<u>March 2010</u>

305~ 310

研究论文

DOI 10 3724/SP. J 1123 2010 00305

高效液相色谱法手性分离联萘二酚苯甲酸酯对映体

王丽莉, 徐小静, 陈贵阳, 阮源萍^{*} (厦门大学化学化工学院化学系,分析化学重点实验室, 福建 厦门 361005)

摘要:采用 Chirex (S)-LEU & (S)-NEA、Chiralcel OD-H和 Chiralpak AD-H手性色谱柱直接拆分了 2['] 羟基-1, 1[']-联萘-2-苯甲酸酯 (HBNB)、1, 1[']-联萘-2, 2[']-二苯甲酸酯 (BNDB)和 2[']-甲氧基-1, 1[']-联萘-2-苯甲酸酯 (MBNB)对映 体。分别考察了流动相组成、柱温和化合物结构对手性分离的影响。结果表明:3对联萘二酚苯甲酸酯对映体在 Chiralpak AD-H柱上的拆分效果最好。当采用正己烷 /异丙醇 (40/60, v/v)为流动相时,HBNB、BNDB和 MBNB 对映体的分离因子 (a)和分离度 (R_s)分别为 1.76, 1.74, 1.40和 6.47, 7.81, 4.75。对比联萘二酚 (BN)的分离,从 联萘分子中 2-位 取代基、对映体出峰顺序和热力学参数等方面探讨了相关手性分离机理。 关键词:高效液相色谱法;对映体分离;手性固定相;联萘二酚苯甲酸酯 中图分类号: O658 文献标识码:A 文章编号: 1000-8713(2010)03-0305-06

Enantioseparation of 1, 1[']-bi-2-naphthol benzoates using high performance liquid chromatography

WANG Lili, XU Xiaojing CHEN Guiyang, RUAN Yuanping

(Departm ent of Chem istry, College of Chem istry and Chem ical Engineering, Xiam en University, Key Laboratory of Analytical Chem istry, Xiam en *361005*, China)

Abstract The enantioseparations of 2'-hydroxy-1, 1'-binaphthyl-2-yl benzoate (HBNB), 1, 1'binaphthyl-2, 2'-diyl dibenzoate (BNDB) and 2'-methoxy-1, 1'-binaphthyl-2-yl benzoate (MB-NB) were studied on Chirex (S)-LEU & (S)-NEA, cellulose tris(3, 5-dimethylphenylcarbamate) (Chiralcel OD-H) and anybse tris(3, 5-dimethylphenyl- carbam ate) (Chiralpak AD-H) colmns, respectively, using high performance liquid chromatography. The effects of mobile phase, column temperature and compound structures on the enantioseparations were discussed The Chiralpak AD-H exhibited stronger capability of enantioseparation in comparison with those of Chirex (S)-LEU & (S)-NEA and Chiralcel OD-H for 1, 1'-bi-2-naphthol benzoates When using the mobile phase of n-hexane/2-propanol (40/60, v/v), the chiral selectivities of HBNB, BNDB and MBNB were 1.76, 1.74, and 1.40, respectively. Moreover, in comparison with that of 1, 1'-bi-2-naphthol (BN), the mechanism s of the enantioseparation of 1, 1'bi-2-naphthol benzoates, related to the substituted groups at 2-position, the elution orders and thermodynamic parameters were also discussed

Keywords high performance liquid chrom atography (HPLC); enantioseparation, chiral stationary phase, 1, 1'-bi-2-naphthol benzoates

1, 1[′]-联萘-2, 2[′]-二酚 (联萘二酚, BN)及其衍生物是一类典型的 C₂轴不对称化合物, 它们具有独特的立体化学结构, 在手性配体、手性诱导剂和手性催化剂以及不对称合成 上得到了广泛应用^[1]。在分析测试中, 这类化合物还用于手性拆分剂^[2]、手性

固定相^[3]和手性分子识别传感器^[4]等研究。其中, 2-取代联萘二酚衍生物不仅是联萘二酚进行 3,3[']-位取代时的关键中间产物^[5],也是某些不对称反应 的特殊试剂,如联萘二酚芳酯是一类重要的二级醇 不对称酰化试剂^[6]。因此,开展联萘对映体的色谱

