第33卷 第9期

2012 年 9 月

No. 9

发光学报 CHINESE JOURNAL OF LUMINESCENCE

Sept. , 2012

Vol. 33

文章编号: 1000-7032(2012) 09-0966-07

非均相沉淀法制备的 Sr_{3-x} Si_{1-x} Al_x O₅:xCe³⁺ 荧光粉及其发光性能

彭 杰¹,曾人杰^{1,2*},李郎楷¹

(1. 厦门大学 材料学院, 福建 厦门 361005; 2. 福建省特种先进材料重点实验室, 福建 厦门 361005)

摘要:采用非均相沉淀法制备了 $Sr_{3-x}Si_{1-x}Al_xO_5$: xCe^{3+} 荧光粉,并与高温固相法制备的该荧光粉进行了对 比。以 XRD、SEM 和荧光光谱分析来表征所制备的荧光粉。结果表明,非均相沉淀法比高温固相反应法制备 的荧光粉相纯度更高,颗粒分布更窄,晶面清晰,团聚程度小,相对发光强度也更高。荧光粉的激发光谱为 270~500 nm 的双峰宽带,最强激发峰位于417 nm 处。发射光谱为450~700 nm 的单峰宽带,峰值位于525 nm 处。电荷补偿剂对荧光粉相对发光强度影响较大,外加 Al^{3+} 置换 Si^{4+} 作为电荷补偿剂比外加 Li^+ 置换 Sr^{2+} 的效果更好。

关 键 词: 白光 LED; 电荷补偿; 硅酸盐; 团聚 中图分类号: 0482.31 文献标识码: A **DOI**: 10.3788/fgxb20123309.0966

Luminescent Properties of $Sr_{3-x}Si_{1-x}Al_xO_5$: xCe^{3+} Phosphors Prepared by Heterogeneous Precipitation Method

PENG Jie¹, ZENG Ren-jie^{1,2*}, LI Lang-kai¹

(1. College of Materials , Xiamen University , Xiamen 361005 , China;
2. Fujian Provincial Key Laboratory of Advanced Materials , Xiamen University , Xiamen 361005 , China)
* Corresponding Author , E-mail: rjzeng@xmu. edu. cn

Abstract: Phosphors of nominal composition $Sr_{3-x}Si_{1-x}Al_xO_5$: xCe^{3+} were prepared by heterogeneous precipitation method and high temperature solid state reaction method , respectively. The phosphors were characterized by XRD, SEM and fluorescence spectrum analysis. The results show that phosphors synthesized by heterogeneous precipitation method have higher phase purity , narrower particle size distribution , clearer crystal surface and lighter aggregation , also yield higher relative luminous intensity , than those by high temperature solid state reaction method. The excitation spectra of the phosphors range from 270 nm to 500 nm with the bimodal broadband , while the strongest excitation peak at 417 nm. The emission spectra range from 450 nm to 700 nm with single-peak broadband , with peak at 525 nm. Charge compensation has a great influence on the relative luminous intensity of phosphors. It could be conclude that adding Al^{3+} to substitute Si^{4+} as charge compensation might be better than adding Li^+ to substitute Sr^{2+} .

Key words: white LED; charge compensation; silicate; agglomeration

收稿日期: 2012-06-17; 修订日期: 2012-07-12

基金项目: 福建省科技重大专项(2005HZ02-2); 福建省重大平台建设基金(2006L2003)资助项目 作者简介: 彭杰(1986 –),男,湖北荆州人,主要从事无机发光材料的研究。 E-mail: peng-jie100@163.com,Tel: (0592)2184419

