化学蒸汽发生/电感耦合等离子体质谱法测定近岸 及河口海水中的超痕量砷、锑、铋、锗、锡、汞

段华玲¹²,林继军²,张 硕²,弓振斌^{12*}

(1. 厦门大学 近海海洋环境科学国家重点实验室,福建 厦门 361005;2. 厦门大学 海洋与环境学院,福建 厦门 361005)

摘 要: 建立了化学蒸汽发生(CVG)电感耦合等离子体质谱(ICP MS)同时测定近岸及河口海水中超痕量 As、Sb、Bi、Ge、Sn 和 Hg 元素的方法。研究了 CVG 过程中 KBH₄、盐酸和硫脲的浓度以及样品流速、载气流速、海水样品盐度等对方法分析性能的影响。结果表明,在0.70% 盐酸、0.10 g/L 硫脲、11.0 g/L 硼氢化钾、载气0.40 L/min 条件下,6 种待测元素的信噪比最高。优化实验条件下,As、Sb、Bi、Ge、Sn 和 Hg 的质量浓度在 0.1~5.0 μ g/L 内呈良好线性,相关系数不低于 0.996 6;方法对 0.1 μ g/L 加标样品的相对标准偏差(RSD n = 5)为 3.9%~8.9%,实际海水样品的加标回收率为 89%~112%;方法的流程空白为 0.012~0.036 μ g/L,定量下限(LOQs,10 σ)在 0.006 7~0.026 μ g/L 之间,可满足近岸及河口海水样品中超痕量元素测定的需要。

关键词:化学蒸汽发生;电感耦合等离子体质谱;近岸及河口海水;超痕量;元素 中图分类号:0657.63;TE622.13 文献标识码:A 文章编号:1004-4957(2011)09-0964-05 doi:10.3969/j.issn.1004-4957.2011.09.003

Simultaneous Determination of Ultra-trace Level of As , Sb , Bi , Ge , Sn and Hg in Coastal and Estuarine Seawater by Chemical Vapor Generation and Inductively Coupled Plasma Mass Spectrometry

DUAN Hua-ling¹², LIN Ji-jun², ZHANG Shuo², GONG Zhen-bin^{12*}

(1. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China;

2. College of Oceanography & Environmental Science , Xiamen University , Xiamen 361005 , China)

Abstract: A chemical vapor generation (CVG) and inductively coupled plasma mass spectrometric (ICP MS) method was proposed for the simultaneous determination of ultra-trace level of As , Sb , Bi , Ge , Sn , and Hg in coastal and estuarine seawater. Effects of operating parameters , including concentrations of KBH₄ , HCl and thiourea , pump flow rate and carrier gas flow rate on analytical performance were studied. The results showed that good signal to noise(S/N) ratios for all the analysed elements were obtained when 0.70% HCl , 0.10 g/L thiourea , 11.0 g/L KBH₄ , and 0.40 L/min carrier gas were used in the CVG procedure. The relative standard deviations(RSDs , n = 5) for 0.10 µg/L spiked sample were in the range of 3.9% -8.9%. The spiked recoveries for the seawater samples were between 89% and 112%. The method blanks were in the range of 0.012 -0.036 µg/L. The limits of quantitation (LOQs , 10σ) for the developed method were obtained between 0.006 7 µg/L and 0.026 µg/L. The method could be applied in the simultaneous determination of As , Sb , Bi , Ge , Sn and Hg in coastal and estuarine seawater.

