热带海洋学报 JOURNAL OF TROPICAL OCEANOGRAPHY

2015年第34卷第1期:56-63

海洋生物学 doi:10.3969/j.issn.1009-5470.2015.01.008

http://www.jto.ac.cn

基于 mtDNA 控制区序列的 3 个黑棘鲷群体遗传结构特性研究

施晓峰^{1,2},苏永全¹,王文成¹,王军¹

1. 厦门大学海洋与地球学院, 福建 厦门 361005;

2. 国家海洋局第三海洋研究所, 福建 厦门 361005

摘要:本研究通过控制区序列片段,分析来源于浙江东极(DJ)、广东澳头(AT)及海南万宁(WN)海域 3 个黑棘鲷 Acanthopagrus schlegelii 野生群体间的遗传多样性、遗传结构及群体历史动态。D-loop 基因序列测定结果表明,3个群 体 88 个个体长序列长度范围为 715~716bp,共定义了 59 个单倍型,单倍型多样性 0.949~0.985,核苷酸多样性 0.0068~ 0.00901,表明选取的 3 个野生群体都具有较高的遗传多样性水平;由 AMOVA 分析结果可以看出,东极与澳头 2 个群体 的遗传分化较为明显,其余群体间则无明显的遗传分化;构建的单倍型邻接关系树显示出 3 个群体未有明显的谱系结 构,从而支持了可将黑棘鲷南方群体归为同一个管理单元的观点;中性检验及核苷酸不配对分布表明黑棘鲷经历过更 新世晚期的群体扩张事件。地理历史事件、海流及人工增殖放流的影响可能是黑棘鲷各群体现有的遗传多样性和遗传 结构的主要原因。

关键词:黑棘鲷;遗传多样性;遗传结构特性;线粒体;控制区 中图分类号:Q953;Q958 文献标识码:A 文章编号:1009-5470(2015)01-0056-08

Population genetic structure of three stocks of *Acanthopagrus schlegelii* based on mtDNA control region sequences

SHI Xiao-feng^{1,2}, SU Yong-quan¹, WANG Wen-cheng¹, WANG Jun¹

1. College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China;

2. Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China

Abstract: In order to elucidate background information on the genetic diversity and population history of *Acanthopagrus schlegelii*, the genetic diversity, population genetic structure and demographic history of Dongji stock, Aotou stock and Wanning stock of the black porgy were analyzed based on the control region fragment of mitochondrial DNA in this study. The results showed that the sequences of 88 individuals of the three stocks were 715~716 bp in length and that there were 59 haplotypes. The value of haplotype diversity ranged from 0.949 to 0.985 and the nucleotide diversity, from 0.0068 to 0.00901. These results indicated that the three wild stocks presented a high level of genetic diversity. Significant population differentiation between Dongji stock and Wanning stock as well as between Aotou stock and Wanning stock. In addition, no obvious lineages and geographic clusters were found in the neighbor-joining tree, which supported the notion that unique management unit (MU) was recognized on the basis of the southern populations. Both neutrality tests and mismatch distribution analysis suggested a late Pleistocene population expansion for the three stocks. The genetic diversity and population genetic structure revealed were attributed to the absence of geographic barrier, influence of sea currents and human activities.

Key words: Acanthopagrus schlegelii; genetic diversity; genetic structure; mitochondrion; control region

作者简介:施晓峰(1986~), 男, 博士, 福建省晋江市人, 助理研究员, 博士, 从事海洋生物化学与分子生物学研究。E-mail: xiaofengshi@xmu.edu.cn 通信作者:王军。E-mail: junw@xmu.edu.cn

?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

收稿日期: 2013-10-27; 修订日期: 2014-05-04。林强编辑

基金项目:海洋公益性行业科研专项项目(201005013、201105012)

黑棘鲷(Acanthopagrus schlegelii Bleeker, 1854), 又称黑鲷、隶属鲈形目 (Perciformes)、鲷科 (Sparidae), 棘鲷属 (Acanthopagrus)(吴仁协等, 2011)、俗称乌格、乌额、黑结、乌翅等(朱元鼎、1985)、 在天然海域中, 喜栖于5~50m水深的沿岸带沙泥底 或多岩礁的清水环境中、为暖温性浅海底层肉食性 鱼类、对环境的适应能力强、主要分布于我国沿海 以及朝鲜、日本近海海域(朱元鼎、1985; 庄平 等、 2006)、是优质的海产经济鱼类、并在我国的海水 养殖鱼类中占据着重要地位(杨慧荣 等,2004)。然 而、海区生境破坏、过度捕捞以及养殖管理不当等 因素已致使养殖黑棘鲷品质明显退化、野捕黑棘鲷 产量也在逐年下降、其种质资源面临衰退的境况(蒋 宏雷 等, 2007; 许思思, 2011; 仲雷, 2007)。为保护 其种质资源、亟须制定和完善野生黑棘鲷的管理 与保护策略。