1引言

白光发光二极管(LED)用作新一代照明光源 已成为一种趋势^[1]。目前 实现白光 LED 的主流 技术是采用 InGaN 蓝光 LED 芯片配合 Ce³⁺ 掺杂 Y₃Al₅O₁₂(Y_{3-x}Al₅O₁₂: xCe³⁺) 黄色荧光粉^[2],该技 术已在1997年被日本日亚化学公司申请专利^[3], 2017年才到期,并且还有延长期限的可能,另外, 基于该技术的白光 LED 还存在显色指数偏低的 缺点^[2]。为了突破专利以及提高显色指数,碱土 金属硅酸盐、硫化物和氮(氧)化物等荧光粉成为 研究与开发的热点^[4]。其中碱土金属硅酸盐是 最有应用潜力的荧光粉,它比硫化物化学性能稳 定 不会发生潮解;比氮(氧)化物制备条件缓和,一 般不需要高温、高压的制备条件^[4-8]。 $Sr_{3-2x}Li_xSiO_5$: xCe³⁺荧光粉与 InGaN 蓝光 LED 芯片配合后的白 光 LED 具有较高的显色指数 ,发光效率也高于用 Y_{3-x}Al₅O₁₂: xCe³⁺ 荧光粉的白光 LED^[8]。目前, 该荧光粉仅有高温固相反应法制备的报道^[89]。 固相反应法的优点是工艺简单,但所需的热处理 温度高、时间长,导致荧光粉颗粒易团聚,研磨后 又破损了颗粒表面 影响荧光粉的发光性能。

溶液法被认为可有效避免高温固相法的弊 端^[10]。其中沉淀法(包括共沉淀法和非均相沉淀 法) 的工艺最简单,不仅可以使原料细化和均匀 混合,降低热处理温度、缩短时间,还能在一定程 度上改善荧光粉颗粒形貌,提高荧光粉的发光性 能^[10-11]。共沉淀法制备 Sr_{3-x}SiO₅: xEu²⁺ 荧光粉 已有报道^[12],但是,共沉淀法以正硅酸乙酯为硅 源 其成本高 且水解过程需与金属离子的沉淀过 程同时严格控制才能保证前驱体化学组分均匀; 此外 还要解决前驱体干燥过程中纳米级粉末易 团聚的难题^[13]。近年来 非均相沉淀法已用于制 备 Y_{3-x}Al₅O₁; xCe³⁺ 和硅酸盐荧光粉^[1447]。对于碱 土金属硅酸盐荧光粉 非均相沉淀法可以使金属离 子以微米级 SiO, 颗粒为核沉淀 比共沉淀法的原料 成本低 工艺更简单; 前驱体中含微米级粉末 ,与纳 米粉相比,干燥时不易团聚;若实验中使用的微米级 SiO_2 颗粒为球形 则荧光粉也可能为球形^[15]。

Ce³⁺置换 Sr²⁺时,电荷不平衡,易在晶体中 形成缺陷^[18]。对此,可以外加 Li⁺置换 Sr²⁺作为 电荷补偿剂^[8],也可以外加 Al³⁺置换 Si⁴⁺作为电 荷补偿剂^[18-9]。本文采用非均相沉淀法制备了 名义组成为 Sr_{3-x}Si_{1-x}Al_xO₅: *x*Ce³⁺ 的荧光粉,并 与高温固相法制备的样品进行了对比,研究了电 荷补偿剂对荧光粉发光强度的影响。

2 实 验

2.1 样品制备

采用非均相沉淀法制备名义组成为 $Sr_{3-x}Si_{1-x}$ -Al_xO₅: xCe^{3+} (x = 0.010, 0.020, 0.025, 0.030, 0.040)的荧光粉。实验中所用的原料主要有 $Sr(NO_3)_2$ 、Al(NO_3)₃・9H₂O、SiO₂、Ce(NO_3)₃・6H₂O、NH₄HCO₃、NH₃・H₂O、Li₂CO₃、SrCO₃、Al₂O₃和 CeO₂。CeO₂的纯度为 99.99%,其余均为分析纯。其中 SiO₂ 颗粒的中位直径为 8.57 μ m (自测)。