Key words: chemical vapor generation; inductively coupled plasma mass spectrometry; coastal and estuarine seawater; ultra-trace level; element

电感耦合等离子体质谱(ICP MS) 广泛应用于环境、地质、生物、医药等领域^[1-6]。然而, ICP MS 直接应用于海水样品中痕量元素的测定存在诸多限制:海水中大量易电离元素如 K、Na、Ca、Mg 等对 ICP 稳定性的影响导致测定结果重现性差;大量干扰元素如 Cl 等,可能造成多原子离子干扰;海水的

收稿日期: 2011-03-30; 修回日期: 2011-04-26

基金项目: 近海海洋环境科学国家重点实验室自主创新项目(MELRI0703)

^{*} 通讯作者: 弓振斌,博士,教授,研究方向:海洋分析化学、海洋地球化学,Tel:0592-2086222,E-mail:zbgong@ xmu. edu. cn

高盐特征极易使采样锥、截取锥锥孔堵塞,影响待测元素的离子传输效率。虽然使用高效、微流雾化 器或对海水样品进行适当稀释并结合碰撞池/反应池技术可减轻上述影响^[7],但并不能从根本上解决锥 孔周围沉积和锥孔堵塞等问题,且样品稀释可能造成个别元素浓度过低而无法进行测定。

针对上述问题,采用固相螯合分离^[8]、电化学蒸汽发生进样^[9]、共沉淀分离富集^[10]、聚合物螯 合 – 超滤^[11]等技术与 ICP MS 相结合是很好的解决方案。化学蒸汽发生(CVG) 通过化学反应将待测元 素转化为气相^[12],以气体形态进入 ICP 不仅传输效率高、记忆效应小,而且可使样品中的复杂基体与 待测元素分离,改善了方法的分析性能。但由于不同元素蒸汽发生反应的条件存在较大差异,多元素 同时测定时分析条件的选择变得相当困难。

在已有文献基础上^[13-16],本文通过研究 CVG 过程中盐酸、硫脲、硼氢化钾的浓度以及海水盐度 等参数对测定结果的影响,建立了 CVG/ICP MS 同时测定近岸及河口海水样品中超痕量 As、Sb、Bi、 Ge、Sn、Hg 元素的方法,可为金属元素的海洋化学、海洋环境化学研究提供简便、快速、准确的测定 方法。

1 实验部分

1.1 仪器及工作条件

Agilent 7700x 电感耦合等离子体质谱仪(Agilent Technologies, USA),工作参数: 射频功率1 550 W,辅助气流速1.0 L/min,载气流速0.4 L/min,冷却气流速15.0 L/min;雾化器(AR35-FM04EX Micromist Nebulizer,澳大利亚 Glass Expansion 公司)恒温2 °C;采样深度8.0 mm。各元素均选择灵敏度高、受干扰少的核素进行测定,分别为⁷⁵As、¹²¹Sb、²⁰⁹Bi、⁷²Ge、¹¹⁸Sn、²⁰²Hg;测定条件为:积分时间As 1.0 s、Hg 2.0 s,Ge、Sn、Sb、Bi均为0.30 s;⁷⁵As 可能受多原子离子 ArCl⁺干扰,使用碰撞/反应池(He 模式)技术进行消除。测定结果为3次重复测定的平均值。

化学蒸汽发生装置主要由蠕动泵(LEAD-I,保定兰格恒流泵有限公司)、混合反应器、气液分离器 3 部分组成。蠕动泵转速 30 r/min,样品及硼氢化钾等的流速为 3.0 mL/min。

1.2 试 剂

盐酸(优级纯, Merck, USA), 氢氧化钾(优级纯, 汕头市西陇化工股份有限公司), 硫脲、硼氢 化钾(优级纯, 天津市光复精细化工研究所); 0.70% HCl; 0.10 g/L 硫脲; 11.0 g/L 硼氢化钾溶液, 含 2.0 g/L KOH, 现用现配。1 000 mg/L As、Sb、Bi、Ge、Sn 和 Hg 单元素标准储备液(国家有色金属 及电子材料分析测试中心, 北京), 经 0.70% HCl 稀释成 100 μ g/L 的混合标准工作液。实验用水为 Milli-Q 超纯水(阻抗 18.2 MΩ)。

30 mL 低密度聚乙烯瓶(LDPE)、125 mL 聚可溶性四氟乙烯瓶(PFA)(Nalgene 公司,USA)以及其 他器皿均参照文献[17]的酸浸泡、超声、超纯水淋洗步骤进行洗涤,清洗干净后保存在洁净工作台内 备用。

