稀土基萤石型氧化物的燃烧特性^{*} The Combustion Property of Rare-earth-based Fluorite Type Oxide

陈笃慧 杨乐夫 于腊佳

(厦门大学化学系,固体表面物理化学国家重点实验室,厦门,361005)

Chen Duhui Yang Lefu Yu Lajia

(Chem Dept & State Key Lab for Physi Chem of Solid Surf. Xiamen University, Xiamen, 361005, China)

摘 要 Ce基萤石型材料因低价阳离子 Ln⁴的掺杂,降低了它的还原温度,增强了氧化还原能力,故可 较好地促进甲烷等挥发性有机物的完全燃烧,具有与 钙钛矿形型化合物相类似的性能,而其热稳定性更 好,因而有望在醇类代用燃料汽车的尾气净化处理中 发挥更大作用。

关键词 缺陷萤石型材料 氧化燃烧 汽车尾气净 化

ABSTRACT Doping with lower valence cations, the reducing temperature of Ce-based fluorite type materials can be lowered, and the reduction-oxidation property can be enhanced. This facilitates the combustion of methane as perovskite compounds do, and the former has a better thermal stability. This material can play an important role in the treatment of exhaust gas from alcohol fueled vehicles.

KEY WORDS defective fluorite-type material, complete combustion, exhaust gas treatment

1 引 言

天然气或甲醇将成为我国汽车的重要燃料,其尾 气处理则有别于原来的"三效"转化,即已不完全是同 时处理 CO NO,和未完全燃烧的烃类化合物的问题 了。这时为了提高燃烧效率和减少排放污染,正发展 着燃料与空气之比低于化学计量比的稀薄燃料燃烧 法,并加紧研究新型的净化装置及净化材料^[1]这种 净化材料应该有很高的燃烧产物通过速度,以便能快 速和完全地转化作为燃料的碳氢化合物或挥发性有 机物^[2];有良好的冷启动性能,它一方面能在净化装 置的温度还较低时就有了足够的净化效率,另一方面 又应能在较短时间内把净化装置加热到工作温度^[3]; 它还应能经受燃料产物组成和温度的急剧变化,表现 出良好的热稳定性等^[4]。由于已知烃类化合物的氧化 转化都起源于某种活泼的氧离子,因而要求净化材料 具有足够多的能够吸附和活化氧的阴离子空位^[5],也 要求它们的亲水性差,碱性较小,蜂窝状载体的壁薄, 以减小热惰性^[6]。这些是满足上述要求的基本条件。 作为活性材料,研究最多的是贵金属和含过渡系金属 的钙钛矿型氧化物材料。近年来,萤石型氧化物通过 高温燃烧的方法净化烃类化合物的性能引起了关 注^[7]。本文讨论稀土基萤石型材料的特征及其促进甲 烷完全燃烧的转化活性。

2 实 验

取 Ce La Nd Sm Gd的硝酸盐溶于去离子水中,制成接近饱和的溶液待用,把沉淀剂(NH₄)₂CO₃ 也配成溶液,按 Ce/La= Ce/Nd= Ce/Sm= Ce/Gd= 4/1的配比,分别量取相应的溶液,分置于两个分液 漏斗中,在剧烈搅拌下,双流滴加,将沉淀陈化 30min,然后洗涤干燥分别在1123K与1373K灼烧, 在空气中急速冷却降至室温,得样品,取名为 CL-1123 CL-1373 CN-1123 CN-1373 CS-1123 CS-1373 CG1123和 CG-1373

比表面的测定是在 Carlo Erba 1900吸附仪上完 成的,采用 77K N₂吸附 BET测定法,在 Rigaku Max /D-2衍射仪上进行的相分析,以 Cu K 为射线源 (λ = 0.1541nm),步进值 0.02deg,扫描速度 4deg/ min

