View metadata, citation and similar papers at core.ac.uk

2014 年

ENVIRONMENTAL CHEMISTRY

April 2014

DOI: 10.7524/j.issn.0254-6108.2014.04.008

4 月

地表水中致癌芳香胺的高效液相色谱-串联质谱直接测定方法^{*}

温裕云^{1,2} 陈 婷¹ 陈志华² 欧 延² 弓振斌^{3**}

(1. 厦门大学海洋与地球学院,厦门,361102; 2. 福建远东技术服务有限公司,泉州,362006;3. 厦门大学环境与生态学院,厦门,361102)

摘 要 建立了超高效液相色谱-串联质谱(UHPLC-MS/MS)快速直接测定地表水中致癌芳香胺物质的方法. 样品采集后 用 0.22 μm 的聚四氟乙烯(PTFE)滤膜过滤 用 C18 RRHD 色谱柱进行梯度洗脱分离 ,流动相为 甲醇和水 采用电喷雾正离子模式 ,并采用多反应监测模式(MRM)测定 ,外标法定量.方法重点优化了色谱分 离条件、质谱碎裂电压、碰撞能量 ,考察了流动相中甲酸铵或甲酸浓度对目标化合物响应的影响.23 种组分不 同浓度水平的加标回收率在 70.3%—119.8%之间 相对标准偏差在 2.1%—10.2% (*n*=7)之间 ,方法的定量限 (LOQ)在 0.01—2.0 μg•L⁻¹之间.方法具有操作方便、灵敏度较高、快速准确的优点 ,能为环境水体污染源监 测、饮水安全提供技术保障.

关键词 地表水, 致癌芳香胺, 液相色谱-串联质谱, 直接测定.

Direct determination of carcinogenic aromatic amines in surface water by UHPLC-MS/MS

WEN Yuyun^{1 2} CHEN Ting¹ CHEN Zhihua² OU Yan² GONG Zhenbin^{3**}

(1. College of Ocean and Earth Science , Xiamen University , Xiamen , 361102 , China;

2. Fareast Testing & Technology Services Co. Ltd , Quanzhou , 362006 , China;

3. College of Environment and Ecology , Xiamen University , Xiamen , 361102 , China)

Abstract: A rapid method was developed for the quantitative determination of 23 carcinogenic aromatic amines in surface water by ultra high performance liquid chromatography tandem electrospray ionization mass spectrometry (UHPLC-MS/MS) . After water sample was collected , it was filtered with a 0. 22 μ m polytetrafluoroethylene (PTFE) membrane , and then the target compounds were separated on a C18 RRHD column , gradient eluted with methanol and water , and determined by positive electrospray ionization mass spectrometry with multiple reaction monitoring mode (MRM) . Quantitative analysis was performed with external standard calibration method in the study. UHPLC separation condition , concentration of ammonium formate and formic acid in mobile phase , fragmentor voltages , and collision energies were optimized. The relative standard deviation (RSD) of the developed method was in the range of 2. 1%—10. 2% (n = 7). Standard added recoveries in sample matrix ranged from 70.3% to 119.8%. The limit of quantification (LOQ) was from 0.01 to 2.0 μ g • L⁻¹. The proposed method is easy to operate , highly sensitive , fast , and accurate.

Keywords: surface water, carcinogenic aromatic amines, ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), direct determination.

²⁰¹³年9月5日收稿.

^{*} 环保公益性行业科研专项(201309007)及远东技术服务有限公司委托项目.

