

广义加权算术平均组合预测技术研究

王应明 罗英

(厦门大学系 统科学系 361005)

本文研究组合预测问题, 提出了一类具有广 泛代表性的广义加权算术平均组合预测技 术。新的组合预测技术比传统的组合预测技 术更具有优越性,能取得更好的组合预测效 果。

关键词 组合预测 参数估计 算术平均数 二次 规划

1 引言

组合预测一直受到国内外预测界的广泛重视 针 对不同预测问题的实际情况, 组合预测可以选用多种 不同的形式, 如加权算术平均组合预测, 加权几何平 均组合预测、加权调和平均组合预测或其它非线性组 合预测等。对某一特定的预测问题而言。 人们自然希 望能够找到一种理想的组合形式, 以便能使组合预测 效果最优。但笔者在研究过程中发现. 最优的组合形 式并不是通过上述几种简单组合形式的对比分析就 能得到的。为此,需要提供一种系统的分析技术,这就 是本文所要介绍的广义加权算术平均组合预测技术。

2 广义加权算术平均组合预测模型及其参数估计

设某一预测问题在某一时段的实际值为 $v_t(t=$ $1, 2 \cdots, n$), 对此预测问题有 m 种可行的预测方法, 其 预测值或模型拟合值分别为 f_{ij} (t= 1, 2 ···, n; j=1 $2 \cdots , m$ 】又设 m 种预测方法的加权向量为 W = $(W_1, W_2, \cdots, W_m)^T$, 且满足归一化约束条件和非负约 束条件,即

$$e^T W = 1 \tag{1}$$

$$W \geqslant 0$$
 (2)

其中 $e^T = (1, 1, \dots, 1)$, 根据笔者在文献 [1] 导出的广 义加权算术平均法计算公式,令

$$\hat{y_i} = \sum_{j=1}^{m} W_j f_{ij}^p \sum_{j=1}^{m} W_j]^{1/p}$$

$$= \sum_{j=1}^{m} W_j f_{ij}^p)^{1/p}$$

* 收稿日期: 1997-10-03

$$(t=1,2,\cdots,n,\textbf{F},p\neq 0) \tag{3}$$

其中 v_t 为 m 种可行预测方法在 t时刻的广义加权算术 平均值, p 为非零可调参数, 对不同的预测问题可取 不同的数值。

对公式 (3), 若令 p = 1, 则有

$$\hat{y_i} = \sum_{i=1}^m W_i f_{ij} \tag{4}$$

若令 p = -1,则有

$$\hat{y_i} = 1 \sum_{i=1}^{m} \frac{W_i}{f_{ij}} \tag{5}$$

很显然, 公式 (4) 为简单加权算术平均组合预测 公式,公式(5)是简单加权调和平均组合预测公式。也 就是说,简单加权算术平均和调和平均组合预测公 式,仅是公式 (3) 取参数 $p=\pm 1$ 时的特例,因此,公 式 (3) 更具有一般性。事实上、对公式 (3)、若令 p=2或 1/2还可导出另外两种常见的组合预测形式, 即

$$\hat{y_i} = \sum_{i=1}^{m} W_{ij} f_{ij}^2$$
 (6)

或

$$\hat{y_t} = \sum_{j=1}^m W_j - \overline{f_{tj}})^2$$
 (7)

公式 (6)和公式(7)分别称为简单加权平方和平 均组合预测公式和简单加权平方根和平均组合预测 公式。可见,模型(3)具有广泛的代表性,此模型即为 本文所给出的广义加权算术平均组合预测模型。

为便于对模型(3)进行组合权系数的估计,将模 型(3)转变为:

$$\hat{y_t^p} = \sum_{i=1}^m W_j f_{ij}^p$$
 (8)

如果不考虑预测误差的存在,在理想的情况下应有下 式成立:

$$y_{t}^{p} = \sum_{i=1}^{m} W_{i} f_{ti}^{p}$$
 (9)

但实际上,由于预测误差的客观存在性和不可避

免性,(9)式在通常情况下是不成立的。为此,引入误 差项

$$X_{i}(p) = y_{t}^{p} - \hat{y_{t}^{p}}$$

$$= y_{t}^{p} - \sum_{j=1}^{m} W_{j} f_{ij}^{p}$$
(10)

$$\begin{cases} \widetilde{y}_{t}(p) = y_{t}^{p} \\ \widetilde{f}_{j}(p) = f_{j}^{p} \end{cases} (j = 1, 2, \dots, m)$$
 (11)

则 (10) 式用向量形式可表示为:

$$\mathbf{E}_{p} = \widetilde{Y}_{p} - \widetilde{F}_{p} W \tag{13}$$

其中
$$\mathbf{E}_p = (X_1(p), X_2(p), \dots, X_n(p))^T, Y_p = (\tilde{y}_1(p), \tilde{y}_2(p), \dots, \tilde{y}_n(p))^T, Y_p = (T_{ti}(p))_{ii \land mp}$$

很显然,误差总是愈小愈好,为此定义误差性能指标 为.

