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Default Forecasting on Housing Mortgage and Interest
Rate Policy Simulation

Fang Kuangnan & Wu Jianbin

Abstract:This paper proposed a housing mortgage default risk forecasting model based on non-parametric random
forest at first. Then by using the housing mortgage database from a big famous bank in China this paper studied the effect
of housing mortgage default according to borrowers’ characteristics loan characteristics housing characteristics and local
economic and cultural characteristics. The empirical study found that the proportion which had been repaid interest rate
ratio of loan to income loan amount were the most important factors. The results also showed the prediction accuracy of RF
were much higher than other methods such as logistic regression. In addition this paper also studied how the interest rate
affected mortgage default finding that interest rate had negative effect which were asymmetry and nonlinear on the
mortgage default.
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