 ^{*} 通讯联系人: 阮源萍, 教授. Tel (0592)2181521, E-mail ypruan@ xmu edu cn 基金项目: 国家基础科学人才培养基金项目 (No J0630429).
 收稿日期: 2009-08-20

^{© 1994-2013} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

谱

拆分研究,不仅可以准确测定它们的对映体纯度,而 且对探讨相关的手性色谱拆分机理也有重要的参考 意义。

1, 1[']-联萘化合物的手性分离分析方法有高效 液相色谱法 (HPLC)^[7-13]和毛细管电泳法^[14]等, 其 中以联萘二酚及其某些衍生物对映体的手性高效液 相色谱法报道最多, 如 Pirkle手性柱^[7,8]、多糖类衍 生物手性柱 (Chiralcel OJ^[9]、Chiralcel OD^[9-11]和 Chiralpak AD^[12])等被用于联萘二酚及其某些衍生 物对映体的分离。但对于联萘二酚苯甲酸酯对映体 的色谱分析尚未见报道。

本文分别采用 Chirex (S)-LEU & (S)-NEA、 ChiralcelOD-H和 Chiralpak AD-H 3种手性色谱柱 对 3对联萘二酚苯甲酸酯对映体进行分离,研究了 它们的色谱拆分行为,并与联萘二酚对比,从 BN分 子中 2-位 取代基、对映体出峰顺序和温度效应等方 面探讨了色谱拆分过程的手性识别机理。

1 实验部分

1.1 仪器与试剂

日本岛津公司高效液相色谱仪,包括 LC-10ATVP 高压梯度泵、SPD-M 10AVP 二极管阵列检 测器、CTO-10ASVP 柱温箱、Rheodyne 7725 i进样 阀、CLASS-VP色谱工作站。美国 Phenom enex公 司的 Pirkle脲型手性柱 (Chirex (S)-LEU & (S)-NEA, 250 mm × 4.0 mm)。日本 Daicel公司的纤 维素-三 (3 5-二甲基苯基氨基甲酸酯)手性柱 (Chiracle 10D-H, 250 mm × 4.6 mm, 5 μ m)和直 链淀粉-三 (3 5-二甲基苯基氨基甲酸酯)手性柱 (Chiralpak AD-H, 250 mm × 4.6 mm, 5 μ m),均 带 10 mm保护柱。薄层色谱硅胶板 (烟台市芝罘黄 务硅胶开发试验厂)。日本 Jasco 公司的 J-810型 圆二色光谱仪。

正己烷、乙醇、异丙醇均为国产分析纯试剂,重 蒸后使用。R-联萘二酚(R-BN)(纯度 > 9%)购自 江苏无锡必胜化工有限公司。

1.2 联萘二酚苯甲酸酯的制备

BN、2[']羟基-1,1[']联萘-2苯甲酸酯(HBNB)、 1,1[']-联萘-2,2[']-二苯甲酸酯(BNDB)和2[']-甲氧基-1,1[']-联萘-2-苯甲酸酯(MBNB)的结构如图1所示。 外消旋化合物由厦门大学化学化工学院陈安齐教授 提供,R-HBNB和R-BNDB标准样品由R-BN和苯 甲酰氯反应合成,所有样品均经硅胶柱纯化、红外光 谱(R)和核磁共振氢谱(¹H NMR)确认化学结构。 单一的。MBNB对映体采用_Chira bak_AD-H 柱分。 离, 正己烷 /乙醇 (40/60, v/v)流动相洗脱进行微量 制备, 并对其乙醇溶液进行圆二色光谱表征 (见图 2), 其中在 230 m 处, (+)-MBNB呈正的 Cotton 效应, 而 (-)-MBNB呈负的 Cotton效应, 对应的圆 二色光谱曲线呈现镜像对称, 表明它们是一对对映 体。硅胶薄层色谱实验 (展开剂为石油醚-乙酸乙 酯, 10:1, v/v)测得上述 4个化合物的 R_f值分别为 0.17, 0.33, 0.51和 0.53, 表明它们的极性大小为 BN > HBNB > BNDB~ MBNB,

图 1 联萘二酚和联萘二酚苯甲酸酯的化学结构 Fig 1 Structures of 1, 1[´]-bi-2-naphtholand 1, 1[´]-bi-2-naphtholbenzoates