遗传变异是生物适应环境变化的物质基础,可 以揭示物种的历史演化进程、资源现状及其进化潜 力。因此,要达到合理开发利用及保护黑棘鲷种质 资源的目的,掌握其遗传背景必不可少,但目前对 黑棘鲷的相关研究更多集中于生物学特性、生态毒 理学及增养殖等方面(邓利 等,2003;梁君 等, 2010;朱爱意 等,2007)。尽管近几年对黑棘鲷的遗 传学研究已逐渐受到关注与重视(龚金波 等,2006), 但受采样范围、样本数等因素的限制,黑棘鲷在我 国分布区域内是否存在有不同的地方种(种群)以及

表1 黑棘鲷样品采集情况表

Tab. 1 Information of the sample collection of A. schlegelii

我国沿海黑棘鲷管理单元如何划分等问题仍未有最 终定论(杨慧荣 等,2004; 赵爽 等,2010)。商业活动 和增殖放流等人为因素的影响,也使对黑棘鲷遗传 结构变化的长期跟踪研究显得尤为重要。

作为巨大的遗传信息库,线粒体基因组为物种 保护、生物地理学和系统发育等方面的研究提供了 丰富的分子标记位点(Simon et al, 2006)。除此之外, 与核基因组相比,线粒体基因组被称为生物体种系 发生的"分子钟",具有母系遗传、分子结构简单、 无组织特异性、进化速率快且拷贝数多易于扩增的 优点,已成为目前物种遗传多样性分析中使用最广 的分子标记之一(史洁蔷, 2008;吴惠仙 等, 2009)。 本研究即采用线粒体DNA(mtDNA)标记技术,对海 南万宁、广东澳头和浙江东极3个黑棘鲷群体遗传多 样性及种群遗传结构特性进行研究,并探讨其群体 演化历史与分布动态,为评估我国黑棘鲷种质资源 状况、掌握其发展动态规律提供数据支持,也为黑 棘鲷的保护性开发、人工养殖及增殖放流工作提供 理论依据和指导。

1 材料和方法

1.1 样品采集

黑棘鲷样品采自 2011 年 5 月~2012 年 5 月,由 各采样点渔民协助采集,具体信息见表 1,采集的 样品体质量在 74.4~285.3g 范围内,体长范围 13.4~ 19.8cm, 肌肉组织样品于-20℃保存备用。

采样点	采样日期	采样点经纬度	样本数	保存
浙江东极周边海域(DJ)	2011 年 5 月	30°11′N, 41°23′E	29	95%酒精
广东澳头外海(AT)	2012年5月	22°42′N, 114°32′E	29	95%酒精
海南万宁(HN)	2012年5月	18°45′N, 110°28′E	30	95%酒精

1.2 基因组 DNA 的提取

基因组DNA的提取参照《分子克隆实验指南》 (萨姆布鲁克 等, 2002),取约20mg酒精保存的肌 肉,剪碎后超纯水洗涤以除去酒精,随后在含有 5μL蛋白酶K(20μg·L⁻¹)的DNA抽提液中消化至澄清, 酚氯仿法提取DNA,并利用琼脂糖凝胶电泳检测 DNA提取效果。

1.3 引物设计及控制区 PCR 扩增

基于黑棘鲷线粒体基因组全序列(GenBank序列 号JQ746035), 应用Primer Premiers 5软件设计引物 HDDloopF-54: 5'-CCTATTGCTCAGA GAAAAGGGATT-3' 及HDDloopR-43: 5'-CACG GGGCTTTTTAGGGACCATCT-3', 以黑棘鲷基因组DNA为模板,进行PCR扩增,反应 条件如下: ①95℃ 5min; ②32个循环: 94℃ 30s, 56℃ 30s, 72℃ 1min30s; ③72℃ 10min; ④4℃ Pause。产物通 过琼脂糖凝胶电泳检测扩增效果,送由北京六合华大 基因科技股份有限公司进行序列测定。

1.4 数据处理及分析

根据测序峰型图评估PCR扩增及测序的质量, 统一截取所测得序列中*tRNA^{Pro}*之后长715bp的 D-loop序列片段进行分析,通过ClustalX 1.83软件 (Thompson et al, 1997)对序列进行多重排定,以用

