The Finite Groups With the Same Degree and the Prime Number of Non-linear Irreducible Characters

ZHU Lirong^{1,2}, ZENG Jiwen^{1,*}

(1. The Institute of Mathematics, Xiamen University, Xiamen, Fujian, 361005, P. R. China; 2. Mathematics Department, Yangen University, Quanzhou, Fujian, 362014, P. R. China)

Abstract: In this paper, we classify all the finite groups which have prime number of non-linear irreducible characters and whose degrees for these non-linear irreducible characters are equal.

Key words: characters; degrees; commutator subgroups

MR(2000) Subject Classification: 20C20 / CLC number: O152 Document code: A Article ID: 1000-0917(2009)02-0199-05

In this paper we only consider finite groups G. We let Irr(G) denote all complex irreducible characters of G. Let cd(G) denote the set of degrees of χ when χ ranges over Irr(G). There are many results to classify finite groups G based on cd(G). For example, for a given set $S = \{1, a, b\}$ with some conditions on $a, b \in \mathbb{N}$, the integer set, Thomas Noritzsch^[10] studies the finite groups satisfying |cd(G)| = S. Some other related results can be found^[6].

Let $Irr_1(G)$ denote all non-linear irreducible characters of a group G. In 1992, Y. Berkovich^[1] et al. classified all finite groups with distinct degrees for distinct non-linear characters of G. In 1996, Y. Berkovich^[4] further classified all finite solvable groups with only two nonlinear irreducible characters having equal degree.

In the case of $|\operatorname{Irr}_1(G)| = 1$ or 2 or 3, it is almost well-known to classify these finite groups by the published articles^[8, 4, 2]. Among these results^[4, 2] to classify all finite groups of $|\operatorname{Irr}_1(G)| = 3$, one important case is $|\operatorname{cd}(G)| = 2$. In this paper, we consider more general cases and suppose $\operatorname{Irr}_1(G)$ has prime elements. We classify all these finite groups in two cases: (1) G is nilpotent; (2) G is non-nilpotent. The group in the first case still be unknown in a lot of cases. For the second case, that is to say, G is not nilpotent and $|\operatorname{cd}(G)| = 2$, there is a result to describe this type of group in [9] and T. Noritzsch^[10]. We will give a more delicate classification based on their results.

In this paper, Our notations are most from Isaacs's book^[5]. We use G' to denote the commutator subgroup of G. Z(G) denotes the center of the group G. F(G) and $\Phi(G)$ denotes the Fitting group of G and Frattini subgroup of G, respectively. Usually p denotes a prime

Received date: 2007-04-05. Revised date: 2008-06-09.

Foundation item: supported by Natural Science Foundation and GZ310 of Sino-Germany Academic Center.

E-mail: * jwzeng@xmu.edu.cn

number. For $\lambda \in Irr(H)$ and $H \leq G$, we denote the induction of λ to G by λ^G .

1 Lemmas and Definitions

For the convenience of the reader, we collect some well-known facts as our lemmas in this section.

The first result is about finite group G with only one non-linear irreducible character.

Lemma 1.1^[8] G has only one nonlinear irreducible character if and only if one of the following assertions holds:

- (1) G is an extra-special 2-group.
- (2) G is a Frobenius group with an abelian Frobenius kernel N and an abelian Frobenius complement H of |H| = |N| 1.

Lemma 1.2^[9,10] Let G be a non-nilpotent group and $cd(G) = \{1, m\}$, then

- (1) F(G) is the only abelian subgroup of G of index m;
- (2) If a Sylow p-subgroup of G is non-abelian, then |G:F(G)|=p;
- (3) If all Sylow subgroups of G are abelian, then $F(G) = G' \times Z(G)$, G/Z(G) is a Frobenius group with Frobenius kernel F(G)/Z(G).

Definition 1.3^[10] A non-abelian p-group G is called semiextra-special if for all maximal subgroups N of Z(G), the factor group G/N is extra-special.

