第33卷第5期 2012年5月

Vol. 33 ,No. 5 May 2012

再悬浮装置在大气 PM_{2.5} 源谱分析中的应用

段恒铁^{1,2} , 我冉冉^{1,2} , 吴水平^{1,2*} , 印红玲³

(1. 厦门大学近海海洋环境科学国家重点实验室 厦门 361005; 2. 厦门大学环境科学与工程系 厦门 361005; 3. 成都信息工程学院资源环境学院,成都 610225)

摘要:为解决 PM_{2.5}源解析中无组织排放源的采样问题 在前人基础上发展了一套简便高效的再悬浮采集装置,并对进样量、 再悬浮时间等关键运行参数进行了优化,总结了无组织排放源采样分析流程.重复测试表明,双切割头的 PM_{2.5}捕集量偏差 <8% 粒径分布比率变化不超过 5%,显示出再悬浮装置良好的采样平行性和稳定性.将该装置应用于陶瓷工业尘、公路扬尘 和二次降尘等3类无组织排放尘及生物质燃烧的源排放再悬浮采样分析,获得了各颗粒源的粒径分布谱和 PM_{2.5}无机成分谱, 以此对各排放源特征进行有效区分.PM_{2.5}平行样中各化学成分浓度偏差 <15%.与其他装置相比,本研究介绍的再悬浮装置 简便经济,具有较高的采样效率,在无组织尘排放源谱分析中具有较高的实用价值.

关键词: 再悬浮装置; 源谱; 无组织排放尘; PM_{2.5}; 源解析

中图分类号: X513 文献标识码: A 文章编号: 0250-3301(2012) 05-1452-05

Application of a Resuspension Test Chamber in PM_{2.5} Source Profile Analysis

DUAN Heng-yi^{1,2}, QIAN Ran-ran^{1,2}, WU Shui-ping^{1,2}, YIN Hong-ling³

(1. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; 2. Department of Environmental Science and Engineering, Xiamen University, Xiamen 361005, China; 3. College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China)

Abstract: A resuspension chamber was developed and optimized to obtain $PM_{2.5}$ fraction from fugitive sources. In accordance, a basic protocol of sampling and analysis was concluded. Replicate tests showed that mass deviation of $PM_{2.5}$ between two sampling cascade impactors was less than 8% and size distribution ratios varied by no more than 5%, indicating good sampling parallelism and stability. Chemical profiles and size distribution of three kinds of fugitive dusts (paved road dust , secondary dust and ceramic industrial dust) as well as biomass burning emission had been measured based on the above chamber. The relative standard deviations (RSD%) of inorganic elements in duplicate $PM_{2.5}$ samples were less than 15%. Comparing with other devices , the resuspension chamber described in this study features convenience and efficiency , and has a high practical value in the source sampling of fugitive dust. **Key words**: resuspension chamber; source profile; fugitive dust; $PM_{2.5}$; source apportionment

PM。,作为气溶胶的重要组分,对人群健康及大 气辐射传输均有重要影响.来源解析显示无组织排 放源对大气 PM,,的贡献约 5%~40%^[1~3],了解这 类尘源的化学特征对大气 PM2.5 的源解析具有重要 意义.对于土壤风沙尘、道路扬尘、建筑扬尘、工业粉 尘等无组织排放源,因其排放面大、强度低、受周边 环境干扰强 故实地采样往往难以获得具有代表性 的样品. 而目前的筛分技术也很难得到 PM₁₀ 乃至粒 径更小的颗粒物. 为解决这一问题 ,Chow 等^[4] 研制 了一套再悬浮采集装置,将采集的尘源样品送入混 合箱中再悬浮 并经箱底设置采样切割头获得分粒 径的颗粒样品.这种设计避免了采样区域的环境干 扰,采样效率较高,被较多应用于无组织排放源的采 样中. Carvacho 等^[5~7] 设计了再悬浮与混合相分离 的小型采集装置,并测定了土壤排放 PM10 和 PM25 的最大潜势. 陈魁等^[89] 搭建了颗粒物再悬浮采样 器,并对采样均匀性进行了探讨. Amato 等^[10] 使用 真空吹扫装置现场采集公路尘中的 PM₁₀,避免了实 验室采集带来的细粒子损失,但环境因素的影响往 往使结果具有较大不确定性. Han 等^[11] 使用车载捕 集系统在线收集公路尘中的 PM_{2.5},但无法获得特定 点的尘样,且耗时较长,不适于其他无组织排放尘采 样. 本研究在前人基础上,对再悬浮采集装置进行改 进、测试并获取了装置的最优运行参数. 利用该装置 对晋江市磁灶镇的陶瓷工业粉尘、路面扬尘和福州 市公路尘等样品进行处理,得到各尘源中 PM_{2.5}的化 学成分谱,评估装置的应用前景.

