

Available online at www.sciencedirect.com

Chinese Journal of Natural Medicines 2010, **8**(4): 0298–0300 doi: 10.3724/SP.J.1009.2010.00298 Chinese Journal of Natural Medicines

Two Epothilones from *Sorangium cellulosum* Strain So0157-2

ZHAO Lin¹, ZHAO Bao-Bing², LU Chun-Hua^{2*}, LI Yue-Zhong¹, SHEN Yue-Mao^{1, 2}

¹Laboratory of Myxo and Pharm Microbio Technology, Shandong University, Jinan 250100;

²Fujian Engineering Laboratory of Pharmaceuticals; School of Life Sciences, Xiamen University, Xiamen 361005, China

Available online 20 July 2010

[ABSTRACT] AIM: To study the chemical constituents of *Sorangium cellulosum* So0157-2. **METHODS:** The chemical constituents were isolated and purified by column chromatography, and their structures were identified by spectroscopic analyses including 1D-, 2D-NMR data and MS analyses. **RESULTS:** Two epothilones were purified and identified as *seco*-epothilone A (1) and 1-methyl-*seco*-epothilone A (2). **CONCLUSION:** 1 and 2 were obtained from this strain for the first time, and 1 was a new natural product.

[KEY WORDS] Sorangium cellulosum So0157-2; Epothilones; Spectroscopic analyses

[CLC Number] TQ465 [Document code] A [Article ID] 1672-3651(2010)04-0298-03

1 Introduction

Epothilones are exciting new natural products, isolated from the myxobacteria *Sorangium cellulosum* strain So90, with novel molecular structures, important biological properties and an intriguing mechanism of action^[1-3]. Epothilones are currently of great interest because of their potential as anticancer agents

As a part of our ongoing search for new epothilones from *Sorangium cellulosum* strain So0157-2, which was isolated from a soil sample collected in Yunnan^[4], the chemical constituents of *Sorangium cellulosum* strain So0157-2 have been studied ^[5], and epothilones A, B and five new epothilone derivatives have been isolated ^[6]. Further chemical study of this strain led to the isolation of two epothilone analogues (1 - 2). In this paper, we describe the fermentation, isolation and structural elucidation of compounds 1 - 2 and their cytotoxicities against human breast carcinoma cell line MDA-MB-435.

2 Apparatus and Material

2.1 Apparatus and material Column chromatography: Qingdao silica gel (200-300

[Received on] 21-Jan-2010

[Research Funding] This project was supported by Key Program of International Cooperation, Ministry of Science and Technology of China (No.2007DFA30970) and the 863 Program of China (No. 20060102Z1083)

[*Corresponding author] LU Chun-Hua: Associate Prof. Tel: 86-592-2184180, Fax: 86-592-2181722, E-mail: ahua0966@xmu.edu.cn

mesh); Merck silica gel 60 Rp-18; Sephadex LH-20: Pharmacia products; TLC: Qingdao precoated plates, silica GF_{254} plates; NMR Spectra: Bruker DRX-600 spectrometer with TMS as internal standard; HR-Q-TOF-MS: API QStar-Pulsar LC-Q-TOF mass spectrometer; in *m/z*.

2.2 Culture and extraction

The strain *Sorangium cellulosum* So0157-2 is deposited in the China Center of Typical Culture Collection (CCTCC) with the accession number of CCTCC M 208078. This organism was cultivated in liquid M26 medium at 30 °C for 4 days to prepare the seed cultures ^[4]. Then the cells were inoculated on CNST medium for the production of epothilones using solid state fermentation. The total volume of the solid fermentation medium was 10 L. After 4-day incubation, XRD-16 resin was added onto the culture for the absorption of epothilone products. The plates were incubated for additional 4-5 days, following which the XRD-16 resin was collected and extracted with methanol exhaustively.

2.3 Isolation

The crude extract (1.25 g) was subjected to MPLC (40 g Rp18 silica gel; 50%, 65%, 75% and 100% MeOH, 800 mL for each gradient) to afford four fractions(Frs. 1-4).

Fr1, obtained from elution with MeOH-H₂O (50%), was subjected to column chromatography (CC) over Sephadex LH-20 (in MeOH) twice, and further applied to MPLC CC (Rp18 silica gel; 50%, 60% and 100% MeOH, 400 mL for each gradient) to afford **1** (5 mg).

