学校编码: 10384 密级_____

学号: 24520071152570

屋の大了

硕士学位论文

三叶因子1对诱导性的ICAM1与VCAM1表达的影响

Effect of Trefoil factor 1 on induced expression of intercellular adhesion molecule 1 and vascular cell adhesion molecule 1

杨晓宁

指导教师姓名: 任建林 教授

专业名称: 内科学

论文提交日期: 2009年6月

论文答辩日期: 2009年6月

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学术活动规范(试行)》。

另外,该学位论文为()课题(组) 的研究成果,获得()课题(组)经费或实验室的 资助,在()实验室完成。(请在以上括号内填写 课题或课题组负责人或实验室名称,未有此项声明内容的,可以不作 特别声明。)

声明人(签名):

年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1. 经厦门大学保密委员会审查核定的保密学位论文,

于 年 月 日解密,解密后适用上述授权。

() 2. 不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文应 是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密委 员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认为 公开学位论文,均适用上述授权。)

声明人(签名):

年 月 日

摘要

研究目的: 探讨肿瘤坏死因子-α(Tumor Necrosis Factor-α,TNF-α)刺激后胃黏膜上皮细胞 GES-1 细胞间粘附分子 1(Intercellular adhesion molecule 1,ICAM1)、血管细胞黏附分子 1(Vascular cell adhesion molecule 1,VCAM1)表达变化,以及 TFF1(Trefoil factor family 1,TFF1)过表达对 GES-1 细胞中 TNF-α 诱导的 ICAM1、VCAM1 表达的影响。

研究方法: 以永生化的胃黏膜上皮细胞株 GES-1 为研究对象,采用不同浓度的人重组 TNF-α 刺激该细胞株,RT-PCR 和 Western Blot 方法检测不同时相 ICAM1、VCAM1 在 mRNA 和蛋白水平的表达变化;细胞免疫荧光检测刺激前后 NF-κ B(Nuclearf Factor-kappa B,NF-κ B) p65 蛋白的细胞定位情况。采用质粒重组的方法构建 TFF1 真核细胞表达质粒,将重组质粒 pIRES2-EGFP-TFF1 瞬时转染GES-1 细胞,Western Blot 检测转染前后 TNF-α 诱导性 ICAM1、VCAM1 的表达变化。

研究结果: 1.TNF- α 可诱导 GES-1 细胞表达 ICAM1、VCAM1,随着 TNF- α 浓度与诱导时间的增加,二者的表达量上调。2.TNF- α 刺激后 GES-1 细胞中 NF- κ B p65 蛋白呈现出从细胞质到细胞核的易位。3.重组质粒 pIRES2-EGFP-TFF1 瞬时转染 GES-1 细胞株,转染后的 GES-1 细胞可表达 TFF1 蛋白。4.TFF1 过表达后 GES-1 细胞中 TNF- α 诱导性的 ICAM1、VCAM1 表达下降(p<0.05)。

研究结论: 在 GES-1 细胞中,TFF1 过表达可显著减轻 TNF-α 诱导性 ICAM1、 VCAM1 的表达,TFF1 可能通过抑制黏附分子类蛋白的表达发挥抗炎、胃黏膜 保护作用。

关键词: 三叶因子 I 肿瘤坏死因子 α 细胞间黏附分子 1 血管细胞黏附分子 1

Abstract

Objective: To investigate TNF-α induced expression of intercellular adhesion

molecule 1 (ICAM1), vascular cell adhesion molecule1(VCAM1) in human gastric

epithelial cell GES-1, and to investigate the effect of trefoil factor 1 on the expression

of ICAM1 and VCAM1 induced by TNF-α.

Methods: Human gastric mucosal epithelial cell GES-1 were cultured in vitro. After

incubated with different concentrations and durations of human recombinant TNF-α,

RT-PCR and Western Blot were applied to measure the expression of ICAM1 and

VCAM1 in mRNA level and protein level respectively, and the localization of NF-κB

p65 protein was detected by immunofluorescence .The plasmid pIRES2-EGFP-TFF1

was constructed, then was transient transfected intoGES-1 cells, the alteration of

ICAM1,VCAM1 expression were assayed by Western blot.

