

密级

学校编码: 10384

学号: 22420080150101

唇いたう

# 博 士 学 位 论 文 海洋沉积物和铁锰结壳碘的地球化学 与<sup>129</sup>I年代学

The geochemistry of iodine and <sup>129</sup>I dating in marine sediments and ferromanganese crusts

纪丽红

| 指导教师姓名: | 黄奕普 教授 |
|---------|--------|
|         | 刘广山 教授 |
| 专业名称:   | 海洋化学   |
| 论文提交日期: | 2011年月 |
| 论文答辩日期: | 2011年月 |

## 厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成 果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

另外,该学位论文为( )课题(组)
的研究成果,获得( )课题(组)经费或实验室的
资助,在( )实验室完成。(请在以上括号内填写
课题或课题组负责人或实验室名称,未有此项声明内容的,可以不作
特别声明。

声明人(签名):

年 月 H

### 厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

( )1.经厦门大学保密委员会审查核定的保密学位论文,于 年 月 日解密,解密后适用上述授权。

( )2.不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文应是
 已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密委员
 会审定的学位论文均为公开学位论文。此声明栏不填写的,默认为公
 开学位论文,均适用上述授权。)

声明人(签名):

#### 年 月 日

# 目录

| Contents         | VIII  |
|------------------|-------|
| 图目录              | XVI   |
| Figure Contents  | XX    |
| 表目录              | XXV   |
| Table Contents   | XXVII |
| 摘 要              | XXIX  |
| Abstract         | XXXI  |
| 缩略语表             | XXXIV |
| 第一章 绪论           |       |
| 1 碘的性质和研究意义      | 1     |
| 1.1 碘的性质         | 1     |
| 1.2 碘的研究意义       | 1     |
| 2 碘的海洋地球化学       | 3     |
| 2.1 碘在自然界中的分布    | 3     |
| 2.1.1 大气中的碘      | 3     |
| 2.1.2 河口中的碘      | 4     |
| 2.1.3 海水中的碘      | 4     |
| 2.1.4 生物圈中的碘     | 5     |
| 2.1.5 土壤中的碘      | 6     |
| 2.1.6 海洋沉积物中的碘   | 7     |
| 2.1.7 铁锰结壳中的碘    | 8     |
| 2.2 影响沉积物中碘分布的因素 | 8     |
| 2.3 碘的地球化学循环     | 10    |
| 3 碘的测定方法简介       |       |

