学校编	码:	10384
学号:	1812	20051403033

分类号	密级	
	UDC	

唇の大学

博士学位论文

分子间多量子相干核磁共振中的 表观扩散及信号特性

Apparent Diffusion and Signal Characteristics of Intermolecular Multiple Quantum Coherence NMR

沈桂平

指导教师姓名:蔡淑惠教授 专业名称:无线电物理 论文提交日期:2011年10月 论文答辩时间:2011年月 学位授予日期:2011年月

答辩委员会主席: _____

评 阅 人:_____

2011年10月

HANNEL HANNEL

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成 果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

 另外,该学位论文为(
)课题(组)

 的研究成果,获得(
)课题(组)经费或实验室的

 资助,在(
)实验室完成。(请在以上括号内填写课

 题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特

 别声明。)

声明人 (签名):

年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1. 经厦门大学保密委员会审查核定的保密学位论文,于 年 月 日解密,解密后适用上述授权。

() 2. 不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文 应是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密 委员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认 为公开学位论文,均适用上述授权。)

声明人 (签名):

年 月 日

专用缩写词英汉对照表

一维
二维
相关波谱
CPMG 序列
不对称z向梯度回波 检测改进的 COSY
相干选择梯度
相干转移路径
远程偶极场 偶极退磁场
密度算符矩阵
二量子相干
二量子滤波
二甲基亚砜
快速傅立叶变换
自由感应衰减
折叠校正
功能磁共振成像
傅立叶变换
分子间偶极相互作 用增强谱线分辨率
分子间二量子相干
分子间二量子滤波
分子间多量子相干
分子间单量子相干
分子间零量子相干
魔角旋转
甲乙酮

MQC = Multiple-Quantum Coherence	多量子相干
MRI = Magnetic Resonance Imaging	磁共振成像
MRS = Magnetic Resonance Spectroscopy	磁共振波谱
MSE = Multiple Spin Echoes	多自旋回波
NMR = Nuclear Magnetic Resonance	核磁共振
NOE = Nuclear Overhauser Effect	核 Overhauser 效应
NOESY = Nuclear Overhauser Effect SpectroscopY	NOE 谱
PFG = Pulsed Field Gradient	脉冲场梯度
PRESS = Point-REsolved SpectroScopy	点分解谱
PRESS = Point-REsolved SpectroScopy POM = Product Operator Matrix	点分解谱 积算符矩阵
PRESS = Point-REsolved SpectroScopyPOM = Product Operator MatrixRD = Relaxation Delay	点分解谱 积算符矩阵 弛豫延迟
PRESS = Point-REsolved SpectroScopyPOM = Product Operator MatrixRD = Relaxation DelayRF = Radio Frequency	点分解谱 积算符矩阵 弛豫延迟 射频
PRESS = Point-REsolved SpectroScopyPOM = Product Operator MatrixRD = Relaxation DelayRF = Radio FrequencySE = Spin Echo	点分解谱 积算符矩阵 弛豫延迟 射频 自旋回波
PRESS = Point-REsolved SpectroScopyPOM = Product Operator MatrixRD = Relaxation DelayRF = Radio FrequencySE = Spin EchoSNR = Signal to Noise Ratio	点分解谱 积算符矩阵 弛豫延迟 射频 自旋回波 信噪比
PRESS = Point-REsolved SpectroScopyPOM = Product Operator MatrixRD = Relaxation DelayRF = Radio FrequencySE = Spin EchoSNR = Signal to Noise RatioSQC = Single-Quantum Coherence	 点分解谱 积算符矩阵 弛豫延迟 射频 自旋回波 信噪比 单量子相干