Results: 1. TNF-α could induce the expression of ICAM1 and VCAM1 in GES-1, as

concentrations and induction times of TNF-α are rise, the expression of ICAM1 and

VCAM1 increase correspondingly .2. In GES-1 cell, NF-κB p65 protein translocation

from the cytoplasm to the nucleus afer TNF-α stimulated. 3. Recombinant plasmid

pIRES2-EGFP-TFF1 transient transfected into GES-1 cell line, TFF1 expression was

detected 4. TFF1 expression significantly induce TNF-α-induced ICAM1, VCAM1

expression in GES-1 cell (p<0.05)

Conclusion: In the GES-1 cells, TFF1 overexpression attenuates significantly

TNF-α-induced ICAM1, VCAM1. TFF1 may manifest a typical anti-inflammatory

factor through the inhibition on adhesion molecules such as ICAM1 and VCAM1...

Keywords:

TFF1 TNF-α ICMA1 VCAM1

II

目 录

中文摘要······ I
英文摘要······ II
前言
第一部分 TFF1 真核载体 pRIES2-EGFP-TFF1 的构建与表达········ 4
1.1 实验材料 4
1.2 实验方法 4
1.3 实验结果 7
1.4 讨论 9
第二部分 TNF-α 诱导 GES-1 细胞中 ICAM1 与 VCAM1 表达 ········ 11
2.1 实验材料 ·······11
2.2 实验方法
2.3 实验结果
2.4 讨论
第三部分 TFF1 对 TNF-α 诱导性的 ICAM1 与 VCAM1 表达的影响 18
3.1 实验材料 18
3.2 实验方法
3.3 实验结果 19
3 4 讨论 20
3.4 讨论
3.4 讨论 20 结论 22
0.1.13/1
结论 ····································
结论 22 附录 23
结论 22 附录 23 1. 英文缩略词 23
结论 22 附录 23 1. 英文缩略词 23 2. 主要材料、仪器、配方 24
结论 22 附录 23 1. 英文缩略词 23 2. 主要材料、仪器、配方 24 3. 主要操作反应 31

Table of Contents

Abstract in Chinese	I
Abstract in English	II
Introduce	1
Part one	4
1.1 Materials	4
1.2 Methods	4
1.3 Results	7
1.4 Discussion	9
Part two	
2.1 Materials	11
2.2 Methods	
2.3 Results	12
2.4 Discussion	
Part three	18
3.1 Materials	18
3.3 Results	19
3.4 Discussion	20
Conclusion	22
Appendices	23
1 Abbreviation	23
2 Materials Apparatus and Formula	24
3 Protocol	31
4 Review	37
Reference	48
Acknowledgement	52

前言

三叶因子家族(trefoil factor family,TFF)又称三叶肽,是一群主要由胃肠 道粘液细胞分泌的小分子多肽。目前在哺乳动物体内发现的三叶肽(trefoil peptide)有3种,即乳癌相关肽(pS2或TFF1)、解痉多肽(SP或TFF2)和肠三叶因子(ITF或TFF3)^[1-3]。三叶因子家族均拥有一个保守的三叶肽结构域,该结构 域通过6个半胱氨酸残基以1-5,2-4,3-6的交联方式形成二硫键,通过二硫键连接形成3个环状的三叶草结构,具有耐酸、抗水解及蛋白降解的作用,使三叶因子能在胃肠道复杂的环境中保持生物活性。

TFF1基因定位于21号染色体,由3个外显子、2个内含子和2个转录启动子构成。每个成熟TFF1分子由60个氨基酸残基组成,分子量为6.5kD。TFF1具有三种天然表达形式,除单体外三叶肽结构域允许TFF1形成二聚体,自身形成同源二聚体或与其他蛋白共同形成22kD的复合物,从而具有不同的活性形式^[4]。TFF1生理性状态下大量表达于胃体和胃窦黏膜上皮细胞,其次在小肠Brunner管腔细胞和邻近大肠隐窝表面的杯状细胞也有低水平表达。病理状态下,上述表达消失,如近50%胃癌标本中TFF1表达低下或消失100,但是在其他实体瘤如乳腺癌、胰腺癌、卵巢癌、前列腺癌等则有高表达^[5]。