收稿日期: 2011-07-29; 修订日期: 2011-09-18

基金项目:环保公益性行业科研专项(201009004);国家自然科学基金项目(40971257)

作者简介:段恒轶(1989~) /男,主要研究方向为大气环境化学,Email: duanhengyi2007@163.com

^{*} 通讯联系人 E-mail: wsp@ xmu. edu. cn

1 材料与方法

1.1 再悬浮装置构造及原理

再悬浮采样装置由压克力(Acrylics)板制作的 密闭混合箱、进样气路和平行采样器三部分构成 (图1).实际操作中,一定量(2~5g)经过筛(150 目)、干燥的尘源样品被置于不锈钢滤网构成的进 样头中,并由过滤后的洁净空气吹入混合箱中,进样 流速 28.3 L•min⁻¹.颗粒物于混合箱中再悬浮 10

图1 再悬浮装置结构示意

Fig. 1 Schematic of the dust resuspension chamber

min 后,由箱底2个三级切割头(武汉天虹)平行采 集,采样时间10 min,采样流速100 L•min⁻¹,从而获 取 PM_{2.5}(粒径≤2.5 μm)、PM_{2.5~10}(2.5 μm < 粒径 ≤10 μm)和 PM_{10~100}(10 μm < 粒径≤100 μm)这3 个粒径范围的石英和聚丙烯滤膜样品.

1.2 装置效果评估

再悬浮采样的关键在于采样的足量性、均匀性 和高效性.针对这些要求,本研究根据颗粒物(以水 泥粉末为实验颗粒)捕集量、粒径分布一致性、采样 稳定性等指标对装置的关键运行参数进行了测试和 优化,并对采样效果进行了评估.

1.2.1 采样效率

在优化条件下,使用水泥粉末进行多次测试 (进样量3g),PM_{2.5}捕集量为5~20 mg 满足化学分 析要求. 一个完整的再悬浮箱内部清洗-颗粒再悬 浮-采样流程需要时间约 50 min ,具有较高的工作 效率.

1.2.2 粒径分布稳定性和采样均匀性

在不同进样量($1.0 \sim 8.0$ g) 和采样时间($5 \sim 30$ min) 条件下进行再悬浮实验,所捕集的颗粒物粒径 分布保持相对稳定, $PM_{2.5} = PM_{2.5-10}$ 所占百分比变 化幅度不超过5%(表1).再悬浮实验间隔3 d进行 重复实验,同样进样量和采样时间条件下,双切割头 采集的 $PM_{2.5}$ 质量变化不超过8%,显示该再悬浮装 置具有良好的采样均匀性与稳定性.

表1 不同进样量和不同采样时间条件下粒径分布稳定性(n=5)

Table 1Size distributions under different inlet mass and sampling time ($n = 5$)							
西묘	不同进样量			不同采样时间			
· 坝日	$PM_{10\sim100}$	PM _{2.5~10}	PM _{2.5}	$PM_{10 \sim 100}$	PM _{2.5~10}	PM _{2.5}	
质量贡献/%	9.78	44.42	45.8	13.03	43.8	43.17	
SD	1.02	1.99	1.87	1.75	1.66	0.48	
CV/%	10. 4	4.48	4.09	13.42	3.79	1.11	

1.2.3 装置本底

每次再悬浮采样后,使用超纯水对混合箱进行 喷淋,使悬浮颗粒快速沉降.混合箱内壁用洁净抹布 擦净,并启动箱底气泵抽气 10 min(流速 100 L•min⁻¹)以净化箱内空气.清洗后 $PM_{2.5}$ 和 PM_{10} 残 留量均小于 0.5 mg,清除率 >95%(表2),有效减少 了混合箱本底对实际尘样采集的干扰.