^{**}通讯联系人: Tel & fax: 0592-2186572; E-mail: zbgong@ xmu.edu.cn

或潜在致癌作用^[1] 因此 美国、日本等国将某些 AAs 列入水质监测的主要项目或优先监测的污染物黑 名单 ,我国的《地表水环境质量标准》(GB 3838—2002)已将苯胺和联苯胺列为集中式生活饮用水地表 水源地特定项目 ,规定苯胺和联苯胺的标准限值分别为 100 μg•L⁻¹和 0.2 μg•L⁻¹ ,现有法规虽然没有明 确规定其他 AAs 组分在环境水体的限量 ,但因其具有潜在致癌性而受到关注 ,多国的消费品(食品包装 材料、纺织品、皮革制品、玩具等)法规对产品中的至少 22 种 AAs 组分有严格的限量标准^[2-4] 因此 ,建立 地表水中多种 AAs 的快速测定方法对污染源监测、饮水安全、环境保护具有重要现实意义.

目前测定水体中 AAs 的方法主要有分光光度法(N-(1-萘基)乙二胺重氮偶合比色法,GB 11889— 89)^[5]、液相色谱法(HPLC)^[6-9]、气相色谱法(GC)^[10-12]、气相色谱-质谱法(GC-MS)^[13-15]、液相色谱-质 谱法(LC-MS)^[16-18]等.分光光度法操作简便,费用低廉,但灵敏度较差,不能同时测定多种组分;HPLC、 GC 和 GC-MS 法能同时测定多种组分,灵敏度和分离度都较高,但由于环境水体中的 AAs 浓度较低,均 需经过液-液萃取或固相萃取-富集浓缩的前处理过程,操作繁琐、耗时长、需用大量有机溶剂、既不环保 也不经济.超高效液相色谱-三重串联四极杆质谱(UHPLC-MS/MS)以其优异的定性、定量性能,近年来 在环境污染物测定中得到广泛应用,但其应用于地表水中多种 AAs 直接测定方面还鲜有报道.

本文系统优化了色谱、质谱条件,建立了 UHPLC-MS/MS 直接进样测定水体中 23 种 AAs 的定性、定量方法,具有灵敏度较高、操作方便、快速准确的优点.

1 实验部分

1.1 主要仪器与试剂

Agilent 1290 液相色谱仪; Agilent 6460 三重串联四极杆质谱仪(美国 Agilent 公司),系统配置: Agilent JetStream Technologies (AJS) 电喷雾离子源(ESI) 接口, MassHunter 工作站软件. Mili-Q Gradient 超纯水仪(美国 MILIPORE 公司); 聚四氟乙烯(PTFE) 针式过滤膜(φ13 mm 0.22 μm,天津津腾实验设 备有限公司).

23 种芳香胺标准物质(购自 Dr. Ehrenstorfer GmbH 公司,纯度均大于 95%),各组分的名称见表 1; 甲醇、乙腈(LCMS 级,购自美国 Merck 公司);甲酸铵、甲酸为 LCMS 级(Sigma 公司);

1.2 标准溶液的制备

用分析天平(0.0001 g) 准确称取各 AAs 标准品 ,用甲醇配制成浓度为 100 mg•L⁻¹的混合标准储备 液.4 ℃下保存 ,使用前用初始流动相配制成实验所需浓度.

1.3 样品采集与处理

用 125 mL 的磨口棕色玻璃瓶采样,取样时应使水样沿瓶壁缓慢注入瓶中,并用铝箔和棉线扎紧瓶 塞密封.样品采集后应置于冷藏箱运输,在4℃冰箱中保存,最长保存时间为24 h,应尽快分析.

上机前 将上述采集的水样经 0.22 μm PTFE 滤膜过滤后 ,准确量取 9.0 mL 并加入 1.0 mL 甲醇 ,混 匀后 ,直接进样测定.

1.4 UPHLC-MS/MS 测定条件

色谱条件: 色谱柱: Zorbax Eclipse XDB-C18 RRHD(2.1 mm×50 mm, 1.8 µm),流动相为甲醇 (MeOH)和水,流速0.4 mL•min⁻¹ 梯度洗脱:0-2.0 min, 10%-30% MeOH; 2.0-4.0 min; 30%-40% MeOH; 4.0-7.0 min, 40%-90% MeOH; 7.0-8.0 min, 90% MeOH 柱温40℃ 进样量: 5.0 µL 后运行 时间:2 min.

