学校编码: 10384 学 号: 22620081151537 密级____

唇の大う

硕士学位论文

以单壁碳纳米管为涂层的固相微萃取纤维 在水环境分析中的应用研究 Application of Solid Phase Microextraction Fiber Coated with Single-walled Carbon Nanotubes in the Analysis of Aqueous Samples

马晓霞

指导教师姓名: 李权龙 副教授 专业名称:环境科学 论文提交日期: 2011年05月 论文答辩时间: 2011年06月

2011年06月

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

 另外,该学位论文为(
)课题(组)

 的研究成果,获得(
)课题(组)经费或实验室的

 资助,在(
)实验室完成。(请在以上括号内填写课

 题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特

 别声明。)

声明人 (签名): 年 月 日 HANNEL HANNEL

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1. 经厦门大学保密委员会审查核定的保密学位论文,于 年 月 日解密,解密后适用上述授权。

() 2. 不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文 应是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密 委员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认 为公开学位论文,均适用上述授权。)

声明人 (签名):

年 月 日

HANNEL HANNEL

目录

摘要	I
ABSTRACT	III
第一章 绪论	1
1.1 SPME 技术	2
1.1.1 SPME 原理	2
1.1.2 SPME 装置	
1.1.3 SPME 操作过程	
1.1.4 SPME 与检测仪器的联用	
1.1.5 SPME 萃取方式	
1.2 SPME 纤维 ······	
1.2.1 商品化 SPME 纤维 ······	8
1.2.2 非商品化 SPME 纤维	
1.3 碳纳米管作为吸附剂在 SPME 中的应用	
1.4 论文的研究目的及研究内容	
1.4.1 研究目的和意义	14
1.4.2 研究内容	15
第一章参考文献 ······	
第二章 基于 SWCNTs 纤维的 SPME-GC-FID 法测定	主水中的三苯 类
化合物	20
2.1 前言	
2.2 实验部分	
2.2.1 仪器与试剂	21
2.2.2 色谱条件	22
2.2.3 SWCNTs 纤维的制备及高温氢气处理	

2.2.3.1 SWCNTs 纤维的制备	22
2.2.3.2 SWCNTs 纤维的高温氢气处理	23
2.2.3.3 SWCNTs 涂层的红外光谱分析	23
2.2.4 SPME 过程	23
2.2.5 水样采集、处理和储存	24
2.3 结果与讨论	24
2.3.1 高温氢气处理对 SWCNTs 纤维的影响	24
2.3.1.1 红外光谱分析	24
2.3.1.2 氢气处理效果	25
2.3.2 SPME 操作条件的选择	
2.3.2.1 脱附条件的优化及 SWCNTs 纤维的热稳定性考察	26
2.3.2.2 萃取时间的影响	27
2.3.2.3 萃取温度的影响	28
2.3.2.4 离子强度的影响	29
2.3.2.5 基体搅拌状态的影响	30
2.3.3 与商品化纤维 CAR-PDMS 的比较	31
2.3.4 SWCNTs 纤维使用寿命	
2.3.5 方法的线性范围、检测限、定量限和重现性	
2.3.6 方法的应用	34
2.4 本章小结	
第二章 参考文献	
第三章 基于 SWCNTs 纤维的在线 SPME-HPLC 法测定水中	的内分
· 必干扰物	
3.1 前言	38
3.2 实验部分	39
3.2.1 仪器与试剂	
3.2.2 色谱条件	

3.2.3 SPME 过程40
3.2.4 水样采集、处理和储存40
3.2.5 SWCNTs 纤维制备及高温氢气处理 ·······························40
3.3 结果与讨论41
3.3.1 氢气处理对 SWCNTs 纤维的影响41
3.3.2 SPME 操作条件的优化42
3.3.2.1 解吸条件的确定42
3.3.2.2 萃取时间的影响43
3.3.2.3 基体搅拌状态的影响44
3.3.2.4 离子强度的影响45
3.3.2.5 pH 值的影响46
3.3.2.6 萃取温度的影响
3.3.3 与商品化纤维 PA 的比较48
3.3.4 SWCNTs 纤维的耐有机溶剂性和使用寿命
3.3.5 方法的线性范围、检测限、定量限和重现性
3.3.6 方法的应用51
3.4 本章小结51
第三章 参考文献
第二 早 <i>参</i> 与 义 瞅
第四章 基于 SWCNTs 纤维的 SPME 衍生化-GC-ECD 法测定水中的
苯氧基羧酸类除草剂55
4.1 前言
4.2 实验部分
4.2.1 仪器与试剂56
4.2.2 色谱条件57
4.2.3 SPME 及衍生化过程 ······57
4.2.4 水样采集、处理和储存
4.2.5 SWCNTs 纤维的制备及高温氢气处理