按化学计量比分别称取 Al(NO_3), • 9H₂O、 Sr(NO₃)和Ce(NO₃), • 6H, 0, 溶于去离子水中, 配制 60 mL 金属离子溶液。称取 NH₄HCO₃ 理论 用量的 1.5 倍溶于去离子水 配制 20 mL 沉淀剂 溶液。按化学计量比称取 SiO₂ 粉末,调成糊状 后 加入沉淀剂溶液中 配制成悬浮液 并逐滴加 入适量 $NH_3 \cdot H_2O$ 至 pH = 9 ,最后将悬浮液置于 25 ℃恒温水浴中搅拌。将金属离子溶液以3 mL/min的速度滴至悬浮液中,滴定完成后继续搅 拌2h,再经抽滤、洗涤、干燥和研磨,得前驱体。 把装有前驱体的小坩埚置于装有碳粉的大坩埚, 大坩埚加盖后放入马弗炉中,使前驱体在碳还原 气氛下1150 ℃热处理2h。研磨后,在V(N₂): V(H₂) = 95:5 的还原气氛下,管式炉中1500 ℃ 热处理4 h。名义组成为 Sr₂₉₅₀Li_{0.025}SiO₅:0.025Ce³⁺ 和 Sr_{2 975} SiO₅: 0. 025 Ce³⁺ 的荧光粉也按非均相沉 淀法的工艺制备。因为 Li₂CO₃ 的溶度积相对较 大^[20] ,难以完全沉淀,所以将 Li₂CO₃ 原料按化学 计量比称取后 移到装有前驱体的玛瑙研钵中 混 合研磨均匀后再进行热处理。

采用高温固相反应法制备名义组成为 Sr_{2.980}-Si_{0.980}Al_{0.020}O₅:0.020Ce³⁺的荧光粉。按化学计量 比分别称取 SrCO₃、SiO₂、Al₂O₃和 CeO₂移到玛瑙 研钵中 混合研磨均匀后 按上述非均相沉淀法的 热处理工艺制备样品。

2.2 样品表征

采用 Panalytical X pert PRO 型 X 射线衍射仪

(Philips,荷兰)测量样品的 XRD 谱,以 Cu Kα 射 线为辐射源,工作电压为 40 kV,工作电流为 30 mA 扫描范围为 10°~80°,步长为 0.016 7,每步 10 s。荧光光谱分析采用 F-4500 型荧光分光光度 计(Hitachi,日本),激发源为氙灯,狭缝宽度为 2.5 nm,室温环境,所有样品在同等条件下同次 测试。样品形貌分析用 XL30 型环境扫描电子显 微镜(Philips,荷兰)。SiO₂ 原料的颗粒分布采用 LS-603 型激光粒度仪测试(欧美克,中国)。

3 结果与讨论

3.1 XRD 分析

名义组成为 $Sr_{2.980} Si_{0.980} Al_{0.020} O_5$: 0. 020Ce³⁺ 的荧光粉分别采用非均相沉淀法和高温固相反应 法制备 ,图 1 所示为样品的 XRD 谱。非均相沉淀 法制备的样品的特征衍射峰与 $Sr_3 SiO_5$ 的标准卡 片(JCPDS No. 26-0984) 基本符合 ,无明显杂相; 高温固相法制备的样品的衍射峰也与标准卡片基 本符合 ,但同时存在少量 $Sr_2 SiO_4$ 相的衍射峰。在 图 2 所示的 SrO 和 SiO_2 的二元相图中 ,有 SrSiO_3、 $Sr_2 SiO_4$ 和 $Sr_3 SiO_5$ 三种物相^[21]。固相反应的控 制步骤是扩散^[23]。SiO_2 的结构是由硅氧四面体 形成的一种网络结构 ,Si-O 化学键强度很高 ,难 以断裂 ,Si⁴⁺ 不可能自由迁移 ,硅氧四面体尺寸较 大 ,也不可能自由地沿晶格点阵迁移扩散^[10]。在 固相反应中 ,首先由 SrO 中的 Sr^{2+} 和 O^{2-} 向 SiO₂ 中扩散迁移 ,生成 Si/Sr 比为 1/2 的 $Sr_2 SiO_4$ 中间

图 1 名义组成为 Sr_{2.980} Si_{0.980} Al_{0.020} O₅: 0. 020Ce³⁺ 荧光粉 的 XRD 谱。(a) 非均相沉淀法制备;(b) 高温固相 反应法制备。

Fig. 1 XRD patterns of nominal composition $\mathrm{Sr}_{2.980} \mathrm{Si}_{0.980} - \mathrm{Al}_{0.020} \mathrm{O}_5$: 0. 020 Ce³⁺ phosphors. (a) Heterogeneous precipitation method; (b) High temperature solid state reaction method.