Definition 1.4^[7] A group G is called a Camina group if G' is a proper normal subgroup and $\{[g,x]:x\in G\}\supseteq G'$ for all $g\in G-G'$.

Lemma 1.5^[10] Let G be a non-abelian p-group, then the following two statements are equivalent:

- (1) Z(G) = G' and $cd(G) = \{1, |G: Z(G)|^{\frac{1}{2}}\};$
- (2) G is semiextra-special.

Lemma 1.6^[7] If G is a finite Camina p-group, then $G_4 = 1$.

2 Main Theorems

Our main theorems about classification of all finite groups satisfying our conditions will be proved in this section.

The first case is nilpotent group G.

Theorem 2.1 Let G be nilpotent and $|\operatorname{Irr}_1(G)| = q, q$ a prime number. Then $|\operatorname{cd}(G)| = 2$ if and only if one of the following assertions holds:

- (1) G is an extra-special 3-group;
- (2) $|G| = 2^{2m+2}, |Z(G)| = 4, |G'| = 2;$
- (3) D(16), Q(16), SD(16);
- (4) G is a semiextra-special 2-group with $|G| = 2^{2m+t}$ and $|G'| 1 = 2^t 1 = q$ is a prime number;
 - (5) $G = P \times A$, P is an extra-special 2-group, |A| = q, q > 2.

Proof If G is nilpotent with $|\operatorname{Irr}_1(G)| = 2$ and $|\operatorname{cd}(G)| = 2$, then it is one of groups in (1), (2) by [2].

If G is nilpotent with $|Irr_1(G)| = q$, where 2 < q is a prime number.

First, if G is p-group, by Burnside theorem^[8, Question 3.16], if |G| is odd, then the number of nonlinear irreducible characters which have same degrees is even, this is contradiction with $q \neq 2$. We get p = 2. Assume that $|G| = 2^n$, $|G: G'| = 2^k$, $\operatorname{cd}(G) = \{1, 2^m\}$, then $2^n = 2^k + q \times 2^{2m}$, so $2^{n-2m} = 2^{k-2m} + q$. we get k = 2m and $4 \mid (q+1)$. By [3] we have that G is a Camina 2-group and of class 2 or of maximal class.

(a) The nilpotency class of G : cl(G) = 2.

That is $G' \leq Z(G)$. According to $2^{2m} \leq |G:Z(G)|$, we have

$$|Z(G)| \le 2^{n-2m} = |G'|,$$

so Z(G) = G' and $cd(G) = \{1, |G: Z(G)|^{\frac{1}{2}}\}$. By Lemma 1.5 we get the group (4).

(b)
$$|G| = 2^n$$
, $cl(G) = n - 1$.

 $G_n = 1$, then $|G'| = 2^{n-1}$ or 2^{n-2} . Since $|2^{n-2m}| = |G'|$, we get $|G'| = 2^{n-2}$ and $cd(G) = \{1, 2\}$. So $n \ge 4$. But by Lemma 1.6, $G_4 = 1$. Then n = 4. It is one of the groups in (3) by [2].

Second, if G is nilpotent, G is not 2-group, then there exists $P \in \operatorname{Sylow}_p(G)$, P non-abelian, p is a prime factor of |G|. Assume $G = P \times A$. $|A| \neq 1$. By ([8], Theorem 4.21)

$$Irr(G) = \{\theta \times \alpha | \theta \in Irr(P), \alpha \in Irr(A)\},\$$

then

$$|\operatorname{Irr}_1(G)| = q = |P: P'||\operatorname{Irr}_1(A)| + |A: A'||\operatorname{Irr}_1(P)| + |\operatorname{Irr}_1(A)||\operatorname{Irr}_1(P)|.$$

Since $|\operatorname{cd}(G)| = 2$, P nonabelian, then $|\operatorname{cd}(P)| = 2$, $|\operatorname{cd}(A)| = 1$. So $q = |A||\operatorname{Irr}_1(P)|$, then |A| = q and $|\operatorname{Irr}_1(P)| = 1$, by Lemma 1.1 we have the result (5).