专用缩写词英汉对照表······	•••••••i
中文摘要······	····· xi
英文摘要······	····· xiii
第一章 绪论	1
1.1 高极化核体系的多目旋回波现象	
1.2 分子间多量子相干的理论描述	
1.2.1 CRAZED 脉冲序列	5
1.2.2 经典理论描述—远程偶极场方法	6
1.2.3 量子理论描述——分子间多量子相干方法	10
1.2.4 量子——经典理论描述	20
1.3 分子间多量子相干的性质	20
1.3.1 信号强度与射频脉冲翻转角	21
1.3.2 纵向弛豫时间	
1.3.3 横向弛豫时间	23
1.3.4 表观扩散系数	23
1.4 分子间多量子相干的应用	24
1.4.1 分子间多量子相干信号的特异性	24
1.4.2 在微观结构测量方面的应用	25
1.4.3 在不均匀不稳定场下高分辨 NMR 谱方面的应用	25
1.4.4 在 MRI 和 fMRI 方面的应用	27
1.5 论文结构	28
第二章 COSY与CRAZED实验中的偶极场效应	
2.1 引言	
2.2 理论描述	
2.3 材料与方法	40
2.4 结果与讨论	41

目 录

2.4.1 辐射阻尼与背景梯度场41
2.4.2 COSY 实验中的偶极场效应及温度升高时的信号衰减41
2.4.3 CRAZED 实验中的偶极场、偶极相关距离与分子自扩散44
2.5 本章小结
第三章 偶极场调制下单组份核自旋体系的表观扩散行为52
3.1 引言
3.2 理论描述
3.2.1 基于分子间多量子相干的核自旋演化
3.2.2 第二演化期的扩散效应57
3.3 材料与方法
3.4 结果与讨论
3.5 本章小结
第四章 偶极场调制下双组份核自旋体系的表观扩散行为69
4.1 引言
4.2 理论描述
4.3 材料与方法
4.4 结果与讨论75
4.5 本章小结
第五章 分子间多量子相干信号凹陷··························84
5.1 引言
5.2 理论描述
5.3 材料与方法
5.4 结果与讨论
5.5 本章小结
第六章 总结与展望······101
6.1 全文总结
6.2 展望
攻读博士学位期间论文发表情况

致谢	
----	--

The second secon

HAR HERE WAR

Acronyms······i
Chinese Abstractxi
English Abstractxiii
Chapter 1 Preface1
1.1 Multiple spin echo in highly polarized spin systems·······1
1.2 Theoretical treatments of iMQCs from CRAZED pulse sequence5
1.2.1 CRAZED pulse sequence5
1.2.2 Classical treatment — distant dipolar field theory
1.2.3 Quantum treatment — iMQC theory10
1.2.4 Quantum — classical treatment20
1.3 Properties of iMQCs20
1.3.1 Signal intensity and radio-frequency pulse flip angles21
1.3.2 Longitudinal relaxation time22
1.3.3 Transverse relaxation time23
1.3.4 Apparent diffusion coefficient23
1.4 Applications of iMQCs24
1.4.1 Unique properties of iMQCs24
1.4.2 Exploration of microstructures25
1.4.3 High-resolution NMR in inhomogeneous and unstable fields25
1.4.4 MRI and fMRI······27
1.5 Structure of this dissertation28
Chapter 2 Dipolar field Effects in COSY and CRAZED
experiments37
2.1 Introduction37
2.2 Theoretical description
2.3 Materials and methods40

CONTENTS

2.4 Results and discussion41
2.4.1 Radiation damping and background gradient41
2.4.2 Dipolar field effect and signal attenuation due to the increase of
temperature in COSY experiment41
2.4.3 Dipolar field, dipolar correlation distance and molecular self-diffusion
in CRAZED experiment44
2.5 Conclusions46
Chapter 3 Apparent diffusion behaviors of spins in the presence of
distant dipolar field in one-component solution52
3.1 Introduction52
3.2 Theoretical description53
3.2.1 iMQC evolution
3.2.2 Diffusion effect in the second evolution period57
3.3 Materials and methods59
3.4 Results and discussion60
3.5 Conclusions64
Chapter 4 Apparent diffusion behaviors of spins in the presence of
distant dipolar field in two-component solution69
4.1 Introduction69
4.2 Theoretical description69
4.3 Materials and methods74
4.4 Results and discussion75
4.5 Conclusions80
Chapter 5 Observation of iMQC signal dips84
5.1 Introduction84
5.2 Theoretical description85
5.3 Materials and methods88
5.4 Results and discussion89

5.5 Conclusions	95
Chapter 6 Summary and prospect	
6.1 Summary	
6.2 Prospect	
Publications	
Acknowledgements	
A REAL PROVIDE AND A REAL PROVID	