国内外已有大量的实验证明,TFF1在胃肠道黏膜防御中发挥重要作用。在胃炎、胃溃疡、十二指肠溃疡患者病变黏膜中,TFF1表达普遍增高^[6];基因敲除小鼠TFF1基因后,可诱发小鼠出现幽门窦的不典型增生,导致腺瘤或上皮内瘤样变,成年小鼠小肠黏膜固有层出现炎症细胞浸润^[7];使肠道高表达TFF1的转基因小鼠更能抵御非甾体抗炎药物引起的肠炎^[8]。可见,TFF1具有明确的黏膜保护和促进黏膜修复的生理功能,通过抑制胃肠黏膜慢性炎症降低病变黏膜恶性转化的可能。

目前研究认为TFF1发挥黏膜保护的机制有两方面: 1.物理方式: TFF1与粘蛋白结合。粘蛋白是一类由多种上皮细胞分泌的大分子糖基化蛋白,生理状态下在上皮细胞表面分泌,并存在于上皮细胞的阳级面,对正常的上皮起润滑和保护作用。在胃肠道中粘蛋白参与粘液层的形成,同时也是粘液层流变学特性的主要成因。研究发现,特定的三叶因子与特定的粘蛋白结合,在正常胃肠道中TFF1

与MUC5AC结合^[9],可增加胃黏膜上皮粘液胶原的粘滞度,增强黏膜防酸能力,减少机械应力诱发损伤;TFF1还可与三叶肽作用因子(FTIZ1)以异二聚体的形式结合,增强上述黏膜防护作用^[10]。2.生物化学方式:部分学者认为胞外TFF1通过假定受体发挥生物学作用^[11],如TFF1可使细胞内酪氨酸激酶和酪氨酸磷酸酶活化,可能通过表皮生长因子受体EGFR及RAS/MEK/MAPK通路诱发细胞移行。细胞移行是黏膜修复的关键步骤,早期修复即由损伤周围完好的上皮细胞移行覆盖到临近的损伤表面,使上皮很快恢复连续性和完整性。但目前尚无明确的TFF1受体发现。

上述作用机制均假设TFF1以细胞外旁分泌或自分泌的方式发挥黏膜保护功能,但对细胞内TFF1可能的下游效应蛋白作及其相关信号传导通路尚未阐明,因此有必要进行进一步研究。

细胞间黏附分子1(intercellular adhesion molecule 1,ICAM1),又名CD54,是最早发现的免疫球蛋白超家族黏附分子之一,其配体为白细胞功能抗原 (leukocyte function antigen 1,LFA-1),两者结合后表达细胞激活所必须的协同共刺激信号从而介导T-T细胞、T细胞与基质细胞、效应细胞与靶细胞间的相互作用,因而在炎症反应中起主要作用[12]。血管细胞黏附分子1(vascular cell adhesion molecules-1,VCAM1),又名CD106,同属于免疫球蛋白超家族成员,其配体是分布在白细胞表面的极迟抗原4(very late antigen-4,VLA-4)。主要功能为参与单核-巨噬细胞和淋巴细胞向炎症部位浸润、自然杀伤细胞的黏附与迁移、并参与造血细胞分化过程中细胞集落的形成^[13]。上述两种黏附分子主要在活化的淋巴细胞表达,炎性介质也能显著上调二者在内皮细胞和上皮细胞中的表达。越来越多的研究证实上述两种黏附分子同胃黏膜炎症密切相关,如Maciorkowska报道HP阳性患者中胃黏膜ICAM1,VCAM1水平明显增高^[14],Hatanaka K发现在HP诱导小鼠胃黏膜炎症模型中VCAM1表达升高,增强了炎症区域白细胞的趋化能力^[15],Lazaris对慢性胃炎、炎症性肠病病变黏膜研究发现,ICAM1表达水平同炎症活动程度呈正相关^[16]。