一个世代的时间跨度。

2.1 黑棘鲷 D-loop 序列分析

2 结果与分析

阶段已结束(庄平 等, 2006)、故本研究以3年作为其

测序结果经过校正后,获得的3个群体88个个

体D-loop基因序列、长度为715~716bp。序列比对共

检测出多态性位点67个, 而总的突变位点数为69,

包括了两个插入/缺失位点。澳头群体(AT)中共发现

有40个多态位点, 东极群体(DJ)有39个, 万宁群体

(WN)则含有32个。仅在万宁群体中表现为多态的位

点数为5个、澳头和东极群体的相应值为19和15个。

在总的变异中, A-G 转换(占总变异的 62.4%)明显地

大于 T-C 转换(占总变异的 35.4%), 而 A-C 颠换

(0.59%)和 A-T 颠换(0.72%)则多于 C-G 颠换(0.38%)

和 T-G 颠换(0.51%)。通过 MEGA5.0 软件进一步计

算得到 Ts/Tv=29.26、可见、位点的多态性主要为碱

基的转换, 所选取的黑棘鲷 D-loop 序列片段位点转

样性衡量标准、表2中各群体线粒体基因单倍型多

样性和核苷酸多样性说明了本研究所选取的3个野

生群体都仍具有较高的遗传多样性(单倍型多样性

Hd>0.5、核苷酸多样性 $\pi>0.5\%$)、这一结果可能起因

于物种在较大的空间尺度上存在着基因交流(Grant

根据Grant et al(1998)所界定的海洋鱼类遗传多

换和颠换未达到饱和、适用于遗传学研究。

图 1 为基因片段多态位点图、从图中可以看出、

此外,有14个位点在3个群体中均表现为多态。

于后续分析。

由DnaSP 4.10软件(Rozas et al, 2003)计算变异 位点数、单倍型数、各地理群体的核苷酸多样性及 单倍型多样性等遗传学参数;利用MEGA 5.0软件 (Kumar, et al, 2008)统计序列转换/颜换比率(Ts/Tv), 计算基于Kimura双参数模型的群体间遗传距离,并 以黄鳍棘鲷A. latus (NC 010977.1)为外群, 通过邻 接法(Neighbor-Joining, NJ)构建3个群体单倍型的邻 接关系树,可靠性采用1000次重复抽样来评估;借 助Arlequin 3.1(Excoffier, et al, 2005)估算群体间 的遗传分化指数F_{st},进行Tajima's D(Tajima, 1989) 和Fu's Fs(FU, 1997)中性检验以及核苷酸不配对 分析, 计算SSD(the sum of squared differences)值、 Harpending's指数 (Harpending's raggedness indices, Hir)、种群扩张前后的母系有效种群大小估计值(θ_0 $和 \theta_1$)以及用突变单位表示的种群扩张时间(τ)。基于 上述生物学软件分析得到的结果、由以下公式进一 步估算群体历史扩张时间:

$$\tau=2ut$$
 (1)

其中, *t*即是群体扩张至现在的时间; *u*为研究序列每 代的进化速率, 根据公式(1)计算获得,

$$u=2\mu k \tag{2}$$

公式中的k值为所分析的DNA片段的长度, μ是 每个核苷酸进化速率, 最终计算获得的近似扩张时 间(单位:年)为黑棘鲷经历一个世代所需时间乘以*t* 来获得(Lecomte et al, 2004)。在本研究中, D-loop的 核苷酸进化速率采用3%~10%每百万年进行计算 (Lee et al, 1995), 由于黑棘鲷存在性逆转现象, 而 野生黑棘鲷处于3龄鱼阶段时, 大部分个体性分化

表 2 黑棘鲷各群体的遗传多样性信息

 Tab. 2
 Molecular diversity indices for the two populations of A. schlegelii

D-loop	东极群体(DJ)	澳头群体(AT)	万宁群体(WN)	总体
样本个数	29	29	30	88
单倍型数	23	23	19	59
单倍型多样性(Hd)	0.985	0.983	0.949	0.987
核苷酸多样性(π)	0.00901	0.00959	0.0068	0.00867

et al. 1998).

2.2 遗传结构分析

对不同地理群体遗传多样性参数的分析表明, 在 88 个样本中共定义了 59 个单倍型(GenBank 号 KJ586516~KJ586574),其中万宁群体具有最低的单 倍型总数,为 19 个(表 2),其余两个群体的均为 23 个。单倍型在各群体中的分布上,澳头群体和东极 群体内特有单倍型较多,均为 16 个,而万宁群体仅 为 9 个(表 3)。以黄鳍棘鲷为外群建立的黑棘鲷 3 个 群体单倍型 NJ 系统树如图 2 所示,各节点的支持率 均较低(<30%),表明黑棘鲷的单倍型系统发生树的 拓扑结构比较简单,没有检测到与采样地点相对应 的分支,每个群体的单倍型都零散的分布于单倍型 的邻接关系树上,未有明显的谱系结构。AMOVA 分析结果显示,澳头和东极群体间的遗传分化指数 *F*_{st}最大,为 0.06082(*P*<0.01),表明澳头与东极群体 间存在一定程度的分化,而万宁群体与其他两个群 体间的分化不显著(表 4)。此外,群体间的遗传变异 仅占总变异的 3.69%,群体内的遗传变异占总变异 的 96.31%,说明各群体遗传变异主要来源于群体 内。基于 Kimura 双参数模型计算出东极与澳头、万

