火焰曲率对 H₂ 扩散火焰 NO 排放 影响的数值研究

李 琼1 王培勇2,3 邢 菲4 邹建锋4

(1. 华侨大学机电及自动化学院,福建 厦门 361021;
2. 厦门大学航空系,福建 厦门 361005;
3. Department of Mechanical Engineering, Vanderbilt University, Nashville USA 37235;
4. 浙江大学航空航天学院,浙江 杭州 310027)

摘 要 使用不同的 H₂/O₂ 化学反应机理和 NO_x 化学反应机理模拟了平面对冲火焰。通过和实验数据比较确定了最优的化学反应机理。使用该化学反应机理模拟了管形对冲火焰。通过对比平面拉伸火焰和管形拉伸火焰,突出了火焰曲率对 H₂ 扩散火焰温度和 NO 排放的影响。分析显示正曲率提高火焰温度,负曲率降低火焰温度,由于 NO 生成对温度的敏感性,正曲率火焰的 NO 排放明显高于平面火焰,反之,负曲率火焰的 NO 排放大大低于平面火焰。

关键词 平面对冲火焰;管形对冲火焰;火焰曲率;NO 排放;差别扩散 中图分类号:TK16 文献标识码:A 文章编号:0253-231X(2011)11-1949-04

Flame Curvature Effect on NO Emission of the Hydrogen Diffusion Flame

LI Qiong¹ WANG Pei-Yong^{2,3} XING Fei⁴ ZOU Jian-Feng⁴

(1. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China;

2. Department of Aerospace Engineering, Xiamen University, Xiamen 361005, China;

3. Department of Mechanical Engineering, Vanderbilt University, Nashville 37203, USA;

4. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China)

Abstract The opposed jet H_2 diffusion flames are simulated with OPPDIF code and different H_2/O_2 and NO_x mechanisms. The simulations with 2004 UCSD NO_x mechanism and 2005 UCSD H_2/O_2 mechanism are identified to have the best agreement with the experimental flame temperature and NO emission. With those mechanisms, the tubular H_2 diffusion flames are simulated with modified OPPDIF code and compared with the plane opposed jet flames. The comparison result shows that the positive flame curvature enhances the preferential diffusion of H_2 and increases the flame temperature and NO emission; and vice versa for the negative curvature. The flame curvature can change the NO emission 6 times for the tested H_2 diffusion flames with constant stretch rate 100 s⁻¹.

Key words opposed jet flame; tubular flame; flame curvature; NO emission; preferential diffusion

0引言

碳氢燃料燃烧产生大量的二氧化碳,为应对温 室效应和全球环境保护的挑战,替代燃料的燃烧一 直受到燃烧工作者的关注。氢气作为一种很有希望 的替代燃料,正被考虑在许多实际燃烧设备中的应 用。和传统碳氢燃料相比,氢气燃料具有很多特性, 在传统燃烧设备中使用氢气燃料并不是一件直接了 当的事情。氢气的分子质量很小,和空气混合燃烧 时,氢气火焰展示出很强的差别扩散效果^[1,2]。这 种差别扩散会产生更高的火焰温度,拓展的熄火极 限。因为影响差别扩散,火焰曲率对火焰温度,火 焰结构,和熄火极限都有很重大的影响 [3-5],也会影响 NO_x 生成。

宏观的湍流火焰由很多的细微火焰结构组成, 这些细微结构中包含强曲率和强拉伸率的涡管^[6]。 但是湍流火焰的拉伸效果和曲率效果都很难进行实 验研究。对冲平面火焰燃烧器^[1]能够产生一维的平 面拉伸火焰,已经成为一个研究火焰拉伸效果的常 用工具。使用该燃烧器,火焰拉伸率对火焰参数、结 构、点火、熄火、NO_x 排放影响的研究已经有了长 足的发展。管形对冲火焰燃烧器^[3]由中心的圆柱喷

收稿日期: 2011-01-17; 修订日期: 2011-10-17

基金项目:国家自然科学基金资助项目 (No.10702064);中央高校基本科研业务费专项资金资助项目 (No.2010121045) 作者简介:李 琼 (1977-),女,湖北荆州人,专任教师,博士,主要从事湍流燃烧机理及 NO_x 排放研究。 嘴和外围的环形喷嘴构成。其流场、原理都和平面 对冲火焰燃烧器相似,能够形成完美的一维管形扩 散火焰;而且通过调节喷口速度,可以独立地调整 火焰拉伸率和火焰曲率。通过比较管形火焰和平面 火焰(相同拉伸率),可以体现火焰曲率对燃烧参数 的影响。对火焰曲率效果的研究能够加强燃烧工作 者对湍流火焰行为的理解从而开发出更精确的湍流 燃烧模型。精确的燃烧模型是开发高效低污染燃烧 设备的基础。

