frac{m}{2}\right\rceil\right\} \\
\cup\left\{((i, j),(i+1, j)) \mid 1 \leq j \leq n \text { and } j \neq\left\lceil\frac{n}{2}\right\rceil,\left\lceil\frac{m}{2}\right\rceil \leq i \leq m-1\right\} \\
\cup\left\{\left.\left(\left(\left\lceil\frac{m}{2}\right\rceil, j\right),\left(\left\lceil\frac{m}{2}\right\rceil, j+1\right)\right) \right\rvert\,\left\lceil\frac{n}{2}\right\rceil \leq j \leq n-1\right\} \cup\left\{\left.\left(\left(\left\lceil\frac{m}{2}\right\rceil, j\right),\left(\left\lceil\frac{m}{2}\right\rceil, j-1\right)\right) \right\rvert\, 2 \leq j \leq\left\lceil\frac{n}{2}\right\rceil\right\} \\
\cup\left\{\left.\left(\left(i,\left\lceil\frac{n}{2}\right\rceil\right),\left(i-1,\left\lceil\frac{n}{2}\right\rceil\right)\right) \right\rvert\,\left\lceil\frac{m}{2}\right\rceil+1 \leq i \leq m\right\} \cup\left\{\left.\left(\left(i,\left\lceil\frac{n}{2}\right\rceil\right),\left(i+1,\left\lceil\frac{n}{2}\right\rceil\right)\right) \right\rvert\, 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil-1\right\} .
\end{gathered}
$$

Clearly，the orientation D is strong and，for any $v \in V(D)-u, v$ and u are contained in a directed cycle of length at most $2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ．So se（u）$=2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ．Moreover，for any $v \in V(D)-u$ ，there is a vertex w such that $d_{G}(v, w) \geq\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ，and so $\operatorname{se}(v) \geq s d(v, w) \geq 2 d_{G}(v, w) \geq 2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ．Thus $\operatorname{se}(u)=\min \{\operatorname{se}(v) \mid v \in V(D)\}$ ，and $\operatorname{srad}(D)=2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ．Hence， $\operatorname{srad}\left(P_{m} \times P_{n}\right)=2\left(\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\right)$ ．The proof is completed．

For any strong orientation D of $P_{m} \times P_{n}, s d_{D}((1,1),(m, n)) \geq 2 d_{G}((1,1),(m, n))=2(m+n-2)$ ．So $\operatorname{sdiam}(D) \geq 2(m+n-2)$ ，that is， $\operatorname{sdiam}\left(P_{m} \times P_{n}\right) \geq 2(m+n-2)$ ，where $2 \leq m \leq n$ ．In the following，we will prove $\operatorname{sdiam}\left(P_{m} \times P_{n}\right)=2(m+n-2)$ ．

Theorem 6 Let $2 \leq m \leq n$ ．Then $\operatorname{sdiam}\left(P_{m} \times P_{n}\right)=2(m+n-2)$ ．
Proof From the above analysis，we only need to give a strong orientation D of $P_{m} \times P_{n}$ such that $\operatorname{sdiam}(D)=2(m+n-2)$ ．

Case 1．$m=2$ and $n \geq 2$ ．Let $A(D)=\{((1, i),(1, i+1)) \mid 1 \leq i \leq n-1\} \cup\{((2, i),(2, i-1)),((1, i),(2, i)) \mid 2 \leq$ $i \leq n\} \cup\{((2,1),(1,1))\}$ ，then D is a strong orientation of $P_{2} \times P_{n}$ with $\operatorname{sdiam}(D)=2 n$ ．

Case 2．$m=n=3$ ．Let $A(D)=\{((1,1),(1,2)),((1,2),(1,3)),((1,3),(2,3))$ ， $((2,3),(3,3)),((3,3),(3,2)),((3,2),(3,1)),((3,1),(2,1)),((2,1),(1,1)),((1,2),(2,2))$ ， $((3,2),(2,2)),((2,2),(2,3)),((2,2),(2,1))\}$ ，then D is a strong orientation of $P_{3} \times P_{3}$ with $\operatorname{sdiam}(D)=8$ ．

Case 3．$m \geq 3$ and $n \geq 4$ ．Let $A(D)=$

$$
\begin{aligned}
& \left\{((i, j),(i, j+1)) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right., 1 \leq j \leq n-1\right\} \cup\left\{((i, j),(i+1, j)) \mid 1 \leq i \leq m-1,\left\lfloor\frac{n}{2}\right\rfloor+1 \leq j \leq n\right\} \\
& \cup\left\{((i, j),(i-1, j)) \mid 2 \leq i \leq m, 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor\right\} \cup\left\{((i, j),(i, j-1)) \left\lvert\,\left\lfloor\frac{m}{2}\right\rfloor+1 \leq i \leq m\right., 2 \leq j \leq n\right\} .
\end{aligned}
$$