Fig. 2 The phase diagram of SrO-SiO₂ system^[21]

相 再由 Sr^{2+} 和 O^{2-} 向 Sr_2SiO_4 中扩散迁移 ,生成 Si/Sr 比为 1/3 的 Sr_3SiO_5 相^[21-22]。高温固相法的 原料由微米级的反应物机械混合而成 均匀性差 , 反应物之间的扩散距离很长 ,因此 高温固相法还 需要更高的热处理温度或者更长的热处理时间才 能完成固相反应 ,并且由于均匀性差 ,仍可能难以 完全消除 Sr_2SiO_4 中间相^[7]。非均相沉淀法可在 较低的温度下 ,获得相纯度更高的荧光粉。这可 能是由于金属离子以纳米级尺寸沉积和包覆在 SiO_2 颗粒表面的原因 ,使反应物间的接触面积更 大、混合更均匀 ,扩散距离缩短 ,固相反应加快 ,也 更容易消除 Sr_2SiO_4 中间相。

3.2 颗粒形貌分析

图 3 所示为名义组成为 Sr_{2.980} Si_{0.980} Al_{0.020} O₅: 0.020Ce³⁺的荧光粉的 SEM 图像。非均相沉淀法 制备样品的颗粒分布窄、晶面清晰并且团聚程度 较小,说明在1 500 ℃热处理4 h 后,粉末已完成 了烧结的附带过程"初次再结晶"和"晶粒长 大"^[23]。高温固相法制备的样品,由于上述的固 相反应可能还未进行完全和玻璃态物质的出现, 以及随后研磨对晶粒的破坏,其颗粒多为形貌不 规则的团聚体且晶面模糊,可见其烧结附带过程 "晶粒长大"也未充分完成。

在热处理过程中,反应物颗粒之间相互接触 并形成固相反应界面,随着温度的升高,玻璃态物 质的出现使颗粒间粘接而造成团聚。对于非均相 沉淀法,荧光粉前驱体由金属离子沉淀物包覆 SiO₂颗粒的"集团"组成^[15],在干燥过程中微米 级粉末不易团聚。在热处理过程中,沉淀物的分 解和反应生成的气体,以及"集团"内的相界面上 的固相反应,都有可能使"集团"收缩,导致"集 团"之间的距离增大,团聚程度降低。另外,由于 Si⁴⁺的分扩散系数较小^[10],"集团"内的其他离子 向 SiO₂ 内扩散进行固相反应,这种固相反应容易 使最终产物的颗粒分布和颗粒形貌与 SiO₂ 保持 一致。如果采用球形 SiO₂ 颗粒为原料,所获得的 荧光粉颗粒也很有可能是球形。

- 图 3 名义组成为 Sr_{2.980} Si_{0.980} Al_{0.020} O₅: 0. 020Ce³⁺ 荧光粉的 SEM 图。(a) 非均相沉淀法; (b) 高温固相反应法。
- Fig. 3 SEM images of nominal composition $\mathrm{Sr}_{2.980} \mathrm{Si}_{0.980} \mathrm{Al}_{0.020} \mathrm{O}_5$: 0. 020 Ce³⁺ phosphors. (a) Heterogeneous precipitation method; (b) High temperature solid state reaction method.

粉末烧结过程一般应高于泰曼温度(固体质 点发生显著扩散的温度,即固相反应温度)才能 较快地完成^[24]。硅酸盐的泰曼温度为其熔点 ($T_{\rm m}$)的0.8~0.9倍^[24]。Sr₃SiO₅的 $T_{\rm m}$ 为2170 ℃^[21],Al₂O₃的 $T_{\rm m}$ 为2055 ℃^[25]。根据相图原 理,Ce³⁺和Al³⁺掺杂Sr₃SiO₅后, $T_{\rm m}$ 会稍降低,设 为2000 ℃,则泰曼温度为1600~1800 ℃。因 此在1500 ℃以下,高温固相反应法难以完成粉 末烧结的附带过程"初次再结晶"和"晶粒长大"。 而非均相沉淀法制备的前驱体"集团"内颗粒间 的接触面积较大,原子扩散距离缩短,使烧结及其 附带过程有能在1500 ℃以下完成。