质谱条件: 电喷雾正离子模式(ESI+); 干燥气温度: 350 ℃; 干燥气流速: 8 L•min⁻¹; 雾化器压力: 35 psi; 鞘气温度: 380 ℃; 鞘气流速: 10 L•min⁻¹; 毛细管电压: 4000 V; 喷嘴电压: 500V; EMV 电压: 300 V. 定性和定量采用多重反应监测(MRM) 模式,具体参数见表1,采用外标法定量.

2 结果与讨论

2.1 色谱条件的优化

实验考察了甲醇/水、乙腈/水两种流动相对 AAs 离子化效率的影响.结果表明,AAs 在甲醇/水、乙 腈/水或其含有甲酸铵、甲酸的流动相中主要形成 [M+H]⁺母离子,甲醇/水作为流动相时,大多 AAs 在 质谱上的响应明显优于乙腈/水,因此采用甲醇/水为流动相,并且采用梯度洗脱技术,提高各组分间分 离度、改善峰型、缩短分析时间,尽可能减小各组分 AAs 在共流出时导致离子化过程中的相互抑制,优 化后的梯度洗脱程序见"1.4 节"中的色谱条件.23 种 AAs 在最佳色谱条件下的保留时间数据见表 1,分 离情况见图 1,可见大多组分得到较好的分离且分析时间为 7.5 min.

图 1 23 种芳香胺 MRM 色谱图 (5.0 µg•L⁻¹ 以定量离子对为例 编号对应于表 1) Fig.1 MRM Chromatogram of 23 AAs (5.0 µg•L⁻¹, the numbers correspond to the ones in Table 1)

2.2 质谱条件的优化

为了获得最佳的定性定量 MRM 参数 ,分别对 1.0 mg·L⁻¹的单组分标准溶液进样 ,并采用仪器自带的优化软件 Optimizer 对碎裂电压(Fragmentor)、碰撞能量(Collision energy, CE)、MRM 离子对进行优化 得到的最佳 MRM 采集参数见表 1.

	Table	1 MRM cor	nditions for	r the target AAS	compounds		
No.	化合物名称	CAS No.	$t_{\rm R}/{ m min}$	母离子/(m/z)	碎裂电压/V	子离子/(m/z)	CE/V
1	4-氨基联苯	92-67-1	5.74	170	130	152.1* 77	33 48
2	联苯胺	92-87-5	2.58	185	110	167.1* 115	29 45
3	4-氯邻甲苯胺	95-69-2	4.88	142	110	106.1* 89	29 33
4	2-萘胺	91-59-8	4.55	144	110	127.1 [*] 77.1	21 37
5	邻氨基偶氮甲苯	97–56–3	6.85	226	110	91.1* 65.1	21 45
6	对氯苯胺	106-47-8	3.36	128	90	93.1* 75.1	17 37
7	2 4-二氨基苯甲醚	615-05-4	1.08	139	90	124.1 [*] 108.1	13 13
8	4 A′-二氨基二苯甲烷	101-77-9	3.87	199	150	106.1* 77.1	21 50

