第 36 卷第 10 期 2015 年 10 月

不同生物质燃烧排放多环芳烃及糖醇类化合物的模拟 研究

黄帅¹,黄欣怡¹,吴水平^{1*},胡清华² 陈晓秋²

(1. 厦门大学环境与生态学院 厦门 361005; 2. 福建省环境监测中心站 福州 350003)

摘要:选择水稻、小麦、玉米及棉花秸秆与马尾松枝,采集模拟燃烧时排放的 PM_{2.5} ,分析 PM_{2.5} 中多环芳烃(PAHs) 和糖醇类 化合物的含量 获得 PM_{2.5}及负载的两类化合物的排放因子;采用 500 W 汞灯直接照射收集了 PM_{2.5}的尘膜,获得了中、高环 PAHs 及左旋葡聚糖的光解动力学.结果表明, PM_{2.5}的排放因子介于(2.26 ± 0.60) g•kg⁻¹(马尾松枝) ~(14.33 ± 5.26) g•kg⁻¹(玉米秸秆) 之间; 19 种 PAHs 的排放因子介于(0.82 ± 0.21) mg•kg⁻¹(马尾松枝) ~(11.14 ± 5.69) mg•kg⁻¹(棉花秸秆) 之间, 且以4 环类 PAHs 所占比例最高,介于 51% ~71% 之间(其中马尾松枝燃烧时惹烯的排放因子最大);9 种糖醇类化 合物的排放因子范围为(52.34 ± 50.16) mg•kg⁻¹(水稻秸秆) ~(238.81 ± 33.62) mg•kg⁻¹(小麦秸秆), 且都以左旋葡聚糖占 绝对优势(72% ~96%).光照模拟显示,目标化合物的光照损失都遵循拟一级动力学,其中≥4 环的 PAHs 的光解速率常数随着尘膜中 PAHs 的负载量增大而减小,来源特征比值 Flua/(Flua + Py) 和 Ip/(Ip + BgP) 相对稳定,而左旋葡聚糖的光解速率常数为0.004 5 min⁻¹,与苯并[a]菌的光解速率常数(0.004 1 ~0.005 0 min⁻¹) 接近.

关键词: PM_{2.5}; 生物质燃烧; 多环芳烃; 糖醇类化合物; 光解

中图分类号: X513 文献标识码: A 文章编号: 0250-3301(2015)10-3573-09 DOI: 10.13227/j. hjkx. 2015.10.004

Simulation Study of the Emission of Polycyclic Aromatic Hydrocarbons and Sugar Alcohols from Biomass Burning

HUANG Shuai¹, HUANG Xin-yi¹, WU Shui-ping^{1*}, HU Qing-hua², CHEN Xiao-qiu²

(1. College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; 2. Evironmental Monitoring Center Station of Fujian Province, Fuzhou 350003, China)

Abstract: To measure the emission factors of $PM_{2.5}$ and its associated PAHs and sugar alcohols, Chinese red pine stick and four crop straw including rice, wheat, corn and cotton were burned in a chamber. In addition, the kinetics of certain compounds were obtained through the irradiation of the glass filters with $PM_{2.5}$ loading by 500 W mercury lamp. The emission factors of $PM_{2.5}$ were ranged from (2.26 ±0.60) g•kg⁻¹ (Chinese red pine stick) to (14.33 ±5.26) g•kg⁻¹ (corn straw). Although the emission factors of the total 19 PAHs differed from (0.82 ±0.21) mg•kg⁻¹ (Chinese red pine stick) to (11.14 ±5.69) mg•kg⁻¹ (cotton straw) , 4 ring PAHs showed predominance over other PAHs accounting for 51% -71% except Chinese red pine in which retene was the predominant compound. The emission factors of 9 sugar alcohols were ranged from (52.34 ±50.16) mg•kg⁻¹ (rice straw) to (238.81 ± 33.62) mg•kg⁻¹ (wheat straw) with levoglucosan accounting for 72% -96% of the total sugar alcohols. Both the selected PAHs and levoglucosan associated with $PM_{2.5}$ followed the first order kinetics. The photolysis kinetic coefficient of PAHs (ring number \geq 4) was decreased with the increase of PAHs loading in filters. Two PAHs source characteristic ratios such as Flua/(Flua + Py) and IP/(IP + BgP) were relative stable during the irradiation. The photolysis kinetic coefficient of levoglucosan (0.004 5 min⁻¹) was comparable to benzo [a] anthracene (0.004 1–0.005 0 min⁻¹).

Key words: PM2.5; biomass burning; PAHs; sugar alcohols; photolysis

生物质燃烧是仅次于煤炭、石油和天然气的第 四大能源,占世界能源总消费量的14%,在发展中 国家生物质能源占初级能源的35%^[1].在我国,尤 其是在农村地区,生物质燃烧具有普遍性,在收获季 节或耕种季节,秸秆的露天燃烧现象更为严重,例如 山东、河南、江苏、河北、黑龙江等省^[2].另外,森 林和草原火灾作为自然来源也是不容忽视的^[3].

Li 等^[4]在中国农村生物质燃烧排放碳质气溶 胶的研究中发现,相比于秸秆,木材燃烧排放的 $PM_{2.5}$ 颗粒 其负载的黑碳含量更高. Shen 等^[5]运用 砖砌厨灶模拟生物质燃烧产生颗粒态 PAHs 的排放 因子为(35 ± 23) mg•kg⁻¹ 相对组成以4 环类 PAHs 为主; 同时发现现场实测值高于烟雾箱的模拟结

收稿日期: 2015-04-02; 修订日期: 2015-05-22

基金项目:国家自然科学基金项目(41171365);环境保护公益性行 业科研专项(201009004);厦门大学山海基金项目 (2013SH011)

