海水中铬的化学发光分析

杨孙楷 郁建栓 王莉莉

(厦门大学化学系)

关键词 铬分析 化学发光 海水中铬

前 言

铬化学发光分析法已见报道^[1,8],亦曾直接应用于海水试样分析^[8]。本文针对海水组分 的特点,对天然海水中痕量铬的化学发光条件作了具体探讨. 痕量Cr(Ⅱ)在碱性介质中, 对 H_2O_2 氧化鲁米诺 (Luminol)反应具有催化作用,同时发出425 nm波长的 光,强度 与 Cr (I)的含量呈良好线性关系. 经深入试验表明,海水的氯度在本方法所采用的H₂O₂-鲁米 诺发光体系中,对Cr(Ⅰ)的催化发光值有一定的增强作用;而海水中Mg²+对发光值却有 较强烈的抑制作用,因此,只要用适量碳酸钠进行处理,沉淀过滤后残留在试液 中 的 少 量 Mg²*, 将补偿一定氯度对Cr(Ⅱ)发光强度的影响,消除干扰,提高分析方法的选择性、 应用连续进样的流动系统智能化化学发光仪进行测定,方法简便快速,线性范围宽,检测限 可达0.1(×10⁻⁸), 以原子吸收光谱法、催化极谱法与本方法同时测定天然海水 中 痕量总 铬量, 三者结果相当符合、

实验方法

1.1 主要仪器与试剂

1.1.1 主要仪器

HF-1型智能化学发光测定仪(厦门大学化学系),821型酸度计。

1.1.2 主要试剂

鲁米诺试剂(0.01 mol/dm3): 准确称取0.177 2g鲁米诺(进口, 97%纯度)溶于重蒸 水中,用0.05 mol/dm³KOH调至pH≈8,定容到100cm³.

Cr(■)标准溶液(1.00 mmol/dm³). 准确称取0.2002 gCr(NO₃)s·9H₂O溶于重蒸 水中定容为500cm3.

NaHCO₃-KOH缓冲溶液 (pH=11.0); EDTA (0.10 mol/dm³); 5% 盐酸羟胺; 0.5%Na₂SO₃; 10%Na₂CO₃; 3%H₂O₂. 以上溶液均用二级试剂以重蒸水配制.

本文于1989-12-24收到,修改稿于1993-05-27收到.

132 海洋学报 16卷

1.2 分析方法

移取1.50 cm³ 鲁米诺溶液, 25 cm³ EDTA和250 cm³ NaHCO₈-KOH缓冲溶液于500 cm³ 容量瓶中,定容后摇匀,作为发光试剂.将此试剂倾入干燥洁净的贮备瓶中,将进液管连接发光仪的混合槽.

准确移取待测水样 $5 \text{ cm}^3 \sim 10 \text{ cm}^3$ 置于 50 cm^3 烧杯中,加入 30 cm^3 重蒸水,在酸度计上调至pH=4.0. 移入 50 cm^3 容量瓶中,滴入 $0.5 \text{ cm}^3 3 \% H_2 O_2$,摇匀后定容,以进液管连通发光仪上混合槽连管.

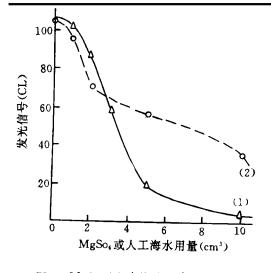
根据发光值大小调好发光仪灵敏度,从发光仪的微机键盘上输入采样时间、进液时间及等待时间。用去离子水调零后,启动进液按钮,试样与发光试剂便自动流入混合槽内预混合并立即注入反应池,其发光值可从显示屏直接读出,或由微型打印机依次打印出数据⁽¹⁾,扣除空白值,从工作曲线上求得Cr(I)含量。