1.3 源样采集

用于再悬浮实验的无组织尘样主要来自福建省 晋江市磁灶镇及福州市区.磁灶当地瓷土资源丰富, 陶瓷生产企业密集,为全国四大陶瓷生产基地之一. 磁灶镇的大部分陶瓷企业设备简陋,工艺落后 粉尘

表2 清洗操作对再悬浮装置 PM2.5和 PM10本底的影响

Table 2 Influence of cleanup on the PM2 5 and PM10

background in the resuspension chamber						
进样量	捕集量/mg		清洗后本底/mg		清除率/%	
/ g	PM _{2.5~10}	PM _{2.5}	PM _{2.5~10}	PM _{2.5}	PM _{2.5~10}	PM _{2.5}
1.0	6.26	5.79	0.29	0.23	95.4	96.0
2.0	10.70	12.07	0.00	0.44	100.0	96.4
3.0	15.23	16.76	0.00	0.45	100.0	97.3
5.0	20.26	21.09	0.33	0.23	98.4	98.9
8.0	27.41	26.77	0.09	0.34	99.7	98.7

污染严重. 陶瓷烧制过程中使用原煤 煤烟在无控制 条件下大量排放. 在瓷砖等陶瓷产品外运过程中,来 往货车排放的尾气及路面二次扬尘的影响也非常严 重. 鉴于以上考虑 在磁灶镇采集4 类共7 种无组织 尘源样品 在福州市区采集公路尘样品共17 份 ,同 时进行生物质燃烧排放实验(表3).

采集尘样时使用塑料刷和塑料铲从采样点扫取 具有代表性的尘样,采样面积1~2 m²,每个采样点 采集2~3 份加以混合(路面尘需要在道路两边各 采一份). 采集到的混合样转入密实袋中编号密封 保存. 再悬浮实验前,尘样过150 目标准筛以获取粒 径 <100 μm 的组分,过筛后的样品置于恒温恒湿箱 (20℃,湿度20%)中干燥24 h以上以去除其中的 水分,避免高温烘烤以尽量减少硝酸盐和有机碳等 挥发性组分的流失^[12].

表 3 采样点周围环境 le 3 Descriptions of dust sampling sites

Table 3 Descriptions of dust sampling sites					
排放源类型	采样点	采样描述			
生间的粉合	源利陶瓷厂	釉面砖加工作坊 采原料土			
同國初主	霞灶瓷砖仓库	墙面砖、防火砖仓库,采地面积尘			
公路尘	华兴陶瓷厂前	车流量大 以瓷砖和原煤运输车辆为主			
	磁灶镇主干道	车流量大 ,货车与摩托车为主			
一次降小	粮店招待所	窗台积尘 招待所位于市集内			
	磁灶中心小学	栏杆积尘 小学周围为陶瓷生产企业			
生物质燃烧	厦门大学校园	木材燃烧			
	厦门大学校园	树叶燃烧			
其他	石材堆放	露天石材加工厂 采石材堆积碎屑			
磁灶大气 PM _{2.5} (受体)	磁灶中心小学	周围有 5 个家庭作坊式陶瓷生产企业			
城市主干道公路尘	福州内环路	交通密集区			

1.4 无组织尘再悬浮样品的化学成分分析

每个尘样的再悬浮同时采用聚丙烯和石英滤膜 (滤膜直径 88 mm)进行平行采集,聚丙烯滤膜用于 无机元素的分析,而石英滤膜用于碳成分和水溶性 离子的分析.使用日本岛津 XRF-1800 X 射线荧光 光谱仪测定 $PM_{2.5}$ 中 26 种无机元素的含量,采用 Micromatter 公司的标准滤膜进行单点定量(元素标 定含量为 50 μ g·cm⁻²),最后结果经干净的聚丙烯 滤膜的测量结果作空白校正^[13,14].取1/4 张石英滤 膜,用超纯水浸泡过夜,超声抽提 1 h,过 0.2 μ m 滤 膜后上机进行水溶性离子的检测.PIC-10A 双通道 离子色谱仪(青岛普仁)可同时测定 6 种阳离子 (Li⁺、Na⁺、NH₄⁺、K⁺、Mg²⁺、Ca²⁺)和 5 种阴离子 (F⁻、Cl⁻、NO₃⁻、PO₄³⁻、SO₄²⁻),测量结果用 AccuStandard 公司的离子色谱混标进行定量,结果 经回收率和空白校正^[15].

2 结果与讨论

2.1 尘源粒径分布

重量分析显示,不同来源的无组织尘的粒径分 布存在较为明显的差异(图 2). 陶瓷生产粉尘以 PM₁₀贡献为主,其中 PM_{2.5}重量占总重量的 36.4%, PM_{2.5~10}占 54.0%,而生物质燃烧产生的颗粒物绝 大部分为 PM_{2.5}相对贡献占 90%以上. 作为混合源 的二次降尘,粒径分布比较均匀,PM_{2.5}占 40.8%、 PM_{2.5~10}占 37.2%、PM_{10~100}占 22.1%,显示出其复 杂的来源特征. 同样为混合源的道路尘 则以细颗粒 物为主, PM_{2.5~10}和 PM_{2.5}的相对贡献远高于 PM_{10~100} 这可能源于繁忙的交通所造成的路面磨损 和大量尾气排放的影响.