BN: 1, 1'-bi-2-naphtho; HBNB: 2'-hydroxy-1, 1'-binaphthyl-2-yl benzoate; BNDB: 1, 1'- binaphthyl-2, 2'- diyl dibenzoate; MBNB: 2'-m ethoxy-1, 1'-binaphthyl-2-yl benzoate

1.3 色谱条件

Chirex (S)-LEU & (S)-NEA手性柱分离的色 谱条件:分别采用三元流动相 (正己烷 /1, 2-二氯乙 烷 /乙醇)和二元流动相 (正己烷 /乙醇), 流速 1.0 mL/m in,以乙酸乙酯测定死时间。柱温 30℃,进样 量 20 µL,检测波长 275 nm。所有流动相经 0.45 µm微孔膜过滤,超声波脱气后使用。//

• © 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. "http://www.cnki.net

Chiralcel OD-H 或 Chiralpak AD-H 手性柱分 离的色谱条件:采用二元流动相 (正己烷 /乙醇或异 丙醇), 流速 0.75 mL/m in, 以不保留的溶剂峰确定 死时间。其他同 Chirex (S)-LEU & (S)-NEA手性 柱分离的色谱条件。

2 结果与讨论

2 1 Chirex (S)-LEU & (S)-NEA 柱的分离

当采用正己烷 /1, 2-二氯乙烷 /乙醇三元流动相时,联萘二酚在 Chirex (S)-LEU & (S)-NEA 手性柱^[7]上得到了很好的分离;改用正己烷 /乙醇二元流动相时,联萘二酚也很容易达到基线分离。在此基础上,分别采用正己烷 /1, 2-二氯乙烷 /乙醇三元

流动相和正己烷 /乙醇二元流动相两种流动相体系 考察联萘二酚苯甲酸酯对映体的拆分行为,结果见 表 1。可见采用正己烷 /1, 2-二氯乙烷 /乙醇三元流 动相的拆分效果略好于正己烷 /乙醇二元流动相,联 萘化合物的保留顺序为 BN> HBNB> BNDB, 拆分 能力为 HBNB> BN > BNDB, 降低流动相中乙醇 (或 1, 2-二氯乙烷)的比例,虽然可以延长保留时 间,但 BNDB还是难以达到基线分离。这表明溶质 的萘羟基不仅对保留作用贡献大,而且是重要的手 性识别位点。采用单一对映体标准样品对照, HB-NB和 BNDB的对映体出峰顺序正好与 BN 相反, 均是 S-构型对映体先出峰。图 3给出了部分联萘 化合物手性拆分的色谱图。

表 1 联萘二酚及其衍生物对映体在 Chirex (S)-LEU & (S)-NEA 柱上拆分的色谱数据

Table 1 Data of enantipseparations of 1, 1'-bi-2-naph thol and its derivatives on a Chirex (S)-LEU & (S)-NEA column

Solute	${ m M~PI}^{-*}$					M PII *				
	Cam position	k 1	k ₂	α	R s	C am position	k 1	k 2	α	R s
BN	82/16/2	1. 19	1 56	1 31	4 26	95/5	1 44	1 80	1 25	2. 93
HBNB	94/6/0 05	4.49	8 26	1 84	6 00	95/5	0 85	1 09	1 28	2.96
BNDB	94/6/0 05	2 70	3 02	1 12	1 11	95/5	0 51	0 51	1 00	-
MBNB	94/6/0 05	3. 09	3 09	1 00	-	95/5	0 47	0 47	1 00	-

* MP (mobile phase): I. n-hexane/l, 2-dichloroe thane/ethanol (v/v/v); II. n-hexane/e thanol (v/v).

Mobile phases n-hexane/l, 2-dichloroethane/ethanol (v/v/v): a 82/16/2 for BN b 94/6/0.05 for HBNB, c 94/6/0.05 for BNDB n-hexane/ethanol (v/v): d 95/5 for BN; e 95/5 for HBNB

