brought to you by CORE

学校编码: 10384 学号: 22620060153359 密级____

唇の大う

博士学位论文

东海典型赤潮浮游植物对磷营养盐变动的 生理生化响应

Physiological and Biochemical Responses on Typical Harmful Algae under Different Phosphate Availability in East China Sea

王秀秀

指导教师姓名:黄邦钦 教授 专业名称:环境科学 论文提交日期:2012年11月 论文答辩时间:2012年12月

答辩委员会主席:

评 阅 人: _____

2012年12月

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

另外,该学位论文为(海洋浮游植物)课题(组)
的研究成果,获得(海洋浮游植物)课题(组)经费或实验室的资助,在(海洋浮游植物)实验室完成。(请在以上括号内填写课题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特别声明。)

声明人 (签名): 年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1. 经厦门大学保密委员会审查核定的保密学位论文,于2013 年 12 月 1 日解密,解密后适用上述授权。

(√)2.不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文 应是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密 委员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认 为公开学位论文,均适用上述授权。)

声明人 (签名):

年 月 日

HANNEL HANNEL

日來
日來

缩写语对照表 ·······XI
摘 要 ···································
英文摘要 ·······XIV
第一章 绪 论
1.1 东海长江口邻近海域赤潮高发区概况1
1.1.1 东海赤潮高发区概况
1.1.2 东海赤潮高发区营养盐状况
1.1.3 东海长江口邻近海域赤潮高发区主要赤潮生物3
1.1.4 营养盐变化与赤潮发生发展的关系
1.2 营养盐加富对浮游植物生长的影响4
1.2.1 营养盐输入量
1.2.2 氮磷比值
1.2.3 营养盐输入方式6
1.3 赤潮生物对磷饥饿条件的应对策略
1.3.1 特异性蛋白
1.3.2 细胞内磷储库
1.3.3 细胞内碳水化合物
1.3.4 光合色素
1.3.5 混合营养
1.4 补偿生长
1.5 赤潮生物蛋白质组学研究进展······15
1.5.1 蛋白质组学方法
1.5.2 定量蛋白质组学在赤潮生物中的应用
1.6 本论文的研究目标
第二章 材料与方法
2.1 藻种培养

2.2 生长速率的测定	
2.3 无机磷浓度的测定	
2.4 叶绿素的测定	
2.5 光合色素的测定	
2.6 细胞糖含量的测定	
2.7 细胞蛋白含量的测定	
2.8 细胞颗粒磷的测定	
2.9 细胞多聚磷酸盐的测定	
2.10 蛋白质组样品提取方法	
2.11 非标记定量液相色谱-质谱联用蛋白质组学分析(LFQ-LC-	MS/MS) 25
2.11.1 酶切	
2.11.2 LFQ-LC-MS/MS 方法鉴定蛋白	
2.11.3 数据库搜索	
2.11.4 蛋白功能注释	
2.12 统计分析	
第三章 东海典型赤潮藻磷饥饿条件下生理生化响应	27
第三章 东海典型赤潮藻磷饥饿条件下生理生化响应 ····· 3.1 东海典型赤潮藻营养盐吸收动力学······	
3.1 东海典型赤潮藻营养盐吸收动力学	 27
3.1 东海典型赤潮藻营养盐吸收动力学 3.1.0 引言	27 27 27 28
 3.1 东海典型赤潮藻营养盐吸收动力学 3.1.0 引言 3.1.1 材料与方法 	27 27 27 28 28 29
 3.1 东海典型赤潮藻营养盐吸收动力学 3.1.0 引言 ········· 3.1.1 材料与方法 3.1.2 结果 ····· 	27 27 27 28 29 30
 3.1 东海典型赤潮藻营养盐吸收动力学 3.1.0 引言 ···································	27 27 27 28 29 30 34
 3.1 东海典型赤潮藻营养盐吸收动力学 3.1.0 引言 ···································	27 27 27 28 29 30 34
 3.1 东海典型赤潮藻营养盐吸收动力学 3.1.0 引言 3.1.1 材料与方法 3.1.2 结果 3.1.3 讨论 3.1.4 结论 3.1.4 结论	27 27 28 29 30 34 34 34
 3.1 东海典型赤潮藻营养盐吸收动力学 3.1.0 引言 3.1.1 材料与方法 3.1.2 结果 3.1.3 讨论 3.1.4 结论 3.1.4 结论 3.2 东海典型赤潮藻细胞内生化组成对磷饥饿的响应 3.2.0 引言	27 27 27 28 29 30 34 34 34 34 34 35
 3.1 东海典型赤潮藻营养盐吸收动力学	27 27 28 29 30 34 34 34 35 35
 3.1 东海典型赤潮藻营养盐吸收动力学	27 27 28 29 30 30 34 34 34 35 35 35 4 <u>1</u>
3.1 东海典型赤潮藻营养盐吸收动力学 3.1.0 引言 3.1.1 材料与方法 3.1.2 结果 3.1.3 讨论 3.1.4 结论 3.2 东海典型赤潮藻细胞内生化组成对磷饥饿的响应 3.2.0 引言 3.2.1 材料与方法 3.2.2 结果 3.2.3 讨论	27 27 28 29 30 34 34 34 34 35 35 35 35 41 43