Obviousely, all groups G in (1)–(5) are satisfying our conditions.

Remark 2.2 By Theorem 2.1 above, If G is a p-group and satisfies the conditions in Theorem 2.1, then G is a 2-group.

Now we consider another case: G is non-nilpotent, $|\operatorname{Irr}_1(G)| = q(q \text{ is a prime number})$ and $|\operatorname{cd}(G)| = 2$.

Theorem 2.3 Let G be non-nilpotent and $|\operatorname{Irr}_1(G)| = q$, where q is a prime number. Then $|\operatorname{cd}(G)| = 2$ if and only if one of the following assertions holds:

- (1) F(G) is abelian, |G:F(G)| = |F(G):G'| = p, p is a prime divisior of |G'|, |G'| 1 is a prime number.
- (2) G is a semidirect product of G' with A. G' is an abelian p-group and A is cyclic, |A| = q(|G'| 1)(q) is a prime number). G/Z(G) is a Frobenius group with Frobenius kernel isomorphic to G' and an a cyclic Frobenius complement of order |G'| 1.
- (3) $G = N_1 \times N_2$, where N_1 is Frobenius group with an elementary abelian kernel N and a cyclic complement H of |H| = |N| 1. $|N_2| = q$, where q is a prime number.
- (4) G is Frobenius group with an elementary abelian kernel N and a cyclic complement H of q|H| = |N| 1, where q is a prime number.

Proof If G is type (1), by $|G| = |G:G'| + \sum_{\chi \in Irr_1(G)} \chi(1)^2$, we have $|Irr_1(G)| = |G'| - 1 = q$, |cd(G)| = 2.

If G is type (2), we have |Z(G)| = q. Suppose $\chi \in \operatorname{Irr}_1(G/Z(G))$, then $\chi(1) = |G'| - 1$. Assume that $[\chi_{G'}, \lambda] \neq 0$, $\lambda \in \operatorname{Irr}(G')$. Then we have that $\lambda \neq I_{G'}$. $G/G' \cong A$ is cyclic.

Now we want to prove $\lambda^G = \sum_{i=1}^s \chi_i$, $\chi_1 = \chi$, $\chi_i \in \operatorname{Irr}_1(G)$, where all χ_i have the same degree $\chi(1) = |G'| - 1$, $i = 1, 2, \dots, s$. Let $T = I_G(\lambda)$. Since $T = G'(T \cap A)$ is a semidirect of G' with $T \cap A$, λ can be extended to a $\mu \in \operatorname{Irr}(T)$. Then by T/G' is cyclic, we have

$$\lambda^T = \sum_{\alpha_i \in \operatorname{Irr}(T/G')} \mu \alpha_i,$$

where $\mu\alpha_i$ run over $\operatorname{Irr}(T|\lambda)$ when α_i run over $\operatorname{Irr}(T/G')$. Thus by Clifford Theorem^[8, Theorem 6.11], we have

$$\lambda^G = \sum_{\alpha_i \in \operatorname{Irr}(T/G')} (\mu \alpha_i)^G.$$

Let $\chi_i = (\mu \alpha_i)^G$, then they will run over all $\operatorname{Irr}(G|\lambda)$ when α_i run over $\operatorname{Irr}(T/G')$. We can see that $\chi_i(1) = |G/T|$ is the same number for all χ_i . In particular, suppose $\chi = \chi_1$, then $\chi_i(1) = \chi_1(1) = |G'| - 1$.

Thus |G:G'|=s(|G'|-1), so s=q and $\operatorname{Irr}_1(G)$ has at least q non-linear irreducible characters of degree |G'|-1. From $|G|=|G:G'|+\sum_{\chi\in\operatorname{Irr}_1(G)}\chi(1)^2$, it follows that $|\operatorname{Irr}_1(G)|=q$, $\operatorname{cd}(G)=\{1,|G'|-1\}$.