HAT HERE WAR

作者姓名:沈桂平

论文题目: 分子间多量子相干核磁共振中的表观扩散及信号特性

作者简介:沈桂平,男,1978 年 8 月出生,2005 年 9 月师从 于厦门大学蔡淑惠教授,于 年 月获博士学位。

中文摘要

分子间多量子相干(intermolecular Multiple Quantum Coherence, iMQC)自 1990 年被发现以来,便引起核磁共振(NMR)研究者的极大兴趣,并在许多方 面得到广泛的应用。实验与理论研究均表明 iMQC 是由远程偶极相互作用引 起的。由于非局域化的远程偶极场具有复杂的非线性特性,与其它效应的联 合作用可能导致复杂多样的现象,因此,模拟与实验研究包含远程偶极场的 效应具有重要的意义。

本论文研究了 CRAZED 实验中在远程偶极场、分子自扩散和背景梯度场等因素影响下,核自旋体系的演化,深入考察了偶极场条件下分子的表观扩散行为,获得了 iMQC 在改进型 CRAZED 序列的第二演化期(采样前期)的扩散特性及其信号变化规律,主要研究成果有:

一、从理论上分析了在含有任意射频脉冲相位的 CRAZED 脉冲序列作用 下 iMQC 的信号表达式及偶极场效应。详细考察了 COSY 和 CRAZED 实验中 偶极场、相干选择梯度场、背景梯度场、分子自扩散和实验温度等对 iMQC 信号的影响,着重讨论了偶极场和分子自扩散的关系。在不均匀场条件下, 采用适当的相位循环,常规 CRAZED 脉冲序列中必不可少的相干选择梯度场 可以省略, iMQC 信号衰减仅受扩散和弛豫的影响。温度升高时 CRAZED 和 COSY 实验中 iMQC 信号的衰减是偶极场、梯度场、分子自扩散等多种因素 综合作用的结果。基于经典偶极场理论的多量子相干机制同样适合于解释 COSY 实验的多谐波现象。

二、考察了在改进型 CRAZED 脉冲序列的第二演化期(采样前期)单组

xi

份核自旋体系的表观扩散行为。基于偶极场理论,分析了在脉冲序列作用下, 核自旋体系的演化过程。受扩散加权梯度场(Diffusion Weighting Gradient, DWG)与相干选择梯度场(Coherence Selection Gradient, CSG)相对取向的影 响,第二演化期分子间二量子相干(intermolecular Double Quantum Coherence, iDQC)的表观扩散行为与常规单量子相干扩散可能不同。当扩散加权梯度场平 行或反平行于相干选择梯度场时,iDQC扩散受到远程偶极场的调制。数值模 拟与实验测量结果与理论预测相吻合。这一研究结果有助于进一步了解iMQC 磁共振成像中信号的变化特性。

三、将研究对象扩展到双组份核自旋体系,研究其分子间零量子相干 (intermolecular Zero-Quantum Coherence, iZQC)和 iDQC 表观扩散行为。我们 采用积算符和远程偶极场理论分析在在改进型 CRAZED 脉冲序列作用下自旋 的演化过程,并对理论分析结果进行实验和模拟验证。结果表明 iZQC 和 iDQC 具有相同的表观扩散行为,它们都受到选择激发的核自旋产生的远程偶极场 的调制,并且 DWG 相对于 CSG 的作用方向不同将产生不同的表观扩散行为。 此结论可以推广到多组份核自旋体系。

四、基于 iMQC 的远程偶极相互作用原理,改进 CRAZED 脉冲序列,用 于观测 NMR 和 MRI 中 iDQC 信号的凹陷现象。研究发现, iDQC 信号凹陷现 象的出现与样品的几何形状、磁场的不均匀性及 CSG 有关。当磁场的不均匀 性被完全消除时,信号凹陷固定出现在 $k = \gamma G \delta$ 这一位置上, γ 为核自旋的旋 磁比,G 为梯度场强度, δ 为梯度场作用时间。此时,偶极相关距离等于样品 的几何尺寸(外径)。iMQC 信号的这一特殊性质可能为多孔结构探测提供一 个独特的方法,并在生物医学和材料科学研究中得到应用。

关键词:分子间多量子相干;远程偶极场;分子扩散;信号凹陷

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.