作者简介: 黄帅(1988~) ,男,硕士,主要研究方向为大气颗粒物的 有机组成,E-mail: 790728159@qq.com

^{*} 通讯联系人 ,Email: wsp@ xmu. edu. cn

果 表明模拟结果并不适合用于源清单的计算和风 险评估.因针叶类薪柴燃烧时惹烯的排放因子很 高 .在大气颗粒物的来源解析中常常被作为生物质 燃烧的示踪物^[7,8].但是 ,也有研究发现煤烟和汽车 尾气中也检测出较高浓度的惹烯^[9,10] ,表明惹烯并 不是薪柴燃烧的特殊标志物.另一个被广泛应用于 生物质燃烧示踪的标志物是左旋葡聚糖^[11] ,来自于 含纤维素生物质的高温热解过程^[12].但由于生物 质的燃烧条件 ,如燃料特征、炉灶类型、供氧状况 等的不同 ,这些污染物的排放因子存在较大的不确 定性^[13,14] ,进而影响排放清单的估算^[5].另外 ,这 些示踪化合物进入大气环境后 ,还要受到光解和氧 化作用的影响 ,也会限制其在生物质燃烧来源解析 中的应用^[15].

本研究选择中国农村普遍使用的水稻、小麦、 玉米、棉花秸秆及马尾松枝进行燃烧模拟实验,采 集并分析 PM_{2.5}中的 PAHs 与糖醇类化合物,并估算 了相应的排放因子;同时,采用生物质燃烧排放的 PM_{2.5}颗粒及环境大气 PM_{2.5}颗粒,直接进行光照模 拟,对其来源示踪的稳定性进行了评估.

1 材料与方法

1.1 样品采集

水稻、小麦、玉米及棉花秸秆采自河南,马尾 松枝来自厦门本地. 生物质燃烧的方法主要参照实 验室之前摸索的方法进行^[16].秸秆和松枝在燃烧 前经自然风干后 裁剪成 2~3 cm 的小段 分别称取 3份同等重量的 5~10g的干物质,以堆积的方式放 到香炉底部 再将香炉置于自制的再悬浮箱中 并滴 加几滴无水乙醇助燃,以达到明火燃烧状态.开始 燃烧后,关闭再悬浮箱的箱门,待明火自燃熄灭后, 开启在悬浮箱底部两个平行的 PM₂,采样器 (TH100-2.5 流量 100 L·min⁻¹) 采集 40 min 将颗 粒物收集到处理过的玻璃纤维滤膜上(90 mm 直 径 450℃焙烧4 h 以上). 每种生物质样品做3 组 平行模拟 根据滤膜采样前后重量差值及生物质燃 烧喂料用量来计算 PM_{23} 的排放因子 ,以g•kg⁻¹的形 式表示. 每次实验前后,均需对再悬浮箱内壁进行 清洗,并用抽气泵抽气1h,以减少箱内的残留干扰.

另外,采用大张玻璃纤维滤膜(规格 8 in × 10 in)和大流量 $PM_{2.5}$ 采样器(武汉天虹,流量 1 m³•min⁻¹),分别采集马尾松枝和玉米秸秆(约 50 g)燃烧排放的 $PM_{2.5}$ 颗粒物及厦门大学翔安校区大 气 $PM_{2.5}$,用于颗粒物的直接光照模拟研究.大量生 物质燃烧模拟实验与上述排放因子的模拟实验类 似 将生物质样品置于香炉底部 但香炉与大流量采 样器是放置在一个容量约 10 m³ 的封闭房间内进行 颗粒物收集.

1.2 光照模拟

将大张玻璃纤维滤膜裁剪成 12 等份(11.6 cm × 3.1 cm) 置于光催化反应仪(型号为 BL-GHX-V)的 12 个盘位上,以 500 W 汞灯作为光源,间隔一定时间 取出 测量滤膜中目标化合物的残留量.实验过程采 用 PMA2100 照度计配 PMA2107 探头(Solar Light Company Jnc; US)测量紫外灯管 UVA/UVB 的平均 辐照度为(3830 ± 25) μ W·cm⁻² 与厦门岛(24°26′ N, 118°05′ E) 2013 年 7 月测量的中午最大辐照度范围 3 500 ~4 000 μ W·cm⁻² 接近.正式光解动力学实验 前 需要对尘膜上目标化合物的分布均匀性、非光解 因素干扰及光照模拟时间进行摸索与评估.

1.3 分析方法

1.3.1 PAHs 分析

将收集了颗粒物的尘膜剪成 1 cm² 大小的碎 片 放入棕色玻璃管中,加入 10 mL 环己烷浸泡过 夜,超声萃取 30 min,过无水硫酸钠小柱后转移到浓 缩管中 经柔和氮吹浓缩至 200 μ L 左右,加入浓度 为 10 μ g•mL⁻¹的六甲基苯 20 μ L 作为内标物进行 体 积 校 准,上 GC-MS (Aglient 6890 plus GC-5973MSD) 测定.进样口温度为 250℃,1 μ L 不分流 进样. 色谱分离采用 HP-5 MS 毛细管柱:载气为高 纯氮气(99.999%),炉箱初温 60℃,保持 5 min 后 以 5 ℃•min⁻¹升至 300℃,再保持 20 min.

分析的 PAHs 包括萘(Nap)、苊烯(Acpy)、苊 (Acp)、芴(Flu)、菲(Phe)、蒽(Ant)、荧 蒽 (Flua)、芘(Py)、惹烯(Ret)、苯并[a]蒽(BaA)、 菌(Chr)、苯并 [k]荧菌(BkF)、苯并 [j]荧菌 (BjF)、苯并[b]荧蒽(BbF)、苯并[e]芘(BeP)、苯 并[a] 芘(BaP)、茚并[1,2,3-cd] 芘(IP)、苯并 [ghi] 苝(BgP) 和二苯并 [a,h] 蒽(DBA) 共 19 种. 其中,BbF、BiF和BkF保留时间非常接近,无法在 色谱柱上有效分开,将三者合并处理,以 BbjkF表 示. 采用 SIM 模式来检测 PAHs 的定性与定量离 子. 用微量注射器滴加 20 μ L 浓度为 5 μ g•mL⁻¹的 PAHs 混标于空白滤膜上,按照样品的处理方法,进 行回收率实验,回收率范围为77.7% (Acp)~ 91.5% (BaP),平均值为81.9% ±7.2%. 每批样品 处理时 保证2 个流程空白来检测流程中来自试剂 和器皿的干扰; 流程空白中 除 Nap 具有较大干扰

外(4.9 ng) 其它化合物介于未检出(nd) ~0.54 ng 之间. PAHs 的最后结果经回收率和空白校正.

