40 10
2014 10 31

3054-3059
High Voltage Engineering

\ol.40, No.10: 3054-3059
October 31, 2014

DOI: 10.13336/j.1003-6520.hve.2014.10.016

1 1,2 1 3 3 3
1. 116026 2. 361005
3. 116026
(ROS) ROS
ROS pH O, ROS ( )
ROS 0; 05
ROS DPD CRS pH CRS
( P<0.01) ROS CRS (P<0.01) O, CRS
(P>0.05) CRS 16 245 pH=65 pH=7.0 0, 2 L/min 3 L/min
(P>0.05) pH 0, (P<0.05)
(P<0.01) CRS (P<0.01) 20~40 mg/L ROS 0,
CRS (P<0.01) ROS
ROS pH
0, CRS ROS ROS
>0, > 0,
ROS

Generating High-concentration Solution of Reactive Oxygen Species by Strong-field lonization
Discharge
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Abstract To optimize the generating condition of reactive oxygen species (ROS) in solution, and to provide a reference
for improving ROS preparation system, we investigated the effects of several parameters, including solution temperature,
solution pH, O, input, ROS dosages, and system pressure, on the concentration of obtained ROS solution. Gaseous ROS
was generated in a strong-field ionization condition induced by under dielectric barrier discharge (DBD), and its dosage
represented by Oz was measured by ozone monitor. ROS in solution was caught by DPD (N,
N-diethyl-p-pHenylenediamine), which was measured by DPD spectrophotometry, and the concentration of ROS solution
was denoted by CRS. According to the experiments, both water temperature and pH have significant negative correlation
with CRS (relativefactor P<0.01), ROS dosage has significant correlation with CRS (P<0.01), but O, input is not signifi-
cantly correlated with CRS (P>0.05). The differences between CRS are insignificant (P>0.05) under conditions of
solution temperature of 16 ,20 ,24.5 , solution pH of 6.5 and 7.0, as well as O, input of 2 L/min and 3 L/min
(P>0.05), but they are highly significant (P<0.01) or significant (P<0.05) under other tested conditions. Moreover, CRS
significantly increases with the decrease of miscibility pressure (P<0.01), and it is significantly affected by the interaction
between miscibility pressure and O, input under higher ROS dosages (P<0.01). Lower water temperature, lower pH,
higher ROS dosages, and lower miscibility pressure are all beneficial to increasing the concentration of ROS (CRS),
which is significantly affected by the change of several parameters including solution temperature in the lower range, pH
around 7, O, input in the range of larger amount, etc. On the condition of high ROS dosage input, CRS is influenced by
miscibility pressure, O, input, and the interaction between miscibility pressure and O, input in a descending order.

Key words strong ionization discharge; dielectric barrier discharge; reactive oxygen species(ROS); advanced oxidation
technologies; hydroxyl radical; ROS solution
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