2.2 化学成分谱分析

从整体上看,制陶粉尘、二次降尘和公路尘释放 的 $PM_{2.5}$ 中无机组分占 21% ~33%,其中 Si、Al、Mg、 Fe 这 4 种地壳元素占无机组分总量的 50% ~80% (表 4),且呈现高 Al(>40 mg•g⁻¹)、Fe(>20 mg•g⁻¹),低 Mg(<7 mg•g⁻¹)的特征,与当地黏土 成分相似^[16] 表现出较强的地壳来源特征.相反的, 生物质燃烧来源的 $PM_{2.5}$ 仅含 3.8% 的无机元素和 离子,且 4 种主要地壳元素只占无机成分的 1.7%, 说明 $PM_{2.5}$ 的主要贡献为有机碳成分. Na 和 Cl 在无组织排放尘源谱中丰度很低,仅 占 0.01% ~3%, NO_3^- 、 NH_4^+ 和 SO_4^{2-} 浓度则随排放 源不同存在较大变异. K 元素既可能来自于地壳,也 可能来自于人为活动. 燃烧源所贡献的 K 一般以离 子态存在,这部分 K⁺约占大气颗粒物中 K⁺的 80% ~90%^[17];而土壤中的 K 则以矿物态 K 为主,占土 壤全 K 的 90% 以上^[18]. 所以,总 K 与离子态 K 之比 (K/K⁺)可以作为区分地壳源与燃烧源的指标之 -. Watson 等^[19]分析 Denver 地区无组织排放尘源 谱后指出,无组织排放尘中的总 K 含量一般为 K⁺ 的 10 ~ 30 倍. 本研究中,混合源的 K/K⁺为 3.1 ~ 7.4,而制陶粉尘作为一次地壳源,K/K⁺高达 31.6. 生物质燃烧源谱中的 K/K⁺最低,为 2.8,但高于 Watson 等^[20]的测定结果(K/K⁺ = 1.2).

		Table 4 Ch	emical profile of PM _{2.5} fi	rom different sources			
尘源	无机组分的 比重/%	优势组分	Si/Al	Si/Mg	K/K *	地壳元素的 相对贡献 ¹⁾ /%	
制陶粉尘	28.7	Si、Al、Fe	2.1	78.6	31.6	77.6	
生物质燃烧	3.8	K , Cl	—	—	2.8	1.7	
二次降尘	25.1	Si SO ₄ ²	2.5	23.7	5.3	50. 1	
道路(磁灶)	29.2	Si、Al、Cl	2.0	34.5	3.1	60.4	
道路(福州)	33.9	Si、Al、Ca	2.3	27.5	7.4	54.1	
受休(磁性)	22 0	SO^{2-}_{1-} NH ⁺	2 7	24 6	1.1	16.4	

表4 PM_{2.5}化学成分谱

1) 地壳元素指 Si、Al、Mg 和 Fe

制陶粉尘的 PM_{2.5}成分谱以 Si、Al、Fe、K 等地壳 元素为主,水溶性离子含量甚微.公路尘源谱中,地 壳元素仍占相当比重,但已明显小于纯粹地壳来源 的陶瓷生产;代表二次粒子贡献的 NO₃⁻和 SO₄²⁻分 别占无机组分总量的 11.6%(磁灶)、9.8%(福州) 和 5.6%(磁灶)、6.1%(福州),显示出汽车尾气和 酸沉降对公路尘源的影响.Zn 作为轮胎硫化剂,会 随着轮胎的磨损进入公路尘中^[21],故而在繁忙路段 的公路尘往往具有较高的 Zn 含量.福州公路尘源谱 中,Zn 比重达2.02%,远高于其他排放源 (<0.11%),但磁灶公路中的 Zn 富集则不明显.Pb 一度是尾气排放的标志物^[22],但中国于2001年起 禁止使用含铅汽油,道路尘中的 Pb 含量有所降低. 磁灶和福州公路尘中 Pb 含量分别为0.41 mg•g⁻¹ 和 0.97 mg•g⁻¹,低于香港水平^[23].

