THEOREMS OF INTERVAL FUZZY SET AND ITS OPERATION RULES

Wu Shunxiang, Cao Da
(Department of Automation, Xiamen University, Xiamen, 361005, P.R. China)

Abstract

A stract: Although the concept of interval fuzzy set and its properties have been defined, its three theorems and their effectiveness are not proved. Therefore, the know ledge presentation and its operation rules of interval fuzzy set are studied firstly, and then the cut set of int erval fuzzy set is proposed. M oreover, the decomposition theorem, the representation theorem and the extension theorem of interval fuzzy set are presented. Finally, examples are given to demonstrate that the classical fuzzy set is a special case of interval fuzzy set and interval fuzzy set is an effective expansion of the classical fuzzy set-

Key words: interval fuzzy set; decomposition theorem; representation theorem; extension theorem
CLC num er: O 159 Document code: A Artic e ID: 1005-1120(2012) 02-0136-09

INTRODUCTION

In 1965, Professor Zadeh proposed the basic concept of fuzzy set ${ }^{[1]}$. The cut set is very useful and important in the research of fuzzy set theory, which is applied in fuzzy topology ${ }^{[2-3]}$, fuzzy algebras ${ }^{[4-5]}$, fuzzy measure and analysis ${ }^{[6-9]}$, fuzzy optimization and decision ${ }^{[10-11]}$, fuzzy reasoning ${ }^{[12-13]}$, fuzzy $\operatorname{logic}{ }^{[14]}$ and related do mains. The cut set is the bridge to link fuzzy set and classical set. Therefore, decomposition theorem, representation theorem and extension theorem can be constructed based on cut set. In the extension of fuzzy set theory, such as, ty pe-2 fuzzy set ${ }^{[15]}$, type-L fuzzy set ${ }^{[16]}$, intuitionistic fuzzy set ${ }^{[17]}$, interval-valued fuzzy set ${ }^{[18-20]}$ and interval-valued intuitionistic fuzzy $\operatorname{set}^{[21]}$, the three corresponding theorems have been constructed, and play an important role in fuzzy theory.

Because of the incompletion of information, the data which are used to describe the characteristics of things are often some interval
numbers. When the boundaries between such things are fuzzy, the classical fuzzy method is not appropriate. Therefore, it is necessary to build up a more precise fuzzy set. The combination of interval number and fuzzy set concept is a more effective way. Thus, the concept of interval fuzzy set and its operations are proposed ${ }^{[22]}$.

This paper introduces the basic concept of interval fuzzy set, and presents the cut set. Then, the three theorems are constructed and proved. Finally, the corresponding examples are given to demonstrate the feasibility of the three theorems.

1 BASIC CONCEPT OF INTERVAL FUZZY SET

Definition 1 Suppose that U is the universe, μ^{A} the arbitrary mapping from U to closed interval $[0,1]$, as

$$
\mu_{A}: U \rightarrow[0,1], u \rightarrow \mu_{A}(u)
$$

where A is called the fuzzy set based on U, μ_{A} the membership function of fuzzy set $A, \mu_{A}(u)$ the

[^0]Received date: $2012-02-15$; revision received date: 2012-04-20
Cmai: 4 sx 20 u @ xmineda.cademic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
membership degree of u in fuzzy set A. The membership degree is also denoted as $A(u)$. The set of all fuzzy sets based on universe U is denoted as $F(U)$.

Definition 2 Suppose that U is the universe of fuzzy set A and $B, \forall u \in U$, if $A(u) \leq B(u)$, it means that fuzzy set B contains A, which is denoted as $A \subseteq B$.

If $A \subseteq B$ and $B \subseteq A$, it means that A is equal to B, which is denoted as $A=B$.

If $A \subseteq B$ and $A \neq B$, then, it means that B truly contains A, which is denoted as $A \subset B$.

Definition 3 Suppose that U is the universe of interval fuzzy set X, if there exist classical fuzzy sets P and Q, which satisfy $P \subseteq X \subseteq Q$, nam ely, $X=\{S \mid S \in F(U) \wedge P \subseteq S \subseteq Q\}$. And for any fuzzy sets P^{\prime} and Q^{\prime}, which satisfy $P^{\prime} \subseteq X \subseteq$ Q^{\prime} and $P^{\prime} \subseteq P \subseteq X \subseteq Q \subseteq Q^{\prime}, X$ is called the interval fuzzy set with P as its lower bound and Q as its upper bound, which is denoted as $P \subseteq X \subseteq$ Q or $\left.X\right|_{P} ^{Q}$. The set of all interval fuzzy sets based on universe U is denoted as $I F(U)$.

In the interval fuzzy set $\left.X\right|_{P} ^{Q}, P$ the largest fuzzy set contained in X and Q the smallest fuzzy set containing X. Apparently, for interval fuzzy set $X, \varphi \subseteq X \subseteq U$. Specially, in the interval fuzzy set $\left.X\right|_{P} ^{Q}$, if $P=Q, X$ can be changed to classical fuzzy set.

2 OPERATION OF INTERVAL FUZZY SET

Definition 4 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, then, $X_{1} \cdot X_{2}$ is called the algebra product of interval fuzzy sets X^{1} and X^{2}, namely, $\left(X_{1} \cdot X^{2}\right)(u)=$ $\left\{u \in U \mid X 1(u) \cdot X_{2}(u)\right\}$.

Theorem 1 Suppose that U is the universe of interval fuzzy set $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, then,

Defioition 5 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, then, $X_{1}+X_{2}$ is called the algebraic sum of interval fuzzy sets X_{1} and X_{2}, namely, $\left(X_{1}+X_{2}\right)(u)=$ $\left\{u \in U \mid X 1(u)+X_{2}(u)\right\}$.

Theorem 2 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, then, $X_{1}+X_{2}=\left.\left(X_{1}+X_{2}\right)\right|_{\left(P_{1}+P_{2}\right)} ^{\left(Q_{1}+Q_{2}\right)}$.

Definition 6 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, then, $X_{1} \cup X_{2}$ is called the union set of interval fuzzy sets X^{1} and X^{2}, nam ely, $\left(X_{1} \cup X_{2}\right)(u)=\{u \in U \mid$ $\left.X^{1}(u) \vee X^{2}(u)\right\}$.

Theorem 3 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, then, $\left.X_{1} \cup X_{2}=\left(X_{1} \cup X_{2}\right) \left\lvert\, \begin{array}{l}\left(Q_{1} \cup Q_{2}\right) \\ \left(P_{1} \cup P_{2}\right)\end{array}\right.\right)$.