从 20 世纪 90 代开始, 燃烧科学家使用不同的 曲面火焰研究了火焰曲率和火焰温度、火焰结构、熄 火极限的关系。但是到目前为止, 尚无任何文献报道 火焰曲率对 NO_x 排放的影响。本文的主要目的就是 探索这一领域。因为氢气火焰基元化学反应相对简 单而且氢气火焰具有强烈的火焰曲率效果, 本文将 数值研究火焰曲率对 H₂ 扩散火焰 NO 排放的影响。

1 平面对冲扩散火焰

Rortveit^[7] 等实验测量了氢气扩散火焰的 NO 排放。实验使用的燃烧器喷口直径为20mm,喷口距 离为12.7 mm。实验中空气侧的拉伸率保持在100/s。 空气流量也保持为常数 99.7 cm³/s。 文献 [7] 研究了 H₂和 N₂、O₂、CO₂、HE 掺混的扩散火焰。本文仅 考虑 H₂ 和 N₂ 掺混的情况。为了选择较为准确的 H_2/O_2 化学机理和 NO_x 化学机理来计算管形火焰。 本文重复了文献 [7] 中的数值模拟 (化学机理来自文 献 [8])。 使用文献 [8] 提供的基元化学和 Chemkin3.6 的 OPPDIF 程序, 使用 Chemkin4.1 提供的传输数据 和热力学数据。传输模型使用了多组分气体扩散模 型和热扩散模型。模拟中使用了非常小的网格自适 应调节参数: GRAD 和 CURV 值均为 0.04 以保证计 算中使用足够多的节点 (大于 450 个节点) 从而确保 计算结果独立于节点数目。计算中也使用了非常严 格的收敛标准 (RTOL 1.e-10, ATOL 1.e-12, ATIM 1.e-12 and RTIM 1.e-10) 以减少计算截差。因为辐 射对氢气火焰温度的影响非常小, 量级在 5 K 左右 [7],所以本文计算中没有包含辐射模型。图 1 和图 2分别显示了计算的温度和 NO 排放与实验值的比 较。从图 1 中可以看出, 文献 [7] 的实验值和计算 值吻合良好。但是,使用同样的化学反应机理和边 界条件,本文不能重复文献[7]中的计算结果,最大 温度差别高达 90 K, NO 排放差别高达 23×10⁻⁶(体 积分数)。造成这种差别的原因目前尚不清楚。文 献 [7] 的作者加州大学 San Diego 分校的 Forman Williams 教授最近也发现了类似问题。Williams 教

授阐述使用旧版开源代码 Chemkin 时 (3.0 或以前版本), 计算结果一般能和 FlameMaster 的计算结果一致。Chemkin 程序商业化后 (3.6 或更高版本), 其计算结果与 FlameMaster 结果不一致。更糟糕的是, 使用 Cosilab 计算得到了第三组不同的数据。Williams 教授正在调查造成这种计算结果不一致的原因。为确保商业化的 Chemkin 和旧版 Chemkin 的计算结果一致,本文使用了不同版本的 Chemkin 超序计算了 30%H₂/70%N₂、45%H₂/55%N₂ 的实验点。计算中使用了开源旧版 3.0 和商业化的 3.6 和 4.1 版。计算结果表明火焰温度差别在 2 K 以内, NO 排放差别在 1×10⁻⁶ 以内。至少排除了对于本文研究的火焰,计算程序版本对火焰计算结果的影响。

因为文献 [9] 也使用了文献 [7] 中的实验数据去 验证化学反应机理,所以本文也使用了文献 [9] 中的 化学机理进行了计算。同时也下载了最新的 UCSD H₂/O₂ (20051201)和 NO_x (20041209)^[10] 机理进行了 计算。计算结果也显示在图 1 和图 2 中。文献 [9] 中 的 H₂/O₂ 机理来自于 Li^[11], NO_x 机理来自于 UCSD 和 Glarborg^[12],组合的机理分别称为 LiSD 和 LiG 机理。因为 Glarborg^[12] 机理也包含 H₂/O₂ 机理,所 以本文也使用了纯粹的 Glarborg 机理进行了计算。