2 条件试验

2.1 发光介质条件试验

按分析方法,分别依次改变发光试剂中各组分的浓度。试验表明,当鲁米诺浓度为3.0× 10^{-5} mol/dm³时发光值最大,pH在10.5~11.0之间,发光强度较大且稳定,EDTA的浓度以 5×10^{-8} mol/dm³为宜,过多的EDTA将使发光值降低。3 % H_2O_2 溶液宜在测试的当天配制,加到50 cm³ 试液中的量以0.5~1.0 cm³ 为佳。

2.2 海水组分对发光值的影响


2.2.1 氯度的影响

取人工海水配制成不同氯度值的试液^[4],各加入一定含量的Cr(I)标准溶液,然后进行发光测定。扣除未加Cr(I)之前各试液的发光值。结果表明,氯度对Cr(I)催化发光有一定的增强作用。当试液中Cr(I)浓度低于 $I\times 10^{-7}$ mol/dm³时,其影响随Cr(I)含量的减少而越加明显。

2.2.2 Ca2+及Mg2+的影响

 Ca^{2+} 及 Mg^{2+} 对发光值有抑制作用,海水中的 Ca^{2+} 在本方法条件下不起干扰,但 Mg^{2+} 仍有较强烈的抑制效应(图1).

基于上述原因,海水中铬的发光测定未见报道。文献[2]曾提及采用稀释或扣除空白法消除影响,但未作实际分析。本文针对海水试样作了探讨。试验表明,只要在10 cm⁸海水中加入2 cm⁸10 % Na₂CO₃,定容至100 cm⁸,摇匀后静置。即可取上层澄清液5.0~10.0 cm⁸作为待测水样,并按分析方法进行测定,得到满意结果。试液中残留Mg²⁺与海水中Cl⁻共存,恰好相互抵消各自对发光值的影响(图2)。

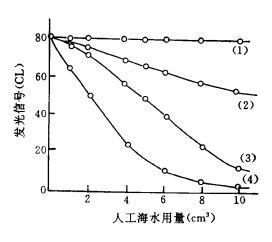
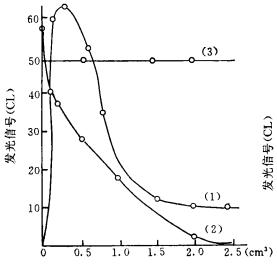


图 1 Mg²⁺对发光值的影响 (1)MgSO₄溶液(6.432 g/dm³) (2)人工海水。


图 2 不同Na₂CO₃用量处理的效果 (1)不加Na₂CO₃; (2)(3)(4)分别加入10% Na₂CO₃ 0.5cm³、1.0cm³、2.0cm³

2.2.3 微量金属离子的影响

据文献报道,过渡金属元素等20多种离子可能干扰化学发光,但在本体系中,这些金属离子由于形成碳酸盐沉淀或被EDTA络合,不干扰Cr(Ⅱ)的测定。海水中的有关金属离子,本来就小于Cr(Ⅱ)含量,不会产生影响。其他阴离子不干扰测定。

2.3 Cr(VI)的测定

在鲁米诺- H_2O_2 体系中Cr(VI)不起催化发光作用。为此,曾用盐酸羟胺及 Na_2SO_3 分别作为还原剂,将Cr(VI)还原为Cr(II)进行发光测定。在海水中扣除 原来Cr(II)含

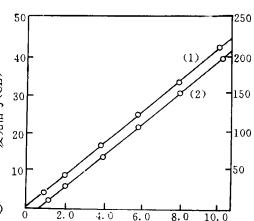


图 3 还原剂对铬发光体系(鲁米诺-H₂O₂)的影响 (1)(2)5%盐酸羟胺用量(cm³) (3)0.5%Na₂SO₃用量(cm³)

图4 Cr(Ⅱ)浓度与发光值关系(1)Cr(Ⅱ)浓度为1×10-8mol/dm³(2)Cr(Ⅱ)浓度为1×10-9mol/dm⁸

量,即可求得Cr(VI)含量。经试验发现这两种还原剂的效果迴异,由图 3 可 知,以 0.5% Na_2SO_3 作为还原剂为宜。图中曲线(1)系不含铬空白体系,盐酸羟胺对鲁米诺 - H_2O_2 体系开始有增强发光作用,随后发光值又逐渐降低。

2.4 Cr(Ⅱ)浓度与化学发光信号(CL)的关系

用人工海水配制不同浓度Cr(I) 试液,按上述分析方法进行测 定,在 Cr(I) 浓 度 $1\times10^{-6}\sim0.5\times10^{-8}$ mol/dm³范围内与发光信号(CL)呈良好的线性关系(图4).