If G is type (3), by Lemma 1.1, N_1 has only one non-linear irreducible character. For $|N_2| = q$, then $|\operatorname{Irr}_1(G)| = q$, and $|\operatorname{cd}(G)| = 2$.

If G is type (4), since G/N is abelian, then $(I_N)^G = \sum_{\Psi \in \text{Lin}(G/N)} \Psi$. For any $\chi \in \text{Irr}_1(G)$, we have $N \not\leq \ker \chi$, so we can see that $\text{Irr}_1(G) = \text{Irr}(G) - \text{Irr}(G/N)$, by the properties of Frobenius group. By [8, Theorem 6.34], we know the map $\lambda \mapsto \lambda^G$ is a map from $\text{Irr}(N) - \{I_N\}$ onto Irr(G) - Irr(G/N). For any $\lambda, \mu \in \text{Irr}(N), \lambda^G = \mu^G$ if and only if $\lambda = \mu^k, k \in G$. So $|\text{Irr}_1(G)|$ is the number of the orbits of the conjugacy action of G on $\text{Irr}(N) - \{I_N\}$.

Since N is abelian, then $cd(G) = \{1, |G:N|\} = \{1, |H|\}, q|H| = |N| - 1$, so the conjugacy action of G on $Irr(N) - \{I_N\}$ has q orbits, then $|Irr_1(G)| = q$.

Conversely, G is non-nilpotent and $cd(G) = \{1, m\}$. We get $|F(G)| = |G'| \times |Z(G)|$, and G/F(G) is a cyclic group of order m. Thus G is one of the following two groups by [9]:

(a) F(G) is abelian, |G:F(G)|=m=p, p is a prime divisior of |G'|.

If $|\operatorname{Irr}_1(G)| = q$ (a prime number), from $|G| = |G: G'| + \sum_{\chi \in \operatorname{Irr}_1(G)} \chi(1)^2$ and $|F(G)| = |G'| \times |Z(G)|$ it follows that |Z(G)|(|G'|-1) = pq. Since G is non-nilpotent, then $G' \not\leq \Phi(G)$. Therefore there exists a maximal subgroup A, we have $G' \not\leq A$, then G = G'A. If |G'| = 2, we obtain $A \subseteq G$ and A abelian, then G is abelian, a contradiction. So |Z(G)| = p, |G'| = q + 1 by $p \mid |G'|$. We get group (1).

(b) $G' \cap Z(G) = 1$ and $\bar{G} = G/Z(G)$ is a Frobenius group with Frobenius kernel $(\bar{G})' = G' \times Z(G)/Z(G)$ and a cyclic complement $\bar{A} = A/Z(G)$ of order $|G: G' \times Z(G)| = m$. So $\operatorname{cd}(\bar{G}) = \operatorname{cd}(G) = \{1, m\}$. If $|\operatorname{Irr}_1(G)| = q$ (a prime number), then $|\operatorname{Irr}_1(\bar{G})| = i, i = 1, 2, \cdots, q$. Considering the conjugacy action of \bar{G} on $\operatorname{Irr}((\bar{G})') - \{I_{(\bar{G})'}\}$, by the same arguments as above, we get $im = |(\bar{G})'| - 1 = |G'| - 1$.

(i) $|Irr_1(\bar{G})| = 1$.

Then $cd(G) = \{1, |G'| - 1\}$. By $|G| = |G: G'| + \sum_{\chi \in Irr_1(G)} \chi(1)^2$, it follows that $|G: G'|(|G'|-1) = q(|G'|-1)^2$, so $|A|(|G'|-1) = q(|G'|-1)^2$. Since $|A| = |Z(G)||\bar{A}| = |Z(G)|(|G'|-1)$,

then |Z(G)| = q.