1.3.2 糖醇类化合物分析

将滤膜剪碎置于棕色玻璃管中,加入10mL二 氯甲烷:甲醇(2:1,体积比)浸泡过夜,超声萃取30 min 重复3次 合并萃取液并浓缩至1 mL 左右 过 无水硫酸钠小柱,滤液用柔和氮气吹至约200 µL, 再转移到内插管中吹干. 添加 20 μL 衍生剂 (BSTFA + 1% TMCS) 和 10 µL 吡啶 , 于 70℃ 烘箱中 硅烷化3h. 衍生结束后,用氮气吹干残余衍生剂和 吡啶,再加100 µL 正己烷,马上进行 GC-MS 测试, 以 SIM 模式检测相应的离子碎片^[17] 色谱分离采用 HP-5 MS 毛细管柱: 初温 65℃,保持 2 min,以 6 °C•min⁻¹升至 300℃,保持 20 min; 高纯氮气 (99.999%)作载气.分析的糖醇类化合物包括甘油 (Glycerol)、左旋葡聚糖(Levoglucosan,LG)、果糖 $(\alpha + \beta$ -Fructose)、葡萄糖 $(\alpha + \beta$ -Glucose)、山梨醇 (Sorbitol)、蔗糖(Sucrose)和海藻糖(Mycose).空 白加标的回收率范围为 85.1% ±3.8% (α-Glucose) ~95.1% ± 4.0% (Glycerol),平均值为 88.9% ± 4.1%. 流程空白中基本未检出糖醇类化合物 最后 结果未作空白校准.

2 结果与讨论

2.1 PM2.5 排放因子

模拟结果显示,PM,,的排放因子按大小顺序 为: 玉米秸秆 [(14.33 ± 5.26) g•kg⁻¹] > 棉花秸秆 [(9.27±0.88)g•kg⁻¹]>小麦秸秆[(8.07±1.57) g•kg⁻¹]>水稻秸秆 [(5.37±1.90)g•kg⁻¹]>马尾 松枝 [(2.26±0.60) g•kg⁻¹](表1). 与 Shen 等^[18] 使用炉灶测量的结果相比,本研究采用再悬浮箱模 拟获得的 PM25排放因子略高 相差最大的为玉米秸 秆(高出 2.4 倍),相差最小的为小麦秸秆(仅高出 0.1 倍). Zhang 等^[19] 测定水稻秸秆在明火燃烧时, PM2.5的排放因子为(12.1 ± 4.4) g•kg⁻¹,远高于本 研究得到的 (5.37 ± 1.90) g·kg⁻¹. 祝斌等^[20]的研 究发现 农作物秸秆焖烧时 PM25的排放因子为 7.2 ~39 g•kg⁻¹ 显著低于明火燃烧时的 67.6~104.6 $g \cdot kg^{-1}$; 同时发现,水稻秸秆燃烧时 PM₂,的排放因 子小于小麦、玉米及棉花秸秆;但是,不同地域的 农作物秸秆燃烧产生 PM2.5 的排放因子的差异则相 对较小. Shen 等^[18]采用炉灶燃烧小麦、玉米、棉花 和水稻秸秆时,也发现水稻秸秆燃烧时,PM,,排放

因子最小. 本研究结果也显示,不同农作物秸秆模 拟燃烧时,水稻秸秆的 PM_{2.5}排放因子最小,且农作 物秸秆燃烧过程中 PM_{2.5}的排放因子都大于马尾松 枝的排放因子,不同于祝彬等^[20]得到的秸秆明火燃 烧时颗粒物排放因子略高于木材的结果.

上述分析表明,不同的生物质类型、燃烧方式、 燃烧场所(腔室、壁炉、火炉)等因素均会影响颗粒 物的排放因子.因此,在将生物质燃烧的模拟结果 应用到现场前,还需要获得更多不同燃烧条件下的 排放因子,以降低估算结果的不确定性.

2.2 PAHs 排放因子及组成特征

PAHs 的测量结果显示,不同生物质燃烧过程 中,19 种 PAHs 的排放因子存在较大差异,且大小顺 序不同于 PM_{2.5}的排放因子(表1),以水稻秸秆燃烧 产生 PAHs 的排放因子最大(11.14 ± 5.69) mg•kg⁻¹,而马尾松枝燃烧产生 PAHs 的排放因子最 小(0.82 ± 0.21) mg•kg⁻¹.

从表 1 的数据也可以看出,不同生物质燃烧时 PAHs 的排放因子虽然存在一定差别,但谱分布都 是以 4 环类 PAHs 为主,其次为 \geq 5 环的高环 PAHs, 而低环 PAHs 的排放因子最小. 值得注意的是,马 尾松燃烧时,Ret 的排放因子最大(0.24 ± 0.18) mg•kg⁻¹,也显著高于其它 4 类生物质(0.08 ± 0.02 ~0.16 ± 0.01) mg•kg⁻¹,主要与马尾松中高含量的 松香酸的降解有关^[7]. 因为针叶类薪柴燃烧能产生 大量的 Ret,该化合物也常被用于指示针叶类薪柴 燃烧的示踪物^[8 21]. 除针叶类薪柴外,燃煤也是 Ret 的另一重要排放源. Shen 等^[9]在研究中国农村炉 灶燃烧排放时发现,煤燃烧时 Ret 的排放因子为 (2.2 ± 1.5 ~ 187 ± 113) mg•kg⁻¹远大于针叶类薪柴 (0.074 ± 0.026 ~ 0.34 ± 0.08) mg•kg⁻¹及农作物秸 秆(0.048 ± 0.008 ~ 0.37 ± 0.14) mg•kg⁻¹.