Fr 3, obtained from elution with MeOH-H₂O (75%), was subjected to CC over Sephadex LH-20 (in MeOH) twice, and

298 Chin J Nat Med July 2010 Vol. 8 No. 4

CĴNM

中國天然棄物 2010年7月 第8卷 第4期

further applied to silica CC eluted with petroleum ether /acetone (20 : 1, 42 mL; 8 : 1, 45 mL; 5 : 1, 48 mL) to obtain **2** (5 mg).

3 Results

3.1 Structural elucidation and identification

Compound **1** was obtained as colorless oil. The molecular formula was determined to be $C_{26}H_{41}NO_7S$ by HR Q-TOF-MS (*m/z* 534.358 9 [M + Na]⁺ and 512.330 5 [M + H]⁺) and NMR data (Table 1). The ¹³C NMR spectrum of **1** displayed 26 carbon signals for six methyls, five methylenes, nine methines, and six quaternary carbon atoms including a carboxyl carbon at δ 171.5, respectively. The ¹H and ¹³C NMR spectra of **1** clearly showed a typical epothilone structure as the presence of a thioazole ring, a carbon-carbon dou-

ble bond and an epoxy moiety (Table 1). Comparing the ¹H NMR data with those of epothilone $A^{[3]}$, the only difference was that the proton at δ 5.44 (H-15) in epothilone A was upshifted to 4.38. The HMBC showed no ¹H-¹³C long-range correlation from H-15 to C-1, which indicates a structure of *seco*-epothilone A (or epothilone A acid) (Fig. 1).

Compound **2** was obtained as colorless powder. The HR-ESI-Q-TOF MS revealed the molecular formula of **2** to be $C_{27}H_{43}NO_7S$, (*m/z* 526.823 6 ([M + H]⁺)). The ¹H and ¹³C NMR spectra were similar to those of **1**, except for an additional signal [δ 3.73 (s, MeO-)] due to a Me ester, as confirmed by comparison of the ¹H and ¹³C NMR spectra of **1** and **2**, and corroborated by HMBC between H-1a (δ 3.73) and C-1 (δ 173.4). Thus, the structure of **2** was determined to be 1-methyl-*seco*-epothilone A (Fig. 1).

Table 1 The NMR data of compounds 1 and 2 in CDCl₃(J in Hz)

No.	1		2	
	¹ H	¹³ C	'Η	¹³ C
1	-	171.5 s	-	173.4
2	2.42 (m)	36.2 t	2.50 (dd, 1.7, 16.1) 2.43 (m)	36.4
3	4.27 (m)	72.5 d	4.28 (dd, 2.4, 10.9)	72.4
4		52.2 s		52.0
5		222.0 s		222.1
6	3.28 (q, 6.2)	41.4 d	3.41 (q,8.9)	41.0
7	3.48 (m)	74.7 d	3.49 (d,1.3)	74.6
8	1.59 (m)	35.4 d	1.58 (m)	35.5
9	1.76(m) 1.27 (m)	32.1 t	1.84 (m) 1.56 (m)	32.7
10	1.59 (m)	23.4 t	1.64 (m) 1.40 (m)	23.7
11	1.53 (m) 1.38 (m)	28.2 t	1.58 (m)	28.4
12	2.99 (q, 4.3)	57.3 d	3.00 (dd, 5.9,10.4)	57.1
13	3.15 (m)	54.6 d	3.19 (m)	54.4
14	1.89 (m) 1.76 (m)	33.4 t	1.95 (dq, 4.4) 1.76 (dq,4.4)	33.4
15	4.38 (m)	75.1 d	4.42 (dd, 4.3, 8.4)	75.4
16		142.3 s		141.8
117	6.64 (s)	118.6 d	6.62 (s)	118.9
18		152.2 s		152.7
19	6.97 (s)	115.8 d	6.97 (s)	115.8
20		165.3 s		164.7
21	2.71 (s)	18.8 q	2.72 (s)	18.9
22	1.11 (s)	21.3 q	1.21 (s)	19.1
23	1.25 (s)	18.9 q	1.16 (s)	21.3
24	1.08 (d, 6.8)	10.6 q	1.08 (d, 6.8)	9.9
25	0.89 (d, 6.8)	14.6 q	0.88 (d, 6.8)	15.4
27	2.02 (s)	15.6 q	2.09 (s)	14.5
-COOCH ₃			3.73 (s)	52.0

CINM

© 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Fig. 1 Structures of compounds 1 and 2

3.2 Bioactivities of compounds 1 and 2

The cytotoxicities of **1** and **2** against human breast carcinoma cell line MDA-MB-435 were measured 24 h after treatment by the MTT method^[7]. Compounds **1** and **2** displayed weak cytotoxicities with inhibition rates of 7.7% and 27.7% at the dose of 10 μ g·mL⁻¹.