	11111	1111112222	2222222222	2222333333	4445555666	6666666666	6666666]
	3346712234	6778890001	1222233368	8889026789	0450369002	2333455666	6777788]
	1421970989	2345885784	5234903555	6788708577	5389725484	5678601126	7135649]
Hap_1	CAACCGTAAT	TTACTATTCC	CATTAAAACA	CCCTAAAAGA	CGGGACTGCA	TAGGTAGACA	AAGATCC
Hap_2		G					
Hap_3						G	C
Hap_4							C
Hap_5				G			
Hap_6			.G				G
Hap_7	G	.CG	G		.A		T
Hap_8					.A		T
Hap_9	.G	T	.CGG		.A		T
Hap_10	• • • • • • • • • • •	••••		• • • • • • • • • • •	• • • • • • • • • • •		T
Hap_11	• • • • • • • • • • •	••••	.G	• • • • • • • • • • •	.A	T	• • • • • • •
Hap_12			.G		.A		
Пар_13		••••	.G	A.	.A	• • • • • • • • • • •	• • • • • • •
Hap_14		••••			.AA	· · · · · · · · · · · · · · · · · · ·	• • • • • • •
Hap 16			.G	•••••	.A	•••••	
Hap_10					Λ		
Hap 18			GG		.A	• • • • • • • • • • •	
Hap 10	· · · · · · · · · · · · · · · · · · ·			··⊥····	.A	• • • • • • • • • • •	• • • • • • • •
Hap 20	т			π	Δ		
Hap 20	1			т	Δ		
Hap 22					Α	G	т
Hap 23			Т	G	.A		TT
Hap 24			Τ	G	.A	G	T.
Hap 25			Τ		.AAG	CG	T.
Hap 26	G.		Τ	Т	.A	.GG	
Hap 27	C		G	G	.A	G	
Hap_28	C	c	G	G	.A	G.G	
Hap_29	T	cc	G	G	.A	G	
Hap_30	T		G	G	.A	G	
Hap_31	TA		G	G		G	
Hap_32	T		$\ldots \ldots G$.TG	.A	G	T
Hap_33	T			.TG	.A	G	
Hap_34	T		GG		.A	A.G	
Hap_35	T		G	G	.A	G	
Hap_36	GC			G	.A	••••• G	
Hap_37	GC			G	.A	•••••• e	A
Hap_38	GC	• • • • • • • • • • •	Τ	G.G	.A	•••••	
Hap_39			т		.A		
Hap_40			· · · · · · · · · · · · · · · · · · ·	···C··G···	TAG		•••••
пар_41 Цар_42				· · · · · · · · · · · · · · · · · · ·	.AA	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Hap 43		II TT	т	G	.AC	G	
Hap 44		••••••	1		Δ	G	· · · · · · · · · · · · · · · · · · ·
Hap 45	G		тт	т с	Δ C	G	
Hap 46	G			т G	A C	G	
Hap 47	G	С		т G	Δ	CG	
Hap 48			. G		. A	G	G
Hap 49			.G	G	.A	CG	G
Hap 50				G	.A	CG G	
Hap 51		.c		G	.AT	G e	
Hap 52	TG			G	.AG	GG	
Hap 53	T			G	.AG	GG	
Hap_54				G	.A	G	
Hap_55	C		G	G	.A.A		
Hap_56			G	G	.A		
Hap_57			G	G	.A		.T
Hap_58			G	TG	.A		
Hap_59				G	.A		AT

图 1 黑棘鲷 3 个群体控制区变异位点图

Fig. 1 Variable sites of mitochondrial D-loop sequences in the three populations of A. schlegelii

宁群体的遗传距离分别为 0.010 和 0.008, 而万宁与 澳头群体间的遗传距离为 0.009, 表明澳头群体与 东极群体的差异相对较大, 与上述根据 *F*_{st}值所得出 的结论相一致。