实验用样品为取自印度洋某站位的表层海水(盐度 35, pH 8.2), 经 0.45 μm 滤膜过滤后冷藏、 保存。

1.3 实验方法

酸化或预还原后的样品、硼氢化钾溶液由蠕动泵输送至混合反应器中,两溶液混合后发生 CVG 反 应;产生的气态物质由载气携带经气液分离器分离后,进入 ICP MS 的雾室进行二级气液分离,最后由 ICP MS 进行各元素的测定。

2 结果与讨论

2.1 化学蒸气发生条件的优化

CVG 过程中,KBH₄、盐酸、硫脲的浓度以及进样量等对待测元素测定结果的影响较大,因此对上述参数进行了考察。

 KBH_4 的质量浓度及流速影响 CVG 的反应效率以及 ICP 的稳定性^[18],进而影响测定结果的信噪比 和检出限。实验考察了泵速为 3.0 mL/min 时, KBH_4 质量浓度对待测元素信噪比的影响(见图 1)。各 元素的信噪比均随着 KBH_4 质量浓度的增加而增 大,在 10.0~12.5 g/L 范围内达到峰值,随着 KBH_4 质量浓度继续增大, CVG 产生的过量氢气 会影响 ICP 稳定性并降低其温度,从而导致待测 元素的信噪比下降。因此,实验最终选择 KBH_4 的最佳质量浓度为 11.0 g/L。

盐酸、硝酸、硫酸是 CVG 反应中常用的介 质^[19],为降低质谱背景,ICP MS 分析时通常避 免使用盐酸,而采用硝酸作为样品介质。但考虑 到待测元素尤其是 As、Sb 在盐酸介质中的 CVG 效率较高^[20],因此选择盐酸作为酸介质,并考察 了盐酸浓度对待测元素信噪比的影响(见图 2)。 实验结果表明,As、Bi、Sn 和 Hg 在较宽的盐酸 浓度范围内均能得到较高的信噪比,而 Ge、Sb 对酸度条件要求较高,仅在盐酸为 0.70% 时的信 噪比最高,综合考虑选择 0.70% 的盐酸。

As 和 Sb 在还原环境下有较高的 CVG 发生效 率^[21]。实验选用硫脲作预还原剂^[22-24],并考察 了硫脲质量浓度对待测元素信噪比的影响。结果 表明,随着硫脲质量浓度的增加,As、Sb 的信噪 比逐渐增大,直至硫脲质量浓度达 0.10 g/L 时信 噪比才相对稳定。这是因为硫脲将试样中高价态 的 As 和 Sb 还原为低价态,而低价态的 As 和 Sb 有较高的 CVG 发生效率。Ge、Sn、Bi 和 Hg 的信

图 1 KBH₄ 质量浓度对 6 种元素信噪比的影响

Fig. 1 Effect of KBH₄ concentration on the signal to noise ratio of 6 elements

图 2 盐酸浓度对 6 种元素信噪比的影响 Fig. 2 Effect of HCl concentration on the signal to noise ratio of 6 elements

噪比随硫脲质量浓度的增大无明显变化。实验中选择硫脲的质量浓度为 0.10 g/L,在室温条件下预还 原 30 min。

泵速决定样品或硼氢化钾溶液的提升量,对方法的灵敏度有较大影响。实验结果表明,6种元素的信噪比随着泵速的增大呈先增加后减小的趋势,泵速为30 r/min时,各元素的信噪比最大。实验选择最佳泵速为30 r/min,此时,样品以及硼氢化钾的提升量为3.0 mL/min。

2.2 ICP MS 测定条件的优化

实验中利用 ICP 的载气(Ar) 将 CVG 的产物引入等离子体进行各元素的测定,载气流速对 CVG 的 气液分离、引入等离子体后的停留时间等均有影响,进而影响元素的离子化效率和方法的灵敏度。实 验结果表明,6种元素的信噪比随着载气流速的增加先增大后减小。在0.30~0.40 L/min 范围内,载 气流速的增大有利于混合液中 CVG 气态产物的释出,信噪比较高;当载气流速高于0.40 L/min 时,载 气以及进入 ICP 中的氢气、水汽增加,降低了 ICP 的温度,各元素的信噪比降低。实验选择载气流速 为 0.40 L/min。