4 Discussion

Epothilones A and B were first isolated from Sorangium cellulosum Soce90^[1]. The search for new epothilone derivatives, spurred by their potent antitumor activity, resulted in the isolation and identification of dozens of natural epothilone-type 16-membered macrolides ^[3]. Most recently, five glycosylated derivatives of epothilones were isolated from S. cellulosum So0157-2, which represented the first example of epothilone glycosides^[6]. However, most epothilones reported previously were 16-membered macrolides except for epothilones I_1 - $I_6^{[3]}$. Those epothilones presumably arise by an extra cycle of chain elongation after the introduction of C-9/C-10. Seco-epothilones were obtained only as intermediate in the combinatorial chemical synthesis^[8-9]. Our previous isolation and detection work suggested that seco-epothilones were produced only in the solid state fermentation extract. Seco-epothilone A (1) and 1-methyseco-epothilone A (2), isolated from a wild type strain S. cellulosum So0157-2 in this work, have the same polyketide chain as the 16-membered analogues. In the light of the weak

antitumor activities of **1** and **2** *in vitro*, it is worth testing the producing mechanism. Overall, our work points to a new direction for generating novel epothilones for antitumor drug discovery.

References

- Gerth K, Bedorf N, Hofle G, et al. Epothilons A and B: antifungal and cytotoxic compounds from *Sorangium cellulo*sum (myxobacteria). production, physico-chemical and biological properties[J]. J Antibiot, 1996, 49(6): 560-563
- [2] Bollag, DM, McQueney PA, Zhu J, et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action[J]. Cancer Res, 1995, 55(11): 2325-2333.
- [3] Hardt IH, Steinmetz H, Gerth K, et al. New natural epothilones from Sorangium cellulosum, strains so ce90/b2 and so ce90/d13: isolation, structure elucidation, and SAR studies[J]. J Nat Prod, 2001, 64(7): 847-56.
- [4] Li ZF, Zhao JY, Xia ZJ, et al. Evolutionary diversity of ketoacyl synthases in cellulolytic myxobacterium Sorangium[J]. Syst Appl Microbiol, 2007, 30(3): 189-196.
- [5] Gong GL, Sun X, Liu XL, et al., Mutation and a high-throughput screening method for improving the production of epothilones of Sorangium[J]. J Ind Microbiol Biotechnol, 2007, 34(9): 615-623.
- [6] Wang J, Zhang H, Ying L, et al. Five new epothilone metabolites from Sorangium cellulosum strain so0157-2[J]. J Antibiot, 2009, 62(9): 483-487.
- [7] Solis PN, Wright CW, Anderson MM, et al. A microwell cytotoxicity assay using Artemia salina (brine shrimp)[J]. Planta Med, 1993, 59(3): 250-252.
- [8] Niggemann J, Michaelis K, Frank R, et al. Natural product-derived building blocks for combinatorial synthesis. Part 1. Fragmentation of natural products from myxobacteria[J]. J Chem Soc, Perkin Trans 1, 2002, 2002(22): 2490-2503.
- [9] Gerth K, Steinmetz H, Hoflel G, et al., Studies on the biosynthesis of epothilones: Hydroxylation of epothilones A and B to epothilones E and F[J]. J Antibiot, 2002, 55(1): 41-45.

粘细菌 Sorangium cellulosum So0157-2 产生的两个埃博霉素类 化合物

赵 林¹,赵宝兵²,鲁春华^{2*},李越中¹,沈月毛^{1,2}

山东大学粘细菌及医药微生物技术研究室,济南 250100
2厦门大学生命科学学院福建省药物工程实验室,厦门 361005

【摘要】目的:对粘细菌 Sorangium cellulosum So0157-2的化学成分进行研究。方法:通过色谱层析对提取物进行分离 纯化,并通过波谱解析(一维、二维的核磁共振谱和质谱)确定了化合物的结构。结果:分别鉴定为 seco-epothilone A (1)和 1-methyl-seco-epothilone A (2)。结论:化合物1和2都是首次从该菌株中分离得到。其中1是首次分离得到的新天然产物。

CINM

【关键词】 Sorangium cellulosum So0157-2; 埃博霉素; NMR

【基金项目】 中国科技部重要国际合作项目 (2007DFA30970)和863目标导向课题 (20060102Z1083)资助

300 Chin J Nat Med July 2010 Vol. 8 No. 4

中國天然兼物 2010年7月 第8卷 第4期