第 27 卷第 5 期 2015 年 5 月 化学研究与应用 Chemical Research and Application Vol. 27 ,No. 5 May 2015

文章编号:1004-1656(2015)05-0671-04

能量色散型 X 射线荧光光谱法测定聚合物 材料中镉和铅含量

苏清兴^{*} ,尹应武

(厦门大学化学化工学院 福建 厦门 361005)

摘要:提出了能量色散型 X 射线荧光光谱测定聚合物材料中镉和铅的测试分析方法及制样技巧。按照仪器 分析条件测定同时含有镉和铅的 6 块不同浓度级别的标准物质来建立校准工作曲线,其线性范围分别在 250ug*g⁻¹、1100ug*g⁻¹以内。镉和铅的方法检出限依次为 4. 7ug*g⁻¹、4. 1ug*g⁻¹。该方法应用于测定欧洲标准 物质 ERM-EC680 和 ERM-EC681k 其镉和铅的实际测定值与标准物质证书的标称值相符 测定实际样品中的 镉和铅的回收率介于 90 ~110%。该方法测定标准物质和实际样品中镉和铅的精密度均小于 10%。 关键词:能量色散型; X 射线荧光光谱法; 聚合物材料; 镉; 铅 中图分类号: 0657. 34 文献标志码: A

ED-XRF determination the content of cadmium and lead in polymeric materials

SU Qing-xing* ,YIN Ying-wu

(College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China)

Abstract: Test analysis method of energy dispersive X-ray fluorescence spectrometric for the determination of cadmium and lead in polymeric material and sample preparation techniques are proposed. In accordance with the conditions of instrumental analysis determining the standard substances of six different concentration levels of both cadmium and lead to establish the calibration curve the linear range is respectively within $250\mu g \cdot g^{-1}$, $1100\mu g \cdot g^{-1}$. The method detection limit of cadmium and lead is respectively 4. $7\mu g \cdot g^{-1}$ $A \cdot 1\mu g \cdot g^{-1}$. The method was applied to the determination of the European reference material ERM-EC680 and ERM-EC681k, the actual determined value of cadmium and lead are in accordance with the certificate values of standard material the recovery of determination of cadmium and lead in real sample are ranged from $90 \sim 110\%$. The precision of determination of cadmium and lead of the standard materials and actual sample by this method are less than 10%.

Key words: energy dispersive; x-ray fluorescence method; polymeric material; cadmium; lead

欧盟 RoHS 指令^[1], 欧盟 91/338/EEC 指 令^[2],美国消费品安全委员会(CPSC)的 CPSIA H. R. 4040 法案^[3]等环保指令或法规对电子电气 产品及其元器件、玩具、涂料等聚合物材料中的镉 和铅进行限值要求。传统的作法是采用电感耦合 等离子体发射光谱法或原子吸收光谱法测定镉和 铅含量^[4],但是以上两种传统检测镉和铅的程序 复杂繁琐:需要定期购买有证标准物质溶液,定期 配置校准工作曲线溶液,每次开机都要重新建立3 到4个不同浓度点的校准工作曲线,需要将聚合

收稿日期: 2014-09-07; 修回日期: 2014-12-25

联系人简介:苏清兴(1983) 男.硕士研究生,主要从事化学分析仪器检测材料中多种国内外环保法规或指令关注的有机物质或无机 元素。E-mail: suqingxing1120@126. com

物通过剪样或粉碎制成一定粒径的样品,加入一 定组合的酸溶液,然后用微波消解仪进行消解,再 进行过滤与定容,最后再用电感耦合等离子体发 射光谱法或原子吸收光谱法进行测定,测定的数 据虽然精准可靠,但样品的前处理工作量大,费时 费力。本文的工作是根据能量色散型 X 射线荧光 光谱仪(ED-XRF)的性能特点,提出用 ED-XRF 直 接测定聚合物材料中镉和铅的含量。采用 X 射线 荧光光谱法,不但耗时短,而且检测成本相对较 低^[5,6]。该方法具有简便、快速、有效、不破坏样品 的优点,同时还可以避免镉在热熔时造成的矢量 损失[7]。

1 实验部分

1.1 仪器与器具

EDX-720 能量色散型 X 射线荧光光谱仪(日本岛津 SHIMADZU),端窗配有铑耙 X 射线光管;带6微米迈拉膜的塑料样品专用杯;微型粉碎机;斜口钳;剥线钳;剪刀。