| 3.1 样品预处理方法                                                                                                                                                                                        | 12                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 3.2 碘的测定方法                                                                                                                                                                                         | 12                                                           |
| 4地球环境中的 <sup>129</sup> I及其测量方法                                                                                                                                                                     | 13                                                           |
| 4.1 <sup>129</sup> I来源和贮量                                                                                                                                                                          | 13                                                           |
| 4.2 放射性碘污染                                                                                                                                                                                         | 14                                                           |
| 4.3 <sup>129</sup> I的测量方法                                                                                                                                                                          | 14                                                           |
| 4.3.1γ能谱法                                                                                                                                                                                          | 14                                                           |
| 4.3.2 液体闪烁计数法                                                                                                                                                                                      | 15                                                           |
| 4.3.3 中子活化分析法                                                                                                                                                                                      | 15                                                           |
| 4.3.4 AMS 方法                                                                                                                                                                                       |                                                              |
| 5 应用 <sup>129</sup> I 的海洋放射年代学                                                                                                                                                                     | 15                                                           |
| 5.1 应用宇生 <sup>129</sup> I的年代学                                                                                                                                                                      | 16                                                           |
| 5.2 人工放射性核素测年方法的应用                                                                                                                                                                                 | 18                                                           |
|                                                                                                                                                                                                    |                                                              |
| 6 本研究的意义、内容和技术路线                                                                                                                                                                                   | 18                                                           |
| <b>6</b> 本研究的意义、内容和技术路线                                                                                                                                                                            |                                                              |
|                                                                                                                                                                                                    | 18                                                           |
| 6.1 研究意义                                                                                                                                                                                           | 18<br>19                                                     |
| <ul><li>6.1 研究意义</li><li>6.2 研究内容</li></ul>                                                                                                                                                        | 18<br>19<br>19                                               |
| <ul> <li>6.1 研究意义</li> <li>6.2 研究内容</li> <li>6.3 技术路线</li> </ul>                                                                                                                                   | 18<br>19<br>19<br><b>20</b>                                  |
| <ul> <li>6.1 研究意义</li> <li>6.2 研究内容</li> <li>6.3 技术路线</li> <li>第二章 样品与测量方法</li> <li>1 研究海区</li> </ul>                                                                                              | 18<br>19<br>19<br>20<br>20                                   |
| <ul> <li>6.1 研究意义</li> <li>6.2 研究内容</li> <li>6.3 技术路线</li> <li>第二章 样品与测量方法</li> </ul>                                                                                                              | 18<br>19<br><b>20</b><br><b>20</b><br><b>2</b> 0             |
| <ul> <li>6.1 研究意义</li> <li>6.2 研究内容</li> <li>6.3 技术路线</li> <li>第二章 样品与测量方法</li> <li>1 研究海区</li> <li>1.1 近岸海区</li> </ul>                                                                            | 18<br>19<br><b>1</b> 9<br><b>20</b><br><b>20</b><br>20<br>20 |
| <ul> <li>6.1 研究意义</li> <li>6.2 研究内容</li> <li>6.3 技术路线</li> <li>第二章 样品与测量方法</li> <li>1 研究海区</li> <li>1.1 近岸海区</li> <li>1.1 光伴湾</li> </ul>                                                           | 18<br>19<br>20<br>20<br>20<br>20<br>20<br>21                 |
| <ul> <li>6.1 研究意义</li> <li>6.2 研究内容</li> <li>6.3 技术路线</li> <li>第二章 样品与测量方法</li> <li>1 研究海区</li> <li>1.1 近岸海区</li></ul>                                                                             | 18<br>19<br>20<br>20<br>20<br>21<br>21                       |
| <ul> <li>6.1 研究意义</li> <li>6.2 研究内容</li> <li>6.3 技术路线</li> <li>第二章 样品与测量方法</li> <li>1 研究海区</li> <li>1.1 近岸海区</li> <li>1.1 近岸海区</li> <li>1.1.1 兴化湾</li> <li>1.1.2 九龙江</li> <li>1.1.3 东山湾</li> </ul> | 18<br>19<br>20<br>20<br>20<br>20<br>21<br>21<br>21           |

| 1.4 中太平洋海山区                                 |      |
|---------------------------------------------|------|
| 1.4.1 中太平洋海山群                               |      |
| 1.4.2 莱恩群岛海山                                |      |
| 1.4.3 马尔库斯-威克海岭                             |      |
| 2 样品采集                                      | 24   |
| 2.1 沉积物样品采集与样品描述                            | 24   |
| 2.2 铁锰结壳样品采集与样品描述                           |      |
| 3 沉积物中的放射性核素测量和岩心年代序列建立                     |      |
| 3.1 样品的测量                                   |      |
| 3.2 沉积物沉积速率的估算                              |      |
| 3.2.1 <sup>210</sup> Pbex 测定沉积速率            |      |
| 3.2.2 <sup>137</sup> Cs 测定沉积速率              |      |
| 3.3 岩心年代序列                                  |      |
| 4 沉积物中碘的测定及 AMS 测量 <sup>129</sup> I 的样品制备   |      |
| 4.1 沉积物中碘的测定方法                              |      |
| 4.1.1 测量方法的选择                               |      |
| 4.1.2 仪器与试剂                                 |      |
| 4.2 沉积物碘的测定步骤                               |      |
| 4.2.1 标准工作曲线                                |      |
| 4.2.2 检测限                                   |      |
| 4.2.3 沉积物中碘的提取与测定的条件试验                      |      |
| 4.2.4 沉积物参考物质中碘的测定                          | 44   |
| 4.3 沉积物中 <sup>129</sup> I的AMS测量样品的制备        | 44   |
| 4.3.1 碘离子与干扰离子的分离                           |      |
| 4.3.2 沉积物中碘的提取和 <sup>129</sup> I的 AMS 测量样品的 | 制备45 |
| 4.4 误差计算                                    | 46   |
| 4.4.1 碘测定数据计算模型                             |      |