3.3.1	材料与方法	45
3.3.2	结果	45
3.3.3	讨论	47
3.3.4	结论	53
3.4 东海	原甲藻磷缺乏与磷充足条件下比较蛋白质组学	53
3.4.0	引言	53
3.4.1	材料与方法	54
3.4.2	结果	54
3.4.3	讨论	57
3.4.4	结论	59
3.5 本章	小结	60
	东海典型赤潮藻对磷加富的生理生化响应	
4.1 威氏法	海链藻磷饥饿后补偿生长现象	61
4.1.0	引言	61
4.1.1	材料与方法	62
4.1.2	结果	63
4.1.3	讨论	67
4.1.4	结论	69
	骨条藻和东海原甲藻补偿生长的生理响应	
	引言	
	材料与方法	
	结果	
	讨论	
	结论	
	海链藻光合作用相关蛋白对磷加富的响应	
	引言	
	材料与方法	
	结果	
	讨论	
4.3.4	结论	94

4.4 东海原甲藻光合作用相关蛋白对磷加富的影响	
4.4.0 引言	
4.4.1 材料与方法	
4.4.2 结果	
4.4.3 讨论	
4.4.4 结论	
4.5 本章小结	101
第五章 总结与展望	
5.1 主要结论	
5.1.1 磷转运系统	
5.1.2 威氏海链藻磷饥饿条件下代谢调节	
5.1.3 东海原甲藻磷饥饿条件下代谢调节	
5.1.4 威氏海链藻补偿生长现象	
5.1.5 东海原甲藻和中肋骨条藻补偿生长现象	
5.1.6 威氏海链藻光合作用系统对磷添加的响应	
5.1.7 东海原甲藻光合作用系统对磷添加的响应	
5.2 论文的特色与创新	
5.3 论文的不足之处与有待于解决的问题	
参考文献	
附录	
研究生在读期间发表的文章	141
致谢	

Contents

Table of abbreviation IX
Chinese abstract ······ X
Abstract ······XII
Chapter 1 Introduction1
1.1 Description of high HAB area in the Changjiang river estuary and its
adjacent East China Sea ······1
1.1.1Survey of the high HAB area in the Changjiang river estuary and its
adiacent East China Sea
1.1.2 Nutrient status of the high HAB area in the Changjiang river estuary and
its adiacent East China Sea2
1.1.3 Mainly HAB species in high HAB area in the Changjiang river estuary
and its adiacent East China Sea
1.1.4 Influence of nutrients on HABs ······3
1.2 Nutrients enrichment on phytoplankton growth······
1.2.1 Input concentration
1 2 2 N/P ratio
1.2.3 Input mode
1.3 Strategies of phytoplankton under P deficiency 7
1.3.1 Differential protein ······7
1.3.2 Cellular phosphorus storage 10
1.3.3 Cellular carbohydrate 11
1.3.4 Pigment
1.3.5 Mixtrophism
1.4 Compensatory growth 14
1.5 Review of proteomic research on phytoplankton ······ 15
1.5.1 Proteomics techniques
1.5.2 Quantitative proteomics study of phytoplankton
1.6 Target of the thesis ······ 20
Chapter 2 Material and methods 22
2.1 Algae culture ······ 22