因为不同研究检测的 PAHs 种类存在差别,为 便于比较,选择排放因子较高且都有报道数据的4 环 PAHs(包括 Flua、Pyr、BaA 和 Chr)来进行排放 因子的比较(表2). 从表2中的数据可以看出,不 同燃烧条件下测量的排放因子存在显著差异,其中 在炉灶燃烧现场测量的结果偏高. 炉灶实际使用过 程中,生物质的喂料量大,通风供氧不足而导致更多 的 PAHs 产生^[22],而本研究中生物质喂料量少,燃 烧较为充分,PAHs 的排放相对偏低. 另外,从表1 和2汇总的结果来看,生物质的种类不同,也会导致 PAHs 的排放因子出现不同,如农作物秸秆类高于 薪柴类.

表1 札	模拟生物质燃烧排放 P	42.5、PAHs 和糖醇类的排放因子(平均值	[±标准偏差) ¹⁾
------	-------------	--------------------------	-----------------------

	Table 1 Emission factors(mean \pm stdev) of PM _{2.5} , PAHs and sugar alcohols							
生物质种类	水稻秸秆	小麦秸秆	玉米秸秆	棉花秸秆	马尾松枝			
PM _{2.5}	5.37 ±1.90	8.07 ±1.57	14.33 ± 5.26	9.27 ± 0.88	2.26 ± 0.60			
Nap	0.02 ± 0.00	0.02 ± 0.00	0.02 ± 0.00	0.05 ± 0.00	0.02 ± 0.01			
Асру	0.01 ± 0.01	0.01 ± 0.00	0.01 ± 0.01	0.01 ± 0.01	0.00 ± 0.00			
Acp	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00			
Flu	0.02 ± 0.01	0.01 ± 0.01	0.01 ± 0.00	0.01 ± 0.01	0.00 ± 0.00			
Phe	0.52 ± 0.32	0.37 ± 0.21	0.33 ± 0.10	0.11 ± 0.04	0.03 ± 0.01			
Ant	0.13 ± 0.09	0.10 ± 0.05	0.09 ± 0.03	0.02 ± 0.01	0.01 ± 0.00			
Flua	2.41 ± 1.65	1.43 ± 0.91	1.14 ± 0.23	0.55 ± 0.10	0.15 ± 0.08			
Ру	2.35 ± 1.46	1.45 ± 0.99	1.06 ± 0.19	0.53 ± 0.07	0.15 ± 0.08			
Ret	0.15 ± 0.15	0.14 ± 0.03	0.16 ± 0.01	0.08 ± 0.02	0.24 ± 0.18			
BaA	1.23 ± 0.67	0.51 ± 0.37	0.36 ± 0.02	0.16 ± 0.09	0.04 ± 0.02			
Chr	1.26 ± 0.62	0.54 ± 0.34	0.43 ± 0.02	0.24 ± 0.07	0.08 ± 0.01			
BbjkF	0.56 ± 0.30	0.26 ± 0.21	0.18 ± 0.03	0.06 ± 0.05	0.02 ± 0.02			
BeP	0.47 ± 0.24	0.24 ± 0.20	0.17 ± 0.03	0.06 ± 0.04	0.02 ± 0.02			
BaP	0.94 ± 0.51	0.44 ± 0.39	0.28 ± 0.03	0.09 ± 0.09	0.03 ± 0.03			
IP	0.61 ± 0.33	0.30 ± 0.28	0.18 ± 0.04	0.05 ± 0.06	0.02 ± 0.03			
BgP	0.45 ± 0.25	0.26 ± 0.25	0.14 ± 0.04	0.04 ± 0.05	0.01 ± 0.02			
DBA	0.08 ± 0.05	0.03 ± 0.03	0.02 ± 0.01	0.01 ± 0.01	0.00 ± 0.00			
Σ PAHs	11.14 ± 5.69	6.07 ± 4.22	4.56 ± 0.39	2.07 ± 0.36	0.82 ± 0.21			
Glycerol	9.90 ± 10.04	11.62 ± 2.22	4.60 ± 2.13	10.93 ±1.92	2.45 ± 0.42			
LG	39.78 ± 39.26	216.68 ± 34.47	131.54 ± 0.15	130.40 ± 22.61	72.84 ± 50.88			
α -Glucose	0.86 ± 0.40	4.33 ± 1.40	2.84 ± 1.78	1.97 ± 0.38	0.77 ± 0.33			
β -Glucose	1.22 ± 0.29	5.09 ± 1.98	3.25 ± 1.52	2.41 ± 0.37	0.93 ± 0.40			
α -Fructose	0.13 ± 0.03	0.30 ± 0.10	0.26 ± 0.12	0.32 ± 0.06	0.06 ± 0.00			
β -Fructose	0.20 ± 0.15	0.53 ± 0.08	0.48 ± 0.47	0.69 ± 0.43	0.12 ± 0.04			
Sorbitol	0.05 ± 0.02	0.07 ± 0.01	0.13 ± 0.09	0.10 ± 0.02	0.04 ± 0.02			
Sucrose	0.14 ± 0.06	0.13 ± 0.02	0.21 ± 0.07	0.22 ± 0.04	0.09 ± 0.02			
mycose	0.06 ± 0.01	0.06 ± 0.01	0.32 ± 0.32	0.08 ± 0.00	0.04 ± 0.01			
糖醇合计	52.34 ± 50.16	238.81 ± 33.62	140.02 ± 4.17	147.12 ± 22.52	77.35 ± 51.64			
LG/PM _{2.5} /%	0.69 ± 0.60	2.36 ± 0.13	1.12 ± 0.64	1.40 ± 0.16	2.98 ± 1.64			

