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Abstract: Thin ceramic sheet of CaCu3Ti4O12 has a great significance for preparation of multiplayer ceramic chip   

capacitors. In this work, a simple plan was made to achieve CaCu3Ti4O12 thin ceramic sheets with excellent dielectric 

properties. Thin ceramic sheets of CaCu3Ti4O12 were prepared via water-based tape casting at various sintering    

temperatures. The CaCu3Ti4O12 samples sintered at 1080℃ exhibit a great performance on dielectric properties with 

high permittivity (r=98605) and low dielectric loss (tanδ=0.028) which are better than those of samples prepared by 

conventional dry pressing. Meanwhile, the complex impedance spectra were measured to explain the mechanism of 

special electrical behaviors of CaCu3Ti4O12 ceramics. These testing results indicate that the CaCu3Ti4O12 ceramics via 

tape casting exhibits a better performance of giant permittivity and lower dielectric loss than other reports, which pro-

vides a possibility for the application of the CaCu3Ti4O12 in modern micro-electronics technology. 
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Tape casting technique has got attention, due to the 
high production efficiency, good products uniformity 
and stable performance[1]. Tape casting is a kind of 
molding ceramic method of thin film to control thick-
ness of ceramic chip. Tape casting is first used to pro-
duce ceramic layer capacitor by Howatt, et al in 1947[2]. 
Now, tape casting has been widely used in the ceramics 
material forming process, mainly concentrated in the 
field of functional ceramics. In general, the slurry sys-
tem is divided into water-based and solvent-based sys-
tems. Polyvinyl alcohol (PVA) is usually used for the 
water-based system, while polyvinyl butyral (PVB) is 
used for the solvent-based system. 

The ceramics CaCu3Ti4O12, i.e., CCTO has attracted 
ever-increasing attention, due to the practical microelec-
tronic applications including capacitors and memory de-
vices. Although CCTO ceramics have attracted consider-
able attentions recently due to its unusual high dielectric 
constant (ε=104–105) in a wide range of the frequency and 
the temperatures (100–600 K)[3-6], its relatively high di-

electric loss (tan) restricts their applications[7-10]. At pre-

sent, the internal barrier layer capacitance (IBLC) model 
representing semiconducting grains and insulating grain 
boundaries confirms the electrical heterogeneities in the 
microstructure of CCTO[11-13]. And, the insulating grain 

boundaries acted as Schottky-type potential barriers in 
CCTO ceramics[14]. It is revealed that the high permittivity 
of CCTO is not only due to the intrinsic nature of the po-
larization or ferroelectricity, but also related to an extrinsic 
effect of the potential barriers[10-13, 15-16].  

Thin ceramic sheet of CCTO has a great significance 
for the development of multiplayer ceramic chip capaci-
tors (MLCC). So it is necessary to study thin CCTO ce-
ramic sheet via tape casting in details to improve its di-
electric loss. In this study, the thin CCTO ceramic sheets 
with high performance are prepared by using water-based 
tape casting, and its structure, composition and dielectric 
properties are studied in details. 

1  Materials and methods 

CCTO samples were prepared by the solid state method. 
All the starting materials used were of analytical grade: 
CaCO3 (99%), TiO2 (99%) and CuO (99%). Stoichiometric 
ratios of the reagents (CaCO3: TiO2: CuO =1: 4: 3) were 
mechanically ball milled in an alcohol medium for 6 h in a 
polyethylene bottle, using zirconium balls, with ball to 
powder ratio of 10:1. A powder exhibiting free flowing 
characteristics was then obtained by sieving the dried 
milled powders. Subsequently, the powder was sintered at 
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900℃ for 3 h in air to form CCTO phase. Next, CCTO 

samples were formed by tape casting. These pellets were 

sintered at 1020℃, 1040℃, 1060℃, 1080℃ and 1100℃ 

in air for 5 h, respectively, and then cooled down to room 
temperature in a furnace.  

Crystal structures of the CCTO ceramics were identified 
by using automatical X-ray diffraction (Panalytical, χ’pert 
PRO, Holland) with CuK radiation. The microstructures of 
ceramics were observed by a scanning electron micro-
scope (Philips, XL30, Holland). Dielectric properties of 
the samples were performed at 1 V from 20 Hz to 1 MHz 
by a LCR precision meter (HP 4284A, USA). Impedance 
measurements of the samples were performed from 0.1 Hz 
to 0.1 MHz by a type of electrochemical workstation 
(EG&G263A, Princetion Applied Reaseach). I-V charac-
teristics of CCTO samples were measured by Digital 
Source Meters (model 2400, Keithley, Cleveland, OH) 
connecting to a computer.   