本研究拟从TFF1对ICAM1与VCAM1可能存在的效应出发,探讨TFF1对胃黏膜炎症中黏附分子表达的影响。本实验以TNF-α诱导人正常胃粘膜上皮细胞株GES-1产生炎症,通过转染TFF1重组真核表达质粒表达TFF1,观察前后细胞中VCAM-1,ICAM-1变化,明确TFF1是否影响二者的表达。同时观察NF-κBp65

细胞内定位的变化,明确TNF-α诱导的胃黏膜炎症状中该蛋白的活化情况。旨 在为进一步探讨TFF1在胃黏膜炎症中的作用及机制奠定基础。

第一部分 TFF1 真核载体 pIRES2-EGFP-TFF1 的构建及表达

1.1 实验材料

pIRES2-EGFP质粒购自北京天恩泽基因科技有限公司;人胃黏膜上皮细胞GES-1购自中南大学湘雅中心实验室细胞库;转染试剂lipofectamine 2000、OPTI-MEM、RNA提取试剂Trizol购自Invitrogen公司;Dulbecco改进的Eagle培养基(DMEM)、胎牛血清(fetal bovine serum,FBS)、0.25%的胰酶及抗生素购自HyClone公司;RT-PCR试剂盒(RevertAid ™ First Strand cDNA Synthesis Kit K1622)购自Fermentas公司;pMD-19T载体、限制性内切酶BamHI、EcoRI、T4 DNA连接酶、Taq酶、dNTP mix购自TAKARA公司;DNA marker购自广州东盛科技有限公司;小量质粒DNA提取试剂盒、DNA凝胶回收试剂盒购自博大泰克公司;中量质粒提取试剂盒(QIAfilter Plasmid Purification kit),购自QIAGEN公司;PVDF膜购自Millpore公司;增强化学发光试剂盒(ECL)购自Pierce公司;TFF1鼠单克隆抗体,购自abnova公司;羊抗鼠二抗购自Proteintech公司;PCR引物由上海英骏公司合成;其他试剂均为进口分装或国产分析纯。

1.2 实验方法

1.2.1 GES-1 细胞培养

将人胃黏膜上皮细胞GES-1培养于含10%FBS的高糖型DMEM培养基中,含2种抗生素:青霉素和链霉素(浓度:100u/ml)。培养环境为37℃、含有5%CO2恒温恒湿温箱。每2-3天换用新鲜培养液。当细胞70-80%融合时予以传代:弃去旧培养基,培养瓶中加入0.25%胰蛋白酶消化细胞2-3分钟,弃去消化液,加入新培养基吹打瓶壁上细胞,形成均匀单细胞悬液,计数,按所需浓度转移至新培养瓶中,置于上述环境中继续培养。

1.2.2 GES-1 细胞总 RNA 提取及反转录合成 cDNA 第一链

采用Invitrogen公司的Trizol提取GES-1细胞总RNA,具体步骤参见基本操作的RNA提取部分。采用Fermentas公司的RT-PCR试剂盒反转录合成cDNA第一链,具体步骤参见基本操作RAN反转录合成cDNA第一链部分。

1.2.3 RT-PCR 获得 hTFF1 基 因

以美国国立生物技术信息中心网站(http://www.ncbi.nlm.nih.gov/)hTFF1基因序列(BC032811)为参照,采用Oligo6.0软件设计引物,保证扩增片段完全覆盖hTFF1基因编码区及读码框正确。上下游引物分别添加EcoRI,BamHI酶切位点,PCR 反应引物由 Invitrogen 公司合成,上游引物序列:TFF1-up CCGGAATTCATGGCCACCATGGAGAAC,下游引物序列:TFF1-down CGCGGATCCCTAAAATTCACACTCCTCTCTGG,扩增片段长255bp,反应条件为预变性5分钟,变性温度94℃,然后94℃30s,58℃30s,72°C 40s,共35个循环,最后72℃延伸7分钟。同时以甘油醛-3-磷酸脱氢酶(GAPDHP)做为内参,上游引物序列:GAPDH-up AGAAGGCTGGGGCTCATTTG下游引物序列:GAPDH-down AGGGGCCATCCACAGTCTTC,扩增片段长度为258bp,反应条件同上。PCR产物进行1%琼脂糖电泳,切下目的条带进行胶回收。试剂盒采用北京博大泰克公司生产的胶回收试剂盒,具体步骤参见基本操作方法的胶回收部分。