1) PM2 5 单位为g•kg⁻¹ PAHs 单位为mg•kg⁻¹ 糖醇类单位为mg•kg⁻¹

表 2 不同燃烧条件下 4 环 PAHs 的排放因子 $^{1)}$ /mg·kg $^{-1}$

Table 2	Emission	factors	of 4	ring	PAHs in	different	studies/mg	• kg - 1
Table 2	Linission	lacions	01 -	ing	1 MIIS III	umerent	studies/ mg	ĸg

生物质	模拟方式	燃烧状态	Flua	Ру	BaA	Chr	文献
马尾松	香炉	明火	0.15 ± 0.08	0.15 ± 0.08	0.04 ± 0.02	0.08 ± 0.01	本研究
秸秆	香炉	明火	1.38(0.55~2.41)	1.35(0.53~2.35)	0. 57(0. 16 ~ 1. 23)	0.62(0.24~1.26)	本研究
秸秆	砖砌厨灶	明火	7.06(3.24~13.15)	6. 23(2. 79 ~ 13. 34)	1. 19(0. 52 ~ 2. 58)	1. 16(0. 61 ~ 2. 71)	[5]
秸秆	室内炉灶	明火	6.25(4.8~7.9)	5.15(1.3~9.1)	3.35(1.0~8.5)	4.80(3~6.5)	[22]
秸秆	燃烧室	明火	2.47	2.43	0.68	0.67	[23]
秸秆	燃烧室	NA	0. 19(0. 14 ~ 0. 27)	0. 15(0. 11 ~ 0. 23)	0.02 (nd $\sim 0.06)$	0.12(0.07~0.17)	[24]
松树	厨灶	NA	0.66	0. 55	0.11	0.14	[25]

1) NA 表示未知

2.3 糖醇类排放因子及组成特征

糖醇类化合物排放因子的高低顺序不同于 PAHs 化合物 排放因子由大到小的顺序为:小麦秸 秆 [(238.81 ± 33.62) mg·kg⁻¹] > 棉花秸秆 [(147.12±22.52) mg·kg⁻¹] > 玉米秸秆 [(140.02 ±4.17) mg·kg⁻¹] > 马尾松 [(77.35 ± 51.64) mg·kg⁻¹] > 水稻秸秆 [(52.34 ± 50.16) mg·kg⁻¹] (表1).不同糖醇类化合物之间,排放因子最大的为LG,占所测糖醇类化合物总量的72%~96%,且 其排放因子与 $PM_{2.5}$ 的排放因子之间存在显著的正相关关系(r = 0.714,P < 0.01,n = 29),表明LG 可 作为生物质燃烧排放的潜在示踪物.从表3汇总的不同文献LG 的排放因子可知,燃烧方式和生物质 类型的不同,LG 的排放因子也不同. Gao 等^[26]研究 发现 焖烧状态下的有机物的释放量是明火燃烧下 的5倍. 明火燃烧条件下,有机物很大程度上发生 氧化反应,在温度超过400℃时,左旋葡聚糖发生再 聚合反应产生多糖; 而焖烧是一种缓慢的固相氧化 过程,可产生更多的完整的有机化合物,且 LG 不易 发生再聚合反应^[14]. Shafizadeh 等^[28]研究发现含纤 维素较多的棉花燃烧时会产生更多的左旋葡聚糖, 而木材等只产生很少量的左旋葡聚糖,可能与不同 生物质的纤维素含量不同有关.

假定大气 $PM_{2.5}$ 中的左旋葡聚糖只具有生物质 燃烧单一贡献源,且排放进入大气环境后没有降解, 则可以用大气 $PM_{2.5}$ 颗粒物及生物质燃烧直接排放 的颗粒中 LG 所占比例差异,定量估算出生物质燃烧 对大气 $PM_{2.5}$ 的贡献. Wang 等^[29]采用此方法,估算广 州大气 $PM_{2.5}$ 的生物质燃烧来源贡献可达 4.0% ~ 19%. 从表 1 中的数据可以看出,不同生物质燃烧时, LG 的排放因子及占颗粒物质量的比例(LG/PM_{2.5})都存在明显差别,如采用上述方法估算生物质来源贡献时则存在很大的不确定性.而且,本研究所获得的LG/PM_{2.5}比值低于已有报道值,但是也表现出秸秆燃烧排放的 PM_{2.5}中该比值普遍小于马尾松枝的特征. Zhang 等^[30]模拟生物质燃烧得到的LG/PM_{2.5}的比值在4.5%左右,而在木材中这一比值为7.13%~22.8%^[31,32]均高于本研究的测量结果.

通常认为,大气 $PM_{2.5}$ 中的果糖、葡糖糖及蔗糖 等主要来自土壤的再悬浮、农作物的耕种收割活动 以及枯枝落叶的腐败,而来自生物质燃烧排放的贡 献很小^[33]. 从表 1 可以看出,尽管生物质种类不 同,但燃烧过程中葡萄糖($\alpha + \beta$)的排放因子均高于 果糖($\alpha + \beta$) 和蔗糖,且 α -Glucose 的排放因子均小 于 β -Glucose,与实际环境气溶胶中的测量结果一 致^[17].