4.3 结果与讨论	58
4.3.1 色谱分离	58
4.3.2 衍生条件的确定	59
4.3.3 SPME 操作条件的优化 ····································	60
4.3.3.1 解吸过程的确定	60
4.3.3.2 基体搅拌状态的影响	61
4.3.3.3 pH 值的影响	62
4.3.3.4 萃取时间的影响	63
4.3.4 与商品化纤维 PA 的比较	64
4.3.5 SWCNTs 纤维的使用寿命	65
4.3.6 方法的线性范围、检测限和定量限	66
4.3.7 方法的应用	67
4.4 本章小结	67
第四章 参考文献 ····································	68
第五章 结语	70
5.1 本研究取得的成果	70
5.2 本研究的不足	70
5.3 展望	70
攻读硕士期间发表的论文	71
致谢	72

Contents

ABSTRACT (In Chinese) I
ABSTRACT (In English) III
Chapter 1 Preface1
1.1 SPME technology2
1.1.1 Principles of SPME2
1.1.2 SPME device4
1.1.3 SPME procedure5
1.1.4 Coupling SPME to analytical instruments
1.1.5 Extraction modes for SPME7
1.2 SPME fiber
1.2.1 Commercial SPME fiber8
1.2.2 Home-made SPME fiber10
1.3 The application of carbon nanotubes in SPME 11
1.4 Objective and content of this research14
1.4.1 Research objective and significance14
1.4.2 Research content15
References of chapter 115
Chapter 2 Evaluation of the solid phase microextraction fiber coated
with single-walled carbon nanotubes and gas chromatography with
flame ionization detection for the determination of benzene, toluene,
ethylbenzene, xylenes in aqueous samples20
2.1 Introduction20
2.2 Experimental21
2.2.1 Instruments and reagents ······21

2.2.2 Chromatographic parameters22
2.2.3 Preparation and thermal treatment of SWCNTs fiber22
2.2.3.1 Preparation of SWCNTs fiber22
2.2.3.2 Thermal treatment of SWCNTs fiber
2.2.3.3 FTIR analysis of SWCNTs coatings23
2.2.4 SPME procedure23
2.2.5 Water samples24
2.3 Results and discussion24
2.3.1 Effect of thermal treatment24
2.3.1.1 FTIR analysis24
2.3.1.2 Effect of the treatment25
2.3.2 Optimization of SPME procedure26
2.3.2.1 Optimization of desorption conditions and thermal stability of
SWCNTs fiber26
2.3.2.2 Effect of extraction time ······27
2.3.2.3 Effect of extraction temperature28
2.3.2.4 Effect of ionic strength
2.3.2.5 Effect of stirring rate······30
2.3.3 Comparison with CAR-PDMS fiber
2.3.4 Lifetime of SWCNTs fiber
2.3.5 Linear range, LODs, LOQs, repeatability of the method33
2.3.6 Application of the method
2.4 Summary of chapter 235
References of chapter 2 35
Chapter 3 Dtermination of endocrine-disrupting compounds in water
by single-walled carbon nanotubes solid phase microextraction fiber
coupled with on line high performance liquid chromatography 38

3.1 Introduction38
3.2 Experimental 39
3.2.1 Instruments and reagents
3.2.2 Chromatographic parameters39
3.2.3 SPME procedure40
3.2.4 Water samples
3.2.5 Preparation and thermal treatment of SWCNTs fiber40
3.3 Results and discussion 41
3.3.1 Effect of thermal treatment 41 3.3.2 Optimization of SPME conditions 42
3.3.2 Optimization of SPME conditions42
3.3.2.1 Optimization of the desorption conditions
3.3.2.2 Effect of extraction time ······43
3.3.2.2 Effect of stirring rate42
3.3.2.4 Effect of ionic strength······45
3.3.2.5 Effect of pH value46
3.3.2.6 Effect of extraction temperature 47
3.3.3 Comparison with PA fiber48
3.3.4 Resistance to HPLC mobile phase and lifetime of SWCNTs fiber •49
3.3.5 Linear range, LODs, LOQs, repeatability of the method50
3.3.6 Application of the method51
3.4 Summary of chapter 351
References of chapter 3 52
Chapter 4 On-fiber solid phase microextraction derivatization with
SWCNTs fiber followed by gas chromatography with electror
capture detection for the determination of phenoxy acid herbicides in
aqueous samples55