表1	日标	AAs	组分的	MRM	分析参数
11 +	H 10	11110		11110111	J1/1 2 XX

33	卷
	_

							续表1
No.	化合物名称	CAS No.	$t_{\rm R}/{ m min}$	母离子/(m/z)	碎裂电压/V	子离子/(m/z)	CE/V
9	3 3-二氯联苯胺	91-94-1	6.02	253	130	182.1* 217.1	29 17
10	3 3′-二甲氧基联苯胺	119-90-4	4.30	245	110	187.1 [*] 230.2	33 13
11	3 3′-二甲基联苯胺	119-93-7	4.34	213.	130	180.1 [*] 198.2	33 17
12	4 4~-二氨基-3 3-二甲基二苯甲烷	838-88-0	5.52	227	150	120.1* 77.1	25 50
13	2-甲氧基-5甲基苯胺	120-71-8	3.92	138	90	123.1 [*] 77.1	13 37
14	4 A´-二氨基-3 3-二氯二苯甲烷	101-14-4	6.27	267	130	140.1 [*] 195.1	25 29
15	4 A´-二氨基二苯醚	101-80-4	2.77	201	130	$\frac{108.1^*}{80.1}$	17 33
16	4 A´-二氨基二苯硫醚	139-65-1	4.49	217	130	124.1 [*] 80.1	17 45
17	邻甲苯胺	95-53-4	2.71	108	90	91.1 [*] 65.1	17 25
18	2 4-二氨基甲苯	95-80-7	1.21	123	90	77.1^{*} 108.1	29 13
19	2 4 5-三甲基苯胺	137-17-7	5.30	136	110	91.1 [*] 121.1	21 13
20	邻甲氧基苯胺	90-04-0	2.57	124	90	109.1 [*] 80.1	13 33
21	4-氨基偶氮苯	60-09-3	6.12	198	110	77.1* 51.1	17 49
22	2 6-二甲苯胺	87-62-7	4.10	122	90	105.1 [*] 51.1	13 19
23	苯胺	62-53-3	1.67	94	50	77.1 [*] 51.1	17 33

* 表示定量离子.

本实验还考察了流动相(水相)中的甲酸铵浓度(0、0.5、2.5 mmol·L⁻¹)或甲酸浓度(体积比为0%、 0.01%、0.05%、0.1%)对 AAs 灵敏度的影响,结果表明,添加了甲酸铵流动相时,大多组分的质谱信号响 应降低,并且浓度越高,质谱信号响应越低,表明甲酸铵对大多 AAs 组分在离子化过程中会产生抑制作 用,流动相中加入一定浓度的甲酸也有类似的现象.尽管甲酸铵或甲酸缓冲液在 LC-MS 中常用于调节流 动相 pH 或用于离子化试剂,但对芳香胺分析物来说,低浓度的甲酸铵盐或甲酸对 [M+H]⁺母离子的离 子化效率抑制作用仍是比较强的.因此,优化后的实验中没有添加任何离子化试剂.

2.3 方法的线性关系、线性范围、定量限

用初始流动相配比(10%甲醇水溶液)分别配制 0.01、0.05、0.1、0.5、1.0、2.0、5.0、10、50、100 μ g•L⁻¹ 的系列标准溶液,在优化后的色谱、质谱条件下进行测定,以标准工作溶液中目标组分的质量浓度(*x*, μ g•L⁻¹)为横坐标,目标组分定量离子的峰面积(*y*)为纵坐标绘制标准曲线,结果如表 2 所示.实验结果 表明 23 种 AAs 组分在各自浓度范围内有良好的线性关系,相关系数均大于 0.9975.方法的定量限 (LOQ)采用标准添加法,即在空白样品中添加不同浓度的待测目标组分,按浓度由高至低检测,直到获 得信噪比等于 10(S/N = 10)的浓度,确定其为方法的 LOQ,结果列于表 2 ,AAs 组分的 LOQ 在 0.01— 2.0 μ g•L⁻¹之间,苯胺和联苯胺的 LOQ 低于 GB 3838—2002 规定的 100 μ g•L⁻¹和 0.2 μ g•L⁻¹,大多组分 的 LOQ 与文献报道^[14-15]的富集浓缩后采用 GC-MS 方法测定的值在同一数量级.

2.4 方法的加标回收率和精密度

选取采集于福建泉州晋江河口的过滤水样进行加标回收实验,由于各组分的定量限差异较大,所以添加浓度水平的范围较宽(从 0.01 μ g•L⁻¹至 5.0 μ g•L⁻¹共 7 个浓度点),并对每个浓度点分别进行 7 次 平行实验,按优化后的实验条件测定,计算各组分大于方法定量限的平均加标回收率和精密度,结果见 表 3 ,各组分的平均回收率在 70.3%—119.8%之间 相对标准偏差(RSD) 在 2.1%—10.2%之间.