3.3 荧光光谱分析

图4为高温固相法和非均相沉淀法制备的

 $Sr_{2.980}Si_{0.980}Al_{0.020}O_5: 0.020Ce^{3+} 荧光粉的激发光$ 谱和发射光谱。荧光粉的激发光谱为双峰宽带,在 270~375 nm 间为弱的宽峰,峰值在 323 nm处; 375~500 nm 间为强宽峰,峰值在 417 nm 处。荧光粉的发射光谱为在 450~700 nm 的单峰宽带峰值在 525 nm 处^[8]。由于自旋轨道耦合, $<math>Ce^{3+}$ 基态 4f¹的电子组态包括²F_{5/2}和²F_{7/2} 2 个能 级 激发态的电子构型为 5d¹,受晶体场作用可被 劈裂为 2~5 个分裂能级^[26]。在较高能量激发 下,电子由基态跃迁到激发态,323 nm 处激发峰 对应²F_{5/2}→²D_{5/2}跃迁,417 nm 处激发峰对应 ${}^{2}F_{5/2}\rightarrow^{2}D_{5/2}$ 跃迁,417 nm 处激发峰对应 ${}^{2}F_{5/2}\rightarrow^{2}D_{3/2}$ 跃迁^[8]。激发态上的电子先经过无辐 射弛豫到 5d 能级最低处,然后跃迁回基态,形成 发光^[26]525 nm 处发射峰对应 5d→4f 跃迁^[8]。

- 图 4 名义组成为 Sr_{2.98} Si_{0.98} Al_{0.02} O₅: 0. 02Ce³⁺ 荧光粉的 激发光谱与发射光谱
- Fig. 4 Excitation and emission spectra of nominal composition $\mathrm{Sr}_{2.980}\mathrm{Si}_{0.980}\mathrm{Al}_{0.020}\mathrm{O}_5$: 0. 020Ce³⁺ phosphors

图 3 还显示,非均相沉淀法制备的荧光粉的 相对发光强度高于高温固相法制备的荧光粉。这 可能是因为:

(1) 非均相沉淀法制备的荧光粉相纯度高, 减少了杂质对荧光粉相对发光强度的影响^[10];

(2) Sr²⁺和 Ce³⁺以分子级水平均匀混合,最 终使 Ce³⁺在基质晶格中均匀分布^[15],可避免因 局部浓度过高而造成的 Ce³⁺与 Ce³⁺或基质晶格 之间的交互作用增强,以非辐射跃迁的形式损耗 能量^[7];

(3) 荧光粉颗粒的团聚程度小,有效表面积 大,表面发光中心也会更多,发射光被遮挡的可能 性也更小;

(4)颗粒的晶面清晰可见以及棱角的出现, 说明颗粒的结晶度较高,这也更利于提高荧光粉的相对发光强度。 Ce^{3+} 掺杂浓度是影响荧光粉发光性能的重要因素。本文在 Al^{3+} 作为外加电荷补偿剂的情况下 采用非均相沉淀法制备了名义组成为 Sr_{3-x} -Si_{1-x} $Al_xO_5: xCe^{3+}$ (x = 0.010,0.020,0.0250,0.030,0.040) 荧光粉 发射光谱如图 5 所示(激发波长为 417 nm)。图中显示 荧光粉的发光强度先随 x的增大而增大 当 x 达到 0.025 时发光强度最大 其后发光强度逐渐减小 出现浓度猝灭现象^[8]。

图 5 非均相沉淀法制备名义组成为 Sr_{3-x} Si_{1-x} Al_xO₅: xCe³⁺荧光粉的发射光谱

Fig. 5 Emission spectra of nominal composition $\operatorname{Sr}_{3-x}\operatorname{Si}_{1-x}$ -Al_xO₅: *x*Ce³⁺ phosphors synthesized by heterogeneous precipitation method