| 4.4.2 分光光度计示值误差计算                                     | 47 |
|-------------------------------------------------------|----|
| 4.4.3 工作曲线线性回归引起的误差计算                                 | 47 |
| 4.5 重要的注意事项                                           | 48 |
| 5 铁锰结壳中碘的测量及 AMS 测量 <sup>129</sup> I 的制样              |    |
| 5.1 仪器与试剂                                             | 49 |
| 5.2 碘的提取和测定                                           | 49 |
|                                                       |    |
| 5.3 条件实验                                              |    |
| 5.3.1 溶解温度的选定                                         |    |
| 5.3.2 溶解时间的选定                                         |    |
| 5.3.3 NH <sub>2</sub> OH.HCl 用量                       |    |
| 5.3.4 H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> 用量 |    |
| 5.3.5 Na <sub>2</sub> SO <sub>3</sub> 用量              |    |
| 5.3.6 洗脱体积                                            | 55 |
| 5.3.7 洗脱效率                                            | 55 |
| 5.3.8 方法的准确度                                          | 56 |
| 5.3.9 方法的精密度                                          | 56 |
| 5.4 AMS测定铁锰结壳中 <sup>129</sup> I的样品制备方法                | 57 |
| 5.5 待测样品组分的鉴定                                         | 58 |
| 5.6 铁锰结壳 <sup>129</sup> I提取和纯化的一些注意事项                 | 59 |
| 第三章 海洋沉积物碘的地球化学                                       | 60 |
| 1 沉积物中碘的含量水平                                          | 60 |
| 1.1 潮间带沉积物岩心中碘含量                                      | 60 |
| 1.1.1 潮间带沉积物岩心中碘的含量及分布                                | 60 |
| 1.1.2 潮间带岩心碘含量比较                                      | 66 |
| 1.2 胶州湾沉积物中碘的含量及分布                                    | 67 |
| 1.2.1 胶州湾岩心 C23 中碘含量及分布                               | 67 |
| 1.2.2 胶州湾沉积物岩心 4C3 中碘含量及深度分布                          |    |

| 1.2.3 胶州湾海相表层沉积物碘含量         | 70  |
|-----------------------------|-----|
| 1.2.4 胶州湾周围陆相沉积物碘含量         | 72  |
| 1.3 东海沉积物岩心S1004 中碘含量的深度分布  | 72  |
| 1.4 东太平洋沉积物岩心碘含量的深度分布       | 74  |
| 1.5 不同海域沉积物样品碘含量比较          | 75  |
| 2 沉积物碘的分解速率常数               | 77  |
| 2.1 潮间带沉积物岩心碘分解速率常数         | 78  |
| 2.1.1 兴化湾岩心 C45 碘的分解速率常数    | 78  |
| 2.1.2 东山湾岩心 C145 碘的分解速率常数   | 79  |
| 2.1.3 九龙江河口 C125 岩心碘的分解速率常数 | 79  |
| 2.2 东海S1004 沉积物岩心碘的分解速率常数   | 80  |
| 2.3 东太平洋C1 岩心碘的分解速率常数       | 81  |
| 2.4 不同海域沉积物岩心碘分解速率常数比较      | 82  |
| 3 沉积物碘含量与有机碳的关系             | 83  |
| 3.1 不同样品烧失量的比较              | 83  |
| 3.2 有机碳分解速率常数               | 84  |
| 3.2.1 潮间带沉积物岩心有机碳分解速率常数     | 84  |
| 3.2.2 东海 S1004 岩心           | 87  |
| 3.2.3 东太平洋 C1 岩心            | 88  |
| 3.2.4 不同海域沉积物岩心有机碳分解速率常数比较  | 88  |
| 3.3 不同海域沉积物影响碘分布的因素         | 89  |
| 3.3.1 潮间带沉积物                | 89  |
| 3.3.2 胶州湾沉积物                | 92  |
| 3.3.3 东海 S1004 沉积物岩心        | 100 |
| 3.3.4 东太平洋沉积物岩心             | 101 |
| 3.4 小结                      | 103 |
| 4 海洋沉积物中碘与有机碳比值 I/Corg      | 103 |