In order to get the structure of G, we discuss as follows according to A being cyclic or not. If A is cyclic, then we have type (2).

If A is not cyclic, we suppose tht $A = \langle a, Z(G) \rangle$. If $\langle a \rangle \cap Z(G) \neq 1$, then $Z(G) \leq \langle a \rangle$, so A is cyclic, a contradiction. Therefore $A = \langle a \rangle \times Z(G)$. We consider $N_1 = G'\langle a \rangle$, for any $h \in C_{N_1}(g), \forall g \in G', g \neq 1$, then $hZ(G) \in C_{G/Z(G)}(gZ(G)) = (G' \times Z(G))/Z(G)$, so $h \in G' \times Z(G)$. Assume $h = g_1 a_1 = g_2 a_2$, where $g_1, g_2 \in G'$, $a_1 \in Z(G)$, $a_2 \in \langle a \rangle$. We get $g_2^{-1}g_1 = a_2a_1^{-1} \in G' \cap A = 1$, then $a_1 = a_2 \in Z(G) \cap \langle a \rangle = 1$, therefore $h \in G'$. By [7, Question 7.1], N_1 is a Frobenius group with G' as Frobenius kernel and $\langle a \rangle$ as Frobenius complement. We get type (3).

(ii) When q > 2, considering $|\operatorname{Irr}_1(\bar{G})| = j$, $j = 2, 3, \dots, q - 1$, so that $\operatorname{cd}(G) = \{1, \frac{|G'|-1}{j}\}$, as the same calculation as that in (i), we have $|Z(G)| = \frac{q}{j}$, a contradiction.

(iii)
$$|\operatorname{Irr}_1(\bar{G})| = q$$
.

As the same calculation as that in (i), we have |Z(G)| = 1, type (4) follows.

With the two theorems above, the classification of all finite groups satisfying our conditions is completed.

References

- [1] Thomas, N., Groups having three complex irreducible character degrees, J. Algebra, 1995, 175: 767-798.
- [2] Isaacs, I.M. and Passman, D., A characterization of groups in terms of the degrees of their characters II, Pacific J. Math., 1968, 24(3): 100-130.
- [3] Berkovich, Y., Chillag D and Herzog M. Finite groups in which the degrees of nonlinear irreducible characters are distinct, Proc. Amer. Math. Soc., 1992, 115: 955-959.
- [4] Berkovich, Y., Finite Solvable Groups In Which Only Two Nonlinear Irreducible Characters Have Equal Degrees, J. Algebra, 1996, 184: 584-603.
- [5] Seitz, G., Finite groups having only one irreducible representation of degree greater than one, Proc. Amer. Math. Soc., 1968, 19: 459-461.
- [6] Berkovich, Y., Finite groups with a small number of nonlinear irreducible characters, Izv. Severo-Kavkazskogo Tzentra Vyschei Skoly Estestvennye Nauki, 1987, 1: 8-13.
- [7] Bianchi, M.A., Gillio, B.M., Herzog, M., Qian G.H. and Shi W.J., Characterization of non-nilpotent groups with two character degrees, J. Algebra, 2005, 284: 326-332.
- [8] Isaacs, I.M., Character theory of finite groups, New York: Academic Press, 1976.
- [9] Dark, R. and Scoppola, C.M., On camina groups of prime power order, J. Algebra, 1996, 181: 787-802.
- [10] Berkovich, Y. and Zhmud, E., Characters of Finite Groups. Parts 1, 2, Translations of Mathematical Monographs 172, 181, American Mathematical Society, Providence, 1998.

非线性不可约特征标维数相等且为素数个的有限群

朱丽容 1,2, 曾吉文 1

(1. 厦门大学数学科学学院, 厦门, 福建, 361005; 2. 仰恩大学数学系, 泉州, 福建, 362014)

摘要:对于具有素数个非线性不可约特征标且它们的维数相等的有限群,我们给出一个分类. **关键词**:特征标:维数:导群

© 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net