4.1 Introduction55
4.2 Experimental50
4.2.1 Instruments and reagents5
4.2.2 Chromatographic parameters5
4.2.3 SPME procedure and derivatization conditions5
4.2.4 Water samples
4.2.5 Preparation and thermal treatment of SWCNTs fiber5
4.3 Results and discussion 58
4.3.1 Chromatographic seperation5
4.3.2 Derivatization conditions
4.3.3 Optimization of SPME conditions60
4.3.3.1 Effect of desorption condition
4.3.3.2 Effect of stirring rate6
4.3.3.3 Effect of pH value 6
4.3.3.4 Effect of extraction time
4.3.4 Comparison with PA fiber64
4.3.5 Lifetime of SWCNTs fiber6
4.3.6 Linear range, LODs, LOQs of the method
4.3.7 Application of the method6
4.4 Summary of chapter 46
References of chapter 4 68
Chapter 5 Conclusion70
5.1 Contribution of this research70
5.2 Limitaions of this research70
5.3 Perspectives70
Publications during the postgraduate study72

Contents

knowledgements72

The second secon

摘要

固相微萃取(Solid Phase Microextraction, SPME)技术具有操作简单、分析 时间短、样品需要量少、无需萃取溶剂、可与气相色谱和高效液相色谱在线联用 等优点,是环境样品分析中备受关注的一种样品预处理技术。现有的商品化 SPME 纤维普遍存在耐高温性能差,耐有机溶剂性能不佳,涂层的化学稳定性差, 使用寿命短等缺点。近年来,国内外许多科研工作者研制了很多新型的 SPME 纤维,但这些自制纤维只解决了商品化纤维存在的部分问题。因此,发展新型萃 取纤维是 SPME 技术发展的关键。

本文利用电泳沉积法(Electrophoretic Deposition, EPD)制备了以单壁碳纳 米管(Single-Walled Carbon Nanotubes, SWCNTs)为涂层,以铂丝为载体的 SPME 纤维,考察其耐高温、耐有机溶剂性能及化学稳定性,并将其应用于水中三苯、 内分泌干扰物及苯氧基羧酸类除草剂的萃取。主要研究内容和结果如下:

(1)将SWCNTs纤维应用于水中三苯的萃取,研究了实验条件对其萃取效率的影响,考察了其耐高温性能及使用寿命,比较了其与商品化CAR-PDMS纤维的萃取效果,建立了水中苯、甲苯、乙苯和二甲苯的SPME-GC-FID测定方法。结果表明,SWCNTs纤维的热稳定性好,耐受温度达到350℃,使用寿命超过120次;SWCNTs纤维对甲苯、乙苯和二甲苯的萃取效率高于商品化的CAR-PDMS纤维,对苯的萃取效率与CAR-PDMS纤维相近;所建立的方法的线性范围、检测限和定量限分别为0.5~50 µg/L,0.005~0.026 µg/L (S/N=3)和0.017~0.088 µg/L (S/N=10)。该方法已成功用于海水、自来水和油漆厂废水中三苯的分析。

(2)将制得的 SWCNTs 纤维应用于水中双酚 A、辛基酚、雌酮和乙炔基雌 二醇等 4 种内分泌干扰物的萃取,研究了实验条件对其萃取效率的影响,考察了 其耐有机溶剂的性能及使用寿命,比较了其与商品化 PA 纤维的萃取效果,建立 了这些内分泌干扰物的在线 SPME-HPLC 分析方法。结果表明,实验中未出现 SWCNTs 涂层膨胀或从铂丝上脱落的现象,说明 SWCNTs 纤维耐有机溶剂性好, 适合应用于在线 SPME-HPLC;使用寿命超过 120 次;SWCNTs 纤维对双酚 A、 乙炔基雌二醇和雌酮的萃取效率高于商品化的 PA 纤维,对 OP 的萃取效率与 PA 相近;所建立的方法的线性范围为 1.0~30.0 µg/L (双酚 A 和辛基酚)和 3.0~90.0

I

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.