| 4.1  | 潮间带沉积物岩心的I/Corg比值                                   |     |
|------|-----------------------------------------------------|-----|
| 4.2  | 胶州湾沉积物I/Corg比值                                      |     |
| 4.3  | 东海沉积物岩心S1004的 I/Corg 比值                             |     |
| 4.4  | 东太平洋沉积物岩心I/Corg比值                                   |     |
| 4.5  | 小结                                                  |     |
| 第四章  | f 铁锰结壳碘的地球化学与 <sup>129</sup> I年代学                   | 110 |
| 1 铁锰 | 结壳碘含量水平与富集因子                                        | 110 |
| 1.1  | 铁锰结壳碘含量水平                                           |     |
| 1.2  | 铁锰结壳碘元素富集因子                                         |     |
| 2 铁锰 | 结壳中碘的深度分布特征                                         |     |
| 3 文献 | 给出的铁锰结壳中其它元素分布                                      |     |
|      | 结壳中 <sup>129</sup> I/ <sup>127</sup> I丰度比值及其深度分布    |     |
| 4.1  | 结壳MP5D44 中 <sup>129</sup> I/ <sup>127</sup> I的深度分布  |     |
| 4.2  | 结壳CXD08-1 中 <sup>129</sup> I/ <sup>127</sup> I的深度分布 |     |
| 5 铁锰 | 结壳生长速率与生成年代                                         |     |
| 5.1  | 结壳中碘的有效扩散系数                                         |     |
| 5.2  | <sup>129</sup> I年代学                                 |     |
|      | 5.2.1 结壳 MP5D44 的 <sup>129</sup> I 年代学              |     |
|      | 5.2.2 结壳 CXD08-1 的 <sup>129</sup> I 年代学             |     |
|      | 5.2.3 铁锰结壳生长速率的变化                                   |     |
| 5.3  | 不同结壳生长速率比较                                          |     |
| 6小结. |                                                     |     |
| 第五章  | 釒总结                                                 |     |
| 1 主要 | 研究结果                                                |     |
|      | 方法学                                                 |     |
| 1.2  | 沉积物中碘的地球化学                                          |     |

|           | 1.3  | 铁锰结壳中碘的地球化学              |  |
|-----------|------|--------------------------|--|
|           | 1.4  | 铁锰结壳 <sup>129</sup> I年代学 |  |
| 2         | 本研究  | 究创新点                     |  |
| 3         | 展望.  |                          |  |
| ANII<br>M | 参考文  | 〔献                       |  |
| ß         | 付录:  | 发表论文、会议交流论文及参加的课题        |  |
| 주         | 66 山 |                          |  |
|           |      |                          |  |

# Contents

| Abstract in Chinese                                           | XXIX     |
|---------------------------------------------------------------|----------|
| Abstract in English                                           | XXXI     |
| Chapter 1 Introduction                                        | 1        |
| 1 The nature of iodine and research significance              | 1        |
| 1.1 The nature of iodine                                      |          |
| 1.2 The research significance                                 |          |
| 2 The marine gochemistry of iodine                            |          |
| 2.1 The distribution of iodine in nature                      |          |
| 2.1.1 Iodine in the atmosphere                                |          |
| 2.1.2 Iodine in the Estuary                                   |          |
| 2.1.3 Iodine in the marine water                              |          |
| 2.1.4 Iodine in the biosphere                                 |          |
| 2.1.5 Iodine in the soil                                      |          |
| 2.1.6 Iodine in the sediments                                 |          |
| 2.1.7 Iodine in the ferromanganese crusts                     |          |
| 2.2 The influence factors of iodine distribution in sediments |          |
| 2.3 The geochemistry cycle of iodine                          |          |
| 3 Measurement of iodine                                       | ••••••11 |
| 3.1 The retreatment methods of sample                         |          |

