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Design of MEMS hybrid energy generator
for multi-frequency vibration
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Abstract: The design, modeling and simulation of a novel MEMS hybrid energy generator for multi-
frequency vibration is presented to meet the requirements of portable and wireless electronic devices
for collecting energy from the ambient environment. In this design, piezoelectric cantilever beams and
capacitors are combined for harvesting the hybrid vibration energy. Then, an analytical model is estab-
lished for the multi-frequency vibration energy harvesting system and a numerical simulation method is
used to predict the power output by using a MatLab/SIM U LINK. The result show s that the structure
can work efficiently in the frequency ranges of 630— 655 Hz, and the power output can reach about
13.46 W with a load resistance of 50 k{. Based on the result, an optimized multi-frequency hybrid
energy harvester is designed in this paper. In addition, the Finite Element A nalysis (FEA) of the
structure is carried out to prevent the structure failure. The work implemented by this paper show s
that the next generation design with a wider frequency range and a higher power output within a smal-
ler structure volume is expectant.
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1 Introduction

Since the current use of batteries as the power
source for portable and wireless electronics re-
sults in periodic replacement actions, harvesting
power from vibration source existing in environ-
ment draws a great attention all over the world.
Typically, vibration energy can be converted to
electrical energy utilizing three mechanisms: e-
lectrostatic, electromagnetic, and piezoelectric
effects " . Contrastively, electromagnetic mech-
anism is difficult to fabricate with MEMS tech-
niques. Meanwhile piezoelectric and electrostatic
(capacitive) mechanisms are easier to be inte-
grated in micro-systems, although an additional
bias voltage is required for capacitive convert-
ers . Generally, vibration energy harvesters
are based on the widely used mass-spring-damp-
ing model. Energy generators provide the maxi-
mum output when operated at resonance, and
they are inefficient when the driving frequency
from environment changes over a range. Thus,
itis advantageous to create a device that can op-
erate effectively over a frequency range. Many
efforts have been made to broaden the working
frequency range of energy harvesting device.
Jing-Quan Liu et al. developed a piezoelectric
power generator array, which can provide a
maximum power output of 3.98 #W in the fre-
quency range of 200— 400 HZ?. Vinod R Challa
et al. developed a magnetic-based approach to
successfully harvest vibrations within frequency
range of 22— 32 Hz using a piezoelectric cantile-
ver beam with a natural frequency of 26 HZY.
However, some of these structures are larger
than most M EMS devices and difficult to be inte-
grated with MEMS. Furthermore, because most
sources in ambient vibrations are in low frequen-

cy <1000 Hz), working frequency range of

the energy harvesters need to match these range

for optimizing output power density.

In this paper, a novel design of hybrid energy
generator for multi-frequency energy harvesting
is presented. The design combines the capacitive
transduction principle with the piezoelectric
transduction principle, which makes the struc-
ture to convert vibration energy to electrical en-
ergy efficiently in a frequency range of 630 —

655 Hz.

2 Design and modeling for hybrd

energy harvester

2.1 Design principle

Structure of the hybrid energy harvesteris sche-
matically shown in Fig. 1 (for a better perspec-
tive, the upper part which should be parallel to
the lower part has not been rightly positioned).
Two seismic masses are respectively suspended
by four PZT cantilever beams. Pt and Al elec-
trodes are sputtered on the opposite surface of
the two masses, which provide an external bias
voltage of 2.27 V for charging the capacitor due
to working function difference. Different thick-
ness of the two masses differentiates the natural
frequency of the upper and lower piezoelectric
converter. When the structure is stimulated by
external vibration, PZT film on cantilever beam
will be tensed or compressed, which in turn in-
duces charge shift and accumulation due to 31

mode piezoelectric effect used in this design.