Definition 7 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, then, $X_{1} \cap X_{2}$ is called the intersection set of interval fuzzy sets X_{1} and X_{2}, namely, $\left(X_{1} \cap X_{2}\right)(u)=$ $\left\{u \in U \mid X_{1}(u) \wedge X_{2}(u)\right\}$.

Theorem 4 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, then, $\left.X \cap X_{2}=\left(X_{1} \cap X_{2}\right) \left\lvert\, \begin{array}{l}\left.Q_{1} \cap Q_{2}\right) \\ \left(P_{1} \cap P_{2}\right)\end{array}\right.\right)$.

Definition 8 Suppose that U is the universe of interval fuzzy set $\left.X\right|_{P} ^{Q}$, then, X^{c} is called the complementary set of interval fuzzy set X, namely, $X^{c}=\{u \in U \mid 1-X(u)\}=\{S \mid(S \subseteq U) \wedge$ $\left.\left(Q^{c} \subseteq S \subseteq P^{c}\right)\right\}=X \left\lvert\, \begin{aligned} & P^{c} \\ & Q^{c}\end{aligned}\right.$

Definition 9 Suppose that U is the universe of fuzzy set A and B, if $B \subseteq A$, then, $A-B$ is called the algebraic difference of fuzzy sets A and
$-B(u)\}$.
Theorem 5 Suppose that U is the universe of interval fuzzy set $\left.X\right|_{P} ^{Q}$, then
(1) $\left(\left.X\right|^{Q}{ }_{P}^{Q}\right)^{c}=\left.X\right|_{Q^{c}} ^{Q^{c}+(Q-P)}$.
(2) $\left(\left.X\right|_{P} ^{Q}\right)^{\mathrm{c}}=Q^{\mathrm{c}}+\left.X\right|_{\varphi} ^{Q-P}$.

Theorem 6 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, if $\left|Q_{1} \cap Q_{2}\right|=0$, then $\left|X_{1} \cap X_{2}\right|=0$.

Theorem 7 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, if $Q_{1} \subseteq Q_{2}$, then
(1) $\left.\left(X_{1} \cup X_{2}\right)\right|_{P_{1} \cup P_{2}} ^{Q_{2}}$.
(2) $\left.\left(X_{1} \cap X_{2}\right)\right|_{P_{1} \cap P_{2}} ^{Q_{1}}$.

Theorem 8 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, if $P_{2} \subseteq P_{1}$ and $Q_{1} \subseteq Q_{2}$, then
(1) $\left.\left(X_{1} \cup X_{2}\right)\right|_{P_{1}} ^{Q_{2}}$.
(2) $\left.\left(X_{1} \cap X_{2}\right)\right|_{P_{2}} ^{Q_{1}}$.

Definition 10 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, if $P_{1}=P_{2}$ and $Q_{1}=Q_{2}$, then interval fuzzy sets X_{1}, X_{2} are equal, which is denoted as $X 1=X 2$.

Definition 11 Suppose that U is the universe of interval fuzzy sets $\left.X_{1}\right|_{P_{1}} ^{Q_{1}}$ and $\left.X_{2}\right|_{P_{2}} ^{Q_{2}}$, so
(1) if $P_{2} \subseteq P_{1} \subseteq Q_{1} \subseteq Q_{2}$, the interval fuzzy set X^{2} fuzzily contains X^{1}, which is denoted as $X_{1} \subseteq X_{2}$.
(2) if $P_{2} \subset P_{1} \subseteq Q_{1} \subset Q_{2}$, the interval fuzzy set X_{2} fuzzily and truly contains X_{1}, which is denoted as $X_{1} \subset X_{2}$.

Theorem 9 Suppose that U is the universe of interval fuzzy sets X, Y and Z, then
(1) Idempotent law
$X \cup X=X, X \cap X=X$

$X \cup Y=Y \cup X, X \cap Y=Y \cap X$
(3) Associative law
$X \cap\left(\begin{array}{l}X \cup Y) \cup Z=X \cup(Y \cup Z),(X \cap Y) \cap Z= \\ Y \cap Z\end{array}\right.$
(4) Distributive law
$(X \cup Y) \cap Z=(X \cap Z) \cup(Y \cap Z)$,
$(X \cap Y) \cup Z=(X \cup Z) \cap(Y \cup Z)$
(5) Absorption law
$(X \cup Y) \cap X=X,(X \cap Y) \cup X=X$
(6) Identity law
$X \cup U=U, X \cap U=X, X \cup \varphi \neq X, X \cap \varphi \nsubseteq$
(7) Double complementarity law
$\left(X^{c}\right)^{c}=X$
(8) Duality law
$(X \cup Y)^{\mathrm{c}}=X^{\mathrm{c}} \cap Y^{\mathrm{c}},(X \cap Y)^{\mathrm{c}}=X^{\mathrm{c}} \cup Y^{\mathrm{c}}$

3 PROOF OF THREE THEOREMS

3. 1 Decomposition theorem

Definition 12 Suppose that U is the universe of interval fuzzy set $\left.X\right|_{P} ^{Q}$, and $0 \leq \lambda \leq 1$, then
(1) $X_{\lambda}=\left\{u \in U|X(u)| \begin{array}{l}Q(u) \geq \lambda \\ P(u) \geq \lambda\end{array}\right\}=\left.X_{\lambda}\right|_{P_{\lambda}} ^{Q_{\lambda}}$ is called the λ cut set of interval fuzzy set X, and λ the level, where Q_{λ} is the λ upper cut set of X and $P \lambda$ the λ lower cut set of X.
(2) $\left.X_{\lambda}=\left\{u \in U|X(u)|_{P(u)>\lambda}^{Q(u)>\lambda}\right\}\right\}=\left.X_{\lambda}\right|_{P_{\lambda}} ^{Q_{\lambda}}$ is called the λ strong cut set of interval fuzzy set X, where Q^{\wedge} is the λ upper strong cut set and $P \lambda$ the λ lower strong cut set.

Specially, the cut set of interval fuzzy set X is interval grey set.

Suppose that $\lambda \in[0,1], i \in I$, where I is the universe of i, then $\underset{i \in I}{\vee} \lambda_{i}=\sup _{i \in f}\{\lambda\}$ and $\hat{i}_{i \in I} \lambda_{i}=$ $\inf _{i \in f}\{\lambda\}$.