1.2 仪器工作条件

	表1	仪器工作	条件	
Table 1	Working	condition	of the	instrument

	Table 1 working condition of the installion					
元素名称	镉	铅	铅			
元素符号	Cd	Pb	Pb			
元素谱线	Ka	Lb1	L_{α}			
含量单位	ppm	ppm	ppm			
处理计算	Quant	Quant	Quant			
定量类型	Calibration Curve	Calibration Curve	Calibration Curve			
测试电压	50kV	50kV	50kV			
测试电流	100uA	100uA	100uA			
滤光片	MoNi	Ag	Ag			
积分时间	100 秒	100 秒	100 秒			
DT	40%	40%	40%			
能量位置(KeV)	23. 12	12.62	10.56			
强度计算	Fitting	Fitting	Fitting			
分析范围(KeV)	22.72~23.52	12. 38 ~ 12. 88	10. 32 ~ 10. 82			
光滑点数	11	11	11			

注 1: 含量单位 ppm=µg•g⁻¹=mg•kg⁻¹

1.3 实验方法

1.3.1 样品制备 塑料米颗粒样品直接倒入样品杯, 堆积其整体厚度≥6mm。树脂橡胶等待测面平整 的样品整体厚度≥3mm时,放好后直接测定;如果 整体厚度低于3mm时,将其堆积至厚度≥3mm。 大型聚合物样品用斜口钳或剪刀制成小块,用防重 金属污染的微型粉碎机粉碎样品至颗粒直径小于 4mm,把粒状样品放入装有迈拉膜的样品杯,堆积 颗粒聚合物整体厚度不低于6mm。

1.3.2 校准工作曲线的建立 按表1的仪器分析 工作条件对六个不同浓度级别的标准物质块进行 测定,以镉和铅的质量分数(μg·g⁻¹)对其计数率绘 制校准工作曲线,仪器分析软件内置智能计算功能 拟合工作曲线并自动计算回归方程系数,具体的线 性范围、回归方程和相关系数详见下表 2。

表 2 基体为 ABS 的线性范围、回归方程、相关系数 Table 2 Linearity ranges regression equations, correlation coefficients in ABS matrix

元素	线性范围	线性回归方程	相关系数
Cd	107µg•g ⁻¹ 以内	y = 3477x + 0.2	0. 9985
Pb	1122µg•g ⁻¹ 以内	y = 1012x - 2.4	0. 9986

1.3.3 基体谱线的干扰检查与选择 Cd 和 Pb 元 素常常会受到同一基体材料中邻近元素的谱线干 扰 因此需要注意并选择受到邻近元素谱线干扰较 少的谱线 具体的选择技巧详见"基体谱线的干扰 与选择"。

	Table 3 Cl	heck and choose in inte	erference of matrix spectrum
元素谱线	能量/KeV	干扰谱线	基体谱线的干扰检查与选择
Cd Ka	23. 12	SnKa ESC	高含量 Sn 干扰时,要注意观察 Cd Kb 的峰强度
Pb Lb1	12.62	BrKa、BrKb	Br 含量较高时,使用 PbLa 的含量值
Pb Lb1	12.62	SeKb	Se 含量较高时,使用 PbLa 的含量值
Pb Lb1	12.62	FeKa SUM	FeKa SUM 出现且含量较高时,使用 PbLa 的含量值
Pb La	10. 55	AsKa	砷含量较高时 使用 PbLb1 的含量值
Pb La	10. 55	BiLa	Bi 中微量 Pb 或 Pb 中微量 Bi 使用 PbLb1 的含量值
Pb La	10.55	CrKa SUM	Cr 含量较高时,使用 PbLb1 的含量值
Pb La	10. 55	BrKa ESC	BrKa ESC 出现时 使用 PbLb1 的含量值

表3 基体谱线的干扰检查与选择

2 结果与讨论

2.1 样品整体厚度的选择

测试对象为颗粒状样品,当样品在带迈拉膜 专用杯中的整体厚度大于6mm时,测定欧洲有证 标准物质 ERM-EC680 颗粒中 Cd 含量值 132 μ g• g⁻¹、130 μ g•g⁻¹、128 μ g•g⁻¹、138 μ g•g⁻¹,Pb 含量值 91 μ g•g⁻¹、95 μ g•g⁻¹、103 μ g•g⁻¹、100 μ g•g⁻¹数值能 够趋于稳定。测定 ERM-EC681K 颗粒中 Cd 含量 值 134 μ g•g⁻¹、145 μ g•g⁻¹、136 μ g•g⁻¹、138 μ g•g⁻¹, Pb 含量值 92 μ g•g⁻¹、95 μ g•g⁻¹、91 μ g•g⁻¹、92 μ g•g⁻¹ 数值也能够趋于稳定。测试对象为待测面平整规 则的塑料件或橡胶树脂等样品,经试验样品的整 体厚度大于 3mm 时也能获得较为稳定的镉和铅 的测定值: 厚度 3.5mm 的 ABS-500 塑料件 Cd 含量 稳定可靠: 30µg•g⁻¹、38µg•g⁻¹、36µg•g⁻¹、31µg•g⁻¹; 厚度 3.5mm 的 ABS-500 塑料件 Pb 含量稳定可靠: 370µg•g⁻¹、363µg•g⁻¹、350µg•g⁻¹、359µg•g⁻¹。