| Contents |
|----------|
|----------|

| 3.2 The measurement methods of iodine12                                 |
|-------------------------------------------------------------------------|
| 4 <sup>129</sup> I in the environment and measure methods13             |
| 4.1 The source and sink of <sup>129</sup> I in the environment ······13 |
| 4.2 The pollution of radioactive iodine 14                              |
| 4.3 Measurement of <sup>129</sup> I ······14                            |
| 4.3.1 Gamma spectrometry 14                                             |
| 4.3.2 Liquid scintillation counting15                                   |
| 4.3.3 Neutron activation analysis 15                                    |
| 4.3.4 Accelerator mass spectrometry15                                   |
| 5 The dating of <sup>129</sup> I ······15                               |
| 5.1 The applications of dating by cosmogenic radionuclides              |
| 5.2 The applications of dating by artificial radionuclides              |
| <b>6</b> The study of the significance, contents and technical          |
| 6.1 Study significance18                                                |
| 6.2 Study contents                                                      |
| 6.3 Technical route                                                     |
| Chapter 2 Methods20                                                     |
| 1 The study sea area ······20                                           |
| 1.1 The coastal area ······20                                           |
| 1.1.1 The Xinghua Bay20                                                 |
| 1.1.2 The Jiulong Jiang River21                                         |
| 1.1.3 The Dongshan Bay ·····21                                          |

| 1.1.4 The Jiaozhou Bay ·····21                                                       |
|--------------------------------------------------------------------------------------|
| 1.2 East China Sea22                                                                 |
| 1.3 The eastern Pacific basin CC area22                                              |
| 1.4 The Central Pacific Ocean area23                                                 |
| 1.4.1 The Central Pacific Ocean Seamount group23                                     |
| 1.4.2 The Line Islands seamount ·····24                                              |
| 1.4.3 The Marcus-Wake seamount24                                                     |
| <b>2 Sampling</b>                                                                    |
| 2.1 Collection and discription of sediment samples24                                 |
| 2.2 Collection and discription of ferromanganese crusts28                            |
| 3 The measurement of radionuclides and establishment of chronology of marine         |
| sediments31                                                                          |
| 3.1 Measurement of radionuclides                                                     |
| 3.2 The calculation of sedimentary rate                                              |
| 3.2.1 The sedimentary rate calculatedy by <sup>210</sup> Pb <sub>ex</sub>            |
| 3.2.2 The sedimentary rate calculatedy by <sup>137</sup> Cs ·······32                |
| 3.3 The dating in sediment core                                                      |
| 4 Measurement of iodine in sediments and <sup>129</sup> I sample preparation for AMS |
| measurement                                                                          |
| 4.1 Measurement method of iodine in sediments                                        |
| 4.1.1 The choice of measurement method                                               |
| 4.1.2 Instruments and reagents                                                       |
|                                                                                      |

| 4.2.1 The standard work curve                                                     |  |  |  |
|-----------------------------------------------------------------------------------|--|--|--|
| 4.2.2 The detection limit                                                         |  |  |  |
| 4.2.3 The extraction iodine from sediment and condition experiments               |  |  |  |
| 4.2.4 The measurement of iodine from preference material                          |  |  |  |
| 4.3 The <sup>129</sup> I sample preparation for AMS measurement                   |  |  |  |
| 4.4 Error calculation ······46                                                    |  |  |  |
| 4.5 Conclusions48                                                                 |  |  |  |
| 5 The determination of iodine in ferromanganese crust and <sup>129</sup> I sample |  |  |  |
| preparation for AMS measurement48                                                 |  |  |  |
| 5.1 Instruments and reagents49                                                    |  |  |  |
| 5.2 Extraction and determination of iodine49                                      |  |  |  |
| 5.3 The condition experiment                                                      |  |  |  |
| 5.3.1 The choice of dissolving temperature                                        |  |  |  |
| 5.3.2 The choice of dissolving time52                                             |  |  |  |
| 5.3.3 Hydroxylamine hydrochloride amount                                          |  |  |  |
| 5.3.4 Oxalic acid amount                                                          |  |  |  |
| 5.3.5 Sodium sulfite amount                                                       |  |  |  |
| 5.3.6 Elution volume                                                              |  |  |  |
| 5.3.7 Elution efficiency                                                          |  |  |  |
| 5.3.8 The recovery rate of method                                                 |  |  |  |
| 5.3.9 The precision of method                                                     |  |  |  |
| 5.4 <sup>129</sup> I sample preparation of AMS                                    |  |  |  |
| 5.5 The identification of sample                                                  |  |  |  |