Property 1 Suppose that U is the universe of interval fuzzy sets X, Y and $X_{i}(i \in I)$, then
(1) $(X \cup Y)_{\lambda}=X_{\lambda} \cup Y_{\lambda},(X \cap Y)_{\lambda=}=X_{\lambda} \cap Y_{\lambda}$, $(X \cup Y)_{\lambda=} X_{\lambda} \cup Y_{\lambda},(X \cap Y)_{\lambda=} X_{\lambda} \cap Y_{\lambda}$.
(2) $\left(\bigcup_{i \in I} X_{i}\right) \lambda=\bigcup_{i \in I}\left(X_{i}\right)_{\lambda},\left(\cap_{i \in I} X_{i}\right)_{\lambda}=\bigcap_{i \in I}\left(X_{i}\right)_{\lambda}$,
(3) $\bigcap_{i \in I} X_{i}^{\lambda_{i}}=X\left(\underset{i \in I}{\vee} \lambda_{i}\right), \bigcup_{i \in I} X_{i}^{\lambda_{i}}=X\left(\hat{i}_{i \in I} \lambda_{t}\right)$.
(4) $X_{0}=U, X_{1}=\varphi$.
(5) $X \subseteq Y \Rightarrow \lambda \cdot \quad X \subseteq \lambda \cdot \quad Y$.
(6) $\left(X^{c}\right)_{\lambda}=\left(X_{1-\lambda}\right)^{c},\left(X^{c}\right)_{\lambda}=\left(X_{1-\lambda}\right)^{c}$.

The property is the extension of classical fuzzy set and interval grey set.

Definition 13 Suppose that U is the universe of interval fuzzy set $\left.X\right|_{P} ^{Q}, \quad 0 \leq \lambda \leq 1$, then, λX^{λ} is called the scalar product between λ and $X \lambda$. It is interval fuzzy set, and its membership function is as follows

$$
\min \left\{\lambda, R_{\lambda}(u)\right\}=\left\{\begin{array}{l}
\lambda, u \in R_{\lambda} \\
0, u \notin R_{\lambda}
\end{array}\right.
$$

where $R \lambda$ represents $X \lambda, \quad Q \wedge$ or $P \lambda$.
Theorem 10 Decom position Theorem 1
Suppose that U is the universe of interval fuzzy set $\left.X\right|_{P} ^{Q}$, and X_{λ} the cut set of int erval fuzzy set $X, 0 \leq \lambda \leq 1$, then

$$
X=\bigcup_{0 \leq \lambda \leq 1} \lambda X_{\lambda}=\bigcup_{0 \leq \lambda \leq 1} \lambda X_{\lambda} \mid \bigcup_{0 \leq \lambda \leq 1}^{\bigcup_{0 \leq \lambda \leq 1} \lambda P_{\lambda}}
$$

Proof It is equivalent to demonstrate that $\forall u \in U, X(u)=\left(\bigcup_{0 \leq \lambda \leq 1} \lambda X \lambda\right)(u)$, and $\left.\left(\underset{0 \leq \lambda \leq 1}{\cup} \lambda X_{\lambda}\right)(u)=\left(\underset{0 \leq \lambda \leq 1}{\cup} \lambda X_{\lambda}\right)(u) \left\lvert\,\binom{\underset{0 \leq \lambda \leq 1}{\cup} \lambda Q_{\lambda}}{0 \leq \lambda \leq 1}_{\lambda}\right.\right)^{(u)}{ }_{(u)}^{(u)}=$

$$
\underset{0 \leq \lambda \leq 1}{V}(\lambda X \lambda)(u) \mid \underset{\substack{0 \leq \lambda \leq 1 \\ v}}{\substack{v \\ 0}}\left(\lambda P_{\lambda}\right)(u)(u),
$$

According to the first item, because $R(u) \geq$ $\lambda, u \in R \lambda$, i. e, $R_{\lambda}(u)=1$, then $\lambda \wedge R_{\lambda}(u)=\lambda$. How ever, according to the second item, because $\lambda>R(u), u \notin R_{\lambda}$, that is to say, $R_{\lambda}(u)=0$, then, $\lambda \wedge R_{\lambda}(u)=0$.

From the above analysis, we have

$$
\left[\bigcup_{0 \leq \lambda \leq 1} \lambda X_{\lambda}\right)^{\prime}(u)=
$$

$$
=\vee_{0 \leq \lambda \leq X(u)}^{\vee} \lambda\left|\underset{0 \leq \lambda \leq P(u)}{\vee} \lambda V_{0 \leq \lambda(u)}^{\vee} \lambda, X(u)\right|_{P(u)}^{Q(u)}=X(u)
$$

The decomposition theorem can construct interval fuzzy set with interval grey set, and it is the method for linking interval fuzzy set and interval grey set.

Theorem 11 Decomposition Theorem 2
Suppose that U is the universe of interval fuzzy set $\left.X\right|_{P} ^{Q}$, and $X \lambda$ the strong cut set of interval fuzzy set $X, 0 \leq \lambda \leq 1$, then

$$
X=\bigcup_{0 \leq \lambda \leq 1} \lambda X_{\lambda}=\bigcup_{0 \leq \lambda \leq 1}^{\cup} \lambda X_{\lambda} \mid{\underset{0 \leq \lambda \leq 1}{\cup} \lambda P_{\lambda}}_{\cup \lambda Q_{\lambda}}^{0 \leq \lambda}
$$

Proof It is similar to prove Theorem 1.
Theorem 12 Decomposition Theorem 3
Suppose that U is the universe of interval fuzzy set $\left.X\right|_{P} ^{Q}$, if a pair of set-valued mappings exist, we have $H_{Q}:[0,1] \rightarrow P(U), \lambda \rightarrow H_{Q}(\lambda)$, $H_{P}:[0,1] \rightarrow P(U), \lambda \rightarrow H_{P}(\lambda) . \forall \lambda \in[0,1]$, $Q_{\lambda} \subseteq H_{Q}(\lambda) \subseteq Q_{\lambda}$ and $P_{\lambda} \subseteq H_{P}(\lambda) \subseteq P_{\lambda}$. T hen
(1) $X=X \mid \underset{\substack{\cup \lambda H_{Q}(\lambda) \\ 0 \leq \lambda \leq 1}}{\cup}$
(2) $\lambda_{1}<\lambda_{2}, H Q\left(\lambda_{1}\right) \supseteq H_{Q}\left(\lambda_{2}\right)$ and $H_{P}\left(\lambda_{1}\right) \supseteq$ $H_{P}\left(\lambda_{2}\right)$.
(3) $X_{\lambda}=X_{\lambda} \mid \substack{\cap H_{Q^{(}}(\alpha) \\ \cap H_{P}(\alpha)}, \alpha \in(0,1]$ and

$$
X_{\lambda}=X_{\lambda} \mid \underset{\substack{\cup H_{Q^{\prime}}(\alpha) \\ \cup_{\infty} H_{P}(\alpha)}}{\substack{\infty \\ \infty}}, \alpha \in[0,1] .
$$