同样属于混合源的二次降尘,成分谱构成与公路尘相似.但值得注意的是,二次降尘中 SO_4^{-} 比重达14.4% SO_4^{2-}/NO_3^{-} 为1.6~2.3,显示出较强的大气二次粒子输入特征.而公路尘受尾气中 NO_x 排放影响 SO_4^{2-}/NO_3^{-} 接近于1.

生物质燃烧排放以 K、Cl 显著高于其它成分为 特征,两者含量约占无机组分含量的 74.2%.同时, 生物质燃烧对大气 $PM_{2.5}$ 中 NH_4^+ 也具有一定贡献, 其在生物质燃烧排放源中相对含量约为 17.5%.

2.3 质量控制

所有公路尘样品均使用再悬浮装置进行重复实 验.由表5所列数据可见 同一样品重复再悬浮采样 所获得的 $PM_{2.5}$ 和 $PM_{2.5-10}$ 重量标准偏差 < 0.000 5 g,所测定 35 种无机组分的平行样相对偏差不超过 15%. 对平行样各组分浓度值进行相关性分析 在 P= 0.01 显著水平下正相关(R^2 > 0.94),说明该装置 具有良好的稳定性和重复性.

表 5 公路尘再悬浮采样平行性

Table 5 Parallel misalignment of road dust resuspension test						
立法下	捕集量标	准偏差/g	PM2.5化学成分谱平行性			
木件只	$\mathrm{PM}_{2.5\sim10}$	PM _{2.5}	相对偏差/%	R^2		
磁灶华兴陶瓷公路	0.00045	0.00034	4.1	0.9782		
磁灶主干道	0.00009	0.00025	14.1	0. 989 9		
福州公路 F1	0.00019	0.00037	10.6	0. 993 8		
福州公路 F5	0.00024	0.00017	0.7	0.9410		
福州公路 F10	0.00008	0.00005	10.1	0.9902		
福州公路 F11	0.000 52	0.00040	6.6	0. 992 1		
福州公路 F13	0.00013	0.00024	6.2	0.9717		
福州公路 F14	0.00004	0.00052	9.1	0.9903		

3 结论

(1)为获得无组织尘中 PM_{2.5}的源谱特征,在已 有再悬浮装置的基础上自制了一套简便高效的再悬 浮采样装置,并对进样量、再悬浮时间、采样时间等 关键运行条件进行了优化.将该装置应用于陶瓷生 产、公路扬尘、二次降尘及生物质燃烧的源排放采 样,获得了4类排放源中 PM_{2.5}的无机成分谱.测试 表明,再悬浮装置在不同进样量和采样时间下粒径 分布保持稳定,PM_{2.5~10}和 PM_{2.5}占 TSP 的比例变化 均小于 5%,双切割头 PM_{2.5}捕集量偏差 <8%,PM_{2.5} 捕集量平行样标准偏差 <0.0005 g,无机组分相对 浓度变化 <15%,具有很好的均匀性和稳定性.该装 置的高捕集效率(5~20 mg)和低耗时(<1 h)特性,能满足大气颗粒物源谱分析的要求。

(2) 所获得的 $PM_{2.5}$ 成分谱较好地反映了各排 放源特征. 制陶粉尘的 $PM_{2.5}$ 源谱以 Si、Al、Fe 等地 壳元素为主要组成,而生物质燃烧源则以 K、Cl、 NH_4^+ 排放为特征. 公路尘和二次降尘的源谱均表现 为地 壳 物 质、二 次 粒 子 的 混 合 特 征,但二者 $SO_4^{2^-}/NO_3^-$ 差异反映出其不同的一次来源.

(3) 本研究发展的再悬浮装置能满足无组织排 放尘再悬浮的采样要求,但进样系统仍需改进以获 取更为均匀稳定的结果.再悬浮过程中,混合箱湿度 会影响颗粒物分散效果,内壁的静电吸附会造成细 粒子损失,故两者对采样的影响在进一步的实验中 需要加以定量评估.同时,无组织尘排放源的采样操 作需要进一步规范化以减小尘样收集和运输过程中 的损失和污染.

