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Abstract

Abstract

The characteristic of fractional order differential equation is containing the non-
integer order derivative. It can effectively describe the memory and transmissibility
of many kinds of material, and plays an increasingly important role in physics, mathe-
matics, mechanical engineering, biology, electrical engineering, control theory, finance
and other fields. All kinds of fractional models have close relation with chaotic dynam-
ics. Anomalous diffusion in physics were originally developed from stochastic random
walk models. Fractional advection-dispersion equations is powerful tool to simulate all
kinds of anomalous diffusion phenomena. They are a subset of fractional kinetic equa-
tions that allow fractional derivatives in both the space and time operators. We discuss
the time, space, space-time Fractional advection-dispersion equations respectively in
this paper. The spatial derivatives discussed in the paper are all Riesz space fractional
derivative, which include the left and right Riemann-Liouville fractional derivatives.
The notable merit of Riesz space fractional derivative lies in its applicability to higher

dimensional space.
This thesis consists of the four chapters.

Introduction presents the developmental history of fractional calculus and some
important previous works at first. Then, gives some concerning fractional calculus to
prepare the knowledge and present basic definitions and properties of fractional calcu-

lus.

In Chapter 2, starting from the time fractional diffusion equation,we present
an explicit conservative difference approximation, and give the stability and conver-
gency analysis. Then, we extend the obtained results to the time fractional advection-
dispersion equation. For the explicit conservative difference approximation of the time
fractional advection-dispersion equation, we analyge the stability and convergency by
using mathematical induction, and interpret it as a particle random walk. Random

walks have proven to be a useful model in understanding processes across a wide spec-
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Abstract

trum of scientific disciplines.

In Chapter 3, we consider the Riesz space fractional advection-dispersion equa-
tion. It has three components. At first, we consider the case of initial value problem.
Using the method of the Laplace and Fourier transforms, we obtain the fundamental
solution of the equation with initial condition. The fundamental solution is represented
by Green function, and can be intergreted the probability interpretation. We construct
an explicit finite difference approximation for the equation by using the equivalence
relation between Riemann-Liouville fractional derivative and Griinwald-Letnikovmake
fractional derivative. The discrete scheme can be interpreted as a discrete random walk
model, and the random walk model converges to a stable probability distribution. Sec-
ondly, we consider the case of initial-boundary problem. For the Riesz space fractional
derivative can be expressed by a fractional power of the Laplacian operator, the nu-
merical solution of our equation can be obtained by recur to matrix transfer technique
and fractional method of lines. We also derive the new analytic solution by utilizing
the property of eigenfunction and Laplace transform. Furthermore we compare the
analytic solution and the numerical solution. Finally, we discuss the finite difference
approximations in the case of initial-boundary problem. The explicit and implicit dif-

ference approximations are presented and the error analysis is also given.

In Chapter 4, we consider the Riesz space-time fractional advection-dispersion
equation. At first, we consider the case of initial value problem. We obtain the funda-
mental solution by using the method of the Laplace and Fourier transforms. The fun-
damental solution also be represented by Green function, and also can be proposed the
probability interpretation. Using the equivalence relation between Riemann-Liouville
fractional derivative and Griinwald-Letnikovmake fractional derivative, an explicit fi-
nite difference approximation for the equation is presented. The discrete scheme can
be interpreted as a discrete random walk model. Then, the case of initial-boundary
problem are discussed. The explicit and implicit finite difference approximations are
proposed and the error analysis are also given. The non-local structure of fractional
derivatives is one reason, why numerical methods for fractional differential equations

are much more costly in computational time and storage requirements that their in-
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Abstract

teger order counterparts. Thus, we propose the Richardson extrapolation which can
promote the accuracy and “short-memory” principle which reduce the computational
cost finally, these two methods are used to improve our numerical methods.

Some numerical examples are presented in each chapter, which show the effi-

ciency of our numerical methods.

Key words: fractional advection-dispersion equation; fundamental solution; nu-

merical solution; random walk model; stability; convergence
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