干是. 求解最优组合加权向量 W^* 等价于求解如 下最优化问题

$$\mathbf{m} \ \mathbf{in} \mathbf{J}_{p} = (\widetilde{Y}_{p} - \widetilde{F}_{p} W)^{T} (\widetilde{Y}_{p} - \widetilde{F}_{p} W)$$

$$\mathbf{s} \ \mathbf{t} \begin{cases} e^{T} W = 1 \\ W \geqslant 0 \end{cases}$$

$$(15)$$

$$W \geqslant 0$$
 (17)

显然, 这是一个二次规划问题。根据二次规划理论可 知. 该二次规划问题的最优解一定存在, 且其 K uhn-Tucker条件可表示为:

$$\begin{cases}
-\mathcal{F}_{p}^{T}(Y_{p} - \mathcal{F}_{p}W) - \lambda e - \overline{U} = 0 \\
e^{T}W = 1 \\
\widetilde{u}_{i}W_{i} = 0 \\
\end{cases} (18)$$
(19)
(20)

$$\widetilde{u}_i W_i = 0 \qquad (i = 1, 2 \cdots, m) \qquad (20)$$

$$W, \tilde{U} \geqslant 0$$
 (21)

式中 λ 为 与约束条件 $e^TW = 1$ 相对应的 L ag range乘 \mathcal{F} , $\mathcal{U} = (\widetilde{u}_1, \widetilde{u}_2, \cdots, \widetilde{u}_m)^T$ 为与加权向量 $\mathcal{W} = (\mathcal{W}_1, \mathcal{W}_2, \cdots, \widetilde{u}_m)^T$ $\dots, W_m)^T$ 相对应的 Kuhn- Tucker乘子, e = (1, 1, 1)..., 1) T 。由于 λ 无非负约束, 故令 λ= λ' – λ' , 且满足: $\lambda', \lambda'' \geqslant 0 \lambda' \cdot \lambda'' = 0$ 同时构造辅助线性规划模型 (A LP) 为:

$$m \, \inf \mathcal{J} = v \tag{22}$$

$$\begin{cases}
(\widetilde{F}_{p}^{T}\widetilde{F}_{p})W - \lambda'e + \lambda''e - \widetilde{U} = \widetilde{F}_{p}^{T}\widetilde{Y}_{p} \\
e^{T}W + v = 1
\end{cases}$$
(23)

s t
$$\langle W, \overline{v} \geqslant 0 \lambda', \lambda'', v \geqslant 0$$
 (25)

$$\lambda'$$
与 λ'' 及 \tilde{u}_i 与 W_i 不能同时为基变量 (26) ($i=1,2\cdots,m$)

解此辅助线性规划模型 (ALP), 即可得到广义加权 算术平均组合预测模型的最优组合加权向量 ₩*。设 定不同的模型参数 p, 可得到不同的最优组合加权向 量 ₩*,但其中必有一组能使组合预测效果最佳。最 优的模型参数 p 也可通过试探法或寻优的方法获得, 此处不再详述。

3 组合预测效果评价

为了选择最优模型参数 p, 必须制定一套切实可 行的指标,对组合预测效果进行综合评价。按照预测 效果评价原则和惯例,本文选择下列指标作为评判准

(1) 平方和误差

$$SSE = \sum_{t=1}^{n} (y_t - \hat{y_t})^2$$
 (27)

式中, γ_i 为预测事物实际观测值, γ_i 为预测值。

(2) 平均绝对误差

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y_i}|$$
 (28)

(3) 均方误差

$$MSE = \frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y_t})^2$$
 (29)

(4) 平均绝对百分比误差

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{y_t - y_t}{y_t} \right|$$
 (30)

(5) 均方百分比误差

$$MSPE = \frac{1}{n} \sum_{t=1}^{n} (\frac{y_t - \hat{y_t}}{y_t})^2$$
 (31)