2.3 群体历史动态

对黑棘鲷 3 个群体单倍型进行的核苷酸不配对 分布分析结果中,尽管观测到的核苷酸不配对分布 与群体扩张模型下的预期分布之间并不是完全吻合

单倍型	DJ	AT	WN	GenBank NO.	单倍型	DJ	AT	WN	GenBank NO.	单倍型	DJ	AT	WN	GenBank NO.
1			6	KJ586516	21		1		KJ586536	41			1	KJ586556
2	1			KJ586517	22		2	1	KJ586537	42		3		KJ586557
3	2			KJ586518	23			1	KJ586538	43		1		KJ586558
4	1			KJ586519	24		1		KJ586539	44	1			KJ586559
5	2			KJ586520	25		1		KJ586540	45		2		KJ586560
6	1			KJ586521	26	1			KJ586541	46			1	KJ586561
7		1		KJ586522	27	2			KJ586542	47		1		KJ586562
8	1			KJ586523	28	1			KJ586543	48			1	KJ586563
9		1		KJ586524	29	1			KJ586544	49		1		KJ586564
10	1		1	KJ586525	30	1			KJ586545	50	1			KJ586565
11	2		1	KJ586526	31			2	KJ586546	51		1		KJ586566
12	1			KJ586527	32	2			KJ586547	52	1			KJ586567
13	1			KJ586528	33			2	KJ586548	53			1	KJ586568
14		1		KJ586529	34		1		KJ586549	54		1	2	KJ586569
15		2	3	KJ586530	35		1		KJ586550	55	1			KJ586570
16			2	KJ586531	36	2			KJ586551	56			1	KJ586571
17		1		KJ586532	37	1			KJ586552	57			1	KJ586572
18		1	1	KJ586533	38			1	KJ586553	58		1		KJ586573
19		2		KJ586534	39		1		KJ586554	59			1	KJ586574
20		1		KJ586535	40	1			KJ586555					

表 3 黑棘鲷 59 个单倍型在 3 个群体中的分布

Tab. 3 Distribution of 59 haplotypes in A. schlegelii among the three stocks

(图 3),但 Tajima's D 检验及 Fu's Fs 检验结果均呈现 负值,且 Fu's Fs 统计检验均显著,而从 Harpending's 指数(*Hir*)和 SSD 值可以看出,基于观测值和模拟值 的拟合度检验结果显示为观测值与模拟值相吻合, 没有显著偏离群体扩增模型(growth expansion model) (p>0.05)(表 5),因此认为,黑棘鲷经历过群体扩张 事件。

基于各个群体的 τ 值, 计算获得东极群体的扩 张时间大约距今 0.254~0.076Ma(李成俊 等, 2010), 澳头群体扩张时间距今约 0.263~0.079Ma, 万宁群 体扩张时间距今 0.179~0.054Ma, 合并 3 个群体, 推 算扩张时期距今约 0.251~0.075Ma, 以上时间均处 于更新世(距今 2.59~0.01Ma)(姚玉鹏 等, 2010)晚期, 与赵爽 等(2010)的研究结果相一致。

3 讨论

物种的遗传多样性是其生存适应和发展进化的 前提,也是评价物种资源状况的依据之一,丰富的 遗传多样性水平将具有更高的进化潜力及环境适应 能力。在之前的研究中, 龚金波 等(2006)通过控制 区 5' D-loop 分析了取自深圳、北海和青岛的 3 个黑 棘鲷群体 72 个个体,共定义了 51 种单倍型,其单倍 型多样性平均为 0.9787,核苷酸多样性为 0.00886, 而各个群体中,北海群体遗传多样性最高,深圳群

体次之; 赵爽 等(2010)测定了辽宁营口、山东崂山、 福建福清、广东大亚湾、广西东兴各 10 尾黑棘鲷样 本的控制区序列、其平均单倍型多样性 0.987、核苷 酸多样性为 0.00916。本研究基于黑棘鲷线粒体控制 区第一高变区片段对海南万宁、广东澳头和浙江东 极的黑棘鲷群体进行分析,各群体同样显示出了较 高的单倍型多样性和核苷酸多样性水平(Hd>0.05, $\pi > 0.005$),与上述研究结果一致。通过与银鲳 Pampus argenteus(Peng et al, 2009)、 鳓鱼 Ilisha elongata(吴常文 等, 2009)、角木叶鲽 Pleuronichthys cornutus(朱叶 等, 2012)、 真鲷 Pagrus major(乐小亮 等, 2010)、棘头梅童鱼 Collichtys iucidus(郑德锋 等, 2011)、蓝圆鲹 Decapterus maruadsi(牛素芳 等, 2012a)及鲐鱼(Scomber japonicus)(牛素芳 等, 2012b) 等的进一步比较可以看出,我国大陆近海黑棘鲷资 源目前虽受到不同程度的破坏、但尚未影响到其遗 传多样性水平。黑棘鲷对环境的适应能力较强、能 耐受温盐的大幅度变化(庄平 等, 2006)、分布广泛、 广阔的生境决定了黑棘鲷较之其他鱼类、可能积累 更多的遗传变异,从而保持了较高遗传多样性。Jean et al(1998)通过 D-loop 开展台湾地区各海域黑棘鲷 的群体遗传学研究,得出的核苷酸多样性仅为 0.00232~0.00399, 表明台湾近海黑棘鲷种质资源有 别于其他海区、衰退颇为严重、同时也说明控制区