Table 3 Selected emission factors of LG in PM from different biomass burning								
区域	模拟方式	颗粒物类型	模拟过程	模拟不同生物质燃烧 LG 浓度 /mg•g ⁻¹	文献			
中国	香炉	PM _{2.5}	1.3 m ³ 模拟箱 /小型燃烧香炉 ,~10 g 生 物质明火燃烧 ,持续时间 1 ~3 min ,在生 物质燃烧殆尽后立即用接于底部的采样 器采样	水稻秸秆: 6.9±6.0,小麦秸秆: 23.6± 1.3,玉米秸秆: 11.2±6.4,棉花秸秆: 14.0±1.6,马尾松枝: 29.8±16.4	本研究			
南亚	木材炉	<2.5 µm	0.076 m ³ 的木材炉 燃烧量0.5~2.0 kg, 持续时间2h 温度在150~250℃之间 排 放之后稀释20~30次,进入模拟烟箱之 前经历相当长时间使其充分聚集到颗粒 物上	椰子叶: 27.9±5.3,水稻秸秆: 18.3± 3.5,生物煤: 98.4±18.7,榴莲枝: 44.5 ±8.5	[34]			
美国	围场(~28 m ³)	PM _{2.5}	~28 m ³ 围场 温度在 300℃,水稻秸秆为 焖烧 小麦为明火燃烧,以~12 m ³ •min ⁻¹ 通入未过滤的空气,排放后稀释 20~30 次,进入模拟烟箱	水稻秸秆: ~87,小麦秸秆: ~26	[35]			
泰国	露天燃烧	PM _{2.5} × PM ₁₀	稻田露天燃烧,燃烧时间 0.5~1 h,站立 的水稻秸秆不完全燃烧,采样在下风向 5 m处	水稻秸秆: 56.2(PM _{2.5}), 57.4(PM ₁₀)	[36]			
中国	模拟烟箱	PM _{2.5}	外加 110 V 电压焖烧 220 V 明火燃烧 ,烟 气进入稀释通道充分冷却后在停留室停 留 ,包括水稻秸秆、小麦和玉米	谷草: 29.8~64.7,45.2±13.7	[30]			
美国	传统石筑壁炉	<2.5 µm	用过量的活性炭和经过滤后的空气将烟 气进行 20~30 次混合	红枫: 93.3 橡树: 147.3 ,桦树: 95.0 ,白 松: 38.4 ,铁杉: 95.4 ,冷杉: 81.4	[31]			
美国	壁炉	<1.8 µm	用过量的活性炭和经过滤后的空气将烟 气进行剧烈混合	松树: 144.7 橡树: 138.4 桉树: 228	[32]			

表3 模拟不同生物质燃烧颗粒物中左旋葡聚糖的排放因子

2.4 PAHs 及左旋葡聚糖光解动力学

2.4.1 目标化合物分布均匀性检测及对照实验 将模拟马尾松枝燃烧时采集的 PM_{2.5}尘膜分为
12 等份,分别测量每一等份中的 PAHs 和 LG,检验 此两类目标化合物在整张滤膜上的分布是否均匀.
结果显示 2、3 环 PAHs 的均匀性较差(相对标准偏 差 RSD 介于 11%~19% 之间),而4 环及更高环 PAHs 的变异较小(RSD 介于 4.4% ~7.0% 之间), LG 的 RSD 略偏高,为 15.8% 基本满足均匀性分布 的要求.因此,光照实验选定的目标化合物为中、 高环 PAHs 和 LG.另取一张尘膜,同样剪裁为 12等 份后 随机分为两组,每组6份,置于光催化反应仪 中,其中一组用铝箔遮挡,另一组不遮挡,同步进行 光照实验.光照8h 后取出,测量并比较两组样品 中目标化合物的残留差别.光照组滤膜中目标化合物的残留量(<40%)显著低于遮挡对照组(>90%)(图1)表明滤膜中目标化合物的损失主要由 光解导致.在光解动力学研究时可不考虑非光解因素(如挥发损失)的影响.

and LG with and without UV irradiation

2.4.2 光解动力学实验

根据前期摸索实验,将正式光解动力学实验的 光照总时间定为10h,取样点时间定为0、30、60、 90、120、150、180、240、300、360、480和600min. PAHs 光解动力学实验所用尘膜为马尾松燃烧样品 及环境 PM_{2.5}样品,而LG 光解动力学实验采用排放 因子较高的玉米秸秆燃烧样品.通常,PAHs的光解 遵循拟一级动力学模型:

$$c_t = c_0 \cdot e^{-k_{obs} \cdot t} \tag{1}$$

式中 ρ_0 和 c_i 分别为滤膜中目标化合物在初始(0, min) 和取样时刻(t,min) 的残留量 k_{obs} 为表观光解 速率常数 (\min^{-1}) .本研究比较了环境 PM₂₅样品 (F1、F2)和马尾松燃烧样品(F3、F4)中 PAHs 光解 速率常数的差异(图 2). F1 和 F2 尘膜中 PAHs 的 总量分别为 27 ng 和 78 ng, F3 和 F4 尘膜中 PAHs 总量分别为 215 ng 和 713 ng. 从图 2 中展示的数据 可以看出,同类样品,当尘膜中 PAHs 的负载量增加 时 同一 PAH 化合物的光解速率常数呈现降低的趋 势,可能与滤膜中颗粒的负载量大、颜色加深而屏 蔽 UV 有关. 有研究表明颜色深且含碳量高的颗粒 物上的 PAHs 更难降解^[37].无论是环境大气颗粒物 还是燃烧生成的颗粒物 ,BaA 的光解速率常数都是 最高的 而且 BaA 和 BaP 的光解速率常数相比于其 同分异构体 Chr 和 BeP 来说也偏高. 一般认为, PAHs 的光降解速率与其分子量大小、分子结构以 及取代基有一定的关系 例如氧化电位越低 光降解 速率越快;相同环数的 PAHs,结构越紧密,光降解 速率常数越小^[38]. PAHs 的光降解速率不仅与本身 性质有关,外界条件也会显著影响 PAHs 的光降解. Sanches 等^[39]研究了 PAHs 在不同强度 UV 照射下 的光降解,发现随着 UV 的增强,PAHs 的光降解加 快. de Bruyn 等^[40]研究发现蒽在有腐殖酸存在的条 件下,光降解速率常数下降,主要是因为腐殖酸会与 PAHs 竞争吸收光子. PAHs 的光降解受本身结构、 照射光强、介质组成等多种因素的影响. 在进一步 研究生物质燃烧颗粒中 PAHs 的光解动力学时,还 需要更加深入研究颗粒的组成,尤其是具有光敏特 性的酚类物质^[41].