2  Results and discussion 

Figure 1 shows the X-ray diffraction patterns of CCTO 
sintered at different temperatures. The diffraction peaks could 
be indexed to single perovskite structure of CaCu3Ti4O12 
without noticeable minor phases for all specimens. Peaks of 
the ceramics were matched well with the standard pattern of 
cubic structured CCTO (PDF 01-075-1149)[17]. 

The scanning electron micrographs of the ceramics are 
displayed in Fig. 2. Microstructures of these samples ex-
hibit that grain size increases gradually with the increase 
of sintering temperature. When the sintering temperature-

was at 1040℃, grains were discreted and there were a lot 

of big pores inside the sample. In Fig. 2 (b), the sample 

sintered at 1060℃ shows that the grain size increases 

dramatically. And the sample sintered at 1080℃ shows 

the largest grain size (100–150 μm). However, the grain  

 

Fig. 1  XRD patterns of thin CCTO ceramic sheets sintered at 
different temperatures, comparing with CCTO (PDF 01-075-1149) 

 

Fig. 2  SEM images of the CaCu3Ti4O12 samples sintered at (a) 

1040℃, (b) 1060℃, (c) 1080℃ and (d) 1100℃ 
 

boundaries of sample sintered at 1100℃ are more narrow 

than those of the others, while the highly active area of 
grain boundary is sagged. It is revealed that the connection 
of grain boundary is unstable and the specimen is slightly 
over-burn. When increasing sintering temperature, the 
glass phase increases and the viscosity of liquid phase 
reduces. Meanwhile, the sintering driving force is im-
proved with the increasing of sintering temperature and 
the migration of grain boundary increases, which leads to 
the increase of the grain size of CCTO. 

EDX analysis was carried out on the grain and grain 

boundary regions of the sample sintered at 1080℃ in Fig. 

3. EDX results clearly indicates that the grain region is 
lack of Cu (Ca: Cu: Ti = 1: 2.2: 4) (Seen in Fig. 3(c)), 
while the grain boundary region is enriched in Cu, as 
shown in Fig. 3(d). It is determined that Cu-rich phases 
are segregated at grain boundaries, which has also been 
reported in some reports[18-20]. 

Frequency dependent permittivity and dielectric loss of 
all samples at room temperature are shown in Fig. 4. 

CCTO samples sintered at 1080℃ shows the best dielec-

tric properties: the highest permittivity (r=98605.9) and 
the lowest loss (tanδ=0.028). Although permittivity of the 

sample sintered at 1100℃ is almost the same with that of 

the sample sintered at 1080℃, its dielectric loss is slightly 

higher, especially at low frequencies.  
About the IBLC model, the permittivity at low frequen-

cies is given by   
2 2
g g gb gb

r 2
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R C R C
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              (1) 

When Rg<<Rgb, formula (1) is approximate to 
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Fig. 3  SEM images of the sample sintered at 1080℃ (a and b), 

EDX patferns of grain (c) and grain boundary region (d) 

 

Fig. 4  Frequency dependence of permittivity and loss of samples 
sintered at different temperatures at room temperature 
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Where D and d are the diameter of grain and the thickness 
of grain boundary, respectively. It is clear that the permit-
tivity of CCTO at 1 kHz increases with the rising of grain 
size, as shown in Fig. 2. 

In this paper, CCTO ceramics prepared via tape casting 
exhibits much lower dielectric loss than other reports[21], 
while retaining a giant permittivity. However, in some 
reports[22], reduction in the loss in CCTO also affected the 
permittivity to a large extent. 

Temperature dependent (–20~120℃) characteristics of 

permittivity and dielectric loss at 1 kHz are shown in Fig. 5. 
With increasing the test temperature, there is a slight rise 

in permittivity of all samples below 60℃. But, the permit-

tivity of these samples increase remarkably above 60℃. 

Meanwhile, dielectric loss appears a relaxation peak at 
high test temperatures and the relaxation peaks move 

 

Fig. 5  Temperature dependence of permittivity and loss of  
samples sintered at different temperatures 
 

to high test temperature with the increasing of sintering 
temperature. 