2.2 Determination of growth rate	22
2.3 Determination of SRP concentration	22
2.4 Determination of chlorophyll ·····	23
2.5 Determination of pigment ·····	
2.6 Determination of carbohydrate ·····	
2.7 Determination of protein ·····	
2.8 Determination of particulate phosphate ·····	
2.9 Determination of polyphosphate ·····	
2.10 Abstraction of protein······	
2.11 LFQ-LC-MS/MS analysis ······· 2.11.1 Enzyme digestion ······	25
2.11.1 Enzyme digestion	
2.11.2 LFQ-LC-MS/MS identification	
2.11.3 Database searching	
2.11.4 Protein annotation 2.12 Statistical analysis	
2.12 Statistical analysis ·····	
Chaper 3 Physical and biochemical analysis of the typic	cal HAB
phytoplankton of East China sea under P deficiency	27
3.1.0 Introduction	
3.1 Nutrient asorption kinetics of the three species ······	····· 27 ···· 27
3.1 Nutrient asorption kinetics of the three species	····· 27 ···· 27 ··· 28
 3.1 Nutrient asorption kinetics of the three species 3.1.0 Introduction	····· 27 ···· 27 ···· 28 ···· 29
 3.1 Nutrient asorption kinetics of the three species	····· 27 ···· 27 ···· 28 ···· 29 ···· 30
 3.1 Nutrient asorption kinetics of the three species 3.1.0 Introduction 3.1.1 Material and method 3.1.2 Results 3.1.3 Discussion 	····· 27 ···· 27 ···· 28 ···· 29 ···· 30 ···· 34
 3.1 Nutrient asorption kinetics of the three species 3.1.0 Introduction 3.1.1 Material and method 3.1.2 Results 3.1.3 Discussion 3.1.4 Conclusion 	····· 27 ···· 27 ···· 28 ···· 29 ···· 30 ··· 34 cy ··· 34
 3.1 Nutrient asorption kinetics of the three species 3.1.0 Introduction 3.1.1 Material and method 3.1.2 Results 3.1.3 Discussion 3.1.4 Conclusion 3.2 Changes of cellular biochemical macromolecules under P deficient 	
 3.1 Nutrient asorption kinetics of the three species 3.1.0 Introduction 3.1.1 Material and method 3.1.2 Results 3.1.3 Discussion 3.1.4 Conclusion 3.2 Changes of cellular biochemical macromolecules under P deficient 3.2.0 Introduction 	
 3.1 Nutrient asorption kinetics of the three species 3.1.0 Introduction 3.1.1 Material and method 3.1.2 Results 3.1.3 Discussion 3.1.4 Conclusion 3.2 Changes of cellular biochemical macromolecules under P deficient 3.2.0 Introduction 3.2.1 Material and method 	
 3.1 Nutrient asorption kinetics of the three species 3.1.0 Introduction 3.1.1 Material and method 3.1.2 Results 3.1.3 Discussion 3.1.4 Conclusion 3.2 Changes of cellular biochemical macromolecules under P deficien 3.2.0 Introduction 3.2.1 Material and method 3.2.2 Results 	
 3.1 Nutrient asorption kinetics of the three species 3.1.0 Introduction 3.1.1 Material and method 3.1.2 Results 3.1.3 Discussion 3.1.4 Conclusion 3.2 Changes of cellular biochemical macromolecules under P deficien 3.2.0 Introduction 3.2.1 Material and method 3.2.2 Results 3.2.3 Discussion 	
 3.1 Nutrient asorption kinetics of the three species 3.1.0 Introduction 3.1.1 Material and method 3.1.2 Results 3.1.3 Discussion 3.1.4 Conclusion 3.2 Changes of cellular biochemical macromolecules under P deficien 3.2.0 Introduction 3.2.1 Material and method 3.2.2 Results 3.2.3 Discussion 3.2.4 Conclusion 	
3.1 Nutrient asorption kinetics of the three species 3.1.0 Introduction 3.1.1 Material and method 3.1.2 Results 3.1.3 Discussion 3.1.4 Conclusion 3.2 Changes of cellular biochemical macromolecules under P deficien 3.2.0 Introduction 3.2.1 Material and method 3.2.2 Results 3.2.3 Discussion 3.2.4 Conclusion 3.3 Comparison proteomics of <i>T. weissflogii</i> under P deficiency	

3.3.3 Discussion	
3.3.4 Conclusion	53
3.4 Comparison proteomics of <i>P. donghaiense</i> under P deficiency ······	53
3.4.0 Introduction	53
3.4.1 Material and method	
3.4.2 Results	
3.4.3 Discussion	
3.4.4 Conclusion	
3.5 Summery ·····	60
Chapter 4 Physical and biochemical analysis of the typic	cal HAB
Phytoplankton of East China Sea after P enrichment ·······	61
4.1 Compensatory growth of <i>T. weissflogii</i> after P enrichmemt ·······	
4.1.0 Introduction	
4.1.1 Material and method ····································	
4.1.2 Results ·····	
4.1.3 Discussion	
4.1.4 Conclusion ·····	
4.2 Compensatory growth of S. castatum and P. donghaiense	
enrichmemt ······	····· 70
4.2.0 Introduction	
4.2.1 Material and method	71
4.2.2 Results ·····	72
4.2.3 Discussion	
4.2.4 Conclusion	
4.3 Changes of photosynthetic related proteins of T. weissflogii	
enrichment ······	
4.3.0 Introduction	
4.3.1 Material and method	
4.3.2 Results	
4.3.3 Discussion	
4.3.4 Conclusion	
4.4 Changes of photosynthetic related proteins of P. donghaiense	after P
enrichment ······	