| Contents |
|----------|
|----------|

| 5.6 Conclusions                                               | 59                    |
|---------------------------------------------------------------|-----------------------|
| Chapter 3 The geochemistry of iodine in sediments             | 60                    |
| 1 The iodine contents in sediment samples                     | 60                    |
| 1.1 The iodine content in sediment cores from intertidal zone | e60                   |
| 1.1.1 The profile of iodine contents in sediment cores fr     | om intertidal zone…60 |
| 1.1.2 Comparisons of iodine in sediment cores from inte       | ertidal zone          |
| 1.2 The profile of iodine contents in sediment cores col      | lected from Jiaozhou  |
| Bay                                                           | 67                    |
| 1.2.1 The profile of iodine contents in sediment core C2      | 367                   |
| 1.2.2 The profile of iodine contents in sediment core 4C      | 368                   |
| 1.2.3 The iodine contents in marine surface sediments         | 70                    |
| 1.2.4 The iodine contents in surface sediments from coa       | st land72             |
| 1.3 The profile of iodine contents in sediment core S1004     | 72                    |
| 1.4 The profile of iodine contents in sediment core C1 from   | East Pacific Ocean 74 |
| 1.5 Comparisons of iodine content in different sea area sedir | ment samples75        |
| 2 The decomposition rate constant of iodine                   | 77                    |
| 2.1 The decomposition rate constant of iodine in sedime zone  |                       |
| 2.1.1 The decomposition rate constant of iodine in sedim      | nent core C4578       |
| 2.1.2 The decomposition rate constant of iodine in sedin      | nent core C14579      |
| 2.1.3 The decomposition rate constant of iodine in sedin      | nent core C12579      |
| 2.2 The decomposition rate constant of iodine in core S1004   | 80                    |
| 2.3 The decomposition rate constant of iodine in core C1      |                       |

| 2.4 Comparisons of decomposition rate constants of iodine in different sea area    |
|------------------------------------------------------------------------------------|
| sediments                                                                          |
| <b>3</b> The relationship between organic carbon and iodine content in sediments83 |
| 3.1 Comparisions of ignition loss in different sediment samples                    |
| 3.2 The decomposition rate constant of organic carbon                              |
| 3.2.1 The decomposition rate constants of organic carbon in sediment cores         |
| of interdial zone84                                                                |
| 3.2.2 The decomposition rate constant of organic carbon in S1004 core87            |
| 3.2.3 The decomposition rate constant of organic carbon in C1core88                |
| 3.2.4 Comparisions of decomposition rate constants of organic carbon88             |
| 3.3 The influence factores of iodine in sediment samples from different sea        |
| area                                                                               |
| 3.3.1 The sediments collected from intertidal zone89                               |
| 3.3.2 The sediments collected from Jiaozhou Bay92                                  |
| 3.3.3 The sediment core S1004 from the East China Sea100                           |
| 3.3.4 The sediment core C1 collected the East Pacific Ocean101                     |
| 3.4 Conclusions103                                                                 |
| <b>4</b> The I/ C <sub>org</sub> ratio in sediments 103                            |
| 4.1 The I/ C <sub>org</sub> ratio in sediment cores from intertidal zone104        |
| 4.2 The I/ C <sub>org</sub> ratio in sediment cores from Jiaozhou Bay106           |
| 4.3 The I/ $C_{org}$ ratio in sediment core from the East China Sea108             |
| 4.4 The I/ C <sub>org</sub> ratio in sediment core from East Pacific Ocean109      |
| 4.5 Conclusions 109                                                                |

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on <a href="http://etd.calis.edu.cn/">http://etd.calis.edu.cn/</a> and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.