1.2.4 TA 克隆及重组质粒鉴定

将胶回收后所得的TFF1扩增产物及pMD-19T载体进行连接反应,摩尔比按5:1。反应条件16℃过夜,具体步骤参见基本操作方法部分的连接体系。制备TOPO10感受态细菌(见感受态的制备),放置24h后用于转化。将重组后pMD-19T-hTFF1质粒转化TOPO10感受态细菌,基本操作方法部分的转化。取100μL重悬转化菌液均匀涂在含有50μg/mL卡那霉素的固体LB平板上,37℃培养18h。经卡那霉素抗性初步筛选后,挑取20个中等大小菌落以划线法接种含有50μg/mL氨苄西林的固体LB平板上,37℃培养过夜。将单克隆菌落标记清楚后,分别挑取约0.1μL作为模板进行PCR反应验证是否含有hTFF1基因插入片段。引物采用TFF1-up+TFF1-down。PCR条件:94℃ 5min,94℃ 30s,58℃ 30s,72℃ 40s,经35个循环,72℃再延长7min。PCR产物进行1%琼脂糖电泳,观察是否出现目的条带。挑取PCR验证正确的单克隆接种于3 ml液体LB培养基(含卡那霉素50μg/mL)中,37℃ 250rpm振荡培养12h,采用博大泰克公司的小量B型质粒DNA试剂盒提取质粒,命名为:pMD19-hTFF1。

1.2.5 真核表达载体的构建及重组质粒鉴定

以TaKaRa公司生产的限制性内切酶BamH I 和EcoRI双酶切pMD19T-hTFF1 及pIRES2-EGFP质粒,具体步骤参见基本操作方法部分的酶切反应体系。将 pMD19T-hTFF1质粒、pIRES2-EGFP载体的双酶切产物以1%琼脂糖凝胶进行电泳 分离,分别切下前者释放的hTFF1片段及后者线性化的载体片段进行胶回收,试 剂盒采用北京博大泰克公司生产的胶回收试剂盒,具体步骤参见基本操作方法部 分的胶回收。将胶回收后所得的TFF1基因及pIRES2-EGFP的骨架部分进行连接 反应,摩尔比按5: 1。反应条件16℃过夜,具体步骤参见基本操作方法部分的连 接体系。制备TOP10感受态细菌(见感受态的制备),放置24 h后用于转化。将重 组后pIRES2-EGFP-TFF1质粒转化TOPO10感受态细菌(见基本操作方法部分的转 化)。取20μL重悬转化菌液均匀涂在含有50μg/mL卡那霉素的固体LB平板上,37 ℃培养12h。经卡那霉素抗性初步筛选后,挑取20个中等大小菌落以划线法接种 含有50µg/mL卡那霉素的固体LB平板上,37℃培养过夜。将单克隆菌落标记清楚 后,分别挑取约0.1uL作为模板进行PCR反应验证是否含有TFF1基因插入片段。 引物采用TFF-1up, TFF1-down, PCR条件: 94℃3min; 94℃ 30s; 55.0℃ 30s; 72℃ 30s; 35个循环。PCR产物进行1%琼脂糖电泳,观察是否出现目的条带。挑 取PCR验证正确的单克隆接种于3ml液体LB培养基(含卡那霉素50µg/mL),37 ℃250rpm振荡培养12h,送测序,命名为: pIRES2-EGFP-TFF1。