Proof

(1) $Q_{\lambda} \subseteq H_{Q}(\lambda) \subseteq Q_{\lambda} \Rightarrow \lambda \cdot \quad Q_{\lambda} \subseteq \lambda$. $H_{Q}(\lambda) \subseteq \lambda \cdot \quad Q_{\lambda}, \quad$ then
$Q=\underset{\lambda \in[0,1)}{\cup} \lambda \cdot \quad Q \lambda \subseteq \cup_{\lambda \in[0,1]} \lambda \cdot H Q(\lambda) \subseteq \cup_{\lambda \in[0,1]}^{\cup} \lambda$. $Q_{\lambda}=Q \Rightarrow Q=\bigcup_{\lambda \in[0,1]} \lambda \cdot H(\lambda)$ and $P_{\lambda} \subseteq H_{P}(\lambda) \subseteq$ $P_{\lambda} \Rightarrow \lambda \cdot \quad P_{\lambda} \subseteq \lambda \cdot H_{P}(\lambda) \subseteq \lambda^{\prime} \quad P_{\lambda,}$ then

$$
P=\underset{\lambda \in[0,1)}{\cup} \lambda \cdot \quad P \cdot \lambda \subseteq \bigcup_{\lambda \in[0,1]}^{\cup} \lambda \cdot \quad H P(\lambda) \subseteq \bigcup_{\lambda \in[0,1]} \lambda \cdot
$$

$$
P_{\lambda}=P \Rightarrow P=\bigcup_{\substack{\lambda \in[0,1] \\ \mid \cup H_{0}(\lambda)}} \lambda \cdot H(\lambda), \text { then }
$$

$$
X=X \mid \underset{0 \leq \lambda \leq 1}{\bigcup_{0 \leq \lambda \leq 1}^{0} N_{P} H_{P}(\lambda)} .
$$

(2) $\lambda_{1}<\lambda_{2} \Rightarrow H_{Q}\left(\lambda_{1}\right) \supseteq Q_{\lambda_{1}} \supseteq Q_{\lambda_{2}} \supseteq H_{Q}\left(\lambda_{2}\right)$, i. e., $H Q\left(\lambda_{1}\right) \supseteq H Q_{Q}\left(\lambda_{2}\right)$. And $H_{P}\left(\lambda_{1}\right) \supseteq P_{\lambda_{1}}$ $\supseteq P_{\lambda_{2}} \supseteq H_{P}\left(\lambda_{2}\right)$, i. e, $H_{P}\left(\lambda_{1}\right) \supseteq H_{P}\left(\lambda_{2}\right)$.
$H Q(\alpha) \supseteq Q_{\alpha} \supseteq Q_{\lambda} \Rightarrow \cap_{\alpha<\lambda}^{\cap} H Q(\alpha) \supseteq Q_{\lambda}, \lambda \in(0$, 1], and $\cap_{\alpha \lambda}^{\cap} H Q(\alpha) \subseteq \cap_{\alpha<\lambda} Q \alpha=\underset{\substack{(\nu \lambda) \\ \alpha \lambda}}{ }=Q \lambda, \lambda \in(0$, 1] .

Then, $Q_{\lambda}=\cap_{\alpha \lambda} H_{Q}(\alpha)$, it is similar to prove
 $(0,1], \forall \alpha>\lambda, \lambda \in[0,1)$, then
$Q \wedge \supseteq Q \alpha \supseteq H Q(\alpha) \Rightarrow \bigcup_{\infty \lambda} H Q(\alpha) \subseteq Q, \lambda, \lambda \in[0$, 1), and $\underset{\infty \lambda \lambda}{\cup} H Q(\alpha) \subseteq \cup_{\infty \lambda \lambda} Q \underset{\alpha \lambda}{Q\left(\wedge_{\infty}\right)}=Q \lambda, \lambda \in[0$, 1).

Then, $Q_{\lambda}=\underset{\infty \lambda}{\cup} H Q(\alpha)$, it is similar to prove $P \lambda=\bigcup_{\infty} U H^{\prime} P(\alpha)$.

According to decomposition Theorem 3, in interval fuzzy set $\left.X\right|_{P} ^{Q}$, taking the upper bound Q for example, Q can be constructed by not only cut set Q_{λ} or Q_{λ}, but also general set cluster $H_{Q}(\lambda), \lambda \in[0,1]$. Namely, $H_{Q(\lambda)}$ may be Q_{λ} or Q_{λ}, even the set between them. Because of the flexibility of $H Q(\lambda), H_{Q(\lambda)}$ is applied in real life widely.

3. 2 Representation theorem

Definition 14 Suppose that set-valued mapping $H:[0,1] \rightarrow P(U), \lambda \rightarrow H(\lambda)$, it meets $\forall \lambda_{1}, \lambda_{2} \in[0,1], \forall \lambda_{1}<\lambda_{2} \Rightarrow H\left(\lambda_{2}\right)$ A $H(\mathrm{~K})$

Then, H is the nested set based on $U, N(U)$ the set of all nested sets based on U.

Definition 15 Suppose that $H, H \iota \in N(U)$, $t \in T$, the operations of \cup, \cap and c in $N(U)$ are defined as follows
$\left(\cup_{t \in T} H_{t}\right)(\mathrm{K}) \in \underset{t \in T}{\cup} H_{t}(\mathrm{~K}),\left(\bigcap_{t \in T} H_{t}\right)(\mathrm{K}) \in$ $\cap_{H} H_{l}($ ($) H^{c}(\mathrm{~K})=\left(H(1-\text { ゆ })^{c}, \quad K \in[0,1]\right.$

The above three operations are called union, intersection, complement of nested sets, respect iv ely.

According to decomposition Theorem 3, any
mapping $H Q$ and H^{P}, i. e., interval fuzzy set $\left.X\right|_{P} ^{Q}$ has nested set $\operatorname{group}\left(H_{Q}, H_{P}\right)$, where, $H_{Q}, H_{p} \in N(U) . N^{\prime}(U)$ is the set of all nested set groups based on U.