图 2 基于黑棘鲷控制区片段的 59 个单倍型 NJ 树

节点数字代表 2000 次 Bootstrap 统计分析后对该支的支持百分比 (≥30%)

Fig. 2 NJ tree of 59 haplotypes of *A. schlegelii* based on D-loop sequences.

的分析方法能够对黑棘鲷的种质资源状况做出描述。此外,台湾群体与其他群体之间多样性的显著 差异预示着台湾海峡可能是台湾岛与我国大陆近海 黑棘鲷群体间交流的地理阻隔。在本研究中的3个群 体中,海南群体的遗传多样性最低,表明该海域更迫 表 4 基于控制区序列的黑棘鲷 3 个群体间 pairwise *F*_{st} 矩阵(对角线下)及其相关 *P* 值(对角线上)

Tab. 4 Matrix of pairwise F_{st} values (below the diagonal) and *P* value (above the diagonal) among the three stocks of *A. schlegelii* based on control region sequences

群体	WN	DJ	AT
WN		0.1848	0.0142
DJ	0.0083		0.00
AT	0.0371*	0.0608*	

图 3 3 个黑棘鲷群体的核苷酸不配对分布图

a. WN; b. DJ; c. AT

Fig. 3 Mismatch distributions for the three stocks of *A*. *schlegelii*.

核苷酸差异

切需要采取相应的种质保护策略。

在群体演化历史与分布动态上,所估算的黑 棘鲷群体扩张时间处于新生代第四纪更新世最后 间冰期,结合黑棘鲷经历过近期群体扩张事件的 推论,黑棘鲷可能是在经历过第四纪冰川期之后, 由冰期避难所被压缩的生态系统中通过定殖过程

表 5 黑棘鲷 3 个地理群体基于 D-loop 序列的 Tajima's <i>D</i> (<i>D</i>), Fu's <i>Fs</i> (<i>Fs</i>)和不配对分布检验	
Tab. 5 Results of Tajima's D (D), Fu's Fs (Fs), mismatch distribution test (SSD), corresponding p-value, and	the
mismatch distribution parameter estimates based on A. schlegelii D-loop sequences in the three geographic stocks	

群体 —	Tajima's D		Fu's Fs		不配对分布检验				
	D	р	Fs	р	SSD	Hir	τ	$ heta_0$	$ heta_1$
DJ	-1.299	0.076	-12.788*	0.000	0.0054	0.0148	7.28	0.000	100.16
AT	-1.210	0.091	-12.189*	0.000	0.0045	0.0161	7.53	0.000	158.59
WN	-1.446	0.063	-8.145*	0.001	0.0079	0.0276	5.12	0.304	49.57
均值	-1.318	0.077	-11.041*	0.000	0.0060	0.0195	6.64	0.101	102.77
总体	-2.402*	0.000	-24.470*	0.000	0.0032	0.0118	7.2	0.002	99999.00

*P<0.05

(Colonization)形成了目前的地理格局。此外,海平 面剧烈升降及恶劣气候环境的影响、会直接影响 物种遗传多样性水平、而处于物种分布区南北缘 的群体结构在冰期地质因素作用下显得最为脆弱 (Hewitt, 1996), 万宁群体位于黑棘鲷分布区的南端, 可能受全球性冰期气候波动的影响、导致遗传多 样性水平的降低, 致使其遗传多样性低于其他两 个群体。