图 2 不同尘膜之间部分 PAHs 的拟一级光解速率常数比较 Fig. 2 Comparison of k_{obs} for some selected PAHs

如前所述 不同尘膜中 PAHs 的光解速率存在 差别 则光照后其来源特征比值也将随之发生变化. 图 3 展示了 4 个特征比值 [Flua/(Flua + Py)、IP/(IP +BgP)、BaA/(BaA + Chr)和BaP/(BaP + BeP)]随 时间的变化特征. UV 光照后 "Flua/(Flua + Py) 出现 较小幅度的升高 而 IP/(IP + BgP) 则出现下降 但 F3 和 F4 样品中这两个特征比值在光照结束时仍处于生 物质燃烧的特征比值范围(>0.5)^[6],进一步证明这 两个来源特征比值的稳定性;反之,BaA/(BaA+ Chr)和 BaP/(BaP + BeP) 光照后则出现较明显的下 降 且降低幅度随颗粒中 PAHs 负载量增多而有所降 低 BaP 相对 BeP 更容易发生光降解 因此 BaP/(BaP + BeP) 比值可以用来判断颗粒物在大气中的滞留时 间 段箐青等^[42]研究表明 ,PAHs 的诊断参数值在不 同粒径颗粒中也存在差异,且 PAHs 含量越小, BaP/ (BaP + BeP) 和 BaA/(BaA + Chr) 比值越小,可能与光 反应活性以及挥发性有关,并指出在实际环境中诊断 参数比值在 PAHs 负载量较低的情况下不适合作为 来源特征使用.

尘膜中 LG 的光照损失同样遵循拟一级动力学 (图4) 其光解速率常数(0.004 5 min⁻¹)与生物质 燃烧颗粒中 BaA 的光解速率常数(0.004 1 ~ 0.005 0 min⁻¹)接近 表明 LG 并不是一个很稳定的

图 3 不同尘膜光照时 PAHs 特征比值的变化 Fig. 3 Variations of PAHs source characteristic ratios during the irradiation period

生物质燃烧来源的示踪标志物. Locker^[43] 将滴加了 LG 的空白滤膜暴露于环境大气下 8 h ,但没有发现 明显的降解损失. Mochida 等^[44] 发现 ,夏季大气颗 粒物中 LG 与其他来自生物质燃烧的示踪物之比偏 小 ,而冬季样品中该比值偏大 ,推测夏季增强的光氧 化机制对 LG 有影响. Hoffmann 等^[15] 研究发现 ,颗 粒物的含水量及水溶性有机碳的含量均会影响 LG 的稳定性. 这些结果表明 ,生物质燃烧颗粒物中 LG 的大气传输能力 ,很可能受到负载颗粒物组成的影 响. 尽管如此 ,由于 LG 的排放量较大 ,专属性好 ,且 在环境中具有较高的浓度 ,仍然被看作一个较理想 的生物质燃烧的示踪物^[15].

Fig. 4 Pseudo first-order kinetic of LG photolysis

3 结论

不同生物质由于本身结构的差异,燃烧模拟得 到 PM_{2.5}的排放因子也存在明显差别;尽管不同生 物质燃烧时 PAHs 和糖醇类化合物的排放因子不 同,但都是以4 环 PAHs 和 LG 为主,具有一定的共 性;光照模拟显示,尘膜中目标化合物负载量越大, 光解动力学速率常数越小; PAHs 来源特征比值 Flua/(Flua + Py)和 IP/(IP + BgP)受光照的影响较 小,而 LG 受光照影响较大,在实际应用中应予以 考虑.

参考文献:

- [1] 曹国良,张小曳,王丹,等. 秸秆露天焚烧排放的 TSP 等污
 染物清单[J].农业环境科学学报,2006,24(4):800-804.
- [2] 何立明,王文杰,王桥,等.中国秸秆焚烧的遥感监测与分析[J].中国环境监测,2007,23(1):42-50.
- [3] 曹国良,张小曳,王丹,等.中国大陆生物质燃烧排放的污染物清单[J].中国环境科学,2005,25(4):389-393.
- [4] Li X H , Wang S X , Duan L , et al. Carbonaceous aerosol emissions from household biofuel combustion in China [J]. Environmental Science & Technology , 2009 , 43 (15): 6076– 6081.
- [5] Shen G F , Wang W , Yang Y F , et al. Emissions of PAHs from indoor crop residue burning in a typical rural stove: Emission factors , size distributions , and gas-particle partitioning [J]. Environmental Science & Technology , 2011 , 45 (4): 1206– 1212.