4.4.0 Introduction ·····	95
4.4.1 Material and method	95
4.4.2 Results	95
4.4.3 Discussion	98
4.4.4 Conclusion ·····	100
4.5 Summery	101
Chapter 5 Summary of the dissertation	
5.1 Mainly conclution ······	102
5.1.1 P transport system	102
5.1.2 Metobolic changes of <i>T. weissflogii</i> under P deficiency	102
5.1.3 Metobolic changes of <i>P. donghaiense</i> under P deficiency	102
5.1.4 Compensatory growth of T. weissflogii	103
5.1.5 Compensatory growth of S. costatum and P. donghaiense	
5.1.6 Changes of photosynthetic related proteins of T. weissflogii	after P
enrichment ·····	103
5.1.7 Changes of photosynthetic related proteins of P. donghaiense	after P
enrichment ······	103
5.2 Creativity	103
5 2 Descent and	104
References	105
Appendix	125
List of publications	•••• 141
Acknowlegement ·····	···· 142

缩写语对照表

- ADP: Adenosine diphosphate, 二磷酸腺苷
- AP: Alkaline phosphatase, 碱性磷酸酶
- ATP: Adenosine triphosphate, 三磷酸腺苷
- Chla: Chlorophylla, 叶绿素 a
- CoA: Coenzyme A, 辅酶 A
- DDT: Diatoxanthin, 硅藻黄素
- DDX: Diadinoxanthin, 硅甲藻黄素
- FCP: Fucoxanthin Chl a/c light-harvesting protein, 岩藻黄素-叶绿素 a/c 光捕获蛋白
- G3PDH: Glyceraldehyde -3- phosphoglycerate dehydrogenase 甘油醛-3-磷酸甘油酸脱氢酶
- IDH: Isocitrate dehydrogenase, 异柠檬酸脱氢酶
- LFQ-LC-MS/MS: Label free liquid-chromatography mass spectrometry, 非标记定量液相质谱联用
- N: Nitrogen 氮
- NPQ: Non-photochemical quenching, 非光化学淬灭
- P: Phosphorus 磷
- PEPC: Phosphoenolpyruvate carboxylase, 磷酸烯醇丙酮酸羧化酶
- Per: Peridinin, 多甲藻素;
- PK: Pyruvate kinase, 丙酮酸激酶
- PP: Particulate phosphate, 颗粒磷
- RNA: Ribonucleic acid, 核糖核酸
- SCS: Succinyl CoA deacylase, 琥珀酰 CoA 合成酶
- SRP: Soluble reactive phosphorus,活性磷酸盐
- tRNA: Transfer RNA,转运 RNA
- β-car: β-carotene, β-胡萝卜素
- HXK: Hexokinase, 己糖激酶

摘要

本论文以东海典型赤潮藻东海原甲藻(Prorocentrum donghaiense)、中肋骨 条藻(Skeletonema costatumn)和一种硅藻生理模式生物威氏海链藻(Thalassiosira weissflogii)为研究对象,采用生理学和蛋白质组学结合的手段,研究了三种藻 在磷酸盐变动条件下的细胞内生化组成及其细胞内代谢途径的变化。主要结果如 下:

营养盐吸收动力学实验表明,东海原甲藻具有一套磷酸盐转运系统,而
 中肋骨条藻和威氏海链藻具有两套磷酸盐转运系统,因此,中肋骨条藻和威氏海
 链藻能够在低磷条件下利用高亲和磷转运系统来吸收无机磷。

2. 威氏海链藻细胞内有一系列的应对磷饥饿条件的策略,如利用细胞内的 磷库,同时上调高亲和磷转运蛋白提高磷酸盐吸收速率,并合成硫脂来减少细胞 内磷脂双分子膜对磷的需求。同时,威氏海链藻会减少光捕获蛋白和所有色素的 含量,并下调蛋白合成过程,提高细胞内的糖酵解过程来提供能量,细胞内的蛋 白含量和碳水化合物含量也显著下调。