从构建的系统进化树及AMOVA分析结果可以 看出,3个黑棘鲷群体间并没有明显的遗传分化。鱼 类不同地理群体卵和幼体随水体的扩散、栖息海域 的重叠以及缺乏有效的地理屏障、地质事件形成的 阻隔等、常会表现为在较大地理尺度下无明显遗传 分化的现象(Zeng et al, 2012)。黑棘鲷为浅海底层鱼 类、一般在5~50m水深的沿岸带移动、不做远距离 洄游(庄平 等, 2006)、洋流可能成为黑棘鲷群体同 质性的主要原因。当卵或孵化幼体被动地随洋流漂 移时、群体间基因交流便有可能在一定的地理范围 内发生(孙冬芳 等, 2010)。黑棘鲷浮性卵和幼体浮 游生活期可能促使其随海流向周边区域的扩散。且 据测算、中国沿岸流、台湾暖流等流系的流动速率 可达到0.25m·s⁻¹以上、能够使幼体的扩散距离达到 100km(Hwang et al, 2005)。黑棘鲷广布于我国沿海地 区, 我国沿岸流、东海暖流、南海暖流、台湾暖流等 不同洋流的交互影响(李乃胜 等, 2000), 均加强了受 精卵及孵化幼体随洋流运动的扩散、此外、本研究中 的3个群体所在海域间均无明显的地理阻隔,这就促 成了不同群体间的连续性分布、使得群体间高的基 因交流掩盖了遗传漂变效应,最终导致黑棘鲷各群 体间缺乏明显遗传结构。该研究结果也支持了赵爽等 (2010)将南方群体(福建以南海域)统归为一个管理单 元(management unit, MU)的观点。广泛的基因交流也 是黑棘鲷在其渔业资源受到威胁与破坏的背景下依 然保持较高的遗传多样性水平的重要因素。

为了恢复业已衰退的海洋渔业资源,自20世纪 80年代以来、我国沿海多个省市均陆续开展过黑棘 鲷的标志放流工作,已获得一定的生态效益和社会 效益、但也人为加大了不同地区苗种的基因交流、 对野生种群结构的影响不容忽视。本研究中, 澳头 群体与其他两个群体间均有较大的遗传分化指数, 万宁与东极群体虽地理距离更远但并无明显分化, 不同地域间种质资源的人为交流(如人工放流活动) 可能是造成这一结果的重要因素。然而,由于放流 鱼苗的来源信息在历次的标志放流活动的报道中少 有涉及, 放流活动对群体遗传结构的影响仍有待进 一步的探究。

为了实现对黑棘鲷野生资源的保护与合理利用. 需制定更为科学的渔业资源保护措施,在不损害野 生资源的前提下增加整个种群规模和生长率、以优 化渔业资源结构。此外,尽管我们从遗传学角度并 未直接检测到黑棘鲷遗传多样性降低的状况、但其 渔业资源现状并不容乐观。黑棘鲷的种质资源保护 仍不可忽视、本研究的结果可为制定合理的管理策 略提供一定的理论依据。

参考文献 -

- 邓利, 张为民, 林浩然. 2003. 盐度变化对黑鲷生长激素及其受 体的影响[J]. 热带海洋学报, 22(6): 9-14.
- 龚金波,苏天凤,夏军红,等. 2006. 中国近海黑鲷线粒体 DNA 控制区序列多态性分析[J]. 南方水产, 2(4): 24-30.
- 蒋宏雷, 吴雄飞, 石刚德, 等. 2007. 真鲷与黑鲷杂交子一代的 胚胎发育[J]. 河北渔业, 14(2): 40-42.
- 乐小亮, 章群, 赵爽, 等. 2010. 中国近海真鲷遗传变异的线粒 体控制区序列分析[J]. 广东农业科学, 31(2): 136-139.
- 李乃胜, 赵松龄, 瓦西里耶夫. 2000. 西北太平洋边缘海地质 [M]. 哈尔滨: 黑龙江教育出版社: 435-446.
- 李成俊, 骆振福, 邓群, 等. 2010. 地学时间单位 Ma和 Myr 及其 派生单位用法的探讨[J]. 煤田地质与勘探, 38(2): 79-80.