从图 1 可以看出, 对于火焰温度, 所有的数值模 拟结果都低于实验值, 其中最新的 UCSD 机理的计 算结果最接近实验值, 最大误差为 31 K。文献 [7] 使 用热电偶测量温度, 然后对测量的温度进行辐射修 正, 此种方法误差较大, 作者相信 31 K 的温度误差 应该是在实验误差范围以内。所以最新 UCSD 机理 对于火焰温度的预测还是相当准确的。Glarborg 机 理计算结果与实验值差别最大, 低于实验值 100~150 K。因为 NO_x 机理对火焰温度影响非常小, 所以 LiG 和 LiSD 计算的火焰温度是相同的。使用 Li 机理和 最新 UCSD 机理计算的温度差别约为 20 K 左右。

图 2 显示了计算的 NO 排放和实验值的比较。 机理^[8],机理 LiSD^[9]和机理 SD^[10] 都是使用 UC-SD NO_x 基元反应。他们的计算结果很接近,除了 45%H₂/55%N₂的实验点都和实验值吻合良好。对 于该实验点, 文献 [7] 指出由于高温时 NO 和石英 抽气管发生催化反应, 读数小于实际的 NO 排放; 估算的实际 NO 排放高于测量值约 27%。使用这个 比例修正实验测量值,则实际值 27.3×10⁻⁶ 和计算 值非常吻合。虽然, 机理^[8] 和机理 LiSD^[9] 预测的 NO 排放准确,但是由于他们对于火焰温度预测的 不准确, 所以 NO 排放预测的准确性也不可靠 (NO_x 反应依赖于火焰温度和 NO_x 机理)。机理^[12] 预测 的火焰温度最低,相应的 NO 排放理论上应该也最 低, 然而计算的 NO 却是最高。LiG^[9] 的计算值也 明显高于测量值。综上所述,最新的 UCSD H₂/O₂ 机理和 NO_x 机理是本文测试机理中最为准确的一 个,温度预测精度在 30 K 以内, NO 排放预测精度 在 2×10⁻⁶ 以内。后面对管形火焰的计算都是采用 此机理。因为管形对冲火焰的结构、机理都和平面 对冲火焰类似,作者认为使用上述机理预测管形火 焰的结果也应是可靠的。

2 管形对冲扩散火焰

文献 [3] 给出了管形火焰控制方程的详细描述。 管形火焰的计算程序是将 OPPDIF 中的控制方程修

改而得。对于氢气扩散火焰, 文献 [3] 显示数值模拟 和实验测量吻合良好,从而证明了程序的可靠性和 计算精度。文献 [3] 也给出了管形对冲火焰的拉伸率 和火焰半径的表达式。与文献 [7] 一致, 对于管形火 焰,本文也使用空气侧拉伸率代表火焰拉伸率。对于 扩散火焰,燃料流和氧化剂流分别在火焰的两侧,所 以火焰表面正曲向(凸向)某一流,负曲向(凹向)另 一流。因为火焰曲率效果和差别扩散效果相关,而空 气流的 Le 是 1, 没有差别扩散效果。所以本文相对 于燃料流来定义火焰曲率的正负。如果燃料流从外 侧环形喷嘴喷出,则火焰具有正曲率,反之亦然。对 于管形火焰, 计算仅针对燃料配比为 45%H₂/55%N₂ 的情况,火焰拉伸率也固定为 100/s; 计算结果显示 在图 3 和图 4 上。与文献 [3] 一致, 因为燃料流的 Le 小于 1, 差别扩散的效果是提高火焰温度, 正曲 率加强差别扩散,火焰温度高于平面火焰,反之,负 曲率削弱差别扩散效果,火焰温度低于平面火焰。而 且火焰温度和平面火焰温度的差别随着火焰半径的 增大(曲率等于半径的倒数,半径增大,曲率降低) 而减少。这和文献 [3] 的结论一致:火焰曲率效果正 比于火焰厚度和火焰半径的比值。随着火焰半径增 大, 管形对冲火焰趋向平面对冲火焰。如果取温度 曲线的半高全宽来定义火焰厚度的话,那么对应于 100/s 拉伸率的火焰厚度约为 3 mm。对于小火焰半 径算例,火焰厚度和火焰半径的比值在1这个量级,