The complex impedance spectra of all specimens are 
shown in Fig. 6, in which there are semi-circular arcs with 
non-zero intercept on the Z’ axis at high frequencies. Ac-
cording to the complex impedance analysis based on the  

 

Fig. 6  Complex impedance plane measured at room tempera-

ture (25℃) for CaCu3Ti4O12 samples sintered at different tem-

peratures  
Inset in (a) shows an expanded views of the high-frequency data and in (b) 
shows an expanded views of the high-frequency data close to the origin 
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model of IBLC, the values of the resistivity of grain and 
grain boundary are 70 Ω·cm and 17 MΩ·cm for the sample 

at 1060℃, 38 Ω·cm and 7.5 MΩ·cm for the sample at 

1080℃, and, 32 Ω·cm and 5.5 MΩ·cm for the sample at 

1100℃ , respectively. With the increasing of sintering 

temperature, the resistivity of grain and grain boundary 
reduces. It is the presence of high resistance area at grain 
boundaries that enhanced the varistor performance. The 
microstructure of CCTO ceramics is consisted of semi-
conducting grains and insulating grain boundaries, which 
verifies the IBLC model further.  

Grain boundaries and defects of CCTO ceramics ex-
hibit a very high resistance which are far higher than 
the resistance of grains. If these high resistance regions 
and grains are independent, the Fermi levels of these 
regions would be below that of grains. However, when 
the high resistance region is contacted with grain, the 
difference of energy is transferred from these high re-
sistance regions to grains until realizing the dynamic 
equilibrium. These interfaces accept many electrons and 
negatively charge, and then the energy band bend up-
wards. Then the Fermi level of grain is equal to that of 
these high-resistance regions. It is similar to the metal 
contacting with the semi-conductor, forming a potential 
barrier at the interfaces. There is both a potential barrier 
at the plus and minus directions of the interfaces with an 
asymmetric relationship. So there is a back-to-back 
Schottky potential barrier at the interfaces[23], which 
generates nonlinearity of CCTO ceramics. Based on the 
analysis above, IBLC model is combined with the 
back-to-back Schottky barrier model, which deduces an 
equivalent circuit diagram of CCTO ceramics, and 
grains, grain boundary and domain boundary are re-
spectively corresponded to a RCD element in Fig. 7. 
Giant permittivity and varistor characteristic of the 
CCTO ceramics are semi-quantitatively explained by 
the IBLC model with Schottky barriers. 

It is pointed out that CCTO has rather high permittivity 
of about 105 but high dielectric loss. The CCTO specimens 
via tape casting technique presented a colossal permittivity 
and very low dielectric loss, which provides a possibility 
for the application of CCTO in modern microelectronics. 

 

Fig. 7  Improved equivalent circuit model according to the 
IBLC and Schottky barrier model  
Grains and grain boundaries respectively correspond to a RCD element. 
Diode stand for a Schottky-type potential barrier 

 

3  Conclusions 

Dielectric properties of thin CCTO ceramic sheets 
prepared by water-based tape casting were investigated 
in details. The CCTO sheets were obtained by sintering 

at 1020℃, 1040℃, 1060℃, 1080℃ and 1100℃ for 5 h, 

respectively. The microstructures of samples showed the 
grain size increased gradually with the increase of    sinter-
ing temperature. EDX studies revealed that Cu-rich phases 
were segregated at grain boundaries. The best sample sintered 

at 1080℃ for 5 h exhibited a high permittivity (r) of 98605 

with a very low dielectric loss, tanδ= 0.028 at 1 kHz, which 
provides a possibility for the application of CCTO in modern 
microelectronics. Meanwhile, the complex impedance spectra 
were measured to discuss the mechanism of the special elec-
trical behaviors of CaCu3Ti4O12 ceramics. 
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流延法制备片式 CaCu3Ti4O12陶瓷及其性能研究 

李 伟, 熊兆贤, 薛 昊 

(厦门大学 材料学院, 厦门 361005) 

摘 要: 片式 CaCu3Ti4O12陶瓷由于其巨介电效应, 用于制备多层陶瓷片式电容具有重大意义。通过水基流延法并在不

同的烧结温度下制备的片式 CaCu3Ti4O12 陶瓷具有优异的介电性能。其中在 1080℃下烧结的样品在保持巨电容率

(98605)的同时, 降低了介电损耗, 其值只有 0.028, 远低于其他报道的损耗值。同时, 测试了 CCTO 陶瓷薄片的复阻抗

图谱, 讨论了 CCTO 陶瓷的特殊的电学性能。实验结果表明, 通过流延成型制备的 CCTO 陶瓷薄片在保持巨电容率的

同时具有很低的介电损耗, 这为 CCTO 陶瓷在微电子工业上的应用提供了可能性。 

关  键  词: 钙钛矿; 流延法; 介电性能; 晶界 
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