He 还原试验:取样品 50mg,置于石英玻璃反应

* 福建省自然科学基金资助项目 终稿收到日期: 1997-03-27 器中,通入 25ml/min的 5% H₂ /Ar混合气,按 10K / min速率升温,直至 1300K,尾气以色谱仪的热导池 检测,以色谱峰的面积来确定所消耗 H₂量,从而测 出样品的还原度,该面积用 CuO的还原加以校正

C● CN■ CS□ CG[○] La_{0.6} Mn_{0.4} MnO₃+ 图 1 稀土基萤石型氧化物的 CH 燃烧活性

Fig 1 The activity of rare-earth-based fluorite type oxides for methane combustion

反应性能的测定: 以最稳定的烃类化合物 CH₄ 的氧化燃烧检验萤石型材料的反应特性。把 0. 2g的 样品装于石英反应管中,管长 250mm,内径 6mm,装 填 0. 2g试样,反应原料气的组成为 CH₄2%、O₂6%, N₂为平衡气,反应气通过速度 W/F= 0.07g° s/ml 反应产物的成分均用色谱仪(上海分析仪器厂 102GD)分析。YCC-16智能仪表可按编好的程序控 制管式电阻炉中反应器的温度,而反应特性分别用转 化了 10%、50% 和 90% CH₄的温度,即 T₁₀ T₅₀和 T₅₀ 描述,也表现为单位时间内,单位质量活性材料的 CH₄转化量(μ mol/g·s)

表 1 稀土基萤石型氧化物材料 CH4燃烧反应的催 化活性

Table 1 Catalytic properties of rare-earth-based fluorite-type materials

试样	比表面 m2/g	C e0.8 Ln0. 2 Ox x	T10 K	r750 μ mol/g. s
CL1123	18	1. 76	795	6. 84
CN1123	21	1. 76	780	7.44
CSI 123	26	1. 72	743	8. 52
CG1123	16	1. 78	810	6. 37
CL1373	11	1.71	801	5. 76
CN1373	11	1. 70	793	6. 32
CS1373	15	1. 68	770	8.16
CG1373	11	1. 73	826	5.18
$La_{0.6} Sr_{0.4} MnO_3(1123)$	3. 5		753	6. 3
$La_{0.6} Sr_{0.4} MnO_3(1373)$	3		833	4. 8

图 2 不同温度灼烧 4CeO₂-SmO_{1.5}样品的 XRD谱图 Fig 2 XRD patterns of 4CeO₂-SmO_{1.5} samples calcined at different temperatures

3 结果与讨论

稀土基萤石型氧化物的燃烧性能表于图 1

从表 1看出, Cea $s Sma_2 O_{2-\delta}$ 促使 CH4燃烧的起燃 温度 Tab 763K,与最活泼的钙钛矿型化合物 Laa 6 Sra 4 M nO3 相接近,前者经 1373K灼烧后 (CS1373), 起燃温度几乎不变,而 Lab 6 Sra 4 M nO3 却升高了 80K 表示了 Cea 8 Sma 2 O 2-5 萤石型化合物具有较好的 热稳定性 Cea 8 Sma 2 O 2-5 位 LITE La Nd Gd)的起燃温 度较差 图 1还表示稀土基萤石型化合物更象贵金属 材料,具有陡峭的甲烷转化温度曲线,而钙钛矿型材 料于 800~ 950K之间的曲线较平坦^[8]。

图 3 CS1123与 CeO2的 TPR谱图

Fig 3 TPR profiles of CeO2 and CS1123 sample

图 2是 CS1123和 CS1173的 XRD图谱,可以看 出 CS等样品都呈现了萤石类化合物的构型,图 3表 示了 CeO₂和 CS1123的程序升温还原(TPR)性质。 在 CeO₂的 TPR图中得到两个谱峰,低温的峰是表 面 Ce⁴⁺的还原,而高温峰代表了体相的失氧过程。稀 土金属 Sm³⁺的部分取代,降低了 Ce⁴⁺ 还原为 Ce³⁺的 温度,这反映了氧离子迁移速度的增加,因而增强了 稀土基萤石型复氧化物材料的氧化燃烧性能