3.4 电荷补偿剂对荧光粉发光强度的影响

带不同电荷补偿剂的荧光粉名义组成分别为 Sr_{2.975}Si_{0.975}Al_{0.025}O₅: 0. 025Ce³⁺, Sr_{2.950}Li_{0.025}SiO₅: 0. 025Ce³⁺和Sr_{2.975}SiO₅: 0. 025Ce³⁺,它们的发射 光谱如图 6 所示(激发波长为 417 nm)。图中显 示 Sr_{2.975}SiO₅: 0. 025Ce³⁺荧光粉的发光强度最 低 Sr_{2.975}Si_{0.975}Al_{0.025}O₅: 0. 025Ce³⁺荧光粉的发光 强度最高。

在 Ce^{3+} 置换 Sr^{2+} 时 , Ce^{3+} 带入的 O^{2-} 的数量 高于 Sr_3SiO_5 晶体 Sr^{2+} 与 O^{2-} 的比值 ,导致 O^{2-} 过 剩或阳离子不足 ,易形成阳离子空位或 O^{2-} 进入 间隙的缺陷^[18] ,即以缺陷作为电荷补偿剂。缺陷 还可能是荧光粉中的发光猝灭中心 ,当能量传递 至缺陷处时 ,以非辐射跃迁的形式损耗 ,使荧光粉 的相对发光强度降低^[10]。补偿型异价等数置换 可避免上述结构缺陷的产生^[18]。图 5 结果表明 , 分别引入 Al^{3+} 置换 Si^{4+} 或 Li^+ 置换 Sr^{2+} 作为电荷 补偿剂后 ,荧光粉的相对发光强度增大 ,并且外加 Al^{3+} 置换 Si⁴⁺ 作为电荷补偿剂的荧光粉的相对发 光强度更高。在 Sr₃SiO₅ 晶体中, Sr²⁺为6 配位, Si⁴⁺为4 配位^[27]。4 配位下 Si⁴⁺的半径为0.026 nm, Al³⁺的半径为0.039 nm^[28]; 6 配位下 Sr²⁺的 半径为0.118 nm, Ce³⁺的半径为0.101 nm, Li⁺的 半径为0.076 nm。Al³⁺的半径比 Si⁴⁺大 33%, Li⁺的半径比 Sr²⁺小 35%, 两者都大于连续固溶 的15% 规则^[18], 只能有限固溶。但是 Ce³⁺的半 径比 Sr²⁺小 14%, Ce³⁺置换 Sr²⁺时, 有利于提高 Al³⁺置换 Si⁴⁺的固溶度^[19], 而不利于提高 Li⁺置 换 Sr²⁺的固溶度,可能导致少部分 Li⁺未进入晶 格,造成电荷补偿剂不足^[29], 使外加 Li⁺作为电 荷补偿剂的效果不如外加 Al³⁺。

图 6 非均相沉淀法制备不同电荷补偿剂荧光粉的发射 光谱

4 结 论

采用非均相沉淀法制备了 $Sr_{3-x}Si_{1-x}Al_xO_5$: xCe^{3+} 荧光粉。与高温固相反应法相比 非均相沉 淀法制备的荧光粉相纯度更高 颗粒分布更窄 ,晶 面清晰且团聚程度小 相对发光强度也更高 ,更有 利于该荧光粉在白光 LED 领域中的应用。 $Sr_{3-x}-Si_{1-x}Al_xO_5$: xCe^{3+} 荧光粉的激发光谱为 270 ~ 500 nm 的双峰宽带 ,峰值在 417 nm 处;发射光谱为 450 ~ 700 nm 的单峰宽带 ,峰值在 525 nm 处。外 加电荷补偿剂可提高荧光粉的发光强度 ,并且外 加 Al^{3+} 置换 Si^{4+} 比外加 Li^+ 置换 Sr^{2+} 作为电荷补 偿剂的效果更好。

参考文献:

- [1] Liu X R. Phosphors for white LED solid state lighting [J]. Chin. J. Lumin. (发光学报), 2007, 28(3): 291-301 (in Chinese).
- [2] Lin C C, Liu R S. Advances in phosphors for light-emitting diodes [J]. J. Phys. Chem. Lett., 2011, 2(11): 1268-1277.
- [3] Shimizu Y, Sakano K, Noguchi Y, et al. Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material: US, 5998925 [P]. 1999-12-07.
- [4] Setlur A. Phosphors for LED-based solid-state lighting [J]. Electrochem. Soc. Interface, 2009, 18(4): 32-36.
- [5] Xu J, Xia W, Xiao Z G, et al. Preparation and luminescent properties of high quality Sr_{2-x}Ba_xSiO₄: Eu²⁺ phosphors [J]. *Chin. J. Lumin.* (发光学报), 2009, 30(5): 617-396 (in Chinese).
- [6] Park J K, Kim C H, Park S H, et al. Application of strontium silicate yellow phosphor for white light-emitting diodes [J]. Appl. Phys. Lett., 2004, 84(10):1647-1649.
- [7] Kang E H, Choi S W, Chung S E, et al. Photoluminescence characteristics of Sr₃SiO₅: Eu²⁺ yellow phosphors synthesized by solid-state method and pechini process [J]. J. Electrochem. Soc., 2011, 158(11): J330-J333.
- [8] Jang H S, Jeon D Y. Yellow-emitting Sr₃SiO₅: Ce³⁺, Li⁺ phosphor for white-light-emitting diodes and yellow-light-emitting diodes [J]. Appl. Phys. Lett., 2007, 90(4):041906-1-3.
- [9] Yang Y, Jin S Z, Shen C Y, *et al.* Spectral properties of alkaline earth composite silicate phosphors for white LED [J]. *Chin. J. Lumin.* (发光学报), 2008, 29(5):800-804 (in Chinese).
- [10] Xu X R, Su M Z. Luminescence and Luminescent Materials [M]. 1th Edition, Beijing: Chemical Industry Press, 2004: 55, 599, 611 (in Chinese).
- [11] Zhao A P, Deng H, Liu F. Characterization of YAG: Ce³⁺ phosphor synthesized via ultrasonic co-precipitation by different techniques [J]. Chin. J. Lumin. (发光学报), 2011, 32(11):1104-1108 (in Chinese).
- [12] Chen W C. Eu^{2+} activated $Sr_{2-x} Ba_x SiO_4$ and $Sr_{3-x} Ba_x SiO_5$ phosphors [D]. Taiwan: National Cheng Kung University, 2008.
- [13] Gao S X, Chen Y B, Zeng R J. Preparation and characterization of agglomerate free YAG: Ce³⁺ phosphor by co precipitating and spray drying [J]. *Chin. J. Lumin.* (发光学报), 2010, 31(6): 806-811 (in Chinese).
- [14] Matsubara I, Paranthaman M, Allison S W, et al. Preparation of Cr-doped Y₃Al₅O₁₂ phosphors by heterogeneous precipitation methods and their luminescent properties [J]. Mater. Res. Bull., 2000, 35(2):217-224.
- [15] Yuan F, Ryu H. Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation [J]. Mater. Sci. Eng. B, 2004, 107(1):14-18.
- [16] Zeng R J, Chen Y B. Rare earth ions doped yttrium aluminum garnet phosphors synthesized by oxalic acid heterogeneous precipitation method: China, 200710009678.6 [P]. 2009-09-23.
- [17] Liu X L, Chen Y B, Zeng R J. Preparation of Eu²⁺ and Mn²⁺ co doped Ba₃MgSi₂O₈ phosphor through heterogeneous precipitation [J]. J. Ceram. (陶瓷学报), 2011, 32 (4):534-539 (in Chinese).
- [18] Zeng R J. The Chemistry of Inorganic Materials [M]. Xiamen: Xiamen University Press, 2001:200 (in Chinese).
- [19] Im W B, Fellows N N, Seshadri R, et al. La_{1-x-0.025}Ce_{0.025}Sr_{2+x}Al_{1-x}Si_xO₅ solid solutions as tunable yellow phosphors for solid state white lighting [J]. J. Mater. Chem., 2009, 19(9):1325-1330.
- [20] Dean J A. Lange's Handbook of Chemistry [M]. 13th Edition, New York: McGraw Hill Book Company, 1985: 384.
- [21] Fields J M, Dear P S, Brown J J. Phase equilibria in the system BaO-SrO-SiO₂ [J]. J. Am. Ceram. Soc., 1972, 55 (12):585-588.
- [22] Nakamura Y, Watari T, Torikai T, et al. Synthesis and luminescence properties of Eu²⁺ activated Sr₃SiO₅ phosphors [J]. IOP Conf. Series.: Mater. Sci. Eng., 2011, 18:1-4.
- [23] Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics [M]. New York: John Wiley and Sons, 1976: 422, 451.
- [24] Ye R L, Fan Y H, Lu P W. *Physical Chemistry of Inorganic Materials* [M]. Beijing: China Building Industry Press, 1986: 328,355 (in Chinese).