实验对反应气(He)的流速进行了优化。结果表明,随着He 气流速增大,多原子离子的干扰被消除,6种元素的信噪比不断增大;但过高的He 气流速会导致信噪比减小。当He 气流速为3.0 mL/min 时,6种元素的信噪比均达到最高。因此,实验选择He 气流速为3.0 mL/min。

2.3 海水盐度的影响

相对于淡水样品,海水样品的盐度较高,共存化学基质对 CVG 的反应效率可能有影响。为将建立的方法应用于海水样品中超痕量元素的测定,需验证方法对各种盐度海水样品的适用性。

实验中将盐度为 35 的海水用超纯水稀释成各种盐度的淡咸水样品后,分别加入多元素混合标准溶 液配制成加标水平为 1.0 μg/L 的合成样品,以优化后的实验条件测定各元素的信号强度并用超纯水绘 制的标准校正曲线计算各合成样品中待测元素的浓度,进而计算添加标准的回收量,结果如表1 所示。 实验结果表明,对于不同盐度的样品,加标 1.0 μg/L 后,使用标准校正曲线进行测定的回收量较 接近,相对标准偏差(RSD)在 0.44%~4.3%之间,说明盐度对6种元素测定结果的影响很小,方法适 用于近岸、河口不同盐度海水样品中此6种元素的测定。

Salinity	Measured $\rho/(\mu g \cdot L^{-1})$						
	As	Sb	Bi	Ge	Sn	Hg	
0.0	0. 998	1.01	0. 945	0. 989	0.812	0. 986	
5.0	1.01	0.994	0. 985	0.992	0.863	0. 988	
10.0	1.01	1.01	0. 929	0. 991	0.856	0. 894	
15.0	1.01	0.998	0. 925	0.985	0.906	0.954	
20.0	1.01	1.00	0. 926	0.976	0.864	0. 995	
25.0	1.00	0.964	0.934	0. 998	0.841	0.968	
30.0	0.996	0.998	0. 911	0.984	0.834	0. 986	
35.0	1.01	1.01	1.03	0.990	0.844	0.972	
RSD $s_r / \%$	0.44	1.5	4.3	0.66	3.2	3.4	

表1 盐度对样品测定值的影响 Table 1 Effect of salinity on the concentration of samples

2.4 方法的精密度、准确度与定量下限

以盐度为 25 的海水为样品,平行配制 7 份加标水平相当于 0.1 μ g/L 的海水样品,在优化条件下测定各元素的信号强度,计算加标回收结果的 RSD(见表 2)。实验结果表明,各元素测定的 RSD 为 3.9%~8.9%。

以盐度 25 的海水为样品基质,配制各元素质量浓 度分别为 0. 0、0. 1、0. 5、1. 0、2. 0、5. 0 μ g/L 的合成 样品,在优化条件下测定各元素的信号强度。以信号强 度为纵坐标、样品加标浓度为横坐标进行线性拟合。实 验结果表明,各元素的质量浓度在 0. 1 ~ 5. 0 μ g/L 范围 内呈良好线性,相关系数 $r^2 \ge 0.996$ 6。各元素的加标回 收率为 89%~112%(见表 2),可满足海水中超痕量金属 元素的定量测定要求。

方法空白反映实验室环境、试剂空白、仪器本底等 对方法应用于实际样品测定结果的影响。以超纯水为样

表2 方法的精密度、准确度及定量下限

Table 2Precision , accuracy and limit of quantitation(LOQ) of the developed method