2.2 样品颗粒直径的选择

选用两种欧洲有证标准物质 ERM-EC680 和 ERM-EC681K,通过斜口钳或剪刀制备成不同直径 的样品颗粒,放入带迈拉膜的塑料专用样品杯,使 其每次的标准物质的整体厚度都大于 6mm,然后 按照仪器的分析工作条件测定镉和铅含量。经试 验:4mm、3mm、2mm、1mm 四种不同直径的标准物 质样品颗粒装入带有迈拉膜样品中的镉和铅的含 量值 RSD 均小于 10%,符合国家标准 JJG 810-1993 关于 XRF 测定精密度的要求,说明颗粒状聚 合物在满足整体厚度大于 6mm 情况下,样品颗粒 的直径大小对镉和铅的测定结果不会造成显著性 差异的影响,具体如表 4 所示。

表 4	个同样品颗粒且径的测正结果
-----	---------------

	Table 4 The resu	lt of determining different	ent diameter of sample part	icle
参考物质	ERM-EC680	ERM-EC680	ERM-EC681K	ERM-EC681K
元素谱线	CdKa	PbLb1	CdKa	PbLb1
1 mm	$140 \mu\mathrm{g}^{\bullet}\mathrm{g}^{-1}$	$104 \mu\mathrm{g}^{-1}$	$134 \mu\mathrm{g}^{-1}$	$104\mu\mathrm{g}^{\bullet}\mathrm{g}^{-1}$
2mm	$136 \mu g \cdot g^{-1}$	$98 \mu \mathrm{g}^{-1}$	$142 \mu g \cdot g^{-1}$	$92 \mu g \bullet g^{-1}$
3mm	$143\mu\mathrm{g}^{\bullet}\mathrm{g}^{-1}$	$101 \mu\mathrm{g}^{-1}$	$140 \mu\mathrm{g}^{-1}$	$100 \mu\mathrm{g} \cdot \mathrm{g}^{-1}$
4mm	$139 \mu g \cdot g^{-1}$	$109 \mu g^{-1}$	$137 \mu\mathrm{g}^{-1}$	$97 \mu g \bullet g^{-1}$
平均值	$140 \mu\mathrm{g}^{\bullet}\mathrm{g}^{-1}$	$103 \mu g^{-1}$	$138 \mu\mathrm{g}^{-1}$	$98 \mu g^{\bullet} g^{-1}$
SD	2. $9\mu g^{-1}$	4. $7 \mu g^{-1}$	3. $5 \mu g^{-1}$	5. $1 \mu g^{\bullet} g^{-1}$
RSD	2.1%	4.6%	2.5%	5.1%

2.3 方法的检出限

按 XRF 检出限(Limit Of Detection)的计算公式: LOD=3 σ (σ : 为空白样品连续测试 7 次所得出数据结果的标准偏差值 σ 也常以符号 s 表示),得出镉的方法检出限约为 4. 7 μ g•g⁻¹,铅的方法检出限约为 4. 1 μ g•g⁻¹。

2.4 方法的精密度

按仪器工作条件对欧洲有证标准物质 ERM-EC680 和 ERM-EC681k 分别进行镉和铅的测定, 两种标准物质各自连续测定 7 次。结果表明:两种有证标准物质中镉和铅测定值的相对标准偏差 (RSD)均小于 10%,符合国家标准 JJG 810-1993 关于 XRF 测定精密度的要求,说明该方法的精密 度高,具体的分析结果详见表 5。

表5 有证标准物质的精密度(n=7)

Table 5 The p	precision of standard ma	terials(n=7)
元素谱线	ERM-EC680	ERM-EC681k
CdKa	RSD = 2.9%	RSD = 3.5%
PbLb1	RSD = 4.3%	RSD = 2.3%

2.5 方法的准确度

按照仪器工作条件对 ERM-EC680 和 ERM-EC681k 分别进行镉和铅的测定,分别各自连续测 定7次,取其7次的平均值与认定值进行偏差计 算考察,结果表明测定两种有证标准物质中镉和 铅的准确度高,绝对误差均小于10%,符合国家标 准 JJG 810-1993 关于 XRF 测定准确度的要求,分 析结果详见表6。

表6 有证标准物质的准确度(n=7)

Table 6 The accuracy of standa	and materials $(n = 7)$
--------------------------------	-------------------------