Theorem 13 Representation Theorem 1
Suppose that $H_{\ell,} H_{p} \in N(U)$, and

$$
Q=\underset{K_{[0,1]}}{\cup} \kappa^{\prime} \cdot H_{Q}(\mathrm{~K}), P=\underset{\mathbb{K}_{[0,1]}}{\cup} \kappa^{\prime} \cdot H_{P}(\mathrm{~K})
$$

Then
 $I F(U)$, and $\mathrm{P} K \in[0,1]$, we have

Proof $\mathrm{P} K \in[0,1]$, because $H Q(\mathrm{~K})$ and $H^{p}\left(\right.$ Қ $\in P(U)$, K $H Q($ Қ $) \in F(U)$, K $H^{p}($ К $) \in$ $F(U)$, then, $\left.X\right|_{P} ^{Q}=X \underset{\substack{K \in[0,1] \\ K \in[0,1]}}{\cup{ }_{K} H_{Q} H_{P}(\mathbb{K}}$,

According to the decomposition Theorem 3, if it meets condition $Q K \quad H_{Q}($ (A Q Kand P K $H_{P}($ К A $P K$ the above (1) and (2) hold. It is equivalent to demonstrate the condition.
$\mathrm{P} \mathrm{K} \in[0,1]$, if $\left.\mathrm{K} \neq 1, x \in Q Q^{K} Q(x)>\mathrm{K}\right]$ $\left[\left(\mathrm{A}_{[0,1]}^{\vee} \mathrm{A} \cdot H_{Q}(\mathrm{~A})(x)\right)>\mathrm{K}\right]\left[\begin{array}{l}\vee_{[0,1]}(\mathrm{A} \wedge\end{array}\right.$ $\left.\left.\left.H_{Q}(\mathrm{~A})(x)\right)\right)>\mathrm{K}\right]\left(\mathrm{v} \mathrm{A}_{\mathrm{B}} \in[0,1]\right)\left(\mathrm{A} \wedge \mathrm{H}_{Q}(\mathrm{~A})\right.$ $(x)>$ K] A $>\mathrm{K} H Q(\mathrm{~A})(x)=1] x \in H Q(\mathrm{~A}) \mathrm{A}$ $H e($ 舛.

If $\mathrm{K}=1$ and $Q \quad K=\mathrm{U}, x \in H Q(\mathrm{~K})] H Q(\mathrm{~K})(x)$ $=1]\left[{\underset{A}{[0,1]^{\wedge}}}_{\vee} H_{Q}(\mathrm{~A})(x)\right] \geq \mathrm{K} \wedge H Q(\mathrm{~K})(x)=$ K] $Q(x) \geq \mathrm{K}] x \in Q K$

Then, $\mathrm{P} K \in[0,1], Q K A H_{Q}(\mathrm{~K}) \mathrm{A} Q K \mathrm{It}$ is similar to demonstrate condition $P K A \quad H_{P}(\mathrm{~K}) \mathrm{A}$ PK

Theorem 14 Representation Theorem 2
If there is the mapping $<N^{\prime}(U) \rightarrow I F(U)$, then

$$
\begin{aligned}
& \left.\mathrm{P} X\right|_{P} ^{Q} \in I F(U) \mathrm{v}(H Q, H P) \in N^{\prime}(U) \\
& H Q \rightarrow\left\langle(H Q)=\underset{K_{[0,1]}}{\cup} \kappa^{\prime} \cdot H Q(\mathrm{~K}\right.
\end{aligned}
$$

$$
\text { hing } H \rightarrow \vec{g}
$$

Then < is the homomorphism surjection from $\left(N^{\prime}(U), \cup, \cap, c\right)$ to $(I F(U), \cup, \cap, c), \quad$ and P $K \leq[0,1]$, we have
(1) $(\triangleleft H Q)) \mathrm{K} \quad H Q(\mathrm{~K}) \mathrm{A}(<(H Q)) \mathrm{Kand}$ $\left.\left(<\left(H_{P}\right)\right) \mathrm{K} H_{P}(\mathrm{~K}) \mathrm{A}\left(\varangle H_{P}\right)\right) \mathrm{K}$
(2) $(<(H Q)) \mathrm{K}=\bigcap_{A_{\mathrm{K}}}^{\cap} H Q(\mathrm{~A})$ and $(<(H P)) \mathrm{K}=$ $\hat{A}_{\mathrm{K}} H_{P}(\mathrm{~A}), \mathrm{P} \mathrm{K} \leq(0,1]$.
(3) $(<(H Q)) \mathrm{K}=\cup_{\mathrm{A}_{\mathrm{K}}} H Q(\mathrm{~A})$ and $(<(H P)) \mathrm{K}=$ $\hat{A}_{\mathrm{K}}^{H_{P}}(\mathrm{~A}), \mathrm{P} \mathrm{K} \leq[0,1)$.

Proof The above (1) - (3) can be proved based on representation Theorem 1 directly, and then this paper proves that < is homomorphism surjection.
< maintains the operations " \cup " and " \cap ".
In view of (3), and $H_{t} \in N(U)(t \in T)$,
$\mathrm{P} \mathrm{K} \in[0,1)$, then

Apparently, when $\mathrm{K}=1$, the above formula holds. According to the decomposition theorem, we have

$$
\left\{\cup_{t \in T}(H Q)_{t}\right)=\cup_{t \in T}((H Q) t)
$$

It is similar to demonstrate that

$$
\left\{\cup_{t \in T}\left(\begin{array}{ll}
\left.H_{P}\right)_{t}
\end{array}\right)=\cup_{t \in T}\left(\left(H_{P}\right)_{t}\right)\right.
$$

T hen, it is al so similar to demonstrate " \cap ", where

$$
\left\{\begin{array}{l}
\bigcap_{t \in T}(H Q)^{\prime} \\
\cap_{t \in T}\binom{H}{P}
\end{array}\right\}=\bigcap_{t \in T}^{<}\left(\left(\begin{array}{l}
\left.H Q)_{t}\right) \\
\bigcap_{t \in T}<\left(\left(\begin{array}{l}
H P
\end{array}\right)_{t}\right)
\end{array}\right.\right.
$$

<maintains the operation c.

$$
\left(\left(<\left(H_{Q}\right)\right)^{c}\right) \mathrm{K}
$$

It is similar to demonstrate that

$$
\left.\left(\varangle H_{P}\right)\right) \mathrm{K}=\left(\left(\left\langle\left(H_{P}\right)\right)^{c}\right) \mathrm{K}\right.
$$

$$
\begin{aligned}
& \mathrm{P} K \in[0,1),\left(\langle(H Q)) \mathrm{K}=\widehat{A}_{\mathrm{K}} H_{Q}^{c}(\mathrm{~A})=\right. \\
& \hat{A}_{\mathrm{K}}\left(H_{Q}(1-\mathrm{A})^{\mathrm{c}}=\left(\underset{1-\mathrm{A} 1-\mathrm{K}}{\cup} H_{Q}(1-\mathrm{A})\right)^{\mathrm{c}}=\right. \\
& \left.\left(\underset{A_{1-\mathrm{K}}}{\cup H_{Q}(\mathrm{~A})}\right)^{\mathrm{c}}=\left(\left(<\left(H_{Q}\right)\right)\right)_{1-\mathrm{k}}\right)^{\mathrm{c}}=
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(\ell \bigcup_{t \in T}(H Q)^{\prime}\right)\right)_{K}=\cup_{A_{k}}^{\cup}\left(\cup_{t \in T}(H Q)^{\prime}\right)(\mathrm{A})= \\
& \bigcup_{\mathrm{A}}\left(\cup_{t \in T}(H Q) t(\mathrm{~A})\right)=\cup_{t \in T}\left(\bigcup_{A_{K}}(H Q) t(\mathrm{~A})\right)= \\
& \cup_{t \in T}(\ll((H Q) t))=\left[\bigcup_{t \in T}^{\left.\mathcal{A}_{\mathrm{K}}<((H Q) t)\right)}\right)_{\mathrm{K}}
\end{aligned}
$$