2 2 Chiralcel OD-H 柱的分离

对于纤维素手性固定相,文献上多采用 Chiralcel OJ手性柱拆分联萘二酚^[9]。若采用正己烷 /乙 醇 (或异丙醇)流动相,联萘二酚在 Chiralcel OD-H 柱上难于达到良好的基线分离^[10]。表 2给出联萘 二酚苯甲酸酯对映体在 Chiralcel OD-H 柱上的拆 分结果。以正己烷 /乙醇 (85/15, v/v)流动相为例, 联萘化合物的保留顺序为: BN> HBNB> BNDB,说 明萘羟基与 Chiralcel OD-H 柱之间的氢键是最主 要的作用力^[10];羟基中氢原子被苯甲酰基取代,导 致氢键能力减弱,使保留时间缩短。就分离效果而 言 HPNP 要好于 PN 改用正司牌 /导西醇 (00/ 10, v/v)流动相, 其保留顺序不变, 但保留时间明显 延长, 而 HBNB的分离效果反而变差。这说明除了 氢键作用外, 偶极-偶极、π--π电子作用和手性固定 相螺旋沟槽的包夹作用也会影响联萘对映体的手性 拆分过程^[15]。在正己烷 /乙醇 (95/5, v/v)为流动 相的条件下, BNDB和 MBNB均有一定的拆分效 果, 但仍未能达到基线分离; 改用正己烷 /异丙醇 (95/5, v/v)为流动相, MBNB的拆分效果得到明 显的改善。无论采用乙醇还是异丙醇作为极性调节 剂, 联萘 对映体的出峰顺序均不会变化, 都是 R--BN, R-HBNB, S-BNDB和 (+)-MBNB 对映体先流

言, HBNB要好于 BN、改用正己烷/异丙醇 (90/ 出 (见图 4)。

色

谱

二酚和联萘二酚苯甲酸酯对映体在 Chiralcel OD-H 柱上拆分的色谱数据

Table 2 Data of enantioseparations of 1, 1-bi2-naph tho l and 1, 1-bi2-naph tho l benzoates on a Chiralce IOD-H column										
Solute	M PI *					M PII *				
	Cam position	k 1	k ₂	α	R s	Com position	k 1	k 2	α	R s
BN	85 /15	1. 45	1 64	1 13	1 47	90 /10	3 54	4 08	1 15	1.51
HBNB	85 /15	0.83	1 08	1 30	2 43	90 /10	1 51	1 68	1.11	1. 23
BNDB	85 /15	0.72	0 72	1 00	-	90/10	1 19	1 19	1 00	-
	95 /5	1.15	1 22	1 06	0 66	95 /5	1 68	1 68	1 00	-
MBNB	85 /15	0. 68	0 68	1 00	-	90/10	1 13	1 31	1 16	1. 69
	95 /5	1.11	1 19	1 07	0 84	95 /5	1 60	1 90	1 19	2.18

95 /5 1. 11 1 19 1 07 0 84 95 /5 1 6 * MP (mobile phases): I. n-hexane/ethanol (v/v); II. n-hexane/2-propanol (v/v).

图 4 联萘二酚和联萘二酚苯甲酸酯对映体在 Chiralcel OD-H 柱上拆分的色谱图

Fig 4 Chrom atogram s of racem ic 1, 1'-bi-2-naphthol and 1, 1'-bi-2-naphthol benzoates on a Chiralcel OD-H column Mobile phases n-hexane/ethanol (v/v): a 85/15 for BN, b 85/15 for HBNB; c 95/5 for BNDB n-hexane/2-propanol (v/v): d 95/5 for MBNB

23 Chira lpak AD-H 柱的分离

Chiralpak AD可用于 BN^[12]和某些 3, 3[']联萘 二酚酸酯等对映体^[10]的拆分。本文分别采用正己 烷 /乙醇和正己烷 异丙醇流动相体系,考察联萘二 酚苯甲酸酯对映体在 Chiralpak AD-H 柱的色谱拆 分行为。结果表明它们在 Chiralpak AD-H 柱上均 能得到很好的基线拆分。

表 2 联萘

图 5给出流动相中乙醇或异丙醇含量对 4对联 萘化合物的 k_2 和 α 的影响。随着醇溶剂含量的增 加,联萘化合物的保留时间缩短;除 BNDB外, α 值 变化不大。 BN、HBNB和 MBNB的对映体出峰顺 序保持不变,均是 R-BN, R-HBNB和 (+)-MBNB 先流出。值得注意的是:与 Chira bel OD-H柱分离 不同, BNDB在 Chira bak AD-H柱上的保留因子和 手性分离因子明显大于 BN和 HBNB;当采用正己 烷 异丙醇 (40/60, v/v)为流动相时, BNDB的 k_N k₂和 α 分别为 3.17(S), 5.52 (R)和 1.74, 而以正 己烷 乙醇 (40/60, v/v)流动相时, k_Nk₂和 α 分别 为 2.41(R), 11.96(S)和 4.96, 可见, 极性调节剂 由异丙醇改为乙醇时, BNDB在 Chira bak AD-H柱 上的拆分过程发生了一些戏剧性变化:对映体出峰 顺序发生逆转, k_R 明显减小, 而 k_s 明显增大, α 高达