1.2.6 pIRES2-EGFP-TFF1 质粒的大量提取

将测序正确的单克隆菌落接种于500mL液体LB培养基(含卡那霉素50μg/mL),37℃250rpm振荡培养12h。因后续实验将要进行哺乳动物细胞的转染,对质粒的浓度、纯度、内毒素含量等方面有极高的要求,故以德国Qiagen公司生产的QIAfilter Plasmid Purification kit进行质粒大量提取。详细步聚按说明书进行。

1.2.7 pIRES2-EGFP-TFF1 瞬时转染 GES-1 细胞

采用Invitrogen公司的lipofectamine 2000转染试剂瞬时转染GES-1细胞,具体步骤参见基本操作的细胞转染部分。

1.2.8 TFF1 蛋白检测

TFF1分子量较小,成熟肽单体仅有6.7Kd,常规Western blot采用的Tris-甘氨酸-SDS电泳缓冲体系对于小于15kd的蛋白分离效果差,不易做出阳性结果。换用Tricine-甘氨酸-SDS体系能很好解决这一问题,具体步骤见基本操作Western

blot (Tricine-甘氨酸-SDS) 部分。

1.3 实验结果

1.3.1 GES-1 总 RNA 提取

本实验抽提所得RNA电泳后紫外线下见三条带(见图1.1),在5kb左右的是28S RNA,在2kb左右的是18SRNA,跑在最前面的亮度最弱的300bp的是5S RNA,说明抽提的RNA质量可,无明显降解释。

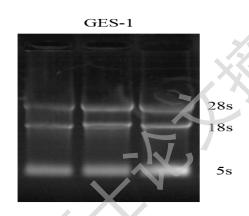


图 1.1 GES-1 总 RNA 1%琼脂糖电泳

1.3.2 RT-PCR 获得 TFF1 基因

RT-PCR反应产物经1%琼脂糖凝胶电泳,可见250bp左右的GAPDH内参对照条带及TFF1特异性扩增条带,与预期相符(图2.2泳道2,4)。同时以RNA为模板作为阴性对照,以相同条件扩增GAPDH及TFF1,未见阳性条带(泳道1,3),提示RNA提取无基因组DNA污染。

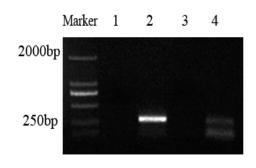


图 1.2 TFF1 RT-PCR 产物 1%琼脂糖电泳

1.3.3 TA 克隆阳性重组子的鉴定

阳性克隆菌丝PCR产物经1%琼脂糖凝胶电泳提,可见部分单克隆菌在250bp 左右出现TFF1特异性条带(图1.3),提示将TFF1基因成功克隆到pMD-19T载体中。

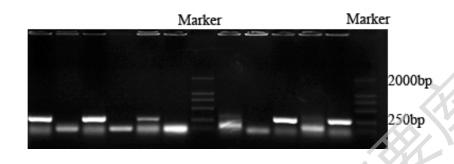


图 1.3 pMD19T-TFF1 重组子菌丝 PCR 产物 1%琼脂糖电泳

1.3.4 pIRES2-EGFP-TFF1 真核表达载体的鉴定

构建重组真核表达载体后,提取质粒,EcoRI、BamHI限制性内切酶双酶切,可见释放出250bp左右的条带(图1.4),同时送上海英俊公司进行DNA测序,测序结果(图1.5)示插入的TFF1基因编码区序列与NCBI网站上的TFF1标准参考序(BC032811)完全一致,提示pIRES2-EGFP-TFF1真核表达载体构建成功。

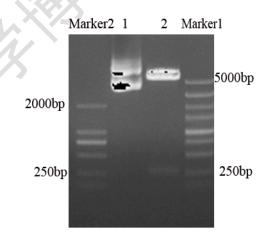


图 1.4 pIRES2-EGFP-TFF1 EcoRI/BamHI 双酶切 泳道1为对照pIRES2-EGFP空质粒 泳道2为pIRES2-EGFP-TFF1

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

- 1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.
- 2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.