3. 3 Extension theorem

Theorem 15 Extension theorem
Suppose that there is mapping $f: U_{1} \rightarrow U_{2}$, then two mappings can be induced, which are denoted as f and f^{-1}, respectively.

$$
\begin{aligned}
& f: I F\left(U_{1}\right) \rightarrow I F\left(U_{2}\right),\left.X\right|_{P} ^{Q} \rightarrow f\left(\left.X\right|_{P} ^{Q}\right) \\
& f^{-1}: I F\left(U_{2}\right) \rightarrow I F\left(U_{1}\right),\left.Y\right|_{P^{\prime}} ^{Q^{\prime}} \rightarrow f^{-1}\left(\left.Y\right|_{P^{\prime}} ^{Q^{\prime}}\right)
\end{aligned}
$$

where

Apparently

$$
\begin{aligned}
& f(Q)\left(u_{2}\right) \geq f(P)\left(u_{2}\right) \\
& f^{-1}\left(Q^{\prime}\right)\left(u_{1}\right)=Q^{\prime}\left(f\left(u_{1}\right)\right) \\
& f^{-1}\left(P^{\prime}\right)\left(u_{1}\right)=P^{\prime}\left(f\left(u_{1}\right)\right)
\end{aligned}
$$

Then, $f(X)$ is called the image of X based on f, and $f^{-1}(Y)$ the inverse image of Y based on f.

4 EXAMPLES

4. 1 Examp e 1

In order to illustrate the decomposition Theorem 1 of interval fuzzy set, the example 1 is given.

Suppose that

$$
\begin{gathered}
\left.X\right|_{P} ^{Q}= \\
\left.X\right|_{0.2 / x_{1}+0.4 / x_{2}+0.4 / x_{3}} ^{0.3 / x_{1}+0.5 / x_{2}+0.6 / x_{3}+0.4 / x_{4}+0.3 / x_{5}} \quad 0 \leq \mathrm{K} \leq 1
\end{gathered}
$$

Then

$$
{ }_{n} X \text { prizus } X \text {. opal }\left|\left.\right|_{\text {wights }} ^{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)}\right.
$$

$$
\begin{aligned}
& X 0.6=\left.X 0.6\right|_{U} ^{\left(x_{3}\right)}=\left.X_{0.6}\right|_{U} ^{1 / x_{3}} \\
& X_{0.5}=\left.X_{0.5}\right|_{U} ^{\left\{x_{2}, x_{3}\right\}}=\left.X_{0.5}\right|_{U} ^{1 / x_{2}+1 / x_{3}} \\
& X_{0.4}=\left.X_{0.4}\right|_{\left\{x_{2}, x_{3}\right\}} ^{\left(x_{2}, x_{3}, x_{4}\right\}}=\left.X_{0.4}\right|_{1 / x_{2}+1 / x_{3}} ^{1 / x_{2}+1 / x_{3}+1 / x_{4}} \\
& \begin{array}{ll}
0.3= & \left.0_{0.3}\right|_{\left\{x_{2}, x_{3}\right\}} ^{\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}}= \\
\end{array}= \\
& \left.X{ }_{0.3}\right|_{1 / x_{2}+1 / x_{3}} ^{1 / x_{1}+1 / x_{2}+1 / x_{3}+1 / x_{4}+1 / x_{5}}
\end{aligned}
$$

$$
\left.\begin{aligned}
& \left.X_{0.2}\right|_{1 / x_{1}+1 / x_{2}+1 / x_{3}} ^{1 / x_{1}+1 / x_{2}+1 / x_{3}+1 / x_{4}+1 / x_{5}} \\
& 0.6 X_{0.6=} X_{1}=\left.X_{0.6}\right|_{\mathrm{U}} ^{0.6 / x_{3}} \\
& 0.5 X_{0.5}=X_{2}=\left.0.5 X_{0.5}\right|_{\mathrm{U}} ^{0.5 / x_{2}+0.5 / x_{3}} \\
& 0.4 X 0.4=X_{3}=\left.0.4 X_{0.4}\right|_{0.4 / x_{2}+0.4 / x_{3}} ^{0.4 / x_{2}+0.4 / x_{3}+0.4 / x_{4}} \\
& 0.3 X 0.3=X_{4}=\left.0.3 X 0.3\right|_{0.3 / x_{2}+0.3 / x_{3}} ^{0.3 / x_{1}+0.3 / x_{2}+0.3 / x_{3}+0.3 / x_{4}+0.3 / x_{5}} \\
& 0.2 X 0.2=X 5=0.2 X
\end{aligned}\right|_{0.2} ^{0.2 / x_{1}+0.2 / x_{2}+0.2 / x_{3}+0.2 / x_{4}+0.2 / x_{5}} \begin{aligned}
& 0.2 / x_{1}+0.2 / x_{2}+0.2 / x_{3}
\end{aligned}
$$