元素	ERM-EC680			ERM-EC681k		
	认定	测定	绝对	认定	测定	绝对
	值	值	误差	值	值	误差
	w/(μ	$g \bullet g^{-1}$)	1%	w/(μ	$g \bullet g^{-1}$)	1%
CdKa	141	133	5.8	137	136	0.6
PbLb1	108	98	9.5	98	92	6.1

2.6 实际样品的精密度考察

测定 CNAS 授权 CTI 在 2014 年 4 月举办的能 力验证实际样品中的镉和铅的精密度结果良好, 按照国际标准 IEC62321 的建议,优先选用 PbLb1 含量值进行考察,具体数据如表7。

表7 测定实际样品的精密度(n=6)

Table 7 The precisi	on of determining act	ual sample($n=6$)
CTI-ABS	CdKa	PbLb1
第1次	$110 \mu\mathrm{g}^{-1}$	$113 \mu\mathrm{g} \cdot \mathrm{g}^{-1}$
第2次	$113 \mu g^{-1}$	$104 \mu g \cdot g^{-1}$
第3次	$113 \mu g^{-1}$	$107 \mu \mathrm{g}^{-1}$
第4次	$113 \mu g^{-1}$	111μg•g ⁻¹
第5次	$115 \mu g^{-1}$	$110 \mu g^{-1}$
第6次	$113 \mu g^{-1}$	$109 \mu g^{-1}$
平均值	$113 \mu g^{-1}$	$109\mu\mathrm{g}^{-1}$
SD	1. 6μg•g ⁻¹	3. $2\mu g^{-1}$
RSD	1.4%	2.9%

参考文献:

- [1] DIRECTIVE 2011/65/EU OF THE EUROPEAN PAR-LIAMENT AND OF THE COUNCIL of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment [S].
- [2]91/338/EEC Total cadmium content test-European directive [S].
- [3] CPSIA H. R. 4040 Consumer product safety improvement act of 2008 [S].
- [4] IEC62321-5: 2013-06 Determination of certain substances in electrotechnical products Part 5: Cadmium ,lead and chromium in polymers and electronics and cadmium and

2.7 实际样品的回收率考察

测定 CNAS 授权 CTI 在 2014 年 4 月举办的能 力验证实际样品中的镉和铅的回收率结果良好, 按照国际标准 IEC62321 的建议,优先选用 PbLb1 含量值进行考察,具体数据如表 8。

表 8 测定实际样品的回收率

	P		~1.3		~ '	
Table 8	The r	ecoverv	of	determining	actual	eamnle

Tuble 6 The fee	overy or determining	uetuai sampie
CTI-ABS	CdKa	PbLb1
平均值	$113\mu\mathrm{g}^{\bullet}\mathrm{g}^{-1}$	$109 \mu g^{\bullet} g^{-1}$
认定值	$111 \mu \mathrm{g} \bullet \mathrm{g}^{-1}$	$112 \mu g^{\bullet} g^{-1}$
回收率	102%	97.3%

2.8 ED-XRF 与 ICP-OES 测定实际样品中的镉和 铅的含量比对

表 9 不同方法的比对

Table 9	Contrast	between	different	methods	
					_

CTI-ABS	CdKa	PbLb1
ED-XRF	$113 \mu\mathrm{g}^{\bullet}\mathrm{g}^{-1}$	$109 \mu g^{\bullet} g^{-1}$
ICP-OES	$110 \mu g^{-1}$	$117 \mu g^{\bullet} g^{-1}$
平均值	$112 \mu g^{\bullet} g^{-1}$	$113 \mu\mathrm{g}^{\bullet}\mathrm{g}^{-1}$
相对偏差绝对值	2.7%	7.1%

ED-XRF 与 ICP-OES 测定 CNAS 授权 CTI 在 2014 年4 月举办的能力验证实际样品,如上表所 示:两种不同方法测定镉和铅结果相对偏差绝对 值<10%,符合国家标准 JJG 810-1993 关于 XRF 测定准确度的要求,说明 ED-XRF 测定实际样品 中镉和铅的准确度良好。

lead in metals by AAS ,AFS ,ICP-OES and ICP-MS[S].

- [5]宋武元,郑建国,肖前,等.X射线荧光光谱法同时测定 电子电气产品中限制使用物质铅、汞、镉、铬和溴[J]. 光谱学与光谱分析 2006 26(12):2350-2353.
- [6]曾小平,宋武元,吴冰.X射线荧光光谱法同时测定猛 锌铁氧体材料的主量组分[J].理化检验:化学分册, 2010,46(8):940-942.
- [7] 王斌 涨华,黄伟,等.X射线荧光光谱法测定聚合物材 料中铅和镉[J].理化检验:化学分册,2012,48(7): 810-811.

(责任编辑 李 方)