Fig. 3 Flame temperature variation with flame radius

火焰曲率效果非常明显。从图 3 的数据可以看出,对 于同样的火焰拉伸率,由于火焰曲率不同,火焰温度 差别可以高达到近 300 K。因为 NO 排放是火焰温 度的敏感函数,所以火焰曲率对 NO 排放的影响也 是非常显著的。正曲率火焰产生更多的 NO,负曲率 火焰产生更少的 NO。从图 4 的数据可以看出,对于 同样的火焰拉伸率,由于火焰曲率不同,NO 的排放 可以相差达 6 倍。由此可见,对于火焰曲率效果的 理解和在湍流火焰模拟中的应用对准确预测污染物 的排放非常重要。

3 分析讨论

 NO_x 的生成来源包含热力型,快速型, N₂O 机 制, NNH 机制。氢气火焰因为没有 CH 根离子, 所 以不存在快速型机理 NO_x。对于高温氢气火焰 (2100 K 以上), NO 的生成机理主要是热力型, 占到 90% 以上^[7]。对于低温氢气火焰 (1800 K 左右), N₂O 和 NNH 机理各能贡献到总 NO 排放的 25% 左右。而 且温度提高对热力型 NO_x 的影响较 N_2O 和 NNH机理要强很多。上面计算的曲面火焰因为最低温度 是 1925 K, 所以 NO 排放以热力型为主。为考证火 焰曲率对 NO 排放的影响是否仅来自火焰温度的变 化, 亦或还通过其他因素产生影响。图 5 显示了文中 所有使用最新 UCSD 机理的计算点。可以看出 NO 体积分数的自然对数和温度的倒数成线性关系;也 就是说,对于本文的算例,NO 的生成可以用近似 的一步化学反应表达。这也说明、火焰曲率对本文 算例 NO 排放的影响主要是通过影响火焰温度来实 现。图 5 中拟合线的斜率就是一步化学反应的活化 温度 26316 K。

4 结 论

本文使用了几种化学反应机理对平面对冲 H₂ 扩散火焰进行了数值模拟。通过和实验数据比较确 定了最新的 UCSD 机理能够准确地模拟火焰温度和 NO 排放。使用该机理,本文模拟了管形扩散火焰, 通过和平面火焰比较,进一步确认了火焰曲率对火 焰温度和 NO 排放的影响。对于同样的拉伸率,火 焰曲率对火焰温度的改变可以高达 283 K,对 NO 排 放的影响可以高达 6 倍。

参考文献

- Chung S H, Law C K. On the Flame-Sheet Assumption and Flame Temperature Determination in Combustion Modeling [J]. Combustion Science and Technology, 1984, 35: 297–310
- [2] Cuenot B, Poinsot T. Asymptotic and Numerical Study of Diffusion Flames with Variable Lewis Number and Finite Rate Chemistry [J]. Combustion and Flame, 1996, 104: 111–137
- [3] WANG P, HU S, Pitz R W. Numerical Investigation of the Curvature Effects on Diffusion Flames [J]. Proceedings of Combustion Institute, 2007, 31: 989–996
- [4] HU S, WANG P, Pitz R W, et al. Experimental and Numerical Investigation of Non-Premixed Tubular Flames
 [J]. Proceedings of Combustion Institute, 2007, 31: 1093– 1099
- HU S, Pitz R W, WANG Y. Extinction and Near-Extinction Instability of Non-Premixed Tubular Flames
 [J]. Combustion and Flame, 2009, 156: 90–98
- [6] Magnussen B. The Eddy Dissipation Concept [R]. 11th Task Leaders Meeting, IEA Working Party on Energy Conservation in Combustion, 1989, Orenas, Glumslov, Sweden
- [7] Rortveit G J, Hustad J E, Li S C, et al. Effects of Diluents on NO_x Formation in Hydrogen Counterflow Flames [J]. Combustion and Flame, 2002, 130: 48–61
- [8] Li S C, Williams F A. NO_x Formation in Two-Stage Methane-Air Flames [J]. Combustion and Flame, 1999, 118: 399-414
- [9] Skottene M, Rian K E. A Study of NO_x Formation in Hydrogen Flames [J]. International Journal of Hydrogen Energy, 2007, 32: 3572–3585
- [10] Williams F A. Sandiego20051201-CK.txt, NOXsandiego20 041209.mec [EB/OL]. [2010-5-10]. http://mae.ucsd.edu/ combustion/cermech
- [11] LI J, ZHAO Z, Kazakov A, et al. An Updated Comprehensive Kinetic Model of Hydrogen Combustion [J]. International Journal of Chemical Kinetics, 2004, 36: 566 575
- [12] Glarborg P, Alzueta M, Dam-Johansen K, et al. Kinetic Modelling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor [J]. Combustion and Flame, 1998, 115: 1–27