Flomont	RSD	Recovery	LOQ
Liement	$s_{\rm r}$ / %	<i>R/%</i>	$ ho / (\mu g \cdot L^{-1})$
As	8.6	101	0.0067
\mathbf{Sb}	8.7	112	0.008 6
Bi	8.6	90	0.023
Ge	3.9	99	0.011
Sn	8.9	89	0.026
Hg	6.2	97	0.016

品基质,酸度为 0.70%的 HCl 为空白样品,定义该样品中测得的各元素浓度为方法空白。多次测定结 果表明,6种元素的方法空白在 0.012~0.036 µg/L 之间。相对于近岸、河口海水样品中大部分元素的 含量,所建立方法的空白值较低(至少比各元素的实际含量低 1 个数量级),可满足实际样品测定的 需要。

对空白样品平行测定 5 次以上,定义其 10 倍标准偏差(SD,10σ) 对应的浓度为方法定量下限 (LOQ)。6 种元素的 LOQ 在 0.006 7 ~ 0.026 μg/L 之间(见表 2),可满足近岸、河口海水样品中 As 等 6 种元素同时测定的要求。

2.5 实际样品的测定

采用本方法对厦门九龙江河口区实际样品进行测定,并使用超纯水配制的标准校正曲线进行定量 (见表3),表中结果为3次测定结果平均值及不确定范围。为验证方法的可靠性,表3中同时列出了 标准加入法对样品的测定结果。结果表明,两种方法的测定结果较吻合,本法可用于实际海水样品中 As、Sb、Bi、Ge、Sn和Hg的同时测定。

Table 3 Analytical results of 6 elements in seawater samples

 $\rho/(\mu g \cdot L^{-1})$

		5			1		P (1-0)	
Sample	Salinity	As	\mathbf{Sb}	Bi	Ge	Sn	Hg	
1#	25.0	$0.23 \pm 0.025^*$	0.081 ± 0.013	0.091 ± 0.010	0.18 ±0.016	1.00 ± 0.059	0.099 ± 0.06	
		0.24 * *	0.073	0.092	0.17	0.93	0.10	
2#	24.3	0.27 ± 0.014	0.096 ± 0.008	0.092 ± 0.005	0.19 ± 0.014	1.00 ± 0.064	0.13 ± 0.011	
		0.27	0.092	0.098	0.16	0.96	0.11	
3#	25.8	0.28 ± 0.018	0.098 ± 0.015	0.11 ± 0.013	0.18 ± 0.012	0.88 ± 0.050	0.12 ± 0.009	
		0.26	0.088	0.11	0.18	0.85	0.13	
4#	24.6	0.26 ± 0.022	0.11 ± 0.009	0.096 ± 0.009	0.17 ± 0.016	0.93 ± 0.071	0.11 ± 0.008	
		0.24	0.10	0.089	0.17	0.90	0.11	
5#	24.5	0.30 ± 0.026	0.089 ± 0.009	0.11 ± 0.009	0.16 ± 0.016	1.01 ± 0.079	0.11 ± 0.009	
		0. 28	0.084	0.095	0.17	0.91	0.12	

* mean value and uncertainty range of 3 results using standard correction method; * * result of standard addition method(* 标准校正曲线法 3 次测定结果的平均值及不确定范围; * * 标准加入法的测定结果)

3 结 论

本文使用化学蒸汽发生法去除海水中高浓度、易电离元素的基体,改进了电感耦合等离子体质谱 测定近岸及河口海水中超痕量 As、Sb、Bi、Ge、Sn 和 Hg 元素的精密度和准确度。方法简单、空白低、 灵敏度高,可应用于河口及近岸海水中6种超痕量金属元素的同时测定。

参考文献:

- [1] Wang X R. Applications example of inductively coupled plasma spectrometry. Beijing: Chemical Industry Press (王小如. 电感耦合等离子体质谱应用实例. 北京: 化学工业出版社), 2005.
- [2] Xu P, Sun Y L. Chin. J. Anal. Chem. (徐鹏, 孙亚莉. 分析化学), 2010, 38(4): 581-584.
- [3] Liu H S, Shao H X. Inductively coupled plasma spectrometry and its applications. Beijing: Chemical Industry Press (刘虎 生,邵宏翔. 电感耦合等离子体质谱技术与应用. 北京: 化学工业出版社), 2005.
- [4] Yang H X, Liu W, Li B, Wei W, Zhang H J, Chen D Y. Chin. J. Anal. Chem. (杨红霞,刘崴,李冰,魏巍,张 惠娟,陈登云. 分析化学), 2009, 37(10): 1511-1514.
- [5] Song X J, Liu X L, Duan T C, Chen H T. Chin. J. Anal. Chem. (宋雪洁,刘欣丽,段太成,陈杭亭. 分析化学), 2009, 37(12): 1743-1748.
- [6] Wang JY, Zhu HD, Ouyang L, Liu YQ, Wang XY, Huang Z, Wang NF, Liu HS. Spectrosc. Spectral Anal. (王京宇, 诸洪达, 欧阳荔, 刘雅琼, 王小燕, 黄卓, 王耐芬, 刘虎生. 光谱学与光谱分析), 2004, 24(9): 1117-1120.
- [7] Jing M, Shen Y, Shen J C, He Y, Zhuang Z X, Chen D Y, Wang X R. *Environ. Chem.* (荆淼, 沈阳, 沈金灿, 何鹰, 庄峙厦, 陈登云, 王小如. 环境化学), **2004**, 23(5): 600-604.
- [8] Trujillo I S , Alonso E V , Cordero M T S , Pavon J M , De Torres A G. J. Anal. At. Spectrom. , 2010 , 25(7): 1063-1071.
- [9] Bings N H , Stefánka Z , Mallada S R. Anal. Chim. Acta , 2003 , 479(2): 203 214.
- [10] Li Y C, Gong Z B, Li J, Wen Y Y. J. Instrum. Anal. (李云春,弓振斌,李俊,温裕云. 分析测试学报), 2005, 24(1):12-16.
- [11] Lin J J, Duan H L, Gong Z B. Chin. J. Anal. Chem. (林继军,段华玲,弓振斌. 分析化学), 2011, 39(6): 906-910.
- [12] Stockwell P B , Corns W T , Allen J. J. Anal. At. Spectrom. , 2009 , 24(8): 1026-1033.
- [13] Matusiewicz H , Ślachciński M. Microchem. J. , 2010 , 95(2): 213 221.
- [14] Matusiewicz H , Ślachciński M. Microchem. J. , 2007 , 86(1): 102 111.
- [15] Grotti M, Lagomarsino C, Frache R. J. Anal. At. Spectrom., 2005, 20(12): 1365-1373.
- [16] Dos Santos E J , Herrmann A B , Frescurab V L A , Curtius A J. J. Anal. At. Spectrom. , 2005 , 20(6): 538-543.
- [17] Howard A G, Statham P J. Inorganic trace analysis philosophy and practice. New York: John Wiley and Sons Inc., 1993: 182.
- [18] Li B, Wu L P, Yin M. Rock Mineral Anal. (李冰, 吴列平, 尹明. 岩矿测试), 1999, 18(2): 101-110.
- [19] Liu X G, Fang J D, Hu S H, Gao S. Chin. J. Anal. Lab. (刘先国,方金东,胡圣虹,高山. 分析试验室), 2002, 21(6): 14-17.
- [20] Santosa S J , Mokudai H , Tanaka S. J. Anal. At. Spectrom. , 1997 , 12(4): 409-415.
- [21] Abrankó L , Stefánka Z , Fodor P. Anal. Chim. Acta , 2003 , 493(1): 13 21.
- [22] Pan Y H, Liu G, Liu X S. Chin. J. Anal. Lab. (潘元海, 刘刚, 刘湘生. 分析试验室), 2003, 22(3): 19-22.
- [23] Matusiewicz H , Ślachciński M. Microchem. J. , 2006 , 82: 78 85.
- [24] Li Z, Yang X M, Guo Y A, Li H T, Feng Y H. Talanta, 2008, 74(4): 915-921.