Pt electrode

Fig. 1  Opened structure
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Meanw hile, the displacements of the two masses
alter the distance between the electrodes, and
charges will be generated and stored by outside
circuit. The physical principle for designed hy-

brid energy generator is shown in Fig.2.
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Fig.2 Principle model of the generator

2.2 Analytical modeling

Based on the mass-spring-damper model, the vi-

bration system can be presented as equation (1):

d’z . dz
I7 + (b tbe) T

m°a=—m °

+k oZ+Fe]e, (1)

where Fee is the electric field force between the
two electrodes and is given as equation (2);
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Where m, d, b"9 bey ka Aa Qy V, g€ Z are re-

, D)

spectively the mass, acceleration amplitude, me-
chanical damping ratio, electrical damping ratio,
elasticity coefficient, area of capacitor electrode,
charge in capacitor, bias voltage of the capaci-
tance, dielectric constant, and distance between
the two electrodes. z is determined by the dis
placements z1 and z2 from mass1l and mass2 re-
spectively, and the initial distance go between
the two masses is determined by
z=zi+tgo—z2. 3)
Current generated from the structure consists of
two parts: one part from the PZT on the cantile-

ver beams, and another part from the capacitive

generator. The two parts of current can be ex-

(sl
pressed as "~ ;
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Where C is the inherent capacitance of the capac-
itor, and ds15 Ypas Wpas [ are respectively the pi-
ezoelectric strain coefficient, Young s modulus of
PZT film, width of PZT film, and length of the
beam. In the equivalent circuit of this hybnd
structure, capacitive part can be considered as a
parallel connection of a fixed capacitor and an
AC current source. PZT film on cantilever beam
is also considered as parallel connection of inher-
ent capacitance of PZT and AC current source.
Since the system can be simplified as a linear

16

spring damper system ' power output of the

system can be presented as:

1., odze o,
P* 2 bn <dt) IR R
(4 ° I]zll—|_4 ° Iple+Ivap)2 ° R . (6)

3 Power output and discussion

ANSYS is utilized for structure optimization.
Natural frequency of the upper and lower piezoe-
lectric configuration are found as 605. 64 Hz and
636. 04 Hz. Optimized parameters of the struc-

ture are given in Tab. 1.
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Tab. 1 Important parameters

Symbol Description Value  Units
h Thickness of mass 1 500 Pm
h, Thickness of mass 2 450 Mm

/ Length of the device 10 000 Pm
I Length of the mass 6 000 Mm
Wi Width of cantilever beam 960 Mm
L Length of cantilever beam 9 000 “m

Initial distance between the
tw o capacitor electrodes

d Thickness of PZT film 1 Mm
On Quality factor 100

MatLab/SIMULINK is employed for the model
simulation. Fig. 3 and Fig. 4 show the power
output versus the amplitude and frequency of
stimulation vibration for both piezoelectric and
capacitive convertors. It can be seen that the
power outputs of both the piezoelectric and ca-
pacitive convertor increase with the amplitude of
stimulation vibration. For the piezoelectric part,
the power output reaches maximum at the reso-
nance frequency (605.8 Hz). But for the capaci-
tive parts the power output is not a strict reso-
nant mode, and comes in a range of frequency
due to the existence of electric field force Fele
turning resonance frequency of the upper and
lower cantilever beams.

As for the hybrid structure, since the ambient

vibration frequency may vary in a range, the op-
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Fig.3 Power output of cantilever beam
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Fig. 5 Equivalent circuit of hybrid system

timized load resistance in Fig. 5 is not a fixed
° C. Therefore, a
load resistance of 50 k{2 is applied in the system

value according to Ri = 1/w
circuit for simulation. Fig. 6 shows the power
output versus stimulation frequency. It can be
seen that the power output of this hybrid struc-
ture has two peak values, respectively at 637.1
Hz and 648 Hz. The maximum power output is
13.46 #W. In addition, the structure can work

efficiently in a frequency range of 630~655 Hz.
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Fig.6 Power output vs stimulation frequency



No. 6 CHEN Xu-yuan, et al.:Design of MEMS hybrid energy generator for -- 1371

4 Finite element analysis

Fig. 7 shows the resonant stress distribution of
the upper cantilever beams with a 500 #m mass.
An acceleration of 0.5g is applied to the struc-
ture, which is larger than the designed 0.2 g.
Maximum stresses mises on the upper and lower
beam are 31.5 MPa and 25.9 MPa. These two
the peak
strength of PZT-34. 5 MPa .

stresses

stresses are smaller than tensile

Actually these

Fig.7 Stress distribution
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