3 结果与讨论

3.1 水样中Cr(Ⅱ)与Cr(Ⅵ)的测定

水样用10%Na₂CO₃沉淀后,定容、过滤,按上述分析方法进行平行试验,结果列于 表 1. 另将各水样以0.5%Na₂CO₃作为还原剂,分别加入1 cm³还原剂后,充分摇匀并调节溶液 pH=4.0. 按测定Cr(\blacksquare)相同方法求出结果,扣除相应的Cr(\blacksquare)即得到Cr(\N)含量,结果列于表2.

表 1 天然海水中Cr(Ⅲ)分析结果

(单位: ng/cm³)

海水*		测	定	次	序		平均值及标准偏差	加入标准	测得含量	回收率(%)
I	0.31	0.30	0.33	0.27	0.32	0.28	0.30±0.023	0.50	0.78	93
I	0.15	0.13	0.13	0.14	0.15	0.15	0.14 ± 0.010	0.20	0.35	102
I	0.42	0.44	0.40	0.42	0.44	0.40	0.42±0.018	0.50	0.94	102

[•] 海水水样取自厦门岛西海域近岸.

表2 天 然海水中Cr(Ⅵ)分析结果

(单位: ng/cm3)

海水		测	定	次	序		平均值及标准偏差	加入标准	测得含量	回收率(%)
I	0.52	0.49	0.48	0.54	0.52	0.53	0.51±0.024	0.50	0.98	94
I	0.40	0.39	0.39	0.42	0.40	0.40	0.40±0.011	0.50	0.90	100
I	0.98	1.00	1.00	1.00	1.02	1.00	1.00±0.013	0.50	1.48	98

在测定的水样中,分别加入Cr(NI)标准溶液,同法进行回收试验.结果表明对天然海水分析的精密度和回收率均符合痕量测定的要求。

3.2 海水中可溶态总铬测定

各取500 cm³过滤海水于聚四氟乙烯烧杯中,加入2 mol/dm³HClQ2 mol/dm³HClQ4各1 cm³. 煮沸5 min,冷却后以NaOH溶液调至中性.加入2 cm³10 %Na2CO3沉淀后,定容至100 cm³.摇匀,放置片刻,取上层澄清液5.0 cm³,按上述分析Cr(VI)的步骤进行测定.取同一试液分别以原子吸收光谱法及催化极谱法作对照试验,结果列于表3.

	表 3 海水中可溶态总铅	(单位: ng/cm³)		
海水编号	原子吸收光谱法	催化极谱法	化学发光法	
Ţ	1.68	1.60	1.64	
1	4.09	4.04	3.94	
I	1.28	1.22	1.24	
.	5.00	4.93	4.98	
T	2.52	2.46	2.46	
-	9.02	9.00	9.02	

以上 3 种分析方法测定总铬的结果相当符合,说明本方法单独测 定 Cr(I),或 选 用 Na_2SO_3 为还原剂测定Cr(I),在实际海水应用中均可得到较理想的结果。

参考文献

- 1 张 帆等. 水体中价态铬的化学发光测定. 中国环境科学, 1989, 9(1): 75~79
- 2 王尊本等.化学发光法测定镀铬废液及自来水中Cr(Ⅱ).厦门大学学报(自然科学版),1989,28(4):433~435
- 3 Chang C A and H P Howard. Determination of trivalent chromium in sea water by chemiluminescence. Anal. Chem., 1980, 52, 1264
- 4 陈国珍,海水分析化学,北京,科学出版社,1965,399