- [25] Mah T I, Petry M D. Eutectic composition in the pseudo binary of $Y_4Al_2O_9$ and Y_2O_3 [J]. J. Am. Ceram. Soc. , 1992, 75(7): 2006–2009.
- [26] Blasse G, Grabmaier B C. Luminescent Materials [M]. Berlin: Springer-Verlag, 1994:45.
- [27] Glasser L S D, Glasser F P. Silicates M₃SiO₅ I. Sr₃SiO₅ [J]. Acta Cryst., 1965, 18(3):453-454.
- [28] Shannon R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides [J]. Acta Cryst. A, 1976, 32(5):751-767.
- [29] Pu Y, Zhu D C, Han T. Preparation and characterization of Ca_{1-x-y}WO₄: xPr³⁺, yLi⁺ deep red phosphors for white LEDs excited by blue light [J]. *Chin. J. Lumin.* (发光学报), 2012, 33(1):12-16 (in Chinese).

欢迎订阅 欢迎投稿 《光学 精密工程》(月刊)

《光学精密工程》是中国仪器仪表学会一级学术期刊,中国科学院长春光学精密机械与物理研究所主办,科学出版 社出版。由国内外著名科学家任顾问,陈星旦院士任编委会主任,青年科学家曹健林博士担任主编。

《光学 精密工程》坚持学术品位,集中报道国内外现代应用光学、光学工程技术、光电工程和精密机械、光学材料、微纳科学与技术、医用光学、先进加工制造技术、信息与控制、计算机应用以及有关交叉学科等方面的最新理论研究、科研成果和创新技术。本刊自2007 年起只刊发国家重大科技项目和国家自然科学基金项目及各省、部委基金项目资助的论 文。《光学 精密工程》竭诚欢迎广大作者踊跃投稿。

本刊获奖:

国际检索源:

中国精品科技期刊	《美国工程索引》(EI Compendex)
中国权威学术期刊(RCCSE)	《美国化学文摘》(CA)
中国科学技术协会择优支持期刊	《英国 INSPEC 》(SA)
中国百种杰出学术期刊	《俄罗斯文摘杂志》(P)K)
第一届北方优秀期刊	《美国剑桥科学文摘》(CSA)
吉林省精品期刊	
国内检索源:	
中国科技论文统计源期刊	中文核心期刊要目总览(北大)
中国学术期刊(光盘版)	中国学术期刊综合评价数据库
万方数据系统数字化期刊	中国科学期刊全文数据库
台湾华艺中文电子期刊网	中国光学文献数据库
中国科学引文数据库	中国学术期刊文摘
中国物理文献数据库	中国物理文摘
中国期刊网	
地 址:长春市东南湖大路 3888 号	国内邮发代号: 12-166
《光学 精密工程》编辑部	国外发行代号: 4803BM
邮 编: 130033	定价: 50.00 元/期
电 话: (0431)86176855	帐 户: 中国科学院长春光学
传 真: (0431) 84613409	精密机械与物理研究所
E-mail: gxjmgc@ ciomp. ac. cn	银 行: 中行吉林省分行营业部
gxjmgc@ vip. sina. com	帐 号: 220801471908091001
http://www.eope.net	