参考文献:

- [1] Viana M, Kuhlbusch T A J, Querol X, et al. Source apportionment of particulate matter in Europe: A review of methods and results [J]. Journal of Aerosol Science, 2008, 39 (10): 827–849.
- [2] Zheng M, Salmon L G, Schauer J J, et al. Seasonal trends in PM_{2.5} source contributions in Beijing, China [J]. Atmospheric Environment, 2005, 39(22): 3967–3976.
- [3] Thurston G D , Ito K , Lall R. A source apportionment of U. S. fine particulate matter air pollution [J]. Atmospheric Environment , 2011 , 45(24): 3924–3936.
- [4] Chow J C , Watson J G , Houck J E , et al. A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions [J]. Atmosphere Environment ,1994 , 28(21): 3463-3481.
- [5] Carvacho O F , Ashbaugh L L , Matsumura R J , et al. Measurement of PM₁₀ potential from agricultural soils using a dust resuspension test chamber [A]. In: Proceedings , International Conference on Air Pollution from Agricultural Operations [C]. Midwest Plan Service , Kansas City , MO , 1996.
- [6] Carvacho O F , Ashbaugh L L , Brown M S , et al. Relationship between San Joaquin Valley soil texture and PM₁₀ emission potential using the UC Davis dust resuspension test chamber[J]. Transactions of the American Society of Agricultural Engineers , 2002 , 44(6): 1603–1608.
- [7] Carvacho O F, Ashbaugh L L, Brown M S, et al. Measurement of PM_{2.5} emission potential from soil using the UC Davis resuspension test chamber [J]. Geomorphology, 2004, 59 (1-4): 75-80.

- [8] 陈魁,白志鹏,朱坦,等.颗粒物再悬浮采样器采样均匀度 研究[J].过程工程学报,2004,4(Z1):864-867.
- [9] 陈魁,白志鹏.颗粒物再悬浮采样器研制与应用[J].环境 工程,2006,24(5):67-68.
- [10] Amato F , Pandolfi M , Viana M , *et al.* Spatial and chemical patterns of PM_{10} in road dust deposited in urban environment [J]. Atmospheric Environment ,2009 ,**43**(9): 1650–1659.
- [11] Han S , Youn J S , Jung Y W. Characterization of PM₁₀ and PM_{2.5} source profiles for resuspended road dust collected using mobile sampling methodology [J]. Atmospheric Environment, 2011 , 45(20): 3343–3351.
- [12] Vega E , Mugica V , Reyes E , et al. Chemical composition of fugitive dust emitters in Mexico City [J]. Atmospheric Environment , 2001 , 35(23) : 4033-4039.
- [13] Watson J G , Chow J C , Frazier C. A X-ray Fluorescence analysis of ambient air samples [A]. In: Landsberger S , Creatchman M , eds. Elemental Analysis of Airborne Particles [C]. New York: Gordon and Breach , 1999. 67–96.
- [14] 何文权,叶伯明. 能量色散 X 射线荧光光谱分析大气颗粒中 多种元素[J]. 岩矿测试,2002,21(4): 301-303.
- [15] Chow J C , Watson J G. Ion chromatography in elemental analysis of airborne particles [A]. In: Landsberger S , Creatchman M , (eds.). Elemental Analysis of Airborne Particles [C]. New York: Gordon and Breach Publishers , 1999. 539–573.
- [16] 林才浩. 福建沿海土壤地球化学分类及基准值研究[J]. 第 四纪研究, 2005, 25(3): 347-354.
- [17] U. S. EPA. Particulate matter data analysis workbook [EB/ OL]. http://capita.wustl.edu/PMFine/Workbook/PMTopics_ PPT/WB_Introduction/Version3/,1999-10-22.
- [18] 黄绍文,金继运,王泽良,等.北方主要土壤钾形态及其植物 有效性研究[J].植物营养与肥料学报,1998,4(2):156-164.
- [19] Watson J G , Zhu T , Chow J C , et al. Receptor modeling application framework for particle source apportionment [J]. Chemosphere , 2002 , 49(9): 1093–1136.
- [20] Watson J G , Chow J C , Houck J E. PM_{2.5} chemical source profiles for vehicle exhaust , vegetative burning , geological material , and coal burning in Northwestern Colorado during 1995 [J]. Chemosphere , 2001 , 43(8): 1141–1151.
- [21] Alloway B J. Heavy Metals in Soils [M]. London: Blackie , 1990.
- [22] Chow J C, Watson J G. Contemporary source profiles for geological material and motor vehicle emissions [R]. Report No. DRI 2625. 2F. Prepared for Office of Air Quality Planning and Standards, Environmental Protection Agency, Research Triangle Park, NC, by the Desert Research Institute, Reno, NV, 1994.
- [23] Ho K F , Lee S C , Chow J C , et al. Characterization of PM₁₀ and PM_{2.5} source profiles for fugitive dust in Hong Kong [J]. Atmospheric Environment , 2003 , 37(8): 1023–1032.