]	Table 2 The linear relationshi	p and limits of quantificat	tion	
No.	线性范围 / (μg•L ⁻¹)	线性方程	相关系数	$LOQ/(\mu g \cdot L^{-1})$	
1	0.05—10	y = 3692.0x + 37.0	0.9999	0.05	
2	0.2—20	y = 1893.5x + 40.6	0.9975	0.1	
3	2—100	y = 64.1x + 13.2	0.9994	2.0	
4	0.2—20	y = 3001.2x + 107.0	0.9984	0.1	
5	0.05—10	y = 24679.0x - 66.2	0.9999	0.05	
6	2—100	y = 108.1x + 55.3	0.9985	2.0	
7	1—50	y = 683.7x + 285.1	0.9990	1.0	
8	0.2—20	y = 2144.2x + 135.3	0.9985	0.2	
9	0.5—50	y = 339.8x + 15.6	0.9992	0.5	
10	0.1—20	y = 2155.2x + 133.8	0.9979	0.1	
11	0.1—20	y = 2748.9x + 107.5	0.9991	0.1	
12	0.05—10	y = 5799.6x + 254.6	0.9978	0.05	
13	0.01—10	y = 12592.9x + 49.2	0.9999	0.01	
14	1—100	y = 244.9x + 17.8	0.9982	1.0	
15	0.5—50	y = 3066.7x + 157.0	0.9980	0.5	
16	0.2—20	y = 570.8x + 25.1	0.9996	0.2	
17	2—100	y = 296.0x + 41.6	0.9989	2.0	
18	0.5—50	y = 2357.5x + 523.0	0.9976	0.5	
19	0.05—10	y = 4911.1x + 116.2	0.9998	0.05	
20	0.05—10	y = 7882.7x + 0.4	0.9999	0.05	
21	0.01—10	y = 38093.9x + 235.5	1.0000	0.01	
22	1—100	y = 1129.0x + 5.5	0.9984	1.0	
23	2-100	y = 304.4x + 15.9	0.9998	2.0	

表 2	方法的线性关系和定量	下鴈
		1 1 10

注: 序号所代表的物质同表 1.

2.5 实际样品测定

采用本文优化的方法 测定了采自福建省泉州市的晋江河口(S1)、草邦水库(S2)、西湖(S3)、东湖 (S4) 等处水样 A 个样品中均未检出 AAs 组分.随后在这 4 个样品中加入最终浓度为 2.0 μ g•L⁻¹的 23 种 AAs 混标,并测定,计算其回收率(表4),结果表明在该添加浓度下4个样品中各 AAs 组分的加标回收 率在 71.5%—117.5%之间.

结论 3

本实验建立的 UHPLC-MS/MS 直接测定方法,无须经过液-液萃取或固相萃取等富集、净化的繁琐 前处理过程,可有效地缩短样品分析时间; MS/MS的高灵敏度与高选择性能有效去除基质干扰和假阳 性现象,方法准确可靠,可为环境水体污染源监测、饮水安全提供技术保障.