4 组合预测应用举例

以文献 [2~4]所给预测实例为例进行广义加权 算术平均组合预测。原始数据如表 所示。广义加权算 术平均组合预测效果如表 2所示、表 2中的 p^* 为组合 预测效果最佳的模型参数。为便干比较分析。表 2中同 时给出了各单个预测方法及加权几何平均组合预测 的效果评价。

以例 1的评价效果可以看出,取得最佳预测效果 的模型组合形式, 既不是比较常见的简单加权几何平 均、简单加权算术平均 (p = 1) 和简单加权调和平均 (p = -1) 等形式, 也不是简单加权平方和平均 (p =2) 和简单加权平方根和 (p = 0.5) 等形式, 而是取 p= - 0 64时的广义加权算术平均组合形式。例 2和例 3的评价效果则表明, 仅就这两个实例而言, 简单加权 算术平均组合形式是预测模型的最佳组合形式,这也 是通过对模型参数 p 进行寻优而得出的结论。综合以 上分析可以看出,广义加权算术平均组合形式具有广 泛 的代表性、普遍性和适用性、能针对各种不同的预 测问题寻优确定模型的最佳组合形式, 从而能够有效 地提高预测精度,取得较好的预测效果。

表 1 预测实例原始数据简表

t		1	2	3	4	5	6	7	8	9	10	11	12
	<i>y</i> 1	14 9	18 6	22. 2	17. 6	19. 6	24	31 6	43. 7	37	47. 2		
例 1 ^[2]	f_{t1}	10	14. 9	23. 3	26 1	17. 5	20. 2	26 4	36. 8	52 5	38. 5		
	f 12	12	15 48	18 95	22 43	25. 9	29. 38	32 85	36 33	39 8	43 28		
	<i>y</i> _t	57. 0	65. 4	75. 4	82 5	92 8	102 7	119 5	143 8	169 7	201 0	251 2	
例 2[3]	f_{t1}	54 52	62 89	72 54	83 67	96 51	111. 32	128 41	148. 11	170 84	197. 06	227 31	
	f 12	64 68	64 74	68 72	76 61	88 42	104. 15	123 79	147. 35	174 82	206 21	241 51	
	y_t	11 49	13 06	15 34	20 58	23 28	26 46	27 33	34 22	40 19	53 37	77. 79	100 63
例 3[4]	f_{t1}	18 47	14 54	12 84	13 38	16 15	21. 16	28 40	37. 87	49 58	63 53	79 00	98 12
	f 12	10 03	11 23	15 24	18 67	27. 78	26. 36	29 67	27. 40	42 73	47. 36	71 00	109. 32

表 2 预测效果评价简表

			预测效果评价	指标	SSE	MAE	M SE	MAPE	M SPE
		/:	体预测	方法 (I)	520. 60	6 04	2 28	0 2251	0 0825
	144.16.001			方法 (II)	199. 76	4 11	1 41	0 1696	0 0599
		简单	加权几何平均	$W_1 = 0 2159$ $W_2 = 0 7841$	191. 35	3 97	1 38	0 1590	0 0561
	组合预测	广义加	$p^* = -0.64$	$W_1 = 0 1387$ $W_2 = 0 8613$	185. 69	3 93	1 36	0 1597	0 0562
例 1			p= - 1	W = 0 0393 $W_2 = 0 9607$	192 71	4 05	1 39	0 1663	0 0584
		权算	p= 0.5	$W_1 = 0 1910$ $W_2 = 0 8090$	193. 25	3 98	1 39	0 1605	0 0579
		术平均	p= 1	$W_1 = 0 1158$ $W_2 = 0 8842$	194. 16	4 05	1 39	0 1649	0 0579
		23)	p= 2	$W_{i} = 0$ $W = 1 0$	199. 76	4 11	1 41	0 1696	0 0599
		,	体预测	方法 (I)	795. 59	5 78	2 56	0 0440	0 0156
				方法 (II)	338 25	4 96	1 67	0 0474	0 0179
		简单	加权几何平均	$W_1 = 0 5652$ $W_2 = 0 4384$	449. 04	4 28	1 92	0 0334	0 0122
例 2	组	广义	p= - 1	$W_{1} = 0.7017$ $W_{2} = 0.2983$	536 54	4 53	2 11	0 0332	0 0126
	合预	加权	\mathcal{D}_{i} $p = 0.5$ $W_{i} = 0$		369. 85	4 48	1 75	0 0378	0 0129
	测	算术	p= 1 ^e	$W_1 = 0 1259$ $W_2 = 0 8741$	328 56	4 80	1 65	0 0443	0 0159
		平均	p= 2	$W_{i} = 0$ $W = 1 0$	338 25	4 96	1 67	0 0474	0 0179