- 梁君, 王伟定, 林桂装, 等. 2010. 浙江舟山人工生境水域日本 黄姑鱼和黑鲷的增殖放流效果及评估[J]. 中国水产科学, 17(5): 1075–1084.
- 牛素芳, 苏永全, 王军, 等. 2012a. 福建近海蓝圆鲹群体遗传结 构分析[J]. 厦门大学学报: 自然科学版, 51(4): 759–766.
- 牛素芳, 苏永全, 钟声平, 等. 2012b. 福建近海 2 个鮐鱼群体遗 传结构与遗传多样性分析[J]. 台湾海峡, 31(4): 509–516.
- 萨姆布鲁克, 拉塞尔. 2002. 分子克隆实验指南[M]. 北京: 科学 出版社: 463-470.
- 史洁蔷. 2008. 长江流域两种新银鱼分子生态学初步研究[D]. 北京: 首都师范大学: 71.
- 孙冬芳, 董丽娜, 李永振, 等. 2010. 南海北部海域多齿蛇鲻的 种群分析[J]. 水产学报, 9(34): 1387–1394.
- 吴常文, 许逸天, 吕振明, 等. 2009. 基于 D-LOOP 基因的中国 沿海鳓鱼 (*llisha elongata*) 种群遗传结构研究[J]. 海洋与 湖沼, 40(3): 330-337.
- 吴惠仙,徐雪娜,薛俊增,等. 2009. 中国沿海三疣梭子蟹的遗 传结构和亲缘关系分析[J]. 海洋学研究, 27(3):48-53.
- 吴仁协,刘静,樊冀蓉,等. 2011. 黑棘鲷的命名和分类地位探 究[J]. 海洋科学, 35(5): 117–119.
- 许思思. 2011. 人为影响下渤海渔业资源的衰退机制[D]. 青岛: 中国科学院研究生院 (海洋研究所): 149.
- 杨慧荣, 江世贵, 周发林, 等. 2004. 3 个不同地理群体黑鲷遗传 变异的 RAPD 分析[J]. 中国水产科学, 11(3): 185–189.
- 姚玉鹏, 刘羽. 2010. 第四纪作为地质年代和地层单位的国际争 议与最终确立[J]. 地球科学进展, 25(7): 775–781.
- 郑德锋,赵金良,周文玉. 2011. 棘头梅童鱼线粒体控制区的序 列变异与群体遗传结构[J]. 渔业科学进展, 32(2): 34-40.
- 仲雷. 2007. 海水池塘养殖黑鲷技术简介[J]. 齐鲁渔业, 24(11): 12.
- 朱爱意,谢佳彦,章韶兵. 2007. 黑鲷耗氧率昼夜变化及与体 重、水温的关系研究[J].南方水产,3(6):63-66.
- 朱叶,章群,李贵生,等. 2012. 中国近海角木叶鲽 (Pleuronichthys cornutus) 种群遗传多样性研究[J]. 海洋通报, 31(5): 552-556.
- 朱元鼎. 1985. 福建鱼类志[M]. 福州: 福建科学技术出版社: 1023-1025.
- 庄平, 王幼槐, 李圣法. 2006. 长江口鱼类[M]. 上海: 上海科学 技术出版社: 217-218.
- 赵爽, 章群, 乐小亮, 等. 2010. 中国近海 5 个黑鲷地理群体的 遗传变异[J]. 海洋科学, 34(2): 75–79.
- EXCOFFIER L, LAVAL G, SCHNEIDER S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis[J]. Evol Bio OL, 1: 47–50.
- FU YUNXIN. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 147(2): 915–925.
- GRANT W S, BOWEN B W. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from

sardines and anchovies and lessons for conservation[J]. J Hered, 89(5): 415–426.

- HEWITT G M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation[J]. Biol J Linn Soc, 58(3): 247–276.
- HWANG J S, WONG C K. 2005. The China Coastal Current as a driving force for transporting *Calanus sinicus* (Copepoda: Calanoida) from its population centers to waters off Taiwan and Hong Kong during the winter northeast monsoon period[J]. J Plankton Res, 27(2): 205–210.
- JEAN CHUENTAN, LEE SINCHE, CHEN CHETSUNG, et al. 1998. Variation in mitochondrial DNA sequences of black porgy, *Acanthopagrus schlegeli*, in the Coastal Waters of Taiwan[J]. Zool Stud, 37(1): 22–30.
- KUMAR S, NEI M, DUDLEY J, et al. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Brief Bioinform, 9(4): 299–306.
- LECOMTE F, GRANT W S, DODSON J J, et al. 2004. Living with uncertainty: genetic imprints of climate shifts in East Pacific anchovy (*Engraulis mordax*) and sardine (*Sardinops sagax*)[J]. Mol Ecol, 13(8): 2169–2182.
- LEE W J, CONROY J, HOWELL W H, et al. 1995. Structure and evolution of teleost mitochondrial control regions[J]. J Mol Evol, 41(1): 54–66.
- PENG SHI-MING, SHI ZHAO-HONG, HOU JUN-LI, et al. 2009. Genetic diversity of silver pomfret (*Pampus argenteus*) populations from the China Sea based on mitochondrial DNA control region sequences[J]. Biochem Syst Ecol, 37(5): 626–632.
- ROZAS J, SÁNCHEZ-DELBARRIO J C, MESSEGUER X, et al. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 19(18): 2496–2497.
- SIMON C, BUCKLEY T R, FRATI F, et al. 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA[J]. Annu Rev Ecol Evol Syst, 37: 545–579.
- TAJIMA F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 123(3): 585–595.
- THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res, 25(24): 4876–4882.
- ZENG LIYAN, CHENG QIQUN, CHEN XIAOYONG 2012. Microsatellite analysis reveals the population structure and migration patterns of *Scomber japonicas* (Scombridae) with continuous distribution in the East and South China Seas[J]. Biochem Syst Ecol, 42: 83–93.