在类似的 CeO₂-ZrO₂体系中,若采用陶瓷制备法,且当 CeO₂含量小于 50%,又未加以急速冷却,则 常常得到四方晶系化合物¹⁹,这时制备的材料中同时 存在 Ce^{*} 和 Ce^{*},说明 Ce^{*}不能完全氧化为 Ce^{*}, 形成了非化学计量的化合物,存在一定的氧离子缺陷,它的浓度可用程序升温还原(TPR)测定,即在 Ce₁₊ Zr_xO₂₋₅化合物中,2- ∂ 偏差 2的程度反映了氧离 子缺陷的浓度,也表示了 Ce⁴ 还原为 Ce³⁺ 的比例。所 以,选择适当的 CeO₂含量,可使材料具有较高的还 原度,而且立方晶系也比四方晶系有更低的还原温 度,这起源于四方晶系对于氧离子扩散的各向异性。 CeO₂-ZrO₂ 四方晶系固溶体的 c/a^{\sim} 1.02,与立方晶 系固溶体相比则不利于氧离子的移动和传输。氧的传 输还取决于它从萤石型材料四配位的位置上移动到 邻近的四配位的新位置上所经过的通道的大小,这通 道决定于有效半径 R₆

对于立方晶系

$$R_f = \frac{a}{6} - r_c$$

式中 a是晶胞常数,r_e为平均的阳离子半径,对 于四方晶系

$$R_f = \frac{a^2 + c^2}{2 (a^2 + 2c^2)} - r_c$$

. 计算结果表明,四方晶系的有效通道半径 R_f基 本不变,与 CeO₂的含量无关,而在立方晶系中,CeO₂ 被 ZrO₂所取代,R_f逐渐增大,因而表现较强的氧化 还原性和较大的氧离子移动性。

图 4 不同离子半径的杂质离子对(111)衍射峰位的 影响

Fig 4 Dependence of the diffraction peak (111) position of Ce-based Solid solution on the radius of dopant 同样道理, CeO_2 被 $LnO_{1,5}$ 取代后,基本上保持了 立方构型(参考 JCPD S28-260) 它们的(111)衍射峰 具有随掺杂离子大小而变化的规律(图 4),因而赋予 $CeasSma_2O_{2-s}$ 有了图 3所表示的良好氧化还原性, 这些是 $Ce_{1-x}Ln_xO_2$ 材料具有能氧化烃类化合物和挥 发性有机物的原因。

4 结 论

稀土金属离子部分取代 CeO2可形成萤石型化 合物,使 CeO2的氧化还原性能得到改善,因而增强 了促使 CH4等挥发性有机物完全燃烧的活性,而且 表现了良好的高温稳定性,可用作高温助热燃烧材料 和醇类燃料汽车尾气的净化处理。

参考文献

- 1 Farmauto R J, et al. Chem & Eng News, 1992, 34(7): 7
- 2 Silver R G, et al. Design and performance evaluation of automotive emisson control catalysts. Stud Surf Sci & Catal, 1991, 71 167
- 3 Jasper T S, et al. Monolith substrate effects on catalyst light-off. Stud Surf Sci& Catal, 1991, 71 523
- 4 Taylor K C. Catalysts in cars. Chemtech, 1990, 9 551
- 5 Fornasiero P. et al. Rh-load ed ZrO2-CeO2 solid solutions as highly efficient oxygen exchangers dependence of the reduction behavior and the oxygen storage capacity on the structural properties. J Catal, 1995, 151:168
- 6 蔡俊修等.用于汽车废气处理的多孔性材料.功能材料, 1995,25(5):456
- 7 Zamar F, et al. Ce-based solid solutions with fluorite structure as novel and effective catalysts for methane combustion. JCS Chem Commun, 1995 965
- 8 Seiyama T. Total oxidation of hydrocarbons on perovskite oxides. Catal Rev Sci Eng, 1992, 34(4): 281
- 9 Yashima M, et al. Diffusionless tetragonal-cubic transformation temperature in ZrO2-CeO2 solid solutions. J Am Ceram Soc, 1993, 76 2865