- [6] Lu H, Zhu L Z, Zhu N L. Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters [J]. Atmospheric Environment, 2009, 43(4): 978– 983.
- [7] Didyk B M, Simoneit B R T, Pezoa L A, et al. Urban aerosol particles of Santiago, Chile: organic content and molecular characterization [J]. Atmospheric Environment, 2000, 34(8): 1167–1179.
- [8] Ramdahl T. Retene—a molecular marker of wood combustion in ambient air [J]. Nature, 1983, 306(5943): 580-582.
- [9] Shen G F, Tao S, Wei S Y, et al. Retene emission from residential solid fuels in China and evaluation of retene as a unique marker for soft wood combustion [J]. Environmental Science & Technology, 2012, 46(8): 4666-4672.
- Bari M A, Baumbach G, Kuch B, et al. Wood smoke as a source of particle-phase organic compounds in residential areas
 [J]. Atmospheric Environment, 2009, 43(31): 4722-4732.
- [11] Cheng Y, Engling G, He K B, et al. The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks [J]. Environmental Pollution, 2014, 185: 149–157.
- [12] Simoneit B R T , Schauer J J , Nolte C G , et al. Levoglucosan , a tracer for cellulose in biomass burning and atmospheric particles
 [J]. Atmospheric Environment , 1999 , 33(2): 173–182.
- [13] Shen G F , Xue M , Wei S Y , et al. Influence of fuel mass load , oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning [J]. Journal of Environmental Science , 2013 , 25 (3): 511-519.
- [14] Schkolnik G , Falkovich A H , Rudich Y , et al. New analytical method for the determination of levoglucosan , polyhydroxy compounds , and 2-methylerythritol and its application to smoke and rainwater samples [J]. Environmental Science & Technology , 2005 , 39(8): 2744-2752.
- [15] Hoffmann D , Tilgner A , Iinuma Y , et al. Atmospheric stability of levoglucosan: a detailed laboratory and modeling study [J]. Environmental Science & Technology , 2009 , 44(2): 694-699.
- [16] 杨冰玉,黄星星,郑桉,等. 厦门城区大气颗粒物 PM₁₀中有 机酸源谱特征分析[J].环境科学,2013,34(1):8-14.
- [17] 马社霞,王真真,毕新慧,等. 广州大气气溶胶中糖类化合物的组成及主要来源[J]. 科学通报,2009,**54**(17):2562-2567.
- [18] Shen G F, Xue M, Chen Y C, et al. Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves [J]. Atmospheric Environment, 2014, 89: 337–345.
- [19] Zhang Y S , Shao M , Lin Y , et al. Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region , China [J]. Atmospheric Environment ,2013 ,76: 189–199.
- [20] 祝斌,朱先磊,张元勋,等.农作物秸秆燃烧 PM_{2.5} 排放因子的研究[J].环境科学研究,2005,**18**(2):29-33.

- [21] Li Z, Sjodin A, Porter E N, et al. Characterization of PM_{2.5}bound polycyclic aromatic hydrocarbons in Atlanta [J]. Atmospheric Environment, 2009, 43(5): 1043–1050.
- [22] 沈国锋.室内固体燃料燃烧产生的碳颗粒物和多环芳烃的排 放因子及影响因素[D].北京:北京大学,2012.
- [23] Keshtkar H, Ashbaugh L L. Size distribution of polycyclic aromatic hydrocarbon particulate emission factors from agricultural burning [J]. Atmospheric Environment, 2007, 41(13): 2729– 2739.
- [24] Zhang H F , Hu D W , Chen J M , et al. Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning [J]. Environmental Science & Technology , 2011 , 45(13): 5477–5482.
- [25] Shen G F, Tao S, Wei S Y, et al. Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China [J]. Environmental Science & Technology, 2012, 46(15): 8123–8130.
- [26] Gao S , Hegg D A , Hobbs P V , et al. Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification , evolution , and distribution [J]. Journal of Geophysical Research: Atmospheres , 2003 , 108 (D13): 8491.
- [27] Kawamoto H , Murayama M , Saka S. Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: polymerization into polysaccharide as a key reaction to carbonized product formation [J]. Journal of Wood Science , 2003 , 49(5): 469–473.
- [28] Shafizadeh F , Furneaux R H , Cochran T G , et al. Production of levoglucosan and glucose from pyrolysis of cellulosic materials
 [J]. Journal of Applied Polymer Science , 1979 , 23 (12): 3525–3539.
- [29] Wang Q Q, Shao M, Liu Y, et al. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases [J]. Atmospheric Environment, 2007, 41 (37): 8380–8390.
- [30] Zhang Y X , Shao M , Zhang Y H , et al. Source profiles of particulate organic matters emitted from cereal straw burnings [J]. Journal of Environmental Sciences , 2007 , 19 (2): 167– 175.
- [31] Fine P M, Cass G R, Simoneit B R T. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States [J]. Environmental Science & Technology , 2001 , 35(13): 2665–2675.
- [32] Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources. 3. C₁-C₂₉ organic compounds from fireplace combustion of wood [J]. Environmental Science & Technology, 2001, 35 (9): 1716– 1728.
- [33] Simoneit B R T, Elias V O, Kobayashi M, et al. Sugars dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter [J]. Environmental Science & Technology, 2004, 38 (22): 5939-

5949.

- [34] Sheesley R J , Schauer J J , Chowdhury Z , et al. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia [J]. Journal of Geophysical Research: Atmospheres , 2003 , 108(D9) : 4285.
- [35] Hays M D, Fine P M, Geron C D, et al. Open burning of agricultural biomass: physical and chemical properties of particle– phase emissions [J]. Atmospheric Environment, 2005, 39 (36): 6747–6764.
- [36] Oanh N T K , Ly B T , Tipayarom D , et al. Characterization of particulate matter emission from open burning of rice straw [J]. Atmospheric Environment , 2011 , 45(2): 493–502.
- [37] 黄国兰,庄源益,戴树桂.颗粒物上多环芳烃的光转化作用 [J].南开大学学报(自然科学),1997,**30**(1):98-101.
- [38] 潘相敏,陈立民,成玉,等. 气溶胶中多环芳烃光降解的初步研究[J]. 环境化学,1999,18(4): 327-332.
- [39] Sanches S , Leitão C , Penetra A , et al. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources [J]. Journal of Hazardous Materials , 2011 , 192(3): 1458–1465.

- [40] de Bruyn W J, Clark C D, Ottelle K, et al. Photochemical degradation of phenanthrene as a function of natural water variables modeling freshwater to marine environments [J]. Marine Pollution Bulletin, 2012, 64(3): 532-538.
- [41] Wu S P, Schwab J, Yang B Y, et al. Effect of phenolic compounds on photodegradation of anthracene and benzo [a] anthracene in media of different polarity [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 309: 55– 64.
- [42] 段菁春,毕新慧,谭吉华,等. 广州秋季不同功能区大气颗 粒物中 PAHs 粒径分布[J]. 环境科学,2006,27(4):624-630.
- [43] Locker H B. The use of levoglucosan to assess the environmental impact of residential wood-burning on air quality [R]. Hanover, NH: Dartmouth Coll., 1988.
- [44] Mochida M, Kawamura K, Fu P Q, et al. Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer [J]. Atmospheric Environment, 2010, 44(29): 3511–3518.