(下转6顶)

表 2 预测循环表 (百万元)

表	3	总平均度变差、	季节度差表	(百万元

i Viji J	1	2	3	4	I	II	Ш	IV	Yii/I	1	2	3	4	u_i
1	3	1	2	5	5	3	4	7	1	3	1	2	5	- 3. 125
2	5	3	4	7	7	6	6	9	2	5	3	4	7	- 1. 125
3	7	6	6	9	9	8	8	11	3	7	6	6	9	1 125
4	9	8	8	11					4	9	8	8	11	3 125
5	y 5 1	y 5 2	y 5 3	y 5 4					v_{j}	0 125 -	1 275 -	0 875	2 125	M = 5.875

由命题 2 R = 8+ 11+ 11 2= 30 2 S = 3+ 6+ 8= 17, T = 91+ 11 2- 1= 101 2

所以:
$$\hat{y}_{5/2} = \frac{4R + 4S - T}{(4-1)(4-1)} = \frac{4 \times 30.2 + 4 \times 17 - 101.2}{9} = 9.73$$
(百万元)

同理可得: $\gamma_{5,3}$ = 10 9(百万元), $\gamma_{5,3}$ = 13 12(百万元).

方法三: 用简捷预测法, 即用命题 3与命题 4的结论预测该商场第五年各季销售额 (见表 3)

由命题 3知, y_{n+1} = $(nu_n - u_1)/(n-1)$, 所以 y_5 = $(4 \times 3 125 + 3 125)/3 = 5 208$

由命题 4可得:

$$y_{5,1}$$
 = 5 875+ 5 208+ 0 125= 11 20(百万元) $y_{5,2}$ = 5 875+ 5 208- 1 375= 9 741(百万元) $y_{5,3}$ = 5 875+ 5 208- 0 875= 10 21(百万元) $y_{5,4}$ = 5 875+ 5 208+ 2 215= 13 21(百万元)

从方法一至方法三的 3种预测结果来看, 所得结果基本一致, 其误差在 1% 以内。因此, 可认为 3种方法预测结果精确度相当, 其微小差异一般可归因于随机因素影响或计算中间误差。但不难发现, 方法二要比方法一简 单, 方法三则比方法二又要简单、方便得多。所以, 方法三即本文的命题 3与命题 4不失为预测季节变动序列的一种简捷方法。

参 考 文 献

- [1]李正龙. 渐进预测模型的 一种构造证法及应用. 1996安徽大学学术活动月论文选. 安徽大学出版社, 1996
- [2]潘介人. 宏观经济模型的解析. 上海交通大学出版社, 1995
- [3] 冯文权. 经济预测与决策技术 (修订本). 武汉大学出版社, 1994

(上接5颈)

续表 2

			预测效果评价	指标	SSE	MAE	M SE	MAPE	M SPE
			体 预测	方法 (I)	401. 56	4 88	1 67	0 1959	0 0731
			7个 7贝 7则	方法 (II)	245. 58	3 59	1 30	0 0998	0 0334
	组合预	简单	加权几何平均	$W_1 = 0 2617$ $W_2 = 0 7383$	117. 86	2 60	0 90	0 0737	0 0242
例 3		广义	p = - 1	$W_1 = 0 2473$ $W_2 = 0 7527$	126 06	2 67	0 94	0 0742	0 0250
		加权	p = 0 5	$W_1 = 0 3204$ $W_2 = 0 6796$	103. 36	2 44	0 85	0 0743	0 0247
	测	算术	$p = 1^*$	$W_1 = 0 4121$ $W_2 = 0 5879$	94 89	2 34	0 81	0 0791	0 0283
		平均	p = 2	$W_1 = 0 6007$ $W_2 = 0 3993$	130. 33	2 69	0 95	0 1052	0 0421

参 考 文 献

[1]王应明,傅国伟. 群组预测集结方法研究. 预测, 1993(3)

[2] 周传世, 罗国民. 加权几何平均组合预测模型及

其应用. 数理统计与管理, 1995(2)

[3]杨桂元, 唐小我, 马永开. 最优加权几何平均组合预测方法研究. 统计研究, 1996(2)

[4]孙庆凯.平均预测法的应用条件.预测,1985(2)