图 5 醇含量对联萘二酚和联萘二酚苯甲酸酯对映体的保留因子 (k₂)和分离因子 (α)的影响 Fig 5 In fluences of a boho is in mobile phases on retention factor (k₂) and separation factor (α) of racem ir 1, 1'-bi-2-naphtho l and 1, 1'-bi-2-naph tho l ben zoates

Mobile phases a and b n-hexane/ethano; c and d n-hexane/2-propanol

© 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

4.96, 这些实验现象还难以用溶质和醇溶剂的极性 解释,可能是由于醇调节剂改变 Chiralpak AD-H手 性固定相的螺旋沟槽大小和立体环境^[15,16], 引起色 谱保留机理和手性识别位点发生变化所致。图 6给 出了联萘对映体在 Chiralpak AD-H柱上的拆分色 谱图。

24 柱温对手性分离的影响

分别在 15, 20, 25, 30和 35 ℃下考察了联萘 二酚和联萘二酚苯甲酸酯对映体在 Chiralpak AD-H柱上拆分的温度效应。结果表明, 柱温 (T)对它 们的手性分离的影响不尽相同。随着柱温的升高, 对映体的 k 值均减小, 但 α和 R_s却有不同的变化。 用 h α对 1/T 作图得到的 Van't Hoff曲线呈现良 好的线性关系 (r > 0.99), 由直线斜率和截距计算 手性拆分过程的热力学参数 $\Delta(\Delta H^{\circ})$ 和 $\Delta(\Delta S^{\circ})$, 结果列于表 3.

采用正己烷 /乙醇 (40/60, v/v)作流动相,除 HBNB外,其他 3对对映体的 $\Delta(\Delta H^{\circ})$ 和 $\Delta(\Delta S^{\circ})$ 均 为负值,说明手性拆分过程为焓驱动,柱温升高, α 和 R_s值下降。其中, BNDB 的 $\Delta(\Delta H^{\circ})$ 最大,表明 柱温对其 α 值影响最为明显,柱温从 15 °C升至 35 C, α值由 6.45 变为 4.68 减少 27%; HBNB 的 $\Delta(\Delta H^{0})$ 和 $\Delta(\Delta S^{0})$ 均为正值, 说明手性拆分过程为 熵驱动, α和 R_s值均随着柱温的升高而略有增大。 然而, 采用正己烷 /异丙醇 (40/60, v/v)作流动相, BN 的 α值随着柱温的升高缓慢下降, $\Delta(\Delta H^{0})$ 和 $\Delta(\Delta S^{0})$ 值均为负值, 表明分离过程仍然是焓控过 程; HBNB和 MBNB的 α值随着柱温的升高缓慢下 降, $\Delta(\Delta H^{0})$ 和 $\Delta(\Delta S^{0})$ 值一负一正, 说明焓和熵对 手性拆分均有贡献; BNDB的 $\Delta(\Delta H^{0})$ 和 $\Delta(\Delta S^{0})$ 均为正值, 说明手性拆分过程为熵驱动, α值随着柱 温的升高明显减小, 柱温从 15 C升至 35 C, α值 由 1.51变为 1.85, 增加 22%。可见, Chiralpak AD– H柱的温度效应是比较复杂的, 手性拆分驱动形式 不仅与溶质的性质有关, 而且与醇类极性调节剂的 性质有关^[17,18]。

	表 3 联萘二酚和联萘二	_酚苯甲酸酯对映体在(Chiralpak AD-H 柱上的表观热力字参数	
Table 3	Thermodynam ic parameters for 1	1'-bi-2-naphtholand	1, 1 [′] -bi-2-naphtholbenzoates on a Chiral	pak AD-H column