3. 磷饥饿条件下,东海原甲藻细胞内 Chl a 含量显著下降,但其多甲藻素和 硅甲藻黄素以及 Chl c1+c2等捕光色素的含量维持不变,并提高其细胞内捕光色 素复合体蛋白含量来保持其光合作用的捕光能力;同时卡尔文循环中的固碳和还 原过程上调,因此可以在细胞内积累碳水化合物。

4. 磷饥饿的威氏海链藻添加 f/20 培养条件(3.6 μmol·L⁻¹, PO₄³⁻)的磷酸盐 后表现出超补偿生长现象, 其它培养条件为等补偿生长现象, 但 f/16 处理组(4.5 μmol·L⁻¹, PO₄³⁻)前三天的比生长速率最小。表明磷饥饿处理会促进威氏海链藻 基于叶绿素表征的生长速率, 两轮的处理之后最大生物量会显著降低。

5. 磷饥饿处理会降低中肋骨条藻的生长速率和最大生物量,添加 3.5 µmol·L⁻¹磷酸盐后,在 8 小时内,磷饥饿后中肋骨条藻快速合成 Chl a,同时积 累多聚磷酸盐。东海原甲藻细胞内的磷储库比较大,磷饥饿处理对东海原甲藻的 生长速率和最大生物量没有显著影响,且在磷添加 8 小时后并不合成 Chl a,只 积累多聚磷酸盐,

Х

6. 磷饥饿的威氏海链藻的在添加磷酸盐后, Chl a 恢复到对照组水平, 甚 至 f/16 添加组可以合成超过对照组的 Chl a。添加 f/20 组和 f/16 组细胞内都只有 一部分光捕获蛋白含量提高。添加磷酸盐后两个添加组的细胞内光合作用传递链 上的相关蛋白都上调表达, f/20 组细胞内的 PS II 的整体蛋白都上调表达, 这一 结果解释了藻类添加实验后光合作用速率上升的原因。

7. 磷饥饿的东海原甲藻细胞添加磷酸盐后, f/40 添加组(1.8 μmol·L⁻¹, SRP) 的光捕获蛋白与主要的光捕获色素(Chl *a* 和硅甲藻黄素)都超过了对照组,显 著提高了东海原甲藻细胞的光捕获能力。而 f/2 添加组(36 μmol·L⁻¹, SRP)的 Chl *a* 含量比对照组略低,且细胞内的大部分光捕获蛋白下调表达,可能是由于 细胞内对蛋白合成途径进行了调整。

关键词: 典型赤潮藻; 磷饥饿; 磷添加; 补偿生长; 蛋白质组学; 生化组成

Abstract

The studies on physiological and proteomic responses of typical red tide species (*Prorocentrum donghaiense* and *Skeletonema costatum*) and a physiological well-studied diatom species *Thalassiosira weissflogii* under different phosphate availability were carried out in this dissertation. We investigated the changes of biochemical macromolecules (e.g. peotein, carbohydrate, pigment) and metabolic pathways. The main results are as follows:

1. The Hofstee transformation curves showed *P. donghaiense* owned one phosphate transport system while the other two test species owned two. When phosphate was depleted, *S. costatum* was advantaged in gaining phosphate due to the low constant of uptake kinetics (Ks), and then came to *T. weissflogii*.

2. Under P deficiency, cellular pigment content and fucoxanthin chlorophyll a/c light-harvesting proteins decreased in *T. weissflogii*, and the ribosome subunits and tRNA synthetases were down-regulated as well. On the other hand, the glycolysis progresse was up-regulated under phsoaphate deficiency, suggesting an increasing utilization in cellular carbohydrate under phosphate deficiency. The up-regulated sulfolipid biosynthesis protein in phosphate deficient culture suggested a switch in phospholipids for sulfolipids. In addition, a phosphate transporter was also up-regulated under phosphate deficiency. Our results revealed that *T. weissflogii* had sophisticated responses in multiple biochemical pathways under phosphate deficiency, which were likely critical for this species to survive under various phosphate availability in environment.

3. The cellular Chl *a* content of *P. donghaiense* decreased under phosphate deficiency condition while the other pigments (e.g. peridinin, diadinoxanthin, Chl c_1+c_2) remained the same. At the same time, the light-harvesting proteins were up-regulated. The carbon fixation step was also up-regulated in Calvin cycle. The responses might be adjusted to retain the photosynthesis rate and fix more CO₂ to accumulate carbohydrate while the carbohydrate content was higher under phosphate deficient condition. The cellular particulate phosphate was much lager than that in *T. weissflogii*, which could be the polyphosphate accumulated under phosphate deficiency.

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.