No. ¹⁾														
No. 7	0.01 µ _i	g•L ⁻¹	0.05 µi	g•L ⁻¹	0.1 µg	;•L -1	0.2 μ _ε	;•L -1	1.0 με	;•L -1	2.0 µg	;•L ⁻¹	5.0 µg	•L ⁻¹
	回收率/%	RSD/%	回收率/%	RSD/%	回收率/%	RSD/%	回收率/%	RSD/%	回收率/%	RSD/%	回收率/%	RSD/%	回收率/%	RSD/%
1	2)		83.3	8.9	82.7	8.1	117.3	7.9	99.5	7.5	98.9	6.9	94.9	5.1
2			I		106.8	9.2	105.6	8.3	94.9	8.1	84.6	7.6	98.8	7.3
Э			I	I		I					89.7	7.9	100.0	5.6
4		I	I	I	83.1	10.2	105.7	9.5	98.1	8.6	115.4	6.1	92.5	3.8
5		I	116.3	9.0	105.7	8.1	106.0	7.9	9.66	7.5	98.9	4.5	94.1	2.3
9		I	Ι	I	I	I	I	I	Ι		99.1	9.5	94.6	8.7
7		I	I	Ι	I	I	I	I	79.3	8.9	98.0	8.2	87.4	7.0
8		I	Ι	I	I	I	94.8	9.1	109.3	8.0	87.4	8.1	92.9	9.5
6		Ι	Ι	Ι	Ι	I	I	I	103.8	7.5	85.1	7.2	93.3	7.0
10		l	I	I	96.5	9.3	103.9	8.8	102.5	7.0	109.7	4.1	91.9	2.6
11		l	I	I	112.4	8.5	105.0	5.6	108.8	4.7	92.3	3.8	88.1	3.6
12		I	96.8	8.6	110.7	7.9	104.6	7.6	106.1	7.0	83.1	7.1	84.1	7.5
13	102.1	9.3	99.2	5.3	113.0	7.6	96.9	5.6	101.8	5.2	92.0	5.0	79.9	4.4
14		I	Ι	I	I				70.3	7.8	93.4	7.9	87.1	8.1
15			I	I					102.6	8.8	79.7	6.5	82.5	5.3
16		l	I	I		I	110.0	8.9	96.1	6.8	108.2	7.6	103.1	7.9
17			I								87.6	6.5	92.0	4.3
18			I						86.8	5.9	94.6	5.0	93.2	4.2
19			100.8	7.1	83.3	6.8	77.1	6.1	83.3	5.1	94.6	6.6	88.2	6.5
20			82.2	9.3	96.5	8.8	94.3	8.9	98.7	7.6	103.1	7.1	98.8	6.0
21	119.8	10.1	98.6	8.5	92.8	5.6	97.4	4.6	95.0	4.8	103.4	3.8	96.9	2.1
22			I						91.3	5.6	87.4	6.4	94.5	6.3
23	I			I	I						103.7	6.5	101.5	6.2

	Table 4	The results of re-	ai sampies	and recoveries (n 2.0 µg	E spiked sampi	.05	
No. ¹⁾	S1	回收率/%	S2	回收率/%	S3	回收率/%	S4	回收率/%
1	nd ²⁾	97.5	nd	94.0	nd	95.5	nd	97.5
2	nd	80.5	nd	92.0	nd	95.5	nd	92.0
3	nd	112.5	nd	79.5	nd	101.5	nd	98.5
4	nd	91.5	nd	97.5	nd	93.0	nd	90.5
5	nd	91.5	nd	94.5	nd	94.0	nd	93.0
6	nd	99.5	nd	117.5	nd	94.0	nd	94.5
7	nd	97.5	nd	86.0	nd	96.5	nd	88.5
8	nd	84.5	nd	93.0	nd	89.5	nd	82.5
9	nd	100.5	nd	96.0	nd	100.0	nd	98.5
10	nd	78.0	nd	71.5	nd	78.0	nd	71.5
11	nd	81.5	nd	76.0	nd	88.0	nd	82.0
12	nd	86.1	nd	88.5	nd	89.0	nd	80.0
13	nd	95.5	nd	99.5	nd	98.5	nd	96.0
14	nd	97.0	nd	87.0	nd	86.0	nd	89.5
15	nd	78.0	nd	83.5	nd	90.0	nd	81.5
16	nd	110.0	nd	114.5	nd	110.5	nd	109.0
17	nd	103.5	nd	104.0	nd	97.0	nd	90.5
18	nd	79.5	nd	86.0	nd	87.0	nd	76.0
19	nd	95.5	nd	98.0	nd	95.0	nd	92.0
20	nd	99.0	nd	98.5	nd	97.0	nd	96.5
21	nd	99.0	nd	97.5	nd	98.5	nd	98.0
22	nd	85.5	nd	89.0	nd	95.0	nd	92.0
23	nd	115.0	nd	105.0	nd	105.0	nd	90.0

表 4 实际样品测定及加标回收率

Table 4 The results of real samples and recoveries of 2.0 μ g·L⁻¹ spiked samples

注: 1) 序号所代表的物质同表 1; 2) nd 表示未检出.

