摘要:通过测定龙湖不同区域的水生植物风眼莲结果表明,风眼莲对水体的 Zn、Mo、Pb、Cu 等都有较大的吸收富樂能力。 其根部富樂能力略大于其茎叶部位。通过测定表明,龙湖在重金属污染方面基本上处于未污染状态至轻污染状态。

关键词:凤眼莲;干重;污染度

龙湖位于晋江市龙湖镇,水域

面积 2500 多亩(正常水位时的水域面积),是福建省最

大的天然淡水湖,也是福建省重要的淡水鱼生产基地。

龙湖地处南亚热带,气候温和,雨量充沛,年降雨量在

911mm-1235mm 之间。平均气温 20℃-21℃,全年

最冷的 1-2 月份的月均气温 12℃-13℃。龙湖为盆

地形湖泊,底质较硬,淤泥较少。沿湖有十几个自然村

的生活污水流入湖中,水质肥厚,透明度 20cm-cm,

凤眼莲对福建龙湖重金属的 监测及其评价

程 静(厦门市鼓浪屿环保局) 张娆挺 曾文彬(厦门大学生物系)

采样:水生植物的五个采集点比较均匀地分布在沿岸水线。将采得的样品反复清洗干净(使附着的重金属减少到最低限度),不能揉碎。风干,放于袋里在干燥箱里烘干,称其干重,待用。

标准溶液配制及重金属含量测定:配制 Zn、Cu、Pb、Mo 标准溶液,再用 JP-1A 型示波极谱仪测定各重金属标准曲线图,同水生植物重金属含量曲线比较得水生植物重金属含量。

二、结果与讨论

水生植物对一般有毒物质都有吸收,积累等作用^[3]。吸收、积累的重金属便留在植物体内,通过处理可测出其中金属含量,而后同水体重金属含量多少进行比较,可判断此湖的污染情况。

(一)采样干重:从五个样点采集到的凤眼莲其干重如下表:

一、材料与方法

(一)原理

水色 17-18 号111

每一种重金属都会在示波极谱仪上呈现出一定的曲线,根据曲线峰高与标准曲线的比较,可得出重金属含量。

按戴全裕所采用的水生植物重金属污染度公式,可评价水体污染程度^[2]

单项评价公式: $P = \frac{X - \overline{X}}{\overline{X}}$

式中:P-水生植物重金属污染度

X-各采样点的重金属浓度实测值

X-对照点各重金属元素的平均值

综合评价时,以单项最大污染度作为采样点的综合污染度,用 Pn 代表,并以下列标准划分等级:

Pn;o--1 未污染

Pn:1---2 轻污染

Pn:2-3 中污染

Pn:>3

重污染

这样,可从水生植物受污染程度反映整个水体受污染情况。

(二)设备与材料

材料:凤眼莲

仪器: 鼓风干燥箱、JP—1A型示波极谱仪、分析天

平

试剂:铜铁络合剂

(三)步骤

 表 1
 凤眼莲干重
 (单位;g)

 采样点
 1"
 2"
 3"
 4"
 5"

 茎、叶
 0.5045
 0.4629
 0.6060
 0.3552
 0.5389

 根
 0.4343
 0.4040
 0.4049
 0.4093
 0.4921

(二)水样的采集及测定

在所采植物的样点处,取其中层深度的水质备用。 环境条件:室压(常压),室温 29 C,检测方法:外标法 (标准曲线)

表 2 龙湖各水样重金属含量

样	á				
样品号	Zn	Cu	· Pb	Мо	备 注
号		,	-		
1 "	185.0	54.0	19.4	5.3	
2 #	232.5	10.5	9.0	< 0.5	
3 "	195.0	37.5	5.7	< 0.5	
4 [#]	240	34	14.3	2.0	
5 #	285	51	10. 4	<0.5	取样只有 5ml 故有 误 差

龙湖凤眼莲评价标准值

参照值	Zπ	Мо	Pb	Cu
A. Π维诺格拉多夫,"植物平均含量"(1950)	3. 00	0. 20		2. 00
中国科学院南京土壤研究所微量元素组, "植物平均含量"(1979)	25-150	0.1-0.5	0.05-3.0	5-20
太湖水生植物采用的标准值(截全裕)(龙湖 评价采用)	44. 1	1.14	1. 60	31.60

按单项评价公式计算再综合评价,结果如下表。

表 5 龙湖水生植物(凤眼莲)评价水体污染结果

采样点	分析部位	Zn	Mo	Pb	Cu	Pn 值	分级
1 #	根及茎叶平均值	146.77	3. 35	2.76	56. 77	2. 33	中污染
	P	2.33	1.94	0.73	0.80		
2#	根及茎叶平均值	69.10	2. 23	1. 93	60.3	0.96	未污染
	P	0.57	0.96	0.21	0.91		
3 #	根及茎叶平均值	77.05	1.62	3. 38		1.11	轻污染
	Р	0.75	0.42	1.11			
4 #	根及茎叶平均值	98.93	1. 90	3. 57	43. 18	1. 24	轻污染
	P	1.24	0.67	1.23	0.37		
5#	根及茎叶平均值	58.19	1. 97	2. 1		0.73	未污染
	P	0.32	0.73	0.31			

(三)水生植物重金属含量的测定

利用 JP-1A 型示波极谱仪测得曲线与标准曲线 比较得重金属浓度如下:

表 3 各采样点凤眼莲茎叶及根重金属含量(占干重,ppm)

采样点	分析部位	Zn	Mo	Pb	Cu
	根	235.53	1. 96	1.72	67.74
1 **	茎叶	58.00	4.80	3. 80	45.80
	根	69. 18	2. 23	2. 45	118.44
2#	茎叶	69.02	4.14	1.40	2.16
3#	根	88.91	2. 29	3.58	22.53
3"	茎叶	65.18	0.94	3.17	
4 #	根	96.51	2.93	2. 20	15.88
4	茎叶	101.35	0.90	4.93	70.38
5#	根	57. 10	3.04	1. 22	22. 96
5*	茎叶	59.28	0.93	2.98	3. 2

(四)龙湖水生植物对重金属浓缩情况如表 4

(五)龙湖水生植物对水体污染度评价

根据戴全裕所用的太湖水生植物评价标准值为龙湖评价标准值。

从表中看出,采样点1号直接有生活污水及染色

布厂污水注入,因而达到中污染。而采样点 4 号处虽有生活污水注入,但要通过较大的长有茂密的水生植物长沟,因而污染得到缓解。2 号及 5 号处远离生活区及工厂处,因而未出现污染。

三 结论

(一) 龙湖凤眼莲对水体的 Zn、Mo、Pb、Cu 等都有较大的吸收富集能力。

(二) 龙湖水生植物凤眼莲其根和茎叶内重金属含量相差不大,根部略高于茎叶部分。这同太湖凤眼莲根部比茎叶部吸收的重金属量达 2—3 倍相差不多。

(三) 龙湖在重金属污染方面基本上处于未污染状态至轻污染状态。

参考文献

- [1]黄德裕等《龙湖名特优水产综合开发项目可行性报告》(1989)
- [2]截全裕,水生高等植物对太湖重金属的监测及其评价,环境科学学报3(3):213-221(1983)
- [3]吴玉树,高等水生植物对污水的净化作用,生物学通报(5)1-3(1985)