According to the decomposition theorem, we have

$$
\begin{aligned}
& X=\bigcup_{0 \leq K \leq 1} \kappa X_{k} X_{1+} X_{2}+X_{3}+X_{4+} X_{5}= \\
& \left.\begin{array}{l}
0 \leq K \leq 1 \\
\left.0.6 / x_{3}\right) \cup\left(0.5 / x_{2}+0.5 / x_{3}\right) \cup\left(0.4 / x_{2}+0.4 / x_{3}+0.4 / x_{4}\right) \cup \\
\left(0.3 / x_{1}+0.3 / x_{2}+0.3 / x_{3}+0.3 / x_{x}+0.3 / x_{5}\right) \cup \\
\left(0.2 / x_{1}+0.2 / x_{2}+0.2 / x_{3}+0.2 / x_{4}+0.2 / x_{5}\right.
\end{array}\right) \\
& X \\
& \left.\begin{array}{c}
\text { yuv }\left(0.4 / x_{2}+0.4 / x_{3}\right) \\
0.2 / x_{1}+0.2 / x_{2}+0.2 / x_{3}
\end{array}\right) \cup\left(0.3 / x_{2}+0.3 / x_{3}\right) \cup \\
& 0.2 \vee 0.3 / x_{1}+0.2 \vee 0.3 \vee 0.4 \vee 0.5 / x_{2}+ \\
& 0.2 \vee 0.3 \vee 0.5 \vee 0.4 \vee 0.6 / x_{3}+ \\
& 0.2 \vee 0.3 \vee 0.4 / x_{4}+0.2 \vee 0.3 / x_{5} \\
& X \\
& = \\
& \begin{array}{l}
0.2 / x_{1}+0.2 \vee 0.3 \vee 0.4 / x_{2} \\
0.2 \vee 0.3 \vee 0.4 / x_{3}
\end{array} \\
& X \left\lvert\, \begin{array}{l}
0.3 / x_{1}+0.5 / x_{2}+0.6 / x_{3}+0.4 / x_{4}+0.3 / x_{5} \\
0.2 / x_{1}+0.4 / x_{2}+0.4 / x_{3}
\end{array}\right.
\end{aligned}
$$

It can be seen from the example 1 that by using of the decomposition theorem, the original study of fuzzy object can be decomposed into a series of corresponding classical issues to deal with.

4. 2 Exampe 2

In order to illustrate the decomposition Theorem 2 of interval fuzzy set, the example 2 is given.

Suppose that $U=\left\{x^{1}, x^{2}, x^{3}, x^{4}, x^{5}\right\}$ is the universe of interval fuzzy set $\left.X\right|_{P} ^{Q}$, and the

$$
\begin{aligned}
& \text { strong cut set of interval fuzzy set } X \text { is } \\
& \left.\int^{2} K\right|_{\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}} ^{\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}} \quad 0 \leq \mathrm{K} \leq 0.2
\end{aligned}
$$

Then it can be changed to

$$
\begin{aligned}
& \left.\int X K\right|_{\{1,1,1,1,0\}} ^{\{1,1,1,1,1\}} \quad 0 \leq \mathrm{K} \leq 0.2 \\
& \left.X K\right|_{\{1,0,1,1,0\}} ^{\{1,1,1,10\}} \quad 0.2<\mathrm{K} \leq 0.5 \\
& X K=\left\{\begin{array}{ll}
X K & \left.\right|_{\{1,0,0,1,0\}} ^{\{1,0,1,1,0\}} \\
X K & 0.5<\mathrm{K} \leq 0.7 \\
\{1,0,0,1,0\} \\
\{0,0,0,0,0\}
\end{array}\right) 0.7<\mathrm{K} \leq 0.9 \\
& \left.X K\right|_{\{0,0,0,0,0\}} ^{\{0,0,0,1,0\}} \quad 0.9<\mathrm{K} \leq 1.0 \\
& X=X\left|\begin{array}{l}
Q
\end{array}\right| \begin{array}{l}
0.9 / x_{1}+0.5 / x_{2}+0.7 / x_{3}+1.0 / x_{4}+0.2 / x_{5} \\
0.7 / x_{1}+0.2 / x_{2}+0.5 / x_{3}+0.2 / x_{4}
\end{array}
\end{aligned}
$$

It can be seen from the example 2 that the decomposition theorem provides the possibility of using interval grey set to construct fuzzy set, and establishes the contact between fuzzy set and grey set.

4. 3 Examp e 3

In order to illustrate the extension theorem of interval fuzzy set, the example 3 is given.

Suppose that $U_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, U_{2}=$ $\{a, b, c, d\}$, and

$$
\begin{gathered}
f(x)= \begin{cases}a & x \in\left\{x_{1}, x_{2}\right\} \\
b & x \in\left\{x_{3}, x_{4}\right\} \\
c & x=x_{5}\end{cases} \\
X \left\lvert\, \begin{array}{l}
0.3 / x_{1}+0.5 / x_{2}+0.6 / x_{3}+0.4 / x_{4}+0.3 / x_{5} \\
0.2 / x_{1}+0.4 / x_{2}+0.4 / x_{3}
\end{array}\right.
\end{gathered}
$$

So ution According to the extension theorem, $Y=f(X) \in I F\left(U_{2}\right)$, and because $f^{-1}(a) \neq U$, then

$$
\begin{aligned}
& f(X)(a)=\left.{ }_{f\left(u_{1}\right)=a}^{\vee} X\left(u_{1}\right)\right|_{\substack{f\left(u_{1}\right)=a}} ^{\substack{V\left(u_{1}\right)=a\left(u_{1}\right)}}= \\
& \left.\underset{f\left(u_{1}\right)=a}{\vee} X\left(u_{1}\right)\right|_{P\left(x_{1}\right) \vee P\left(x_{2}\right)} ^{Q\left(x_{1}\right) \vee Q\left(x_{2}\right)}= \\
& \left.\underset{f\left(u_{1}\right)=a}{\vee} X\left(u_{1}\right)\right|_{0.2 \vee 0.4} ^{0.3 \vee 0.5}=\left.\underset{f\left(u_{1}\right)=a}{\vee} X\left(u_{1}\right)\right|_{0.4} ^{0.5}
\end{aligned}
$$

Similarly

$$
\begin{gathered}
f(X)(b)=\left.\underset{f\left(u_{1}\right)=a}{\vee} X\left(u_{1}\right)\right|_{0.4 \mathrm{~V} 0} ^{0.6 \mathrm{~V} 0.4}=\left.\underset{f\left(u_{1}\right)=a}{\mathrm{~V}} X(u 1)\right|_{0.4} ^{0.6} \\
f(X)(c)=\left.\underset{f\left(u_{1}\right)=a}{\mathrm{~V}^{2}} X\left(u_{1}\right)\right|_{0} ^{0.3}
\end{gathered}
$$

Because $f^{-1}(d)=\mathrm{U}, f(X)(d)=0$, ther efore, $Y=f(X)=\left.Y\right|_{0.4 / a+0.4 / b} ^{0.5 / a+0.6 / b+0.3 / c}$.