Solute	n –H exan	ue/ethanol(40/60, v/v)	n –Hexan e/2–propanol (40/60, v/v)			
	$\Delta (\Delta H^0) / (kJ/mol)$	$\Delta(\Delta S^{0}) / (J/(K \bullet mol))$	r	$\Delta (\Delta H^0) / (kJ/mol)$	$\Delta(\Delta S^{0}) / (J/(K \bullet mol))$	r
BN	- 1. 25	- 2 16	0 991	- 2.49	- 4 99	0 994
HBNB	0. 75	4 49	0 991	- 0. 75	2 24	0 997
BNDB	- 12. 72	- 28 52	0 994	7.48	29 51	0. 995
MBNB)4_	2013 Chifa ⁷⁴ cader	nic Journal ⁹ E ⁹⁸ ectronic	Publishin	g House - Alfoights re	served. http://www.	0k990e

3 结论

对于 2[']-羟基-1, 1[']-联萘-2-苯甲酸酯、1, 1[']-联萘-2, 2[']-二苯甲酸酯和 2[']-甲氧基-1, 1[']-联萘-2-苯甲酸 酯对映体,在 Chiralpak AD-H手性柱上呈现最好的 拆分效果。采用正己烷 /乙醇或正己烷 /异丙醇流动 相,它们均能得到很好的基线分离。

在 Chirex (S)-LEU & (S)-NEA 手性柱上,联 萘对映体中的萘羟基对其手性拆分有重要的影响; 在 Chiralcel OD-H手性柱上,除了萘羟基的氢键作 用外,手性固定相的螺旋沟槽的包夹作用也会影响 联萘对映体的手性拆分;在 Chiralpak AD-H手性柱 上,改变醇类调节剂可能会影响联萘对映体的出峰 顺序和手性拆分驱动形式。

参考文献:

- [1] Brunel J.M. Chem Rey, 2007, 107. 1
- [2] CuiX, FuFM, ZhuJ, et al Chinese Journal of Analytical Chemistry (崔欣, 付芳敏, 朱槿, 等. 分析化学), 2002, 30 (12): 1494
- [3] LiuXD, Ding JY, GaoLX Chinese Journal of Chromatography (刘旭东,丁金英,高连勋. 色谱), 2005, 23(2): 146
- [4] Beer G, Runack K, Daub J Chem Commun, 2001(12): 1138

- [5] GuoQS, LuYN, LiuB, et al JOrganom et Chem, 2006, 691 (6): 1282
- [6] Matsubara J Otsubo K, Kawano Y, et al Heterocycles, 2000, 52(1): 81
- [7] Ruan Y P, Ao X P, Chen A Q, et al Journal of Xiam en University Natural Science (阮源萍, 敖小平, 陈安齐, 等. 厦 门大学学报:自然科学版), 2002, 41(2): 217
- [8] WengW, Fan W J Zhu Q, et al Journal of Instrumental Analysis (翁文,范文静,朱钦,等. 分析测试学报), 2008, 27(7): 721
- [9] Nakajina M, Miyoshi J Kanayama K, et al J Org Chen, 1999, 64 2264
- [10] LiCP, Yang HL, LiJH, etal Chinese Journal of Analytical Chemistry (李成平,杨会来,李景华,等.分析化学), 2006, 34(8): 1133
- [11] Loukotková L, Rambousková M, Bosáková Z, et al. Chirality, 2008, 20: 900
- $[\,12]$ $\,$ M eca L, $\,$ R eha D, $\,$ H av las Z $\,$ J O rg Chem, $\,2003$ $\,68:\,\,5677$
- [13] LiLH, LiuL, LuoY, et al Chinese Journal of Chrom atography (李丽虹,刘岚,罗勇,等. 色谱), 2006, 24(6): 574
- [14] MofaddelN, Krajian H, Villem in D, et al. J Chromatogr A, 2008, 1211: 142
- [15] Wang T, Chen Y W, Vailaya A J Chromatogr A, 2000, 902 345
- [16] Hehry R, Wang T. J Sep Sci 2005, 28 189
- [17] W ang F, O' Brien T, Dow ling T, et al. J Chrom atogr A, 2002, 958: 69
- [18] WengW, Yao B X, Chen X Q, et al. Progress in Chemistry (翁文,姚碧霞,陈秀琴,等.化学进展), 2006, 18(7/8): 1056

色

谱