It is easy to verify that $\operatorname{sd}((1,1),(m, n))=2(m+n-2)=\max \{s d(u, v) \mid u, v \in V(D)\}$ ．So $\operatorname{sdiam}(D) \leq$ $2(m+n-2)$ ．On the other hand，by the above analysis，we have $\operatorname{sdiam}(D) \geq 2(m+n-2)$ ．Therefore， $\operatorname{sdiam}(D)=2(m+n-2)$ ．

The proof is completed．

3 The upper orientable strong radius and diameter of Cartesian product of paths

In this section，we give a conjecture of the upper orientable strong diameter and the bounds on the upper orientable strong radius of Cartesian product of paths．

Lemma 1 Let $2 \leq m \leq n$ ．Then there exists a strong orientation D of $P_{m} \times P_{n}$ such that $\operatorname{sdiam}(D)=$ $m n+n-2$ ．

Proof Let P be the Hamiltonian path of $P_{m} \times P_{n}$ starting from $x=(1,1)$ such that for any vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ ，if $j<j^{\prime}$ ，then，on $P,(i, j)$ precedes $\left(i^{\prime}, j^{\prime}\right)$ ．If n is odd（resp．even）then the terminating vertex y of P is equal to (m, n)（resp．$(1, n)$ ）．Let D be a strong orientation of $P_{m} \times P_{n}$ such that the path P is a shortest directed (x, y)－path，and let Q be a shortest directed (y, x)－path．Then $A(Q) \backslash A(P)$ contains exactly $n-1$ arcs，and $P \cup Q$ is a (x, y)－geodesic with $s d(x, y)=m n+n-2$ ，which contains all vertices of D ． Consequently， $\operatorname{sdiam}(D)=m n+n-2$ ．

By Lemma 1，we have the following．
Theorem 7 Let $2 \leq m \leq n$ ．Then $\operatorname{SDIAM}\left(P_{m} \times P_{n}\right) \geq m n+n-2$ ．
In addition，we have the following conjecture．
Conjecture 1 Let $2 \leq m \leq n$ ，then $\operatorname{SDIAM}\left(P_{m} \times P_{n}\right)=m n+n-2$ ．
Obviously，the conjecture holds for $m=2$ ．
Now，by Theorem 1，Theorem 4 and Theorem 9，we can give the bounds on the upper orientable strong radius．

Theorem 8 Let $2 \leq m \leq n$ ．Then $S R A D\left(P_{2} \times P_{2}\right)=4$ ，and $\left\lceil\frac{m n+n-2}{2}\right\rceil \leq S R A D\left(P_{m} \times P_{n}\right) \leq m n$ for $(m, n) \neq(2,2)$ ．

References：

［1］Bang－Jensen J，Gutin G．Digraphs：Theory，Algorithms and Applications［M］．Springer，London， 2000.
［2］Chartrand G，Erwin D，Raines M，Zhang P．Strong Distance in Strong Digraphs［J］．J Combin Math Combin Comput， 1999，31：33－44．
［3］Chartrand G，Erwin D，Raines M，Zhang P．On Strong Distance in Strong Oriented Graphs［J］．Congr Numer，1999，138： 49－63．
［4］Chen Meirun，Guo Xiaofeng，Li Hao．Bounds on Strong Diameter in Oriented Graphs．Applied Mathematics Letters，in press．
［5］Chen Meirun，Guo Xiaofeng．Lower and Upper Orientable Strong Radius and Strong Diameter of Cartesian Product of Complete Graphs．Ars Combinatoria，in press．
［6］Peter Dankelmann，Henda C．Swart，David P．Day．On Strong Distance in Oriented Graphs［J］．Discrete Math，2003，266： 195－201．
［7］Lai Yungling，Chiang Fenghsu，Lin Chuhe，Yu Tungchin．Strong Distance of Complete Bipartite Graphs，The 19th Work－ shop on Combinatorial Mathematics and Computation Theory［M］．2002，12－16．
［8］Miao Huifang，Guo Xiaofeng．Lower and Upper Orientable Strong Radius and Strong Diameter of Complete k－Partite Graphs［J］．Discrete Applied Mathematics，2006，154（11）：1606－1614．
［9］Miao Huifang，Guo Xiaofeng．Strong Distance in Strong Oriented Complete k－Partite Graphs．Ars Combinatoria，in press．

[^0]: ＊Received Date：2007－10－25
 Biography：HUANG Yi（1971－），female，lecturer．