$$
\text { Because } \mathrm{P}_{u^{1}} \in U_{1}, f^{-1}(Y)\left(u^{1}\right)=Y\left(f\left(u^{1}\right)\right)
$$ we have

$$
\begin{aligned}
& f^{-1}(Y)\left(x_{2}\right)=\left.Y(a)\right|_{P^{\prime}(a)} ^{Q^{\prime}(a)}=\left.Y\right|_{0.4} ^{0.5} \\
& f^{-1}(Y)\left(x^{3}\right)=\left.Y(b)\right|_{P^{\prime}(b)} ^{Q^{\prime}(b)}=\left.Y\right|_{0.4} ^{0.6} \\
& f^{-1}(Y)\left(x_{4}\right)=\left.Y(b)\right|_{P^{\prime}(b)} ^{Q^{\prime}(b)}=Y| |_{0.4}^{0.6} \\
& f^{-1}(Y)\left(x_{5}\right)=\left.Y(c)\right|_{P^{\prime}(c)} ^{Q^{\prime}(c)}=\left.Y\right|_{0} ^{0.3}
\end{aligned}
$$

Therefore

$$
f^{-1}(Y)=f^{-1}(Y) \left\lvert\, \begin{aligned}
& 0.5 / x_{1}+0.5 / x_{2}+0.6 / x_{3}+0.6 / x_{4}+0.3 / x_{5} \\
& 0.4 / x_{1}+0.4 / x_{2}+0.4 / x_{3}+0.4 / x_{4}
\end{aligned}\right.
$$

It can be seen from the example 3 that by using the extension theorem, the classical method can be promoted to make the result more close to reality.

5 CONCLUSION

This paper introduces the concept of interval fuzzy set, and then describes the operation of interval fuzzy set. The decom position theorem, the representation theorem and the extension theorem are constructed and proved. Examples are given to explain the three theorems. Through the proof and examples, it is illustrated that the classical fuzzy set is a special case of interval fuzzy set, and the interval fuzzy set is the effective extension of the classical fuzzy set. Based on the interval fuzzy set, the next research will be further application in fuzzy clustering, fuzzy classification, and fuzzy pattern recognition and so on.

References:

[1] Zadeh L A. Fuzzy sets[J]. Information Control, 1965, 8(3):338-353.
[2] Sergey A S. Fuzzy algebras as a framework for fuzzy topology [J]. Fuzzy Sets and Systems, 2011, 173 (1) : 81-99.
[3] Hazra R N, Samanta S K, Chattopadhyay K C. Fuzzy topology redefined [J]. Fuzzy Sets and Systems, 1992, 45(1): 79-82.
[4] Bosnjak I, Madarasz R, Vojvodic G. Algebras of fuzzy sets[J]. Fuzzy Sets and Systems, 2009, 160 (20): 2979-2988.
[5] Plavka J, Szab P. On the Krobustness of matrices

Mathematics, 2011, 159(5): 381-388.
[6] Mesiar R. Fuzzy measures and int egrals [J]. Fuzzy Sets and Systems, 2005, 156(3) : 365-370.
[7] Stupnanova A. Special fuzzy measures on infinite count able sets and related aggregation functions[J]. Fuzzy Sets and System s, 2011, 167 (1): 57-64.
[8] Gahler W, Gahler S. Contributions to fuzzy analy sis [J]. Fuzzy Sets and Systems, 1999, 105(2): 201224.
[9] Ramli A A, Watada J, Pedrycz W. Real-time fuzzy regression analysis: A convex hull approach [J]. European Journal of Operational Research, 2011, 210(3) : 606-617.
[10] Jimenez F, Cadenas J M, Sanchez G, et al. Multiobjective evolutionary computation and fuzzy optimization [J]. International Journal of Approximate Reasoning, 2006, 43(1):59-75.
[11] Liang R H, Chen Y K, Chen Y T. Volt/ Var control in a distribution system by a fuzzy optimization approach [J]. International Journal of Electrical Pow er \& Energy Systems, 2011, 33(2): 278-287.
[12] Cao Zhiqiang, Kandel A, Li Lihong. A new model of fuzzy reasoning [J]. Fuzzy Sets and Systems, 1990, 36(3): 311-325.
[13] Chen S M, Li T K. Evaluating students learning achievement based on fuzzy rules with fuzzy reasoning capability [J]. Expert Systems with Applications, 2011, 38(4): 4368-4381.
[14] Hajek P. What is mathematical fuzzy logic [J]. Fuzzy Sets and System s, 2006, 157(5): 597-603.
[15] Li Xiaoshen, Yuan Xuehai, Lee E S. The threedimensional fuzzy sets andtheir cut sets [J]. Computers \& M athematics with Applications, 2009, 58(7): 1349-1359.
[16] Wang Guojun, He Yingyu. Intuitionistic fuzzy sets and L-fuzzy sets[J]. Fuzzy Sets and Systems, 2000, 110(2) : 271-274.
[17] Atanassov K. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
[18] Zeng Wenyi, Li Hongxi, Shi Yu. Representation theorem of intervalvalued fuzzy sets[J]. Journal of Beijing Normal U niversity: Natural Science, 2003, 39(2): 444-447. (in Chinese)
[19] Zhao Yibin, Zeng Wenyi, Li Hongxi. Extension principle on interval-valued fuzzy set [J]. Journal of

43（1）：1－5．（in Chinese）
［20］Zeng Wenyi，Li Hongxi，Shi Yu．Decomposition theorem of interval－valued fuzzy sets［J］．Journal of

Beijing Normal University：Natural Science，2003， 39（2）：171－177．（in Chinese）
［21］Atanassov K．Intervalvalued int uitionistic fuzzy sets
［J］．Fuzzy Sets and Systems，1989，31（3）：343－349．
［22］Wu Shunxiang．Interval fuzzy set and its operation ［C］／／2011 IEEE International Conference on Grey Systems and Intelligent Services（GSIS）．Nanjing， China：IEEE Computer Society Press，2011：838－ 842.
（厦门大学自动化系，厦门， 361005 ，中国）
：在区间模糊集概念及其性质的基础上，针对区间模糊集的 3 个理论尚未得到有效证明的现状，首先对区间模糊集的知识表示及其运算法则进行了研究，然后提出了基于区间模糊集的截集概念。并在此基础之上进一步研究了基于区间模糊集的分解定理，表现定理和扩展定理，并通过实

例说明了传统模糊集是区间模糊集的一个特例，区间模糊集是传统模糊集的有效扩展。

关键词：区间模糊集；分解定理；表现定理；扩展定理中图分类号：O159
（Executive editor：Zhang Huangqun）

[^0]: Foundation items: Supported by the Aeronautical Science Foundation (20115868009); the Open Project Program of Key Laboratory of Intelligent Computing \& Information Processing of Ministry of Education in Xiangtan University (2011ICIP04); the Program of 211 Innovation Engineering on Information in Xiamen U niversity (2009-2011); the College Students Innovation Training Plan of Xianmen University.