参考文献

- [1] Skipper P L, Kim M Y, Sun H, et al. Monocyclic aromatic amines as potential human carcinogens: old is new again [J]. Carcinogenesis, 2010 31(1): 50-58
- [2] EN 14362-1: 2012 Textiles-Methods for determination of certain aromatic amines derived from azo colorants-Part 1: Detection of the use of certain azo colorants accessible with and without extracting the fibres[S]
- [3] ISO 17234-1: 2010 Leather-Chemical tests for the determination of certain azo colorants in dyed leathers-Part 1: Determination of certain aromatic amines derived from azo colorants [S]
- [4] ISO 17234-2: 2011 Leather-Chemical tests for the determination of certain azo colorants in dyed leathers-Part 2: Determination of 4-aminoazobenzene[S]
- [5] GB 11889-89 水质 苯胺类化合物的测定 N-(1-萘基) 乙二胺偶氮分光光度法[S]
- [6] Wang X D , Fu L Y , Wei G H , et al. Determination of four aromatic amines in water samples using dispersive liquid-liquid microextraction combined with HPLC[J]. Journal of Separation Science , 2008 31(16/17): 2932–2938
- [7] Tao Y, Liu J, Wang T, et al. Simultaneous conduction of two- and three-phase hollow-fiber-based liquid-phase microextraction for the determination of aromatic amines in environmental water samples [J]. Journal of Chromatography A, 2009, 1216(5): 756–762
- [8] Mourya S K, Bose D, Durgbanshi A, et al. Determination of some banned aromatic amines in waste water using micellar liquid chromatography [J]. Analytical Methods, 2011 3(9): 2032–2040
- [9] 李逸,刘胜玉,刘昕宇,等.自动固相萃取-高效液相色谱法测定地表水中痕量联苯胺[J].环境化学,2013,32(9):1807-1808
- [10] Schmidt T C, Less M, Haas R, et al. Gas chromatographic determination of aromatic amines in water samples after solid-phase extraction and derivatization with iodine: I. Derivatization [J]. Journal of Chromatography A, 1998 810(1/2): 161–172
- [11] 荆瑞俊,李英,李永芳.顶空固相微萃取-气相色谱联用法测定工业废水中的致癌芳香胺[J].光谱实验室,2012,29(2): 1141-1144
- [12] 彭家钢,王丹华,吴采樱. 自制 SPME 涂层顶空萃取-气相色谱法分析废水中的芳香胺类化合物[J]. 分析测试学报,2004,23(3): 18-21
- [13] Akyüz M, Ata Ş. Simultaneous determination of aliphatic and aromatic amines in water and sediment samples by ion-pair extraction and gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 2006, 1129(1): 88–94
- [14] 林忠胜,马新东,周传光.气相色谱/质谱法测定海水中芳香胺[J].分析试验室,2009,28(z1):11-13
- [15] 叶伟红,刘劲松,潘荷芳.水中致癌芳香胺的固相萃取-气质分析方法研究[J].质谱学报,2011 32(1):55-60
- [16] 黄丽芳,李来生,刘超.高效液相色谱-质谱法测定废水中芳香胺类化合物[J].分析科学学报,2008,24(3):265-269
- [17] 杨秋红,钱蜀,程小艳,等.固相萃取地表水中痕量联苯胺及 HPLC-MS 测定[J].化学研究与应用,2011,23(1):102-106
- [18] 申玲玲, 邱雄雄, 詹松. UHPLC-MSMS 测定环境水中的联苯胺[J]. 环境化学, 2013, 32(4): 717-718

675